]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_trim.c
zfs: merge openzfs/zfs@804414aad
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_trim.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25  * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26  */
27
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/txg.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/vdev_trim.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/zap.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/arc_impl.h>
38
39 /*
40  * TRIM is a feature which is used to notify a SSD that some previously
41  * written space is no longer allocated by the pool.  This is useful because
42  * writes to a SSD must be performed to blocks which have first been erased.
43  * Ensuring the SSD always has a supply of erased blocks for new writes
44  * helps prevent the performance from deteriorating.
45  *
46  * There are two supported TRIM methods; manual and automatic.
47  *
48  * Manual TRIM:
49  *
50  * A manual TRIM is initiated by running the 'zpool trim' command.  A single
51  * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
52  * managing that vdev TRIM process.  This involves iterating over all the
53  * metaslabs, calculating the unallocated space ranges, and then issuing the
54  * required TRIM I/Os.
55  *
56  * While a metaslab is being actively trimmed it is not eligible to perform
57  * new allocations.  After traversing all of the metaslabs the thread is
58  * terminated.  Finally, both the requested options and current progress of
59  * the TRIM are regularly written to the pool.  This allows the TRIM to be
60  * suspended and resumed as needed.
61  *
62  * Automatic TRIM:
63  *
64  * An automatic TRIM is enabled by setting the 'autotrim' pool property
65  * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
66  * top-level (not leaf) vdev in the pool.  These threads perform the same
67  * core TRIM process as a manual TRIM, but with a few key differences.
68  *
69  * 1) Automatic TRIM happens continuously in the background and operates
70  *    solely on recently freed blocks (ms_trim not ms_allocatable).
71  *
72  * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
73  *    the benefit of simplifying the threading model, it makes it easier
74  *    to coordinate administrative commands, and it ensures only a single
75  *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
76  *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
77  *    children.
78  *
79  * 3) There is no automatic TRIM progress information stored on disk, nor
80  *    is it reported by 'zpool status'.
81  *
82  * While the automatic TRIM process is highly effective it is more likely
83  * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
84  * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
85  * TRIM and are skipped.  This means small amounts of freed space may not
86  * be automatically trimmed.
87  *
88  * Furthermore, devices with attached hot spares and devices being actively
89  * replaced are skipped.  This is done to avoid adding additional stress to
90  * a potentially unhealthy device and to minimize the required rebuild time.
91  *
92  * For this reason it may be beneficial to occasionally manually TRIM a pool
93  * even when automatic TRIM is enabled.
94  */
95
96 /*
97  * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
98  */
99 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
100
101 /*
102  * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
103  */
104 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
105
106 /*
107  * Skip uninitialized metaslabs during the TRIM process.  This option is
108  * useful for pools constructed from large thinly-provisioned devices where
109  * TRIM operations are slow.  As a pool ages an increasing fraction of
110  * the pools metaslabs will be initialized progressively degrading the
111  * usefulness of this option.  This setting is stored when starting a
112  * manual TRIM and will persist for the duration of the requested TRIM.
113  */
114 unsigned int zfs_trim_metaslab_skip = 0;
115
116 /*
117  * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
118  * concurrent TRIM I/Os issued to the device is controlled by the
119  * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
120  */
121 static unsigned int zfs_trim_queue_limit = 10;
122
123 /*
124  * The minimum number of transaction groups between automatic trims of a
125  * metaslab.  This setting represents a trade-off between issuing more
126  * efficient TRIM operations, by allowing them to be aggregated longer,
127  * and issuing them promptly so the trimmed space is available.  Note
128  * that this value is a minimum; metaslabs can be trimmed less frequently
129  * when there are a large number of ranges which need to be trimmed.
130  *
131  * Increasing this value will allow frees to be aggregated for a longer
132  * time.  This can result is larger TRIM operations, and increased memory
133  * usage in order to track the ranges to be trimmed.  Decreasing this value
134  * has the opposite effect.  The default value of 32 was determined though
135  * testing to be a reasonable compromise.
136  */
137 static unsigned int zfs_trim_txg_batch = 32;
138
139 /*
140  * The trim_args are a control structure which describe how a leaf vdev
141  * should be trimmed.  The core elements are the vdev, the metaslab being
142  * trimmed and a range tree containing the extents to TRIM.  All provided
143  * ranges must be within the metaslab.
144  */
145 typedef struct trim_args {
146         /*
147          * These fields are set by the caller of vdev_trim_ranges().
148          */
149         vdev_t          *trim_vdev;             /* Leaf vdev to TRIM */
150         metaslab_t      *trim_msp;              /* Disabled metaslab */
151         range_tree_t    *trim_tree;             /* TRIM ranges (in metaslab) */
152         trim_type_t     trim_type;              /* Manual or auto TRIM */
153         uint64_t        trim_extent_bytes_max;  /* Maximum TRIM I/O size */
154         uint64_t        trim_extent_bytes_min;  /* Minimum TRIM I/O size */
155         enum trim_flag  trim_flags;             /* TRIM flags (secure) */
156
157         /*
158          * These fields are updated by vdev_trim_ranges().
159          */
160         hrtime_t        trim_start_time;        /* Start time */
161         uint64_t        trim_bytes_done;        /* Bytes trimmed */
162 } trim_args_t;
163
164 /*
165  * Determines whether a vdev_trim_thread() should be stopped.
166  */
167 static boolean_t
168 vdev_trim_should_stop(vdev_t *vd)
169 {
170         return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
171             vd->vdev_detached || vd->vdev_top->vdev_removing);
172 }
173
174 /*
175  * Determines whether a vdev_autotrim_thread() should be stopped.
176  */
177 static boolean_t
178 vdev_autotrim_should_stop(vdev_t *tvd)
179 {
180         return (tvd->vdev_autotrim_exit_wanted ||
181             !vdev_writeable(tvd) || tvd->vdev_removing ||
182             spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
183 }
184
185 /*
186  * Wait for given number of kicks, return true if the wait is aborted due to
187  * vdev_autotrim_exit_wanted.
188  */
189 static boolean_t
190 vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick)
191 {
192         mutex_enter(&vd->vdev_autotrim_lock);
193         for (int i = 0; i < num_of_kick; i++) {
194                 if (vd->vdev_autotrim_exit_wanted)
195                         break;
196                 cv_wait(&vd->vdev_autotrim_kick_cv, &vd->vdev_autotrim_lock);
197         }
198         boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted;
199         mutex_exit(&vd->vdev_autotrim_lock);
200
201         return (exit_wanted);
202 }
203
204 /*
205  * The sync task for updating the on-disk state of a manual TRIM.  This
206  * is scheduled by vdev_trim_change_state().
207  */
208 static void
209 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
210 {
211         /*
212          * We pass in the guid instead of the vdev_t since the vdev may
213          * have been freed prior to the sync task being processed.  This
214          * happens when a vdev is detached as we call spa_config_vdev_exit(),
215          * stop the trimming thread, schedule the sync task, and free
216          * the vdev. Later when the scheduled sync task is invoked, it would
217          * find that the vdev has been freed.
218          */
219         uint64_t guid = *(uint64_t *)arg;
220         uint64_t txg = dmu_tx_get_txg(tx);
221         kmem_free(arg, sizeof (uint64_t));
222
223         vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
224         if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
225                 return;
226
227         uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
228         vd->vdev_trim_offset[txg & TXG_MASK] = 0;
229
230         VERIFY3U(vd->vdev_leaf_zap, !=, 0);
231
232         objset_t *mos = vd->vdev_spa->spa_meta_objset;
233
234         if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
235
236                 if (vd->vdev_trim_last_offset == UINT64_MAX)
237                         last_offset = 0;
238
239                 vd->vdev_trim_last_offset = last_offset;
240                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
241                     VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
242                     sizeof (last_offset), 1, &last_offset, tx));
243         }
244
245         if (vd->vdev_trim_action_time > 0) {
246                 uint64_t val = (uint64_t)vd->vdev_trim_action_time;
247                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
248                     VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
249                     1, &val, tx));
250         }
251
252         if (vd->vdev_trim_rate > 0) {
253                 uint64_t rate = (uint64_t)vd->vdev_trim_rate;
254
255                 if (rate == UINT64_MAX)
256                         rate = 0;
257
258                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
259                     VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
260         }
261
262         uint64_t partial = vd->vdev_trim_partial;
263         if (partial == UINT64_MAX)
264                 partial = 0;
265
266         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
267             sizeof (partial), 1, &partial, tx));
268
269         uint64_t secure = vd->vdev_trim_secure;
270         if (secure == UINT64_MAX)
271                 secure = 0;
272
273         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
274             sizeof (secure), 1, &secure, tx));
275
276
277         uint64_t trim_state = vd->vdev_trim_state;
278         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
279             sizeof (trim_state), 1, &trim_state, tx));
280 }
281
282 /*
283  * Update the on-disk state of a manual TRIM.  This is called to request
284  * that a TRIM be started/suspended/canceled, or to change one of the
285  * TRIM options (partial, secure, rate).
286  */
287 static void
288 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
289     uint64_t rate, boolean_t partial, boolean_t secure)
290 {
291         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
292         spa_t *spa = vd->vdev_spa;
293
294         if (new_state == vd->vdev_trim_state)
295                 return;
296
297         /*
298          * Copy the vd's guid, this will be freed by the sync task.
299          */
300         uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
301         *guid = vd->vdev_guid;
302
303         /*
304          * If we're suspending, then preserve the original start time.
305          */
306         if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
307                 vd->vdev_trim_action_time = gethrestime_sec();
308         }
309
310         /*
311          * If we're activating, then preserve the requested rate and trim
312          * method.  Setting the last offset and rate to UINT64_MAX is used
313          * as a sentinel to indicate they should be reset to default values.
314          */
315         if (new_state == VDEV_TRIM_ACTIVE) {
316                 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
317                     vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
318                         vd->vdev_trim_last_offset = UINT64_MAX;
319                         vd->vdev_trim_rate = UINT64_MAX;
320                         vd->vdev_trim_partial = UINT64_MAX;
321                         vd->vdev_trim_secure = UINT64_MAX;
322                 }
323
324                 if (rate != 0)
325                         vd->vdev_trim_rate = rate;
326
327                 if (partial != 0)
328                         vd->vdev_trim_partial = partial;
329
330                 if (secure != 0)
331                         vd->vdev_trim_secure = secure;
332         }
333
334         vdev_trim_state_t old_state = vd->vdev_trim_state;
335         boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
336         vd->vdev_trim_state = new_state;
337
338         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
339         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
340         dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
341             guid, tx);
342
343         switch (new_state) {
344         case VDEV_TRIM_ACTIVE:
345                 spa_event_notify(spa, vd, NULL,
346                     resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
347                 spa_history_log_internal(spa, "trim", tx,
348                     "vdev=%s activated", vd->vdev_path);
349                 break;
350         case VDEV_TRIM_SUSPENDED:
351                 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
352                 spa_history_log_internal(spa, "trim", tx,
353                     "vdev=%s suspended", vd->vdev_path);
354                 break;
355         case VDEV_TRIM_CANCELED:
356                 if (old_state == VDEV_TRIM_ACTIVE ||
357                     old_state == VDEV_TRIM_SUSPENDED) {
358                         spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
359                         spa_history_log_internal(spa, "trim", tx,
360                             "vdev=%s canceled", vd->vdev_path);
361                 }
362                 break;
363         case VDEV_TRIM_COMPLETE:
364                 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
365                 spa_history_log_internal(spa, "trim", tx,
366                     "vdev=%s complete", vd->vdev_path);
367                 break;
368         default:
369                 panic("invalid state %llu", (unsigned long long)new_state);
370         }
371
372         dmu_tx_commit(tx);
373
374         if (new_state != VDEV_TRIM_ACTIVE)
375                 spa_notify_waiters(spa);
376 }
377
378 /*
379  * The zio_done_func_t done callback for each manual TRIM issued.  It is
380  * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
381  * and limiting the number of in flight TRIM I/Os.
382  */
383 static void
384 vdev_trim_cb(zio_t *zio)
385 {
386         vdev_t *vd = zio->io_vd;
387
388         mutex_enter(&vd->vdev_trim_io_lock);
389         if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
390                 /*
391                  * The I/O failed because the vdev was unavailable; roll the
392                  * last offset back. (This works because spa_sync waits on
393                  * spa_txg_zio before it runs sync tasks.)
394                  */
395                 uint64_t *offset =
396                     &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
397                 *offset = MIN(*offset, zio->io_offset);
398         } else {
399                 if (zio->io_error != 0) {
400                         vd->vdev_stat.vs_trim_errors++;
401                         spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
402                             0, 0, 0, 0, 1, zio->io_orig_size);
403                 } else {
404                         spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
405                             1, zio->io_orig_size, 0, 0, 0, 0);
406                 }
407
408                 vd->vdev_trim_bytes_done += zio->io_orig_size;
409         }
410
411         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
412         vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
413         cv_broadcast(&vd->vdev_trim_io_cv);
414         mutex_exit(&vd->vdev_trim_io_lock);
415
416         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
417 }
418
419 /*
420  * The zio_done_func_t done callback for each automatic TRIM issued.  It
421  * is responsible for updating the TRIM stats and limiting the number of
422  * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
423  * never reissued on failure.
424  */
425 static void
426 vdev_autotrim_cb(zio_t *zio)
427 {
428         vdev_t *vd = zio->io_vd;
429
430         mutex_enter(&vd->vdev_trim_io_lock);
431
432         if (zio->io_error != 0) {
433                 vd->vdev_stat.vs_trim_errors++;
434                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
435                     0, 0, 0, 0, 1, zio->io_orig_size);
436         } else {
437                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
438                     1, zio->io_orig_size, 0, 0, 0, 0);
439         }
440
441         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
442         vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
443         cv_broadcast(&vd->vdev_trim_io_cv);
444         mutex_exit(&vd->vdev_trim_io_lock);
445
446         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
447 }
448
449 /*
450  * The zio_done_func_t done callback for each TRIM issued via
451  * vdev_trim_simple(). It is responsible for updating the TRIM stats and
452  * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
453  * effort and are never reissued on failure.
454  */
455 static void
456 vdev_trim_simple_cb(zio_t *zio)
457 {
458         vdev_t *vd = zio->io_vd;
459
460         mutex_enter(&vd->vdev_trim_io_lock);
461
462         if (zio->io_error != 0) {
463                 vd->vdev_stat.vs_trim_errors++;
464                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
465                     0, 0, 0, 0, 1, zio->io_orig_size);
466         } else {
467                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
468                     1, zio->io_orig_size, 0, 0, 0, 0);
469         }
470
471         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
472         vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
473         cv_broadcast(&vd->vdev_trim_io_cv);
474         mutex_exit(&vd->vdev_trim_io_lock);
475
476         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
477 }
478 /*
479  * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
480  */
481 static uint64_t
482 vdev_trim_calculate_rate(trim_args_t *ta)
483 {
484         return (ta->trim_bytes_done * 1000 /
485             (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
486 }
487
488 /*
489  * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
490  * and number of concurrent TRIM I/Os.
491  */
492 static int
493 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
494 {
495         vdev_t *vd = ta->trim_vdev;
496         spa_t *spa = vd->vdev_spa;
497         void *cb;
498
499         mutex_enter(&vd->vdev_trim_io_lock);
500
501         /*
502          * Limit manual TRIM I/Os to the requested rate.  This does not
503          * apply to automatic TRIM since no per vdev rate can be specified.
504          */
505         if (ta->trim_type == TRIM_TYPE_MANUAL) {
506                 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
507                     vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
508                         cv_timedwait_idle(&vd->vdev_trim_io_cv,
509                             &vd->vdev_trim_io_lock, ddi_get_lbolt() +
510                             MSEC_TO_TICK(10));
511                 }
512         }
513         ta->trim_bytes_done += size;
514
515         /* Limit in flight trimming I/Os */
516         while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
517             vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
518                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
519         }
520         vd->vdev_trim_inflight[ta->trim_type]++;
521         mutex_exit(&vd->vdev_trim_io_lock);
522
523         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
524         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
525         uint64_t txg = dmu_tx_get_txg(tx);
526
527         spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
528         mutex_enter(&vd->vdev_trim_lock);
529
530         if (ta->trim_type == TRIM_TYPE_MANUAL &&
531             vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
532                 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
533                 *guid = vd->vdev_guid;
534
535                 /* This is the first write of this txg. */
536                 dsl_sync_task_nowait(spa_get_dsl(spa),
537                     vdev_trim_zap_update_sync, guid, tx);
538         }
539
540         /*
541          * We know the vdev_t will still be around since all consumers of
542          * vdev_free must stop the trimming first.
543          */
544         if ((ta->trim_type == TRIM_TYPE_MANUAL &&
545             vdev_trim_should_stop(vd)) ||
546             (ta->trim_type == TRIM_TYPE_AUTO &&
547             vdev_autotrim_should_stop(vd->vdev_top))) {
548                 mutex_enter(&vd->vdev_trim_io_lock);
549                 vd->vdev_trim_inflight[ta->trim_type]--;
550                 mutex_exit(&vd->vdev_trim_io_lock);
551                 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
552                 mutex_exit(&vd->vdev_trim_lock);
553                 dmu_tx_commit(tx);
554                 return (SET_ERROR(EINTR));
555         }
556         mutex_exit(&vd->vdev_trim_lock);
557
558         if (ta->trim_type == TRIM_TYPE_MANUAL)
559                 vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
560
561         if (ta->trim_type == TRIM_TYPE_MANUAL) {
562                 cb = vdev_trim_cb;
563         } else if (ta->trim_type == TRIM_TYPE_AUTO) {
564                 cb = vdev_autotrim_cb;
565         } else {
566                 cb = vdev_trim_simple_cb;
567         }
568
569         zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
570             start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
571             ta->trim_flags));
572         /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
573
574         dmu_tx_commit(tx);
575
576         return (0);
577 }
578
579 /*
580  * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
581  * Additional parameters describing how the TRIM should be performed must
582  * be set in the trim_args structure.  See the trim_args definition for
583  * additional information.
584  */
585 static int
586 vdev_trim_ranges(trim_args_t *ta)
587 {
588         vdev_t *vd = ta->trim_vdev;
589         zfs_btree_t *t = &ta->trim_tree->rt_root;
590         zfs_btree_index_t idx;
591         uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
592         uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
593         spa_t *spa = vd->vdev_spa;
594
595         ta->trim_start_time = gethrtime();
596         ta->trim_bytes_done = 0;
597
598         for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
599             rs = zfs_btree_next(t, &idx, &idx)) {
600                 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
601                     ta->trim_tree);
602
603                 if (extent_bytes_min && size < extent_bytes_min) {
604                         spa_iostats_trim_add(spa, ta->trim_type,
605                             0, 0, 1, size, 0, 0);
606                         continue;
607                 }
608
609                 /* Split range into legally-sized physical chunks */
610                 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
611
612                 for (uint64_t w = 0; w < writes_required; w++) {
613                         int error;
614
615                         error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
616                             rs_get_start(rs, ta->trim_tree) +
617                             (w *extent_bytes_max), MIN(size -
618                             (w * extent_bytes_max), extent_bytes_max));
619                         if (error != 0) {
620                                 return (error);
621                         }
622                 }
623         }
624
625         return (0);
626 }
627
628 static void
629 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
630 {
631         uint64_t *last_rs_end = (uint64_t *)arg;
632
633         if (physical_rs->rs_end > *last_rs_end)
634                 *last_rs_end = physical_rs->rs_end;
635 }
636
637 static void
638 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
639 {
640         vdev_t *vd = (vdev_t *)arg;
641
642         uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
643         vd->vdev_trim_bytes_est += size;
644
645         if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
646                 vd->vdev_trim_bytes_done += size;
647         } else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
648             vd->vdev_trim_last_offset <= physical_rs->rs_end) {
649                 vd->vdev_trim_bytes_done +=
650                     vd->vdev_trim_last_offset - physical_rs->rs_start;
651         }
652 }
653
654 /*
655  * Calculates the completion percentage of a manual TRIM.
656  */
657 static void
658 vdev_trim_calculate_progress(vdev_t *vd)
659 {
660         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
661             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
662         ASSERT(vd->vdev_leaf_zap != 0);
663
664         vd->vdev_trim_bytes_est = 0;
665         vd->vdev_trim_bytes_done = 0;
666
667         for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
668                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
669                 mutex_enter(&msp->ms_lock);
670
671                 uint64_t ms_free = (msp->ms_size -
672                     metaslab_allocated_space(msp)) /
673                     vdev_get_ndisks(vd->vdev_top);
674
675                 /*
676                  * Convert the metaslab range to a physical range
677                  * on our vdev. We use this to determine if we are
678                  * in the middle of this metaslab range.
679                  */
680                 range_seg64_t logical_rs, physical_rs, remain_rs;
681                 logical_rs.rs_start = msp->ms_start;
682                 logical_rs.rs_end = msp->ms_start + msp->ms_size;
683
684                 /* Metaslab space after this offset has not been trimmed. */
685                 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
686                 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
687                         vd->vdev_trim_bytes_est += ms_free;
688                         mutex_exit(&msp->ms_lock);
689                         continue;
690                 }
691
692                 /* Metaslab space before this offset has been trimmed */
693                 uint64_t last_rs_end = physical_rs.rs_end;
694                 if (!vdev_xlate_is_empty(&remain_rs)) {
695                         vdev_xlate_walk(vd, &remain_rs,
696                             vdev_trim_xlate_last_rs_end, &last_rs_end);
697                 }
698
699                 if (vd->vdev_trim_last_offset > last_rs_end) {
700                         vd->vdev_trim_bytes_done += ms_free;
701                         vd->vdev_trim_bytes_est += ms_free;
702                         mutex_exit(&msp->ms_lock);
703                         continue;
704                 }
705
706                 /*
707                  * If we get here, we're in the middle of trimming this
708                  * metaslab.  Load it and walk the free tree for more
709                  * accurate progress estimation.
710                  */
711                 VERIFY0(metaslab_load(msp));
712
713                 range_tree_t *rt = msp->ms_allocatable;
714                 zfs_btree_t *bt = &rt->rt_root;
715                 zfs_btree_index_t idx;
716                 for (range_seg_t *rs = zfs_btree_first(bt, &idx);
717                     rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
718                         logical_rs.rs_start = rs_get_start(rs, rt);
719                         logical_rs.rs_end = rs_get_end(rs, rt);
720
721                         vdev_xlate_walk(vd, &logical_rs,
722                             vdev_trim_xlate_progress, vd);
723                 }
724                 mutex_exit(&msp->ms_lock);
725         }
726 }
727
728 /*
729  * Load from disk the vdev's manual TRIM information.  This includes the
730  * state, progress, and options provided when initiating the manual TRIM.
731  */
732 static int
733 vdev_trim_load(vdev_t *vd)
734 {
735         int err = 0;
736         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
737             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
738         ASSERT(vd->vdev_leaf_zap != 0);
739
740         if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
741             vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
742                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
743                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
744                     sizeof (vd->vdev_trim_last_offset), 1,
745                     &vd->vdev_trim_last_offset);
746                 if (err == ENOENT) {
747                         vd->vdev_trim_last_offset = 0;
748                         err = 0;
749                 }
750
751                 if (err == 0) {
752                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
753                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
754                             sizeof (vd->vdev_trim_rate), 1,
755                             &vd->vdev_trim_rate);
756                         if (err == ENOENT) {
757                                 vd->vdev_trim_rate = 0;
758                                 err = 0;
759                         }
760                 }
761
762                 if (err == 0) {
763                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
764                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
765                             sizeof (vd->vdev_trim_partial), 1,
766                             &vd->vdev_trim_partial);
767                         if (err == ENOENT) {
768                                 vd->vdev_trim_partial = 0;
769                                 err = 0;
770                         }
771                 }
772
773                 if (err == 0) {
774                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
775                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
776                             sizeof (vd->vdev_trim_secure), 1,
777                             &vd->vdev_trim_secure);
778                         if (err == ENOENT) {
779                                 vd->vdev_trim_secure = 0;
780                                 err = 0;
781                         }
782                 }
783         }
784
785         vdev_trim_calculate_progress(vd);
786
787         return (err);
788 }
789
790 static void
791 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
792 {
793         trim_args_t *ta = arg;
794         vdev_t *vd = ta->trim_vdev;
795
796         /*
797          * Only a manual trim will be traversing the vdev sequentially.
798          * For an auto trim all valid ranges should be added.
799          */
800         if (ta->trim_type == TRIM_TYPE_MANUAL) {
801
802                 /* Only add segments that we have not visited yet */
803                 if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
804                         return;
805
806                 /* Pick up where we left off mid-range. */
807                 if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
808                         ASSERT3U(physical_rs->rs_end, >,
809                             vd->vdev_trim_last_offset);
810                         physical_rs->rs_start = vd->vdev_trim_last_offset;
811                 }
812         }
813
814         ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
815
816         range_tree_add(ta->trim_tree, physical_rs->rs_start,
817             physical_rs->rs_end - physical_rs->rs_start);
818 }
819
820 /*
821  * Convert the logical range into physical ranges and add them to the
822  * range tree passed in the trim_args_t.
823  */
824 static void
825 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
826 {
827         trim_args_t *ta = arg;
828         vdev_t *vd = ta->trim_vdev;
829         range_seg64_t logical_rs;
830         logical_rs.rs_start = start;
831         logical_rs.rs_end = start + size;
832
833         /*
834          * Every range to be trimmed must be part of ms_allocatable.
835          * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
836          * is always the case.
837          */
838         if (zfs_flags & ZFS_DEBUG_TRIM) {
839                 metaslab_t *msp = ta->trim_msp;
840                 VERIFY0(metaslab_load(msp));
841                 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
842                 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
843         }
844
845         ASSERT(vd->vdev_ops->vdev_op_leaf);
846         vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
847 }
848
849 /*
850  * Each manual TRIM thread is responsible for trimming the unallocated
851  * space for each leaf vdev.  This is accomplished by sequentially iterating
852  * over its top-level metaslabs and issuing TRIM I/O for the space described
853  * by its ms_allocatable.  While a metaslab is undergoing trimming it is
854  * not eligible for new allocations.
855  */
856 static __attribute__((noreturn)) void
857 vdev_trim_thread(void *arg)
858 {
859         vdev_t *vd = arg;
860         spa_t *spa = vd->vdev_spa;
861         trim_args_t ta;
862         int error = 0;
863
864         /*
865          * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
866          * vdev_trim().  Wait for the updated values to be reflected
867          * in the zap in order to start with the requested settings.
868          */
869         txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
870
871         ASSERT(vdev_is_concrete(vd));
872         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
873
874         vd->vdev_trim_last_offset = 0;
875         vd->vdev_trim_rate = 0;
876         vd->vdev_trim_partial = 0;
877         vd->vdev_trim_secure = 0;
878
879         VERIFY0(vdev_trim_load(vd));
880
881         ta.trim_vdev = vd;
882         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
883         ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
884         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
885         ta.trim_type = TRIM_TYPE_MANUAL;
886         ta.trim_flags = 0;
887
888         /*
889          * When a secure TRIM has been requested infer that the intent
890          * is that everything must be trimmed.  Override the default
891          * minimum TRIM size to prevent ranges from being skipped.
892          */
893         if (vd->vdev_trim_secure) {
894                 ta.trim_flags |= ZIO_TRIM_SECURE;
895                 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
896         }
897
898         uint64_t ms_count = 0;
899         for (uint64_t i = 0; !vd->vdev_detached &&
900             i < vd->vdev_top->vdev_ms_count; i++) {
901                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
902
903                 /*
904                  * If we've expanded the top-level vdev or it's our
905                  * first pass, calculate our progress.
906                  */
907                 if (vd->vdev_top->vdev_ms_count != ms_count) {
908                         vdev_trim_calculate_progress(vd);
909                         ms_count = vd->vdev_top->vdev_ms_count;
910                 }
911
912                 spa_config_exit(spa, SCL_CONFIG, FTAG);
913                 metaslab_disable(msp);
914                 mutex_enter(&msp->ms_lock);
915                 VERIFY0(metaslab_load(msp));
916
917                 /*
918                  * If a partial TRIM was requested skip metaslabs which have
919                  * never been initialized and thus have never been written.
920                  */
921                 if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
922                         mutex_exit(&msp->ms_lock);
923                         metaslab_enable(msp, B_FALSE, B_FALSE);
924                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
925                         vdev_trim_calculate_progress(vd);
926                         continue;
927                 }
928
929                 ta.trim_msp = msp;
930                 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
931                 range_tree_vacate(msp->ms_trim, NULL, NULL);
932                 mutex_exit(&msp->ms_lock);
933
934                 error = vdev_trim_ranges(&ta);
935                 metaslab_enable(msp, B_TRUE, B_FALSE);
936                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
937
938                 range_tree_vacate(ta.trim_tree, NULL, NULL);
939                 if (error != 0)
940                         break;
941         }
942
943         spa_config_exit(spa, SCL_CONFIG, FTAG);
944         mutex_enter(&vd->vdev_trim_io_lock);
945         while (vd->vdev_trim_inflight[0] > 0) {
946                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
947         }
948         mutex_exit(&vd->vdev_trim_io_lock);
949
950         range_tree_destroy(ta.trim_tree);
951
952         mutex_enter(&vd->vdev_trim_lock);
953         if (!vd->vdev_trim_exit_wanted) {
954                 if (vdev_writeable(vd)) {
955                         vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
956                             vd->vdev_trim_rate, vd->vdev_trim_partial,
957                             vd->vdev_trim_secure);
958                 } else if (vd->vdev_faulted) {
959                         vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
960                             vd->vdev_trim_rate, vd->vdev_trim_partial,
961                             vd->vdev_trim_secure);
962                 }
963         }
964         ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
965
966         /*
967          * Drop the vdev_trim_lock while we sync out the txg since it's
968          * possible that a device might be trying to come online and must
969          * check to see if it needs to restart a trim. That thread will be
970          * holding the spa_config_lock which would prevent the txg_wait_synced
971          * from completing.
972          */
973         mutex_exit(&vd->vdev_trim_lock);
974         txg_wait_synced(spa_get_dsl(spa), 0);
975         mutex_enter(&vd->vdev_trim_lock);
976
977         vd->vdev_trim_thread = NULL;
978         cv_broadcast(&vd->vdev_trim_cv);
979         mutex_exit(&vd->vdev_trim_lock);
980
981         thread_exit();
982 }
983
984 /*
985  * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
986  * the vdev_t must be a leaf and cannot already be manually trimming.
987  */
988 void
989 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
990 {
991         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
992         ASSERT(vd->vdev_ops->vdev_op_leaf);
993         ASSERT(vdev_is_concrete(vd));
994         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
995         ASSERT(!vd->vdev_detached);
996         ASSERT(!vd->vdev_trim_exit_wanted);
997         ASSERT(!vd->vdev_top->vdev_removing);
998
999         vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
1000         vd->vdev_trim_thread = thread_create(NULL, 0,
1001             vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1002 }
1003
1004 /*
1005  * Wait for the trimming thread to be terminated (canceled or stopped).
1006  */
1007 static void
1008 vdev_trim_stop_wait_impl(vdev_t *vd)
1009 {
1010         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1011
1012         while (vd->vdev_trim_thread != NULL)
1013                 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
1014
1015         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1016         vd->vdev_trim_exit_wanted = B_FALSE;
1017 }
1018
1019 /*
1020  * Wait for vdev trim threads which were listed to cleanly exit.
1021  */
1022 void
1023 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1024 {
1025         (void) spa;
1026         vdev_t *vd;
1027
1028         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1029
1030         while ((vd = list_remove_head(vd_list)) != NULL) {
1031                 mutex_enter(&vd->vdev_trim_lock);
1032                 vdev_trim_stop_wait_impl(vd);
1033                 mutex_exit(&vd->vdev_trim_lock);
1034         }
1035 }
1036
1037 /*
1038  * Stop trimming a device, with the resultant trimming state being tgt_state.
1039  * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
1040  * provided the stopping vdev is inserted in to the list.  Callers are then
1041  * required to call vdev_trim_stop_wait() to block for all the trim threads
1042  * to exit.  The caller must hold vdev_trim_lock and must not be writing to
1043  * the spa config, as the trimming thread may try to enter the config as a
1044  * reader before exiting.
1045  */
1046 void
1047 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1048 {
1049         ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1050         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1051         ASSERT(vd->vdev_ops->vdev_op_leaf);
1052         ASSERT(vdev_is_concrete(vd));
1053
1054         /*
1055          * Allow cancel requests to proceed even if the trim thread has
1056          * stopped.
1057          */
1058         if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1059                 return;
1060
1061         vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1062         vd->vdev_trim_exit_wanted = B_TRUE;
1063
1064         if (vd_list == NULL) {
1065                 vdev_trim_stop_wait_impl(vd);
1066         } else {
1067                 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1068                 list_insert_tail(vd_list, vd);
1069         }
1070 }
1071
1072 /*
1073  * Requests that all listed vdevs stop trimming.
1074  */
1075 static void
1076 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1077     list_t *vd_list)
1078 {
1079         if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1080                 mutex_enter(&vd->vdev_trim_lock);
1081                 vdev_trim_stop(vd, tgt_state, vd_list);
1082                 mutex_exit(&vd->vdev_trim_lock);
1083                 return;
1084         }
1085
1086         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1087                 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1088                     vd_list);
1089         }
1090 }
1091
1092 /*
1093  * Convenience function to stop trimming of a vdev tree and set all trim
1094  * thread pointers to NULL.
1095  */
1096 void
1097 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1098 {
1099         spa_t *spa = vd->vdev_spa;
1100         list_t vd_list;
1101         vdev_t *vd_l2cache;
1102
1103         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1104
1105         list_create(&vd_list, sizeof (vdev_t),
1106             offsetof(vdev_t, vdev_trim_node));
1107
1108         vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1109
1110         /*
1111          * Iterate over cache devices and request stop trimming the
1112          * whole device in case we export the pool or remove the cache
1113          * device prematurely.
1114          */
1115         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1116                 vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1117                 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1118         }
1119
1120         vdev_trim_stop_wait(spa, &vd_list);
1121
1122         if (vd->vdev_spa->spa_sync_on) {
1123                 /* Make sure that our state has been synced to disk */
1124                 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1125         }
1126
1127         list_destroy(&vd_list);
1128 }
1129
1130 /*
1131  * Conditionally restarts a manual TRIM given its on-disk state.
1132  */
1133 void
1134 vdev_trim_restart(vdev_t *vd)
1135 {
1136         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1137         ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1138
1139         if (vd->vdev_leaf_zap != 0) {
1140                 mutex_enter(&vd->vdev_trim_lock);
1141                 uint64_t trim_state = VDEV_TRIM_NONE;
1142                 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1143                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1144                     sizeof (trim_state), 1, &trim_state);
1145                 ASSERT(err == 0 || err == ENOENT);
1146                 vd->vdev_trim_state = trim_state;
1147
1148                 uint64_t timestamp = 0;
1149                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1150                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1151                     sizeof (timestamp), 1, &timestamp);
1152                 ASSERT(err == 0 || err == ENOENT);
1153                 vd->vdev_trim_action_time = timestamp;
1154
1155                 if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1156                     vd->vdev_offline) {
1157                         /* load progress for reporting, but don't resume */
1158                         VERIFY0(vdev_trim_load(vd));
1159                 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1160                     vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1161                     vd->vdev_trim_thread == NULL) {
1162                         VERIFY0(vdev_trim_load(vd));
1163                         vdev_trim(vd, vd->vdev_trim_rate,
1164                             vd->vdev_trim_partial, vd->vdev_trim_secure);
1165                 }
1166
1167                 mutex_exit(&vd->vdev_trim_lock);
1168         }
1169
1170         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1171                 vdev_trim_restart(vd->vdev_child[i]);
1172         }
1173 }
1174
1175 /*
1176  * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1177  * every TRIM range is contained within ms_allocatable.
1178  */
1179 static void
1180 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1181 {
1182         trim_args_t *ta = arg;
1183         metaslab_t *msp = ta->trim_msp;
1184
1185         VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1186         VERIFY3U(msp->ms_disabled, >, 0);
1187         VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1188 }
1189
1190 /*
1191  * Each automatic TRIM thread is responsible for managing the trimming of a
1192  * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
1193  *
1194  * N.B. This behavior is different from a manual TRIM where a thread
1195  * is created for each leaf vdev, instead of each top-level vdev.
1196  */
1197 static __attribute__((noreturn)) void
1198 vdev_autotrim_thread(void *arg)
1199 {
1200         vdev_t *vd = arg;
1201         spa_t *spa = vd->vdev_spa;
1202         int shift = 0;
1203
1204         mutex_enter(&vd->vdev_autotrim_lock);
1205         ASSERT3P(vd->vdev_top, ==, vd);
1206         ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1207         mutex_exit(&vd->vdev_autotrim_lock);
1208         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1209
1210         while (!vdev_autotrim_should_stop(vd)) {
1211                 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1212                 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1213                 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1214
1215                 /*
1216                  * All of the metaslabs are divided in to groups of size
1217                  * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
1218                  * is composed of metaslabs which are spread evenly over the
1219                  * device.
1220                  *
1221                  * For example, when zfs_trim_txg_batch = 32 (default) then
1222                  * group 0 will contain metaslabs 0, 32, 64, ...;
1223                  * group 1 will contain metaslabs 1, 33, 65, ...;
1224                  * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1225                  *
1226                  * On each pass through the while() loop one of these groups
1227                  * is selected.  This is accomplished by using a shift value
1228                  * to select the starting metaslab, then striding over the
1229                  * metaslabs using the zfs_trim_txg_batch size.  This is
1230                  * done to accomplish two things.
1231                  *
1232                  * 1) By dividing the metaslabs in to groups, and making sure
1233                  *    that each group takes a minimum of one txg to process.
1234                  *    Then zfs_trim_txg_batch controls the minimum number of
1235                  *    txgs which must occur before a metaslab is revisited.
1236                  *
1237                  * 2) Selecting non-consecutive metaslabs distributes the
1238                  *    TRIM commands for a group evenly over the entire device.
1239                  *    This can be advantageous for certain types of devices.
1240                  */
1241                 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1242                     i += txgs_per_trim) {
1243                         metaslab_t *msp = vd->vdev_ms[i];
1244                         range_tree_t *trim_tree;
1245                         boolean_t issued_trim = B_FALSE;
1246                         boolean_t wait_aborted = B_FALSE;
1247
1248                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1249                         metaslab_disable(msp);
1250                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1251
1252                         mutex_enter(&msp->ms_lock);
1253
1254                         /*
1255                          * Skip the metaslab when it has never been allocated
1256                          * or when there are no recent frees to trim.
1257                          */
1258                         if (msp->ms_sm == NULL ||
1259                             range_tree_is_empty(msp->ms_trim)) {
1260                                 mutex_exit(&msp->ms_lock);
1261                                 metaslab_enable(msp, B_FALSE, B_FALSE);
1262                                 continue;
1263                         }
1264
1265                         /*
1266                          * Skip the metaslab when it has already been disabled.
1267                          * This may happen when a manual TRIM or initialize
1268                          * operation is running concurrently.  In the case
1269                          * of a manual TRIM, the ms_trim tree will have been
1270                          * vacated.  Only ranges added after the manual TRIM
1271                          * disabled the metaslab will be included in the tree.
1272                          * These will be processed when the automatic TRIM
1273                          * next revisits this metaslab.
1274                          */
1275                         if (msp->ms_disabled > 1) {
1276                                 mutex_exit(&msp->ms_lock);
1277                                 metaslab_enable(msp, B_FALSE, B_FALSE);
1278                                 continue;
1279                         }
1280
1281                         /*
1282                          * Allocate an empty range tree which is swapped in
1283                          * for the existing ms_trim tree while it is processed.
1284                          */
1285                         trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1286                             0, 0);
1287                         range_tree_swap(&msp->ms_trim, &trim_tree);
1288                         ASSERT(range_tree_is_empty(msp->ms_trim));
1289
1290                         /*
1291                          * There are two cases when constructing the per-vdev
1292                          * trim trees for a metaslab.  If the top-level vdev
1293                          * has no children then it is also a leaf and should
1294                          * be trimmed.  Otherwise our children are the leaves
1295                          * and a trim tree should be constructed for each.
1296                          */
1297                         trim_args_t *tap;
1298                         uint64_t children = vd->vdev_children;
1299                         if (children == 0) {
1300                                 children = 1;
1301                                 tap = kmem_zalloc(sizeof (trim_args_t) *
1302                                     children, KM_SLEEP);
1303                                 tap[0].trim_vdev = vd;
1304                         } else {
1305                                 tap = kmem_zalloc(sizeof (trim_args_t) *
1306                                     children, KM_SLEEP);
1307
1308                                 for (uint64_t c = 0; c < children; c++) {
1309                                         tap[c].trim_vdev = vd->vdev_child[c];
1310                                 }
1311                         }
1312
1313                         for (uint64_t c = 0; c < children; c++) {
1314                                 trim_args_t *ta = &tap[c];
1315                                 vdev_t *cvd = ta->trim_vdev;
1316
1317                                 ta->trim_msp = msp;
1318                                 ta->trim_extent_bytes_max = extent_bytes_max;
1319                                 ta->trim_extent_bytes_min = extent_bytes_min;
1320                                 ta->trim_type = TRIM_TYPE_AUTO;
1321                                 ta->trim_flags = 0;
1322
1323                                 if (cvd->vdev_detached ||
1324                                     !vdev_writeable(cvd) ||
1325                                     !cvd->vdev_has_trim ||
1326                                     cvd->vdev_trim_thread != NULL) {
1327                                         continue;
1328                                 }
1329
1330                                 /*
1331                                  * When a device has an attached hot spare, or
1332                                  * is being replaced it will not be trimmed.
1333                                  * This is done to avoid adding additional
1334                                  * stress to a potentially unhealthy device,
1335                                  * and to minimize the required rebuild time.
1336                                  */
1337                                 if (!cvd->vdev_ops->vdev_op_leaf)
1338                                         continue;
1339
1340                                 ta->trim_tree = range_tree_create(NULL,
1341                                     RANGE_SEG64, NULL, 0, 0);
1342                                 range_tree_walk(trim_tree,
1343                                     vdev_trim_range_add, ta);
1344                         }
1345
1346                         mutex_exit(&msp->ms_lock);
1347                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1348
1349                         /*
1350                          * Issue the TRIM I/Os for all ranges covered by the
1351                          * TRIM trees.  These ranges are safe to TRIM because
1352                          * no new allocations will be performed until the call
1353                          * to metaslab_enabled() below.
1354                          */
1355                         for (uint64_t c = 0; c < children; c++) {
1356                                 trim_args_t *ta = &tap[c];
1357
1358                                 /*
1359                                  * Always yield to a manual TRIM if one has
1360                                  * been started for the child vdev.
1361                                  */
1362                                 if (ta->trim_tree == NULL ||
1363                                     ta->trim_vdev->vdev_trim_thread != NULL) {
1364                                         continue;
1365                                 }
1366
1367                                 /*
1368                                  * After this point metaslab_enable() must be
1369                                  * called with the sync flag set.  This is done
1370                                  * here because vdev_trim_ranges() is allowed
1371                                  * to be interrupted (EINTR) before issuing all
1372                                  * of the required TRIM I/Os.
1373                                  */
1374                                 issued_trim = B_TRUE;
1375
1376                                 int error = vdev_trim_ranges(ta);
1377                                 if (error)
1378                                         break;
1379                         }
1380
1381                         /*
1382                          * Verify every range which was trimmed is still
1383                          * contained within the ms_allocatable tree.
1384                          */
1385                         if (zfs_flags & ZFS_DEBUG_TRIM) {
1386                                 mutex_enter(&msp->ms_lock);
1387                                 VERIFY0(metaslab_load(msp));
1388                                 VERIFY3P(tap[0].trim_msp, ==, msp);
1389                                 range_tree_walk(trim_tree,
1390                                     vdev_trim_range_verify, &tap[0]);
1391                                 mutex_exit(&msp->ms_lock);
1392                         }
1393
1394                         range_tree_vacate(trim_tree, NULL, NULL);
1395                         range_tree_destroy(trim_tree);
1396
1397                         /*
1398                          * Wait for couples of kicks, to ensure the trim io is
1399                          * synced. If the wait is aborted due to
1400                          * vdev_autotrim_exit_wanted, we need to signal
1401                          * metaslab_enable() to wait for sync.
1402                          */
1403                         if (issued_trim) {
1404                                 wait_aborted = vdev_autotrim_wait_kick(vd,
1405                                     TXG_CONCURRENT_STATES + TXG_DEFER_SIZE);
1406                         }
1407
1408                         metaslab_enable(msp, wait_aborted, B_FALSE);
1409                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1410
1411                         for (uint64_t c = 0; c < children; c++) {
1412                                 trim_args_t *ta = &tap[c];
1413
1414                                 if (ta->trim_tree == NULL)
1415                                         continue;
1416
1417                                 range_tree_vacate(ta->trim_tree, NULL, NULL);
1418                                 range_tree_destroy(ta->trim_tree);
1419                         }
1420
1421                         kmem_free(tap, sizeof (trim_args_t) * children);
1422
1423                         if (vdev_autotrim_should_stop(vd))
1424                                 break;
1425                 }
1426
1427                 spa_config_exit(spa, SCL_CONFIG, FTAG);
1428
1429                 vdev_autotrim_wait_kick(vd, 1);
1430
1431                 shift++;
1432                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1433         }
1434
1435         for (uint64_t c = 0; c < vd->vdev_children; c++) {
1436                 vdev_t *cvd = vd->vdev_child[c];
1437                 mutex_enter(&cvd->vdev_trim_io_lock);
1438
1439                 while (cvd->vdev_trim_inflight[1] > 0) {
1440                         cv_wait(&cvd->vdev_trim_io_cv,
1441                             &cvd->vdev_trim_io_lock);
1442                 }
1443                 mutex_exit(&cvd->vdev_trim_io_lock);
1444         }
1445
1446         spa_config_exit(spa, SCL_CONFIG, FTAG);
1447
1448         /*
1449          * When exiting because the autotrim property was set to off, then
1450          * abandon any unprocessed ms_trim ranges to reclaim the memory.
1451          */
1452         if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1453                 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1454                         metaslab_t *msp = vd->vdev_ms[i];
1455
1456                         mutex_enter(&msp->ms_lock);
1457                         range_tree_vacate(msp->ms_trim, NULL, NULL);
1458                         mutex_exit(&msp->ms_lock);
1459                 }
1460         }
1461
1462         mutex_enter(&vd->vdev_autotrim_lock);
1463         ASSERT(vd->vdev_autotrim_thread != NULL);
1464         vd->vdev_autotrim_thread = NULL;
1465         cv_broadcast(&vd->vdev_autotrim_cv);
1466         mutex_exit(&vd->vdev_autotrim_lock);
1467
1468         thread_exit();
1469 }
1470
1471 /*
1472  * Starts an autotrim thread, if needed, for each top-level vdev which can be
1473  * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
1474  */
1475 void
1476 vdev_autotrim(spa_t *spa)
1477 {
1478         vdev_t *root_vd = spa->spa_root_vdev;
1479
1480         for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1481                 vdev_t *tvd = root_vd->vdev_child[i];
1482
1483                 mutex_enter(&tvd->vdev_autotrim_lock);
1484                 if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1485                     tvd->vdev_autotrim_thread == NULL) {
1486                         ASSERT3P(tvd->vdev_top, ==, tvd);
1487
1488                         tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1489                             vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1490                             maxclsyspri);
1491                         ASSERT(tvd->vdev_autotrim_thread != NULL);
1492                 }
1493                 mutex_exit(&tvd->vdev_autotrim_lock);
1494         }
1495 }
1496
1497 /*
1498  * Wait for the vdev_autotrim_thread associated with the passed top-level
1499  * vdev to be terminated (canceled or stopped).
1500  */
1501 void
1502 vdev_autotrim_stop_wait(vdev_t *tvd)
1503 {
1504         mutex_enter(&tvd->vdev_autotrim_lock);
1505         if (tvd->vdev_autotrim_thread != NULL) {
1506                 tvd->vdev_autotrim_exit_wanted = B_TRUE;
1507                 cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1508                 cv_wait(&tvd->vdev_autotrim_cv,
1509                     &tvd->vdev_autotrim_lock);
1510
1511                 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1512                 tvd->vdev_autotrim_exit_wanted = B_FALSE;
1513         }
1514         mutex_exit(&tvd->vdev_autotrim_lock);
1515 }
1516
1517 void
1518 vdev_autotrim_kick(spa_t *spa)
1519 {
1520         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1521
1522         vdev_t *root_vd = spa->spa_root_vdev;
1523         vdev_t *tvd;
1524
1525         for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1526                 tvd = root_vd->vdev_child[i];
1527
1528                 mutex_enter(&tvd->vdev_autotrim_lock);
1529                 if (tvd->vdev_autotrim_thread != NULL)
1530                         cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1531                 mutex_exit(&tvd->vdev_autotrim_lock);
1532         }
1533 }
1534
1535 /*
1536  * Wait for all of the vdev_autotrim_thread associated with the pool to
1537  * be terminated (canceled or stopped).
1538  */
1539 void
1540 vdev_autotrim_stop_all(spa_t *spa)
1541 {
1542         vdev_t *root_vd = spa->spa_root_vdev;
1543
1544         for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1545                 vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1546 }
1547
1548 /*
1549  * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1550  */
1551 void
1552 vdev_autotrim_restart(spa_t *spa)
1553 {
1554         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1555
1556         if (spa->spa_autotrim)
1557                 vdev_autotrim(spa);
1558 }
1559
1560 static __attribute__((noreturn)) void
1561 vdev_trim_l2arc_thread(void *arg)
1562 {
1563         vdev_t          *vd = arg;
1564         spa_t           *spa = vd->vdev_spa;
1565         l2arc_dev_t     *dev = l2arc_vdev_get(vd);
1566         trim_args_t     ta = {0};
1567         range_seg64_t   physical_rs;
1568
1569         ASSERT(vdev_is_concrete(vd));
1570         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1571
1572         vd->vdev_trim_last_offset = 0;
1573         vd->vdev_trim_rate = 0;
1574         vd->vdev_trim_partial = 0;
1575         vd->vdev_trim_secure = 0;
1576
1577         ta.trim_vdev = vd;
1578         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1579         ta.trim_type = TRIM_TYPE_MANUAL;
1580         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1581         ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1582         ta.trim_flags = 0;
1583
1584         physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1585         physical_rs.rs_end = vd->vdev_trim_bytes_est =
1586             vdev_get_min_asize(vd);
1587
1588         range_tree_add(ta.trim_tree, physical_rs.rs_start,
1589             physical_rs.rs_end - physical_rs.rs_start);
1590
1591         mutex_enter(&vd->vdev_trim_lock);
1592         vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1593         mutex_exit(&vd->vdev_trim_lock);
1594
1595         (void) vdev_trim_ranges(&ta);
1596
1597         spa_config_exit(spa, SCL_CONFIG, FTAG);
1598         mutex_enter(&vd->vdev_trim_io_lock);
1599         while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1600                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1601         }
1602         mutex_exit(&vd->vdev_trim_io_lock);
1603
1604         range_tree_vacate(ta.trim_tree, NULL, NULL);
1605         range_tree_destroy(ta.trim_tree);
1606
1607         mutex_enter(&vd->vdev_trim_lock);
1608         if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1609                 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1610                     vd->vdev_trim_rate, vd->vdev_trim_partial,
1611                     vd->vdev_trim_secure);
1612         }
1613         ASSERT(vd->vdev_trim_thread != NULL ||
1614             vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1615
1616         /*
1617          * Drop the vdev_trim_lock while we sync out the txg since it's
1618          * possible that a device might be trying to come online and
1619          * must check to see if it needs to restart a trim. That thread
1620          * will be holding the spa_config_lock which would prevent the
1621          * txg_wait_synced from completing. Same strategy as in
1622          * vdev_trim_thread().
1623          */
1624         mutex_exit(&vd->vdev_trim_lock);
1625         txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1626         mutex_enter(&vd->vdev_trim_lock);
1627
1628         /*
1629          * Update the header of the cache device here, before
1630          * broadcasting vdev_trim_cv which may lead to the removal
1631          * of the device. The same applies for setting l2ad_trim_all to
1632          * false.
1633          */
1634         spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1635             RW_READER);
1636         memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize);
1637         l2arc_dev_hdr_update(dev);
1638         spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1639
1640         vd->vdev_trim_thread = NULL;
1641         if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1642                 dev->l2ad_trim_all = B_FALSE;
1643
1644         cv_broadcast(&vd->vdev_trim_cv);
1645         mutex_exit(&vd->vdev_trim_lock);
1646
1647         thread_exit();
1648 }
1649
1650 /*
1651  * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1652  * to vd->vdev_trim_thread variable. This facilitates the management of
1653  * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1654  * to a pool or pool creation or when the header of the device is invalid.
1655  */
1656 void
1657 vdev_trim_l2arc(spa_t *spa)
1658 {
1659         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1660
1661         /*
1662          * Locate the spa's l2arc devices and kick off TRIM threads.
1663          */
1664         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1665                 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1666                 l2arc_dev_t *dev = l2arc_vdev_get(vd);
1667
1668                 if (dev == NULL || !dev->l2ad_trim_all) {
1669                         /*
1670                          * Don't attempt TRIM if the vdev is UNAVAIL or if the
1671                          * cache device was not marked for whole device TRIM
1672                          * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1673                          * is valid with trim_state = VDEV_TRIM_COMPLETE and
1674                          * l2ad_log_entries > 0).
1675                          */
1676                         continue;
1677                 }
1678
1679                 mutex_enter(&vd->vdev_trim_lock);
1680                 ASSERT(vd->vdev_ops->vdev_op_leaf);
1681                 ASSERT(vdev_is_concrete(vd));
1682                 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1683                 ASSERT(!vd->vdev_detached);
1684                 ASSERT(!vd->vdev_trim_exit_wanted);
1685                 ASSERT(!vd->vdev_top->vdev_removing);
1686                 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1687                 vd->vdev_trim_thread = thread_create(NULL, 0,
1688                     vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1689                 mutex_exit(&vd->vdev_trim_lock);
1690         }
1691 }
1692
1693 /*
1694  * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1695  * on leaf vdevs.
1696  */
1697 int
1698 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1699 {
1700         trim_args_t ta = {0};
1701         range_seg64_t physical_rs;
1702         int error;
1703         physical_rs.rs_start = start;
1704         physical_rs.rs_end = start + size;
1705
1706         ASSERT(vdev_is_concrete(vd));
1707         ASSERT(vd->vdev_ops->vdev_op_leaf);
1708         ASSERT(!vd->vdev_detached);
1709         ASSERT(!vd->vdev_top->vdev_removing);
1710
1711         ta.trim_vdev = vd;
1712         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1713         ta.trim_type = TRIM_TYPE_SIMPLE;
1714         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1715         ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1716         ta.trim_flags = 0;
1717
1718         ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1719
1720         if (physical_rs.rs_end > physical_rs.rs_start) {
1721                 range_tree_add(ta.trim_tree, physical_rs.rs_start,
1722                     physical_rs.rs_end - physical_rs.rs_start);
1723         } else {
1724                 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1725         }
1726
1727         error = vdev_trim_ranges(&ta);
1728
1729         mutex_enter(&vd->vdev_trim_io_lock);
1730         while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1731                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1732         }
1733         mutex_exit(&vd->vdev_trim_io_lock);
1734
1735         range_tree_vacate(ta.trim_tree, NULL, NULL);
1736         range_tree_destroy(ta.trim_tree);
1737
1738         return (error);
1739 }
1740
1741 EXPORT_SYMBOL(vdev_trim);
1742 EXPORT_SYMBOL(vdev_trim_stop);
1743 EXPORT_SYMBOL(vdev_trim_stop_all);
1744 EXPORT_SYMBOL(vdev_trim_stop_wait);
1745 EXPORT_SYMBOL(vdev_trim_restart);
1746 EXPORT_SYMBOL(vdev_autotrim);
1747 EXPORT_SYMBOL(vdev_autotrim_stop_all);
1748 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1749 EXPORT_SYMBOL(vdev_autotrim_restart);
1750 EXPORT_SYMBOL(vdev_trim_l2arc);
1751 EXPORT_SYMBOL(vdev_trim_simple);
1752
1753 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1754         "Max size of TRIM commands, larger will be split");
1755
1756 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1757         "Min size of TRIM commands, smaller will be skipped");
1758
1759 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1760         "Skip metaslabs which have never been initialized");
1761
1762 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1763         "Min number of txgs to aggregate frees before issuing TRIM");
1764
1765 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1766         "Max queued TRIMs outstanding per leaf vdev");