]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/zap_leaf.c
Merge llvm-project main llvmorg-18-init-16864-g3b3ee1f53424
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / zap_leaf.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  */
27
28 /*
29  * The 512-byte leaf is broken into 32 16-byte chunks.
30  * chunk number n means l_chunk[n], even though the header precedes it.
31  * the names are stored null-terminated.
32  */
33
34 #include <sys/zio.h>
35 #include <sys/spa.h>
36 #include <sys/dmu.h>
37 #include <sys/zfs_context.h>
38 #include <sys/fs/zfs.h>
39 #include <sys/zap.h>
40 #include <sys/zap_impl.h>
41 #include <sys/zap_leaf.h>
42 #include <sys/arc.h>
43
44 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, struct zap_leaf_entry *le,
45     uint16_t entry);
46
47 #define CHAIN_END 0xffff /* end of the chunk chain */
48
49 #define LEAF_HASH(l, h) \
50         ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
51         ((h) >> \
52         (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
53
54 #define LEAF_HASH_ENTPTR(l, h)  (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
55
56 static void
57 stv(int len, void *addr, uint64_t value)
58 {
59         switch (len) {
60         case 1:
61                 *(uint8_t *)addr = value;
62                 return;
63         case 2:
64                 *(uint16_t *)addr = value;
65                 return;
66         case 4:
67                 *(uint32_t *)addr = value;
68                 return;
69         case 8:
70                 *(uint64_t *)addr = value;
71                 return;
72         default:
73                 PANIC("bad int len %d", len);
74         }
75 }
76
77 static uint64_t
78 ldv(int len, const void *addr)
79 {
80         switch (len) {
81         case 1:
82                 return (*(uint8_t *)addr);
83         case 2:
84                 return (*(uint16_t *)addr);
85         case 4:
86                 return (*(uint32_t *)addr);
87         case 8:
88                 return (*(uint64_t *)addr);
89         default:
90                 PANIC("bad int len %d", len);
91         }
92         return (0xFEEDFACEDEADBEEFULL);
93 }
94
95 void
96 zap_leaf_byteswap(zap_leaf_phys_t *buf, size_t size)
97 {
98         zap_leaf_t l;
99         dmu_buf_t l_dbuf;
100
101         l_dbuf.db_data = buf;
102         l.l_bs = highbit64(size) - 1;
103         l.l_dbuf = &l_dbuf;
104
105         buf->l_hdr.lh_block_type =      BSWAP_64(buf->l_hdr.lh_block_type);
106         buf->l_hdr.lh_prefix =          BSWAP_64(buf->l_hdr.lh_prefix);
107         buf->l_hdr.lh_magic =           BSWAP_32(buf->l_hdr.lh_magic);
108         buf->l_hdr.lh_nfree =           BSWAP_16(buf->l_hdr.lh_nfree);
109         buf->l_hdr.lh_nentries =        BSWAP_16(buf->l_hdr.lh_nentries);
110         buf->l_hdr.lh_prefix_len =      BSWAP_16(buf->l_hdr.lh_prefix_len);
111         buf->l_hdr.lh_freelist =        BSWAP_16(buf->l_hdr.lh_freelist);
112
113         for (uint_t i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
114                 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
115
116         for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
117                 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
118                 struct zap_leaf_entry *le;
119
120                 switch (lc->l_free.lf_type) {
121                 case ZAP_CHUNK_ENTRY:
122                         le = &lc->l_entry;
123
124                         le->le_type =           BSWAP_8(le->le_type);
125                         le->le_value_intlen =   BSWAP_8(le->le_value_intlen);
126                         le->le_next =           BSWAP_16(le->le_next);
127                         le->le_name_chunk =     BSWAP_16(le->le_name_chunk);
128                         le->le_name_numints =   BSWAP_16(le->le_name_numints);
129                         le->le_value_chunk =    BSWAP_16(le->le_value_chunk);
130                         le->le_value_numints =  BSWAP_16(le->le_value_numints);
131                         le->le_cd =             BSWAP_32(le->le_cd);
132                         le->le_hash =           BSWAP_64(le->le_hash);
133                         break;
134                 case ZAP_CHUNK_FREE:
135                         lc->l_free.lf_type =    BSWAP_8(lc->l_free.lf_type);
136                         lc->l_free.lf_next =    BSWAP_16(lc->l_free.lf_next);
137                         break;
138                 case ZAP_CHUNK_ARRAY:
139                         lc->l_array.la_type =   BSWAP_8(lc->l_array.la_type);
140                         lc->l_array.la_next =   BSWAP_16(lc->l_array.la_next);
141                         /* la_array doesn't need swapping */
142                         break;
143                 default:
144                         cmn_err(CE_PANIC, "bad leaf type %d",
145                             lc->l_free.lf_type);
146                 }
147         }
148 }
149
150 void
151 zap_leaf_init(zap_leaf_t *l, boolean_t sort)
152 {
153         l->l_bs = highbit64(l->l_dbuf->db_size) - 1;
154         memset(&zap_leaf_phys(l)->l_hdr, 0,
155             sizeof (struct zap_leaf_header));
156         memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
157             2*ZAP_LEAF_HASH_NUMENTRIES(l));
158         for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
159                 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
160                 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
161         }
162         ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
163         zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF;
164         zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
165         zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
166         if (sort)
167                 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
168 }
169
170 /*
171  * Routines which manipulate leaf chunks (l_chunk[]).
172  */
173
174 static uint16_t
175 zap_leaf_chunk_alloc(zap_leaf_t *l)
176 {
177         ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0);
178
179         uint_t chunk = zap_leaf_phys(l)->l_hdr.lh_freelist;
180         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
181         ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
182
183         zap_leaf_phys(l)->l_hdr.lh_freelist =
184             ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
185
186         zap_leaf_phys(l)->l_hdr.lh_nfree--;
187
188         return (chunk);
189 }
190
191 static void
192 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
193 {
194         struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
195         ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
196         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
197         ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
198
199         zlf->lf_type = ZAP_CHUNK_FREE;
200         zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist;
201         memset(zlf->lf_pad, 0, sizeof (zlf->lf_pad)); /* help it to compress */
202         zap_leaf_phys(l)->l_hdr.lh_freelist = chunk;
203
204         zap_leaf_phys(l)->l_hdr.lh_nfree++;
205 }
206
207 /*
208  * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
209  */
210
211 static uint16_t
212 zap_leaf_array_create(zap_leaf_t *l, const char *buf,
213     int integer_size, int num_integers)
214 {
215         uint16_t chunk_head;
216         uint16_t *chunkp = &chunk_head;
217         int byten = integer_size;
218         uint64_t value = 0;
219         int shift = (integer_size - 1) * 8;
220         int len = num_integers;
221
222         ASSERT3U(num_integers * integer_size, <=, ZAP_MAXVALUELEN);
223
224         if (len > 0)
225                 value = ldv(integer_size, buf);
226         while (len > 0) {
227                 uint16_t chunk = zap_leaf_chunk_alloc(l);
228                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
229
230                 la->la_type = ZAP_CHUNK_ARRAY;
231                 for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
232                         la->la_array[i] = value >> shift;
233                         value <<= 8;
234                         if (--byten == 0) {
235                                 if (--len == 0)
236                                         break;
237                                 byten = integer_size;
238                                 buf += integer_size;
239                                 value = ldv(integer_size, buf);
240                         }
241                 }
242
243                 *chunkp = chunk;
244                 chunkp = &la->la_next;
245         }
246         *chunkp = CHAIN_END;
247
248         return (chunk_head);
249 }
250
251 static void
252 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
253 {
254         uint16_t chunk = *chunkp;
255
256         *chunkp = CHAIN_END;
257
258         while (chunk != CHAIN_END) {
259                 uint_t nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
260                 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
261                     ZAP_CHUNK_ARRAY);
262                 zap_leaf_chunk_free(l, chunk);
263                 chunk = nextchunk;
264         }
265 }
266
267 /* array_len and buf_len are in integers, not bytes */
268 static void
269 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
270     int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
271     void *buf)
272 {
273         int len = MIN(array_len, buf_len);
274         int byten = 0;
275         uint64_t value = 0;
276         char *p = buf;
277
278         ASSERT3U(array_int_len, <=, buf_int_len);
279
280         /* Fast path for one 8-byte integer */
281         if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
282                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
283                 uint8_t *ip = la->la_array;
284                 uint64_t *buf64 = buf;
285
286                 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
287                     (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
288                     (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
289                     (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
290                 return;
291         }
292
293         /* Fast path for an array of 1-byte integers (eg. the entry name) */
294         if (array_int_len == 1 && buf_int_len == 1 &&
295             buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
296                 while (chunk != CHAIN_END) {
297                         struct zap_leaf_array *la =
298                             &ZAP_LEAF_CHUNK(l, chunk).l_array;
299                         memcpy(p, la->la_array, ZAP_LEAF_ARRAY_BYTES);
300                         p += ZAP_LEAF_ARRAY_BYTES;
301                         chunk = la->la_next;
302                 }
303                 return;
304         }
305
306         while (len > 0) {
307                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
308
309                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
310                 for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
311                         value = (value << 8) | la->la_array[i];
312                         byten++;
313                         if (byten == array_int_len) {
314                                 stv(buf_int_len, p, value);
315                                 byten = 0;
316                                 len--;
317                                 if (len == 0)
318                                         return;
319                                 p += buf_int_len;
320                         }
321                 }
322                 chunk = la->la_next;
323         }
324 }
325
326 static boolean_t
327 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
328     uint_t chunk, int array_numints)
329 {
330         int bseen = 0;
331
332         if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
333                 uint64_t *thiskey =
334                     kmem_alloc(array_numints * sizeof (*thiskey), KM_SLEEP);
335                 ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
336
337                 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
338                     sizeof (*thiskey), array_numints, thiskey);
339                 boolean_t match = memcmp(thiskey, zn->zn_key_orig,
340                     array_numints * sizeof (*thiskey)) == 0;
341                 kmem_free(thiskey, array_numints * sizeof (*thiskey));
342                 return (match);
343         }
344
345         ASSERT(zn->zn_key_intlen == 1);
346         if (zn->zn_matchtype & MT_NORMALIZE) {
347                 char *thisname = kmem_alloc(array_numints, KM_SLEEP);
348
349                 zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
350                     sizeof (char), array_numints, thisname);
351                 boolean_t match = zap_match(zn, thisname);
352                 kmem_free(thisname, array_numints);
353                 return (match);
354         }
355
356         /*
357          * Fast path for exact matching.
358          * First check that the lengths match, so that we don't read
359          * past the end of the zn_key_orig array.
360          */
361         if (array_numints != zn->zn_key_orig_numints)
362                 return (B_FALSE);
363         while (bseen < array_numints) {
364                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
365                 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
366                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
367                 if (memcmp(la->la_array, (char *)zn->zn_key_orig + bseen,
368                     toread))
369                         break;
370                 chunk = la->la_next;
371                 bseen += toread;
372         }
373         return (bseen == array_numints);
374 }
375
376 /*
377  * Routines which manipulate leaf entries.
378  */
379
380 int
381 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
382 {
383         struct zap_leaf_entry *le;
384
385         ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
386
387         for (uint16_t *chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
388             *chunkp != CHAIN_END; chunkp = &le->le_next) {
389                 uint16_t chunk = *chunkp;
390                 le = ZAP_LEAF_ENTRY(l, chunk);
391
392                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
393                 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
394
395                 if (le->le_hash != zn->zn_hash)
396                         continue;
397
398                 /*
399                  * NB: the entry chain is always sorted by cd on
400                  * normalized zap objects, so this will find the
401                  * lowest-cd match for MT_NORMALIZE.
402                  */
403                 ASSERT((zn->zn_matchtype == 0) ||
404                     (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
405                 if (zap_leaf_array_match(l, zn, le->le_name_chunk,
406                     le->le_name_numints)) {
407                         zeh->zeh_num_integers = le->le_value_numints;
408                         zeh->zeh_integer_size = le->le_value_intlen;
409                         zeh->zeh_cd = le->le_cd;
410                         zeh->zeh_hash = le->le_hash;
411                         zeh->zeh_chunkp = chunkp;
412                         zeh->zeh_leaf = l;
413                         return (0);
414                 }
415         }
416
417         return (SET_ERROR(ENOENT));
418 }
419
420 /* Return (h1,cd1 >= h2,cd2) */
421 #define HCD_GTEQ(h1, cd1, h2, cd2) \
422         ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
423
424 int
425 zap_leaf_lookup_closest(zap_leaf_t *l,
426     uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
427 {
428         uint64_t besth = -1ULL;
429         uint32_t bestcd = -1U;
430         uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
431         struct zap_leaf_entry *le;
432
433         ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
434
435         for (uint16_t lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
436                 for (uint16_t chunk = zap_leaf_phys(l)->l_hash[lh];
437                     chunk != CHAIN_END; chunk = le->le_next) {
438                         le = ZAP_LEAF_ENTRY(l, chunk);
439
440                         ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
441                         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
442
443                         if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
444                             HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
445                                 ASSERT3U(bestlh, >=, lh);
446                                 bestlh = lh;
447                                 besth = le->le_hash;
448                                 bestcd = le->le_cd;
449
450                                 zeh->zeh_num_integers = le->le_value_numints;
451                                 zeh->zeh_integer_size = le->le_value_intlen;
452                                 zeh->zeh_cd = le->le_cd;
453                                 zeh->zeh_hash = le->le_hash;
454                                 zeh->zeh_fakechunk = chunk;
455                                 zeh->zeh_chunkp = &zeh->zeh_fakechunk;
456                                 zeh->zeh_leaf = l;
457                         }
458                 }
459         }
460
461         return (bestcd == -1U ? SET_ERROR(ENOENT) : 0);
462 }
463
464 int
465 zap_entry_read(const zap_entry_handle_t *zeh,
466     uint8_t integer_size, uint64_t num_integers, void *buf)
467 {
468         struct zap_leaf_entry *le =
469             ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
470         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
471
472         if (le->le_value_intlen > integer_size)
473                 return (SET_ERROR(EINVAL));
474
475         zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
476             le->le_value_intlen, le->le_value_numints,
477             integer_size, num_integers, buf);
478
479         if (zeh->zeh_num_integers > num_integers)
480                 return (SET_ERROR(EOVERFLOW));
481         return (0);
482
483 }
484
485 int
486 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
487     char *buf)
488 {
489         struct zap_leaf_entry *le =
490             ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
491         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
492
493         if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
494                 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
495                     le->le_name_numints, 8, buflen / 8, buf);
496         } else {
497                 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
498                     le->le_name_numints, 1, buflen, buf);
499         }
500         if (le->le_name_numints > buflen)
501                 return (SET_ERROR(EOVERFLOW));
502         return (0);
503 }
504
505 int
506 zap_entry_update(zap_entry_handle_t *zeh,
507     uint8_t integer_size, uint64_t num_integers, const void *buf)
508 {
509         zap_leaf_t *l = zeh->zeh_leaf;
510         struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
511
512         int delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
513             ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
514
515         if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks)
516                 return (SET_ERROR(EAGAIN));
517
518         zap_leaf_array_free(l, &le->le_value_chunk);
519         le->le_value_chunk =
520             zap_leaf_array_create(l, buf, integer_size, num_integers);
521         le->le_value_numints = num_integers;
522         le->le_value_intlen = integer_size;
523         return (0);
524 }
525
526 void
527 zap_entry_remove(zap_entry_handle_t *zeh)
528 {
529         zap_leaf_t *l = zeh->zeh_leaf;
530
531         ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
532
533         uint16_t entry_chunk = *zeh->zeh_chunkp;
534         struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry_chunk);
535         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
536
537         zap_leaf_array_free(l, &le->le_name_chunk);
538         zap_leaf_array_free(l, &le->le_value_chunk);
539
540         *zeh->zeh_chunkp = le->le_next;
541         zap_leaf_chunk_free(l, entry_chunk);
542
543         zap_leaf_phys(l)->l_hdr.lh_nentries--;
544 }
545
546 int
547 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
548     uint8_t integer_size, uint64_t num_integers, const void *buf,
549     zap_entry_handle_t *zeh)
550 {
551         uint16_t chunk;
552         struct zap_leaf_entry *le;
553         uint64_t h = zn->zn_hash;
554
555         uint64_t valuelen = integer_size * num_integers;
556
557         uint_t numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
558             zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
559         if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
560                 return (SET_ERROR(E2BIG));
561
562         if (cd == ZAP_NEED_CD) {
563                 /* find the lowest unused cd */
564                 if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
565                         cd = 0;
566
567                         for (chunk = *LEAF_HASH_ENTPTR(l, h);
568                             chunk != CHAIN_END; chunk = le->le_next) {
569                                 le = ZAP_LEAF_ENTRY(l, chunk);
570                                 if (le->le_cd > cd)
571                                         break;
572                                 if (le->le_hash == h) {
573                                         ASSERT3U(cd, ==, le->le_cd);
574                                         cd++;
575                                 }
576                         }
577                 } else {
578                         /* old unsorted format; do it the O(n^2) way */
579                         for (cd = 0; ; cd++) {
580                                 for (chunk = *LEAF_HASH_ENTPTR(l, h);
581                                     chunk != CHAIN_END; chunk = le->le_next) {
582                                         le = ZAP_LEAF_ENTRY(l, chunk);
583                                         if (le->le_hash == h &&
584                                             le->le_cd == cd) {
585                                                 break;
586                                         }
587                                 }
588                                 /* If this cd is not in use, we are good. */
589                                 if (chunk == CHAIN_END)
590                                         break;
591                         }
592                 }
593                 /*
594                  * We would run out of space in a block before we could
595                  * store enough entries to run out of CD values.
596                  */
597                 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
598         }
599
600         if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks)
601                 return (SET_ERROR(EAGAIN));
602
603         /* make the entry */
604         chunk = zap_leaf_chunk_alloc(l);
605         le = ZAP_LEAF_ENTRY(l, chunk);
606         le->le_type = ZAP_CHUNK_ENTRY;
607         le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
608             zn->zn_key_intlen, zn->zn_key_orig_numints);
609         le->le_name_numints = zn->zn_key_orig_numints;
610         le->le_value_chunk =
611             zap_leaf_array_create(l, buf, integer_size, num_integers);
612         le->le_value_numints = num_integers;
613         le->le_value_intlen = integer_size;
614         le->le_hash = h;
615         le->le_cd = cd;
616
617         /* link it into the hash chain */
618         /* XXX if we did the search above, we could just use that */
619         uint16_t *chunkp = zap_leaf_rehash_entry(l, le, chunk);
620
621         zap_leaf_phys(l)->l_hdr.lh_nentries++;
622
623         zeh->zeh_leaf = l;
624         zeh->zeh_num_integers = num_integers;
625         zeh->zeh_integer_size = le->le_value_intlen;
626         zeh->zeh_cd = le->le_cd;
627         zeh->zeh_hash = le->le_hash;
628         zeh->zeh_chunkp = chunkp;
629
630         return (0);
631 }
632
633 /*
634  * Determine if there is another entry with the same normalized form.
635  * For performance purposes, either zn or name must be provided (the
636  * other can be NULL).  Note, there usually won't be any hash
637  * conflicts, in which case we don't need the concatenated/normalized
638  * form of the name.  But all callers have one of these on hand anyway,
639  * so might as well take advantage.  A cleaner but slower interface
640  * would accept neither argument, and compute the normalized name as
641  * needed (using zap_name_alloc_str(zap_entry_read_name(zeh))).
642  */
643 boolean_t
644 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
645     const char *name, zap_t *zap)
646 {
647         struct zap_leaf_entry *le;
648         boolean_t allocdzn = B_FALSE;
649
650         if (zap->zap_normflags == 0)
651                 return (B_FALSE);
652
653         for (uint16_t chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
654             chunk != CHAIN_END; chunk = le->le_next) {
655                 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
656                 if (le->le_hash != zeh->zeh_hash)
657                         continue;
658                 if (le->le_cd == zeh->zeh_cd)
659                         continue;
660
661                 if (zn == NULL) {
662                         zn = zap_name_alloc_str(zap, name, MT_NORMALIZE);
663                         allocdzn = B_TRUE;
664                 }
665                 if (zap_leaf_array_match(zeh->zeh_leaf, zn,
666                     le->le_name_chunk, le->le_name_numints)) {
667                         if (allocdzn)
668                                 zap_name_free(zn);
669                         return (B_TRUE);
670                 }
671         }
672         if (allocdzn)
673                 zap_name_free(zn);
674         return (B_FALSE);
675 }
676
677 /*
678  * Routines for transferring entries between leafs.
679  */
680
681 static uint16_t *
682 zap_leaf_rehash_entry(zap_leaf_t *l, struct zap_leaf_entry *le, uint16_t entry)
683 {
684         struct zap_leaf_entry *le2;
685         uint16_t *chunkp;
686
687         /*
688          * keep the entry chain sorted by cd
689          * NB: this will not cause problems for unsorted leafs, though
690          * it is unnecessary there.
691          */
692         for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
693             *chunkp != CHAIN_END; chunkp = &le2->le_next) {
694                 le2 = ZAP_LEAF_ENTRY(l, *chunkp);
695                 if (le2->le_cd > le->le_cd)
696                         break;
697         }
698
699         le->le_next = *chunkp;
700         *chunkp = entry;
701         return (chunkp);
702 }
703
704 static uint16_t
705 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
706 {
707         uint16_t new_chunk;
708         uint16_t *nchunkp = &new_chunk;
709
710         while (chunk != CHAIN_END) {
711                 uint16_t nchunk = zap_leaf_chunk_alloc(nl);
712                 struct zap_leaf_array *nla =
713                     &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
714                 struct zap_leaf_array *la =
715                     &ZAP_LEAF_CHUNK(l, chunk).l_array;
716                 uint_t nextchunk = la->la_next;
717
718                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
719                 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
720
721                 *nla = *la; /* structure assignment */
722
723                 zap_leaf_chunk_free(l, chunk);
724                 chunk = nextchunk;
725                 *nchunkp = nchunk;
726                 nchunkp = &nla->la_next;
727         }
728         *nchunkp = CHAIN_END;
729         return (new_chunk);
730 }
731
732 static void
733 zap_leaf_transfer_entry(zap_leaf_t *l, uint_t entry, zap_leaf_t *nl)
734 {
735         struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
736         ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
737
738         uint16_t chunk = zap_leaf_chunk_alloc(nl);
739         struct zap_leaf_entry *nle = ZAP_LEAF_ENTRY(nl, chunk);
740         *nle = *le; /* structure assignment */
741
742         (void) zap_leaf_rehash_entry(nl, nle, chunk);
743
744         nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
745         nle->le_value_chunk =
746             zap_leaf_transfer_array(l, le->le_value_chunk, nl);
747
748         zap_leaf_chunk_free(l, entry);
749
750         zap_leaf_phys(l)->l_hdr.lh_nentries--;
751         zap_leaf_phys(nl)->l_hdr.lh_nentries++;
752 }
753
754 /*
755  * Transfer the entries whose hash prefix ends in 1 to the new leaf.
756  */
757 void
758 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
759 {
760         uint_t bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len;
761
762         /* set new prefix and prefix_len */
763         zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1;
764         zap_leaf_phys(l)->l_hdr.lh_prefix_len++;
765         zap_leaf_phys(nl)->l_hdr.lh_prefix =
766             zap_leaf_phys(l)->l_hdr.lh_prefix | 1;
767         zap_leaf_phys(nl)->l_hdr.lh_prefix_len =
768             zap_leaf_phys(l)->l_hdr.lh_prefix_len;
769
770         /* break existing hash chains */
771         memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
772             2*ZAP_LEAF_HASH_NUMENTRIES(l));
773
774         if (sort)
775                 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
776
777         /*
778          * Transfer entries whose hash bit 'bit' is set to nl; rehash
779          * the remaining entries
780          *
781          * NB: We could find entries via the hashtable instead. That
782          * would be O(hashents+numents) rather than O(numblks+numents),
783          * but this accesses memory more sequentially, and when we're
784          * called, the block is usually pretty full.
785          */
786         for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
787                 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
788                 if (le->le_type != ZAP_CHUNK_ENTRY)
789                         continue;
790
791                 if (le->le_hash & (1ULL << bit))
792                         zap_leaf_transfer_entry(l, i, nl);
793                 else
794                         (void) zap_leaf_rehash_entry(l, le, i);
795         }
796 }
797
798 void
799 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
800 {
801         uint_t n = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
802             zap_leaf_phys(l)->l_hdr.lh_prefix_len;
803         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
804         zs->zs_leafs_with_2n_pointers[n]++;
805
806
807         n = zap_leaf_phys(l)->l_hdr.lh_nentries/5;
808         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
809         zs->zs_blocks_with_n5_entries[n]++;
810
811         n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
812             zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
813             (1<<FZAP_BLOCK_SHIFT(zap));
814         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
815         zs->zs_blocks_n_tenths_full[n]++;
816
817         for (uint_t i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
818                 uint_t nentries = 0;
819                 uint_t chunk = zap_leaf_phys(l)->l_hash[i];
820
821                 while (chunk != CHAIN_END) {
822                         struct zap_leaf_entry *le =
823                             ZAP_LEAF_ENTRY(l, chunk);
824
825                         n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
826                             ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
827                             le->le_value_intlen);
828                         n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
829                         zs->zs_entries_using_n_chunks[n]++;
830
831                         chunk = le->le_next;
832                         nentries++;
833                 }
834
835                 n = nentries;
836                 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
837                 zs->zs_buckets_with_n_entries[n]++;
838         }
839 }