]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_trim.c
Merge llvm-project release/17.x llvmorg-17.0.5-0-g98bfdac5ce82
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_trim.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25  * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26  * Copyright 2023 RackTop Systems, Inc.
27  */
28
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/txg.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/zap.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/arc_impl.h>
39
40 /*
41  * TRIM is a feature which is used to notify a SSD that some previously
42  * written space is no longer allocated by the pool.  This is useful because
43  * writes to a SSD must be performed to blocks which have first been erased.
44  * Ensuring the SSD always has a supply of erased blocks for new writes
45  * helps prevent the performance from deteriorating.
46  *
47  * There are two supported TRIM methods; manual and automatic.
48  *
49  * Manual TRIM:
50  *
51  * A manual TRIM is initiated by running the 'zpool trim' command.  A single
52  * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
53  * managing that vdev TRIM process.  This involves iterating over all the
54  * metaslabs, calculating the unallocated space ranges, and then issuing the
55  * required TRIM I/Os.
56  *
57  * While a metaslab is being actively trimmed it is not eligible to perform
58  * new allocations.  After traversing all of the metaslabs the thread is
59  * terminated.  Finally, both the requested options and current progress of
60  * the TRIM are regularly written to the pool.  This allows the TRIM to be
61  * suspended and resumed as needed.
62  *
63  * Automatic TRIM:
64  *
65  * An automatic TRIM is enabled by setting the 'autotrim' pool property
66  * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
67  * top-level (not leaf) vdev in the pool.  These threads perform the same
68  * core TRIM process as a manual TRIM, but with a few key differences.
69  *
70  * 1) Automatic TRIM happens continuously in the background and operates
71  *    solely on recently freed blocks (ms_trim not ms_allocatable).
72  *
73  * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
74  *    the benefit of simplifying the threading model, it makes it easier
75  *    to coordinate administrative commands, and it ensures only a single
76  *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
77  *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
78  *    children.
79  *
80  * 3) There is no automatic TRIM progress information stored on disk, nor
81  *    is it reported by 'zpool status'.
82  *
83  * While the automatic TRIM process is highly effective it is more likely
84  * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
85  * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
86  * TRIM and are skipped.  This means small amounts of freed space may not
87  * be automatically trimmed.
88  *
89  * Furthermore, devices with attached hot spares and devices being actively
90  * replaced are skipped.  This is done to avoid adding additional stress to
91  * a potentially unhealthy device and to minimize the required rebuild time.
92  *
93  * For this reason it may be beneficial to occasionally manually TRIM a pool
94  * even when automatic TRIM is enabled.
95  */
96
97 /*
98  * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
99  */
100 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
101
102 /*
103  * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
104  */
105 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
106
107 /*
108  * Skip uninitialized metaslabs during the TRIM process.  This option is
109  * useful for pools constructed from large thinly-provisioned devices where
110  * TRIM operations are slow.  As a pool ages an increasing fraction of
111  * the pools metaslabs will be initialized progressively degrading the
112  * usefulness of this option.  This setting is stored when starting a
113  * manual TRIM and will persist for the duration of the requested TRIM.
114  */
115 unsigned int zfs_trim_metaslab_skip = 0;
116
117 /*
118  * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
119  * concurrent TRIM I/Os issued to the device is controlled by the
120  * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
121  */
122 static unsigned int zfs_trim_queue_limit = 10;
123
124 /*
125  * The minimum number of transaction groups between automatic trims of a
126  * metaslab.  This setting represents a trade-off between issuing more
127  * efficient TRIM operations, by allowing them to be aggregated longer,
128  * and issuing them promptly so the trimmed space is available.  Note
129  * that this value is a minimum; metaslabs can be trimmed less frequently
130  * when there are a large number of ranges which need to be trimmed.
131  *
132  * Increasing this value will allow frees to be aggregated for a longer
133  * time.  This can result is larger TRIM operations, and increased memory
134  * usage in order to track the ranges to be trimmed.  Decreasing this value
135  * has the opposite effect.  The default value of 32 was determined though
136  * testing to be a reasonable compromise.
137  */
138 static unsigned int zfs_trim_txg_batch = 32;
139
140 /*
141  * The trim_args are a control structure which describe how a leaf vdev
142  * should be trimmed.  The core elements are the vdev, the metaslab being
143  * trimmed and a range tree containing the extents to TRIM.  All provided
144  * ranges must be within the metaslab.
145  */
146 typedef struct trim_args {
147         /*
148          * These fields are set by the caller of vdev_trim_ranges().
149          */
150         vdev_t          *trim_vdev;             /* Leaf vdev to TRIM */
151         metaslab_t      *trim_msp;              /* Disabled metaslab */
152         range_tree_t    *trim_tree;             /* TRIM ranges (in metaslab) */
153         trim_type_t     trim_type;              /* Manual or auto TRIM */
154         uint64_t        trim_extent_bytes_max;  /* Maximum TRIM I/O size */
155         uint64_t        trim_extent_bytes_min;  /* Minimum TRIM I/O size */
156         enum trim_flag  trim_flags;             /* TRIM flags (secure) */
157
158         /*
159          * These fields are updated by vdev_trim_ranges().
160          */
161         hrtime_t        trim_start_time;        /* Start time */
162         uint64_t        trim_bytes_done;        /* Bytes trimmed */
163 } trim_args_t;
164
165 /*
166  * Determines whether a vdev_trim_thread() should be stopped.
167  */
168 static boolean_t
169 vdev_trim_should_stop(vdev_t *vd)
170 {
171         return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
172             vd->vdev_detached || vd->vdev_top->vdev_removing ||
173             vd->vdev_top->vdev_rz_expanding);
174 }
175
176 /*
177  * Determines whether a vdev_autotrim_thread() should be stopped.
178  */
179 static boolean_t
180 vdev_autotrim_should_stop(vdev_t *tvd)
181 {
182         return (tvd->vdev_autotrim_exit_wanted ||
183             !vdev_writeable(tvd) || tvd->vdev_removing ||
184             tvd->vdev_rz_expanding ||
185             spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
186 }
187
188 /*
189  * Wait for given number of kicks, return true if the wait is aborted due to
190  * vdev_autotrim_exit_wanted.
191  */
192 static boolean_t
193 vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick)
194 {
195         mutex_enter(&vd->vdev_autotrim_lock);
196         for (int i = 0; i < num_of_kick; i++) {
197                 if (vd->vdev_autotrim_exit_wanted)
198                         break;
199                 cv_wait(&vd->vdev_autotrim_kick_cv, &vd->vdev_autotrim_lock);
200         }
201         boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted;
202         mutex_exit(&vd->vdev_autotrim_lock);
203
204         return (exit_wanted);
205 }
206
207 /*
208  * The sync task for updating the on-disk state of a manual TRIM.  This
209  * is scheduled by vdev_trim_change_state().
210  */
211 static void
212 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
213 {
214         /*
215          * We pass in the guid instead of the vdev_t since the vdev may
216          * have been freed prior to the sync task being processed.  This
217          * happens when a vdev is detached as we call spa_config_vdev_exit(),
218          * stop the trimming thread, schedule the sync task, and free
219          * the vdev. Later when the scheduled sync task is invoked, it would
220          * find that the vdev has been freed.
221          */
222         uint64_t guid = *(uint64_t *)arg;
223         uint64_t txg = dmu_tx_get_txg(tx);
224         kmem_free(arg, sizeof (uint64_t));
225
226         vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
227         if (vd == NULL || vd->vdev_top->vdev_removing ||
228             !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding)
229                 return;
230
231         uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
232         vd->vdev_trim_offset[txg & TXG_MASK] = 0;
233
234         VERIFY3U(vd->vdev_leaf_zap, !=, 0);
235
236         objset_t *mos = vd->vdev_spa->spa_meta_objset;
237
238         if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
239
240                 if (vd->vdev_trim_last_offset == UINT64_MAX)
241                         last_offset = 0;
242
243                 vd->vdev_trim_last_offset = last_offset;
244                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
245                     VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
246                     sizeof (last_offset), 1, &last_offset, tx));
247         }
248
249         if (vd->vdev_trim_action_time > 0) {
250                 uint64_t val = (uint64_t)vd->vdev_trim_action_time;
251                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
252                     VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
253                     1, &val, tx));
254         }
255
256         if (vd->vdev_trim_rate > 0) {
257                 uint64_t rate = (uint64_t)vd->vdev_trim_rate;
258
259                 if (rate == UINT64_MAX)
260                         rate = 0;
261
262                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
263                     VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
264         }
265
266         uint64_t partial = vd->vdev_trim_partial;
267         if (partial == UINT64_MAX)
268                 partial = 0;
269
270         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
271             sizeof (partial), 1, &partial, tx));
272
273         uint64_t secure = vd->vdev_trim_secure;
274         if (secure == UINT64_MAX)
275                 secure = 0;
276
277         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
278             sizeof (secure), 1, &secure, tx));
279
280
281         uint64_t trim_state = vd->vdev_trim_state;
282         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
283             sizeof (trim_state), 1, &trim_state, tx));
284 }
285
286 /*
287  * Update the on-disk state of a manual TRIM.  This is called to request
288  * that a TRIM be started/suspended/canceled, or to change one of the
289  * TRIM options (partial, secure, rate).
290  */
291 static void
292 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
293     uint64_t rate, boolean_t partial, boolean_t secure)
294 {
295         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
296         spa_t *spa = vd->vdev_spa;
297
298         if (new_state == vd->vdev_trim_state)
299                 return;
300
301         /*
302          * Copy the vd's guid, this will be freed by the sync task.
303          */
304         uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
305         *guid = vd->vdev_guid;
306
307         /*
308          * If we're suspending, then preserve the original start time.
309          */
310         if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
311                 vd->vdev_trim_action_time = gethrestime_sec();
312         }
313
314         /*
315          * If we're activating, then preserve the requested rate and trim
316          * method.  Setting the last offset and rate to UINT64_MAX is used
317          * as a sentinel to indicate they should be reset to default values.
318          */
319         if (new_state == VDEV_TRIM_ACTIVE) {
320                 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
321                     vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
322                         vd->vdev_trim_last_offset = UINT64_MAX;
323                         vd->vdev_trim_rate = UINT64_MAX;
324                         vd->vdev_trim_partial = UINT64_MAX;
325                         vd->vdev_trim_secure = UINT64_MAX;
326                 }
327
328                 if (rate != 0)
329                         vd->vdev_trim_rate = rate;
330
331                 if (partial != 0)
332                         vd->vdev_trim_partial = partial;
333
334                 if (secure != 0)
335                         vd->vdev_trim_secure = secure;
336         }
337
338         vdev_trim_state_t old_state = vd->vdev_trim_state;
339         boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
340         vd->vdev_trim_state = new_state;
341
342         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
343         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
344         dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
345             guid, tx);
346
347         switch (new_state) {
348         case VDEV_TRIM_ACTIVE:
349                 spa_event_notify(spa, vd, NULL,
350                     resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
351                 spa_history_log_internal(spa, "trim", tx,
352                     "vdev=%s activated", vd->vdev_path);
353                 break;
354         case VDEV_TRIM_SUSPENDED:
355                 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
356                 spa_history_log_internal(spa, "trim", tx,
357                     "vdev=%s suspended", vd->vdev_path);
358                 break;
359         case VDEV_TRIM_CANCELED:
360                 if (old_state == VDEV_TRIM_ACTIVE ||
361                     old_state == VDEV_TRIM_SUSPENDED) {
362                         spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
363                         spa_history_log_internal(spa, "trim", tx,
364                             "vdev=%s canceled", vd->vdev_path);
365                 }
366                 break;
367         case VDEV_TRIM_COMPLETE:
368                 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
369                 spa_history_log_internal(spa, "trim", tx,
370                     "vdev=%s complete", vd->vdev_path);
371                 break;
372         default:
373                 panic("invalid state %llu", (unsigned long long)new_state);
374         }
375
376         dmu_tx_commit(tx);
377
378         if (new_state != VDEV_TRIM_ACTIVE)
379                 spa_notify_waiters(spa);
380 }
381
382 /*
383  * The zio_done_func_t done callback for each manual TRIM issued.  It is
384  * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
385  * and limiting the number of in flight TRIM I/Os.
386  */
387 static void
388 vdev_trim_cb(zio_t *zio)
389 {
390         vdev_t *vd = zio->io_vd;
391
392         mutex_enter(&vd->vdev_trim_io_lock);
393         if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
394                 /*
395                  * The I/O failed because the vdev was unavailable; roll the
396                  * last offset back. (This works because spa_sync waits on
397                  * spa_txg_zio before it runs sync tasks.)
398                  */
399                 uint64_t *offset =
400                     &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
401                 *offset = MIN(*offset, zio->io_offset);
402         } else {
403                 if (zio->io_error != 0) {
404                         vd->vdev_stat.vs_trim_errors++;
405                         spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
406                             0, 0, 0, 0, 1, zio->io_orig_size);
407                 } else {
408                         spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
409                             1, zio->io_orig_size, 0, 0, 0, 0);
410                 }
411
412                 vd->vdev_trim_bytes_done += zio->io_orig_size;
413         }
414
415         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
416         vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
417         cv_broadcast(&vd->vdev_trim_io_cv);
418         mutex_exit(&vd->vdev_trim_io_lock);
419
420         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
421 }
422
423 /*
424  * The zio_done_func_t done callback for each automatic TRIM issued.  It
425  * is responsible for updating the TRIM stats and limiting the number of
426  * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
427  * never reissued on failure.
428  */
429 static void
430 vdev_autotrim_cb(zio_t *zio)
431 {
432         vdev_t *vd = zio->io_vd;
433
434         mutex_enter(&vd->vdev_trim_io_lock);
435
436         if (zio->io_error != 0) {
437                 vd->vdev_stat.vs_trim_errors++;
438                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
439                     0, 0, 0, 0, 1, zio->io_orig_size);
440         } else {
441                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
442                     1, zio->io_orig_size, 0, 0, 0, 0);
443         }
444
445         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
446         vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
447         cv_broadcast(&vd->vdev_trim_io_cv);
448         mutex_exit(&vd->vdev_trim_io_lock);
449
450         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
451 }
452
453 /*
454  * The zio_done_func_t done callback for each TRIM issued via
455  * vdev_trim_simple(). It is responsible for updating the TRIM stats and
456  * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
457  * effort and are never reissued on failure.
458  */
459 static void
460 vdev_trim_simple_cb(zio_t *zio)
461 {
462         vdev_t *vd = zio->io_vd;
463
464         mutex_enter(&vd->vdev_trim_io_lock);
465
466         if (zio->io_error != 0) {
467                 vd->vdev_stat.vs_trim_errors++;
468                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
469                     0, 0, 0, 0, 1, zio->io_orig_size);
470         } else {
471                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
472                     1, zio->io_orig_size, 0, 0, 0, 0);
473         }
474
475         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
476         vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
477         cv_broadcast(&vd->vdev_trim_io_cv);
478         mutex_exit(&vd->vdev_trim_io_lock);
479
480         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
481 }
482 /*
483  * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
484  */
485 static uint64_t
486 vdev_trim_calculate_rate(trim_args_t *ta)
487 {
488         return (ta->trim_bytes_done * 1000 /
489             (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
490 }
491
492 /*
493  * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
494  * and number of concurrent TRIM I/Os.
495  */
496 static int
497 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
498 {
499         vdev_t *vd = ta->trim_vdev;
500         spa_t *spa = vd->vdev_spa;
501         void *cb;
502
503         mutex_enter(&vd->vdev_trim_io_lock);
504
505         /*
506          * Limit manual TRIM I/Os to the requested rate.  This does not
507          * apply to automatic TRIM since no per vdev rate can be specified.
508          */
509         if (ta->trim_type == TRIM_TYPE_MANUAL) {
510                 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
511                     vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
512                         cv_timedwait_idle(&vd->vdev_trim_io_cv,
513                             &vd->vdev_trim_io_lock, ddi_get_lbolt() +
514                             MSEC_TO_TICK(10));
515                 }
516         }
517         ta->trim_bytes_done += size;
518
519         /* Limit in flight trimming I/Os */
520         while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
521             vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
522                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
523         }
524         vd->vdev_trim_inflight[ta->trim_type]++;
525         mutex_exit(&vd->vdev_trim_io_lock);
526
527         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
528         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
529         uint64_t txg = dmu_tx_get_txg(tx);
530
531         spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
532         mutex_enter(&vd->vdev_trim_lock);
533
534         if (ta->trim_type == TRIM_TYPE_MANUAL &&
535             vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
536                 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
537                 *guid = vd->vdev_guid;
538
539                 /* This is the first write of this txg. */
540                 dsl_sync_task_nowait(spa_get_dsl(spa),
541                     vdev_trim_zap_update_sync, guid, tx);
542         }
543
544         /*
545          * We know the vdev_t will still be around since all consumers of
546          * vdev_free must stop the trimming first.
547          */
548         if ((ta->trim_type == TRIM_TYPE_MANUAL &&
549             vdev_trim_should_stop(vd)) ||
550             (ta->trim_type == TRIM_TYPE_AUTO &&
551             vdev_autotrim_should_stop(vd->vdev_top))) {
552                 mutex_enter(&vd->vdev_trim_io_lock);
553                 vd->vdev_trim_inflight[ta->trim_type]--;
554                 mutex_exit(&vd->vdev_trim_io_lock);
555                 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
556                 mutex_exit(&vd->vdev_trim_lock);
557                 dmu_tx_commit(tx);
558                 return (SET_ERROR(EINTR));
559         }
560         mutex_exit(&vd->vdev_trim_lock);
561
562         if (ta->trim_type == TRIM_TYPE_MANUAL)
563                 vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
564
565         if (ta->trim_type == TRIM_TYPE_MANUAL) {
566                 cb = vdev_trim_cb;
567         } else if (ta->trim_type == TRIM_TYPE_AUTO) {
568                 cb = vdev_autotrim_cb;
569         } else {
570                 cb = vdev_trim_simple_cb;
571         }
572
573         zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
574             start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
575             ta->trim_flags));
576         /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
577
578         dmu_tx_commit(tx);
579
580         return (0);
581 }
582
583 /*
584  * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
585  * Additional parameters describing how the TRIM should be performed must
586  * be set in the trim_args structure.  See the trim_args definition for
587  * additional information.
588  */
589 static int
590 vdev_trim_ranges(trim_args_t *ta)
591 {
592         vdev_t *vd = ta->trim_vdev;
593         zfs_btree_t *t = &ta->trim_tree->rt_root;
594         zfs_btree_index_t idx;
595         uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
596         uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
597         spa_t *spa = vd->vdev_spa;
598         int error = 0;
599
600         ta->trim_start_time = gethrtime();
601         ta->trim_bytes_done = 0;
602
603         for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
604             rs = zfs_btree_next(t, &idx, &idx)) {
605                 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
606                     ta->trim_tree);
607
608                 if (extent_bytes_min && size < extent_bytes_min) {
609                         spa_iostats_trim_add(spa, ta->trim_type,
610                             0, 0, 1, size, 0, 0);
611                         continue;
612                 }
613
614                 /* Split range into legally-sized physical chunks */
615                 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
616
617                 for (uint64_t w = 0; w < writes_required; w++) {
618                         error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
619                             rs_get_start(rs, ta->trim_tree) +
620                             (w *extent_bytes_max), MIN(size -
621                             (w * extent_bytes_max), extent_bytes_max));
622                         if (error != 0) {
623                                 goto done;
624                         }
625                 }
626         }
627
628 done:
629         /*
630          * Make sure all TRIMs for this metaslab have completed before
631          * returning. TRIM zios have lower priority over regular or syncing
632          * zios, so all TRIM zios for this metaslab must complete before the
633          * metaslab is re-enabled. Otherwise it's possible write zios to
634          * this metaslab could cut ahead of still queued TRIM zios for this
635          * metaslab causing corruption if the ranges overlap.
636          */
637         mutex_enter(&vd->vdev_trim_io_lock);
638         while (vd->vdev_trim_inflight[0] > 0) {
639                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
640         }
641         mutex_exit(&vd->vdev_trim_io_lock);
642
643         return (error);
644 }
645
646 static void
647 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
648 {
649         uint64_t *last_rs_end = (uint64_t *)arg;
650
651         if (physical_rs->rs_end > *last_rs_end)
652                 *last_rs_end = physical_rs->rs_end;
653 }
654
655 static void
656 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
657 {
658         vdev_t *vd = (vdev_t *)arg;
659
660         uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
661         vd->vdev_trim_bytes_est += size;
662
663         if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
664                 vd->vdev_trim_bytes_done += size;
665         } else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
666             vd->vdev_trim_last_offset <= physical_rs->rs_end) {
667                 vd->vdev_trim_bytes_done +=
668                     vd->vdev_trim_last_offset - physical_rs->rs_start;
669         }
670 }
671
672 /*
673  * Calculates the completion percentage of a manual TRIM.
674  */
675 static void
676 vdev_trim_calculate_progress(vdev_t *vd)
677 {
678         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
679             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
680         ASSERT(vd->vdev_leaf_zap != 0);
681
682         vd->vdev_trim_bytes_est = 0;
683         vd->vdev_trim_bytes_done = 0;
684
685         for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
686                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
687                 mutex_enter(&msp->ms_lock);
688
689                 uint64_t ms_free = (msp->ms_size -
690                     metaslab_allocated_space(msp)) /
691                     vdev_get_ndisks(vd->vdev_top);
692
693                 /*
694                  * Convert the metaslab range to a physical range
695                  * on our vdev. We use this to determine if we are
696                  * in the middle of this metaslab range.
697                  */
698                 range_seg64_t logical_rs, physical_rs, remain_rs;
699                 logical_rs.rs_start = msp->ms_start;
700                 logical_rs.rs_end = msp->ms_start + msp->ms_size;
701
702                 /* Metaslab space after this offset has not been trimmed. */
703                 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
704                 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
705                         vd->vdev_trim_bytes_est += ms_free;
706                         mutex_exit(&msp->ms_lock);
707                         continue;
708                 }
709
710                 /* Metaslab space before this offset has been trimmed */
711                 uint64_t last_rs_end = physical_rs.rs_end;
712                 if (!vdev_xlate_is_empty(&remain_rs)) {
713                         vdev_xlate_walk(vd, &remain_rs,
714                             vdev_trim_xlate_last_rs_end, &last_rs_end);
715                 }
716
717                 if (vd->vdev_trim_last_offset > last_rs_end) {
718                         vd->vdev_trim_bytes_done += ms_free;
719                         vd->vdev_trim_bytes_est += ms_free;
720                         mutex_exit(&msp->ms_lock);
721                         continue;
722                 }
723
724                 /*
725                  * If we get here, we're in the middle of trimming this
726                  * metaslab.  Load it and walk the free tree for more
727                  * accurate progress estimation.
728                  */
729                 VERIFY0(metaslab_load(msp));
730
731                 range_tree_t *rt = msp->ms_allocatable;
732                 zfs_btree_t *bt = &rt->rt_root;
733                 zfs_btree_index_t idx;
734                 for (range_seg_t *rs = zfs_btree_first(bt, &idx);
735                     rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
736                         logical_rs.rs_start = rs_get_start(rs, rt);
737                         logical_rs.rs_end = rs_get_end(rs, rt);
738
739                         vdev_xlate_walk(vd, &logical_rs,
740                             vdev_trim_xlate_progress, vd);
741                 }
742                 mutex_exit(&msp->ms_lock);
743         }
744 }
745
746 /*
747  * Load from disk the vdev's manual TRIM information.  This includes the
748  * state, progress, and options provided when initiating the manual TRIM.
749  */
750 static int
751 vdev_trim_load(vdev_t *vd)
752 {
753         int err = 0;
754         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
755             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
756         ASSERT(vd->vdev_leaf_zap != 0);
757
758         if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
759             vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
760                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
761                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
762                     sizeof (vd->vdev_trim_last_offset), 1,
763                     &vd->vdev_trim_last_offset);
764                 if (err == ENOENT) {
765                         vd->vdev_trim_last_offset = 0;
766                         err = 0;
767                 }
768
769                 if (err == 0) {
770                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
771                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
772                             sizeof (vd->vdev_trim_rate), 1,
773                             &vd->vdev_trim_rate);
774                         if (err == ENOENT) {
775                                 vd->vdev_trim_rate = 0;
776                                 err = 0;
777                         }
778                 }
779
780                 if (err == 0) {
781                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
782                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
783                             sizeof (vd->vdev_trim_partial), 1,
784                             &vd->vdev_trim_partial);
785                         if (err == ENOENT) {
786                                 vd->vdev_trim_partial = 0;
787                                 err = 0;
788                         }
789                 }
790
791                 if (err == 0) {
792                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
793                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
794                             sizeof (vd->vdev_trim_secure), 1,
795                             &vd->vdev_trim_secure);
796                         if (err == ENOENT) {
797                                 vd->vdev_trim_secure = 0;
798                                 err = 0;
799                         }
800                 }
801         }
802
803         vdev_trim_calculate_progress(vd);
804
805         return (err);
806 }
807
808 static void
809 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
810 {
811         trim_args_t *ta = arg;
812         vdev_t *vd = ta->trim_vdev;
813
814         /*
815          * Only a manual trim will be traversing the vdev sequentially.
816          * For an auto trim all valid ranges should be added.
817          */
818         if (ta->trim_type == TRIM_TYPE_MANUAL) {
819
820                 /* Only add segments that we have not visited yet */
821                 if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
822                         return;
823
824                 /* Pick up where we left off mid-range. */
825                 if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
826                         ASSERT3U(physical_rs->rs_end, >,
827                             vd->vdev_trim_last_offset);
828                         physical_rs->rs_start = vd->vdev_trim_last_offset;
829                 }
830         }
831
832         ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
833
834         range_tree_add(ta->trim_tree, physical_rs->rs_start,
835             physical_rs->rs_end - physical_rs->rs_start);
836 }
837
838 /*
839  * Convert the logical range into physical ranges and add them to the
840  * range tree passed in the trim_args_t.
841  */
842 static void
843 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
844 {
845         trim_args_t *ta = arg;
846         vdev_t *vd = ta->trim_vdev;
847         range_seg64_t logical_rs;
848         logical_rs.rs_start = start;
849         logical_rs.rs_end = start + size;
850
851         /*
852          * Every range to be trimmed must be part of ms_allocatable.
853          * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
854          * is always the case.
855          */
856         if (zfs_flags & ZFS_DEBUG_TRIM) {
857                 metaslab_t *msp = ta->trim_msp;
858                 VERIFY0(metaslab_load(msp));
859                 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
860                 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
861         }
862
863         ASSERT(vd->vdev_ops->vdev_op_leaf);
864         vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
865 }
866
867 /*
868  * Each manual TRIM thread is responsible for trimming the unallocated
869  * space for each leaf vdev.  This is accomplished by sequentially iterating
870  * over its top-level metaslabs and issuing TRIM I/O for the space described
871  * by its ms_allocatable.  While a metaslab is undergoing trimming it is
872  * not eligible for new allocations.
873  */
874 static __attribute__((noreturn)) void
875 vdev_trim_thread(void *arg)
876 {
877         vdev_t *vd = arg;
878         spa_t *spa = vd->vdev_spa;
879         trim_args_t ta;
880         int error = 0;
881
882         /*
883          * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
884          * vdev_trim().  Wait for the updated values to be reflected
885          * in the zap in order to start with the requested settings.
886          */
887         txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
888
889         ASSERT(vdev_is_concrete(vd));
890         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
891
892         vd->vdev_trim_last_offset = 0;
893         vd->vdev_trim_rate = 0;
894         vd->vdev_trim_partial = 0;
895         vd->vdev_trim_secure = 0;
896
897         VERIFY0(vdev_trim_load(vd));
898
899         ta.trim_vdev = vd;
900         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
901         ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
902         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
903         ta.trim_type = TRIM_TYPE_MANUAL;
904         ta.trim_flags = 0;
905
906         /*
907          * When a secure TRIM has been requested infer that the intent
908          * is that everything must be trimmed.  Override the default
909          * minimum TRIM size to prevent ranges from being skipped.
910          */
911         if (vd->vdev_trim_secure) {
912                 ta.trim_flags |= ZIO_TRIM_SECURE;
913                 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
914         }
915
916         uint64_t ms_count = 0;
917         for (uint64_t i = 0; !vd->vdev_detached &&
918             i < vd->vdev_top->vdev_ms_count; i++) {
919                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
920
921                 /*
922                  * If we've expanded the top-level vdev or it's our
923                  * first pass, calculate our progress.
924                  */
925                 if (vd->vdev_top->vdev_ms_count != ms_count) {
926                         vdev_trim_calculate_progress(vd);
927                         ms_count = vd->vdev_top->vdev_ms_count;
928                 }
929
930                 spa_config_exit(spa, SCL_CONFIG, FTAG);
931                 metaslab_disable(msp);
932                 mutex_enter(&msp->ms_lock);
933                 VERIFY0(metaslab_load(msp));
934
935                 /*
936                  * If a partial TRIM was requested skip metaslabs which have
937                  * never been initialized and thus have never been written.
938                  */
939                 if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
940                         mutex_exit(&msp->ms_lock);
941                         metaslab_enable(msp, B_FALSE, B_FALSE);
942                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
943                         vdev_trim_calculate_progress(vd);
944                         continue;
945                 }
946
947                 ta.trim_msp = msp;
948                 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
949                 range_tree_vacate(msp->ms_trim, NULL, NULL);
950                 mutex_exit(&msp->ms_lock);
951
952                 error = vdev_trim_ranges(&ta);
953                 metaslab_enable(msp, B_TRUE, B_FALSE);
954                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
955
956                 range_tree_vacate(ta.trim_tree, NULL, NULL);
957                 if (error != 0)
958                         break;
959         }
960
961         spa_config_exit(spa, SCL_CONFIG, FTAG);
962
963         range_tree_destroy(ta.trim_tree);
964
965         mutex_enter(&vd->vdev_trim_lock);
966         if (!vd->vdev_trim_exit_wanted) {
967                 if (vdev_writeable(vd)) {
968                         vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
969                             vd->vdev_trim_rate, vd->vdev_trim_partial,
970                             vd->vdev_trim_secure);
971                 } else if (vd->vdev_faulted) {
972                         vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
973                             vd->vdev_trim_rate, vd->vdev_trim_partial,
974                             vd->vdev_trim_secure);
975                 }
976         }
977         ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
978
979         /*
980          * Drop the vdev_trim_lock while we sync out the txg since it's
981          * possible that a device might be trying to come online and must
982          * check to see if it needs to restart a trim. That thread will be
983          * holding the spa_config_lock which would prevent the txg_wait_synced
984          * from completing.
985          */
986         mutex_exit(&vd->vdev_trim_lock);
987         txg_wait_synced(spa_get_dsl(spa), 0);
988         mutex_enter(&vd->vdev_trim_lock);
989
990         vd->vdev_trim_thread = NULL;
991         cv_broadcast(&vd->vdev_trim_cv);
992         mutex_exit(&vd->vdev_trim_lock);
993
994         thread_exit();
995 }
996
997 /*
998  * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
999  * the vdev_t must be a leaf and cannot already be manually trimming.
1000  */
1001 void
1002 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
1003 {
1004         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1005         ASSERT(vd->vdev_ops->vdev_op_leaf);
1006         ASSERT(vdev_is_concrete(vd));
1007         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1008         ASSERT(!vd->vdev_detached);
1009         ASSERT(!vd->vdev_trim_exit_wanted);
1010         ASSERT(!vd->vdev_top->vdev_removing);
1011         ASSERT(!vd->vdev_rz_expanding);
1012
1013         vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
1014         vd->vdev_trim_thread = thread_create(NULL, 0,
1015             vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1016 }
1017
1018 /*
1019  * Wait for the trimming thread to be terminated (canceled or stopped).
1020  */
1021 static void
1022 vdev_trim_stop_wait_impl(vdev_t *vd)
1023 {
1024         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1025
1026         while (vd->vdev_trim_thread != NULL)
1027                 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
1028
1029         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1030         vd->vdev_trim_exit_wanted = B_FALSE;
1031 }
1032
1033 /*
1034  * Wait for vdev trim threads which were listed to cleanly exit.
1035  */
1036 void
1037 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1038 {
1039         (void) spa;
1040         vdev_t *vd;
1041
1042         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1043
1044         while ((vd = list_remove_head(vd_list)) != NULL) {
1045                 mutex_enter(&vd->vdev_trim_lock);
1046                 vdev_trim_stop_wait_impl(vd);
1047                 mutex_exit(&vd->vdev_trim_lock);
1048         }
1049 }
1050
1051 /*
1052  * Stop trimming a device, with the resultant trimming state being tgt_state.
1053  * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
1054  * provided the stopping vdev is inserted in to the list.  Callers are then
1055  * required to call vdev_trim_stop_wait() to block for all the trim threads
1056  * to exit.  The caller must hold vdev_trim_lock and must not be writing to
1057  * the spa config, as the trimming thread may try to enter the config as a
1058  * reader before exiting.
1059  */
1060 void
1061 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1062 {
1063         ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1064         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1065         ASSERT(vd->vdev_ops->vdev_op_leaf);
1066         ASSERT(vdev_is_concrete(vd));
1067
1068         /*
1069          * Allow cancel requests to proceed even if the trim thread has
1070          * stopped.
1071          */
1072         if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1073                 return;
1074
1075         vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1076         vd->vdev_trim_exit_wanted = B_TRUE;
1077
1078         if (vd_list == NULL) {
1079                 vdev_trim_stop_wait_impl(vd);
1080         } else {
1081                 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1082                 list_insert_tail(vd_list, vd);
1083         }
1084 }
1085
1086 /*
1087  * Requests that all listed vdevs stop trimming.
1088  */
1089 static void
1090 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1091     list_t *vd_list)
1092 {
1093         if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1094                 mutex_enter(&vd->vdev_trim_lock);
1095                 vdev_trim_stop(vd, tgt_state, vd_list);
1096                 mutex_exit(&vd->vdev_trim_lock);
1097                 return;
1098         }
1099
1100         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1101                 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1102                     vd_list);
1103         }
1104 }
1105
1106 /*
1107  * Convenience function to stop trimming of a vdev tree and set all trim
1108  * thread pointers to NULL.
1109  */
1110 void
1111 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1112 {
1113         spa_t *spa = vd->vdev_spa;
1114         list_t vd_list;
1115         vdev_t *vd_l2cache;
1116
1117         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1118
1119         list_create(&vd_list, sizeof (vdev_t),
1120             offsetof(vdev_t, vdev_trim_node));
1121
1122         vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1123
1124         /*
1125          * Iterate over cache devices and request stop trimming the
1126          * whole device in case we export the pool or remove the cache
1127          * device prematurely.
1128          */
1129         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1130                 vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1131                 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1132         }
1133
1134         vdev_trim_stop_wait(spa, &vd_list);
1135
1136         if (vd->vdev_spa->spa_sync_on) {
1137                 /* Make sure that our state has been synced to disk */
1138                 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1139         }
1140
1141         list_destroy(&vd_list);
1142 }
1143
1144 /*
1145  * Conditionally restarts a manual TRIM given its on-disk state.
1146  */
1147 void
1148 vdev_trim_restart(vdev_t *vd)
1149 {
1150         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1151         ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1152
1153         if (vd->vdev_leaf_zap != 0) {
1154                 mutex_enter(&vd->vdev_trim_lock);
1155                 uint64_t trim_state = VDEV_TRIM_NONE;
1156                 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1157                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1158                     sizeof (trim_state), 1, &trim_state);
1159                 ASSERT(err == 0 || err == ENOENT);
1160                 vd->vdev_trim_state = trim_state;
1161
1162                 uint64_t timestamp = 0;
1163                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1164                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1165                     sizeof (timestamp), 1, &timestamp);
1166                 ASSERT(err == 0 || err == ENOENT);
1167                 vd->vdev_trim_action_time = timestamp;
1168
1169                 if ((vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1170                     vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) {
1171                         /* load progress for reporting, but don't resume */
1172                         VERIFY0(vdev_trim_load(vd));
1173                 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1174                     vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1175                     !vd->vdev_top->vdev_rz_expanding &&
1176                     vd->vdev_trim_thread == NULL) {
1177                         VERIFY0(vdev_trim_load(vd));
1178                         vdev_trim(vd, vd->vdev_trim_rate,
1179                             vd->vdev_trim_partial, vd->vdev_trim_secure);
1180                 }
1181
1182                 mutex_exit(&vd->vdev_trim_lock);
1183         }
1184
1185         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1186                 vdev_trim_restart(vd->vdev_child[i]);
1187         }
1188 }
1189
1190 /*
1191  * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1192  * every TRIM range is contained within ms_allocatable.
1193  */
1194 static void
1195 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1196 {
1197         trim_args_t *ta = arg;
1198         metaslab_t *msp = ta->trim_msp;
1199
1200         VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1201         VERIFY3U(msp->ms_disabled, >, 0);
1202         VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1203 }
1204
1205 /*
1206  * Each automatic TRIM thread is responsible for managing the trimming of a
1207  * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
1208  *
1209  * N.B. This behavior is different from a manual TRIM where a thread
1210  * is created for each leaf vdev, instead of each top-level vdev.
1211  */
1212 static __attribute__((noreturn)) void
1213 vdev_autotrim_thread(void *arg)
1214 {
1215         vdev_t *vd = arg;
1216         spa_t *spa = vd->vdev_spa;
1217         int shift = 0;
1218
1219         mutex_enter(&vd->vdev_autotrim_lock);
1220         ASSERT3P(vd->vdev_top, ==, vd);
1221         ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1222         mutex_exit(&vd->vdev_autotrim_lock);
1223         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1224
1225         while (!vdev_autotrim_should_stop(vd)) {
1226                 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1227                 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1228                 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1229
1230                 /*
1231                  * All of the metaslabs are divided in to groups of size
1232                  * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
1233                  * is composed of metaslabs which are spread evenly over the
1234                  * device.
1235                  *
1236                  * For example, when zfs_trim_txg_batch = 32 (default) then
1237                  * group 0 will contain metaslabs 0, 32, 64, ...;
1238                  * group 1 will contain metaslabs 1, 33, 65, ...;
1239                  * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1240                  *
1241                  * On each pass through the while() loop one of these groups
1242                  * is selected.  This is accomplished by using a shift value
1243                  * to select the starting metaslab, then striding over the
1244                  * metaslabs using the zfs_trim_txg_batch size.  This is
1245                  * done to accomplish two things.
1246                  *
1247                  * 1) By dividing the metaslabs in to groups, and making sure
1248                  *    that each group takes a minimum of one txg to process.
1249                  *    Then zfs_trim_txg_batch controls the minimum number of
1250                  *    txgs which must occur before a metaslab is revisited.
1251                  *
1252                  * 2) Selecting non-consecutive metaslabs distributes the
1253                  *    TRIM commands for a group evenly over the entire device.
1254                  *    This can be advantageous for certain types of devices.
1255                  */
1256                 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1257                     i += txgs_per_trim) {
1258                         metaslab_t *msp = vd->vdev_ms[i];
1259                         range_tree_t *trim_tree;
1260                         boolean_t issued_trim = B_FALSE;
1261                         boolean_t wait_aborted = B_FALSE;
1262
1263                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1264                         metaslab_disable(msp);
1265                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1266
1267                         mutex_enter(&msp->ms_lock);
1268
1269                         /*
1270                          * Skip the metaslab when it has never been allocated
1271                          * or when there are no recent frees to trim.
1272                          */
1273                         if (msp->ms_sm == NULL ||
1274                             range_tree_is_empty(msp->ms_trim)) {
1275                                 mutex_exit(&msp->ms_lock);
1276                                 metaslab_enable(msp, B_FALSE, B_FALSE);
1277                                 continue;
1278                         }
1279
1280                         /*
1281                          * Skip the metaslab when it has already been disabled.
1282                          * This may happen when a manual TRIM or initialize
1283                          * operation is running concurrently.  In the case
1284                          * of a manual TRIM, the ms_trim tree will have been
1285                          * vacated.  Only ranges added after the manual TRIM
1286                          * disabled the metaslab will be included in the tree.
1287                          * These will be processed when the automatic TRIM
1288                          * next revisits this metaslab.
1289                          */
1290                         if (msp->ms_disabled > 1) {
1291                                 mutex_exit(&msp->ms_lock);
1292                                 metaslab_enable(msp, B_FALSE, B_FALSE);
1293                                 continue;
1294                         }
1295
1296                         /*
1297                          * Allocate an empty range tree which is swapped in
1298                          * for the existing ms_trim tree while it is processed.
1299                          */
1300                         trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1301                             0, 0);
1302                         range_tree_swap(&msp->ms_trim, &trim_tree);
1303                         ASSERT(range_tree_is_empty(msp->ms_trim));
1304
1305                         /*
1306                          * There are two cases when constructing the per-vdev
1307                          * trim trees for a metaslab.  If the top-level vdev
1308                          * has no children then it is also a leaf and should
1309                          * be trimmed.  Otherwise our children are the leaves
1310                          * and a trim tree should be constructed for each.
1311                          */
1312                         trim_args_t *tap;
1313                         uint64_t children = vd->vdev_children;
1314                         if (children == 0) {
1315                                 children = 1;
1316                                 tap = kmem_zalloc(sizeof (trim_args_t) *
1317                                     children, KM_SLEEP);
1318                                 tap[0].trim_vdev = vd;
1319                         } else {
1320                                 tap = kmem_zalloc(sizeof (trim_args_t) *
1321                                     children, KM_SLEEP);
1322
1323                                 for (uint64_t c = 0; c < children; c++) {
1324                                         tap[c].trim_vdev = vd->vdev_child[c];
1325                                 }
1326                         }
1327
1328                         for (uint64_t c = 0; c < children; c++) {
1329                                 trim_args_t *ta = &tap[c];
1330                                 vdev_t *cvd = ta->trim_vdev;
1331
1332                                 ta->trim_msp = msp;
1333                                 ta->trim_extent_bytes_max = extent_bytes_max;
1334                                 ta->trim_extent_bytes_min = extent_bytes_min;
1335                                 ta->trim_type = TRIM_TYPE_AUTO;
1336                                 ta->trim_flags = 0;
1337
1338                                 if (cvd->vdev_detached ||
1339                                     !vdev_writeable(cvd) ||
1340                                     !cvd->vdev_has_trim ||
1341                                     cvd->vdev_trim_thread != NULL) {
1342                                         continue;
1343                                 }
1344
1345                                 /*
1346                                  * When a device has an attached hot spare, or
1347                                  * is being replaced it will not be trimmed.
1348                                  * This is done to avoid adding additional
1349                                  * stress to a potentially unhealthy device,
1350                                  * and to minimize the required rebuild time.
1351                                  */
1352                                 if (!cvd->vdev_ops->vdev_op_leaf)
1353                                         continue;
1354
1355                                 ta->trim_tree = range_tree_create(NULL,
1356                                     RANGE_SEG64, NULL, 0, 0);
1357                                 range_tree_walk(trim_tree,
1358                                     vdev_trim_range_add, ta);
1359                         }
1360
1361                         mutex_exit(&msp->ms_lock);
1362                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1363
1364                         /*
1365                          * Issue the TRIM I/Os for all ranges covered by the
1366                          * TRIM trees.  These ranges are safe to TRIM because
1367                          * no new allocations will be performed until the call
1368                          * to metaslab_enabled() below.
1369                          */
1370                         for (uint64_t c = 0; c < children; c++) {
1371                                 trim_args_t *ta = &tap[c];
1372
1373                                 /*
1374                                  * Always yield to a manual TRIM if one has
1375                                  * been started for the child vdev.
1376                                  */
1377                                 if (ta->trim_tree == NULL ||
1378                                     ta->trim_vdev->vdev_trim_thread != NULL) {
1379                                         continue;
1380                                 }
1381
1382                                 /*
1383                                  * After this point metaslab_enable() must be
1384                                  * called with the sync flag set.  This is done
1385                                  * here because vdev_trim_ranges() is allowed
1386                                  * to be interrupted (EINTR) before issuing all
1387                                  * of the required TRIM I/Os.
1388                                  */
1389                                 issued_trim = B_TRUE;
1390
1391                                 int error = vdev_trim_ranges(ta);
1392                                 if (error)
1393                                         break;
1394                         }
1395
1396                         /*
1397                          * Verify every range which was trimmed is still
1398                          * contained within the ms_allocatable tree.
1399                          */
1400                         if (zfs_flags & ZFS_DEBUG_TRIM) {
1401                                 mutex_enter(&msp->ms_lock);
1402                                 VERIFY0(metaslab_load(msp));
1403                                 VERIFY3P(tap[0].trim_msp, ==, msp);
1404                                 range_tree_walk(trim_tree,
1405                                     vdev_trim_range_verify, &tap[0]);
1406                                 mutex_exit(&msp->ms_lock);
1407                         }
1408
1409                         range_tree_vacate(trim_tree, NULL, NULL);
1410                         range_tree_destroy(trim_tree);
1411
1412                         /*
1413                          * Wait for couples of kicks, to ensure the trim io is
1414                          * synced. If the wait is aborted due to
1415                          * vdev_autotrim_exit_wanted, we need to signal
1416                          * metaslab_enable() to wait for sync.
1417                          */
1418                         if (issued_trim) {
1419                                 wait_aborted = vdev_autotrim_wait_kick(vd,
1420                                     TXG_CONCURRENT_STATES + TXG_DEFER_SIZE);
1421                         }
1422
1423                         metaslab_enable(msp, wait_aborted, B_FALSE);
1424                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1425
1426                         for (uint64_t c = 0; c < children; c++) {
1427                                 trim_args_t *ta = &tap[c];
1428
1429                                 if (ta->trim_tree == NULL)
1430                                         continue;
1431
1432                                 range_tree_vacate(ta->trim_tree, NULL, NULL);
1433                                 range_tree_destroy(ta->trim_tree);
1434                         }
1435
1436                         kmem_free(tap, sizeof (trim_args_t) * children);
1437
1438                         if (vdev_autotrim_should_stop(vd))
1439                                 break;
1440                 }
1441
1442                 spa_config_exit(spa, SCL_CONFIG, FTAG);
1443
1444                 vdev_autotrim_wait_kick(vd, 1);
1445
1446                 shift++;
1447                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1448         }
1449
1450         for (uint64_t c = 0; c < vd->vdev_children; c++) {
1451                 vdev_t *cvd = vd->vdev_child[c];
1452                 mutex_enter(&cvd->vdev_trim_io_lock);
1453
1454                 while (cvd->vdev_trim_inflight[1] > 0) {
1455                         cv_wait(&cvd->vdev_trim_io_cv,
1456                             &cvd->vdev_trim_io_lock);
1457                 }
1458                 mutex_exit(&cvd->vdev_trim_io_lock);
1459         }
1460
1461         spa_config_exit(spa, SCL_CONFIG, FTAG);
1462
1463         /*
1464          * When exiting because the autotrim property was set to off, then
1465          * abandon any unprocessed ms_trim ranges to reclaim the memory.
1466          */
1467         if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1468                 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1469                         metaslab_t *msp = vd->vdev_ms[i];
1470
1471                         mutex_enter(&msp->ms_lock);
1472                         range_tree_vacate(msp->ms_trim, NULL, NULL);
1473                         mutex_exit(&msp->ms_lock);
1474                 }
1475         }
1476
1477         mutex_enter(&vd->vdev_autotrim_lock);
1478         ASSERT(vd->vdev_autotrim_thread != NULL);
1479         vd->vdev_autotrim_thread = NULL;
1480         cv_broadcast(&vd->vdev_autotrim_cv);
1481         mutex_exit(&vd->vdev_autotrim_lock);
1482
1483         thread_exit();
1484 }
1485
1486 /*
1487  * Starts an autotrim thread, if needed, for each top-level vdev which can be
1488  * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
1489  */
1490 void
1491 vdev_autotrim(spa_t *spa)
1492 {
1493         vdev_t *root_vd = spa->spa_root_vdev;
1494
1495         for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1496                 vdev_t *tvd = root_vd->vdev_child[i];
1497
1498                 mutex_enter(&tvd->vdev_autotrim_lock);
1499                 if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1500                     tvd->vdev_autotrim_thread == NULL &&
1501                     !tvd->vdev_rz_expanding) {
1502                         ASSERT3P(tvd->vdev_top, ==, tvd);
1503
1504                         tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1505                             vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1506                             maxclsyspri);
1507                         ASSERT(tvd->vdev_autotrim_thread != NULL);
1508                 }
1509                 mutex_exit(&tvd->vdev_autotrim_lock);
1510         }
1511 }
1512
1513 /*
1514  * Wait for the vdev_autotrim_thread associated with the passed top-level
1515  * vdev to be terminated (canceled or stopped).
1516  */
1517 void
1518 vdev_autotrim_stop_wait(vdev_t *tvd)
1519 {
1520         mutex_enter(&tvd->vdev_autotrim_lock);
1521         if (tvd->vdev_autotrim_thread != NULL) {
1522                 tvd->vdev_autotrim_exit_wanted = B_TRUE;
1523                 cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1524                 cv_wait(&tvd->vdev_autotrim_cv,
1525                     &tvd->vdev_autotrim_lock);
1526
1527                 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1528                 tvd->vdev_autotrim_exit_wanted = B_FALSE;
1529         }
1530         mutex_exit(&tvd->vdev_autotrim_lock);
1531 }
1532
1533 void
1534 vdev_autotrim_kick(spa_t *spa)
1535 {
1536         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1537
1538         vdev_t *root_vd = spa->spa_root_vdev;
1539         vdev_t *tvd;
1540
1541         for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1542                 tvd = root_vd->vdev_child[i];
1543
1544                 mutex_enter(&tvd->vdev_autotrim_lock);
1545                 if (tvd->vdev_autotrim_thread != NULL)
1546                         cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1547                 mutex_exit(&tvd->vdev_autotrim_lock);
1548         }
1549 }
1550
1551 /*
1552  * Wait for all of the vdev_autotrim_thread associated with the pool to
1553  * be terminated (canceled or stopped).
1554  */
1555 void
1556 vdev_autotrim_stop_all(spa_t *spa)
1557 {
1558         vdev_t *root_vd = spa->spa_root_vdev;
1559
1560         for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1561                 vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1562 }
1563
1564 /*
1565  * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1566  */
1567 void
1568 vdev_autotrim_restart(spa_t *spa)
1569 {
1570         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1571
1572         if (spa->spa_autotrim)
1573                 vdev_autotrim(spa);
1574 }
1575
1576 static __attribute__((noreturn)) void
1577 vdev_trim_l2arc_thread(void *arg)
1578 {
1579         vdev_t          *vd = arg;
1580         spa_t           *spa = vd->vdev_spa;
1581         l2arc_dev_t     *dev = l2arc_vdev_get(vd);
1582         trim_args_t     ta = {0};
1583         range_seg64_t   physical_rs;
1584
1585         ASSERT(vdev_is_concrete(vd));
1586         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1587
1588         vd->vdev_trim_last_offset = 0;
1589         vd->vdev_trim_rate = 0;
1590         vd->vdev_trim_partial = 0;
1591         vd->vdev_trim_secure = 0;
1592
1593         ta.trim_vdev = vd;
1594         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1595         ta.trim_type = TRIM_TYPE_MANUAL;
1596         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1597         ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1598         ta.trim_flags = 0;
1599
1600         physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1601         physical_rs.rs_end = vd->vdev_trim_bytes_est =
1602             vdev_get_min_asize(vd);
1603
1604         range_tree_add(ta.trim_tree, physical_rs.rs_start,
1605             physical_rs.rs_end - physical_rs.rs_start);
1606
1607         mutex_enter(&vd->vdev_trim_lock);
1608         vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1609         mutex_exit(&vd->vdev_trim_lock);
1610
1611         (void) vdev_trim_ranges(&ta);
1612
1613         spa_config_exit(spa, SCL_CONFIG, FTAG);
1614         mutex_enter(&vd->vdev_trim_io_lock);
1615         while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1616                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1617         }
1618         mutex_exit(&vd->vdev_trim_io_lock);
1619
1620         range_tree_vacate(ta.trim_tree, NULL, NULL);
1621         range_tree_destroy(ta.trim_tree);
1622
1623         mutex_enter(&vd->vdev_trim_lock);
1624         if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1625                 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1626                     vd->vdev_trim_rate, vd->vdev_trim_partial,
1627                     vd->vdev_trim_secure);
1628         }
1629         ASSERT(vd->vdev_trim_thread != NULL ||
1630             vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1631
1632         /*
1633          * Drop the vdev_trim_lock while we sync out the txg since it's
1634          * possible that a device might be trying to come online and
1635          * must check to see if it needs to restart a trim. That thread
1636          * will be holding the spa_config_lock which would prevent the
1637          * txg_wait_synced from completing. Same strategy as in
1638          * vdev_trim_thread().
1639          */
1640         mutex_exit(&vd->vdev_trim_lock);
1641         txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1642         mutex_enter(&vd->vdev_trim_lock);
1643
1644         /*
1645          * Update the header of the cache device here, before
1646          * broadcasting vdev_trim_cv which may lead to the removal
1647          * of the device. The same applies for setting l2ad_trim_all to
1648          * false.
1649          */
1650         spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1651             RW_READER);
1652         memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize);
1653         l2arc_dev_hdr_update(dev);
1654         spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1655
1656         vd->vdev_trim_thread = NULL;
1657         if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1658                 dev->l2ad_trim_all = B_FALSE;
1659
1660         cv_broadcast(&vd->vdev_trim_cv);
1661         mutex_exit(&vd->vdev_trim_lock);
1662
1663         thread_exit();
1664 }
1665
1666 /*
1667  * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1668  * to vd->vdev_trim_thread variable. This facilitates the management of
1669  * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1670  * to a pool or pool creation or when the header of the device is invalid.
1671  */
1672 void
1673 vdev_trim_l2arc(spa_t *spa)
1674 {
1675         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1676
1677         /*
1678          * Locate the spa's l2arc devices and kick off TRIM threads.
1679          */
1680         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1681                 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1682                 l2arc_dev_t *dev = l2arc_vdev_get(vd);
1683
1684                 if (dev == NULL || !dev->l2ad_trim_all) {
1685                         /*
1686                          * Don't attempt TRIM if the vdev is UNAVAIL or if the
1687                          * cache device was not marked for whole device TRIM
1688                          * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1689                          * is valid with trim_state = VDEV_TRIM_COMPLETE and
1690                          * l2ad_log_entries > 0).
1691                          */
1692                         continue;
1693                 }
1694
1695                 mutex_enter(&vd->vdev_trim_lock);
1696                 ASSERT(vd->vdev_ops->vdev_op_leaf);
1697                 ASSERT(vdev_is_concrete(vd));
1698                 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1699                 ASSERT(!vd->vdev_detached);
1700                 ASSERT(!vd->vdev_trim_exit_wanted);
1701                 ASSERT(!vd->vdev_top->vdev_removing);
1702                 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1703                 vd->vdev_trim_thread = thread_create(NULL, 0,
1704                     vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1705                 mutex_exit(&vd->vdev_trim_lock);
1706         }
1707 }
1708
1709 /*
1710  * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1711  * on leaf vdevs.
1712  */
1713 int
1714 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1715 {
1716         trim_args_t ta = {0};
1717         range_seg64_t physical_rs;
1718         int error;
1719         physical_rs.rs_start = start;
1720         physical_rs.rs_end = start + size;
1721
1722         ASSERT(vdev_is_concrete(vd));
1723         ASSERT(vd->vdev_ops->vdev_op_leaf);
1724         ASSERT(!vd->vdev_detached);
1725         ASSERT(!vd->vdev_top->vdev_removing);
1726         ASSERT(!vd->vdev_top->vdev_rz_expanding);
1727
1728         ta.trim_vdev = vd;
1729         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1730         ta.trim_type = TRIM_TYPE_SIMPLE;
1731         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1732         ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1733         ta.trim_flags = 0;
1734
1735         ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1736
1737         if (physical_rs.rs_end > physical_rs.rs_start) {
1738                 range_tree_add(ta.trim_tree, physical_rs.rs_start,
1739                     physical_rs.rs_end - physical_rs.rs_start);
1740         } else {
1741                 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1742         }
1743
1744         error = vdev_trim_ranges(&ta);
1745
1746         mutex_enter(&vd->vdev_trim_io_lock);
1747         while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1748                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1749         }
1750         mutex_exit(&vd->vdev_trim_io_lock);
1751
1752         range_tree_vacate(ta.trim_tree, NULL, NULL);
1753         range_tree_destroy(ta.trim_tree);
1754
1755         return (error);
1756 }
1757
1758 EXPORT_SYMBOL(vdev_trim);
1759 EXPORT_SYMBOL(vdev_trim_stop);
1760 EXPORT_SYMBOL(vdev_trim_stop_all);
1761 EXPORT_SYMBOL(vdev_trim_stop_wait);
1762 EXPORT_SYMBOL(vdev_trim_restart);
1763 EXPORT_SYMBOL(vdev_autotrim);
1764 EXPORT_SYMBOL(vdev_autotrim_stop_all);
1765 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1766 EXPORT_SYMBOL(vdev_autotrim_restart);
1767 EXPORT_SYMBOL(vdev_trim_l2arc);
1768 EXPORT_SYMBOL(vdev_trim_simple);
1769
1770 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1771         "Max size of TRIM commands, larger will be split");
1772
1773 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1774         "Min size of TRIM commands, smaller will be skipped");
1775
1776 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1777         "Skip metaslabs which have never been initialized");
1778
1779 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1780         "Min number of txgs to aggregate frees before issuing TRIM");
1781
1782 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1783         "Max queued TRIMs outstanding per leaf vdev");