]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/contrib/openzfs/module/zfs/zthr.c
MFV r365636: libarchive: import fix for WARNS=6 builds in testing bits
[FreeBSD/FreeBSD.git] / sys / contrib / openzfs / module / zfs / zthr.c
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source. A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15
16 /*
17  * Copyright (c) 2017, 2020 by Delphix. All rights reserved.
18  */
19
20 /*
21  * ZTHR Infrastructure
22  * ===================
23  *
24  * ZTHR threads are used for isolated operations that span multiple txgs
25  * within a SPA. They generally exist from SPA creation/loading and until
26  * the SPA is exported/destroyed. The ideal requirements for an operation
27  * to be modeled with a zthr are the following:
28  *
29  * 1] The operation needs to run over multiple txgs.
30  * 2] There is be a single point of reference in memory or on disk that
31  *    indicates whether the operation should run/is running or has
32  *    stopped.
33  *
34  * If the operation satisfies the above then the following rules guarantee
35  * a certain level of correctness:
36  *
37  * 1] Any thread EXCEPT the zthr changes the work indicator from stopped
38  *    to running but not the opposite.
39  * 2] Only the zthr can change the work indicator from running to stopped
40  *    (e.g. when it is done) but not the opposite.
41  *
42  * This way a normal zthr cycle should go like this:
43  *
44  * 1] An external thread changes the work indicator from stopped to
45  *    running and wakes up the zthr.
46  * 2] The zthr wakes up, checks the indicator and starts working.
47  * 3] When the zthr is done, it changes the indicator to stopped, allowing
48  *    a new cycle to start.
49  *
50  * Besides being awakened by other threads, a zthr can be configured
51  * during creation to wakeup on its own after a specified interval
52  * [see zthr_create_timer()].
53  *
54  * Note: ZTHR threads are NOT a replacement for generic threads! Please
55  * ensure that they fit your use-case well before using them.
56  *
57  * == ZTHR creation
58  *
59  * Every zthr needs three inputs to start running:
60  *
61  * 1] A user-defined checker function (checkfunc) that decides whether
62  *    the zthr should start working or go to sleep. The function should
63  *    return TRUE when the zthr needs to work or FALSE to let it sleep,
64  *    and should adhere to the following signature:
65  *    boolean_t checkfunc_name(void *args, zthr_t *t);
66  *
67  * 2] A user-defined ZTHR function (func) which the zthr executes when
68  *    it is not sleeping. The function should adhere to the following
69  *    signature type:
70  *    void func_name(void *args, zthr_t *t);
71  *
72  * 3] A void args pointer that will be passed to checkfunc and func
73  *    implicitly by the infrastructure.
74  *
75  * The reason why the above API needs two different functions,
76  * instead of one that both checks and does the work, has to do with
77  * the zthr's internal state lock (zthr_state_lock) and the allowed
78  * cancellation windows. We want to hold the zthr_state_lock while
79  * running checkfunc but not while running func. This way the zthr
80  * can be cancelled while doing work and not while checking for work.
81  *
82  * To start a zthr:
83  *     zthr_t *zthr_pointer = zthr_create(checkfunc, func, args);
84  * or
85  *     zthr_t *zthr_pointer = zthr_create_timer(checkfunc, func,
86  *         args, max_sleep);
87  *
88  * After that you should be able to wakeup, cancel, and resume the
89  * zthr from another thread using the zthr_pointer.
90  *
91  * NOTE: ZTHR threads could potentially wake up spuriously and the
92  * user should take this into account when writing a checkfunc.
93  * [see ZTHR state transitions]
94  *
95  * == ZTHR wakeup
96  *
97  * ZTHR wakeup should be used when new work is added for the zthr. The
98  * sleeping zthr will wakeup, see that it has more work to complete
99  * and proceed. This can be invoked from open or syncing context.
100  *
101  * To wakeup a zthr:
102  *     zthr_wakeup(zthr_t *t)
103  *
104  * == ZTHR cancellation and resumption
105  *
106  * ZTHR threads must be cancelled when their SPA is being exported
107  * or when they need to be paused so they don't interfere with other
108  * operations.
109  *
110  * To cancel a zthr:
111  *     zthr_cancel(zthr_pointer);
112  *
113  * To resume it:
114  *     zthr_resume(zthr_pointer);
115  *
116  * ZTHR cancel and resume should be invoked in open context during the
117  * lifecycle of the pool as it is imported, exported or destroyed.
118  *
119  * A zthr will implicitly check if it has received a cancellation
120  * signal every time func returns and every time it wakes up [see
121  * ZTHR state transitions below].
122  *
123  * At times, waiting for the zthr's func to finish its job may take
124  * time. This may be very time-consuming for some operations that
125  * need to cancel the SPA's zthrs (e.g spa_export). For this scenario
126  * the user can explicitly make their ZTHR function aware of incoming
127  * cancellation signals using zthr_iscancelled(). A common pattern for
128  * that looks like this:
129  *
130  * int
131  * func_name(void *args, zthr_t *t)
132  * {
133  *     ... <unpack args> ...
134  *     while (!work_done && !zthr_iscancelled(t)) {
135  *         ... <do more work> ...
136  *     }
137  * }
138  *
139  * == ZTHR cleanup
140  *
141  * Cancelling a zthr doesn't clean up its metadata (internal locks,
142  * function pointers to func and checkfunc, etc..). This is because
143  * we want to keep them around in case we want to resume the execution
144  * of the zthr later. Similarly for zthrs that exit themselves.
145  *
146  * To completely cleanup a zthr, cancel it first to ensure that it
147  * is not running and then use zthr_destroy().
148  *
149  * == ZTHR state transitions
150  *
151  *    zthr creation
152  *      +
153  *      |
154  *      |      woke up
155  *      |   +--------------+ sleep
156  *      |   |                  ^
157  *      |   |                  |
158  *      |   |                  | FALSE
159  *      |   |                  |
160  *      v   v     FALSE        +
161  *   cancelled? +---------> checkfunc?
162  *      +   ^                  +
163  *      |   |                  |
164  *      |   |                  | TRUE
165  *      |   |                  |
166  *      |   |  func returned   v
167  *      |   +---------------+ func
168  *      |
169  *      | TRUE
170  *      |
171  *      v
172  *   zthr stopped running
173  *
174  * == Implementation of ZTHR requests
175  *
176  * ZTHR cancel and resume are requests on a zthr to change its
177  * internal state. These requests are serialized using the
178  * zthr_request_lock, while changes in its internal state are
179  * protected by the zthr_state_lock. A request will first acquire
180  * the zthr_request_lock and then immediately acquire the
181  * zthr_state_lock. We do this so that incoming requests are
182  * serialized using the request lock, while still allowing us
183  * to use the state lock for thread communication via zthr_cv.
184  *
185  * ZTHR wakeup broadcasts to zthr_cv, causing sleeping threads
186  * to wakeup. It acquires the zthr_state_lock but not the
187  * zthr_request_lock, so that a wakeup on a zthr in the middle
188  * of being cancelled will not block.
189  */
190
191 #include <sys/zfs_context.h>
192 #include <sys/zthr.h>
193
194 struct zthr {
195         /* running thread doing the work */
196         kthread_t       *zthr_thread;
197
198         /* lock protecting internal data & invariants */
199         kmutex_t        zthr_state_lock;
200
201         /* mutex that serializes external requests */
202         kmutex_t        zthr_request_lock;
203
204         /* notification mechanism for requests */
205         kcondvar_t      zthr_cv;
206
207         /* flag set to true if we are canceling the zthr */
208         boolean_t       zthr_cancel;
209
210         /* flag set to true if we are waiting for the zthr to finish */
211         boolean_t       zthr_haswaiters;
212         kcondvar_t      zthr_wait_cv;
213         /*
214          * maximum amount of time that the zthr is spent sleeping;
215          * if this is 0, the thread doesn't wake up until it gets
216          * signaled.
217          */
218         hrtime_t        zthr_sleep_timeout;
219
220         /* consumer-provided callbacks & data */
221         zthr_checkfunc_t        *zthr_checkfunc;
222         zthr_func_t     *zthr_func;
223         void            *zthr_arg;
224 };
225
226 static void
227 zthr_procedure(void *arg)
228 {
229         zthr_t *t = arg;
230
231         mutex_enter(&t->zthr_state_lock);
232         ASSERT3P(t->zthr_thread, ==, curthread);
233
234         while (!t->zthr_cancel) {
235                 if (t->zthr_checkfunc(t->zthr_arg, t)) {
236                         mutex_exit(&t->zthr_state_lock);
237                         t->zthr_func(t->zthr_arg, t);
238                         mutex_enter(&t->zthr_state_lock);
239                 } else {
240                         /*
241                          * cv_wait_sig() is used instead of cv_wait() in
242                          * order to prevent this process from incorrectly
243                          * contributing to the system load average when idle.
244                          */
245                         if (t->zthr_sleep_timeout == 0) {
246                                 cv_wait_sig(&t->zthr_cv, &t->zthr_state_lock);
247                         } else {
248                                 (void) cv_timedwait_sig_hires(&t->zthr_cv,
249                                     &t->zthr_state_lock, t->zthr_sleep_timeout,
250                                     MSEC2NSEC(1), 0);
251                         }
252                 }
253                 if (t->zthr_haswaiters) {
254                         t->zthr_haswaiters = B_FALSE;
255                         cv_broadcast(&t->zthr_wait_cv);
256                 }
257         }
258
259         /*
260          * Clear out the kernel thread metadata and notify the
261          * zthr_cancel() thread that we've stopped running.
262          */
263         t->zthr_thread = NULL;
264         t->zthr_cancel = B_FALSE;
265         cv_broadcast(&t->zthr_cv);
266
267         mutex_exit(&t->zthr_state_lock);
268         thread_exit();
269 }
270
271 zthr_t *
272 zthr_create(const char *zthr_name, zthr_checkfunc_t *checkfunc,
273     zthr_func_t *func, void *arg)
274 {
275         return (zthr_create_timer(zthr_name, checkfunc,
276             func, arg, (hrtime_t)0));
277 }
278
279 /*
280  * Create a zthr with specified maximum sleep time.  If the time
281  * in sleeping state exceeds max_sleep, a wakeup(do the check and
282  * start working if required) will be triggered.
283  */
284 zthr_t *
285 zthr_create_timer(const char *zthr_name, zthr_checkfunc_t *checkfunc,
286     zthr_func_t *func, void *arg, hrtime_t max_sleep)
287 {
288         zthr_t *t = kmem_zalloc(sizeof (*t), KM_SLEEP);
289         mutex_init(&t->zthr_state_lock, NULL, MUTEX_DEFAULT, NULL);
290         mutex_init(&t->zthr_request_lock, NULL, MUTEX_DEFAULT, NULL);
291         cv_init(&t->zthr_cv, NULL, CV_DEFAULT, NULL);
292         cv_init(&t->zthr_wait_cv, NULL, CV_DEFAULT, NULL);
293
294         mutex_enter(&t->zthr_state_lock);
295         t->zthr_checkfunc = checkfunc;
296         t->zthr_func = func;
297         t->zthr_arg = arg;
298         t->zthr_sleep_timeout = max_sleep;
299
300         t->zthr_thread = thread_create_named(zthr_name, NULL, 0,
301             zthr_procedure, t, 0, &p0, TS_RUN, minclsyspri);
302
303         mutex_exit(&t->zthr_state_lock);
304
305         return (t);
306 }
307
308 void
309 zthr_destroy(zthr_t *t)
310 {
311         ASSERT(!MUTEX_HELD(&t->zthr_state_lock));
312         ASSERT(!MUTEX_HELD(&t->zthr_request_lock));
313         VERIFY3P(t->zthr_thread, ==, NULL);
314         mutex_destroy(&t->zthr_request_lock);
315         mutex_destroy(&t->zthr_state_lock);
316         cv_destroy(&t->zthr_cv);
317         cv_destroy(&t->zthr_wait_cv);
318         kmem_free(t, sizeof (*t));
319 }
320
321 /*
322  * Wake up the zthr if it is sleeping. If the thread has been cancelled
323  * or is in the process of being cancelled, this is a no-op.
324  */
325 void
326 zthr_wakeup(zthr_t *t)
327 {
328         mutex_enter(&t->zthr_state_lock);
329
330         /*
331          * There are 5 states that we can find the zthr when issuing
332          * this broadcast:
333          *
334          * [1] The common case of the thread being asleep, at which
335          *     point the broadcast will wake it up.
336          * [2] The thread has been cancelled. Waking up a cancelled
337          *     thread is a no-op. Any work that is still left to be
338          *     done should be handled the next time the thread is
339          *     resumed.
340          * [3] The thread is doing work and is already up, so this
341          *     is basically a no-op.
342          * [4] The thread was just created/resumed, in which case the
343          *     behavior is similar to [3].
344          * [5] The thread is in the middle of being cancelled, which
345          *     will be a no-op.
346          */
347         cv_broadcast(&t->zthr_cv);
348
349         mutex_exit(&t->zthr_state_lock);
350 }
351
352 /*
353  * Sends a cancel request to the zthr and blocks until the zthr is
354  * cancelled. If the zthr is not running (e.g. has been cancelled
355  * already), this is a no-op. Note that this function should not be
356  * called from syncing context as it could deadlock with the zthr_func.
357  */
358 void
359 zthr_cancel(zthr_t *t)
360 {
361         mutex_enter(&t->zthr_request_lock);
362         mutex_enter(&t->zthr_state_lock);
363
364         /*
365          * Since we are holding the zthr_state_lock at this point
366          * we can find the state in one of the following 4 states:
367          *
368          * [1] The thread has already been cancelled, therefore
369          *     there is nothing for us to do.
370          * [2] The thread is sleeping so we set the flag, broadcast
371          *     the CV and wait for it to exit.
372          * [3] The thread is doing work, in which case we just set
373          *     the flag and wait for it to finish.
374          * [4] The thread was just created/resumed, in which case
375          *     the behavior is similar to [3].
376          *
377          * Since requests are serialized, by the time that we get
378          * control back we expect that the zthr is cancelled and
379          * not running anymore.
380          */
381         if (t->zthr_thread != NULL) {
382                 t->zthr_cancel = B_TRUE;
383
384                 /* broadcast in case the zthr is sleeping */
385                 cv_broadcast(&t->zthr_cv);
386
387                 while (t->zthr_thread != NULL)
388                         cv_wait(&t->zthr_cv, &t->zthr_state_lock);
389
390                 ASSERT(!t->zthr_cancel);
391         }
392
393         mutex_exit(&t->zthr_state_lock);
394         mutex_exit(&t->zthr_request_lock);
395 }
396
397 /*
398  * Sends a resume request to the supplied zthr. If the zthr is already
399  * running this is a no-op. Note that this function should not be
400  * called from syncing context as it could deadlock with the zthr_func.
401  */
402 void
403 zthr_resume(zthr_t *t)
404 {
405         mutex_enter(&t->zthr_request_lock);
406         mutex_enter(&t->zthr_state_lock);
407
408         ASSERT3P(&t->zthr_checkfunc, !=, NULL);
409         ASSERT3P(&t->zthr_func, !=, NULL);
410         ASSERT(!t->zthr_cancel);
411         ASSERT(!t->zthr_haswaiters);
412
413         /*
414          * There are 4 states that we find the zthr in at this point
415          * given the locks that we hold:
416          *
417          * [1] The zthr was cancelled, so we spawn a new thread for
418          *     the zthr (common case).
419          * [2] The zthr is running at which point this is a no-op.
420          * [3] The zthr is sleeping at which point this is a no-op.
421          * [4] The zthr was just spawned at which point this is a
422          *     no-op.
423          */
424         if (t->zthr_thread == NULL) {
425                 t->zthr_thread = thread_create(NULL, 0, zthr_procedure, t,
426                     0, &p0, TS_RUN, minclsyspri);
427         }
428
429         mutex_exit(&t->zthr_state_lock);
430         mutex_exit(&t->zthr_request_lock);
431 }
432
433 /*
434  * This function is intended to be used by the zthr itself
435  * (specifically the zthr_func callback provided) to check
436  * if another thread has signaled it to stop running before
437  * doing some expensive operation.
438  *
439  * returns TRUE if we are in the middle of trying to cancel
440  *     this thread.
441  *
442  * returns FALSE otherwise.
443  */
444 boolean_t
445 zthr_iscancelled(zthr_t *t)
446 {
447         ASSERT3P(t->zthr_thread, ==, curthread);
448
449         /*
450          * The majority of the functions here grab zthr_request_lock
451          * first and then zthr_state_lock. This function only grabs
452          * the zthr_state_lock. That is because this function should
453          * only be called from the zthr_func to check if someone has
454          * issued a zthr_cancel() on the thread. If there is a zthr_cancel()
455          * happening concurrently, attempting to grab the request lock
456          * here would result in a deadlock.
457          *
458          * By grabbing only the zthr_state_lock this function is allowed
459          * to run concurrently with a zthr_cancel() request.
460          */
461         mutex_enter(&t->zthr_state_lock);
462         boolean_t cancelled = t->zthr_cancel;
463         mutex_exit(&t->zthr_state_lock);
464         return (cancelled);
465 }
466
467 /*
468  * Wait for the zthr to finish its current function. Similar to
469  * zthr_iscancelled, you can use zthr_has_waiters to have the zthr_func end
470  * early. Unlike zthr_cancel, the thread is not destroyed. If the zthr was
471  * sleeping or cancelled, return immediately.
472  */
473 void
474 zthr_wait_cycle_done(zthr_t *t)
475 {
476         mutex_enter(&t->zthr_state_lock);
477
478         /*
479          * Since we are holding the zthr_state_lock at this point
480          * we can find the state in one of the following 5 states:
481          *
482          * [1] The thread has already cancelled, therefore
483          *     there is nothing for us to do.
484          * [2] The thread is sleeping so we set the flag, broadcast
485          *     the CV and wait for it to exit.
486          * [3] The thread is doing work, in which case we just set
487          *     the flag and wait for it to finish.
488          * [4] The thread was just created/resumed, in which case
489          *     the behavior is similar to [3].
490          * [5] The thread is the middle of being cancelled, which is
491          *     similar to [3]. We'll wait for the cancel, which is
492          *     waiting for the zthr func.
493          *
494          * Since requests are serialized, by the time that we get
495          * control back we expect that the zthr has completed it's
496          * zthr_func.
497          */
498         if (t->zthr_thread != NULL) {
499                 t->zthr_haswaiters = B_TRUE;
500
501                 /* broadcast in case the zthr is sleeping */
502                 cv_broadcast(&t->zthr_cv);
503
504                 while ((t->zthr_haswaiters) && (t->zthr_thread != NULL))
505                         cv_wait(&t->zthr_wait_cv, &t->zthr_state_lock);
506
507                 ASSERT(!t->zthr_haswaiters);
508         }
509
510         mutex_exit(&t->zthr_state_lock);
511 }
512
513 /*
514  * This function is intended to be used by the zthr itself
515  * to check if another thread is waiting on it to finish
516  *
517  * returns TRUE if we have been asked to finish.
518  *
519  * returns FALSE otherwise.
520  */
521 boolean_t
522 zthr_has_waiters(zthr_t *t)
523 {
524         ASSERT3P(t->zthr_thread, ==, curthread);
525
526         mutex_enter(&t->zthr_state_lock);
527
528         /*
529          * Similarly to zthr_iscancelled(), we only grab the
530          * zthr_state_lock so that the zthr itself can use this
531          * to check for the request.
532          */
533         boolean_t has_waiters = t->zthr_haswaiters;
534         mutex_exit(&t->zthr_state_lock);
535         return (has_waiters);
536 }