]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/aac/aac.c
This commit was generated by cvs2svn to compensate for changes in r100928,
[FreeBSD/FreeBSD.git] / sys / dev / aac / aac.c
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *      $FreeBSD$
30  */
31
32 /*
33  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34  */
35
36 #include "opt_aac.h"
37
38 /* #include <stddef.h> */
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/poll.h>
48 #if __FreeBSD_version >= 500005
49 #include <sys/selinfo.h>
50 #else
51 #include <sys/select.h>
52 #endif
53
54 #include <dev/aac/aac_compat.h>
55
56 #include <sys/bus.h>
57 #include <sys/conf.h>
58 #include <sys/devicestat.h>
59 #include <sys/disk.h>
60 #include <sys/file.h>
61 #include <sys/signalvar.h>
62 #include <sys/time.h>
63 #include <sys/eventhandler.h>
64
65 #include <machine/bus_memio.h>
66 #include <machine/bus.h>
67 #include <machine/resource.h>
68
69 #include <dev/aac/aacreg.h>
70 #include <dev/aac/aac_ioctl.h>
71 #include <dev/aac/aacvar.h>
72 #include <dev/aac/aac_tables.h>
73 #include <dev/aac/aac_cam.h>
74
75 static void     aac_startup(void *arg);
76 static void     aac_add_container(struct aac_softc *sc,
77                                   struct aac_mntinforesp *mir, int f);
78 static void     aac_get_bus_info(struct aac_softc *sc);
79
80 /* Command Processing */
81 static void     aac_timeout(struct aac_softc *sc);
82 static int      aac_start(struct aac_command *cm);
83 static void     aac_complete(void *context, int pending);
84 static int      aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
85 static void     aac_bio_complete(struct aac_command *cm);
86 static int      aac_wait_command(struct aac_command *cm, int timeout);
87 static void     aac_host_command(struct aac_softc *sc);
88 static void     aac_host_response(struct aac_softc *sc);
89
90 /* Command Buffer Management */
91 static void     aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
92                                        int nseg, int error);
93 static int      aac_alloc_commands(struct aac_softc *sc);
94 static void     aac_free_commands(struct aac_softc *sc);
95 static void     aac_map_command(struct aac_command *cm);
96 static void     aac_unmap_command(struct aac_command *cm);
97
98 /* Hardware Interface */
99 static void     aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
100                                int error);
101 static int      aac_check_firmware(struct aac_softc *sc);
102 static int      aac_init(struct aac_softc *sc);
103 static int      aac_sync_command(struct aac_softc *sc, u_int32_t command,
104                                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
105                                  u_int32_t arg3, u_int32_t *sp);
106 static int      aac_enqueue_fib(struct aac_softc *sc, int queue,
107                                 struct aac_command *cm);
108 static int      aac_dequeue_fib(struct aac_softc *sc, int queue,
109                                 u_int32_t *fib_size, struct aac_fib **fib_addr);
110 static int      aac_enqueue_response(struct aac_softc *sc, int queue,
111                                      struct aac_fib *fib);
112
113 /* Falcon/PPC interface */
114 static int      aac_fa_get_fwstatus(struct aac_softc *sc);
115 static void     aac_fa_qnotify(struct aac_softc *sc, int qbit);
116 static int      aac_fa_get_istatus(struct aac_softc *sc);
117 static void     aac_fa_clear_istatus(struct aac_softc *sc, int mask);
118 static void     aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
119                                    u_int32_t arg0, u_int32_t arg1,
120                                    u_int32_t arg2, u_int32_t arg3);
121 static int      aac_fa_get_mailboxstatus(struct aac_softc *sc);
122 static void     aac_fa_set_interrupts(struct aac_softc *sc, int enable);
123
124 struct aac_interface aac_fa_interface = {
125         aac_fa_get_fwstatus,
126         aac_fa_qnotify,
127         aac_fa_get_istatus,
128         aac_fa_clear_istatus,
129         aac_fa_set_mailbox,
130         aac_fa_get_mailboxstatus,
131         aac_fa_set_interrupts
132 };
133
134 /* StrongARM interface */
135 static int      aac_sa_get_fwstatus(struct aac_softc *sc);
136 static void     aac_sa_qnotify(struct aac_softc *sc, int qbit);
137 static int      aac_sa_get_istatus(struct aac_softc *sc);
138 static void     aac_sa_clear_istatus(struct aac_softc *sc, int mask);
139 static void     aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
140                                    u_int32_t arg0, u_int32_t arg1,
141                                    u_int32_t arg2, u_int32_t arg3);
142 static int      aac_sa_get_mailboxstatus(struct aac_softc *sc);
143 static void     aac_sa_set_interrupts(struct aac_softc *sc, int enable);
144
145 struct aac_interface aac_sa_interface = {
146         aac_sa_get_fwstatus,
147         aac_sa_qnotify,
148         aac_sa_get_istatus,
149         aac_sa_clear_istatus,
150         aac_sa_set_mailbox,
151         aac_sa_get_mailboxstatus,
152         aac_sa_set_interrupts
153 };
154
155 /* i960Rx interface */  
156 static int      aac_rx_get_fwstatus(struct aac_softc *sc);
157 static void     aac_rx_qnotify(struct aac_softc *sc, int qbit);
158 static int      aac_rx_get_istatus(struct aac_softc *sc);
159 static void     aac_rx_clear_istatus(struct aac_softc *sc, int mask);
160 static void     aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
161                                    u_int32_t arg0, u_int32_t arg1,
162                                    u_int32_t arg2, u_int32_t arg3);
163 static int      aac_rx_get_mailboxstatus(struct aac_softc *sc);
164 static void     aac_rx_set_interrupts(struct aac_softc *sc, int enable);
165
166 struct aac_interface aac_rx_interface = {
167         aac_rx_get_fwstatus,
168         aac_rx_qnotify,
169         aac_rx_get_istatus,
170         aac_rx_clear_istatus,
171         aac_rx_set_mailbox,
172         aac_rx_get_mailboxstatus,
173         aac_rx_set_interrupts
174 };
175
176 /* Debugging and Diagnostics */
177 static void     aac_describe_controller(struct aac_softc *sc);
178 static char     *aac_describe_code(struct aac_code_lookup *table,
179                                    u_int32_t code);
180
181 /* Management Interface */
182 static d_open_t         aac_open;
183 static d_close_t        aac_close;
184 static d_ioctl_t        aac_ioctl;
185 static d_poll_t         aac_poll;
186 static int              aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
187 static void             aac_handle_aif(struct aac_softc *sc,
188                                            struct aac_fib *fib);
189 static int              aac_rev_check(struct aac_softc *sc, caddr_t udata);
190 static int              aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
191 static int              aac_return_aif(struct aac_softc *sc, caddr_t uptr);
192 static int              aac_query_disk(struct aac_softc *sc, caddr_t uptr);
193
194 #define AAC_CDEV_MAJOR  150
195
196 static struct cdevsw aac_cdevsw = {
197         aac_open,               /* open */
198         aac_close,              /* close */
199         noread,                 /* read */
200         nowrite,                /* write */
201         aac_ioctl,              /* ioctl */
202         aac_poll,               /* poll */
203         nommap,                 /* mmap */
204         nostrategy,             /* strategy */
205         "aac",                  /* name */
206         AAC_CDEV_MAJOR,         /* major */
207         nodump,                 /* dump */
208         nopsize,                /* psize */
209         0,                      /* flags */
210 #if __FreeBSD_version < 500005
211         -1,                     /* bmaj */
212 #endif
213 };
214
215 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
216
217 /* sysctl node */
218 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
219
220 /*
221  * Device Interface
222  */
223
224 /*
225  * Initialise the controller and softc
226  */
227 int
228 aac_attach(struct aac_softc *sc)
229 {
230         int error, unit;
231
232         debug_called(1);
233
234         /*
235          * Initialise per-controller queues.
236          */
237         aac_initq_free(sc);
238         aac_initq_ready(sc);
239         aac_initq_busy(sc);
240         aac_initq_complete(sc);
241         aac_initq_bio(sc);
242
243 #if __FreeBSD_version >= 500005
244         /*
245          * Initialise command-completion task.
246          */
247         TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
248 #endif
249
250         /* disable interrupts before we enable anything */
251         AAC_MASK_INTERRUPTS(sc);
252
253         /* mark controller as suspended until we get ourselves organised */
254         sc->aac_state |= AAC_STATE_SUSPEND;
255
256         /*
257          * Check that the firmware on the card is supported.
258          */
259         if ((error = aac_check_firmware(sc)) != 0)
260                 return(error);
261
262         /*
263          * Allocate command structures.
264          */
265         if ((error = aac_alloc_commands(sc)) != 0)
266                 return(error);
267
268         /* Init the sync fib lock */
269         AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
270
271         /*
272          * Initialise the adapter.
273          */
274         if ((error = aac_init(sc)) != 0)
275                 return(error);
276
277         /* 
278          * Print a little information about the controller.
279          */
280         aac_describe_controller(sc);
281
282         /*
283          * Register to probe our containers later.
284          */
285         TAILQ_INIT(&sc->aac_container_tqh);
286         AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
287
288         /*
289          * Lock for the AIF queue
290          */
291         AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
292
293         sc->aac_ich.ich_func = aac_startup;
294         sc->aac_ich.ich_arg = sc;
295         if (config_intrhook_establish(&sc->aac_ich) != 0) {
296                 device_printf(sc->aac_dev,
297                               "can't establish configuration hook\n");
298                 return(ENXIO);
299         }
300
301         /*
302          * Make the control device.
303          */
304         unit = device_get_unit(sc->aac_dev);
305         sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
306                                  "aac%d", unit);
307 #if __FreeBSD_version > 500005
308         (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
309         (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
310 #endif
311         sc->aac_dev_t->si_drv1 = sc;
312
313         /* Create the AIF thread */
314 #if __FreeBSD_version > 500005
315         if (kthread_create((void(*)(void *))aac_host_command, sc,
316                            &sc->aifthread, 0, "aac%daif", unit))
317 #else
318         if (kthread_create((void(*)(void *))aac_host_command, sc,
319                            &sc->aifthread, "aac%daif", unit))
320 #endif
321                 panic("Could not create AIF thread\n");
322
323         /* Register the shutdown method to only be called post-dump */
324         if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
325                                    SHUTDOWN_PRI_DEFAULT)) == NULL)
326         device_printf(sc->aac_dev, "shutdown event registration failed\n");
327
328         /* Register with CAM for the non-DASD devices */
329         if (!(sc->quirks & AAC_QUIRK_NOCAM))
330                 aac_get_bus_info(sc);
331
332         return(0);
333 }
334
335 /*
336  * Probe for containers, create disks.
337  */
338 static void
339 aac_startup(void *arg)
340 {
341         struct aac_softc *sc;
342         struct aac_fib *fib;
343         struct aac_mntinfo *mi;
344         struct aac_mntinforesp *mir = NULL;
345         int i = 0;
346
347         debug_called(1);
348
349         sc = (struct aac_softc *)arg;
350
351         /* disconnect ourselves from the intrhook chain */
352         config_intrhook_disestablish(&sc->aac_ich);
353
354         aac_alloc_sync_fib(sc, &fib, 0);
355         mi = (struct aac_mntinfo *)&fib->data[0];
356
357         /* loop over possible containers */
358         do {
359                 /* request information on this container */
360                 bzero(mi, sizeof(struct aac_mntinfo));
361                 mi->Command = VM_NameServe;
362                 mi->MntType = FT_FILESYS;
363                 mi->MntCount = i;
364                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
365                                  sizeof(struct aac_mntinfo))) {
366                         debug(2, "error probing container %d", i);
367                         continue;
368                 }
369
370                 mir = (struct aac_mntinforesp *)&fib->data[0];
371                 aac_add_container(sc, mir, 0);
372                 i++;
373         } while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
374
375         aac_release_sync_fib(sc);
376
377         /* poke the bus to actually attach the child devices */
378         if (bus_generic_attach(sc->aac_dev))
379                 device_printf(sc->aac_dev, "bus_generic_attach failed\n");
380
381         /* mark the controller up */
382         sc->aac_state &= ~AAC_STATE_SUSPEND;
383
384         /* enable interrupts now */
385         AAC_UNMASK_INTERRUPTS(sc);
386
387         /* enable the timeout watchdog */
388         timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
389 }
390
391 /*
392  * Create a device to respresent a new container
393  */
394 static void
395 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
396 {
397         struct aac_container *co;
398         device_t child;
399
400         /* 
401          * Check container volume type for validity.  Note that many of
402          * the possible types may never show up.
403          */
404         if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
405                 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
406                        M_NOWAIT);
407                 if (co == NULL)
408                         panic("Out of memory?!\n");
409                 debug(1, "id %x  name '%.16s'  size %u  type %d", 
410                       mir->MntTable[0].ObjectId,
411                       mir->MntTable[0].FileSystemName,
412                       mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
413         
414                 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
415                         device_printf(sc->aac_dev, "device_add_child failed\n");
416                 else
417                         device_set_ivars(child, co);
418                 device_set_desc(child, aac_describe_code(aac_container_types,
419                                 mir->MntTable[0].VolType));
420                 co->co_disk = child;
421                 co->co_found = f;
422                 bcopy(&mir->MntTable[0], &co->co_mntobj,
423                       sizeof(struct aac_mntobj));
424                 AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
425                 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
426                 AAC_LOCK_RELEASE(&sc->aac_container_lock);
427         }
428 }
429
430 /*
431  * Free all of the resources associated with (sc)
432  *
433  * Should not be called if the controller is active.
434  */
435 void
436 aac_free(struct aac_softc *sc)
437 {
438         debug_called(1);
439
440         /* remove the control device */
441         if (sc->aac_dev_t != NULL)
442                 destroy_dev(sc->aac_dev_t);
443
444         /* throw away any FIB buffers, discard the FIB DMA tag */
445         if (sc->aac_fibs != NULL)
446                 aac_free_commands(sc);
447         if (sc->aac_fib_dmat)
448                 bus_dma_tag_destroy(sc->aac_fib_dmat);
449
450         /* destroy the common area */
451         if (sc->aac_common) {
452                 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
453                 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
454                                 sc->aac_common_dmamap);
455         }
456         if (sc->aac_common_dmat)
457                 bus_dma_tag_destroy(sc->aac_common_dmat);
458
459         /* disconnect the interrupt handler */
460         if (sc->aac_intr)
461                 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
462         if (sc->aac_irq != NULL)
463                 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
464                                      sc->aac_irq);
465
466         /* destroy data-transfer DMA tag */
467         if (sc->aac_buffer_dmat)
468                 bus_dma_tag_destroy(sc->aac_buffer_dmat);
469
470         /* destroy the parent DMA tag */
471         if (sc->aac_parent_dmat)
472                 bus_dma_tag_destroy(sc->aac_parent_dmat);
473
474         /* release the register window mapping */
475         if (sc->aac_regs_resource != NULL)
476                 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
477                                      sc->aac_regs_rid, sc->aac_regs_resource);
478 }
479
480 /*
481  * Disconnect from the controller completely, in preparation for unload.
482  */
483 int
484 aac_detach(device_t dev)
485 {
486         struct aac_softc *sc;
487 #if AAC_BROKEN
488         int error;
489 #endif
490
491         debug_called(1);
492
493         sc = device_get_softc(dev);
494
495         if (sc->aac_state & AAC_STATE_OPEN)
496         return(EBUSY);
497
498 #if AAC_BROKEN
499         if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
500                 sc->aifflags |= AAC_AIFFLAGS_EXIT;
501                 wakeup(sc->aifthread);
502                 tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
503         }
504
505         if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
506                 panic("Cannot shutdown AIF thread\n");
507
508         if ((error = aac_shutdown(dev)))
509                 return(error);
510
511         aac_free(sc);
512
513         return(0);
514 #else
515         return (EBUSY);
516 #endif
517 }
518
519 /*
520  * Bring the controller down to a dormant state and detach all child devices.
521  *
522  * This function is called before detach or system shutdown.
523  *
524  * Note that we can assume that the bioq on the controller is empty, as we won't
525  * allow shutdown if any device is open.
526  */
527 int
528 aac_shutdown(device_t dev)
529 {
530         struct aac_softc *sc;
531         struct aac_fib *fib;
532         struct aac_close_command *cc;
533         int s;
534
535         debug_called(1);
536
537         sc = device_get_softc(dev);
538
539         s = splbio();
540
541         sc->aac_state |= AAC_STATE_SUSPEND;
542
543         /* 
544          * Send a Container shutdown followed by a HostShutdown FIB to the
545          * controller to convince it that we don't want to talk to it anymore.
546          * We've been closed and all I/O completed already
547          */
548         device_printf(sc->aac_dev, "shutting down controller...");
549
550         aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
551         cc = (struct aac_close_command *)&fib->data[0];
552
553         bzero(cc, sizeof(struct aac_close_command));
554         cc->Command = VM_CloseAll;
555         cc->ContainerId = 0xffffffff;
556         if (aac_sync_fib(sc, ContainerCommand, 0, fib,
557             sizeof(struct aac_close_command)))
558                 printf("FAILED.\n");
559         else {
560                 fib->data[0] = 0;
561                 /*
562                  * XXX Issuing this command to the controller makes it shut down
563                  * but also keeps it from coming back up without a reset of the
564                  * PCI bus.  This is not desirable if you are just unloading the
565                  * driver module with the intent to reload it later.
566                  */
567                 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
568                     fib, 1)) {
569                         printf("FAILED.\n");
570                 } else {
571                         printf("done.\n");
572                 }
573         }
574
575         AAC_MASK_INTERRUPTS(sc);
576
577         splx(s);
578         return(0);
579 }
580
581 /*
582  * Bring the controller to a quiescent state, ready for system suspend.
583  */
584 int
585 aac_suspend(device_t dev)
586 {
587         struct aac_softc *sc;
588         int s;
589
590         debug_called(1);
591
592         sc = device_get_softc(dev);
593
594         s = splbio();
595
596         sc->aac_state |= AAC_STATE_SUSPEND;
597         
598         AAC_MASK_INTERRUPTS(sc);
599         splx(s);
600         return(0);
601 }
602
603 /*
604  * Bring the controller back to a state ready for operation.
605  */
606 int
607 aac_resume(device_t dev)
608 {
609         struct aac_softc *sc;
610
611         debug_called(1);
612
613         sc = device_get_softc(dev);
614
615         sc->aac_state &= ~AAC_STATE_SUSPEND;
616         AAC_UNMASK_INTERRUPTS(sc);
617         return(0);
618 }
619
620 /*
621  * Take an interrupt.
622  */
623 void
624 aac_intr(void *arg)
625 {
626         struct aac_softc *sc;
627         u_int16_t reason;
628
629         debug_called(2);
630
631         sc = (struct aac_softc *)arg;
632
633         reason = AAC_GET_ISTATUS(sc);
634
635         /* controller wants to talk to the log */
636         if (reason & AAC_DB_PRINTF) {
637                 AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
638                 aac_print_printf(sc);
639         }
640
641         /* controller has a message for us? */
642         if (reason & AAC_DB_COMMAND_READY) {
643                 AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY);
644                 /* XXX What happens if the thread is already awake? */
645                 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
646                         sc->aifflags |= AAC_AIFFLAGS_PENDING;
647                         wakeup(sc->aifthread);
648                 }
649         }
650         
651         /* controller has a response for us? */
652         if (reason & AAC_DB_RESPONSE_READY) {
653                 AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
654                 aac_host_response(sc);
655         }
656
657         /*
658          * spurious interrupts that we don't use - reset the mask and clear the
659          * interrupts
660          */
661         if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) {
662                 AAC_UNMASK_INTERRUPTS(sc);
663                 AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL |
664                                   AAC_DB_RESPONSE_NOT_FULL);
665         }
666 };
667
668 /*
669  * Command Processing
670  */
671
672 /*
673  * Start as much queued I/O as possible on the controller
674  */
675 void
676 aac_startio(struct aac_softc *sc)
677 {
678         struct aac_command *cm;
679
680         debug_called(2);
681
682         for (;;) {
683                 /*
684                  * Try to get a command that's been put off for lack of 
685                  * resources
686                  */
687                 cm = aac_dequeue_ready(sc);
688
689                 /*
690                  * Try to build a command off the bio queue (ignore error 
691                  * return)
692                  */
693                 if (cm == NULL)
694                         aac_bio_command(sc, &cm);
695
696                 /* nothing to do? */
697                 if (cm == NULL)
698                         break;
699
700                 /* try to give the command to the controller */
701                 if (aac_start(cm) == EBUSY) {
702                         /* put it on the ready queue for later */
703                         aac_requeue_ready(cm);
704                         break;
705                 }
706         }
707 }
708
709 /*
710  * Deliver a command to the controller; allocate controller resources at the
711  * last moment when possible.
712  */
713 static int
714 aac_start(struct aac_command *cm)
715 {
716         struct aac_softc *sc;
717         int error;
718
719         debug_called(2);
720
721         sc = cm->cm_sc;
722
723         /* get the command mapped */
724         aac_map_command(cm);
725
726         /* fix up the address values in the FIB */
727         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
728         cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
729
730         /* save a pointer to the command for speedy reverse-lookup */
731         cm->cm_fib->Header.SenderData = (u_int32_t)cm;  /* XXX 64-bit physical
732                                                          * address issue */
733
734         /* put the FIB on the outbound queue */
735         error = aac_enqueue_fib(sc, cm->cm_queue, cm);
736         return(error);
737 }
738
739 /*
740  * Handle notification of one or more FIBs coming from the controller.
741  */
742 static void
743 aac_host_command(struct aac_softc *sc)
744 {
745         struct aac_fib *fib;
746         u_int32_t fib_size;
747         int size;
748
749         debug_called(2);
750
751         sc->aifflags |= AAC_AIFFLAGS_RUNNING;
752
753         while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
754                 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
755                         tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz);
756
757                 sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
758                 for (;;) {
759                         if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
760                                             &fib_size, &fib))
761                                 break;  /* nothing to do */
762         
763                         AAC_PRINT_FIB(sc, fib);
764         
765                         switch (fib->Header.Command) {
766                         case AifRequest:
767                                 aac_handle_aif(sc, fib);
768                                 break;
769                         default:
770                                 device_printf(sc->aac_dev, "unknown command "
771                                               "from controller\n");
772                                 break;
773                         }
774
775                         /* Return the AIF to the controller. */
776                         if ((fib->Header.XferState == 0) ||
777                             (fib->Header.StructType != AAC_FIBTYPE_TFIB))
778                                 break;
779
780                         if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
781                                 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
782                                 *(AAC_FSAStatus*)fib->data = ST_OK;
783
784                                 /* XXX Compute the Size field? */
785                                 size = fib->Header.Size;
786                                 if (size > sizeof(struct aac_fib)) {
787                                         size = sizeof(struct aac_fib);
788                                         fib->Header.Size = size;
789                                 }
790                                 /*
791                                  * Since we did not generate this command, it
792                                  * cannot go through the normal
793                                  * enqueue->startio chain.
794                                  */
795                                 aac_enqueue_response(sc,
796                                                      AAC_ADAP_NORM_RESP_QUEUE,
797                                                      fib);
798                         }
799                 }
800         }
801         sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
802         wakeup(sc->aac_dev);
803
804 #if __FreeBSD_version > 500005
805         mtx_lock(&Giant);
806 #endif
807         kthread_exit(0);
808 }
809
810 /*
811  * Handle notification of one or more FIBs completed by the controller
812  */
813 static void
814 aac_host_response(struct aac_softc *sc)
815 {
816         struct aac_command *cm;
817         struct aac_fib *fib;
818         u_int32_t fib_size;
819
820         debug_called(2);
821
822         for (;;) {
823                 /* look for completed FIBs on our queue */
824                 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
825                                     &fib))
826                         break;  /* nothing to do */
827         
828                 /* get the command, unmap and queue for later processing */
829                 cm = (struct aac_command *)fib->Header.SenderData;
830                 if (cm == NULL) {
831                         AAC_PRINT_FIB(sc, fib);
832                 } else {
833                         aac_remove_busy(cm);
834                         aac_unmap_command(cm);          /* XXX defer? */
835                         aac_enqueue_complete(cm);
836                 }
837         }
838
839         /* handle completion processing */
840 #if __FreeBSD_version >= 500005
841         taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
842 #else
843         aac_complete(sc, 0);
844 #endif
845 }
846
847 /*
848  * Process completed commands.
849  */
850 static void
851 aac_complete(void *context, int pending)
852 {
853         struct aac_softc *sc;
854         struct aac_command *cm;
855         
856         debug_called(2);
857
858         sc = (struct aac_softc *)context;
859
860         /* pull completed commands off the queue */
861         for (;;) {
862                 cm = aac_dequeue_complete(sc);
863                 if (cm == NULL)
864                         break;
865                 cm->cm_flags |= AAC_CMD_COMPLETED;
866
867                 /* is there a completion handler? */
868                 if (cm->cm_complete != NULL) {
869                         cm->cm_complete(cm);
870                 } else {
871                         /* assume that someone is sleeping on this command */
872                         wakeup(cm);
873                 }
874         }
875
876         /* see if we can start some more I/O */
877         aac_startio(sc);
878 }
879
880 /*
881  * Handle a bio submitted from a disk device.
882  */
883 void
884 aac_submit_bio(struct bio *bp)
885 {
886         struct aac_disk *ad;
887         struct aac_softc *sc;
888
889         debug_called(2);
890
891         ad = (struct aac_disk *)bp->bio_dev->si_drv1;
892         sc = ad->ad_controller;
893
894         /* queue the BIO and try to get some work done */
895         aac_enqueue_bio(sc, bp);
896         aac_startio(sc);
897 }
898
899 /*
900  * Get a bio and build a command to go with it.
901  */
902 static int
903 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
904 {
905         struct aac_command *cm;
906         struct aac_fib *fib;
907         struct aac_blockread *br;
908         struct aac_blockwrite *bw;
909         struct aac_disk *ad;
910         struct bio *bp;
911
912         debug_called(2);
913
914         /* get the resources we will need */
915         cm = NULL;
916         if ((bp = aac_dequeue_bio(sc)) == NULL)
917                 goto fail;
918         if (aac_alloc_command(sc, &cm)) /* get a command */
919                 goto fail;
920
921         /* fill out the command */
922         cm->cm_data = (void *)bp->bio_data;
923         cm->cm_datalen = bp->bio_bcount;
924         cm->cm_complete = aac_bio_complete;
925         cm->cm_private = bp;
926         cm->cm_timestamp = time_second;
927         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
928
929         /* build the FIB */
930         fib = cm->cm_fib;
931         fib->Header.XferState =  
932         AAC_FIBSTATE_HOSTOWNED   | 
933         AAC_FIBSTATE_INITIALISED | 
934         AAC_FIBSTATE_FROMHOST    |
935         AAC_FIBSTATE_REXPECTED   |
936         AAC_FIBSTATE_NORM;
937         fib->Header.Command = ContainerCommand;
938         fib->Header.Size = sizeof(struct aac_fib_header);
939
940         /* build the read/write request */
941         ad = (struct aac_disk *)bp->bio_dev->si_drv1;
942         if (BIO_IS_READ(bp)) {
943                 br = (struct aac_blockread *)&fib->data[0];
944                 br->Command = VM_CtBlockRead;
945                 br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
946                 br->BlockNumber = bp->bio_pblkno;
947                 br->ByteCount = bp->bio_bcount;
948                 fib->Header.Size += sizeof(struct aac_blockread);
949                 cm->cm_sgtable = &br->SgMap;
950                 cm->cm_flags |= AAC_CMD_DATAIN;
951         } else {
952                 bw = (struct aac_blockwrite *)&fib->data[0];
953                 bw->Command = VM_CtBlockWrite;
954                 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
955                 bw->BlockNumber = bp->bio_pblkno;
956                 bw->ByteCount = bp->bio_bcount;
957                 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */
958                 fib->Header.Size += sizeof(struct aac_blockwrite);
959                 cm->cm_flags |= AAC_CMD_DATAOUT;
960                 cm->cm_sgtable = &bw->SgMap;
961         }
962
963         *cmp = cm;
964         return(0);
965
966 fail:
967         if (bp != NULL)
968                 aac_enqueue_bio(sc, bp);
969         if (cm != NULL)
970                 aac_release_command(cm);
971         return(ENOMEM);
972 }
973
974 /*
975  * Handle a bio-instigated command that has been completed.
976  */
977 static void
978 aac_bio_complete(struct aac_command *cm)
979 {
980         struct aac_blockread_response *brr;
981         struct aac_blockwrite_response *bwr;
982         struct bio *bp;
983         AAC_FSAStatus status;
984
985         /* fetch relevant status and then release the command */
986         bp = (struct bio *)cm->cm_private;
987         if (BIO_IS_READ(bp)) {
988                 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
989                 status = brr->Status;
990         } else {
991                 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
992                 status = bwr->Status;
993         }
994         aac_release_command(cm);
995
996         /* fix up the bio based on status */
997         if (status == ST_OK) {
998                 bp->bio_resid = 0;
999         } else {
1000                 bp->bio_error = EIO;
1001                 bp->bio_flags |= BIO_ERROR;
1002                 /* pass an error string out to the disk layer */
1003                 bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1004                                                     status);
1005         }
1006         aac_biodone(bp);
1007 }
1008
1009 /*
1010  * Submit a command to the controller, return when it completes.
1011  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1012  *     be stuck here forever.  At the same time, signals are not caught
1013  *     because there is a risk that a signal could wakeup the tsleep before
1014  *     the card has a chance to complete the command.  The passed in timeout
1015  *     is ignored for the same reason.  Since there is no way to cancel a
1016  *     command in progress, we should probably create a 'dead' queue where
1017  *     commands go that have been interrupted/timed-out/etc, that keeps them
1018  *     out of the free pool.  That way, if the card is just slow, it won't
1019  *     spam the memory of a command that has been recycled.
1020  */
1021 static int
1022 aac_wait_command(struct aac_command *cm, int timeout)
1023 {
1024         int s, error = 0;
1025
1026         debug_called(2);
1027
1028         /* Put the command on the ready queue and get things going */
1029         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1030         aac_enqueue_ready(cm);
1031         aac_startio(cm->cm_sc);
1032         s = splbio();
1033         while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1034                 error = tsleep(cm, PRIBIO, "aacwait", 0);
1035         }
1036         splx(s);
1037         return(error);
1038 }
1039
1040 /*
1041  *Command Buffer Management
1042  */
1043
1044 /*
1045  * Allocate a command.
1046  */
1047 int
1048 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1049 {
1050         struct aac_command *cm;
1051
1052         debug_called(3);
1053
1054         if ((cm = aac_dequeue_free(sc)) == NULL)
1055                 return(ENOMEM);
1056
1057         *cmp = cm;
1058         return(0);
1059 }
1060
1061 /*
1062  * Release a command back to the freelist.
1063  */
1064 void
1065 aac_release_command(struct aac_command *cm)
1066 {
1067         debug_called(3);
1068
1069         /* (re)initialise the command/FIB */
1070         cm->cm_sgtable = NULL;
1071         cm->cm_flags = 0;
1072         cm->cm_complete = NULL;
1073         cm->cm_private = NULL;
1074         cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1075         cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1076         cm->cm_fib->Header.Flags = 0;
1077         cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1078
1079         /* 
1080          * These are duplicated in aac_start to cover the case where an
1081          * intermediate stage may have destroyed them.  They're left
1082          * initialised here for debugging purposes only.
1083          */
1084         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1085         cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1086
1087         aac_enqueue_free(cm);
1088 }
1089
1090 /*
1091  * Map helper for command/FIB allocation.
1092  */
1093 static void
1094 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1095 {
1096         struct aac_softc *sc;
1097
1098         sc = (struct aac_softc *)arg;
1099
1100         debug_called(3);
1101
1102         sc->aac_fibphys = segs[0].ds_addr;
1103 }
1104
1105 /*
1106  * Allocate and initialise commands/FIBs for this adapter.
1107  */
1108 static int
1109 aac_alloc_commands(struct aac_softc *sc)
1110 {
1111         struct aac_command *cm;
1112         int i;
1113  
1114         debug_called(1);
1115
1116         /* allocate the FIBs in DMAable memory and load them */
1117         if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1118                          BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1119                 return(ENOMEM);
1120         }
1121         bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 
1122                         AAC_FIB_COUNT * sizeof(struct aac_fib),
1123                         aac_map_command_helper, sc, 0);
1124
1125         /* initialise constant fields in the command structure */
1126         for (i = 0; i < AAC_FIB_COUNT; i++) {
1127                 cm = &sc->aac_command[i];
1128                 cm->cm_sc = sc;
1129                 cm->cm_fib = sc->aac_fibs + i;
1130                 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1131
1132                 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1133                         aac_release_command(cm);
1134         }
1135         return(0);
1136 }
1137
1138 /*
1139  * Free FIBs owned by this adapter.
1140  */
1141 static void
1142 aac_free_commands(struct aac_softc *sc)
1143 {
1144         int i;
1145
1146         debug_called(1);
1147
1148         for (i = 0; i < AAC_FIB_COUNT; i++)
1149                 bus_dmamap_destroy(sc->aac_buffer_dmat,
1150                                    sc->aac_command[i].cm_datamap);
1151
1152         bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1153         bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1154 }
1155
1156 /*
1157  * Command-mapping helper function - populate this command's s/g table.
1158  */
1159 static void
1160 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1161 {
1162         struct aac_command *cm;
1163         struct aac_fib *fib;
1164         struct aac_sg_table *sg;
1165         int i;
1166
1167         debug_called(3);
1168
1169         cm = (struct aac_command *)arg;
1170         fib = cm->cm_fib;
1171
1172         /* find the s/g table */
1173         sg = cm->cm_sgtable;
1174
1175         /* copy into the FIB */
1176         if (sg != NULL) {
1177                 sg->SgCount = nseg;
1178                 for (i = 0; i < nseg; i++) {
1179                         sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1180                         sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1181                 }
1182                 /* update the FIB size for the s/g count */
1183                 fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1184         }
1185
1186 }
1187
1188 /*
1189  * Map a command into controller-visible space.
1190  */
1191 static void
1192 aac_map_command(struct aac_command *cm)
1193 {
1194         struct aac_softc *sc;
1195
1196         debug_called(2);
1197
1198         sc = cm->cm_sc;
1199
1200         /* don't map more than once */
1201         if (cm->cm_flags & AAC_CMD_MAPPED)
1202                 return;
1203
1204         if (cm->cm_datalen != 0) {
1205                 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1206                                 cm->cm_data, cm->cm_datalen,
1207                                 aac_map_command_sg, cm, 0);
1208
1209         if (cm->cm_flags & AAC_CMD_DATAIN)
1210                 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1211                                 BUS_DMASYNC_PREREAD);
1212         if (cm->cm_flags & AAC_CMD_DATAOUT)
1213                 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1214                                 BUS_DMASYNC_PREWRITE);
1215         }
1216         cm->cm_flags |= AAC_CMD_MAPPED;
1217 }
1218
1219 /*
1220  * Unmap a command from controller-visible space.
1221  */
1222 static void
1223 aac_unmap_command(struct aac_command *cm)
1224 {
1225         struct aac_softc *sc;
1226
1227         debug_called(2);
1228
1229         sc = cm->cm_sc;
1230
1231         if (!(cm->cm_flags & AAC_CMD_MAPPED))
1232                 return;
1233
1234         if (cm->cm_datalen != 0) {
1235                 if (cm->cm_flags & AAC_CMD_DATAIN)
1236                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1237                                         BUS_DMASYNC_POSTREAD);
1238                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1239                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1240                                         BUS_DMASYNC_POSTWRITE);
1241
1242                 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1243         }
1244         cm->cm_flags &= ~AAC_CMD_MAPPED;
1245 }
1246
1247 /*
1248  * Hardware Interface
1249  */
1250
1251 /*
1252  * Initialise the adapter.
1253  */
1254 static void
1255 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1256 {
1257         struct aac_softc *sc;
1258
1259         debug_called(1);
1260
1261         sc = (struct aac_softc *)arg;
1262
1263         sc->aac_common_busaddr = segs[0].ds_addr;
1264 }
1265
1266 /*
1267  * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1268  * firmware version 1.x are not compatible with this driver.
1269  */
1270 static int
1271 aac_check_firmware(struct aac_softc *sc)
1272 {
1273         u_int32_t major, minor;
1274
1275         debug_called(1);
1276
1277         if (sc->quirks & AAC_QUIRK_PERC2QC) {
1278                 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1279                                      NULL)) {
1280                         device_printf(sc->aac_dev,
1281                                       "Error reading firmware version\n");
1282                         return (EIO);
1283                 }
1284
1285                 /* These numbers are stored as ASCII! */
1286                 major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30;
1287                 minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30;
1288                 if (major == 1) {
1289                         device_printf(sc->aac_dev,
1290                             "Firmware version %d.%d is not supported.\n",
1291                             major, minor);
1292                         return (EINVAL);
1293                 }
1294         }
1295
1296         return (0);
1297 }
1298
1299 static int
1300 aac_init(struct aac_softc *sc)
1301 {
1302         struct aac_adapter_init *ip;
1303         time_t then;
1304         u_int32_t code;
1305         u_int8_t *qaddr;
1306
1307         debug_called(1);
1308
1309         /*
1310          * First wait for the adapter to come ready.
1311          */
1312         then = time_second;
1313         do {
1314                 code = AAC_GET_FWSTATUS(sc);
1315                 if (code & AAC_SELF_TEST_FAILED) {
1316                         device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1317                         return(ENXIO);
1318                 }
1319                 if (code & AAC_KERNEL_PANIC) {
1320                         device_printf(sc->aac_dev,
1321                                       "FATAL: controller kernel panic\n");
1322                         return(ENXIO);
1323                 }
1324                 if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1325                         device_printf(sc->aac_dev,
1326                                       "FATAL: controller not coming ready, "
1327                                            "status %x\n", code);
1328                         return(ENXIO);
1329                 }
1330         } while (!(code & AAC_UP_AND_RUNNING));
1331
1332         /*
1333          * Create DMA tag for the common structure and allocate it.
1334          */
1335         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1336                                1, 0,                    /* algnmnt, boundary */
1337                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1338                                BUS_SPACE_MAXADDR,       /* highaddr */
1339                                NULL, NULL,              /* filter, filterarg */
1340                                sizeof(struct aac_common), /* maxsize */
1341                                1,                       /* nsegments */
1342                                BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1343                                0,                       /* flags */
1344                                &sc->aac_common_dmat)) {
1345                 device_printf(sc->aac_dev,
1346                               "can't allocate common structure DMA tag\n");
1347                 return(ENOMEM);
1348         }
1349         if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1350                              BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1351                 device_printf(sc->aac_dev, "can't allocate common structure\n");
1352                 return(ENOMEM);
1353         }
1354         bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1355                         sc->aac_common, sizeof(*sc->aac_common), aac_common_map,
1356                         sc, 0);
1357         bzero(sc->aac_common, sizeof(*sc->aac_common));
1358         
1359         /*
1360          * Fill in the init structure.  This tells the adapter about the
1361          * physical location of various important shared data structures.
1362          */
1363         ip = &sc->aac_common->ac_init;
1364         ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1365
1366         ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1367                                          offsetof(struct aac_common, ac_fibs);
1368         ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
1369         ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1370         ip->AdapterFibAlign = sizeof(struct aac_fib);
1371
1372         ip->PrintfBufferAddress = sc->aac_common_busaddr +
1373                                   offsetof(struct aac_common, ac_printf);
1374         ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1375
1376         ip->HostPhysMemPages = 0;               /* not used? */
1377         ip->HostElapsedSeconds = time_second;   /* reset later if invalid */
1378
1379         /*
1380          * Initialise FIB queues.  Note that it appears that the layout of the
1381          * indexes and the segmentation of the entries may be mandated by the
1382          * adapter, which is only told about the base of the queue index fields.
1383          *
1384          * The initial values of the indices are assumed to inform the adapter
1385          * of the sizes of the respective queues, and theoretically it could 
1386          * work out the entire layout of the queue structures from this.  We
1387          * take the easy route and just lay this area out like everyone else
1388          * does.
1389          *
1390          * The Linux driver uses a much more complex scheme whereby several 
1391          * header records are kept for each queue.  We use a couple of generic 
1392          * list manipulation functions which 'know' the size of each list by
1393          * virtue of a table.
1394          */
1395         qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1396         qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1397         sc->aac_queues = (struct aac_queue_table *)qaddr;
1398         ip->CommHeaderAddress = sc->aac_common_busaddr +
1399                                 ((u_int32_t)sc->aac_queues -
1400                                 (u_int32_t)sc->aac_common);
1401         bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1402
1403         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1404                 AAC_HOST_NORM_CMD_ENTRIES;
1405         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1406                 AAC_HOST_NORM_CMD_ENTRIES;
1407         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1408                 AAC_HOST_HIGH_CMD_ENTRIES;
1409         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1410                 AAC_HOST_HIGH_CMD_ENTRIES;
1411         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1412                 AAC_ADAP_NORM_CMD_ENTRIES;
1413         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1414                 AAC_ADAP_NORM_CMD_ENTRIES;
1415         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1416                 AAC_ADAP_HIGH_CMD_ENTRIES;
1417         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1418                 AAC_ADAP_HIGH_CMD_ENTRIES;
1419         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1420                 AAC_HOST_NORM_RESP_ENTRIES;
1421         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1422                 AAC_HOST_NORM_RESP_ENTRIES;
1423         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1424                 AAC_HOST_HIGH_RESP_ENTRIES;
1425         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1426                 AAC_HOST_HIGH_RESP_ENTRIES;
1427         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1428                 AAC_ADAP_NORM_RESP_ENTRIES;
1429         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1430                 AAC_ADAP_NORM_RESP_ENTRIES;
1431         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1432                 AAC_ADAP_HIGH_RESP_ENTRIES;
1433         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1434                 AAC_ADAP_HIGH_RESP_ENTRIES;
1435         sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1436                 &sc->aac_queues->qt_HostNormCmdQueue[0];
1437         sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1438                 &sc->aac_queues->qt_HostHighCmdQueue[0];
1439         sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1440                 &sc->aac_queues->qt_AdapNormCmdQueue[0];
1441         sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1442                 &sc->aac_queues->qt_AdapHighCmdQueue[0];
1443         sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1444                 &sc->aac_queues->qt_HostNormRespQueue[0];
1445         sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1446                 &sc->aac_queues->qt_HostHighRespQueue[0];
1447         sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1448                 &sc->aac_queues->qt_AdapNormRespQueue[0];
1449         sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1450                 &sc->aac_queues->qt_AdapHighRespQueue[0];
1451
1452         /*
1453          * Do controller-type-specific initialisation
1454          */
1455         switch (sc->aac_hwif) {
1456         case AAC_HWIF_I960RX:
1457                 AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1458                 break;
1459         }
1460
1461         /*
1462          * Give the init structure to the controller.
1463          */
1464         if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 
1465                              sc->aac_common_busaddr +
1466                              offsetof(struct aac_common, ac_init), 0, 0, 0,
1467                              NULL)) {
1468                 device_printf(sc->aac_dev,
1469                               "error establishing init structure\n");
1470                 return(EIO);
1471         }
1472
1473         return(0);
1474 }
1475
1476 /*
1477  * Send a synchronous command to the controller and wait for a result.
1478  */
1479 static int
1480 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1481                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1482                  u_int32_t *sp)
1483 {
1484         time_t then;
1485         u_int32_t status;
1486
1487         debug_called(3);
1488
1489         /* populate the mailbox */
1490         AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1491
1492         /* ensure the sync command doorbell flag is cleared */
1493         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1494
1495         /* then set it to signal the adapter */
1496         AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1497
1498         /* spin waiting for the command to complete */
1499         then = time_second;
1500         do {
1501                 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1502                         debug(2, "timed out");
1503                         return(EIO);
1504                 }
1505         } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1506
1507         /* clear the completion flag */
1508         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1509
1510         /* get the command status */
1511         status = AAC_GET_MAILBOXSTATUS(sc);
1512         if (sp != NULL)
1513                 *sp = status;
1514         return(0);
1515 }
1516
1517 /*
1518  * Grab the sync fib area.
1519  */
1520 int
1521 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1522 {
1523
1524         /*
1525          * If the force flag is set, the system is shutting down, or in
1526          * trouble.  Ignore the mutex.
1527          */
1528         if (!(flags & AAC_SYNC_LOCK_FORCE))
1529                 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1530
1531         *fib = &sc->aac_common->ac_sync_fib;
1532
1533         return (1);
1534 }
1535
1536 /*
1537  * Release the sync fib area.
1538  */
1539 void
1540 aac_release_sync_fib(struct aac_softc *sc)
1541 {
1542
1543         AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1544 }
1545
1546 /*
1547  * Send a synchronous FIB to the controller and wait for a result.
1548  */
1549 int
1550 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 
1551                  struct aac_fib *fib, u_int16_t datasize)
1552 {
1553         debug_called(3);
1554
1555         if (datasize > AAC_FIB_DATASIZE)
1556                 return(EINVAL);
1557
1558         /*
1559          * Set up the sync FIB
1560          */
1561         fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1562                                 AAC_FIBSTATE_INITIALISED |
1563                                 AAC_FIBSTATE_EMPTY;
1564         fib->Header.XferState |= xferstate;
1565         fib->Header.Command = command;
1566         fib->Header.StructType = AAC_FIBTYPE_TFIB;
1567         fib->Header.Size = sizeof(struct aac_fib) + datasize;
1568         fib->Header.SenderSize = sizeof(struct aac_fib);
1569         fib->Header.SenderFibAddress = (u_int32_t)fib;
1570         fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1571                                          offsetof(struct aac_common,
1572                                                   ac_sync_fib);
1573
1574         /*
1575          * Give the FIB to the controller, wait for a response.
1576          */
1577         if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1578                              fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1579                 debug(2, "IO error");
1580                 return(EIO);
1581         }
1582
1583         return (0);
1584 }
1585
1586 /*
1587  * Adapter-space FIB queue manipulation
1588  *
1589  * Note that the queue implementation here is a little funky; neither the PI or
1590  * CI will ever be zero.  This behaviour is a controller feature.
1591  */
1592 static struct {
1593         int             size;
1594         int             notify;
1595 } aac_qinfo[] = {
1596         {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1597         {AAC_HOST_HIGH_CMD_ENTRIES, 0},
1598         {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1599         {AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1600         {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1601         {AAC_HOST_HIGH_RESP_ENTRIES, 0},
1602         {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1603         {AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1604 };
1605
1606 /*
1607  * Atomically insert an entry into the nominated queue, returns 0 on success or
1608  * EBUSY if the queue is full.
1609  *
1610  * Note: it would be more efficient to defer notifying the controller in
1611  *       the case where we may be inserting several entries in rapid succession,
1612  *       but implementing this usefully may be difficult (it would involve a
1613  *       separate queue/notify interface).
1614  */
1615 static int
1616 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1617 {
1618         u_int32_t pi, ci;
1619         int s, error;
1620         u_int32_t fib_size;
1621         u_int32_t fib_addr;
1622
1623         debug_called(3);
1624
1625         fib_size = cm->cm_fib->Header.Size; 
1626         fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1627
1628         s = splbio();
1629
1630         /* get the producer/consumer indices */
1631         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1632         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1633
1634         /* wrap the queue? */
1635         if (pi >= aac_qinfo[queue].size)
1636                 pi = 0;
1637
1638         /* check for queue full */
1639         if ((pi + 1) == ci) {
1640                 error = EBUSY;
1641                 goto out;
1642         }
1643
1644         /* populate queue entry */
1645         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1646         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1647
1648         /* update producer index */
1649         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1650
1651         /*
1652          * To avoid a race with its completion interrupt, place this command on
1653          * the busy queue prior to advertising it to the controller.
1654          */
1655         aac_enqueue_busy(cm);
1656
1657         /* notify the adapter if we know how */
1658         if (aac_qinfo[queue].notify != 0)
1659                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1660
1661         error = 0;
1662
1663 out:
1664         splx(s);
1665         return(error);
1666 }
1667
1668 /*
1669  * Atomically remove one entry from the nominated queue, returns 0 on
1670  * success or ENOENT if the queue is empty.
1671  */
1672 static int
1673 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1674                 struct aac_fib **fib_addr)
1675 {
1676         u_int32_t pi, ci;
1677         int s, error;
1678         int notify;
1679
1680         debug_called(3);
1681
1682         s = splbio();
1683
1684         /* get the producer/consumer indices */
1685         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1686         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1687
1688         /* check for queue empty */
1689         if (ci == pi) {
1690                 error = ENOENT;
1691                 goto out;
1692         }
1693         
1694         notify = 0;
1695         if (ci == pi + 1)
1696                 notify++;
1697
1698         /* wrap the queue? */
1699         if (ci >= aac_qinfo[queue].size)
1700                 ci = 0;
1701
1702         /* fetch the entry */
1703         *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1704         *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1705                                        ci)->aq_fib_addr;
1706
1707         /* update consumer index */
1708         sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1709
1710         /* if we have made the queue un-full, notify the adapter */
1711         if (notify && (aac_qinfo[queue].notify != 0))
1712                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1713         error = 0;
1714
1715 out:
1716         splx(s);
1717         return(error);
1718 }
1719
1720 /*
1721  * Put our response to an Adapter Initialed Fib on the response queue
1722  */
1723 static int
1724 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1725 {
1726         u_int32_t pi, ci;
1727         int s, error;
1728         u_int32_t fib_size;
1729         u_int32_t fib_addr;
1730
1731         debug_called(1);
1732
1733         /* Tell the adapter where the FIB is */
1734         fib_size = fib->Header.Size; 
1735         fib_addr = fib->Header.SenderFibAddress;
1736         fib->Header.ReceiverFibAddress = fib_addr;
1737
1738         s = splbio();
1739
1740         /* get the producer/consumer indices */
1741         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1742         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1743
1744         /* wrap the queue? */
1745         if (pi >= aac_qinfo[queue].size)
1746                 pi = 0;
1747
1748         /* check for queue full */
1749         if ((pi + 1) == ci) {
1750                 error = EBUSY;
1751                 goto out;
1752         }
1753
1754         /* populate queue entry */
1755         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1756         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1757
1758         /* update producer index */
1759         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1760
1761         /* notify the adapter if we know how */
1762         if (aac_qinfo[queue].notify != 0)
1763                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1764
1765         error = 0;
1766
1767 out:
1768         splx(s);
1769         return(error);
1770 }
1771
1772 /*
1773  * Check for commands that have been outstanding for a suspiciously long time,
1774  * and complain about them.
1775  */
1776 static void
1777 aac_timeout(struct aac_softc *sc)
1778 {
1779         int s;
1780         struct aac_command *cm;
1781         time_t deadline;
1782
1783 #if 0
1784         /* simulate an interrupt to handle possibly-missed interrupts */
1785         /*
1786          * XXX This was done to work around another bug which has since been
1787          * fixed.  It is dangerous anyways because you don't want multiple
1788          * threads in the interrupt handler at the same time!  If calling
1789          * is deamed neccesary in the future, proper mutexes must be used.
1790          */
1791         s = splbio();
1792         aac_intr(sc);
1793         splx(s);
1794
1795         /* kick the I/O queue to restart it in the case of deadlock */
1796         aac_startio(sc);
1797 #endif
1798
1799         /*
1800          * traverse the busy command list, bitch about late commands once
1801          * only.
1802          */
1803         deadline = time_second - AAC_CMD_TIMEOUT;
1804         s = splbio();
1805         TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1806                 if ((cm->cm_timestamp  < deadline)
1807                         /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1808                         cm->cm_flags |= AAC_CMD_TIMEDOUT;
1809                         device_printf(sc->aac_dev,
1810                                       "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1811                                       cm, (int)(time_second-cm->cm_timestamp));
1812                         AAC_PRINT_FIB(sc, cm->cm_fib);
1813                 }
1814         }
1815         splx(s);
1816
1817         /* reset the timer for next time */
1818         timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1819         return;
1820 }
1821
1822 /*
1823  * Interface Function Vectors
1824  */
1825
1826 /*
1827  * Read the current firmware status word.
1828  */
1829 static int
1830 aac_sa_get_fwstatus(struct aac_softc *sc)
1831 {
1832         debug_called(3);
1833
1834         return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1835 }
1836
1837 static int
1838 aac_rx_get_fwstatus(struct aac_softc *sc)
1839 {
1840         debug_called(3);
1841
1842         return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1843 }
1844
1845 static int
1846 aac_fa_get_fwstatus(struct aac_softc *sc)
1847 {
1848         int val;
1849
1850         debug_called(3);
1851
1852         val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1853         return (val);
1854 }
1855
1856 /*
1857  * Notify the controller of a change in a given queue
1858  */
1859
1860 static void
1861 aac_sa_qnotify(struct aac_softc *sc, int qbit)
1862 {
1863         debug_called(3);
1864
1865         AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1866 }
1867
1868 static void
1869 aac_rx_qnotify(struct aac_softc *sc, int qbit)
1870 {
1871         debug_called(3);
1872
1873         AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1874 }
1875
1876 static void
1877 aac_fa_qnotify(struct aac_softc *sc, int qbit)
1878 {
1879         debug_called(3);
1880
1881         AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1882         AAC_FA_HACK(sc);
1883 }
1884
1885 /*
1886  * Get the interrupt reason bits
1887  */
1888 static int
1889 aac_sa_get_istatus(struct aac_softc *sc)
1890 {
1891         debug_called(3);
1892
1893         return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1894 }
1895
1896 static int
1897 aac_rx_get_istatus(struct aac_softc *sc)
1898 {
1899         debug_called(3);
1900
1901         return(AAC_GETREG4(sc, AAC_RX_ODBR));
1902 }
1903
1904 static int
1905 aac_fa_get_istatus(struct aac_softc *sc)
1906 {
1907         int val;
1908
1909         debug_called(3);
1910
1911         val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1912         return (val);
1913 }
1914
1915 /*
1916  * Clear some interrupt reason bits
1917  */
1918 static void
1919 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1920 {
1921         debug_called(3);
1922
1923         AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1924 }
1925
1926 static void
1927 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1928 {
1929         debug_called(3);
1930
1931         AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1932 }
1933
1934 static void
1935 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
1936 {
1937         debug_called(3);
1938
1939         AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
1940         AAC_FA_HACK(sc);
1941 }
1942
1943 /*
1944  * Populate the mailbox and set the command word
1945  */
1946 static void
1947 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1948                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1949 {
1950         debug_called(4);
1951
1952         AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
1953         AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
1954         AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
1955         AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
1956         AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
1957 }
1958
1959 static void
1960 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
1961                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1962 {
1963         debug_called(4);
1964
1965         AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
1966         AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
1967         AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
1968         AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
1969         AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
1970 }
1971
1972 static void
1973 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1974                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1975 {
1976         debug_called(4);
1977
1978         AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
1979         AAC_FA_HACK(sc);
1980         AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
1981         AAC_FA_HACK(sc);
1982         AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
1983         AAC_FA_HACK(sc);
1984         AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
1985         AAC_FA_HACK(sc);
1986         AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
1987         AAC_FA_HACK(sc);
1988 }
1989
1990 /*
1991  * Fetch the immediate command status word
1992  */
1993 static int
1994 aac_sa_get_mailboxstatus(struct aac_softc *sc)
1995 {
1996         debug_called(4);
1997
1998         return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
1999 }
2000
2001 static int
2002 aac_rx_get_mailboxstatus(struct aac_softc *sc)
2003 {
2004         debug_called(4);
2005
2006         return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2007 }
2008
2009 static int
2010 aac_fa_get_mailboxstatus(struct aac_softc *sc)
2011 {
2012         int val;
2013
2014         debug_called(4);
2015
2016         val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2017         return (val);
2018 }
2019
2020 /*
2021  * Set/clear interrupt masks
2022  */
2023 static void
2024 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2025 {
2026         debug(2, "%sable interrupts", enable ? "en" : "dis");
2027
2028         if (enable) {
2029                 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2030         } else {
2031                 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2032         }
2033 }
2034
2035 static void
2036 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2037 {
2038         debug(2, "%sable interrupts", enable ? "en" : "dis");
2039
2040         if (enable) {
2041                 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2042         } else {
2043                 AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2044         }
2045 }
2046
2047 static void
2048 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2049 {
2050         debug(2, "%sable interrupts", enable ? "en" : "dis");
2051
2052         if (enable) {
2053                 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2054                 AAC_FA_HACK(sc);
2055         } else {
2056                 AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2057                 AAC_FA_HACK(sc);
2058         }
2059 }
2060
2061 /*
2062  * Debugging and Diagnostics
2063  */
2064
2065 /*
2066  * Print some information about the controller.
2067  */
2068 static void
2069 aac_describe_controller(struct aac_softc *sc)
2070 {
2071         struct aac_fib *fib;
2072         struct aac_adapter_info *info;
2073
2074         debug_called(2);
2075
2076         aac_alloc_sync_fib(sc, &fib, 0);
2077
2078         fib->data[0] = 0;
2079         if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2080                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2081                 aac_release_sync_fib(sc);
2082                 return;
2083         }
2084         info = (struct aac_adapter_info *)&fib->data[0];
2085
2086         device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 
2087                       aac_describe_code(aac_cpu_variant, info->CpuVariant),
2088                       info->ClockSpeed, info->BufferMem / (1024 * 1024), 
2089                       aac_describe_code(aac_battery_platform,
2090                                         info->batteryPlatform));
2091
2092         /* save the kernel revision structure for later use */
2093         sc->aac_revision = info->KernelRevision;
2094         device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2095                       info->KernelRevision.external.comp.major,
2096                       info->KernelRevision.external.comp.minor,
2097                       info->KernelRevision.external.comp.dash,
2098                       info->KernelRevision.buildNumber,
2099                       (u_int32_t)(info->SerialNumber & 0xffffff));
2100
2101         aac_release_sync_fib(sc);
2102 }
2103
2104 /*
2105  * Look up a text description of a numeric error code and return a pointer to
2106  * same.
2107  */
2108 static char *
2109 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2110 {
2111         int i;
2112
2113         for (i = 0; table[i].string != NULL; i++)
2114                 if (table[i].code == code)
2115                         return(table[i].string);
2116         return(table[i + 1].string);
2117 }
2118
2119 /*
2120  * Management Interface
2121  */
2122
2123 static int
2124 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2125 {
2126         struct aac_softc *sc;
2127
2128         debug_called(2);
2129
2130         sc = dev->si_drv1;
2131
2132         /* Check to make sure the device isn't already open */
2133         if (sc->aac_state & AAC_STATE_OPEN) {
2134                 return EBUSY;
2135         }
2136         sc->aac_state |= AAC_STATE_OPEN;
2137
2138         return 0;
2139 }
2140
2141 static int
2142 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2143 {
2144         struct aac_softc *sc;
2145
2146         debug_called(2);
2147
2148         sc = dev->si_drv1;
2149
2150         /* Mark this unit as no longer open  */
2151         sc->aac_state &= ~AAC_STATE_OPEN;
2152
2153         return 0;
2154 }
2155
2156 static int
2157 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2158 {
2159         union aac_statrequest *as;
2160         struct aac_softc *sc;
2161         int error = 0;
2162         int i;
2163
2164         debug_called(2);
2165
2166         as = (union aac_statrequest *)arg;
2167         sc = dev->si_drv1;
2168
2169         switch (cmd) {
2170         case AACIO_STATS:
2171                 switch (as->as_item) {
2172                 case AACQ_FREE:
2173                 case AACQ_BIO:
2174                 case AACQ_READY:
2175                 case AACQ_BUSY:
2176                 case AACQ_COMPLETE:
2177                         bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2178                               sizeof(struct aac_qstat));
2179                         break;
2180                 default:
2181                         error = ENOENT;
2182                         break;
2183                 }
2184         break;
2185         
2186         case FSACTL_SENDFIB:
2187                 arg = *(caddr_t*)arg;
2188         case FSACTL_LNX_SENDFIB:
2189                 debug(1, "FSACTL_SENDFIB");
2190                 error = aac_ioctl_sendfib(sc, arg);
2191                 break;
2192         case FSACTL_AIF_THREAD:
2193         case FSACTL_LNX_AIF_THREAD:
2194                 debug(1, "FSACTL_AIF_THREAD");
2195                 error = EINVAL;
2196                 break;
2197         case FSACTL_OPEN_GET_ADAPTER_FIB:
2198                 arg = *(caddr_t*)arg;
2199         case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2200                 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2201                 /*
2202                  * Pass the caller out an AdapterFibContext.
2203                  *
2204                  * Note that because we only support one opener, we
2205                  * basically ignore this.  Set the caller's context to a magic
2206                  * number just in case.
2207                  *
2208                  * The Linux code hands the driver a pointer into kernel space,
2209                  * and then trusts it when the caller hands it back.  Aiee!
2210                  * Here, we give it the proc pointer of the per-adapter aif 
2211                  * thread. It's only used as a sanity check in other calls.
2212                  */
2213                 i = (int)sc->aifthread;
2214                 error = copyout(&i, arg, sizeof(i));
2215                 break;
2216         case FSACTL_GET_NEXT_ADAPTER_FIB:
2217                 arg = *(caddr_t*)arg;
2218         case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2219                 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2220                 error = aac_getnext_aif(sc, arg);
2221                 break;
2222         case FSACTL_CLOSE_GET_ADAPTER_FIB:
2223         case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2224                 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2225                 /* don't do anything here */
2226                 break;
2227         case FSACTL_MINIPORT_REV_CHECK:
2228                 arg = *(caddr_t*)arg;
2229         case FSACTL_LNX_MINIPORT_REV_CHECK:
2230                 debug(1, "FSACTL_MINIPORT_REV_CHECK");
2231                 error = aac_rev_check(sc, arg);
2232                 break;
2233         case FSACTL_QUERY_DISK:
2234                 arg = *(caddr_t*)arg;
2235         case FSACTL_LNX_QUERY_DISK:
2236                 debug(1, "FSACTL_QUERY_DISK");
2237                 error = aac_query_disk(sc, arg);
2238                         break;
2239         case FSACTL_DELETE_DISK:
2240         case FSACTL_LNX_DELETE_DISK:
2241                 /*
2242                  * We don't trust the underland to tell us when to delete a
2243                  * container, rather we rely on an AIF coming from the 
2244                  * controller
2245                  */
2246                 error = 0;
2247                 break;
2248         default:
2249                 debug(1, "unsupported cmd 0x%lx\n", cmd);
2250                 error = EINVAL;
2251                 break;
2252         }
2253         return(error);
2254 }
2255
2256 static int
2257 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2258 {
2259         struct aac_softc *sc;
2260         int revents;
2261
2262         sc = dev->si_drv1;
2263         revents = 0;
2264
2265         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2266         if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2267                 if (sc->aac_aifq_tail != sc->aac_aifq_head)
2268                         revents |= poll_events & (POLLIN | POLLRDNORM);
2269         }
2270         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2271
2272         if (revents == 0) {
2273                 if (poll_events & (POLLIN | POLLRDNORM))
2274                         selrecord(td, &sc->rcv_select);
2275         }
2276
2277         return (revents);
2278 }
2279
2280 /*
2281  * Send a FIB supplied from userspace
2282  */
2283 static int
2284 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2285 {
2286         struct aac_command *cm;
2287         int size, error;
2288
2289         debug_called(2);
2290
2291         cm = NULL;
2292
2293         /*
2294          * Get a command
2295          */
2296         if (aac_alloc_command(sc, &cm)) {
2297                 error = EBUSY;
2298                 goto out;
2299         }
2300
2301         /*
2302          * Fetch the FIB header, then re-copy to get data as well.
2303          */
2304         if ((error = copyin(ufib, cm->cm_fib,
2305                             sizeof(struct aac_fib_header))) != 0)
2306                 goto out;
2307         size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2308         if (size > sizeof(struct aac_fib)) {
2309                 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2310                               size, sizeof(struct aac_fib));
2311                 size = sizeof(struct aac_fib);
2312         }
2313         if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2314                 goto out;
2315         cm->cm_fib->Header.Size = size;
2316         cm->cm_timestamp = time_second;
2317
2318         /*
2319          * Pass the FIB to the controller, wait for it to complete.
2320          */
2321         if ((error = aac_wait_command(cm, 30)) != 0) {  /* XXX user timeout? */
2322                 printf("aac_wait_command return %d\n", error);
2323                 goto out;
2324         }
2325
2326         /*
2327          * Copy the FIB and data back out to the caller.
2328          */
2329         size = cm->cm_fib->Header.Size;
2330         if (size > sizeof(struct aac_fib)) {
2331                 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2332                               size, sizeof(struct aac_fib));
2333                 size = sizeof(struct aac_fib);
2334         }
2335         error = copyout(cm->cm_fib, ufib, size);
2336
2337 out:
2338         if (cm != NULL) {
2339                 aac_release_command(cm);
2340         }
2341         return(error);
2342 }
2343
2344 /*
2345  * Handle an AIF sent to us by the controller; queue it for later reference.
2346  * If the queue fills up, then drop the older entries.
2347  */
2348 static void
2349 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2350 {
2351         struct aac_aif_command *aif;
2352         struct aac_container *co, *co_next;
2353         struct aac_mntinfo *mi;
2354         struct aac_mntinforesp *mir = NULL;
2355         u_int16_t rsize;
2356         int next, found;
2357         int added = 0, i = 0;
2358
2359         debug_called(2);
2360
2361         aif = (struct aac_aif_command*)&fib->data[0];
2362         aac_print_aif(sc, aif);
2363
2364         /* Is it an event that we should care about? */
2365         switch (aif->command) {
2366         case AifCmdEventNotify:
2367                 switch (aif->data.EN.type) {
2368                 case AifEnAddContainer:
2369                 case AifEnDeleteContainer:
2370                         /*
2371                          * A container was added or deleted, but the message 
2372                          * doesn't tell us anything else!  Re-enumerate the
2373                          * containers and sort things out.
2374                          */
2375                         aac_alloc_sync_fib(sc, &fib, 0);
2376                         mi = (struct aac_mntinfo *)&fib->data[0];
2377                         do {
2378                                 /*
2379                                  * Ask the controller for its containers one at
2380                                  * a time.
2381                                  * XXX What if the controller's list changes
2382                                  * midway through this enumaration?
2383                                  * XXX This should be done async.
2384                                  */
2385                                 bzero(mi, sizeof(struct aac_mntinfo));
2386                                 mi->Command = VM_NameServe;
2387                                 mi->MntType = FT_FILESYS;
2388                                 mi->MntCount = i;
2389                                 rsize = sizeof(mir);
2390                                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2391                                                  sizeof(struct aac_mntinfo))) {
2392                                         debug(2, "Error probing container %d\n",
2393                                               i);
2394                                         continue;
2395                                 }
2396                                 mir = (struct aac_mntinforesp *)&fib->data[0];
2397                                 /*
2398                                  * Check the container against our list.
2399                                  * co->co_found was already set to 0 in a
2400                                  * previous run.
2401                                  */
2402                                 if ((mir->Status == ST_OK) &&
2403                                     (mir->MntTable[0].VolType != CT_NONE)) {
2404                                         found = 0;
2405                                         TAILQ_FOREACH(co,
2406                                                       &sc->aac_container_tqh, 
2407                                                       co_link) {
2408                                                 if (co->co_mntobj.ObjectId ==
2409                                                     mir->MntTable[0].ObjectId) {
2410                                                         co->co_found = 1;
2411                                                         found = 1;
2412                                                         break;
2413                                                 }
2414                                         }
2415                                         /*
2416                                          * If the container matched, continue
2417                                          * in the list.
2418                                          */
2419                                         if (found) {
2420                                                 i++;
2421                                                 continue;
2422                                         }
2423
2424                                         /*
2425                                          * This is a new container.  Do all the
2426                                          * appropriate things to set it up.                                              */
2427                                         aac_add_container(sc, mir, 1);
2428                                         added = 1;
2429                                 }
2430                                 i++;
2431                         } while ((i < mir->MntRespCount) &&
2432                                  (i < AAC_MAX_CONTAINERS));
2433                         aac_release_sync_fib(sc);
2434
2435                         /*
2436                          * Go through our list of containers and see which ones
2437                          * were not marked 'found'.  Since the controller didn't
2438                          * list them they must have been deleted.  Do the
2439                          * appropriate steps to destroy the device.  Also reset
2440                          * the co->co_found field.
2441                          */
2442                         co = TAILQ_FIRST(&sc->aac_container_tqh);
2443                         while (co != NULL) {
2444                                 if (co->co_found == 0) {
2445                                         device_delete_child(sc->aac_dev,
2446                                                             co->co_disk);
2447                                         co_next = TAILQ_NEXT(co, co_link);
2448                                         AAC_LOCK_ACQUIRE(&sc->
2449                                                         aac_container_lock);
2450                                         TAILQ_REMOVE(&sc->aac_container_tqh, co,
2451                                                      co_link);
2452                                         AAC_LOCK_RELEASE(&sc->
2453                                                          aac_container_lock);
2454                                         FREE(co, M_AACBUF);
2455                                         co = co_next;
2456                                 } else {
2457                                         co->co_found = 0;
2458                                         co = TAILQ_NEXT(co, co_link);
2459                                 }
2460                         }
2461
2462                         /* Attach the newly created containers */
2463                         if (added)
2464                                 bus_generic_attach(sc->aac_dev);
2465         
2466                                 break;
2467
2468                 default:
2469                         break;
2470                 }
2471
2472         default:
2473                 break;
2474         }
2475
2476         /* Copy the AIF data to the AIF queue for ioctl retrieval */
2477         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2478         next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2479         if (next != sc->aac_aifq_tail) {
2480                 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2481                 sc->aac_aifq_head = next;
2482
2483                 /* On the off chance that someone is sleeping for an aif... */
2484                 if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2485                         wakeup(sc->aac_aifq);
2486                 /* Wakeup any poll()ers */
2487                 selwakeup(&sc->rcv_select);
2488         }
2489         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2490
2491         return;
2492 }
2493
2494 /*
2495  * Linux Management Interface
2496  * This is soon to be removed!
2497  */
2498
2499 #ifdef AAC_COMPAT_LINUX
2500
2501 #include <sys/proc.h>
2502 #include <machine/../linux/linux.h>
2503 #include <machine/../linux/linux_proto.h>
2504 #include <compat/linux/linux_ioctl.h>
2505
2506 /* There are multiple ioctl number ranges that need to be handled */
2507 #define AAC_LINUX_IOCTL_MIN  0x0000
2508 #define AAC_LINUX_IOCTL_MAX  0x21ff
2509
2510 static linux_ioctl_function_t aac_linux_ioctl;
2511 static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl,
2512                                                  AAC_LINUX_IOCTL_MIN,
2513                                                  AAC_LINUX_IOCTL_MAX};
2514
2515 SYSINIT  (aac_register,   SI_SUB_KLD, SI_ORDER_MIDDLE,
2516           linux_ioctl_register_handler, &aac_handler);
2517 SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE,
2518           linux_ioctl_unregister_handler, &aac_handler);
2519
2520 MODULE_DEPEND(aac, linux, 1, 1, 1);
2521
2522 static int
2523 aac_linux_ioctl(struct thread *td, struct linux_ioctl_args *args)
2524 {
2525         struct file *fp;
2526         u_long cmd;
2527         int error;
2528
2529         debug_called(2);
2530
2531         if ((error = fget(td, args->fd, &fp)) != 0)
2532                 return (error);
2533         cmd = args->cmd;
2534
2535         /*
2536          * Pass the ioctl off to our standard handler.
2537          */
2538         error = (fo_ioctl(fp, cmd, (caddr_t)args->arg, td));
2539         fdrop(fp, td);
2540         return (error);
2541 }
2542
2543 #endif
2544
2545 /*
2546  * Return the Revision of the driver to userspace and check to see if the
2547  * userspace app is possibly compatible.  This is extremely bogus since
2548  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2549  * returning what the card reported.
2550  */
2551 static int
2552 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2553 {
2554         struct aac_rev_check rev_check;
2555         struct aac_rev_check_resp rev_check_resp;
2556         int error = 0;
2557
2558         debug_called(2);
2559
2560         /*
2561          * Copyin the revision struct from userspace
2562          */
2563         if ((error = copyin(udata, (caddr_t)&rev_check,
2564                         sizeof(struct aac_rev_check))) != 0) {
2565                 return error;
2566         }
2567
2568         debug(2, "Userland revision= %d\n",
2569               rev_check.callingRevision.buildNumber);
2570
2571         /*
2572          * Doctor up the response struct.
2573          */
2574         rev_check_resp.possiblyCompatible = 1;
2575         rev_check_resp.adapterSWRevision.external.ul =
2576             sc->aac_revision.external.ul;
2577         rev_check_resp.adapterSWRevision.buildNumber =
2578             sc->aac_revision.buildNumber;
2579
2580         return(copyout((caddr_t)&rev_check_resp, udata,
2581                         sizeof(struct aac_rev_check_resp)));
2582 }
2583
2584 /*
2585  * Pass the caller the next AIF in their queue
2586  */
2587 static int
2588 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2589 {
2590         struct get_adapter_fib_ioctl agf;
2591         int error, s;
2592
2593         debug_called(2);
2594
2595         if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2596
2597                 /*
2598                  * Check the magic number that we gave the caller.
2599                  */
2600                 if (agf.AdapterFibContext != (int)sc->aifthread) {
2601                         error = EFAULT;
2602                 } else {
2603         
2604                         s = splbio();
2605                         error = aac_return_aif(sc, agf.AifFib);
2606         
2607                         if ((error == EAGAIN) && (agf.Wait)) {
2608                                 sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2609                                 while (error == EAGAIN) {
2610                                         error = tsleep(sc->aac_aifq, PRIBIO |
2611                                                        PCATCH, "aacaif", 0);
2612                                         if (error == 0)
2613                                                 error = aac_return_aif(sc,
2614                                                     agf.AifFib);
2615                                 }
2616                                 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2617                         }
2618                 splx(s);
2619                 }
2620         }
2621         return(error);
2622 }
2623
2624 /*
2625  * Hand the next AIF off the top of the queue out to userspace.
2626  */
2627 static int
2628 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2629 {
2630         int error;
2631
2632         debug_called(2);
2633
2634         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2635         if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2636                 error = EAGAIN;
2637         } else {
2638                 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2639                                 sizeof(struct aac_aif_command));
2640                 if (error)
2641                         printf("aac_return_aif: copyout returned %d\n", error);
2642                 if (!error)
2643                         sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2644                                             AAC_AIFQ_LENGTH;
2645         }
2646         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2647         return(error);
2648 }
2649
2650 /*
2651  * Give the userland some information about the container.  The AAC arch
2652  * expects the driver to be a SCSI passthrough type driver, so it expects
2653  * the containers to have b:t:l numbers.  Fake it.
2654  */
2655 static int
2656 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2657 {
2658         struct aac_query_disk query_disk;
2659         struct aac_container *co;
2660         struct aac_disk *disk;
2661         int error, id;
2662
2663         debug_called(2);
2664
2665         disk = NULL;
2666
2667         error = copyin(uptr, (caddr_t)&query_disk,
2668                        sizeof(struct aac_query_disk));
2669         if (error)
2670                 return (error);
2671
2672         id = query_disk.ContainerNumber;
2673         if (id == -1)
2674                 return (EINVAL);
2675
2676         AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2677         TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2678                 if (co->co_mntobj.ObjectId == id)
2679                         break;
2680                 }
2681
2682                 if (co == NULL) {
2683                         query_disk.Valid = 0;
2684                         query_disk.Locked = 0;
2685                         query_disk.Deleted = 1;         /* XXX is this right? */
2686                 } else {
2687                         disk = device_get_softc(co->co_disk);
2688                         query_disk.Valid = 1;
2689                         query_disk.Locked =
2690                             (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2691                         query_disk.Deleted = 0;
2692                         query_disk.Bus = device_get_unit(sc->aac_dev);
2693                         query_disk.Target = disk->unit;
2694                         query_disk.Lun = 0;
2695                         query_disk.UnMapped = 0;
2696                         bcopy(disk->ad_dev_t->si_name,
2697                               &query_disk.diskDeviceName[0], 10);
2698                 }
2699         AAC_LOCK_RELEASE(&sc->aac_container_lock);
2700
2701         error = copyout((caddr_t)&query_disk, uptr,
2702                         sizeof(struct aac_query_disk));
2703
2704         return (error);
2705 }
2706
2707 static void
2708 aac_get_bus_info(struct aac_softc *sc)
2709 {
2710         struct aac_fib *fib;
2711         struct aac_ctcfg *c_cmd;
2712         struct aac_ctcfg_resp *c_resp;
2713         struct aac_vmioctl *vmi;
2714         struct aac_vmi_businf_resp *vmi_resp;
2715         struct aac_getbusinf businfo;
2716         struct aac_cam_inf *caminf;
2717         device_t child;
2718         int i, found, error;
2719
2720         aac_alloc_sync_fib(sc, &fib, 0);
2721         c_cmd = (struct aac_ctcfg *)&fib->data[0];
2722         bzero(c_cmd, sizeof(struct aac_ctcfg));
2723
2724         c_cmd->Command = VM_ContainerConfig;
2725         c_cmd->cmd = CT_GET_SCSI_METHOD;
2726         c_cmd->param = 0;
2727
2728         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2729             sizeof(struct aac_ctcfg));
2730         if (error) {
2731                 device_printf(sc->aac_dev, "Error %d sending "
2732                     "VM_ContainerConfig command\n", error);
2733                 aac_release_sync_fib(sc);
2734                 return;
2735         }
2736
2737         c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2738         if (c_resp->Status != ST_OK) {
2739                 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2740                     c_resp->Status);
2741                 aac_release_sync_fib(sc);
2742                 return;
2743         }
2744
2745         sc->scsi_method_id = c_resp->param;
2746
2747         vmi = (struct aac_vmioctl *)&fib->data[0];
2748         bzero(vmi, sizeof(struct aac_vmioctl));
2749
2750         vmi->Command = VM_Ioctl;
2751         vmi->ObjType = FT_DRIVE;
2752         vmi->MethId = sc->scsi_method_id;
2753         vmi->ObjId = 0;
2754         vmi->IoctlCmd = GetBusInfo;
2755
2756         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2757             sizeof(struct aac_vmioctl));
2758         if (error) {
2759                 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2760                     error);
2761                 aac_release_sync_fib(sc);
2762                 return;
2763         }
2764
2765         vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2766         if (vmi_resp->Status != ST_OK) {
2767                 device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2768                     vmi_resp->Status);
2769                 aac_release_sync_fib(sc);
2770                 return;
2771         }
2772
2773         bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2774         aac_release_sync_fib(sc);
2775
2776         found = 0;
2777         for (i = 0; i < businfo.BusCount; i++) {
2778                 if (businfo.BusValid[i] != AAC_BUS_VALID)
2779                         continue;
2780
2781                 MALLOC(caminf, struct aac_cam_inf *,
2782                     sizeof(struct aac_cam_inf), M_AACBUF, M_NOWAIT | M_ZERO);
2783                 if (caminf == NULL)
2784                         continue;
2785
2786                 child = device_add_child(sc->aac_dev, "aacp", -1);
2787                 if (child == NULL) {
2788                         device_printf(sc->aac_dev, "device_add_child failed\n");
2789                         continue;
2790                 }
2791
2792                 caminf->TargetsPerBus = businfo.TargetsPerBus;
2793                 caminf->BusNumber = i;
2794                 caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2795                 caminf->aac_sc = sc;
2796
2797                 device_set_ivars(child, caminf);
2798                 device_set_desc(child, "SCSI Passthrough Bus");
2799
2800                 found = 1;
2801         }
2802
2803         if (found)
2804                 bus_generic_attach(sc->aac_dev);
2805
2806         return;
2807 }