]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/aac/aac.c
Fix a panic unloading the bktr driver when devfs is in use.
[FreeBSD/FreeBSD.git] / sys / dev / aac / aac.c
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *      $FreeBSD$
30  */
31
32 /*
33  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34  */
35
36 #include "opt_aac.h"
37
38 /* #include <stddef.h> */
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/poll.h>
48 #if __FreeBSD_version >= 500005
49 #include <sys/selinfo.h>
50 #else
51 #include <sys/select.h>
52 #endif
53
54 #include <dev/aac/aac_compat.h>
55
56 #include <sys/bus.h>
57 #include <sys/conf.h>
58 #include <sys/devicestat.h>
59 #include <sys/disk.h>
60 #include <sys/signalvar.h>
61 #include <sys/time.h>
62 #include <sys/eventhandler.h>
63
64 #include <machine/bus_memio.h>
65 #include <machine/bus.h>
66 #include <machine/resource.h>
67
68 #include <dev/aac/aacreg.h>
69 #include <dev/aac/aac_ioctl.h>
70 #include <dev/aac/aacvar.h>
71 #include <dev/aac/aac_tables.h>
72 #include <dev/aac/aac_cam.h>
73
74 static void     aac_startup(void *arg);
75 static void     aac_add_container(struct aac_softc *sc,
76                                   struct aac_mntinforesp *mir, int f);
77 static void     aac_get_bus_info(struct aac_softc *sc);
78
79 /* Command Processing */
80 static void     aac_timeout(struct aac_softc *sc);
81 static int      aac_start(struct aac_command *cm);
82 static void     aac_complete(void *context, int pending);
83 static int      aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
84 static void     aac_bio_complete(struct aac_command *cm);
85 static int      aac_wait_command(struct aac_command *cm, int timeout);
86 static void     aac_host_command(struct aac_softc *sc);
87 static void     aac_host_response(struct aac_softc *sc);
88
89 /* Command Buffer Management */
90 static void     aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
91                                        int nseg, int error);
92 static int      aac_alloc_commands(struct aac_softc *sc);
93 static void     aac_free_commands(struct aac_softc *sc);
94 static void     aac_map_command(struct aac_command *cm);
95 static void     aac_unmap_command(struct aac_command *cm);
96
97 /* Hardware Interface */
98 static void     aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
99                                int error);
100 static int      aac_check_firmware(struct aac_softc *sc);
101 static int      aac_init(struct aac_softc *sc);
102 static int      aac_sync_command(struct aac_softc *sc, u_int32_t command,
103                                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
104                                  u_int32_t arg3, u_int32_t *sp);
105 static int      aac_enqueue_fib(struct aac_softc *sc, int queue,
106                                 struct aac_command *cm);
107 static int      aac_dequeue_fib(struct aac_softc *sc, int queue,
108                                 u_int32_t *fib_size, struct aac_fib **fib_addr);
109 static int      aac_enqueue_response(struct aac_softc *sc, int queue,
110                                      struct aac_fib *fib);
111
112 /* Falcon/PPC interface */
113 static int      aac_fa_get_fwstatus(struct aac_softc *sc);
114 static void     aac_fa_qnotify(struct aac_softc *sc, int qbit);
115 static int      aac_fa_get_istatus(struct aac_softc *sc);
116 static void     aac_fa_clear_istatus(struct aac_softc *sc, int mask);
117 static void     aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
118                                    u_int32_t arg0, u_int32_t arg1,
119                                    u_int32_t arg2, u_int32_t arg3);
120 static int      aac_fa_get_mailboxstatus(struct aac_softc *sc);
121 static void     aac_fa_set_interrupts(struct aac_softc *sc, int enable);
122
123 struct aac_interface aac_fa_interface = {
124         aac_fa_get_fwstatus,
125         aac_fa_qnotify,
126         aac_fa_get_istatus,
127         aac_fa_clear_istatus,
128         aac_fa_set_mailbox,
129         aac_fa_get_mailboxstatus,
130         aac_fa_set_interrupts
131 };
132
133 /* StrongARM interface */
134 static int      aac_sa_get_fwstatus(struct aac_softc *sc);
135 static void     aac_sa_qnotify(struct aac_softc *sc, int qbit);
136 static int      aac_sa_get_istatus(struct aac_softc *sc);
137 static void     aac_sa_clear_istatus(struct aac_softc *sc, int mask);
138 static void     aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
139                                    u_int32_t arg0, u_int32_t arg1,
140                                    u_int32_t arg2, u_int32_t arg3);
141 static int      aac_sa_get_mailboxstatus(struct aac_softc *sc);
142 static void     aac_sa_set_interrupts(struct aac_softc *sc, int enable);
143
144 struct aac_interface aac_sa_interface = {
145         aac_sa_get_fwstatus,
146         aac_sa_qnotify,
147         aac_sa_get_istatus,
148         aac_sa_clear_istatus,
149         aac_sa_set_mailbox,
150         aac_sa_get_mailboxstatus,
151         aac_sa_set_interrupts
152 };
153
154 /* i960Rx interface */  
155 static int      aac_rx_get_fwstatus(struct aac_softc *sc);
156 static void     aac_rx_qnotify(struct aac_softc *sc, int qbit);
157 static int      aac_rx_get_istatus(struct aac_softc *sc);
158 static void     aac_rx_clear_istatus(struct aac_softc *sc, int mask);
159 static void     aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
160                                    u_int32_t arg0, u_int32_t arg1,
161                                    u_int32_t arg2, u_int32_t arg3);
162 static int      aac_rx_get_mailboxstatus(struct aac_softc *sc);
163 static void     aac_rx_set_interrupts(struct aac_softc *sc, int enable);
164
165 struct aac_interface aac_rx_interface = {
166         aac_rx_get_fwstatus,
167         aac_rx_qnotify,
168         aac_rx_get_istatus,
169         aac_rx_clear_istatus,
170         aac_rx_set_mailbox,
171         aac_rx_get_mailboxstatus,
172         aac_rx_set_interrupts
173 };
174
175 /* Debugging and Diagnostics */
176 static void     aac_describe_controller(struct aac_softc *sc);
177 static char     *aac_describe_code(struct aac_code_lookup *table,
178                                    u_int32_t code);
179
180 /* Management Interface */
181 static d_open_t         aac_open;
182 static d_close_t        aac_close;
183 static d_ioctl_t        aac_ioctl;
184 static d_poll_t         aac_poll;
185 static int              aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
186 static void             aac_handle_aif(struct aac_softc *sc,
187                                            struct aac_fib *fib);
188 static int              aac_rev_check(struct aac_softc *sc, caddr_t udata);
189 static int              aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
190 static int              aac_return_aif(struct aac_softc *sc, caddr_t uptr);
191 static int              aac_query_disk(struct aac_softc *sc, caddr_t uptr);
192
193 #define AAC_CDEV_MAJOR  150
194
195 static struct cdevsw aac_cdevsw = {
196         aac_open,               /* open */
197         aac_close,              /* close */
198         noread,                 /* read */
199         nowrite,                /* write */
200         aac_ioctl,              /* ioctl */
201         aac_poll,               /* poll */
202         nommap,                 /* mmap */
203         nostrategy,             /* strategy */
204         "aac",                  /* name */
205         AAC_CDEV_MAJOR,         /* major */
206         nodump,                 /* dump */
207         nopsize,                /* psize */
208         0,                      /* flags */
209 #if __FreeBSD_version < 500005
210         -1,                     /* bmaj */
211 #endif
212 };
213
214 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
215
216 /* sysctl node */
217 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
218
219 /*
220  * Device Interface
221  */
222
223 /*
224  * Initialise the controller and softc
225  */
226 int
227 aac_attach(struct aac_softc *sc)
228 {
229         int error, unit;
230
231         debug_called(1);
232
233         /*
234          * Initialise per-controller queues.
235          */
236         aac_initq_free(sc);
237         aac_initq_ready(sc);
238         aac_initq_busy(sc);
239         aac_initq_complete(sc);
240         aac_initq_bio(sc);
241
242 #if __FreeBSD_version >= 500005
243         /*
244          * Initialise command-completion task.
245          */
246         TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
247 #endif
248
249         /* disable interrupts before we enable anything */
250         AAC_MASK_INTERRUPTS(sc);
251
252         /* mark controller as suspended until we get ourselves organised */
253         sc->aac_state |= AAC_STATE_SUSPEND;
254
255         /*
256          * Check that the firmware on the card is supported.
257          */
258         if ((error = aac_check_firmware(sc)) != 0)
259                 return(error);
260
261         /*
262          * Allocate command structures.
263          */
264         if ((error = aac_alloc_commands(sc)) != 0)
265                 return(error);
266
267         /* Init the sync fib lock */
268         AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
269
270         /*
271          * Initialise the adapter.
272          */
273         if ((error = aac_init(sc)) != 0)
274                 return(error);
275
276         /* 
277          * Print a little information about the controller.
278          */
279         aac_describe_controller(sc);
280
281         /*
282          * Register to probe our containers later.
283          */
284         TAILQ_INIT(&sc->aac_container_tqh);
285         AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
286
287         /*
288          * Lock for the AIF queue
289          */
290         AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
291
292         sc->aac_ich.ich_func = aac_startup;
293         sc->aac_ich.ich_arg = sc;
294         if (config_intrhook_establish(&sc->aac_ich) != 0) {
295                 device_printf(sc->aac_dev,
296                               "can't establish configuration hook\n");
297                 return(ENXIO);
298         }
299
300         /*
301          * Make the control device.
302          */
303         unit = device_get_unit(sc->aac_dev);
304         sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
305                                  "aac%d", unit);
306 #if __FreeBSD_version > 500005
307         (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
308         (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
309 #endif
310         sc->aac_dev_t->si_drv1 = sc;
311
312         /* Create the AIF thread */
313 #if __FreeBSD_version > 500005
314         if (kthread_create((void(*)(void *))aac_host_command, sc,
315                            &sc->aifthread, 0, 0, "aac%daif", unit))
316 #else
317         if (kthread_create((void(*)(void *))aac_host_command, sc,
318                            &sc->aifthread, "aac%daif", unit))
319 #endif
320                 panic("Could not create AIF thread\n");
321
322         /* Register the shutdown method to only be called post-dump */
323         if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
324                                    SHUTDOWN_PRI_DEFAULT)) == NULL)
325         device_printf(sc->aac_dev, "shutdown event registration failed\n");
326
327         /* Register with CAM for the non-DASD devices */
328         if (!(sc->quirks & AAC_QUIRK_NOCAM))
329                 aac_get_bus_info(sc);
330
331         return(0);
332 }
333
334 /*
335  * Probe for containers, create disks.
336  */
337 static void
338 aac_startup(void *arg)
339 {
340         struct aac_softc *sc;
341         struct aac_fib *fib;
342         struct aac_mntinfo *mi;
343         struct aac_mntinforesp *mir = NULL;
344         int i = 0;
345
346         debug_called(1);
347
348         sc = (struct aac_softc *)arg;
349
350         /* disconnect ourselves from the intrhook chain */
351         config_intrhook_disestablish(&sc->aac_ich);
352
353         aac_alloc_sync_fib(sc, &fib, 0);
354         mi = (struct aac_mntinfo *)&fib->data[0];
355
356         /* loop over possible containers */
357         do {
358                 /* request information on this container */
359                 bzero(mi, sizeof(struct aac_mntinfo));
360                 mi->Command = VM_NameServe;
361                 mi->MntType = FT_FILESYS;
362                 mi->MntCount = i;
363                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
364                                  sizeof(struct aac_mntinfo))) {
365                         debug(2, "error probing container %d", i);
366                         continue;
367                 }
368
369                 mir = (struct aac_mntinforesp *)&fib->data[0];
370                 aac_add_container(sc, mir, 0);
371                 i++;
372         } while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
373
374         aac_release_sync_fib(sc);
375
376         /* poke the bus to actually attach the child devices */
377         if (bus_generic_attach(sc->aac_dev))
378                 device_printf(sc->aac_dev, "bus_generic_attach failed\n");
379
380         /* mark the controller up */
381         sc->aac_state &= ~AAC_STATE_SUSPEND;
382
383         /* enable interrupts now */
384         AAC_UNMASK_INTERRUPTS(sc);
385
386         /* enable the timeout watchdog */
387         timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
388 }
389
390 /*
391  * Create a device to respresent a new container
392  */
393 static void
394 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
395 {
396         struct aac_container *co;
397         device_t child;
398
399         /* 
400          * Check container volume type for validity.  Note that many of
401          * the possible types may never show up.
402          */
403         if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
404                 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
405                        M_NOWAIT);
406                 if (co == NULL)
407                         panic("Out of memory?!\n");
408                 debug(1, "id %x  name '%.16s'  size %u  type %d", 
409                       mir->MntTable[0].ObjectId,
410                       mir->MntTable[0].FileSystemName,
411                       mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
412         
413                 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
414                         device_printf(sc->aac_dev, "device_add_child failed\n");
415                 else
416                         device_set_ivars(child, co);
417                 device_set_desc(child, aac_describe_code(aac_container_types,
418                                 mir->MntTable[0].VolType));
419                 co->co_disk = child;
420                 co->co_found = f;
421                 bcopy(&mir->MntTable[0], &co->co_mntobj,
422                       sizeof(struct aac_mntobj));
423                 AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
424                 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
425                 AAC_LOCK_RELEASE(&sc->aac_container_lock);
426         }
427 }
428
429 /*
430  * Free all of the resources associated with (sc)
431  *
432  * Should not be called if the controller is active.
433  */
434 void
435 aac_free(struct aac_softc *sc)
436 {
437         debug_called(1);
438
439         /* remove the control device */
440         if (sc->aac_dev_t != NULL)
441                 destroy_dev(sc->aac_dev_t);
442
443         /* throw away any FIB buffers, discard the FIB DMA tag */
444         if (sc->aac_fibs != NULL)
445                 aac_free_commands(sc);
446         if (sc->aac_fib_dmat)
447                 bus_dma_tag_destroy(sc->aac_fib_dmat);
448
449         /* destroy the common area */
450         if (sc->aac_common) {
451                 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
452                 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
453                                 sc->aac_common_dmamap);
454         }
455         if (sc->aac_common_dmat)
456                 bus_dma_tag_destroy(sc->aac_common_dmat);
457
458         /* disconnect the interrupt handler */
459         if (sc->aac_intr)
460                 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
461         if (sc->aac_irq != NULL)
462                 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
463                                      sc->aac_irq);
464
465         /* destroy data-transfer DMA tag */
466         if (sc->aac_buffer_dmat)
467                 bus_dma_tag_destroy(sc->aac_buffer_dmat);
468
469         /* destroy the parent DMA tag */
470         if (sc->aac_parent_dmat)
471                 bus_dma_tag_destroy(sc->aac_parent_dmat);
472
473         /* release the register window mapping */
474         if (sc->aac_regs_resource != NULL)
475                 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
476                                      sc->aac_regs_rid, sc->aac_regs_resource);
477 }
478
479 /*
480  * Disconnect from the controller completely, in preparation for unload.
481  */
482 int
483 aac_detach(device_t dev)
484 {
485         struct aac_softc *sc;
486 #if AAC_BROKEN
487         int error;
488 #endif
489
490         debug_called(1);
491
492         sc = device_get_softc(dev);
493
494         if (sc->aac_state & AAC_STATE_OPEN)
495         return(EBUSY);
496
497 #if AAC_BROKEN
498         if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
499                 sc->aifflags |= AAC_AIFFLAGS_EXIT;
500                 wakeup(sc->aifthread);
501                 tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
502         }
503
504         if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
505                 panic("Cannot shutdown AIF thread\n");
506
507         if ((error = aac_shutdown(dev)))
508                 return(error);
509
510         aac_free(sc);
511
512         return(0);
513 #else
514         return (EBUSY);
515 #endif
516 }
517
518 /*
519  * Bring the controller down to a dormant state and detach all child devices.
520  *
521  * This function is called before detach or system shutdown.
522  *
523  * Note that we can assume that the bioq on the controller is empty, as we won't
524  * allow shutdown if any device is open.
525  */
526 int
527 aac_shutdown(device_t dev)
528 {
529         struct aac_softc *sc;
530         struct aac_fib *fib;
531         struct aac_close_command *cc;
532         int s;
533
534         debug_called(1);
535
536         sc = device_get_softc(dev);
537
538         s = splbio();
539
540         sc->aac_state |= AAC_STATE_SUSPEND;
541
542         /* 
543          * Send a Container shutdown followed by a HostShutdown FIB to the
544          * controller to convince it that we don't want to talk to it anymore.
545          * We've been closed and all I/O completed already
546          */
547         device_printf(sc->aac_dev, "shutting down controller...");
548
549         aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
550         cc = (struct aac_close_command *)&fib->data[0];
551
552         bzero(cc, sizeof(struct aac_close_command));
553         cc->Command = VM_CloseAll;
554         cc->ContainerId = 0xffffffff;
555         if (aac_sync_fib(sc, ContainerCommand, 0, fib,
556             sizeof(struct aac_close_command)))
557                 printf("FAILED.\n");
558         else {
559                 fib->data[0] = 0;
560                 /*
561                  * XXX Issuing this command to the controller makes it shut down
562                  * but also keeps it from coming back up without a reset of the
563                  * PCI bus.  This is not desirable if you are just unloading the
564                  * driver module with the intent to reload it later.
565                  */
566                 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
567                     fib, 1)) {
568                         printf("FAILED.\n");
569                 } else {
570                         printf("done.\n");
571                 }
572         }
573
574         AAC_MASK_INTERRUPTS(sc);
575
576         splx(s);
577         return(0);
578 }
579
580 /*
581  * Bring the controller to a quiescent state, ready for system suspend.
582  */
583 int
584 aac_suspend(device_t dev)
585 {
586         struct aac_softc *sc;
587         int s;
588
589         debug_called(1);
590
591         sc = device_get_softc(dev);
592
593         s = splbio();
594
595         sc->aac_state |= AAC_STATE_SUSPEND;
596         
597         AAC_MASK_INTERRUPTS(sc);
598         splx(s);
599         return(0);
600 }
601
602 /*
603  * Bring the controller back to a state ready for operation.
604  */
605 int
606 aac_resume(device_t dev)
607 {
608         struct aac_softc *sc;
609
610         debug_called(1);
611
612         sc = device_get_softc(dev);
613
614         sc->aac_state &= ~AAC_STATE_SUSPEND;
615         AAC_UNMASK_INTERRUPTS(sc);
616         return(0);
617 }
618
619 /*
620  * Take an interrupt.
621  */
622 void
623 aac_intr(void *arg)
624 {
625         struct aac_softc *sc;
626         u_int16_t reason;
627
628         debug_called(2);
629
630         sc = (struct aac_softc *)arg;
631
632         reason = AAC_GET_ISTATUS(sc);
633
634         /* controller wants to talk to the log */
635         if (reason & AAC_DB_PRINTF) {
636                 AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
637                 aac_print_printf(sc);
638         }
639
640         /* controller has a message for us? */
641         if (reason & AAC_DB_COMMAND_READY) {
642                 AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY);
643                 /* XXX What happens if the thread is already awake? */
644                 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
645                         sc->aifflags |= AAC_AIFFLAGS_PENDING;
646                         wakeup(sc->aifthread);
647                 }
648         }
649         
650         /* controller has a response for us? */
651         if (reason & AAC_DB_RESPONSE_READY) {
652                 AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
653                 aac_host_response(sc);
654         }
655
656         /*
657          * spurious interrupts that we don't use - reset the mask and clear the
658          * interrupts
659          */
660         if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) {
661                 AAC_UNMASK_INTERRUPTS(sc);
662                 AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL |
663                                   AAC_DB_RESPONSE_NOT_FULL);
664         }
665 };
666
667 /*
668  * Command Processing
669  */
670
671 /*
672  * Start as much queued I/O as possible on the controller
673  */
674 void
675 aac_startio(struct aac_softc *sc)
676 {
677         struct aac_command *cm;
678
679         debug_called(2);
680
681         for (;;) {
682                 /*
683                  * Try to get a command that's been put off for lack of 
684                  * resources
685                  */
686                 cm = aac_dequeue_ready(sc);
687
688                 /*
689                  * Try to build a command off the bio queue (ignore error 
690                  * return)
691                  */
692                 if (cm == NULL)
693                         aac_bio_command(sc, &cm);
694
695                 /* nothing to do? */
696                 if (cm == NULL)
697                         break;
698
699                 /* try to give the command to the controller */
700                 if (aac_start(cm) == EBUSY) {
701                         /* put it on the ready queue for later */
702                         aac_requeue_ready(cm);
703                         break;
704                 }
705         }
706 }
707
708 /*
709  * Deliver a command to the controller; allocate controller resources at the
710  * last moment when possible.
711  */
712 static int
713 aac_start(struct aac_command *cm)
714 {
715         struct aac_softc *sc;
716         int error;
717
718         debug_called(2);
719
720         sc = cm->cm_sc;
721
722         /* get the command mapped */
723         aac_map_command(cm);
724
725         /* fix up the address values in the FIB */
726         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
727         cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
728
729         /* save a pointer to the command for speedy reverse-lookup */
730         cm->cm_fib->Header.SenderData = (u_int32_t)cm;  /* XXX 64-bit physical
731                                                          * address issue */
732
733         /* put the FIB on the outbound queue */
734         error = aac_enqueue_fib(sc, cm->cm_queue, cm);
735         return(error);
736 }
737
738 /*
739  * Handle notification of one or more FIBs coming from the controller.
740  */
741 static void
742 aac_host_command(struct aac_softc *sc)
743 {
744         struct aac_fib *fib;
745         u_int32_t fib_size;
746         int size;
747
748         debug_called(2);
749
750         sc->aifflags |= AAC_AIFFLAGS_RUNNING;
751
752         while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
753                 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
754                         tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz);
755
756                 sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
757                 for (;;) {
758                         if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
759                                             &fib_size, &fib))
760                                 break;  /* nothing to do */
761         
762                         AAC_PRINT_FIB(sc, fib);
763         
764                         switch (fib->Header.Command) {
765                         case AifRequest:
766                                 aac_handle_aif(sc, fib);
767                                 break;
768                         default:
769                                 device_printf(sc->aac_dev, "unknown command "
770                                               "from controller\n");
771                                 break;
772                         }
773
774                         /* Return the AIF to the controller. */
775                         if ((fib->Header.XferState == 0) ||
776                             (fib->Header.StructType != AAC_FIBTYPE_TFIB))
777                                 break;
778
779                         if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
780                                 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
781                                 *(AAC_FSAStatus*)fib->data = ST_OK;
782
783                                 /* XXX Compute the Size field? */
784                                 size = fib->Header.Size;
785                                 if (size > sizeof(struct aac_fib)) {
786                                         size = sizeof(struct aac_fib);
787                                         fib->Header.Size = size;
788                                 }
789                                 /*
790                                  * Since we did not generate this command, it
791                                  * cannot go through the normal
792                                  * enqueue->startio chain.
793                                  */
794                                 aac_enqueue_response(sc,
795                                                      AAC_ADAP_NORM_RESP_QUEUE,
796                                                      fib);
797                         }
798                 }
799         }
800         sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
801         wakeup(sc->aac_dev);
802
803 #if __FreeBSD_version > 500005
804         mtx_lock(&Giant);
805 #endif
806         kthread_exit(0);
807 }
808
809 /*
810  * Handle notification of one or more FIBs completed by the controller
811  */
812 static void
813 aac_host_response(struct aac_softc *sc)
814 {
815         struct aac_command *cm;
816         struct aac_fib *fib;
817         u_int32_t fib_size;
818
819         debug_called(2);
820
821         for (;;) {
822                 /* look for completed FIBs on our queue */
823                 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
824                                     &fib))
825                         break;  /* nothing to do */
826         
827                 /* get the command, unmap and queue for later processing */
828                 cm = (struct aac_command *)fib->Header.SenderData;
829                 if (cm == NULL) {
830                         AAC_PRINT_FIB(sc, fib);
831                 } else {
832                         aac_remove_busy(cm);
833                         aac_unmap_command(cm);          /* XXX defer? */
834                         aac_enqueue_complete(cm);
835                 }
836         }
837
838         /* handle completion processing */
839 #if __FreeBSD_version >= 500005
840         taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
841 #else
842         aac_complete(sc, 0);
843 #endif
844 }
845
846 /*
847  * Process completed commands.
848  */
849 static void
850 aac_complete(void *context, int pending)
851 {
852         struct aac_softc *sc;
853         struct aac_command *cm;
854         
855         debug_called(2);
856
857         sc = (struct aac_softc *)context;
858
859         /* pull completed commands off the queue */
860         for (;;) {
861                 cm = aac_dequeue_complete(sc);
862                 if (cm == NULL)
863                         break;
864                 cm->cm_flags |= AAC_CMD_COMPLETED;
865
866                 /* is there a completion handler? */
867                 if (cm->cm_complete != NULL) {
868                         cm->cm_complete(cm);
869                 } else {
870                         /* assume that someone is sleeping on this command */
871                         wakeup(cm);
872                 }
873         }
874
875         /* see if we can start some more I/O */
876         aac_startio(sc);
877 }
878
879 /*
880  * Handle a bio submitted from a disk device.
881  */
882 void
883 aac_submit_bio(struct bio *bp)
884 {
885         struct aac_disk *ad;
886         struct aac_softc *sc;
887
888         debug_called(2);
889
890         ad = (struct aac_disk *)bp->bio_dev->si_drv1;
891         sc = ad->ad_controller;
892
893         /* queue the BIO and try to get some work done */
894         aac_enqueue_bio(sc, bp);
895         aac_startio(sc);
896 }
897
898 /*
899  * Get a bio and build a command to go with it.
900  */
901 static int
902 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
903 {
904         struct aac_command *cm;
905         struct aac_fib *fib;
906         struct aac_blockread *br;
907         struct aac_blockwrite *bw;
908         struct aac_disk *ad;
909         struct bio *bp;
910
911         debug_called(2);
912
913         /* get the resources we will need */
914         cm = NULL;
915         if ((bp = aac_dequeue_bio(sc)) == NULL)
916                 goto fail;
917         if (aac_alloc_command(sc, &cm)) /* get a command */
918                 goto fail;
919
920         /* fill out the command */
921         cm->cm_data = (void *)bp->bio_data;
922         cm->cm_datalen = bp->bio_bcount;
923         cm->cm_complete = aac_bio_complete;
924         cm->cm_private = bp;
925         cm->cm_timestamp = time_second;
926         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
927
928         /* build the FIB */
929         fib = cm->cm_fib;
930         fib->Header.XferState =  
931         AAC_FIBSTATE_HOSTOWNED   | 
932         AAC_FIBSTATE_INITIALISED | 
933         AAC_FIBSTATE_FROMHOST    |
934         AAC_FIBSTATE_REXPECTED   |
935         AAC_FIBSTATE_NORM;
936         fib->Header.Command = ContainerCommand;
937         fib->Header.Size = sizeof(struct aac_fib_header);
938
939         /* build the read/write request */
940         ad = (struct aac_disk *)bp->bio_dev->si_drv1;
941         if (BIO_IS_READ(bp)) {
942                 br = (struct aac_blockread *)&fib->data[0];
943                 br->Command = VM_CtBlockRead;
944                 br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
945                 br->BlockNumber = bp->bio_pblkno;
946                 br->ByteCount = bp->bio_bcount;
947                 fib->Header.Size += sizeof(struct aac_blockread);
948                 cm->cm_sgtable = &br->SgMap;
949                 cm->cm_flags |= AAC_CMD_DATAIN;
950         } else {
951                 bw = (struct aac_blockwrite *)&fib->data[0];
952                 bw->Command = VM_CtBlockWrite;
953                 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
954                 bw->BlockNumber = bp->bio_pblkno;
955                 bw->ByteCount = bp->bio_bcount;
956                 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */
957                 fib->Header.Size += sizeof(struct aac_blockwrite);
958                 cm->cm_flags |= AAC_CMD_DATAOUT;
959                 cm->cm_sgtable = &bw->SgMap;
960         }
961
962         *cmp = cm;
963         return(0);
964
965 fail:
966         if (bp != NULL)
967                 aac_enqueue_bio(sc, bp);
968         if (cm != NULL)
969                 aac_release_command(cm);
970         return(ENOMEM);
971 }
972
973 /*
974  * Handle a bio-instigated command that has been completed.
975  */
976 static void
977 aac_bio_complete(struct aac_command *cm)
978 {
979         struct aac_blockread_response *brr;
980         struct aac_blockwrite_response *bwr;
981         struct bio *bp;
982         AAC_FSAStatus status;
983
984         /* fetch relevant status and then release the command */
985         bp = (struct bio *)cm->cm_private;
986         if (BIO_IS_READ(bp)) {
987                 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
988                 status = brr->Status;
989         } else {
990                 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
991                 status = bwr->Status;
992         }
993         aac_release_command(cm);
994
995         /* fix up the bio based on status */
996         if (status == ST_OK) {
997                 bp->bio_resid = 0;
998         } else {
999                 bp->bio_error = EIO;
1000                 bp->bio_flags |= BIO_ERROR;
1001                 /* pass an error string out to the disk layer */
1002                 bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1003                                                     status);
1004         }
1005         aac_biodone(bp);
1006 }
1007
1008 /*
1009  * Submit a command to the controller, return when it completes.
1010  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1011  *     be stuck here forever.  At the same time, signals are not caught
1012  *     because there is a risk that a signal could wakeup the tsleep before
1013  *     the card has a chance to complete the command.  The passed in timeout
1014  *     is ignored for the same reason.  Since there is no way to cancel a
1015  *     command in progress, we should probably create a 'dead' queue where
1016  *     commands go that have been interrupted/timed-out/etc, that keeps them
1017  *     out of the free pool.  That way, if the card is just slow, it won't
1018  *     spam the memory of a command that has been recycled.
1019  */
1020 static int
1021 aac_wait_command(struct aac_command *cm, int timeout)
1022 {
1023         int s, error = 0;
1024
1025         debug_called(2);
1026
1027         /* Put the command on the ready queue and get things going */
1028         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1029         aac_enqueue_ready(cm);
1030         aac_startio(cm->cm_sc);
1031         s = splbio();
1032         while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1033                 error = tsleep(cm, PRIBIO, "aacwait", 0);
1034         }
1035         splx(s);
1036         return(error);
1037 }
1038
1039 /*
1040  *Command Buffer Management
1041  */
1042
1043 /*
1044  * Allocate a command.
1045  */
1046 int
1047 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1048 {
1049         struct aac_command *cm;
1050
1051         debug_called(3);
1052
1053         if ((cm = aac_dequeue_free(sc)) == NULL)
1054                 return(ENOMEM);
1055
1056         *cmp = cm;
1057         return(0);
1058 }
1059
1060 /*
1061  * Release a command back to the freelist.
1062  */
1063 void
1064 aac_release_command(struct aac_command *cm)
1065 {
1066         debug_called(3);
1067
1068         /* (re)initialise the command/FIB */
1069         cm->cm_sgtable = NULL;
1070         cm->cm_flags = 0;
1071         cm->cm_complete = NULL;
1072         cm->cm_private = NULL;
1073         cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1074         cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1075         cm->cm_fib->Header.Flags = 0;
1076         cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1077
1078         /* 
1079          * These are duplicated in aac_start to cover the case where an
1080          * intermediate stage may have destroyed them.  They're left
1081          * initialised here for debugging purposes only.
1082          */
1083         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1084         cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1085
1086         aac_enqueue_free(cm);
1087 }
1088
1089 /*
1090  * Map helper for command/FIB allocation.
1091  */
1092 static void
1093 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1094 {
1095         struct aac_softc *sc;
1096
1097         sc = (struct aac_softc *)arg;
1098
1099         debug_called(3);
1100
1101         sc->aac_fibphys = segs[0].ds_addr;
1102 }
1103
1104 /*
1105  * Allocate and initialise commands/FIBs for this adapter.
1106  */
1107 static int
1108 aac_alloc_commands(struct aac_softc *sc)
1109 {
1110         struct aac_command *cm;
1111         int i;
1112  
1113         debug_called(1);
1114
1115         /* allocate the FIBs in DMAable memory and load them */
1116         if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1117                              BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1118                 printf("Not enough contiguous memory available.\n");
1119                 return (ENOMEM);
1120         }
1121         bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 
1122                         AAC_FIB_COUNT * sizeof(struct aac_fib),
1123                         aac_map_command_helper, sc, 0);
1124
1125         /* initialise constant fields in the command structure */
1126         for (i = 0; i < AAC_FIB_COUNT; i++) {
1127                 cm = &sc->aac_command[i];
1128                 cm->cm_sc = sc;
1129                 cm->cm_fib = sc->aac_fibs + i;
1130                 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1131
1132                 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1133                         aac_release_command(cm);
1134         }
1135         return (0);
1136 }
1137
1138 /*
1139  * Free FIBs owned by this adapter.
1140  */
1141 static void
1142 aac_free_commands(struct aac_softc *sc)
1143 {
1144         int i;
1145
1146         debug_called(1);
1147
1148         for (i = 0; i < AAC_FIB_COUNT; i++)
1149                 bus_dmamap_destroy(sc->aac_buffer_dmat,
1150                                    sc->aac_command[i].cm_datamap);
1151
1152         bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1153         bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1154 }
1155
1156 /*
1157  * Command-mapping helper function - populate this command's s/g table.
1158  */
1159 static void
1160 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1161 {
1162         struct aac_command *cm;
1163         struct aac_fib *fib;
1164         struct aac_sg_table *sg;
1165         int i;
1166
1167         debug_called(3);
1168
1169         cm = (struct aac_command *)arg;
1170         fib = cm->cm_fib;
1171
1172         /* find the s/g table */
1173         sg = cm->cm_sgtable;
1174
1175         /* copy into the FIB */
1176         if (sg != NULL) {
1177                 sg->SgCount = nseg;
1178                 for (i = 0; i < nseg; i++) {
1179                         sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1180                         sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1181                 }
1182                 /* update the FIB size for the s/g count */
1183                 fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1184         }
1185
1186 }
1187
1188 /*
1189  * Map a command into controller-visible space.
1190  */
1191 static void
1192 aac_map_command(struct aac_command *cm)
1193 {
1194         struct aac_softc *sc;
1195
1196         debug_called(2);
1197
1198         sc = cm->cm_sc;
1199
1200         /* don't map more than once */
1201         if (cm->cm_flags & AAC_CMD_MAPPED)
1202                 return;
1203
1204         if (cm->cm_datalen != 0) {
1205                 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1206                                 cm->cm_data, cm->cm_datalen,
1207                                 aac_map_command_sg, cm, 0);
1208
1209         if (cm->cm_flags & AAC_CMD_DATAIN)
1210                 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1211                                 BUS_DMASYNC_PREREAD);
1212         if (cm->cm_flags & AAC_CMD_DATAOUT)
1213                 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1214                                 BUS_DMASYNC_PREWRITE);
1215         }
1216         cm->cm_flags |= AAC_CMD_MAPPED;
1217 }
1218
1219 /*
1220  * Unmap a command from controller-visible space.
1221  */
1222 static void
1223 aac_unmap_command(struct aac_command *cm)
1224 {
1225         struct aac_softc *sc;
1226
1227         debug_called(2);
1228
1229         sc = cm->cm_sc;
1230
1231         if (!(cm->cm_flags & AAC_CMD_MAPPED))
1232                 return;
1233
1234         if (cm->cm_datalen != 0) {
1235                 if (cm->cm_flags & AAC_CMD_DATAIN)
1236                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1237                                         BUS_DMASYNC_POSTREAD);
1238                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1239                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1240                                         BUS_DMASYNC_POSTWRITE);
1241
1242                 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1243         }
1244         cm->cm_flags &= ~AAC_CMD_MAPPED;
1245 }
1246
1247 /*
1248  * Hardware Interface
1249  */
1250
1251 /*
1252  * Initialise the adapter.
1253  */
1254 static void
1255 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1256 {
1257         struct aac_softc *sc;
1258
1259         debug_called(1);
1260
1261         sc = (struct aac_softc *)arg;
1262
1263         sc->aac_common_busaddr = segs[0].ds_addr;
1264 }
1265
1266 /*
1267  * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1268  * firmware version 1.x are not compatible with this driver.
1269  */
1270 static int
1271 aac_check_firmware(struct aac_softc *sc)
1272 {
1273         u_int32_t major, minor;
1274
1275         debug_called(1);
1276
1277         if (sc->quirks & AAC_QUIRK_PERC2QC) {
1278                 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1279                                      NULL)) {
1280                         device_printf(sc->aac_dev,
1281                                       "Error reading firmware version\n");
1282                         return (EIO);
1283                 }
1284
1285                 /* These numbers are stored as ASCII! */
1286                 major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30;
1287                 minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30;
1288                 if (major == 1) {
1289                         device_printf(sc->aac_dev,
1290                             "Firmware version %d.%d is not supported.\n",
1291                             major, minor);
1292                         return (EINVAL);
1293                 }
1294         }
1295
1296         return (0);
1297 }
1298
1299 static int
1300 aac_init(struct aac_softc *sc)
1301 {
1302         struct aac_adapter_init *ip;
1303         time_t then;
1304         u_int32_t code;
1305         u_int8_t *qaddr;
1306
1307         debug_called(1);
1308
1309         /*
1310          * First wait for the adapter to come ready.
1311          */
1312         then = time_second;
1313         do {
1314                 code = AAC_GET_FWSTATUS(sc);
1315                 if (code & AAC_SELF_TEST_FAILED) {
1316                         device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1317                         return(ENXIO);
1318                 }
1319                 if (code & AAC_KERNEL_PANIC) {
1320                         device_printf(sc->aac_dev,
1321                                       "FATAL: controller kernel panic\n");
1322                         return(ENXIO);
1323                 }
1324                 if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1325                         device_printf(sc->aac_dev,
1326                                       "FATAL: controller not coming ready, "
1327                                            "status %x\n", code);
1328                         return(ENXIO);
1329                 }
1330         } while (!(code & AAC_UP_AND_RUNNING));
1331
1332         /*
1333          * Create DMA tag for the common structure and allocate it.
1334          */
1335         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1336                                1, 0,                    /* algnmnt, boundary */
1337                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1338                                BUS_SPACE_MAXADDR,       /* highaddr */
1339                                NULL, NULL,              /* filter, filterarg */
1340                                sizeof(struct aac_common), /* maxsize */
1341                                1,                       /* nsegments */
1342                                BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1343                                0,                       /* flags */
1344                                &sc->aac_common_dmat)) {
1345                 device_printf(sc->aac_dev,
1346                               "can't allocate common structure DMA tag\n");
1347                 return(ENOMEM);
1348         }
1349         if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1350                              BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1351                 device_printf(sc->aac_dev, "can't allocate common structure\n");
1352                 return(ENOMEM);
1353         }
1354         bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1355                         sc->aac_common, sizeof(*sc->aac_common), aac_common_map,
1356                         sc, 0);
1357         bzero(sc->aac_common, sizeof(*sc->aac_common));
1358         
1359         /*
1360          * Fill in the init structure.  This tells the adapter about the
1361          * physical location of various important shared data structures.
1362          */
1363         ip = &sc->aac_common->ac_init;
1364         ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1365
1366         ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1367                                          offsetof(struct aac_common, ac_fibs);
1368         ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
1369         ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1370         ip->AdapterFibAlign = sizeof(struct aac_fib);
1371
1372         ip->PrintfBufferAddress = sc->aac_common_busaddr +
1373                                   offsetof(struct aac_common, ac_printf);
1374         ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1375
1376         ip->HostPhysMemPages = 0;               /* not used? */
1377         ip->HostElapsedSeconds = time_second;   /* reset later if invalid */
1378
1379         /*
1380          * Initialise FIB queues.  Note that it appears that the layout of the
1381          * indexes and the segmentation of the entries may be mandated by the
1382          * adapter, which is only told about the base of the queue index fields.
1383          *
1384          * The initial values of the indices are assumed to inform the adapter
1385          * of the sizes of the respective queues, and theoretically it could 
1386          * work out the entire layout of the queue structures from this.  We
1387          * take the easy route and just lay this area out like everyone else
1388          * does.
1389          *
1390          * The Linux driver uses a much more complex scheme whereby several 
1391          * header records are kept for each queue.  We use a couple of generic 
1392          * list manipulation functions which 'know' the size of each list by
1393          * virtue of a table.
1394          */
1395         qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1396         qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1397         sc->aac_queues = (struct aac_queue_table *)qaddr;
1398         ip->CommHeaderAddress = sc->aac_common_busaddr +
1399                                 ((u_int32_t)sc->aac_queues -
1400                                 (u_int32_t)sc->aac_common);
1401         bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1402
1403         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1404                 AAC_HOST_NORM_CMD_ENTRIES;
1405         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1406                 AAC_HOST_NORM_CMD_ENTRIES;
1407         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1408                 AAC_HOST_HIGH_CMD_ENTRIES;
1409         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1410                 AAC_HOST_HIGH_CMD_ENTRIES;
1411         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1412                 AAC_ADAP_NORM_CMD_ENTRIES;
1413         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1414                 AAC_ADAP_NORM_CMD_ENTRIES;
1415         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1416                 AAC_ADAP_HIGH_CMD_ENTRIES;
1417         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1418                 AAC_ADAP_HIGH_CMD_ENTRIES;
1419         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1420                 AAC_HOST_NORM_RESP_ENTRIES;
1421         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1422                 AAC_HOST_NORM_RESP_ENTRIES;
1423         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1424                 AAC_HOST_HIGH_RESP_ENTRIES;
1425         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1426                 AAC_HOST_HIGH_RESP_ENTRIES;
1427         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1428                 AAC_ADAP_NORM_RESP_ENTRIES;
1429         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1430                 AAC_ADAP_NORM_RESP_ENTRIES;
1431         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1432                 AAC_ADAP_HIGH_RESP_ENTRIES;
1433         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1434                 AAC_ADAP_HIGH_RESP_ENTRIES;
1435         sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1436                 &sc->aac_queues->qt_HostNormCmdQueue[0];
1437         sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1438                 &sc->aac_queues->qt_HostHighCmdQueue[0];
1439         sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1440                 &sc->aac_queues->qt_AdapNormCmdQueue[0];
1441         sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1442                 &sc->aac_queues->qt_AdapHighCmdQueue[0];
1443         sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1444                 &sc->aac_queues->qt_HostNormRespQueue[0];
1445         sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1446                 &sc->aac_queues->qt_HostHighRespQueue[0];
1447         sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1448                 &sc->aac_queues->qt_AdapNormRespQueue[0];
1449         sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1450                 &sc->aac_queues->qt_AdapHighRespQueue[0];
1451
1452         /*
1453          * Do controller-type-specific initialisation
1454          */
1455         switch (sc->aac_hwif) {
1456         case AAC_HWIF_I960RX:
1457                 AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1458                 break;
1459         }
1460
1461         /*
1462          * Give the init structure to the controller.
1463          */
1464         if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 
1465                              sc->aac_common_busaddr +
1466                              offsetof(struct aac_common, ac_init), 0, 0, 0,
1467                              NULL)) {
1468                 device_printf(sc->aac_dev,
1469                               "error establishing init structure\n");
1470                 return(EIO);
1471         }
1472
1473         return(0);
1474 }
1475
1476 /*
1477  * Send a synchronous command to the controller and wait for a result.
1478  */
1479 static int
1480 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1481                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1482                  u_int32_t *sp)
1483 {
1484         time_t then;
1485         u_int32_t status;
1486
1487         debug_called(3);
1488
1489         /* populate the mailbox */
1490         AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1491
1492         /* ensure the sync command doorbell flag is cleared */
1493         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1494
1495         /* then set it to signal the adapter */
1496         AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1497
1498         /* spin waiting for the command to complete */
1499         then = time_second;
1500         do {
1501                 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1502                         debug(2, "timed out");
1503                         return(EIO);
1504                 }
1505         } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1506
1507         /* clear the completion flag */
1508         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1509
1510         /* get the command status */
1511         status = AAC_GET_MAILBOXSTATUS(sc);
1512         if (sp != NULL)
1513                 *sp = status;
1514         return(0);
1515 }
1516
1517 /*
1518  * Grab the sync fib area.
1519  */
1520 int
1521 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1522 {
1523
1524         /*
1525          * If the force flag is set, the system is shutting down, or in
1526          * trouble.  Ignore the mutex.
1527          */
1528         if (!(flags & AAC_SYNC_LOCK_FORCE))
1529                 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1530
1531         *fib = &sc->aac_common->ac_sync_fib;
1532
1533         return (1);
1534 }
1535
1536 /*
1537  * Release the sync fib area.
1538  */
1539 void
1540 aac_release_sync_fib(struct aac_softc *sc)
1541 {
1542
1543         AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1544 }
1545
1546 /*
1547  * Send a synchronous FIB to the controller and wait for a result.
1548  */
1549 int
1550 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 
1551                  struct aac_fib *fib, u_int16_t datasize)
1552 {
1553         debug_called(3);
1554
1555         if (datasize > AAC_FIB_DATASIZE)
1556                 return(EINVAL);
1557
1558         /*
1559          * Set up the sync FIB
1560          */
1561         fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1562                                 AAC_FIBSTATE_INITIALISED |
1563                                 AAC_FIBSTATE_EMPTY;
1564         fib->Header.XferState |= xferstate;
1565         fib->Header.Command = command;
1566         fib->Header.StructType = AAC_FIBTYPE_TFIB;
1567         fib->Header.Size = sizeof(struct aac_fib) + datasize;
1568         fib->Header.SenderSize = sizeof(struct aac_fib);
1569         fib->Header.SenderFibAddress = (u_int32_t)fib;
1570         fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1571                                          offsetof(struct aac_common,
1572                                                   ac_sync_fib);
1573
1574         /*
1575          * Give the FIB to the controller, wait for a response.
1576          */
1577         if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1578                              fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1579                 debug(2, "IO error");
1580                 return(EIO);
1581         }
1582
1583         return (0);
1584 }
1585
1586 /*
1587  * Adapter-space FIB queue manipulation
1588  *
1589  * Note that the queue implementation here is a little funky; neither the PI or
1590  * CI will ever be zero.  This behaviour is a controller feature.
1591  */
1592 static struct {
1593         int             size;
1594         int             notify;
1595 } aac_qinfo[] = {
1596         {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1597         {AAC_HOST_HIGH_CMD_ENTRIES, 0},
1598         {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1599         {AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1600         {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1601         {AAC_HOST_HIGH_RESP_ENTRIES, 0},
1602         {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1603         {AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1604 };
1605
1606 /*
1607  * Atomically insert an entry into the nominated queue, returns 0 on success or
1608  * EBUSY if the queue is full.
1609  *
1610  * Note: it would be more efficient to defer notifying the controller in
1611  *       the case where we may be inserting several entries in rapid succession,
1612  *       but implementing this usefully may be difficult (it would involve a
1613  *       separate queue/notify interface).
1614  */
1615 static int
1616 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1617 {
1618         u_int32_t pi, ci;
1619         int s, error;
1620         u_int32_t fib_size;
1621         u_int32_t fib_addr;
1622
1623         debug_called(3);
1624
1625         fib_size = cm->cm_fib->Header.Size; 
1626         fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1627
1628         s = splbio();
1629
1630         /* get the producer/consumer indices */
1631         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1632         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1633
1634         /* wrap the queue? */
1635         if (pi >= aac_qinfo[queue].size)
1636                 pi = 0;
1637
1638         /* check for queue full */
1639         if ((pi + 1) == ci) {
1640                 error = EBUSY;
1641                 goto out;
1642         }
1643
1644         /* populate queue entry */
1645         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1646         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1647
1648         /* update producer index */
1649         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1650
1651         /*
1652          * To avoid a race with its completion interrupt, place this command on
1653          * the busy queue prior to advertising it to the controller.
1654          */
1655         aac_enqueue_busy(cm);
1656
1657         /* notify the adapter if we know how */
1658         if (aac_qinfo[queue].notify != 0)
1659                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1660
1661         error = 0;
1662
1663 out:
1664         splx(s);
1665         return(error);
1666 }
1667
1668 /*
1669  * Atomically remove one entry from the nominated queue, returns 0 on
1670  * success or ENOENT if the queue is empty.
1671  */
1672 static int
1673 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1674                 struct aac_fib **fib_addr)
1675 {
1676         u_int32_t pi, ci;
1677         int s, error;
1678         int notify;
1679
1680         debug_called(3);
1681
1682         s = splbio();
1683
1684         /* get the producer/consumer indices */
1685         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1686         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1687
1688         /* check for queue empty */
1689         if (ci == pi) {
1690                 error = ENOENT;
1691                 goto out;
1692         }
1693         
1694         notify = 0;
1695         if (ci == pi + 1)
1696                 notify++;
1697
1698         /* wrap the queue? */
1699         if (ci >= aac_qinfo[queue].size)
1700                 ci = 0;
1701
1702         /* fetch the entry */
1703         *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1704         *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1705                                        ci)->aq_fib_addr;
1706
1707         /* update consumer index */
1708         sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1709
1710         /* if we have made the queue un-full, notify the adapter */
1711         if (notify && (aac_qinfo[queue].notify != 0))
1712                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1713         error = 0;
1714
1715 out:
1716         splx(s);
1717         return(error);
1718 }
1719
1720 /*
1721  * Put our response to an Adapter Initialed Fib on the response queue
1722  */
1723 static int
1724 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1725 {
1726         u_int32_t pi, ci;
1727         int s, error;
1728         u_int32_t fib_size;
1729         u_int32_t fib_addr;
1730
1731         debug_called(1);
1732
1733         /* Tell the adapter where the FIB is */
1734         fib_size = fib->Header.Size; 
1735         fib_addr = fib->Header.SenderFibAddress;
1736         fib->Header.ReceiverFibAddress = fib_addr;
1737
1738         s = splbio();
1739
1740         /* get the producer/consumer indices */
1741         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1742         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1743
1744         /* wrap the queue? */
1745         if (pi >= aac_qinfo[queue].size)
1746                 pi = 0;
1747
1748         /* check for queue full */
1749         if ((pi + 1) == ci) {
1750                 error = EBUSY;
1751                 goto out;
1752         }
1753
1754         /* populate queue entry */
1755         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1756         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1757
1758         /* update producer index */
1759         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1760
1761         /* notify the adapter if we know how */
1762         if (aac_qinfo[queue].notify != 0)
1763                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1764
1765         error = 0;
1766
1767 out:
1768         splx(s);
1769         return(error);
1770 }
1771
1772 /*
1773  * Check for commands that have been outstanding for a suspiciously long time,
1774  * and complain about them.
1775  */
1776 static void
1777 aac_timeout(struct aac_softc *sc)
1778 {
1779         int s;
1780         struct aac_command *cm;
1781         time_t deadline;
1782
1783 #if 0
1784         /* simulate an interrupt to handle possibly-missed interrupts */
1785         /*
1786          * XXX This was done to work around another bug which has since been
1787          * fixed.  It is dangerous anyways because you don't want multiple
1788          * threads in the interrupt handler at the same time!  If calling
1789          * is deamed neccesary in the future, proper mutexes must be used.
1790          */
1791         s = splbio();
1792         aac_intr(sc);
1793         splx(s);
1794
1795         /* kick the I/O queue to restart it in the case of deadlock */
1796         aac_startio(sc);
1797 #endif
1798
1799         /*
1800          * traverse the busy command list, bitch about late commands once
1801          * only.
1802          */
1803         deadline = time_second - AAC_CMD_TIMEOUT;
1804         s = splbio();
1805         TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1806                 if ((cm->cm_timestamp  < deadline)
1807                         /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1808                         cm->cm_flags |= AAC_CMD_TIMEDOUT;
1809                         device_printf(sc->aac_dev,
1810                                       "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1811                                       cm, (int)(time_second-cm->cm_timestamp));
1812                         AAC_PRINT_FIB(sc, cm->cm_fib);
1813                 }
1814         }
1815         splx(s);
1816
1817         /* reset the timer for next time */
1818         timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1819         return;
1820 }
1821
1822 /*
1823  * Interface Function Vectors
1824  */
1825
1826 /*
1827  * Read the current firmware status word.
1828  */
1829 static int
1830 aac_sa_get_fwstatus(struct aac_softc *sc)
1831 {
1832         debug_called(3);
1833
1834         return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1835 }
1836
1837 static int
1838 aac_rx_get_fwstatus(struct aac_softc *sc)
1839 {
1840         debug_called(3);
1841
1842         return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1843 }
1844
1845 static int
1846 aac_fa_get_fwstatus(struct aac_softc *sc)
1847 {
1848         int val;
1849
1850         debug_called(3);
1851
1852         val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1853         return (val);
1854 }
1855
1856 /*
1857  * Notify the controller of a change in a given queue
1858  */
1859
1860 static void
1861 aac_sa_qnotify(struct aac_softc *sc, int qbit)
1862 {
1863         debug_called(3);
1864
1865         AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1866 }
1867
1868 static void
1869 aac_rx_qnotify(struct aac_softc *sc, int qbit)
1870 {
1871         debug_called(3);
1872
1873         AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1874 }
1875
1876 static void
1877 aac_fa_qnotify(struct aac_softc *sc, int qbit)
1878 {
1879         debug_called(3);
1880
1881         AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1882         AAC_FA_HACK(sc);
1883 }
1884
1885 /*
1886  * Get the interrupt reason bits
1887  */
1888 static int
1889 aac_sa_get_istatus(struct aac_softc *sc)
1890 {
1891         debug_called(3);
1892
1893         return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1894 }
1895
1896 static int
1897 aac_rx_get_istatus(struct aac_softc *sc)
1898 {
1899         debug_called(3);
1900
1901         return(AAC_GETREG4(sc, AAC_RX_ODBR));
1902 }
1903
1904 static int
1905 aac_fa_get_istatus(struct aac_softc *sc)
1906 {
1907         int val;
1908
1909         debug_called(3);
1910
1911         val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1912         return (val);
1913 }
1914
1915 /*
1916  * Clear some interrupt reason bits
1917  */
1918 static void
1919 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1920 {
1921         debug_called(3);
1922
1923         AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1924 }
1925
1926 static void
1927 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1928 {
1929         debug_called(3);
1930
1931         AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1932 }
1933
1934 static void
1935 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
1936 {
1937         debug_called(3);
1938
1939         AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
1940         AAC_FA_HACK(sc);
1941 }
1942
1943 /*
1944  * Populate the mailbox and set the command word
1945  */
1946 static void
1947 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1948                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1949 {
1950         debug_called(4);
1951
1952         AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
1953         AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
1954         AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
1955         AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
1956         AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
1957 }
1958
1959 static void
1960 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
1961                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1962 {
1963         debug_called(4);
1964
1965         AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
1966         AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
1967         AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
1968         AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
1969         AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
1970 }
1971
1972 static void
1973 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1974                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1975 {
1976         debug_called(4);
1977
1978         AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
1979         AAC_FA_HACK(sc);
1980         AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
1981         AAC_FA_HACK(sc);
1982         AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
1983         AAC_FA_HACK(sc);
1984         AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
1985         AAC_FA_HACK(sc);
1986         AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
1987         AAC_FA_HACK(sc);
1988 }
1989
1990 /*
1991  * Fetch the immediate command status word
1992  */
1993 static int
1994 aac_sa_get_mailboxstatus(struct aac_softc *sc)
1995 {
1996         debug_called(4);
1997
1998         return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
1999 }
2000
2001 static int
2002 aac_rx_get_mailboxstatus(struct aac_softc *sc)
2003 {
2004         debug_called(4);
2005
2006         return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2007 }
2008
2009 static int
2010 aac_fa_get_mailboxstatus(struct aac_softc *sc)
2011 {
2012         int val;
2013
2014         debug_called(4);
2015
2016         val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2017         return (val);
2018 }
2019
2020 /*
2021  * Set/clear interrupt masks
2022  */
2023 static void
2024 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2025 {
2026         debug(2, "%sable interrupts", enable ? "en" : "dis");
2027
2028         if (enable) {
2029                 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2030         } else {
2031                 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2032         }
2033 }
2034
2035 static void
2036 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2037 {
2038         debug(2, "%sable interrupts", enable ? "en" : "dis");
2039
2040         if (enable) {
2041                 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2042         } else {
2043                 AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2044         }
2045 }
2046
2047 static void
2048 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2049 {
2050         debug(2, "%sable interrupts", enable ? "en" : "dis");
2051
2052         if (enable) {
2053                 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2054                 AAC_FA_HACK(sc);
2055         } else {
2056                 AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2057                 AAC_FA_HACK(sc);
2058         }
2059 }
2060
2061 /*
2062  * Debugging and Diagnostics
2063  */
2064
2065 /*
2066  * Print some information about the controller.
2067  */
2068 static void
2069 aac_describe_controller(struct aac_softc *sc)
2070 {
2071         struct aac_fib *fib;
2072         struct aac_adapter_info *info;
2073
2074         debug_called(2);
2075
2076         aac_alloc_sync_fib(sc, &fib, 0);
2077
2078         fib->data[0] = 0;
2079         if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2080                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2081                 aac_release_sync_fib(sc);
2082                 return;
2083         }
2084         info = (struct aac_adapter_info *)&fib->data[0];
2085
2086         device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 
2087                       aac_describe_code(aac_cpu_variant, info->CpuVariant),
2088                       info->ClockSpeed, info->BufferMem / (1024 * 1024), 
2089                       aac_describe_code(aac_battery_platform,
2090                                         info->batteryPlatform));
2091
2092         /* save the kernel revision structure for later use */
2093         sc->aac_revision = info->KernelRevision;
2094         device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2095                       info->KernelRevision.external.comp.major,
2096                       info->KernelRevision.external.comp.minor,
2097                       info->KernelRevision.external.comp.dash,
2098                       info->KernelRevision.buildNumber,
2099                       (u_int32_t)(info->SerialNumber & 0xffffff));
2100
2101         aac_release_sync_fib(sc);
2102 }
2103
2104 /*
2105  * Look up a text description of a numeric error code and return a pointer to
2106  * same.
2107  */
2108 static char *
2109 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2110 {
2111         int i;
2112
2113         for (i = 0; table[i].string != NULL; i++)
2114                 if (table[i].code == code)
2115                         return(table[i].string);
2116         return(table[i + 1].string);
2117 }
2118
2119 /*
2120  * Management Interface
2121  */
2122
2123 static int
2124 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2125 {
2126         struct aac_softc *sc;
2127
2128         debug_called(2);
2129
2130         sc = dev->si_drv1;
2131
2132         /* Check to make sure the device isn't already open */
2133         if (sc->aac_state & AAC_STATE_OPEN) {
2134                 return EBUSY;
2135         }
2136         sc->aac_state |= AAC_STATE_OPEN;
2137
2138         return 0;
2139 }
2140
2141 static int
2142 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2143 {
2144         struct aac_softc *sc;
2145
2146         debug_called(2);
2147
2148         sc = dev->si_drv1;
2149
2150         /* Mark this unit as no longer open  */
2151         sc->aac_state &= ~AAC_STATE_OPEN;
2152
2153         return 0;
2154 }
2155
2156 static int
2157 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2158 {
2159         union aac_statrequest *as;
2160         struct aac_softc *sc;
2161         int error = 0;
2162         int i;
2163
2164         debug_called(2);
2165
2166         as = (union aac_statrequest *)arg;
2167         sc = dev->si_drv1;
2168
2169         switch (cmd) {
2170         case AACIO_STATS:
2171                 switch (as->as_item) {
2172                 case AACQ_FREE:
2173                 case AACQ_BIO:
2174                 case AACQ_READY:
2175                 case AACQ_BUSY:
2176                 case AACQ_COMPLETE:
2177                         bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2178                               sizeof(struct aac_qstat));
2179                         break;
2180                 default:
2181                         error = ENOENT;
2182                         break;
2183                 }
2184         break;
2185         
2186         case FSACTL_SENDFIB:
2187                 arg = *(caddr_t*)arg;
2188         case FSACTL_LNX_SENDFIB:
2189                 debug(1, "FSACTL_SENDFIB");
2190                 error = aac_ioctl_sendfib(sc, arg);
2191                 break;
2192         case FSACTL_AIF_THREAD:
2193         case FSACTL_LNX_AIF_THREAD:
2194                 debug(1, "FSACTL_AIF_THREAD");
2195                 error = EINVAL;
2196                 break;
2197         case FSACTL_OPEN_GET_ADAPTER_FIB:
2198                 arg = *(caddr_t*)arg;
2199         case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2200                 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2201                 /*
2202                  * Pass the caller out an AdapterFibContext.
2203                  *
2204                  * Note that because we only support one opener, we
2205                  * basically ignore this.  Set the caller's context to a magic
2206                  * number just in case.
2207                  *
2208                  * The Linux code hands the driver a pointer into kernel space,
2209                  * and then trusts it when the caller hands it back.  Aiee!
2210                  * Here, we give it the proc pointer of the per-adapter aif 
2211                  * thread. It's only used as a sanity check in other calls.
2212                  */
2213                 i = (int)sc->aifthread;
2214                 error = copyout(&i, arg, sizeof(i));
2215                 break;
2216         case FSACTL_GET_NEXT_ADAPTER_FIB:
2217                 arg = *(caddr_t*)arg;
2218         case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2219                 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2220                 error = aac_getnext_aif(sc, arg);
2221                 break;
2222         case FSACTL_CLOSE_GET_ADAPTER_FIB:
2223         case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2224                 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2225                 /* don't do anything here */
2226                 break;
2227         case FSACTL_MINIPORT_REV_CHECK:
2228                 arg = *(caddr_t*)arg;
2229         case FSACTL_LNX_MINIPORT_REV_CHECK:
2230                 debug(1, "FSACTL_MINIPORT_REV_CHECK");
2231                 error = aac_rev_check(sc, arg);
2232                 break;
2233         case FSACTL_QUERY_DISK:
2234                 arg = *(caddr_t*)arg;
2235         case FSACTL_LNX_QUERY_DISK:
2236                 debug(1, "FSACTL_QUERY_DISK");
2237                 error = aac_query_disk(sc, arg);
2238                         break;
2239         case FSACTL_DELETE_DISK:
2240         case FSACTL_LNX_DELETE_DISK:
2241                 /*
2242                  * We don't trust the underland to tell us when to delete a
2243                  * container, rather we rely on an AIF coming from the 
2244                  * controller
2245                  */
2246                 error = 0;
2247                 break;
2248         default:
2249                 debug(1, "unsupported cmd 0x%lx\n", cmd);
2250                 error = EINVAL;
2251                 break;
2252         }
2253         return(error);
2254 }
2255
2256 static int
2257 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2258 {
2259         struct aac_softc *sc;
2260         int revents;
2261
2262         sc = dev->si_drv1;
2263         revents = 0;
2264
2265         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2266         if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2267                 if (sc->aac_aifq_tail != sc->aac_aifq_head)
2268                         revents |= poll_events & (POLLIN | POLLRDNORM);
2269         }
2270         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2271
2272         if (revents == 0) {
2273                 if (poll_events & (POLLIN | POLLRDNORM))
2274                         selrecord(td, &sc->rcv_select);
2275         }
2276
2277         return (revents);
2278 }
2279
2280 /*
2281  * Send a FIB supplied from userspace
2282  */
2283 static int
2284 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2285 {
2286         struct aac_command *cm;
2287         int size, error;
2288
2289         debug_called(2);
2290
2291         cm = NULL;
2292
2293         /*
2294          * Get a command
2295          */
2296         if (aac_alloc_command(sc, &cm)) {
2297                 error = EBUSY;
2298                 goto out;
2299         }
2300
2301         /*
2302          * Fetch the FIB header, then re-copy to get data as well.
2303          */
2304         if ((error = copyin(ufib, cm->cm_fib,
2305                             sizeof(struct aac_fib_header))) != 0)
2306                 goto out;
2307         size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2308         if (size > sizeof(struct aac_fib)) {
2309                 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2310                               size, sizeof(struct aac_fib));
2311                 size = sizeof(struct aac_fib);
2312         }
2313         if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2314                 goto out;
2315         cm->cm_fib->Header.Size = size;
2316         cm->cm_timestamp = time_second;
2317
2318         /*
2319          * Pass the FIB to the controller, wait for it to complete.
2320          */
2321         if ((error = aac_wait_command(cm, 30)) != 0) {  /* XXX user timeout? */
2322                 printf("aac_wait_command return %d\n", error);
2323                 goto out;
2324         }
2325
2326         /*
2327          * Copy the FIB and data back out to the caller.
2328          */
2329         size = cm->cm_fib->Header.Size;
2330         if (size > sizeof(struct aac_fib)) {
2331                 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2332                               size, sizeof(struct aac_fib));
2333                 size = sizeof(struct aac_fib);
2334         }
2335         error = copyout(cm->cm_fib, ufib, size);
2336
2337 out:
2338         if (cm != NULL) {
2339                 aac_release_command(cm);
2340         }
2341         return(error);
2342 }
2343
2344 /*
2345  * Handle an AIF sent to us by the controller; queue it for later reference.
2346  * If the queue fills up, then drop the older entries.
2347  */
2348 static void
2349 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2350 {
2351         struct aac_aif_command *aif;
2352         struct aac_container *co, *co_next;
2353         struct aac_mntinfo *mi;
2354         struct aac_mntinforesp *mir = NULL;
2355         u_int16_t rsize;
2356         int next, found;
2357         int added = 0, i = 0;
2358
2359         debug_called(2);
2360
2361         aif = (struct aac_aif_command*)&fib->data[0];
2362         aac_print_aif(sc, aif);
2363
2364         /* Is it an event that we should care about? */
2365         switch (aif->command) {
2366         case AifCmdEventNotify:
2367                 switch (aif->data.EN.type) {
2368                 case AifEnAddContainer:
2369                 case AifEnDeleteContainer:
2370                         /*
2371                          * A container was added or deleted, but the message 
2372                          * doesn't tell us anything else!  Re-enumerate the
2373                          * containers and sort things out.
2374                          */
2375                         aac_alloc_sync_fib(sc, &fib, 0);
2376                         mi = (struct aac_mntinfo *)&fib->data[0];
2377                         do {
2378                                 /*
2379                                  * Ask the controller for its containers one at
2380                                  * a time.
2381                                  * XXX What if the controller's list changes
2382                                  * midway through this enumaration?
2383                                  * XXX This should be done async.
2384                                  */
2385                                 bzero(mi, sizeof(struct aac_mntinfo));
2386                                 mi->Command = VM_NameServe;
2387                                 mi->MntType = FT_FILESYS;
2388                                 mi->MntCount = i;
2389                                 rsize = sizeof(mir);
2390                                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2391                                                  sizeof(struct aac_mntinfo))) {
2392                                         debug(2, "Error probing container %d\n",
2393                                               i);
2394                                         continue;
2395                                 }
2396                                 mir = (struct aac_mntinforesp *)&fib->data[0];
2397                                 /*
2398                                  * Check the container against our list.
2399                                  * co->co_found was already set to 0 in a
2400                                  * previous run.
2401                                  */
2402                                 if ((mir->Status == ST_OK) &&
2403                                     (mir->MntTable[0].VolType != CT_NONE)) {
2404                                         found = 0;
2405                                         TAILQ_FOREACH(co,
2406                                                       &sc->aac_container_tqh, 
2407                                                       co_link) {
2408                                                 if (co->co_mntobj.ObjectId ==
2409                                                     mir->MntTable[0].ObjectId) {
2410                                                         co->co_found = 1;
2411                                                         found = 1;
2412                                                         break;
2413                                                 }
2414                                         }
2415                                         /*
2416                                          * If the container matched, continue
2417                                          * in the list.
2418                                          */
2419                                         if (found) {
2420                                                 i++;
2421                                                 continue;
2422                                         }
2423
2424                                         /*
2425                                          * This is a new container.  Do all the
2426                                          * appropriate things to set it up.                                              */
2427                                         aac_add_container(sc, mir, 1);
2428                                         added = 1;
2429                                 }
2430                                 i++;
2431                         } while ((i < mir->MntRespCount) &&
2432                                  (i < AAC_MAX_CONTAINERS));
2433                         aac_release_sync_fib(sc);
2434
2435                         /*
2436                          * Go through our list of containers and see which ones
2437                          * were not marked 'found'.  Since the controller didn't
2438                          * list them they must have been deleted.  Do the
2439                          * appropriate steps to destroy the device.  Also reset
2440                          * the co->co_found field.
2441                          */
2442                         co = TAILQ_FIRST(&sc->aac_container_tqh);
2443                         while (co != NULL) {
2444                                 if (co->co_found == 0) {
2445                                         device_delete_child(sc->aac_dev,
2446                                                             co->co_disk);
2447                                         co_next = TAILQ_NEXT(co, co_link);
2448                                         AAC_LOCK_ACQUIRE(&sc->
2449                                                         aac_container_lock);
2450                                         TAILQ_REMOVE(&sc->aac_container_tqh, co,
2451                                                      co_link);
2452                                         AAC_LOCK_RELEASE(&sc->
2453                                                          aac_container_lock);
2454                                         FREE(co, M_AACBUF);
2455                                         co = co_next;
2456                                 } else {
2457                                         co->co_found = 0;
2458                                         co = TAILQ_NEXT(co, co_link);
2459                                 }
2460                         }
2461
2462                         /* Attach the newly created containers */
2463                         if (added)
2464                                 bus_generic_attach(sc->aac_dev);
2465         
2466                         break;
2467
2468                 default:
2469                         break;
2470                 }
2471
2472         default:
2473                 break;
2474         }
2475
2476         /* Copy the AIF data to the AIF queue for ioctl retrieval */
2477         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2478         next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2479         if (next != sc->aac_aifq_tail) {
2480                 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2481                 sc->aac_aifq_head = next;
2482
2483                 /* On the off chance that someone is sleeping for an aif... */
2484                 if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2485                         wakeup(sc->aac_aifq);
2486                 /* Wakeup any poll()ers */
2487                 selwakeup(&sc->rcv_select);
2488         }
2489         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2490
2491         return;
2492 }
2493
2494 /*
2495  * Return the Revision of the driver to userspace and check to see if the
2496  * userspace app is possibly compatible.  This is extremely bogus since
2497  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2498  * returning what the card reported.
2499  */
2500 static int
2501 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2502 {
2503         struct aac_rev_check rev_check;
2504         struct aac_rev_check_resp rev_check_resp;
2505         int error = 0;
2506
2507         debug_called(2);
2508
2509         /*
2510          * Copyin the revision struct from userspace
2511          */
2512         if ((error = copyin(udata, (caddr_t)&rev_check,
2513                         sizeof(struct aac_rev_check))) != 0) {
2514                 return error;
2515         }
2516
2517         debug(2, "Userland revision= %d\n",
2518               rev_check.callingRevision.buildNumber);
2519
2520         /*
2521          * Doctor up the response struct.
2522          */
2523         rev_check_resp.possiblyCompatible = 1;
2524         rev_check_resp.adapterSWRevision.external.ul =
2525             sc->aac_revision.external.ul;
2526         rev_check_resp.adapterSWRevision.buildNumber =
2527             sc->aac_revision.buildNumber;
2528
2529         return(copyout((caddr_t)&rev_check_resp, udata,
2530                         sizeof(struct aac_rev_check_resp)));
2531 }
2532
2533 /*
2534  * Pass the caller the next AIF in their queue
2535  */
2536 static int
2537 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2538 {
2539         struct get_adapter_fib_ioctl agf;
2540         int error, s;
2541
2542         debug_called(2);
2543
2544         if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2545
2546                 /*
2547                  * Check the magic number that we gave the caller.
2548                  */
2549                 if (agf.AdapterFibContext != (int)sc->aifthread) {
2550                         error = EFAULT;
2551                 } else {
2552         
2553                         s = splbio();
2554                         error = aac_return_aif(sc, agf.AifFib);
2555         
2556                         if ((error == EAGAIN) && (agf.Wait)) {
2557                                 sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2558                                 while (error == EAGAIN) {
2559                                         error = tsleep(sc->aac_aifq, PRIBIO |
2560                                                        PCATCH, "aacaif", 0);
2561                                         if (error == 0)
2562                                                 error = aac_return_aif(sc,
2563                                                     agf.AifFib);
2564                                 }
2565                                 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2566                         }
2567                 splx(s);
2568                 }
2569         }
2570         return(error);
2571 }
2572
2573 /*
2574  * Hand the next AIF off the top of the queue out to userspace.
2575  */
2576 static int
2577 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2578 {
2579         int error;
2580
2581         debug_called(2);
2582
2583         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2584         if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2585                 error = EAGAIN;
2586         } else {
2587                 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2588                                 sizeof(struct aac_aif_command));
2589                 if (error)
2590                         printf("aac_return_aif: copyout returned %d\n", error);
2591                 if (!error)
2592                         sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2593                                             AAC_AIFQ_LENGTH;
2594         }
2595         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2596         return(error);
2597 }
2598
2599 /*
2600  * Give the userland some information about the container.  The AAC arch
2601  * expects the driver to be a SCSI passthrough type driver, so it expects
2602  * the containers to have b:t:l numbers.  Fake it.
2603  */
2604 static int
2605 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2606 {
2607         struct aac_query_disk query_disk;
2608         struct aac_container *co;
2609         struct aac_disk *disk;
2610         int error, id;
2611
2612         debug_called(2);
2613
2614         disk = NULL;
2615
2616         error = copyin(uptr, (caddr_t)&query_disk,
2617                        sizeof(struct aac_query_disk));
2618         if (error)
2619                 return (error);
2620
2621         id = query_disk.ContainerNumber;
2622         if (id == -1)
2623                 return (EINVAL);
2624
2625         AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2626         TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2627                 if (co->co_mntobj.ObjectId == id)
2628                         break;
2629                 }
2630
2631         if (co == NULL) {
2632                         query_disk.Valid = 0;
2633                         query_disk.Locked = 0;
2634                         query_disk.Deleted = 1;         /* XXX is this right? */
2635         } else {
2636                 disk = device_get_softc(co->co_disk);
2637                 query_disk.Valid = 1;
2638                 query_disk.Locked =
2639                     (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2640                 query_disk.Deleted = 0;
2641                 query_disk.Bus = device_get_unit(sc->aac_dev);
2642                 query_disk.Target = disk->unit;
2643                 query_disk.Lun = 0;
2644                 query_disk.UnMapped = 0;
2645                 bcopy(disk->ad_dev_t->si_name,
2646                       &query_disk.diskDeviceName[0], 10);
2647         }
2648         AAC_LOCK_RELEASE(&sc->aac_container_lock);
2649
2650         error = copyout((caddr_t)&query_disk, uptr,
2651                         sizeof(struct aac_query_disk));
2652
2653         return (error);
2654 }
2655
2656 static void
2657 aac_get_bus_info(struct aac_softc *sc)
2658 {
2659         struct aac_fib *fib;
2660         struct aac_ctcfg *c_cmd;
2661         struct aac_ctcfg_resp *c_resp;
2662         struct aac_vmioctl *vmi;
2663         struct aac_vmi_businf_resp *vmi_resp;
2664         struct aac_getbusinf businfo;
2665         struct aac_cam_inf *caminf;
2666         device_t child;
2667         int i, found, error;
2668
2669         aac_alloc_sync_fib(sc, &fib, 0);
2670         c_cmd = (struct aac_ctcfg *)&fib->data[0];
2671         bzero(c_cmd, sizeof(struct aac_ctcfg));
2672
2673         c_cmd->Command = VM_ContainerConfig;
2674         c_cmd->cmd = CT_GET_SCSI_METHOD;
2675         c_cmd->param = 0;
2676
2677         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2678             sizeof(struct aac_ctcfg));
2679         if (error) {
2680                 device_printf(sc->aac_dev, "Error %d sending "
2681                     "VM_ContainerConfig command\n", error);
2682                 aac_release_sync_fib(sc);
2683                 return;
2684         }
2685
2686         c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2687         if (c_resp->Status != ST_OK) {
2688                 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2689                     c_resp->Status);
2690                 aac_release_sync_fib(sc);
2691                 return;
2692         }
2693
2694         sc->scsi_method_id = c_resp->param;
2695
2696         vmi = (struct aac_vmioctl *)&fib->data[0];
2697         bzero(vmi, sizeof(struct aac_vmioctl));
2698
2699         vmi->Command = VM_Ioctl;
2700         vmi->ObjType = FT_DRIVE;
2701         vmi->MethId = sc->scsi_method_id;
2702         vmi->ObjId = 0;
2703         vmi->IoctlCmd = GetBusInfo;
2704
2705         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2706             sizeof(struct aac_vmioctl));
2707         if (error) {
2708                 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2709                     error);
2710                 aac_release_sync_fib(sc);
2711                 return;
2712         }
2713
2714         vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2715         if (vmi_resp->Status != ST_OK) {
2716                 device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2717                     vmi_resp->Status);
2718                 aac_release_sync_fib(sc);
2719                 return;
2720         }
2721
2722         bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2723         aac_release_sync_fib(sc);
2724
2725         found = 0;
2726         for (i = 0; i < businfo.BusCount; i++) {
2727                 if (businfo.BusValid[i] != AAC_BUS_VALID)
2728                         continue;
2729
2730                 MALLOC(caminf, struct aac_cam_inf *,
2731                     sizeof(struct aac_cam_inf), M_AACBUF, M_NOWAIT | M_ZERO);
2732                 if (caminf == NULL)
2733                         continue;
2734
2735                 child = device_add_child(sc->aac_dev, "aacp", -1);
2736                 if (child == NULL) {
2737                         device_printf(sc->aac_dev, "device_add_child failed\n");
2738                         continue;
2739                 }
2740
2741                 caminf->TargetsPerBus = businfo.TargetsPerBus;
2742                 caminf->BusNumber = i;
2743                 caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2744                 caminf->aac_sc = sc;
2745
2746                 device_set_ivars(child, caminf);
2747                 device_set_desc(child, "SCSI Passthrough Bus");
2748
2749                 found = 1;
2750         }
2751
2752         if (found)
2753                 bus_generic_attach(sc->aac_dev);
2754
2755         return;
2756 }