]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/crypto/sha2/sha512c_arm64.c
Upgrade to OpenPAM Ximenia.
[FreeBSD/FreeBSD.git] / sys / crypto / sha2 / sha512c_arm64.c
1 /*-
2  * Copyright (c) 2021 The FreeBSD Foundation
3  *
4  * This software was developed by Andrew Turner under sponsorship from
5  * the FreeBSD Foundation.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/types.h>
33
34 #include <arm_neon.h>
35
36 #include "sha512.h"
37 #include "sha512c_impl.h"
38
39 void __hidden
40 SHA512_Transform_arm64_impl(uint64_t * state,
41     const unsigned char block[SHA512_BLOCK_LENGTH], const uint64_t K[80])
42 {
43         uint64x2_t W[8];
44         uint64x2_t S[4];
45         uint64x2_t S_start[4];
46         uint64x2_t K_tmp, S_tmp;
47         int i;
48
49 #define A64_LOAD_W(x)                                                   \
50     W[x] = vld1q_u64((const uint64_t *)(&block[(x) * 16]));             \
51     W[x] = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(W[x])))
52
53         /* 1. Prepare the first part of the message schedule W. */
54         A64_LOAD_W(0);
55         A64_LOAD_W(1);
56         A64_LOAD_W(2);
57         A64_LOAD_W(3);
58         A64_LOAD_W(4);
59         A64_LOAD_W(5);
60         A64_LOAD_W(6);
61         A64_LOAD_W(7);
62
63         /* 2. Initialize working variables. */
64         S[0] = vld1q_u64(&state[0]);
65         S[1] = vld1q_u64(&state[2]);
66         S[2] = vld1q_u64(&state[4]);
67         S[3] = vld1q_u64(&state[6]);
68
69         S_start[0] = S[0];
70         S_start[1] = S[1];
71         S_start[2] = S[2];
72         S_start[3] = S[3];
73
74         /* 3. Mix. */
75         for (i = 0; i < 80; i += 16) {
76                 /*
77                  * The schedule array has 4 vectors:
78                  *  ab = S[( 8 - i) % 4]
79                  *  cd = S[( 9 - i) % 4]
80                  *  ef = S[(10 - i) % 4]
81                  *  gh = S[(11 - i) % 4]
82                  *
83                  * The following maacro:
84                  *  - Loads the round constants
85                  *  - Add them to schedule words
86                  *  - Rotates the total to switch the order of the two halves
87                  *    so they are in the correct order for gh
88                  *  - Fix the alignment
89                  *   - Extract fg from ef and gh
90                  *   - Extract de from cd and ef
91                  * - Pass these into the first part of the sha512 calculation
92                  *   to calculate the Sigma 1 and Ch steps
93                  * - Calculate the Sigma 0 and Maj steps and store to gh
94                  * - Add the first part to the cd vector
95                  */
96 #define A64_RNDr(S, W, i, ii)                                           \
97     K_tmp = vld1q_u64(K + (i * 2) + ii);                                \
98     K_tmp = vaddq_u64(W[i], K_tmp);                                     \
99     K_tmp = vextq_u64(K_tmp, K_tmp, 1);                                 \
100     K_tmp = vaddq_u64(K_tmp, S[(11 - i) % 4]);                          \
101     S_tmp = vsha512hq_u64(K_tmp,                                        \
102       vextq_u64(S[(10 - i) % 4], S[(11 - i) % 4], 1),                   \
103       vextq_u64(S[(9 - i) % 4], S[(10 - i) % 4], 1));                   \
104     S[(11 - i) % 4] = vsha512h2q_u64(S_tmp, S[(9 - i) % 4], S[(8 - i) % 4]); \
105     S[(9 - i) % 4] = vaddq_u64(S[(9 - i) % 4], S_tmp)
106
107                 A64_RNDr(S, W, 0, i);
108                 A64_RNDr(S, W, 1, i);
109                 A64_RNDr(S, W, 2, i);
110                 A64_RNDr(S, W, 3, i);
111                 A64_RNDr(S, W, 4, i);
112                 A64_RNDr(S, W, 5, i);
113                 A64_RNDr(S, W, 6, i);
114                 A64_RNDr(S, W, 7, i);
115
116                 if (i == 64)
117                         break;
118
119                 /*
120                  * Perform the Message schedule computation:
121                  * - vsha512su0q_u64 performs the sigma 0 half and add it to
122                  *   the old value
123                  * - vextq_u64 fixes the alignment of the vectors
124                  * - vsha512su1q_u64 performs the sigma 1 half and adds it
125                  *   and both the above all together
126                  */
127 #define A64_MSCH(x)                                                     \
128     W[x] = vsha512su1q_u64(                                             \
129       vsha512su0q_u64(W[x], W[(x + 1) % 8]),                            \
130       W[(x + 7) % 8],                                                   \
131       vextq_u64(W[(x + 4) % 8], W[(x + 5) % 8], 1))
132
133                 A64_MSCH(0);
134                 A64_MSCH(1);
135                 A64_MSCH(2);
136                 A64_MSCH(3);
137                 A64_MSCH(4);
138                 A64_MSCH(5);
139                 A64_MSCH(6);
140                 A64_MSCH(7);
141         }
142
143         /* 4. Mix local working variables into global state */
144         S[0] = vaddq_u64(S[0], S_start[0]);
145         S[1] = vaddq_u64(S[1], S_start[1]);
146         S[2] = vaddq_u64(S[2], S_start[2]);
147         S[3] = vaddq_u64(S[3], S_start[3]);
148
149         vst1q_u64(&state[0], S[0]);
150         vst1q_u64(&state[2], S[1]);
151         vst1q_u64(&state[4], S[2]);
152         vst1q_u64(&state[6], S[3]);
153 }