]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_trim.c
contrib/tzdata: import tzdata 2022a
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_trim.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25  * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26  */
27
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/txg.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/vdev_trim.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/zap.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/arc_impl.h>
38
39 /*
40  * TRIM is a feature which is used to notify a SSD that some previously
41  * written space is no longer allocated by the pool.  This is useful because
42  * writes to a SSD must be performed to blocks which have first been erased.
43  * Ensuring the SSD always has a supply of erased blocks for new writes
44  * helps prevent the performance from deteriorating.
45  *
46  * There are two supported TRIM methods; manual and automatic.
47  *
48  * Manual TRIM:
49  *
50  * A manual TRIM is initiated by running the 'zpool trim' command.  A single
51  * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
52  * managing that vdev TRIM process.  This involves iterating over all the
53  * metaslabs, calculating the unallocated space ranges, and then issuing the
54  * required TRIM I/Os.
55  *
56  * While a metaslab is being actively trimmed it is not eligible to perform
57  * new allocations.  After traversing all of the metaslabs the thread is
58  * terminated.  Finally, both the requested options and current progress of
59  * the TRIM are regularly written to the pool.  This allows the TRIM to be
60  * suspended and resumed as needed.
61  *
62  * Automatic TRIM:
63  *
64  * An automatic TRIM is enabled by setting the 'autotrim' pool property
65  * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
66  * top-level (not leaf) vdev in the pool.  These threads perform the same
67  * core TRIM process as a manual TRIM, but with a few key differences.
68  *
69  * 1) Automatic TRIM happens continuously in the background and operates
70  *    solely on recently freed blocks (ms_trim not ms_allocatable).
71  *
72  * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
73  *    the benefit of simplifying the threading model, it makes it easier
74  *    to coordinate administrative commands, and it ensures only a single
75  *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
76  *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
77  *    children.
78  *
79  * 3) There is no automatic TRIM progress information stored on disk, nor
80  *    is it reported by 'zpool status'.
81  *
82  * While the automatic TRIM process is highly effective it is more likely
83  * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
84  * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
85  * TRIM and are skipped.  This means small amounts of freed space may not
86  * be automatically trimmed.
87  *
88  * Furthermore, devices with attached hot spares and devices being actively
89  * replaced are skipped.  This is done to avoid adding additional stress to
90  * a potentially unhealthy device and to minimize the required rebuild time.
91  *
92  * For this reason it may be beneficial to occasionally manually TRIM a pool
93  * even when automatic TRIM is enabled.
94  */
95
96 /*
97  * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
98  */
99 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
100
101 /*
102  * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
103  */
104 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
105
106 /*
107  * Skip uninitialized metaslabs during the TRIM process.  This option is
108  * useful for pools constructed from large thinly-provisioned devices where
109  * TRIM operations are slow.  As a pool ages an increasing fraction of
110  * the pools metaslabs will be initialized progressively degrading the
111  * usefulness of this option.  This setting is stored when starting a
112  * manual TRIM and will persist for the duration of the requested TRIM.
113  */
114 unsigned int zfs_trim_metaslab_skip = 0;
115
116 /*
117  * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
118  * concurrent TRIM I/Os issued to the device is controlled by the
119  * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
120  */
121 static unsigned int zfs_trim_queue_limit = 10;
122
123 /*
124  * The minimum number of transaction groups between automatic trims of a
125  * metaslab.  This setting represents a trade-off between issuing more
126  * efficient TRIM operations, by allowing them to be aggregated longer,
127  * and issuing them promptly so the trimmed space is available.  Note
128  * that this value is a minimum; metaslabs can be trimmed less frequently
129  * when there are a large number of ranges which need to be trimmed.
130  *
131  * Increasing this value will allow frees to be aggregated for a longer
132  * time.  This can result is larger TRIM operations, and increased memory
133  * usage in order to track the ranges to be trimmed.  Decreasing this value
134  * has the opposite effect.  The default value of 32 was determined though
135  * testing to be a reasonable compromise.
136  */
137 static unsigned int zfs_trim_txg_batch = 32;
138
139 /*
140  * The trim_args are a control structure which describe how a leaf vdev
141  * should be trimmed.  The core elements are the vdev, the metaslab being
142  * trimmed and a range tree containing the extents to TRIM.  All provided
143  * ranges must be within the metaslab.
144  */
145 typedef struct trim_args {
146         /*
147          * These fields are set by the caller of vdev_trim_ranges().
148          */
149         vdev_t          *trim_vdev;             /* Leaf vdev to TRIM */
150         metaslab_t      *trim_msp;              /* Disabled metaslab */
151         range_tree_t    *trim_tree;             /* TRIM ranges (in metaslab) */
152         trim_type_t     trim_type;              /* Manual or auto TRIM */
153         uint64_t        trim_extent_bytes_max;  /* Maximum TRIM I/O size */
154         uint64_t        trim_extent_bytes_min;  /* Minimum TRIM I/O size */
155         enum trim_flag  trim_flags;             /* TRIM flags (secure) */
156
157         /*
158          * These fields are updated by vdev_trim_ranges().
159          */
160         hrtime_t        trim_start_time;        /* Start time */
161         uint64_t        trim_bytes_done;        /* Bytes trimmed */
162 } trim_args_t;
163
164 /*
165  * Determines whether a vdev_trim_thread() should be stopped.
166  */
167 static boolean_t
168 vdev_trim_should_stop(vdev_t *vd)
169 {
170         return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
171             vd->vdev_detached || vd->vdev_top->vdev_removing);
172 }
173
174 /*
175  * Determines whether a vdev_autotrim_thread() should be stopped.
176  */
177 static boolean_t
178 vdev_autotrim_should_stop(vdev_t *tvd)
179 {
180         return (tvd->vdev_autotrim_exit_wanted ||
181             !vdev_writeable(tvd) || tvd->vdev_removing ||
182             spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
183 }
184
185 /*
186  * The sync task for updating the on-disk state of a manual TRIM.  This
187  * is scheduled by vdev_trim_change_state().
188  */
189 static void
190 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
191 {
192         /*
193          * We pass in the guid instead of the vdev_t since the vdev may
194          * have been freed prior to the sync task being processed.  This
195          * happens when a vdev is detached as we call spa_config_vdev_exit(),
196          * stop the trimming thread, schedule the sync task, and free
197          * the vdev. Later when the scheduled sync task is invoked, it would
198          * find that the vdev has been freed.
199          */
200         uint64_t guid = *(uint64_t *)arg;
201         uint64_t txg = dmu_tx_get_txg(tx);
202         kmem_free(arg, sizeof (uint64_t));
203
204         vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
205         if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
206                 return;
207
208         uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
209         vd->vdev_trim_offset[txg & TXG_MASK] = 0;
210
211         VERIFY3U(vd->vdev_leaf_zap, !=, 0);
212
213         objset_t *mos = vd->vdev_spa->spa_meta_objset;
214
215         if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
216
217                 if (vd->vdev_trim_last_offset == UINT64_MAX)
218                         last_offset = 0;
219
220                 vd->vdev_trim_last_offset = last_offset;
221                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
222                     VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
223                     sizeof (last_offset), 1, &last_offset, tx));
224         }
225
226         if (vd->vdev_trim_action_time > 0) {
227                 uint64_t val = (uint64_t)vd->vdev_trim_action_time;
228                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
229                     VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
230                     1, &val, tx));
231         }
232
233         if (vd->vdev_trim_rate > 0) {
234                 uint64_t rate = (uint64_t)vd->vdev_trim_rate;
235
236                 if (rate == UINT64_MAX)
237                         rate = 0;
238
239                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
240                     VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
241         }
242
243         uint64_t partial = vd->vdev_trim_partial;
244         if (partial == UINT64_MAX)
245                 partial = 0;
246
247         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
248             sizeof (partial), 1, &partial, tx));
249
250         uint64_t secure = vd->vdev_trim_secure;
251         if (secure == UINT64_MAX)
252                 secure = 0;
253
254         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
255             sizeof (secure), 1, &secure, tx));
256
257
258         uint64_t trim_state = vd->vdev_trim_state;
259         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
260             sizeof (trim_state), 1, &trim_state, tx));
261 }
262
263 /*
264  * Update the on-disk state of a manual TRIM.  This is called to request
265  * that a TRIM be started/suspended/canceled, or to change one of the
266  * TRIM options (partial, secure, rate).
267  */
268 static void
269 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
270     uint64_t rate, boolean_t partial, boolean_t secure)
271 {
272         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
273         spa_t *spa = vd->vdev_spa;
274
275         if (new_state == vd->vdev_trim_state)
276                 return;
277
278         /*
279          * Copy the vd's guid, this will be freed by the sync task.
280          */
281         uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
282         *guid = vd->vdev_guid;
283
284         /*
285          * If we're suspending, then preserve the original start time.
286          */
287         if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
288                 vd->vdev_trim_action_time = gethrestime_sec();
289         }
290
291         /*
292          * If we're activating, then preserve the requested rate and trim
293          * method.  Setting the last offset and rate to UINT64_MAX is used
294          * as a sentinel to indicate they should be reset to default values.
295          */
296         if (new_state == VDEV_TRIM_ACTIVE) {
297                 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
298                     vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
299                         vd->vdev_trim_last_offset = UINT64_MAX;
300                         vd->vdev_trim_rate = UINT64_MAX;
301                         vd->vdev_trim_partial = UINT64_MAX;
302                         vd->vdev_trim_secure = UINT64_MAX;
303                 }
304
305                 if (rate != 0)
306                         vd->vdev_trim_rate = rate;
307
308                 if (partial != 0)
309                         vd->vdev_trim_partial = partial;
310
311                 if (secure != 0)
312                         vd->vdev_trim_secure = secure;
313         }
314
315         vdev_trim_state_t old_state = vd->vdev_trim_state;
316         boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
317         vd->vdev_trim_state = new_state;
318
319         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
320         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
321         dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
322             guid, tx);
323
324         switch (new_state) {
325         case VDEV_TRIM_ACTIVE:
326                 spa_event_notify(spa, vd, NULL,
327                     resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
328                 spa_history_log_internal(spa, "trim", tx,
329                     "vdev=%s activated", vd->vdev_path);
330                 break;
331         case VDEV_TRIM_SUSPENDED:
332                 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
333                 spa_history_log_internal(spa, "trim", tx,
334                     "vdev=%s suspended", vd->vdev_path);
335                 break;
336         case VDEV_TRIM_CANCELED:
337                 if (old_state == VDEV_TRIM_ACTIVE ||
338                     old_state == VDEV_TRIM_SUSPENDED) {
339                         spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
340                         spa_history_log_internal(spa, "trim", tx,
341                             "vdev=%s canceled", vd->vdev_path);
342                 }
343                 break;
344         case VDEV_TRIM_COMPLETE:
345                 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
346                 spa_history_log_internal(spa, "trim", tx,
347                     "vdev=%s complete", vd->vdev_path);
348                 break;
349         default:
350                 panic("invalid state %llu", (unsigned long long)new_state);
351         }
352
353         dmu_tx_commit(tx);
354
355         if (new_state != VDEV_TRIM_ACTIVE)
356                 spa_notify_waiters(spa);
357 }
358
359 /*
360  * The zio_done_func_t done callback for each manual TRIM issued.  It is
361  * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
362  * and limiting the number of in flight TRIM I/Os.
363  */
364 static void
365 vdev_trim_cb(zio_t *zio)
366 {
367         vdev_t *vd = zio->io_vd;
368
369         mutex_enter(&vd->vdev_trim_io_lock);
370         if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
371                 /*
372                  * The I/O failed because the vdev was unavailable; roll the
373                  * last offset back. (This works because spa_sync waits on
374                  * spa_txg_zio before it runs sync tasks.)
375                  */
376                 uint64_t *offset =
377                     &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
378                 *offset = MIN(*offset, zio->io_offset);
379         } else {
380                 if (zio->io_error != 0) {
381                         vd->vdev_stat.vs_trim_errors++;
382                         spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
383                             0, 0, 0, 0, 1, zio->io_orig_size);
384                 } else {
385                         spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
386                             1, zio->io_orig_size, 0, 0, 0, 0);
387                 }
388
389                 vd->vdev_trim_bytes_done += zio->io_orig_size;
390         }
391
392         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
393         vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
394         cv_broadcast(&vd->vdev_trim_io_cv);
395         mutex_exit(&vd->vdev_trim_io_lock);
396
397         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
398 }
399
400 /*
401  * The zio_done_func_t done callback for each automatic TRIM issued.  It
402  * is responsible for updating the TRIM stats and limiting the number of
403  * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
404  * never reissued on failure.
405  */
406 static void
407 vdev_autotrim_cb(zio_t *zio)
408 {
409         vdev_t *vd = zio->io_vd;
410
411         mutex_enter(&vd->vdev_trim_io_lock);
412
413         if (zio->io_error != 0) {
414                 vd->vdev_stat.vs_trim_errors++;
415                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
416                     0, 0, 0, 0, 1, zio->io_orig_size);
417         } else {
418                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
419                     1, zio->io_orig_size, 0, 0, 0, 0);
420         }
421
422         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
423         vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
424         cv_broadcast(&vd->vdev_trim_io_cv);
425         mutex_exit(&vd->vdev_trim_io_lock);
426
427         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
428 }
429
430 /*
431  * The zio_done_func_t done callback for each TRIM issued via
432  * vdev_trim_simple(). It is responsible for updating the TRIM stats and
433  * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
434  * effort and are never reissued on failure.
435  */
436 static void
437 vdev_trim_simple_cb(zio_t *zio)
438 {
439         vdev_t *vd = zio->io_vd;
440
441         mutex_enter(&vd->vdev_trim_io_lock);
442
443         if (zio->io_error != 0) {
444                 vd->vdev_stat.vs_trim_errors++;
445                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
446                     0, 0, 0, 0, 1, zio->io_orig_size);
447         } else {
448                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
449                     1, zio->io_orig_size, 0, 0, 0, 0);
450         }
451
452         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
453         vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
454         cv_broadcast(&vd->vdev_trim_io_cv);
455         mutex_exit(&vd->vdev_trim_io_lock);
456
457         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
458 }
459 /*
460  * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
461  */
462 static uint64_t
463 vdev_trim_calculate_rate(trim_args_t *ta)
464 {
465         return (ta->trim_bytes_done * 1000 /
466             (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
467 }
468
469 /*
470  * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
471  * and number of concurrent TRIM I/Os.
472  */
473 static int
474 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
475 {
476         vdev_t *vd = ta->trim_vdev;
477         spa_t *spa = vd->vdev_spa;
478         void *cb;
479
480         mutex_enter(&vd->vdev_trim_io_lock);
481
482         /*
483          * Limit manual TRIM I/Os to the requested rate.  This does not
484          * apply to automatic TRIM since no per vdev rate can be specified.
485          */
486         if (ta->trim_type == TRIM_TYPE_MANUAL) {
487                 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
488                     vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
489                         cv_timedwait_idle(&vd->vdev_trim_io_cv,
490                             &vd->vdev_trim_io_lock, ddi_get_lbolt() +
491                             MSEC_TO_TICK(10));
492                 }
493         }
494         ta->trim_bytes_done += size;
495
496         /* Limit in flight trimming I/Os */
497         while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
498             vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
499                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
500         }
501         vd->vdev_trim_inflight[ta->trim_type]++;
502         mutex_exit(&vd->vdev_trim_io_lock);
503
504         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
505         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
506         uint64_t txg = dmu_tx_get_txg(tx);
507
508         spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
509         mutex_enter(&vd->vdev_trim_lock);
510
511         if (ta->trim_type == TRIM_TYPE_MANUAL &&
512             vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
513                 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
514                 *guid = vd->vdev_guid;
515
516                 /* This is the first write of this txg. */
517                 dsl_sync_task_nowait(spa_get_dsl(spa),
518                     vdev_trim_zap_update_sync, guid, tx);
519         }
520
521         /*
522          * We know the vdev_t will still be around since all consumers of
523          * vdev_free must stop the trimming first.
524          */
525         if ((ta->trim_type == TRIM_TYPE_MANUAL &&
526             vdev_trim_should_stop(vd)) ||
527             (ta->trim_type == TRIM_TYPE_AUTO &&
528             vdev_autotrim_should_stop(vd->vdev_top))) {
529                 mutex_enter(&vd->vdev_trim_io_lock);
530                 vd->vdev_trim_inflight[ta->trim_type]--;
531                 mutex_exit(&vd->vdev_trim_io_lock);
532                 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
533                 mutex_exit(&vd->vdev_trim_lock);
534                 dmu_tx_commit(tx);
535                 return (SET_ERROR(EINTR));
536         }
537         mutex_exit(&vd->vdev_trim_lock);
538
539         if (ta->trim_type == TRIM_TYPE_MANUAL)
540                 vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
541
542         if (ta->trim_type == TRIM_TYPE_MANUAL) {
543                 cb = vdev_trim_cb;
544         } else if (ta->trim_type == TRIM_TYPE_AUTO) {
545                 cb = vdev_autotrim_cb;
546         } else {
547                 cb = vdev_trim_simple_cb;
548         }
549
550         zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
551             start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
552             ta->trim_flags));
553         /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
554
555         dmu_tx_commit(tx);
556
557         return (0);
558 }
559
560 /*
561  * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
562  * Additional parameters describing how the TRIM should be performed must
563  * be set in the trim_args structure.  See the trim_args definition for
564  * additional information.
565  */
566 static int
567 vdev_trim_ranges(trim_args_t *ta)
568 {
569         vdev_t *vd = ta->trim_vdev;
570         zfs_btree_t *t = &ta->trim_tree->rt_root;
571         zfs_btree_index_t idx;
572         uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
573         uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
574         spa_t *spa = vd->vdev_spa;
575
576         ta->trim_start_time = gethrtime();
577         ta->trim_bytes_done = 0;
578
579         for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
580             rs = zfs_btree_next(t, &idx, &idx)) {
581                 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
582                     ta->trim_tree);
583
584                 if (extent_bytes_min && size < extent_bytes_min) {
585                         spa_iostats_trim_add(spa, ta->trim_type,
586                             0, 0, 1, size, 0, 0);
587                         continue;
588                 }
589
590                 /* Split range into legally-sized physical chunks */
591                 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
592
593                 for (uint64_t w = 0; w < writes_required; w++) {
594                         int error;
595
596                         error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
597                             rs_get_start(rs, ta->trim_tree) +
598                             (w *extent_bytes_max), MIN(size -
599                             (w * extent_bytes_max), extent_bytes_max));
600                         if (error != 0) {
601                                 return (error);
602                         }
603                 }
604         }
605
606         return (0);
607 }
608
609 static void
610 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
611 {
612         uint64_t *last_rs_end = (uint64_t *)arg;
613
614         if (physical_rs->rs_end > *last_rs_end)
615                 *last_rs_end = physical_rs->rs_end;
616 }
617
618 static void
619 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
620 {
621         vdev_t *vd = (vdev_t *)arg;
622
623         uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
624         vd->vdev_trim_bytes_est += size;
625
626         if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
627                 vd->vdev_trim_bytes_done += size;
628         } else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
629             vd->vdev_trim_last_offset <= physical_rs->rs_end) {
630                 vd->vdev_trim_bytes_done +=
631                     vd->vdev_trim_last_offset - physical_rs->rs_start;
632         }
633 }
634
635 /*
636  * Calculates the completion percentage of a manual TRIM.
637  */
638 static void
639 vdev_trim_calculate_progress(vdev_t *vd)
640 {
641         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
642             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
643         ASSERT(vd->vdev_leaf_zap != 0);
644
645         vd->vdev_trim_bytes_est = 0;
646         vd->vdev_trim_bytes_done = 0;
647
648         for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
649                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
650                 mutex_enter(&msp->ms_lock);
651
652                 uint64_t ms_free = (msp->ms_size -
653                     metaslab_allocated_space(msp)) /
654                     vdev_get_ndisks(vd->vdev_top);
655
656                 /*
657                  * Convert the metaslab range to a physical range
658                  * on our vdev. We use this to determine if we are
659                  * in the middle of this metaslab range.
660                  */
661                 range_seg64_t logical_rs, physical_rs, remain_rs;
662                 logical_rs.rs_start = msp->ms_start;
663                 logical_rs.rs_end = msp->ms_start + msp->ms_size;
664
665                 /* Metaslab space after this offset has not been trimmed. */
666                 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
667                 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
668                         vd->vdev_trim_bytes_est += ms_free;
669                         mutex_exit(&msp->ms_lock);
670                         continue;
671                 }
672
673                 /* Metaslab space before this offset has been trimmed */
674                 uint64_t last_rs_end = physical_rs.rs_end;
675                 if (!vdev_xlate_is_empty(&remain_rs)) {
676                         vdev_xlate_walk(vd, &remain_rs,
677                             vdev_trim_xlate_last_rs_end, &last_rs_end);
678                 }
679
680                 if (vd->vdev_trim_last_offset > last_rs_end) {
681                         vd->vdev_trim_bytes_done += ms_free;
682                         vd->vdev_trim_bytes_est += ms_free;
683                         mutex_exit(&msp->ms_lock);
684                         continue;
685                 }
686
687                 /*
688                  * If we get here, we're in the middle of trimming this
689                  * metaslab.  Load it and walk the free tree for more
690                  * accurate progress estimation.
691                  */
692                 VERIFY0(metaslab_load(msp));
693
694                 range_tree_t *rt = msp->ms_allocatable;
695                 zfs_btree_t *bt = &rt->rt_root;
696                 zfs_btree_index_t idx;
697                 for (range_seg_t *rs = zfs_btree_first(bt, &idx);
698                     rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
699                         logical_rs.rs_start = rs_get_start(rs, rt);
700                         logical_rs.rs_end = rs_get_end(rs, rt);
701
702                         vdev_xlate_walk(vd, &logical_rs,
703                             vdev_trim_xlate_progress, vd);
704                 }
705                 mutex_exit(&msp->ms_lock);
706         }
707 }
708
709 /*
710  * Load from disk the vdev's manual TRIM information.  This includes the
711  * state, progress, and options provided when initiating the manual TRIM.
712  */
713 static int
714 vdev_trim_load(vdev_t *vd)
715 {
716         int err = 0;
717         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
718             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
719         ASSERT(vd->vdev_leaf_zap != 0);
720
721         if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
722             vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
723                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
724                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
725                     sizeof (vd->vdev_trim_last_offset), 1,
726                     &vd->vdev_trim_last_offset);
727                 if (err == ENOENT) {
728                         vd->vdev_trim_last_offset = 0;
729                         err = 0;
730                 }
731
732                 if (err == 0) {
733                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
734                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
735                             sizeof (vd->vdev_trim_rate), 1,
736                             &vd->vdev_trim_rate);
737                         if (err == ENOENT) {
738                                 vd->vdev_trim_rate = 0;
739                                 err = 0;
740                         }
741                 }
742
743                 if (err == 0) {
744                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
745                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
746                             sizeof (vd->vdev_trim_partial), 1,
747                             &vd->vdev_trim_partial);
748                         if (err == ENOENT) {
749                                 vd->vdev_trim_partial = 0;
750                                 err = 0;
751                         }
752                 }
753
754                 if (err == 0) {
755                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
756                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
757                             sizeof (vd->vdev_trim_secure), 1,
758                             &vd->vdev_trim_secure);
759                         if (err == ENOENT) {
760                                 vd->vdev_trim_secure = 0;
761                                 err = 0;
762                         }
763                 }
764         }
765
766         vdev_trim_calculate_progress(vd);
767
768         return (err);
769 }
770
771 static void
772 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
773 {
774         trim_args_t *ta = arg;
775         vdev_t *vd = ta->trim_vdev;
776
777         /*
778          * Only a manual trim will be traversing the vdev sequentially.
779          * For an auto trim all valid ranges should be added.
780          */
781         if (ta->trim_type == TRIM_TYPE_MANUAL) {
782
783                 /* Only add segments that we have not visited yet */
784                 if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
785                         return;
786
787                 /* Pick up where we left off mid-range. */
788                 if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
789                         ASSERT3U(physical_rs->rs_end, >,
790                             vd->vdev_trim_last_offset);
791                         physical_rs->rs_start = vd->vdev_trim_last_offset;
792                 }
793         }
794
795         ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
796
797         range_tree_add(ta->trim_tree, physical_rs->rs_start,
798             physical_rs->rs_end - physical_rs->rs_start);
799 }
800
801 /*
802  * Convert the logical range into physical ranges and add them to the
803  * range tree passed in the trim_args_t.
804  */
805 static void
806 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
807 {
808         trim_args_t *ta = arg;
809         vdev_t *vd = ta->trim_vdev;
810         range_seg64_t logical_rs;
811         logical_rs.rs_start = start;
812         logical_rs.rs_end = start + size;
813
814         /*
815          * Every range to be trimmed must be part of ms_allocatable.
816          * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
817          * is always the case.
818          */
819         if (zfs_flags & ZFS_DEBUG_TRIM) {
820                 metaslab_t *msp = ta->trim_msp;
821                 VERIFY0(metaslab_load(msp));
822                 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
823                 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
824         }
825
826         ASSERT(vd->vdev_ops->vdev_op_leaf);
827         vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
828 }
829
830 /*
831  * Each manual TRIM thread is responsible for trimming the unallocated
832  * space for each leaf vdev.  This is accomplished by sequentially iterating
833  * over its top-level metaslabs and issuing TRIM I/O for the space described
834  * by its ms_allocatable.  While a metaslab is undergoing trimming it is
835  * not eligible for new allocations.
836  */
837 static _Noreturn void
838 vdev_trim_thread(void *arg)
839 {
840         vdev_t *vd = arg;
841         spa_t *spa = vd->vdev_spa;
842         trim_args_t ta;
843         int error = 0;
844
845         /*
846          * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
847          * vdev_trim().  Wait for the updated values to be reflected
848          * in the zap in order to start with the requested settings.
849          */
850         txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
851
852         ASSERT(vdev_is_concrete(vd));
853         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
854
855         vd->vdev_trim_last_offset = 0;
856         vd->vdev_trim_rate = 0;
857         vd->vdev_trim_partial = 0;
858         vd->vdev_trim_secure = 0;
859
860         VERIFY0(vdev_trim_load(vd));
861
862         ta.trim_vdev = vd;
863         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
864         ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
865         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
866         ta.trim_type = TRIM_TYPE_MANUAL;
867         ta.trim_flags = 0;
868
869         /*
870          * When a secure TRIM has been requested infer that the intent
871          * is that everything must be trimmed.  Override the default
872          * minimum TRIM size to prevent ranges from being skipped.
873          */
874         if (vd->vdev_trim_secure) {
875                 ta.trim_flags |= ZIO_TRIM_SECURE;
876                 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
877         }
878
879         uint64_t ms_count = 0;
880         for (uint64_t i = 0; !vd->vdev_detached &&
881             i < vd->vdev_top->vdev_ms_count; i++) {
882                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
883
884                 /*
885                  * If we've expanded the top-level vdev or it's our
886                  * first pass, calculate our progress.
887                  */
888                 if (vd->vdev_top->vdev_ms_count != ms_count) {
889                         vdev_trim_calculate_progress(vd);
890                         ms_count = vd->vdev_top->vdev_ms_count;
891                 }
892
893                 spa_config_exit(spa, SCL_CONFIG, FTAG);
894                 metaslab_disable(msp);
895                 mutex_enter(&msp->ms_lock);
896                 VERIFY0(metaslab_load(msp));
897
898                 /*
899                  * If a partial TRIM was requested skip metaslabs which have
900                  * never been initialized and thus have never been written.
901                  */
902                 if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
903                         mutex_exit(&msp->ms_lock);
904                         metaslab_enable(msp, B_FALSE, B_FALSE);
905                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
906                         vdev_trim_calculate_progress(vd);
907                         continue;
908                 }
909
910                 ta.trim_msp = msp;
911                 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
912                 range_tree_vacate(msp->ms_trim, NULL, NULL);
913                 mutex_exit(&msp->ms_lock);
914
915                 error = vdev_trim_ranges(&ta);
916                 metaslab_enable(msp, B_TRUE, B_FALSE);
917                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
918
919                 range_tree_vacate(ta.trim_tree, NULL, NULL);
920                 if (error != 0)
921                         break;
922         }
923
924         spa_config_exit(spa, SCL_CONFIG, FTAG);
925         mutex_enter(&vd->vdev_trim_io_lock);
926         while (vd->vdev_trim_inflight[0] > 0) {
927                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
928         }
929         mutex_exit(&vd->vdev_trim_io_lock);
930
931         range_tree_destroy(ta.trim_tree);
932
933         mutex_enter(&vd->vdev_trim_lock);
934         if (!vd->vdev_trim_exit_wanted) {
935                 if (vdev_writeable(vd)) {
936                         vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
937                             vd->vdev_trim_rate, vd->vdev_trim_partial,
938                             vd->vdev_trim_secure);
939                 } else if (vd->vdev_faulted) {
940                         vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
941                             vd->vdev_trim_rate, vd->vdev_trim_partial,
942                             vd->vdev_trim_secure);
943                 }
944         }
945         ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
946
947         /*
948          * Drop the vdev_trim_lock while we sync out the txg since it's
949          * possible that a device might be trying to come online and must
950          * check to see if it needs to restart a trim. That thread will be
951          * holding the spa_config_lock which would prevent the txg_wait_synced
952          * from completing.
953          */
954         mutex_exit(&vd->vdev_trim_lock);
955         txg_wait_synced(spa_get_dsl(spa), 0);
956         mutex_enter(&vd->vdev_trim_lock);
957
958         vd->vdev_trim_thread = NULL;
959         cv_broadcast(&vd->vdev_trim_cv);
960         mutex_exit(&vd->vdev_trim_lock);
961
962         thread_exit();
963 }
964
965 /*
966  * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
967  * the vdev_t must be a leaf and cannot already be manually trimming.
968  */
969 void
970 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
971 {
972         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
973         ASSERT(vd->vdev_ops->vdev_op_leaf);
974         ASSERT(vdev_is_concrete(vd));
975         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
976         ASSERT(!vd->vdev_detached);
977         ASSERT(!vd->vdev_trim_exit_wanted);
978         ASSERT(!vd->vdev_top->vdev_removing);
979
980         vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
981         vd->vdev_trim_thread = thread_create(NULL, 0,
982             vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
983 }
984
985 /*
986  * Wait for the trimming thread to be terminated (canceled or stopped).
987  */
988 static void
989 vdev_trim_stop_wait_impl(vdev_t *vd)
990 {
991         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
992
993         while (vd->vdev_trim_thread != NULL)
994                 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
995
996         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
997         vd->vdev_trim_exit_wanted = B_FALSE;
998 }
999
1000 /*
1001  * Wait for vdev trim threads which were listed to cleanly exit.
1002  */
1003 void
1004 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1005 {
1006         (void) spa;
1007         vdev_t *vd;
1008
1009         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1010
1011         while ((vd = list_remove_head(vd_list)) != NULL) {
1012                 mutex_enter(&vd->vdev_trim_lock);
1013                 vdev_trim_stop_wait_impl(vd);
1014                 mutex_exit(&vd->vdev_trim_lock);
1015         }
1016 }
1017
1018 /*
1019  * Stop trimming a device, with the resultant trimming state being tgt_state.
1020  * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
1021  * provided the stopping vdev is inserted in to the list.  Callers are then
1022  * required to call vdev_trim_stop_wait() to block for all the trim threads
1023  * to exit.  The caller must hold vdev_trim_lock and must not be writing to
1024  * the spa config, as the trimming thread may try to enter the config as a
1025  * reader before exiting.
1026  */
1027 void
1028 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1029 {
1030         ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1031         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1032         ASSERT(vd->vdev_ops->vdev_op_leaf);
1033         ASSERT(vdev_is_concrete(vd));
1034
1035         /*
1036          * Allow cancel requests to proceed even if the trim thread has
1037          * stopped.
1038          */
1039         if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1040                 return;
1041
1042         vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1043         vd->vdev_trim_exit_wanted = B_TRUE;
1044
1045         if (vd_list == NULL) {
1046                 vdev_trim_stop_wait_impl(vd);
1047         } else {
1048                 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1049                 list_insert_tail(vd_list, vd);
1050         }
1051 }
1052
1053 /*
1054  * Requests that all listed vdevs stop trimming.
1055  */
1056 static void
1057 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1058     list_t *vd_list)
1059 {
1060         if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1061                 mutex_enter(&vd->vdev_trim_lock);
1062                 vdev_trim_stop(vd, tgt_state, vd_list);
1063                 mutex_exit(&vd->vdev_trim_lock);
1064                 return;
1065         }
1066
1067         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1068                 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1069                     vd_list);
1070         }
1071 }
1072
1073 /*
1074  * Convenience function to stop trimming of a vdev tree and set all trim
1075  * thread pointers to NULL.
1076  */
1077 void
1078 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1079 {
1080         spa_t *spa = vd->vdev_spa;
1081         list_t vd_list;
1082         vdev_t *vd_l2cache;
1083
1084         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1085
1086         list_create(&vd_list, sizeof (vdev_t),
1087             offsetof(vdev_t, vdev_trim_node));
1088
1089         vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1090
1091         /*
1092          * Iterate over cache devices and request stop trimming the
1093          * whole device in case we export the pool or remove the cache
1094          * device prematurely.
1095          */
1096         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1097                 vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1098                 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1099         }
1100
1101         vdev_trim_stop_wait(spa, &vd_list);
1102
1103         if (vd->vdev_spa->spa_sync_on) {
1104                 /* Make sure that our state has been synced to disk */
1105                 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1106         }
1107
1108         list_destroy(&vd_list);
1109 }
1110
1111 /*
1112  * Conditionally restarts a manual TRIM given its on-disk state.
1113  */
1114 void
1115 vdev_trim_restart(vdev_t *vd)
1116 {
1117         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1118         ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1119
1120         if (vd->vdev_leaf_zap != 0) {
1121                 mutex_enter(&vd->vdev_trim_lock);
1122                 uint64_t trim_state = VDEV_TRIM_NONE;
1123                 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1124                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1125                     sizeof (trim_state), 1, &trim_state);
1126                 ASSERT(err == 0 || err == ENOENT);
1127                 vd->vdev_trim_state = trim_state;
1128
1129                 uint64_t timestamp = 0;
1130                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1131                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1132                     sizeof (timestamp), 1, &timestamp);
1133                 ASSERT(err == 0 || err == ENOENT);
1134                 vd->vdev_trim_action_time = timestamp;
1135
1136                 if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1137                     vd->vdev_offline) {
1138                         /* load progress for reporting, but don't resume */
1139                         VERIFY0(vdev_trim_load(vd));
1140                 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1141                     vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1142                     vd->vdev_trim_thread == NULL) {
1143                         VERIFY0(vdev_trim_load(vd));
1144                         vdev_trim(vd, vd->vdev_trim_rate,
1145                             vd->vdev_trim_partial, vd->vdev_trim_secure);
1146                 }
1147
1148                 mutex_exit(&vd->vdev_trim_lock);
1149         }
1150
1151         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1152                 vdev_trim_restart(vd->vdev_child[i]);
1153         }
1154 }
1155
1156 /*
1157  * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1158  * every TRIM range is contained within ms_allocatable.
1159  */
1160 static void
1161 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1162 {
1163         trim_args_t *ta = arg;
1164         metaslab_t *msp = ta->trim_msp;
1165
1166         VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1167         VERIFY3U(msp->ms_disabled, >, 0);
1168         VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1169 }
1170
1171 /*
1172  * Each automatic TRIM thread is responsible for managing the trimming of a
1173  * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
1174  *
1175  * N.B. This behavior is different from a manual TRIM where a thread
1176  * is created for each leaf vdev, instead of each top-level vdev.
1177  */
1178 static _Noreturn void
1179 vdev_autotrim_thread(void *arg)
1180 {
1181         vdev_t *vd = arg;
1182         spa_t *spa = vd->vdev_spa;
1183         int shift = 0;
1184
1185         mutex_enter(&vd->vdev_autotrim_lock);
1186         ASSERT3P(vd->vdev_top, ==, vd);
1187         ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1188         mutex_exit(&vd->vdev_autotrim_lock);
1189         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1190
1191         uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1192         uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1193
1194         while (!vdev_autotrim_should_stop(vd)) {
1195                 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1196                 boolean_t issued_trim = B_FALSE;
1197
1198                 /*
1199                  * All of the metaslabs are divided in to groups of size
1200                  * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
1201                  * is composed of metaslabs which are spread evenly over the
1202                  * device.
1203                  *
1204                  * For example, when zfs_trim_txg_batch = 32 (default) then
1205                  * group 0 will contain metaslabs 0, 32, 64, ...;
1206                  * group 1 will contain metaslabs 1, 33, 65, ...;
1207                  * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1208                  *
1209                  * On each pass through the while() loop one of these groups
1210                  * is selected.  This is accomplished by using a shift value
1211                  * to select the starting metaslab, then striding over the
1212                  * metaslabs using the zfs_trim_txg_batch size.  This is
1213                  * done to accomplish two things.
1214                  *
1215                  * 1) By dividing the metaslabs in to groups, and making sure
1216                  *    that each group takes a minimum of one txg to process.
1217                  *    Then zfs_trim_txg_batch controls the minimum number of
1218                  *    txgs which must occur before a metaslab is revisited.
1219                  *
1220                  * 2) Selecting non-consecutive metaslabs distributes the
1221                  *    TRIM commands for a group evenly over the entire device.
1222                  *    This can be advantageous for certain types of devices.
1223                  */
1224                 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1225                     i += txgs_per_trim) {
1226                         metaslab_t *msp = vd->vdev_ms[i];
1227                         range_tree_t *trim_tree;
1228
1229                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1230                         metaslab_disable(msp);
1231                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1232
1233                         mutex_enter(&msp->ms_lock);
1234
1235                         /*
1236                          * Skip the metaslab when it has never been allocated
1237                          * or when there are no recent frees to trim.
1238                          */
1239                         if (msp->ms_sm == NULL ||
1240                             range_tree_is_empty(msp->ms_trim)) {
1241                                 mutex_exit(&msp->ms_lock);
1242                                 metaslab_enable(msp, B_FALSE, B_FALSE);
1243                                 continue;
1244                         }
1245
1246                         /*
1247                          * Skip the metaslab when it has already been disabled.
1248                          * This may happen when a manual TRIM or initialize
1249                          * operation is running concurrently.  In the case
1250                          * of a manual TRIM, the ms_trim tree will have been
1251                          * vacated.  Only ranges added after the manual TRIM
1252                          * disabled the metaslab will be included in the tree.
1253                          * These will be processed when the automatic TRIM
1254                          * next revisits this metaslab.
1255                          */
1256                         if (msp->ms_disabled > 1) {
1257                                 mutex_exit(&msp->ms_lock);
1258                                 metaslab_enable(msp, B_FALSE, B_FALSE);
1259                                 continue;
1260                         }
1261
1262                         /*
1263                          * Allocate an empty range tree which is swapped in
1264                          * for the existing ms_trim tree while it is processed.
1265                          */
1266                         trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1267                             0, 0);
1268                         range_tree_swap(&msp->ms_trim, &trim_tree);
1269                         ASSERT(range_tree_is_empty(msp->ms_trim));
1270
1271                         /*
1272                          * There are two cases when constructing the per-vdev
1273                          * trim trees for a metaslab.  If the top-level vdev
1274                          * has no children then it is also a leaf and should
1275                          * be trimmed.  Otherwise our children are the leaves
1276                          * and a trim tree should be constructed for each.
1277                          */
1278                         trim_args_t *tap;
1279                         uint64_t children = vd->vdev_children;
1280                         if (children == 0) {
1281                                 children = 1;
1282                                 tap = kmem_zalloc(sizeof (trim_args_t) *
1283                                     children, KM_SLEEP);
1284                                 tap[0].trim_vdev = vd;
1285                         } else {
1286                                 tap = kmem_zalloc(sizeof (trim_args_t) *
1287                                     children, KM_SLEEP);
1288
1289                                 for (uint64_t c = 0; c < children; c++) {
1290                                         tap[c].trim_vdev = vd->vdev_child[c];
1291                                 }
1292                         }
1293
1294                         for (uint64_t c = 0; c < children; c++) {
1295                                 trim_args_t *ta = &tap[c];
1296                                 vdev_t *cvd = ta->trim_vdev;
1297
1298                                 ta->trim_msp = msp;
1299                                 ta->trim_extent_bytes_max = extent_bytes_max;
1300                                 ta->trim_extent_bytes_min = extent_bytes_min;
1301                                 ta->trim_type = TRIM_TYPE_AUTO;
1302                                 ta->trim_flags = 0;
1303
1304                                 if (cvd->vdev_detached ||
1305                                     !vdev_writeable(cvd) ||
1306                                     !cvd->vdev_has_trim ||
1307                                     cvd->vdev_trim_thread != NULL) {
1308                                         continue;
1309                                 }
1310
1311                                 /*
1312                                  * When a device has an attached hot spare, or
1313                                  * is being replaced it will not be trimmed.
1314                                  * This is done to avoid adding additional
1315                                  * stress to a potentially unhealthy device,
1316                                  * and to minimize the required rebuild time.
1317                                  */
1318                                 if (!cvd->vdev_ops->vdev_op_leaf)
1319                                         continue;
1320
1321                                 ta->trim_tree = range_tree_create(NULL,
1322                                     RANGE_SEG64, NULL, 0, 0);
1323                                 range_tree_walk(trim_tree,
1324                                     vdev_trim_range_add, ta);
1325                         }
1326
1327                         mutex_exit(&msp->ms_lock);
1328                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1329
1330                         /*
1331                          * Issue the TRIM I/Os for all ranges covered by the
1332                          * TRIM trees.  These ranges are safe to TRIM because
1333                          * no new allocations will be performed until the call
1334                          * to metaslab_enabled() below.
1335                          */
1336                         for (uint64_t c = 0; c < children; c++) {
1337                                 trim_args_t *ta = &tap[c];
1338
1339                                 /*
1340                                  * Always yield to a manual TRIM if one has
1341                                  * been started for the child vdev.
1342                                  */
1343                                 if (ta->trim_tree == NULL ||
1344                                     ta->trim_vdev->vdev_trim_thread != NULL) {
1345                                         continue;
1346                                 }
1347
1348                                 /*
1349                                  * After this point metaslab_enable() must be
1350                                  * called with the sync flag set.  This is done
1351                                  * here because vdev_trim_ranges() is allowed
1352                                  * to be interrupted (EINTR) before issuing all
1353                                  * of the required TRIM I/Os.
1354                                  */
1355                                 issued_trim = B_TRUE;
1356
1357                                 int error = vdev_trim_ranges(ta);
1358                                 if (error)
1359                                         break;
1360                         }
1361
1362                         /*
1363                          * Verify every range which was trimmed is still
1364                          * contained within the ms_allocatable tree.
1365                          */
1366                         if (zfs_flags & ZFS_DEBUG_TRIM) {
1367                                 mutex_enter(&msp->ms_lock);
1368                                 VERIFY0(metaslab_load(msp));
1369                                 VERIFY3P(tap[0].trim_msp, ==, msp);
1370                                 range_tree_walk(trim_tree,
1371                                     vdev_trim_range_verify, &tap[0]);
1372                                 mutex_exit(&msp->ms_lock);
1373                         }
1374
1375                         range_tree_vacate(trim_tree, NULL, NULL);
1376                         range_tree_destroy(trim_tree);
1377
1378                         metaslab_enable(msp, issued_trim, B_FALSE);
1379                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1380
1381                         for (uint64_t c = 0; c < children; c++) {
1382                                 trim_args_t *ta = &tap[c];
1383
1384                                 if (ta->trim_tree == NULL)
1385                                         continue;
1386
1387                                 range_tree_vacate(ta->trim_tree, NULL, NULL);
1388                                 range_tree_destroy(ta->trim_tree);
1389                         }
1390
1391                         kmem_free(tap, sizeof (trim_args_t) * children);
1392                 }
1393
1394                 spa_config_exit(spa, SCL_CONFIG, FTAG);
1395
1396                 /*
1397                  * After completing the group of metaslabs wait for the next
1398                  * open txg.  This is done to make sure that a minimum of
1399                  * zfs_trim_txg_batch txgs will occur before these metaslabs
1400                  * are trimmed again.
1401                  */
1402                 txg_wait_open(spa_get_dsl(spa), 0, issued_trim);
1403
1404                 shift++;
1405                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1406         }
1407
1408         for (uint64_t c = 0; c < vd->vdev_children; c++) {
1409                 vdev_t *cvd = vd->vdev_child[c];
1410                 mutex_enter(&cvd->vdev_trim_io_lock);
1411
1412                 while (cvd->vdev_trim_inflight[1] > 0) {
1413                         cv_wait(&cvd->vdev_trim_io_cv,
1414                             &cvd->vdev_trim_io_lock);
1415                 }
1416                 mutex_exit(&cvd->vdev_trim_io_lock);
1417         }
1418
1419         spa_config_exit(spa, SCL_CONFIG, FTAG);
1420
1421         /*
1422          * When exiting because the autotrim property was set to off, then
1423          * abandon any unprocessed ms_trim ranges to reclaim the memory.
1424          */
1425         if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1426                 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1427                         metaslab_t *msp = vd->vdev_ms[i];
1428
1429                         mutex_enter(&msp->ms_lock);
1430                         range_tree_vacate(msp->ms_trim, NULL, NULL);
1431                         mutex_exit(&msp->ms_lock);
1432                 }
1433         }
1434
1435         mutex_enter(&vd->vdev_autotrim_lock);
1436         ASSERT(vd->vdev_autotrim_thread != NULL);
1437         vd->vdev_autotrim_thread = NULL;
1438         cv_broadcast(&vd->vdev_autotrim_cv);
1439         mutex_exit(&vd->vdev_autotrim_lock);
1440
1441         thread_exit();
1442 }
1443
1444 /*
1445  * Starts an autotrim thread, if needed, for each top-level vdev which can be
1446  * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
1447  */
1448 void
1449 vdev_autotrim(spa_t *spa)
1450 {
1451         vdev_t *root_vd = spa->spa_root_vdev;
1452
1453         for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1454                 vdev_t *tvd = root_vd->vdev_child[i];
1455
1456                 mutex_enter(&tvd->vdev_autotrim_lock);
1457                 if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1458                     tvd->vdev_autotrim_thread == NULL) {
1459                         ASSERT3P(tvd->vdev_top, ==, tvd);
1460
1461                         tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1462                             vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1463                             maxclsyspri);
1464                         ASSERT(tvd->vdev_autotrim_thread != NULL);
1465                 }
1466                 mutex_exit(&tvd->vdev_autotrim_lock);
1467         }
1468 }
1469
1470 /*
1471  * Wait for the vdev_autotrim_thread associated with the passed top-level
1472  * vdev to be terminated (canceled or stopped).
1473  */
1474 void
1475 vdev_autotrim_stop_wait(vdev_t *tvd)
1476 {
1477         mutex_enter(&tvd->vdev_autotrim_lock);
1478         if (tvd->vdev_autotrim_thread != NULL) {
1479                 tvd->vdev_autotrim_exit_wanted = B_TRUE;
1480
1481                 while (tvd->vdev_autotrim_thread != NULL) {
1482                         cv_wait(&tvd->vdev_autotrim_cv,
1483                             &tvd->vdev_autotrim_lock);
1484                 }
1485
1486                 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1487                 tvd->vdev_autotrim_exit_wanted = B_FALSE;
1488         }
1489         mutex_exit(&tvd->vdev_autotrim_lock);
1490 }
1491
1492 /*
1493  * Wait for all of the vdev_autotrim_thread associated with the pool to
1494  * be terminated (canceled or stopped).
1495  */
1496 void
1497 vdev_autotrim_stop_all(spa_t *spa)
1498 {
1499         vdev_t *root_vd = spa->spa_root_vdev;
1500
1501         for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1502                 vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1503 }
1504
1505 /*
1506  * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1507  */
1508 void
1509 vdev_autotrim_restart(spa_t *spa)
1510 {
1511         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1512
1513         if (spa->spa_autotrim)
1514                 vdev_autotrim(spa);
1515 }
1516
1517 static _Noreturn void
1518 vdev_trim_l2arc_thread(void *arg)
1519 {
1520         vdev_t          *vd = arg;
1521         spa_t           *spa = vd->vdev_spa;
1522         l2arc_dev_t     *dev = l2arc_vdev_get(vd);
1523         trim_args_t     ta;
1524         range_seg64_t   physical_rs;
1525
1526         ASSERT(vdev_is_concrete(vd));
1527         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1528
1529         vd->vdev_trim_last_offset = 0;
1530         vd->vdev_trim_rate = 0;
1531         vd->vdev_trim_partial = 0;
1532         vd->vdev_trim_secure = 0;
1533
1534         bzero(&ta, sizeof (ta));
1535         ta.trim_vdev = vd;
1536         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1537         ta.trim_type = TRIM_TYPE_MANUAL;
1538         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1539         ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1540         ta.trim_flags = 0;
1541
1542         physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1543         physical_rs.rs_end = vd->vdev_trim_bytes_est =
1544             vdev_get_min_asize(vd);
1545
1546         range_tree_add(ta.trim_tree, physical_rs.rs_start,
1547             physical_rs.rs_end - physical_rs.rs_start);
1548
1549         mutex_enter(&vd->vdev_trim_lock);
1550         vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1551         mutex_exit(&vd->vdev_trim_lock);
1552
1553         (void) vdev_trim_ranges(&ta);
1554
1555         spa_config_exit(spa, SCL_CONFIG, FTAG);
1556         mutex_enter(&vd->vdev_trim_io_lock);
1557         while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1558                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1559         }
1560         mutex_exit(&vd->vdev_trim_io_lock);
1561
1562         range_tree_vacate(ta.trim_tree, NULL, NULL);
1563         range_tree_destroy(ta.trim_tree);
1564
1565         mutex_enter(&vd->vdev_trim_lock);
1566         if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1567                 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1568                     vd->vdev_trim_rate, vd->vdev_trim_partial,
1569                     vd->vdev_trim_secure);
1570         }
1571         ASSERT(vd->vdev_trim_thread != NULL ||
1572             vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1573
1574         /*
1575          * Drop the vdev_trim_lock while we sync out the txg since it's
1576          * possible that a device might be trying to come online and
1577          * must check to see if it needs to restart a trim. That thread
1578          * will be holding the spa_config_lock which would prevent the
1579          * txg_wait_synced from completing. Same strategy as in
1580          * vdev_trim_thread().
1581          */
1582         mutex_exit(&vd->vdev_trim_lock);
1583         txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1584         mutex_enter(&vd->vdev_trim_lock);
1585
1586         /*
1587          * Update the header of the cache device here, before
1588          * broadcasting vdev_trim_cv which may lead to the removal
1589          * of the device. The same applies for setting l2ad_trim_all to
1590          * false.
1591          */
1592         spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1593             RW_READER);
1594         bzero(dev->l2ad_dev_hdr, dev->l2ad_dev_hdr_asize);
1595         l2arc_dev_hdr_update(dev);
1596         spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1597
1598         vd->vdev_trim_thread = NULL;
1599         if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1600                 dev->l2ad_trim_all = B_FALSE;
1601
1602         cv_broadcast(&vd->vdev_trim_cv);
1603         mutex_exit(&vd->vdev_trim_lock);
1604
1605         thread_exit();
1606 }
1607
1608 /*
1609  * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1610  * to vd->vdev_trim_thread variable. This facilitates the management of
1611  * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1612  * to a pool or pool creation or when the header of the device is invalid.
1613  */
1614 void
1615 vdev_trim_l2arc(spa_t *spa)
1616 {
1617         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1618
1619         /*
1620          * Locate the spa's l2arc devices and kick off TRIM threads.
1621          */
1622         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1623                 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1624                 l2arc_dev_t *dev = l2arc_vdev_get(vd);
1625
1626                 if (dev == NULL || !dev->l2ad_trim_all) {
1627                         /*
1628                          * Don't attempt TRIM if the vdev is UNAVAIL or if the
1629                          * cache device was not marked for whole device TRIM
1630                          * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1631                          * is valid with trim_state = VDEV_TRIM_COMPLETE and
1632                          * l2ad_log_entries > 0).
1633                          */
1634                         continue;
1635                 }
1636
1637                 mutex_enter(&vd->vdev_trim_lock);
1638                 ASSERT(vd->vdev_ops->vdev_op_leaf);
1639                 ASSERT(vdev_is_concrete(vd));
1640                 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1641                 ASSERT(!vd->vdev_detached);
1642                 ASSERT(!vd->vdev_trim_exit_wanted);
1643                 ASSERT(!vd->vdev_top->vdev_removing);
1644                 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1645                 vd->vdev_trim_thread = thread_create(NULL, 0,
1646                     vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1647                 mutex_exit(&vd->vdev_trim_lock);
1648         }
1649 }
1650
1651 /*
1652  * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1653  * on leaf vdevs.
1654  */
1655 int
1656 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1657 {
1658         trim_args_t             ta;
1659         range_seg64_t           physical_rs;
1660         int                     error;
1661         physical_rs.rs_start = start;
1662         physical_rs.rs_end = start + size;
1663
1664         ASSERT(vdev_is_concrete(vd));
1665         ASSERT(vd->vdev_ops->vdev_op_leaf);
1666         ASSERT(!vd->vdev_detached);
1667         ASSERT(!vd->vdev_top->vdev_removing);
1668
1669         bzero(&ta, sizeof (ta));
1670         ta.trim_vdev = vd;
1671         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1672         ta.trim_type = TRIM_TYPE_SIMPLE;
1673         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1674         ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1675         ta.trim_flags = 0;
1676
1677         ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1678
1679         if (physical_rs.rs_end > physical_rs.rs_start) {
1680                 range_tree_add(ta.trim_tree, physical_rs.rs_start,
1681                     physical_rs.rs_end - physical_rs.rs_start);
1682         } else {
1683                 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1684         }
1685
1686         error = vdev_trim_ranges(&ta);
1687
1688         mutex_enter(&vd->vdev_trim_io_lock);
1689         while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1690                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1691         }
1692         mutex_exit(&vd->vdev_trim_io_lock);
1693
1694         range_tree_vacate(ta.trim_tree, NULL, NULL);
1695         range_tree_destroy(ta.trim_tree);
1696
1697         return (error);
1698 }
1699
1700 EXPORT_SYMBOL(vdev_trim);
1701 EXPORT_SYMBOL(vdev_trim_stop);
1702 EXPORT_SYMBOL(vdev_trim_stop_all);
1703 EXPORT_SYMBOL(vdev_trim_stop_wait);
1704 EXPORT_SYMBOL(vdev_trim_restart);
1705 EXPORT_SYMBOL(vdev_autotrim);
1706 EXPORT_SYMBOL(vdev_autotrim_stop_all);
1707 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1708 EXPORT_SYMBOL(vdev_autotrim_restart);
1709 EXPORT_SYMBOL(vdev_trim_l2arc);
1710 EXPORT_SYMBOL(vdev_trim_simple);
1711
1712 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1713         "Max size of TRIM commands, larger will be split");
1714
1715 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1716         "Min size of TRIM commands, smaller will be skipped");
1717
1718 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1719         "Skip metaslabs which have never been initialized");
1720
1721 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1722         "Min number of txgs to aggregate frees before issuing TRIM");
1723
1724 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1725         "Max queued TRIMs outstanding per leaf vdev");