]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/vdev_trim.c
zfs: merge openzfs/zfs@41e55b476
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / vdev_trim.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25  * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26  * Copyright 2023 RackTop Systems, Inc.
27  */
28
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/txg.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/zap.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/arc_impl.h>
39
40 /*
41  * TRIM is a feature which is used to notify a SSD that some previously
42  * written space is no longer allocated by the pool.  This is useful because
43  * writes to a SSD must be performed to blocks which have first been erased.
44  * Ensuring the SSD always has a supply of erased blocks for new writes
45  * helps prevent the performance from deteriorating.
46  *
47  * There are two supported TRIM methods; manual and automatic.
48  *
49  * Manual TRIM:
50  *
51  * A manual TRIM is initiated by running the 'zpool trim' command.  A single
52  * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
53  * managing that vdev TRIM process.  This involves iterating over all the
54  * metaslabs, calculating the unallocated space ranges, and then issuing the
55  * required TRIM I/Os.
56  *
57  * While a metaslab is being actively trimmed it is not eligible to perform
58  * new allocations.  After traversing all of the metaslabs the thread is
59  * terminated.  Finally, both the requested options and current progress of
60  * the TRIM are regularly written to the pool.  This allows the TRIM to be
61  * suspended and resumed as needed.
62  *
63  * Automatic TRIM:
64  *
65  * An automatic TRIM is enabled by setting the 'autotrim' pool property
66  * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
67  * top-level (not leaf) vdev in the pool.  These threads perform the same
68  * core TRIM process as a manual TRIM, but with a few key differences.
69  *
70  * 1) Automatic TRIM happens continuously in the background and operates
71  *    solely on recently freed blocks (ms_trim not ms_allocatable).
72  *
73  * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
74  *    the benefit of simplifying the threading model, it makes it easier
75  *    to coordinate administrative commands, and it ensures only a single
76  *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
77  *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
78  *    children.
79  *
80  * 3) There is no automatic TRIM progress information stored on disk, nor
81  *    is it reported by 'zpool status'.
82  *
83  * While the automatic TRIM process is highly effective it is more likely
84  * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
85  * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
86  * TRIM and are skipped.  This means small amounts of freed space may not
87  * be automatically trimmed.
88  *
89  * Furthermore, devices with attached hot spares and devices being actively
90  * replaced are skipped.  This is done to avoid adding additional stress to
91  * a potentially unhealthy device and to minimize the required rebuild time.
92  *
93  * For this reason it may be beneficial to occasionally manually TRIM a pool
94  * even when automatic TRIM is enabled.
95  */
96
97 /*
98  * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
99  */
100 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
101
102 /*
103  * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
104  */
105 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
106
107 /*
108  * Skip uninitialized metaslabs during the TRIM process.  This option is
109  * useful for pools constructed from large thinly-provisioned devices where
110  * TRIM operations are slow.  As a pool ages an increasing fraction of
111  * the pools metaslabs will be initialized progressively degrading the
112  * usefulness of this option.  This setting is stored when starting a
113  * manual TRIM and will persist for the duration of the requested TRIM.
114  */
115 unsigned int zfs_trim_metaslab_skip = 0;
116
117 /*
118  * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
119  * concurrent TRIM I/Os issued to the device is controlled by the
120  * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
121  */
122 static unsigned int zfs_trim_queue_limit = 10;
123
124 /*
125  * The minimum number of transaction groups between automatic trims of a
126  * metaslab.  This setting represents a trade-off between issuing more
127  * efficient TRIM operations, by allowing them to be aggregated longer,
128  * and issuing them promptly so the trimmed space is available.  Note
129  * that this value is a minimum; metaslabs can be trimmed less frequently
130  * when there are a large number of ranges which need to be trimmed.
131  *
132  * Increasing this value will allow frees to be aggregated for a longer
133  * time.  This can result is larger TRIM operations, and increased memory
134  * usage in order to track the ranges to be trimmed.  Decreasing this value
135  * has the opposite effect.  The default value of 32 was determined though
136  * testing to be a reasonable compromise.
137  */
138 static unsigned int zfs_trim_txg_batch = 32;
139
140 /*
141  * The trim_args are a control structure which describe how a leaf vdev
142  * should be trimmed.  The core elements are the vdev, the metaslab being
143  * trimmed and a range tree containing the extents to TRIM.  All provided
144  * ranges must be within the metaslab.
145  */
146 typedef struct trim_args {
147         /*
148          * These fields are set by the caller of vdev_trim_ranges().
149          */
150         vdev_t          *trim_vdev;             /* Leaf vdev to TRIM */
151         metaslab_t      *trim_msp;              /* Disabled metaslab */
152         range_tree_t    *trim_tree;             /* TRIM ranges (in metaslab) */
153         trim_type_t     trim_type;              /* Manual or auto TRIM */
154         uint64_t        trim_extent_bytes_max;  /* Maximum TRIM I/O size */
155         uint64_t        trim_extent_bytes_min;  /* Minimum TRIM I/O size */
156         enum trim_flag  trim_flags;             /* TRIM flags (secure) */
157
158         /*
159          * These fields are updated by vdev_trim_ranges().
160          */
161         hrtime_t        trim_start_time;        /* Start time */
162         uint64_t        trim_bytes_done;        /* Bytes trimmed */
163 } trim_args_t;
164
165 /*
166  * Determines whether a vdev_trim_thread() should be stopped.
167  */
168 static boolean_t
169 vdev_trim_should_stop(vdev_t *vd)
170 {
171         return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
172             vd->vdev_detached || vd->vdev_top->vdev_removing);
173 }
174
175 /*
176  * Determines whether a vdev_autotrim_thread() should be stopped.
177  */
178 static boolean_t
179 vdev_autotrim_should_stop(vdev_t *tvd)
180 {
181         return (tvd->vdev_autotrim_exit_wanted ||
182             !vdev_writeable(tvd) || tvd->vdev_removing ||
183             spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
184 }
185
186 /*
187  * Wait for given number of kicks, return true if the wait is aborted due to
188  * vdev_autotrim_exit_wanted.
189  */
190 static boolean_t
191 vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick)
192 {
193         mutex_enter(&vd->vdev_autotrim_lock);
194         for (int i = 0; i < num_of_kick; i++) {
195                 if (vd->vdev_autotrim_exit_wanted)
196                         break;
197                 cv_wait(&vd->vdev_autotrim_kick_cv, &vd->vdev_autotrim_lock);
198         }
199         boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted;
200         mutex_exit(&vd->vdev_autotrim_lock);
201
202         return (exit_wanted);
203 }
204
205 /*
206  * The sync task for updating the on-disk state of a manual TRIM.  This
207  * is scheduled by vdev_trim_change_state().
208  */
209 static void
210 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
211 {
212         /*
213          * We pass in the guid instead of the vdev_t since the vdev may
214          * have been freed prior to the sync task being processed.  This
215          * happens when a vdev is detached as we call spa_config_vdev_exit(),
216          * stop the trimming thread, schedule the sync task, and free
217          * the vdev. Later when the scheduled sync task is invoked, it would
218          * find that the vdev has been freed.
219          */
220         uint64_t guid = *(uint64_t *)arg;
221         uint64_t txg = dmu_tx_get_txg(tx);
222         kmem_free(arg, sizeof (uint64_t));
223
224         vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
225         if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
226                 return;
227
228         uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
229         vd->vdev_trim_offset[txg & TXG_MASK] = 0;
230
231         VERIFY3U(vd->vdev_leaf_zap, !=, 0);
232
233         objset_t *mos = vd->vdev_spa->spa_meta_objset;
234
235         if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
236
237                 if (vd->vdev_trim_last_offset == UINT64_MAX)
238                         last_offset = 0;
239
240                 vd->vdev_trim_last_offset = last_offset;
241                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
242                     VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
243                     sizeof (last_offset), 1, &last_offset, tx));
244         }
245
246         if (vd->vdev_trim_action_time > 0) {
247                 uint64_t val = (uint64_t)vd->vdev_trim_action_time;
248                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
249                     VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
250                     1, &val, tx));
251         }
252
253         if (vd->vdev_trim_rate > 0) {
254                 uint64_t rate = (uint64_t)vd->vdev_trim_rate;
255
256                 if (rate == UINT64_MAX)
257                         rate = 0;
258
259                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
260                     VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
261         }
262
263         uint64_t partial = vd->vdev_trim_partial;
264         if (partial == UINT64_MAX)
265                 partial = 0;
266
267         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
268             sizeof (partial), 1, &partial, tx));
269
270         uint64_t secure = vd->vdev_trim_secure;
271         if (secure == UINT64_MAX)
272                 secure = 0;
273
274         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
275             sizeof (secure), 1, &secure, tx));
276
277
278         uint64_t trim_state = vd->vdev_trim_state;
279         VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
280             sizeof (trim_state), 1, &trim_state, tx));
281 }
282
283 /*
284  * Update the on-disk state of a manual TRIM.  This is called to request
285  * that a TRIM be started/suspended/canceled, or to change one of the
286  * TRIM options (partial, secure, rate).
287  */
288 static void
289 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
290     uint64_t rate, boolean_t partial, boolean_t secure)
291 {
292         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
293         spa_t *spa = vd->vdev_spa;
294
295         if (new_state == vd->vdev_trim_state)
296                 return;
297
298         /*
299          * Copy the vd's guid, this will be freed by the sync task.
300          */
301         uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
302         *guid = vd->vdev_guid;
303
304         /*
305          * If we're suspending, then preserve the original start time.
306          */
307         if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
308                 vd->vdev_trim_action_time = gethrestime_sec();
309         }
310
311         /*
312          * If we're activating, then preserve the requested rate and trim
313          * method.  Setting the last offset and rate to UINT64_MAX is used
314          * as a sentinel to indicate they should be reset to default values.
315          */
316         if (new_state == VDEV_TRIM_ACTIVE) {
317                 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
318                     vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
319                         vd->vdev_trim_last_offset = UINT64_MAX;
320                         vd->vdev_trim_rate = UINT64_MAX;
321                         vd->vdev_trim_partial = UINT64_MAX;
322                         vd->vdev_trim_secure = UINT64_MAX;
323                 }
324
325                 if (rate != 0)
326                         vd->vdev_trim_rate = rate;
327
328                 if (partial != 0)
329                         vd->vdev_trim_partial = partial;
330
331                 if (secure != 0)
332                         vd->vdev_trim_secure = secure;
333         }
334
335         vdev_trim_state_t old_state = vd->vdev_trim_state;
336         boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
337         vd->vdev_trim_state = new_state;
338
339         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
340         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
341         dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
342             guid, tx);
343
344         switch (new_state) {
345         case VDEV_TRIM_ACTIVE:
346                 spa_event_notify(spa, vd, NULL,
347                     resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
348                 spa_history_log_internal(spa, "trim", tx,
349                     "vdev=%s activated", vd->vdev_path);
350                 break;
351         case VDEV_TRIM_SUSPENDED:
352                 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
353                 spa_history_log_internal(spa, "trim", tx,
354                     "vdev=%s suspended", vd->vdev_path);
355                 break;
356         case VDEV_TRIM_CANCELED:
357                 if (old_state == VDEV_TRIM_ACTIVE ||
358                     old_state == VDEV_TRIM_SUSPENDED) {
359                         spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
360                         spa_history_log_internal(spa, "trim", tx,
361                             "vdev=%s canceled", vd->vdev_path);
362                 }
363                 break;
364         case VDEV_TRIM_COMPLETE:
365                 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
366                 spa_history_log_internal(spa, "trim", tx,
367                     "vdev=%s complete", vd->vdev_path);
368                 break;
369         default:
370                 panic("invalid state %llu", (unsigned long long)new_state);
371         }
372
373         dmu_tx_commit(tx);
374
375         if (new_state != VDEV_TRIM_ACTIVE)
376                 spa_notify_waiters(spa);
377 }
378
379 /*
380  * The zio_done_func_t done callback for each manual TRIM issued.  It is
381  * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
382  * and limiting the number of in flight TRIM I/Os.
383  */
384 static void
385 vdev_trim_cb(zio_t *zio)
386 {
387         vdev_t *vd = zio->io_vd;
388
389         mutex_enter(&vd->vdev_trim_io_lock);
390         if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
391                 /*
392                  * The I/O failed because the vdev was unavailable; roll the
393                  * last offset back. (This works because spa_sync waits on
394                  * spa_txg_zio before it runs sync tasks.)
395                  */
396                 uint64_t *offset =
397                     &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
398                 *offset = MIN(*offset, zio->io_offset);
399         } else {
400                 if (zio->io_error != 0) {
401                         vd->vdev_stat.vs_trim_errors++;
402                         spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
403                             0, 0, 0, 0, 1, zio->io_orig_size);
404                 } else {
405                         spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
406                             1, zio->io_orig_size, 0, 0, 0, 0);
407                 }
408
409                 vd->vdev_trim_bytes_done += zio->io_orig_size;
410         }
411
412         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
413         vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
414         cv_broadcast(&vd->vdev_trim_io_cv);
415         mutex_exit(&vd->vdev_trim_io_lock);
416
417         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
418 }
419
420 /*
421  * The zio_done_func_t done callback for each automatic TRIM issued.  It
422  * is responsible for updating the TRIM stats and limiting the number of
423  * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
424  * never reissued on failure.
425  */
426 static void
427 vdev_autotrim_cb(zio_t *zio)
428 {
429         vdev_t *vd = zio->io_vd;
430
431         mutex_enter(&vd->vdev_trim_io_lock);
432
433         if (zio->io_error != 0) {
434                 vd->vdev_stat.vs_trim_errors++;
435                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
436                     0, 0, 0, 0, 1, zio->io_orig_size);
437         } else {
438                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
439                     1, zio->io_orig_size, 0, 0, 0, 0);
440         }
441
442         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
443         vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
444         cv_broadcast(&vd->vdev_trim_io_cv);
445         mutex_exit(&vd->vdev_trim_io_lock);
446
447         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
448 }
449
450 /*
451  * The zio_done_func_t done callback for each TRIM issued via
452  * vdev_trim_simple(). It is responsible for updating the TRIM stats and
453  * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
454  * effort and are never reissued on failure.
455  */
456 static void
457 vdev_trim_simple_cb(zio_t *zio)
458 {
459         vdev_t *vd = zio->io_vd;
460
461         mutex_enter(&vd->vdev_trim_io_lock);
462
463         if (zio->io_error != 0) {
464                 vd->vdev_stat.vs_trim_errors++;
465                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
466                     0, 0, 0, 0, 1, zio->io_orig_size);
467         } else {
468                 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
469                     1, zio->io_orig_size, 0, 0, 0, 0);
470         }
471
472         ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
473         vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
474         cv_broadcast(&vd->vdev_trim_io_cv);
475         mutex_exit(&vd->vdev_trim_io_lock);
476
477         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
478 }
479 /*
480  * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
481  */
482 static uint64_t
483 vdev_trim_calculate_rate(trim_args_t *ta)
484 {
485         return (ta->trim_bytes_done * 1000 /
486             (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
487 }
488
489 /*
490  * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
491  * and number of concurrent TRIM I/Os.
492  */
493 static int
494 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
495 {
496         vdev_t *vd = ta->trim_vdev;
497         spa_t *spa = vd->vdev_spa;
498         void *cb;
499
500         mutex_enter(&vd->vdev_trim_io_lock);
501
502         /*
503          * Limit manual TRIM I/Os to the requested rate.  This does not
504          * apply to automatic TRIM since no per vdev rate can be specified.
505          */
506         if (ta->trim_type == TRIM_TYPE_MANUAL) {
507                 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
508                     vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
509                         cv_timedwait_idle(&vd->vdev_trim_io_cv,
510                             &vd->vdev_trim_io_lock, ddi_get_lbolt() +
511                             MSEC_TO_TICK(10));
512                 }
513         }
514         ta->trim_bytes_done += size;
515
516         /* Limit in flight trimming I/Os */
517         while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
518             vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
519                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
520         }
521         vd->vdev_trim_inflight[ta->trim_type]++;
522         mutex_exit(&vd->vdev_trim_io_lock);
523
524         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
525         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
526         uint64_t txg = dmu_tx_get_txg(tx);
527
528         spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
529         mutex_enter(&vd->vdev_trim_lock);
530
531         if (ta->trim_type == TRIM_TYPE_MANUAL &&
532             vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
533                 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
534                 *guid = vd->vdev_guid;
535
536                 /* This is the first write of this txg. */
537                 dsl_sync_task_nowait(spa_get_dsl(spa),
538                     vdev_trim_zap_update_sync, guid, tx);
539         }
540
541         /*
542          * We know the vdev_t will still be around since all consumers of
543          * vdev_free must stop the trimming first.
544          */
545         if ((ta->trim_type == TRIM_TYPE_MANUAL &&
546             vdev_trim_should_stop(vd)) ||
547             (ta->trim_type == TRIM_TYPE_AUTO &&
548             vdev_autotrim_should_stop(vd->vdev_top))) {
549                 mutex_enter(&vd->vdev_trim_io_lock);
550                 vd->vdev_trim_inflight[ta->trim_type]--;
551                 mutex_exit(&vd->vdev_trim_io_lock);
552                 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
553                 mutex_exit(&vd->vdev_trim_lock);
554                 dmu_tx_commit(tx);
555                 return (SET_ERROR(EINTR));
556         }
557         mutex_exit(&vd->vdev_trim_lock);
558
559         if (ta->trim_type == TRIM_TYPE_MANUAL)
560                 vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
561
562         if (ta->trim_type == TRIM_TYPE_MANUAL) {
563                 cb = vdev_trim_cb;
564         } else if (ta->trim_type == TRIM_TYPE_AUTO) {
565                 cb = vdev_autotrim_cb;
566         } else {
567                 cb = vdev_trim_simple_cb;
568         }
569
570         zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
571             start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
572             ta->trim_flags));
573         /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
574
575         dmu_tx_commit(tx);
576
577         return (0);
578 }
579
580 /*
581  * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
582  * Additional parameters describing how the TRIM should be performed must
583  * be set in the trim_args structure.  See the trim_args definition for
584  * additional information.
585  */
586 static int
587 vdev_trim_ranges(trim_args_t *ta)
588 {
589         vdev_t *vd = ta->trim_vdev;
590         zfs_btree_t *t = &ta->trim_tree->rt_root;
591         zfs_btree_index_t idx;
592         uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
593         uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
594         spa_t *spa = vd->vdev_spa;
595         int error = 0;
596
597         ta->trim_start_time = gethrtime();
598         ta->trim_bytes_done = 0;
599
600         for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
601             rs = zfs_btree_next(t, &idx, &idx)) {
602                 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
603                     ta->trim_tree);
604
605                 if (extent_bytes_min && size < extent_bytes_min) {
606                         spa_iostats_trim_add(spa, ta->trim_type,
607                             0, 0, 1, size, 0, 0);
608                         continue;
609                 }
610
611                 /* Split range into legally-sized physical chunks */
612                 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
613
614                 for (uint64_t w = 0; w < writes_required; w++) {
615                         error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
616                             rs_get_start(rs, ta->trim_tree) +
617                             (w *extent_bytes_max), MIN(size -
618                             (w * extent_bytes_max), extent_bytes_max));
619                         if (error != 0) {
620                                 goto done;
621                         }
622                 }
623         }
624
625 done:
626         /*
627          * Make sure all TRIMs for this metaslab have completed before
628          * returning. TRIM zios have lower priority over regular or syncing
629          * zios, so all TRIM zios for this metaslab must complete before the
630          * metaslab is re-enabled. Otherwise it's possible write zios to
631          * this metaslab could cut ahead of still queued TRIM zios for this
632          * metaslab causing corruption if the ranges overlap.
633          */
634         mutex_enter(&vd->vdev_trim_io_lock);
635         while (vd->vdev_trim_inflight[0] > 0) {
636                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
637         }
638         mutex_exit(&vd->vdev_trim_io_lock);
639
640         return (error);
641 }
642
643 static void
644 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
645 {
646         uint64_t *last_rs_end = (uint64_t *)arg;
647
648         if (physical_rs->rs_end > *last_rs_end)
649                 *last_rs_end = physical_rs->rs_end;
650 }
651
652 static void
653 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
654 {
655         vdev_t *vd = (vdev_t *)arg;
656
657         uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
658         vd->vdev_trim_bytes_est += size;
659
660         if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
661                 vd->vdev_trim_bytes_done += size;
662         } else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
663             vd->vdev_trim_last_offset <= physical_rs->rs_end) {
664                 vd->vdev_trim_bytes_done +=
665                     vd->vdev_trim_last_offset - physical_rs->rs_start;
666         }
667 }
668
669 /*
670  * Calculates the completion percentage of a manual TRIM.
671  */
672 static void
673 vdev_trim_calculate_progress(vdev_t *vd)
674 {
675         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
676             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
677         ASSERT(vd->vdev_leaf_zap != 0);
678
679         vd->vdev_trim_bytes_est = 0;
680         vd->vdev_trim_bytes_done = 0;
681
682         for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
683                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
684                 mutex_enter(&msp->ms_lock);
685
686                 uint64_t ms_free = (msp->ms_size -
687                     metaslab_allocated_space(msp)) /
688                     vdev_get_ndisks(vd->vdev_top);
689
690                 /*
691                  * Convert the metaslab range to a physical range
692                  * on our vdev. We use this to determine if we are
693                  * in the middle of this metaslab range.
694                  */
695                 range_seg64_t logical_rs, physical_rs, remain_rs;
696                 logical_rs.rs_start = msp->ms_start;
697                 logical_rs.rs_end = msp->ms_start + msp->ms_size;
698
699                 /* Metaslab space after this offset has not been trimmed. */
700                 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
701                 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
702                         vd->vdev_trim_bytes_est += ms_free;
703                         mutex_exit(&msp->ms_lock);
704                         continue;
705                 }
706
707                 /* Metaslab space before this offset has been trimmed */
708                 uint64_t last_rs_end = physical_rs.rs_end;
709                 if (!vdev_xlate_is_empty(&remain_rs)) {
710                         vdev_xlate_walk(vd, &remain_rs,
711                             vdev_trim_xlate_last_rs_end, &last_rs_end);
712                 }
713
714                 if (vd->vdev_trim_last_offset > last_rs_end) {
715                         vd->vdev_trim_bytes_done += ms_free;
716                         vd->vdev_trim_bytes_est += ms_free;
717                         mutex_exit(&msp->ms_lock);
718                         continue;
719                 }
720
721                 /*
722                  * If we get here, we're in the middle of trimming this
723                  * metaslab.  Load it and walk the free tree for more
724                  * accurate progress estimation.
725                  */
726                 VERIFY0(metaslab_load(msp));
727
728                 range_tree_t *rt = msp->ms_allocatable;
729                 zfs_btree_t *bt = &rt->rt_root;
730                 zfs_btree_index_t idx;
731                 for (range_seg_t *rs = zfs_btree_first(bt, &idx);
732                     rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
733                         logical_rs.rs_start = rs_get_start(rs, rt);
734                         logical_rs.rs_end = rs_get_end(rs, rt);
735
736                         vdev_xlate_walk(vd, &logical_rs,
737                             vdev_trim_xlate_progress, vd);
738                 }
739                 mutex_exit(&msp->ms_lock);
740         }
741 }
742
743 /*
744  * Load from disk the vdev's manual TRIM information.  This includes the
745  * state, progress, and options provided when initiating the manual TRIM.
746  */
747 static int
748 vdev_trim_load(vdev_t *vd)
749 {
750         int err = 0;
751         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
752             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
753         ASSERT(vd->vdev_leaf_zap != 0);
754
755         if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
756             vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
757                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
758                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
759                     sizeof (vd->vdev_trim_last_offset), 1,
760                     &vd->vdev_trim_last_offset);
761                 if (err == ENOENT) {
762                         vd->vdev_trim_last_offset = 0;
763                         err = 0;
764                 }
765
766                 if (err == 0) {
767                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
768                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
769                             sizeof (vd->vdev_trim_rate), 1,
770                             &vd->vdev_trim_rate);
771                         if (err == ENOENT) {
772                                 vd->vdev_trim_rate = 0;
773                                 err = 0;
774                         }
775                 }
776
777                 if (err == 0) {
778                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
779                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
780                             sizeof (vd->vdev_trim_partial), 1,
781                             &vd->vdev_trim_partial);
782                         if (err == ENOENT) {
783                                 vd->vdev_trim_partial = 0;
784                                 err = 0;
785                         }
786                 }
787
788                 if (err == 0) {
789                         err = zap_lookup(vd->vdev_spa->spa_meta_objset,
790                             vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
791                             sizeof (vd->vdev_trim_secure), 1,
792                             &vd->vdev_trim_secure);
793                         if (err == ENOENT) {
794                                 vd->vdev_trim_secure = 0;
795                                 err = 0;
796                         }
797                 }
798         }
799
800         vdev_trim_calculate_progress(vd);
801
802         return (err);
803 }
804
805 static void
806 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
807 {
808         trim_args_t *ta = arg;
809         vdev_t *vd = ta->trim_vdev;
810
811         /*
812          * Only a manual trim will be traversing the vdev sequentially.
813          * For an auto trim all valid ranges should be added.
814          */
815         if (ta->trim_type == TRIM_TYPE_MANUAL) {
816
817                 /* Only add segments that we have not visited yet */
818                 if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
819                         return;
820
821                 /* Pick up where we left off mid-range. */
822                 if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
823                         ASSERT3U(physical_rs->rs_end, >,
824                             vd->vdev_trim_last_offset);
825                         physical_rs->rs_start = vd->vdev_trim_last_offset;
826                 }
827         }
828
829         ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
830
831         range_tree_add(ta->trim_tree, physical_rs->rs_start,
832             physical_rs->rs_end - physical_rs->rs_start);
833 }
834
835 /*
836  * Convert the logical range into physical ranges and add them to the
837  * range tree passed in the trim_args_t.
838  */
839 static void
840 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
841 {
842         trim_args_t *ta = arg;
843         vdev_t *vd = ta->trim_vdev;
844         range_seg64_t logical_rs;
845         logical_rs.rs_start = start;
846         logical_rs.rs_end = start + size;
847
848         /*
849          * Every range to be trimmed must be part of ms_allocatable.
850          * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
851          * is always the case.
852          */
853         if (zfs_flags & ZFS_DEBUG_TRIM) {
854                 metaslab_t *msp = ta->trim_msp;
855                 VERIFY0(metaslab_load(msp));
856                 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
857                 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
858         }
859
860         ASSERT(vd->vdev_ops->vdev_op_leaf);
861         vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
862 }
863
864 /*
865  * Each manual TRIM thread is responsible for trimming the unallocated
866  * space for each leaf vdev.  This is accomplished by sequentially iterating
867  * over its top-level metaslabs and issuing TRIM I/O for the space described
868  * by its ms_allocatable.  While a metaslab is undergoing trimming it is
869  * not eligible for new allocations.
870  */
871 static __attribute__((noreturn)) void
872 vdev_trim_thread(void *arg)
873 {
874         vdev_t *vd = arg;
875         spa_t *spa = vd->vdev_spa;
876         trim_args_t ta;
877         int error = 0;
878
879         /*
880          * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
881          * vdev_trim().  Wait for the updated values to be reflected
882          * in the zap in order to start with the requested settings.
883          */
884         txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
885
886         ASSERT(vdev_is_concrete(vd));
887         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
888
889         vd->vdev_trim_last_offset = 0;
890         vd->vdev_trim_rate = 0;
891         vd->vdev_trim_partial = 0;
892         vd->vdev_trim_secure = 0;
893
894         VERIFY0(vdev_trim_load(vd));
895
896         ta.trim_vdev = vd;
897         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
898         ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
899         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
900         ta.trim_type = TRIM_TYPE_MANUAL;
901         ta.trim_flags = 0;
902
903         /*
904          * When a secure TRIM has been requested infer that the intent
905          * is that everything must be trimmed.  Override the default
906          * minimum TRIM size to prevent ranges from being skipped.
907          */
908         if (vd->vdev_trim_secure) {
909                 ta.trim_flags |= ZIO_TRIM_SECURE;
910                 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
911         }
912
913         uint64_t ms_count = 0;
914         for (uint64_t i = 0; !vd->vdev_detached &&
915             i < vd->vdev_top->vdev_ms_count; i++) {
916                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
917
918                 /*
919                  * If we've expanded the top-level vdev or it's our
920                  * first pass, calculate our progress.
921                  */
922                 if (vd->vdev_top->vdev_ms_count != ms_count) {
923                         vdev_trim_calculate_progress(vd);
924                         ms_count = vd->vdev_top->vdev_ms_count;
925                 }
926
927                 spa_config_exit(spa, SCL_CONFIG, FTAG);
928                 metaslab_disable(msp);
929                 mutex_enter(&msp->ms_lock);
930                 VERIFY0(metaslab_load(msp));
931
932                 /*
933                  * If a partial TRIM was requested skip metaslabs which have
934                  * never been initialized and thus have never been written.
935                  */
936                 if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
937                         mutex_exit(&msp->ms_lock);
938                         metaslab_enable(msp, B_FALSE, B_FALSE);
939                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
940                         vdev_trim_calculate_progress(vd);
941                         continue;
942                 }
943
944                 ta.trim_msp = msp;
945                 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
946                 range_tree_vacate(msp->ms_trim, NULL, NULL);
947                 mutex_exit(&msp->ms_lock);
948
949                 error = vdev_trim_ranges(&ta);
950                 metaslab_enable(msp, B_TRUE, B_FALSE);
951                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
952
953                 range_tree_vacate(ta.trim_tree, NULL, NULL);
954                 if (error != 0)
955                         break;
956         }
957
958         spa_config_exit(spa, SCL_CONFIG, FTAG);
959
960         range_tree_destroy(ta.trim_tree);
961
962         mutex_enter(&vd->vdev_trim_lock);
963         if (!vd->vdev_trim_exit_wanted) {
964                 if (vdev_writeable(vd)) {
965                         vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
966                             vd->vdev_trim_rate, vd->vdev_trim_partial,
967                             vd->vdev_trim_secure);
968                 } else if (vd->vdev_faulted) {
969                         vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
970                             vd->vdev_trim_rate, vd->vdev_trim_partial,
971                             vd->vdev_trim_secure);
972                 }
973         }
974         ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
975
976         /*
977          * Drop the vdev_trim_lock while we sync out the txg since it's
978          * possible that a device might be trying to come online and must
979          * check to see if it needs to restart a trim. That thread will be
980          * holding the spa_config_lock which would prevent the txg_wait_synced
981          * from completing.
982          */
983         mutex_exit(&vd->vdev_trim_lock);
984         txg_wait_synced(spa_get_dsl(spa), 0);
985         mutex_enter(&vd->vdev_trim_lock);
986
987         vd->vdev_trim_thread = NULL;
988         cv_broadcast(&vd->vdev_trim_cv);
989         mutex_exit(&vd->vdev_trim_lock);
990
991         thread_exit();
992 }
993
994 /*
995  * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
996  * the vdev_t must be a leaf and cannot already be manually trimming.
997  */
998 void
999 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
1000 {
1001         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1002         ASSERT(vd->vdev_ops->vdev_op_leaf);
1003         ASSERT(vdev_is_concrete(vd));
1004         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1005         ASSERT(!vd->vdev_detached);
1006         ASSERT(!vd->vdev_trim_exit_wanted);
1007         ASSERT(!vd->vdev_top->vdev_removing);
1008
1009         vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
1010         vd->vdev_trim_thread = thread_create(NULL, 0,
1011             vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1012 }
1013
1014 /*
1015  * Wait for the trimming thread to be terminated (canceled or stopped).
1016  */
1017 static void
1018 vdev_trim_stop_wait_impl(vdev_t *vd)
1019 {
1020         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1021
1022         while (vd->vdev_trim_thread != NULL)
1023                 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
1024
1025         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1026         vd->vdev_trim_exit_wanted = B_FALSE;
1027 }
1028
1029 /*
1030  * Wait for vdev trim threads which were listed to cleanly exit.
1031  */
1032 void
1033 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1034 {
1035         (void) spa;
1036         vdev_t *vd;
1037
1038         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1039
1040         while ((vd = list_remove_head(vd_list)) != NULL) {
1041                 mutex_enter(&vd->vdev_trim_lock);
1042                 vdev_trim_stop_wait_impl(vd);
1043                 mutex_exit(&vd->vdev_trim_lock);
1044         }
1045 }
1046
1047 /*
1048  * Stop trimming a device, with the resultant trimming state being tgt_state.
1049  * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
1050  * provided the stopping vdev is inserted in to the list.  Callers are then
1051  * required to call vdev_trim_stop_wait() to block for all the trim threads
1052  * to exit.  The caller must hold vdev_trim_lock and must not be writing to
1053  * the spa config, as the trimming thread may try to enter the config as a
1054  * reader before exiting.
1055  */
1056 void
1057 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1058 {
1059         ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1060         ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1061         ASSERT(vd->vdev_ops->vdev_op_leaf);
1062         ASSERT(vdev_is_concrete(vd));
1063
1064         /*
1065          * Allow cancel requests to proceed even if the trim thread has
1066          * stopped.
1067          */
1068         if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1069                 return;
1070
1071         vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1072         vd->vdev_trim_exit_wanted = B_TRUE;
1073
1074         if (vd_list == NULL) {
1075                 vdev_trim_stop_wait_impl(vd);
1076         } else {
1077                 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1078                 list_insert_tail(vd_list, vd);
1079         }
1080 }
1081
1082 /*
1083  * Requests that all listed vdevs stop trimming.
1084  */
1085 static void
1086 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1087     list_t *vd_list)
1088 {
1089         if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1090                 mutex_enter(&vd->vdev_trim_lock);
1091                 vdev_trim_stop(vd, tgt_state, vd_list);
1092                 mutex_exit(&vd->vdev_trim_lock);
1093                 return;
1094         }
1095
1096         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1097                 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1098                     vd_list);
1099         }
1100 }
1101
1102 /*
1103  * Convenience function to stop trimming of a vdev tree and set all trim
1104  * thread pointers to NULL.
1105  */
1106 void
1107 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1108 {
1109         spa_t *spa = vd->vdev_spa;
1110         list_t vd_list;
1111         vdev_t *vd_l2cache;
1112
1113         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1114
1115         list_create(&vd_list, sizeof (vdev_t),
1116             offsetof(vdev_t, vdev_trim_node));
1117
1118         vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1119
1120         /*
1121          * Iterate over cache devices and request stop trimming the
1122          * whole device in case we export the pool or remove the cache
1123          * device prematurely.
1124          */
1125         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1126                 vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1127                 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1128         }
1129
1130         vdev_trim_stop_wait(spa, &vd_list);
1131
1132         if (vd->vdev_spa->spa_sync_on) {
1133                 /* Make sure that our state has been synced to disk */
1134                 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1135         }
1136
1137         list_destroy(&vd_list);
1138 }
1139
1140 /*
1141  * Conditionally restarts a manual TRIM given its on-disk state.
1142  */
1143 void
1144 vdev_trim_restart(vdev_t *vd)
1145 {
1146         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1147         ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1148
1149         if (vd->vdev_leaf_zap != 0) {
1150                 mutex_enter(&vd->vdev_trim_lock);
1151                 uint64_t trim_state = VDEV_TRIM_NONE;
1152                 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1153                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1154                     sizeof (trim_state), 1, &trim_state);
1155                 ASSERT(err == 0 || err == ENOENT);
1156                 vd->vdev_trim_state = trim_state;
1157
1158                 uint64_t timestamp = 0;
1159                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1160                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1161                     sizeof (timestamp), 1, &timestamp);
1162                 ASSERT(err == 0 || err == ENOENT);
1163                 vd->vdev_trim_action_time = timestamp;
1164
1165                 if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1166                     vd->vdev_offline) {
1167                         /* load progress for reporting, but don't resume */
1168                         VERIFY0(vdev_trim_load(vd));
1169                 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1170                     vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1171                     vd->vdev_trim_thread == NULL) {
1172                         VERIFY0(vdev_trim_load(vd));
1173                         vdev_trim(vd, vd->vdev_trim_rate,
1174                             vd->vdev_trim_partial, vd->vdev_trim_secure);
1175                 }
1176
1177                 mutex_exit(&vd->vdev_trim_lock);
1178         }
1179
1180         for (uint64_t i = 0; i < vd->vdev_children; i++) {
1181                 vdev_trim_restart(vd->vdev_child[i]);
1182         }
1183 }
1184
1185 /*
1186  * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1187  * every TRIM range is contained within ms_allocatable.
1188  */
1189 static void
1190 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1191 {
1192         trim_args_t *ta = arg;
1193         metaslab_t *msp = ta->trim_msp;
1194
1195         VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1196         VERIFY3U(msp->ms_disabled, >, 0);
1197         VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1198 }
1199
1200 /*
1201  * Each automatic TRIM thread is responsible for managing the trimming of a
1202  * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
1203  *
1204  * N.B. This behavior is different from a manual TRIM where a thread
1205  * is created for each leaf vdev, instead of each top-level vdev.
1206  */
1207 static __attribute__((noreturn)) void
1208 vdev_autotrim_thread(void *arg)
1209 {
1210         vdev_t *vd = arg;
1211         spa_t *spa = vd->vdev_spa;
1212         int shift = 0;
1213
1214         mutex_enter(&vd->vdev_autotrim_lock);
1215         ASSERT3P(vd->vdev_top, ==, vd);
1216         ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1217         mutex_exit(&vd->vdev_autotrim_lock);
1218         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1219
1220         while (!vdev_autotrim_should_stop(vd)) {
1221                 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1222                 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1223                 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1224
1225                 /*
1226                  * All of the metaslabs are divided in to groups of size
1227                  * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
1228                  * is composed of metaslabs which are spread evenly over the
1229                  * device.
1230                  *
1231                  * For example, when zfs_trim_txg_batch = 32 (default) then
1232                  * group 0 will contain metaslabs 0, 32, 64, ...;
1233                  * group 1 will contain metaslabs 1, 33, 65, ...;
1234                  * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1235                  *
1236                  * On each pass through the while() loop one of these groups
1237                  * is selected.  This is accomplished by using a shift value
1238                  * to select the starting metaslab, then striding over the
1239                  * metaslabs using the zfs_trim_txg_batch size.  This is
1240                  * done to accomplish two things.
1241                  *
1242                  * 1) By dividing the metaslabs in to groups, and making sure
1243                  *    that each group takes a minimum of one txg to process.
1244                  *    Then zfs_trim_txg_batch controls the minimum number of
1245                  *    txgs which must occur before a metaslab is revisited.
1246                  *
1247                  * 2) Selecting non-consecutive metaslabs distributes the
1248                  *    TRIM commands for a group evenly over the entire device.
1249                  *    This can be advantageous for certain types of devices.
1250                  */
1251                 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1252                     i += txgs_per_trim) {
1253                         metaslab_t *msp = vd->vdev_ms[i];
1254                         range_tree_t *trim_tree;
1255                         boolean_t issued_trim = B_FALSE;
1256                         boolean_t wait_aborted = B_FALSE;
1257
1258                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1259                         metaslab_disable(msp);
1260                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1261
1262                         mutex_enter(&msp->ms_lock);
1263
1264                         /*
1265                          * Skip the metaslab when it has never been allocated
1266                          * or when there are no recent frees to trim.
1267                          */
1268                         if (msp->ms_sm == NULL ||
1269                             range_tree_is_empty(msp->ms_trim)) {
1270                                 mutex_exit(&msp->ms_lock);
1271                                 metaslab_enable(msp, B_FALSE, B_FALSE);
1272                                 continue;
1273                         }
1274
1275                         /*
1276                          * Skip the metaslab when it has already been disabled.
1277                          * This may happen when a manual TRIM or initialize
1278                          * operation is running concurrently.  In the case
1279                          * of a manual TRIM, the ms_trim tree will have been
1280                          * vacated.  Only ranges added after the manual TRIM
1281                          * disabled the metaslab will be included in the tree.
1282                          * These will be processed when the automatic TRIM
1283                          * next revisits this metaslab.
1284                          */
1285                         if (msp->ms_disabled > 1) {
1286                                 mutex_exit(&msp->ms_lock);
1287                                 metaslab_enable(msp, B_FALSE, B_FALSE);
1288                                 continue;
1289                         }
1290
1291                         /*
1292                          * Allocate an empty range tree which is swapped in
1293                          * for the existing ms_trim tree while it is processed.
1294                          */
1295                         trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1296                             0, 0);
1297                         range_tree_swap(&msp->ms_trim, &trim_tree);
1298                         ASSERT(range_tree_is_empty(msp->ms_trim));
1299
1300                         /*
1301                          * There are two cases when constructing the per-vdev
1302                          * trim trees for a metaslab.  If the top-level vdev
1303                          * has no children then it is also a leaf and should
1304                          * be trimmed.  Otherwise our children are the leaves
1305                          * and a trim tree should be constructed for each.
1306                          */
1307                         trim_args_t *tap;
1308                         uint64_t children = vd->vdev_children;
1309                         if (children == 0) {
1310                                 children = 1;
1311                                 tap = kmem_zalloc(sizeof (trim_args_t) *
1312                                     children, KM_SLEEP);
1313                                 tap[0].trim_vdev = vd;
1314                         } else {
1315                                 tap = kmem_zalloc(sizeof (trim_args_t) *
1316                                     children, KM_SLEEP);
1317
1318                                 for (uint64_t c = 0; c < children; c++) {
1319                                         tap[c].trim_vdev = vd->vdev_child[c];
1320                                 }
1321                         }
1322
1323                         for (uint64_t c = 0; c < children; c++) {
1324                                 trim_args_t *ta = &tap[c];
1325                                 vdev_t *cvd = ta->trim_vdev;
1326
1327                                 ta->trim_msp = msp;
1328                                 ta->trim_extent_bytes_max = extent_bytes_max;
1329                                 ta->trim_extent_bytes_min = extent_bytes_min;
1330                                 ta->trim_type = TRIM_TYPE_AUTO;
1331                                 ta->trim_flags = 0;
1332
1333                                 if (cvd->vdev_detached ||
1334                                     !vdev_writeable(cvd) ||
1335                                     !cvd->vdev_has_trim ||
1336                                     cvd->vdev_trim_thread != NULL) {
1337                                         continue;
1338                                 }
1339
1340                                 /*
1341                                  * When a device has an attached hot spare, or
1342                                  * is being replaced it will not be trimmed.
1343                                  * This is done to avoid adding additional
1344                                  * stress to a potentially unhealthy device,
1345                                  * and to minimize the required rebuild time.
1346                                  */
1347                                 if (!cvd->vdev_ops->vdev_op_leaf)
1348                                         continue;
1349
1350                                 ta->trim_tree = range_tree_create(NULL,
1351                                     RANGE_SEG64, NULL, 0, 0);
1352                                 range_tree_walk(trim_tree,
1353                                     vdev_trim_range_add, ta);
1354                         }
1355
1356                         mutex_exit(&msp->ms_lock);
1357                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1358
1359                         /*
1360                          * Issue the TRIM I/Os for all ranges covered by the
1361                          * TRIM trees.  These ranges are safe to TRIM because
1362                          * no new allocations will be performed until the call
1363                          * to metaslab_enabled() below.
1364                          */
1365                         for (uint64_t c = 0; c < children; c++) {
1366                                 trim_args_t *ta = &tap[c];
1367
1368                                 /*
1369                                  * Always yield to a manual TRIM if one has
1370                                  * been started for the child vdev.
1371                                  */
1372                                 if (ta->trim_tree == NULL ||
1373                                     ta->trim_vdev->vdev_trim_thread != NULL) {
1374                                         continue;
1375                                 }
1376
1377                                 /*
1378                                  * After this point metaslab_enable() must be
1379                                  * called with the sync flag set.  This is done
1380                                  * here because vdev_trim_ranges() is allowed
1381                                  * to be interrupted (EINTR) before issuing all
1382                                  * of the required TRIM I/Os.
1383                                  */
1384                                 issued_trim = B_TRUE;
1385
1386                                 int error = vdev_trim_ranges(ta);
1387                                 if (error)
1388                                         break;
1389                         }
1390
1391                         /*
1392                          * Verify every range which was trimmed is still
1393                          * contained within the ms_allocatable tree.
1394                          */
1395                         if (zfs_flags & ZFS_DEBUG_TRIM) {
1396                                 mutex_enter(&msp->ms_lock);
1397                                 VERIFY0(metaslab_load(msp));
1398                                 VERIFY3P(tap[0].trim_msp, ==, msp);
1399                                 range_tree_walk(trim_tree,
1400                                     vdev_trim_range_verify, &tap[0]);
1401                                 mutex_exit(&msp->ms_lock);
1402                         }
1403
1404                         range_tree_vacate(trim_tree, NULL, NULL);
1405                         range_tree_destroy(trim_tree);
1406
1407                         /*
1408                          * Wait for couples of kicks, to ensure the trim io is
1409                          * synced. If the wait is aborted due to
1410                          * vdev_autotrim_exit_wanted, we need to signal
1411                          * metaslab_enable() to wait for sync.
1412                          */
1413                         if (issued_trim) {
1414                                 wait_aborted = vdev_autotrim_wait_kick(vd,
1415                                     TXG_CONCURRENT_STATES + TXG_DEFER_SIZE);
1416                         }
1417
1418                         metaslab_enable(msp, wait_aborted, B_FALSE);
1419                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1420
1421                         for (uint64_t c = 0; c < children; c++) {
1422                                 trim_args_t *ta = &tap[c];
1423
1424                                 if (ta->trim_tree == NULL)
1425                                         continue;
1426
1427                                 range_tree_vacate(ta->trim_tree, NULL, NULL);
1428                                 range_tree_destroy(ta->trim_tree);
1429                         }
1430
1431                         kmem_free(tap, sizeof (trim_args_t) * children);
1432
1433                         if (vdev_autotrim_should_stop(vd))
1434                                 break;
1435                 }
1436
1437                 spa_config_exit(spa, SCL_CONFIG, FTAG);
1438
1439                 vdev_autotrim_wait_kick(vd, 1);
1440
1441                 shift++;
1442                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1443         }
1444
1445         for (uint64_t c = 0; c < vd->vdev_children; c++) {
1446                 vdev_t *cvd = vd->vdev_child[c];
1447                 mutex_enter(&cvd->vdev_trim_io_lock);
1448
1449                 while (cvd->vdev_trim_inflight[1] > 0) {
1450                         cv_wait(&cvd->vdev_trim_io_cv,
1451                             &cvd->vdev_trim_io_lock);
1452                 }
1453                 mutex_exit(&cvd->vdev_trim_io_lock);
1454         }
1455
1456         spa_config_exit(spa, SCL_CONFIG, FTAG);
1457
1458         /*
1459          * When exiting because the autotrim property was set to off, then
1460          * abandon any unprocessed ms_trim ranges to reclaim the memory.
1461          */
1462         if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1463                 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1464                         metaslab_t *msp = vd->vdev_ms[i];
1465
1466                         mutex_enter(&msp->ms_lock);
1467                         range_tree_vacate(msp->ms_trim, NULL, NULL);
1468                         mutex_exit(&msp->ms_lock);
1469                 }
1470         }
1471
1472         mutex_enter(&vd->vdev_autotrim_lock);
1473         ASSERT(vd->vdev_autotrim_thread != NULL);
1474         vd->vdev_autotrim_thread = NULL;
1475         cv_broadcast(&vd->vdev_autotrim_cv);
1476         mutex_exit(&vd->vdev_autotrim_lock);
1477
1478         thread_exit();
1479 }
1480
1481 /*
1482  * Starts an autotrim thread, if needed, for each top-level vdev which can be
1483  * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
1484  */
1485 void
1486 vdev_autotrim(spa_t *spa)
1487 {
1488         vdev_t *root_vd = spa->spa_root_vdev;
1489
1490         for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1491                 vdev_t *tvd = root_vd->vdev_child[i];
1492
1493                 mutex_enter(&tvd->vdev_autotrim_lock);
1494                 if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1495                     tvd->vdev_autotrim_thread == NULL) {
1496                         ASSERT3P(tvd->vdev_top, ==, tvd);
1497
1498                         tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1499                             vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1500                             maxclsyspri);
1501                         ASSERT(tvd->vdev_autotrim_thread != NULL);
1502                 }
1503                 mutex_exit(&tvd->vdev_autotrim_lock);
1504         }
1505 }
1506
1507 /*
1508  * Wait for the vdev_autotrim_thread associated with the passed top-level
1509  * vdev to be terminated (canceled or stopped).
1510  */
1511 void
1512 vdev_autotrim_stop_wait(vdev_t *tvd)
1513 {
1514         mutex_enter(&tvd->vdev_autotrim_lock);
1515         if (tvd->vdev_autotrim_thread != NULL) {
1516                 tvd->vdev_autotrim_exit_wanted = B_TRUE;
1517                 cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1518                 cv_wait(&tvd->vdev_autotrim_cv,
1519                     &tvd->vdev_autotrim_lock);
1520
1521                 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1522                 tvd->vdev_autotrim_exit_wanted = B_FALSE;
1523         }
1524         mutex_exit(&tvd->vdev_autotrim_lock);
1525 }
1526
1527 void
1528 vdev_autotrim_kick(spa_t *spa)
1529 {
1530         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1531
1532         vdev_t *root_vd = spa->spa_root_vdev;
1533         vdev_t *tvd;
1534
1535         for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1536                 tvd = root_vd->vdev_child[i];
1537
1538                 mutex_enter(&tvd->vdev_autotrim_lock);
1539                 if (tvd->vdev_autotrim_thread != NULL)
1540                         cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1541                 mutex_exit(&tvd->vdev_autotrim_lock);
1542         }
1543 }
1544
1545 /*
1546  * Wait for all of the vdev_autotrim_thread associated with the pool to
1547  * be terminated (canceled or stopped).
1548  */
1549 void
1550 vdev_autotrim_stop_all(spa_t *spa)
1551 {
1552         vdev_t *root_vd = spa->spa_root_vdev;
1553
1554         for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1555                 vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1556 }
1557
1558 /*
1559  * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1560  */
1561 void
1562 vdev_autotrim_restart(spa_t *spa)
1563 {
1564         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1565
1566         if (spa->spa_autotrim)
1567                 vdev_autotrim(spa);
1568 }
1569
1570 static __attribute__((noreturn)) void
1571 vdev_trim_l2arc_thread(void *arg)
1572 {
1573         vdev_t          *vd = arg;
1574         spa_t           *spa = vd->vdev_spa;
1575         l2arc_dev_t     *dev = l2arc_vdev_get(vd);
1576         trim_args_t     ta = {0};
1577         range_seg64_t   physical_rs;
1578
1579         ASSERT(vdev_is_concrete(vd));
1580         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1581
1582         vd->vdev_trim_last_offset = 0;
1583         vd->vdev_trim_rate = 0;
1584         vd->vdev_trim_partial = 0;
1585         vd->vdev_trim_secure = 0;
1586
1587         ta.trim_vdev = vd;
1588         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1589         ta.trim_type = TRIM_TYPE_MANUAL;
1590         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1591         ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1592         ta.trim_flags = 0;
1593
1594         physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1595         physical_rs.rs_end = vd->vdev_trim_bytes_est =
1596             vdev_get_min_asize(vd);
1597
1598         range_tree_add(ta.trim_tree, physical_rs.rs_start,
1599             physical_rs.rs_end - physical_rs.rs_start);
1600
1601         mutex_enter(&vd->vdev_trim_lock);
1602         vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1603         mutex_exit(&vd->vdev_trim_lock);
1604
1605         (void) vdev_trim_ranges(&ta);
1606
1607         spa_config_exit(spa, SCL_CONFIG, FTAG);
1608         mutex_enter(&vd->vdev_trim_io_lock);
1609         while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1610                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1611         }
1612         mutex_exit(&vd->vdev_trim_io_lock);
1613
1614         range_tree_vacate(ta.trim_tree, NULL, NULL);
1615         range_tree_destroy(ta.trim_tree);
1616
1617         mutex_enter(&vd->vdev_trim_lock);
1618         if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1619                 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1620                     vd->vdev_trim_rate, vd->vdev_trim_partial,
1621                     vd->vdev_trim_secure);
1622         }
1623         ASSERT(vd->vdev_trim_thread != NULL ||
1624             vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1625
1626         /*
1627          * Drop the vdev_trim_lock while we sync out the txg since it's
1628          * possible that a device might be trying to come online and
1629          * must check to see if it needs to restart a trim. That thread
1630          * will be holding the spa_config_lock which would prevent the
1631          * txg_wait_synced from completing. Same strategy as in
1632          * vdev_trim_thread().
1633          */
1634         mutex_exit(&vd->vdev_trim_lock);
1635         txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1636         mutex_enter(&vd->vdev_trim_lock);
1637
1638         /*
1639          * Update the header of the cache device here, before
1640          * broadcasting vdev_trim_cv which may lead to the removal
1641          * of the device. The same applies for setting l2ad_trim_all to
1642          * false.
1643          */
1644         spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1645             RW_READER);
1646         memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize);
1647         l2arc_dev_hdr_update(dev);
1648         spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1649
1650         vd->vdev_trim_thread = NULL;
1651         if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1652                 dev->l2ad_trim_all = B_FALSE;
1653
1654         cv_broadcast(&vd->vdev_trim_cv);
1655         mutex_exit(&vd->vdev_trim_lock);
1656
1657         thread_exit();
1658 }
1659
1660 /*
1661  * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1662  * to vd->vdev_trim_thread variable. This facilitates the management of
1663  * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1664  * to a pool or pool creation or when the header of the device is invalid.
1665  */
1666 void
1667 vdev_trim_l2arc(spa_t *spa)
1668 {
1669         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1670
1671         /*
1672          * Locate the spa's l2arc devices and kick off TRIM threads.
1673          */
1674         for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1675                 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1676                 l2arc_dev_t *dev = l2arc_vdev_get(vd);
1677
1678                 if (dev == NULL || !dev->l2ad_trim_all) {
1679                         /*
1680                          * Don't attempt TRIM if the vdev is UNAVAIL or if the
1681                          * cache device was not marked for whole device TRIM
1682                          * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1683                          * is valid with trim_state = VDEV_TRIM_COMPLETE and
1684                          * l2ad_log_entries > 0).
1685                          */
1686                         continue;
1687                 }
1688
1689                 mutex_enter(&vd->vdev_trim_lock);
1690                 ASSERT(vd->vdev_ops->vdev_op_leaf);
1691                 ASSERT(vdev_is_concrete(vd));
1692                 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1693                 ASSERT(!vd->vdev_detached);
1694                 ASSERT(!vd->vdev_trim_exit_wanted);
1695                 ASSERT(!vd->vdev_top->vdev_removing);
1696                 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1697                 vd->vdev_trim_thread = thread_create(NULL, 0,
1698                     vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1699                 mutex_exit(&vd->vdev_trim_lock);
1700         }
1701 }
1702
1703 /*
1704  * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1705  * on leaf vdevs.
1706  */
1707 int
1708 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1709 {
1710         trim_args_t ta = {0};
1711         range_seg64_t physical_rs;
1712         int error;
1713         physical_rs.rs_start = start;
1714         physical_rs.rs_end = start + size;
1715
1716         ASSERT(vdev_is_concrete(vd));
1717         ASSERT(vd->vdev_ops->vdev_op_leaf);
1718         ASSERT(!vd->vdev_detached);
1719         ASSERT(!vd->vdev_top->vdev_removing);
1720
1721         ta.trim_vdev = vd;
1722         ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1723         ta.trim_type = TRIM_TYPE_SIMPLE;
1724         ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1725         ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1726         ta.trim_flags = 0;
1727
1728         ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1729
1730         if (physical_rs.rs_end > physical_rs.rs_start) {
1731                 range_tree_add(ta.trim_tree, physical_rs.rs_start,
1732                     physical_rs.rs_end - physical_rs.rs_start);
1733         } else {
1734                 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1735         }
1736
1737         error = vdev_trim_ranges(&ta);
1738
1739         mutex_enter(&vd->vdev_trim_io_lock);
1740         while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1741                 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1742         }
1743         mutex_exit(&vd->vdev_trim_io_lock);
1744
1745         range_tree_vacate(ta.trim_tree, NULL, NULL);
1746         range_tree_destroy(ta.trim_tree);
1747
1748         return (error);
1749 }
1750
1751 EXPORT_SYMBOL(vdev_trim);
1752 EXPORT_SYMBOL(vdev_trim_stop);
1753 EXPORT_SYMBOL(vdev_trim_stop_all);
1754 EXPORT_SYMBOL(vdev_trim_stop_wait);
1755 EXPORT_SYMBOL(vdev_trim_restart);
1756 EXPORT_SYMBOL(vdev_autotrim);
1757 EXPORT_SYMBOL(vdev_autotrim_stop_all);
1758 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1759 EXPORT_SYMBOL(vdev_autotrim_restart);
1760 EXPORT_SYMBOL(vdev_trim_l2arc);
1761 EXPORT_SYMBOL(vdev_trim_simple);
1762
1763 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1764         "Max size of TRIM commands, larger will be split");
1765
1766 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1767         "Min size of TRIM commands, smaller will be skipped");
1768
1769 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1770         "Skip metaslabs which have never been initialized");
1771
1772 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1773         "Min number of txgs to aggregate frees before issuing TRIM");
1774
1775 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1776         "Max queued TRIMs outstanding per leaf vdev");