]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/acpica/acpi.c
Update Ethernet extended counters in mlx5en(4).
[FreeBSD/FreeBSD.git] / sys / dev / acpica / acpi.c
1 /*-
2  * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org>
3  * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org>
4  * Copyright (c) 2000, 2001 Michael Smith
5  * Copyright (c) 2000 BSDi
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_acpi.h"
34
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/proc.h>
38 #include <sys/fcntl.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/ioccom.h>
44 #include <sys/reboot.h>
45 #include <sys/sysctl.h>
46 #include <sys/ctype.h>
47 #include <sys/linker.h>
48 #include <sys/power.h>
49 #include <sys/sbuf.h>
50 #include <sys/sched.h>
51 #include <sys/smp.h>
52 #include <sys/timetc.h>
53
54 #if defined(__i386__) || defined(__amd64__)
55 #include <machine/clock.h>
56 #include <machine/pci_cfgreg.h>
57 #endif
58 #include <machine/resource.h>
59 #include <machine/bus.h>
60 #include <sys/rman.h>
61 #include <isa/isavar.h>
62 #include <isa/pnpvar.h>
63
64 #include <contrib/dev/acpica/include/acpi.h>
65 #include <contrib/dev/acpica/include/accommon.h>
66 #include <contrib/dev/acpica/include/acnamesp.h>
67
68 #include <dev/acpica/acpivar.h>
69 #include <dev/acpica/acpiio.h>
70
71 #include <dev/pci/pcivar.h>
72
73 #include <vm/vm_param.h>
74
75 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices");
76
77 /* Hooks for the ACPI CA debugging infrastructure */
78 #define _COMPONENT      ACPI_BUS
79 ACPI_MODULE_NAME("ACPI")
80
81 static d_open_t         acpiopen;
82 static d_close_t        acpiclose;
83 static d_ioctl_t        acpiioctl;
84
85 static struct cdevsw acpi_cdevsw = {
86         .d_version =    D_VERSION,
87         .d_open =       acpiopen,
88         .d_close =      acpiclose,
89         .d_ioctl =      acpiioctl,
90         .d_name =       "acpi",
91 };
92
93 struct acpi_interface {
94         ACPI_STRING     *data;
95         int             num;
96 };
97
98 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL };
99 static char *pcilink_ids[] = { "PNP0C0F", NULL };
100
101 /* Global mutex for locking access to the ACPI subsystem. */
102 struct mtx      acpi_mutex;
103 struct callout  acpi_sleep_timer;
104
105 /* Bitmap of device quirks. */
106 int             acpi_quirks;
107
108 /* Supported sleep states. */
109 static BOOLEAN  acpi_sleep_states[ACPI_S_STATE_COUNT];
110
111 static void     acpi_lookup(void *arg, const char *name, device_t *dev);
112 static int      acpi_modevent(struct module *mod, int event, void *junk);
113 static int      acpi_probe(device_t dev);
114 static int      acpi_attach(device_t dev);
115 static int      acpi_suspend(device_t dev);
116 static int      acpi_resume(device_t dev);
117 static int      acpi_shutdown(device_t dev);
118 static device_t acpi_add_child(device_t bus, u_int order, const char *name,
119                         int unit);
120 static int      acpi_print_child(device_t bus, device_t child);
121 static void     acpi_probe_nomatch(device_t bus, device_t child);
122 static void     acpi_driver_added(device_t dev, driver_t *driver);
123 static int      acpi_read_ivar(device_t dev, device_t child, int index,
124                         uintptr_t *result);
125 static int      acpi_write_ivar(device_t dev, device_t child, int index,
126                         uintptr_t value);
127 static struct resource_list *acpi_get_rlist(device_t dev, device_t child);
128 static void     acpi_reserve_resources(device_t dev);
129 static int      acpi_sysres_alloc(device_t dev);
130 static int      acpi_set_resource(device_t dev, device_t child, int type,
131                         int rid, rman_res_t start, rman_res_t count);
132 static struct resource *acpi_alloc_resource(device_t bus, device_t child,
133                         int type, int *rid, rman_res_t start, rman_res_t end,
134                         rman_res_t count, u_int flags);
135 static int      acpi_adjust_resource(device_t bus, device_t child, int type,
136                         struct resource *r, rman_res_t start, rman_res_t end);
137 static int      acpi_release_resource(device_t bus, device_t child, int type,
138                         int rid, struct resource *r);
139 static void     acpi_delete_resource(device_t bus, device_t child, int type,
140                     int rid);
141 static uint32_t acpi_isa_get_logicalid(device_t dev);
142 static int      acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count);
143 static int      acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match);
144 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev,
145                     ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters,
146                     ACPI_BUFFER *ret);
147 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level,
148                     void *context, void **retval);
149 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev,
150                     int max_depth, acpi_scan_cb_t user_fn, void *arg);
151 static int      acpi_set_powerstate(device_t child, int state);
152 static int      acpi_isa_pnp_probe(device_t bus, device_t child,
153                     struct isa_pnp_id *ids);
154 static void     acpi_probe_children(device_t bus);
155 static void     acpi_probe_order(ACPI_HANDLE handle, int *order);
156 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level,
157                     void *context, void **status);
158 static void     acpi_sleep_enable(void *arg);
159 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc);
160 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state);
161 static void     acpi_shutdown_final(void *arg, int howto);
162 static void     acpi_enable_fixed_events(struct acpi_softc *sc);
163 static BOOLEAN  acpi_has_hid(ACPI_HANDLE handle);
164 static void     acpi_resync_clock(struct acpi_softc *sc);
165 static int      acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate);
166 static int      acpi_wake_run_prep(ACPI_HANDLE handle, int sstate);
167 static int      acpi_wake_prep_walk(int sstate);
168 static int      acpi_wake_sysctl_walk(device_t dev);
169 static int      acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS);
170 static void     acpi_system_eventhandler_sleep(void *arg, int state);
171 static void     acpi_system_eventhandler_wakeup(void *arg, int state);
172 static int      acpi_sname2sstate(const char *sname);
173 static const char *acpi_sstate2sname(int sstate);
174 static int      acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
175 static int      acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
176 static int      acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS);
177 static int      acpi_pm_func(u_long cmd, void *arg, ...);
178 static int      acpi_child_location_str_method(device_t acdev, device_t child,
179                                                char *buf, size_t buflen);
180 static int      acpi_child_pnpinfo_str_method(device_t acdev, device_t child,
181                                               char *buf, size_t buflen);
182 static void     acpi_enable_pcie(void);
183 static void     acpi_hint_device_unit(device_t acdev, device_t child,
184                     const char *name, int *unitp);
185 static void     acpi_reset_interfaces(device_t dev);
186
187 static device_method_t acpi_methods[] = {
188     /* Device interface */
189     DEVMETHOD(device_probe,             acpi_probe),
190     DEVMETHOD(device_attach,            acpi_attach),
191     DEVMETHOD(device_shutdown,          acpi_shutdown),
192     DEVMETHOD(device_detach,            bus_generic_detach),
193     DEVMETHOD(device_suspend,           acpi_suspend),
194     DEVMETHOD(device_resume,            acpi_resume),
195
196     /* Bus interface */
197     DEVMETHOD(bus_add_child,            acpi_add_child),
198     DEVMETHOD(bus_print_child,          acpi_print_child),
199     DEVMETHOD(bus_probe_nomatch,        acpi_probe_nomatch),
200     DEVMETHOD(bus_driver_added,         acpi_driver_added),
201     DEVMETHOD(bus_read_ivar,            acpi_read_ivar),
202     DEVMETHOD(bus_write_ivar,           acpi_write_ivar),
203     DEVMETHOD(bus_get_resource_list,    acpi_get_rlist),
204     DEVMETHOD(bus_set_resource,         acpi_set_resource),
205     DEVMETHOD(bus_get_resource,         bus_generic_rl_get_resource),
206     DEVMETHOD(bus_alloc_resource,       acpi_alloc_resource),
207     DEVMETHOD(bus_adjust_resource,      acpi_adjust_resource),
208     DEVMETHOD(bus_release_resource,     acpi_release_resource),
209     DEVMETHOD(bus_delete_resource,      acpi_delete_resource),
210     DEVMETHOD(bus_child_pnpinfo_str,    acpi_child_pnpinfo_str_method),
211     DEVMETHOD(bus_child_location_str,   acpi_child_location_str_method),
212     DEVMETHOD(bus_activate_resource,    bus_generic_activate_resource),
213     DEVMETHOD(bus_deactivate_resource,  bus_generic_deactivate_resource),
214     DEVMETHOD(bus_setup_intr,           bus_generic_setup_intr),
215     DEVMETHOD(bus_teardown_intr,        bus_generic_teardown_intr),
216     DEVMETHOD(bus_hint_device_unit,     acpi_hint_device_unit),
217     DEVMETHOD(bus_get_cpus,             acpi_get_cpus),
218     DEVMETHOD(bus_get_domain,           acpi_get_domain),
219
220     /* ACPI bus */
221     DEVMETHOD(acpi_id_probe,            acpi_device_id_probe),
222     DEVMETHOD(acpi_evaluate_object,     acpi_device_eval_obj),
223     DEVMETHOD(acpi_pwr_for_sleep,       acpi_device_pwr_for_sleep),
224     DEVMETHOD(acpi_scan_children,       acpi_device_scan_children),
225
226     /* ISA emulation */
227     DEVMETHOD(isa_pnp_probe,            acpi_isa_pnp_probe),
228
229     DEVMETHOD_END
230 };
231
232 static driver_t acpi_driver = {
233     "acpi",
234     acpi_methods,
235     sizeof(struct acpi_softc),
236 };
237
238 static devclass_t acpi_devclass;
239 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0);
240 MODULE_VERSION(acpi, 1);
241
242 ACPI_SERIAL_DECL(acpi, "ACPI root bus");
243
244 /* Local pools for managing system resources for ACPI child devices. */
245 static struct rman acpi_rman_io, acpi_rman_mem;
246
247 #define ACPI_MINIMUM_AWAKETIME  5
248
249 /* Holds the description of the acpi0 device. */
250 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2];
251
252 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging");
253 static char acpi_ca_version[12];
254 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD,
255               acpi_ca_version, 0, "Version of Intel ACPI-CA");
256
257 /*
258  * Allow overriding _OSI methods.
259  */
260 static char acpi_install_interface[256];
261 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface,
262     sizeof(acpi_install_interface));
263 static char acpi_remove_interface[256];
264 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface,
265     sizeof(acpi_remove_interface));
266
267 /* Allow users to dump Debug objects without ACPI debugger. */
268 static int acpi_debug_objects;
269 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects);
270 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects,
271     CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I",
272     "Enable Debug objects");
273
274 /* Allow the interpreter to ignore common mistakes in BIOS. */
275 static int acpi_interpreter_slack = 1;
276 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack);
277 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN,
278     &acpi_interpreter_slack, 1, "Turn on interpreter slack mode.");
279
280 /* Ignore register widths set by FADT and use default widths instead. */
281 static int acpi_ignore_reg_width = 1;
282 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width);
283 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN,
284     &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT");
285
286 /* Allow users to override quirks. */
287 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks);
288
289 int acpi_susp_bounce;
290 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW,
291     &acpi_susp_bounce, 0, "Don't actually suspend, just test devices.");
292
293 /*
294  * ACPI can only be loaded as a module by the loader; activating it after
295  * system bootstrap time is not useful, and can be fatal to the system.
296  * It also cannot be unloaded, since the entire system bus hierarchy hangs
297  * off it.
298  */
299 static int
300 acpi_modevent(struct module *mod, int event, void *junk)
301 {
302     switch (event) {
303     case MOD_LOAD:
304         if (!cold) {
305             printf("The ACPI driver cannot be loaded after boot.\n");
306             return (EPERM);
307         }
308         break;
309     case MOD_UNLOAD:
310         if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI)
311             return (EBUSY);
312         break;
313     default:
314         break;
315     }
316     return (0);
317 }
318
319 /*
320  * Perform early initialization.
321  */
322 ACPI_STATUS
323 acpi_Startup(void)
324 {
325     static int started = 0;
326     ACPI_STATUS status;
327     int val;
328
329     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
330
331     /* Only run the startup code once.  The MADT driver also calls this. */
332     if (started)
333         return_VALUE (AE_OK);
334     started = 1;
335
336     /*
337      * Initialize the ACPICA subsystem.
338      */
339     if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) {
340         printf("ACPI: Could not initialize Subsystem: %s\n",
341             AcpiFormatException(status));
342         return_VALUE (status);
343     }
344
345     /*
346      * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing
347      * if more tables exist.
348      */
349     if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) {
350         printf("ACPI: Table initialisation failed: %s\n",
351             AcpiFormatException(status));
352         return_VALUE (status);
353     }
354
355     /* Set up any quirks we have for this system. */
356     if (acpi_quirks == ACPI_Q_OK)
357         acpi_table_quirks(&acpi_quirks);
358
359     /* If the user manually set the disabled hint to 0, force-enable ACPI. */
360     if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0)
361         acpi_quirks &= ~ACPI_Q_BROKEN;
362     if (acpi_quirks & ACPI_Q_BROKEN) {
363         printf("ACPI disabled by blacklist.  Contact your BIOS vendor.\n");
364         status = AE_SUPPORT;
365     }
366
367     return_VALUE (status);
368 }
369
370 /*
371  * Detect ACPI and perform early initialisation.
372  */
373 int
374 acpi_identify(void)
375 {
376     ACPI_TABLE_RSDP     *rsdp;
377     ACPI_TABLE_HEADER   *rsdt;
378     ACPI_PHYSICAL_ADDRESS paddr;
379     struct sbuf         sb;
380
381     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
382
383     if (!cold)
384         return (ENXIO);
385
386     /* Check that we haven't been disabled with a hint. */
387     if (resource_disabled("acpi", 0))
388         return (ENXIO);
389
390     /* Check for other PM systems. */
391     if (power_pm_get_type() != POWER_PM_TYPE_NONE &&
392         power_pm_get_type() != POWER_PM_TYPE_ACPI) {
393         printf("ACPI identify failed, other PM system enabled.\n");
394         return (ENXIO);
395     }
396
397     /* Initialize root tables. */
398     if (ACPI_FAILURE(acpi_Startup())) {
399         printf("ACPI: Try disabling either ACPI or apic support.\n");
400         return (ENXIO);
401     }
402
403     if ((paddr = AcpiOsGetRootPointer()) == 0 ||
404         (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL)
405         return (ENXIO);
406     if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0)
407         paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress;
408     else
409         paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress;
410     AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP));
411
412     if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL)
413         return (ENXIO);
414     sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN);
415     sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE);
416     sbuf_trim(&sb);
417     sbuf_putc(&sb, ' ');
418     sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
419     sbuf_trim(&sb);
420     sbuf_finish(&sb);
421     sbuf_delete(&sb);
422     AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER));
423
424     snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION);
425
426     return (0);
427 }
428
429 /*
430  * Fetch some descriptive data from ACPI to put in our attach message.
431  */
432 static int
433 acpi_probe(device_t dev)
434 {
435
436     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
437
438     device_set_desc(dev, acpi_desc);
439
440     return_VALUE (BUS_PROBE_NOWILDCARD);
441 }
442
443 static int
444 acpi_attach(device_t dev)
445 {
446     struct acpi_softc   *sc;
447     ACPI_STATUS         status;
448     int                 error, state;
449     UINT32              flags;
450     UINT8               TypeA, TypeB;
451     char                *env;
452
453     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
454
455     sc = device_get_softc(dev);
456     sc->acpi_dev = dev;
457     callout_init(&sc->susp_force_to, 1);
458
459     error = ENXIO;
460
461     /* Initialize resource manager. */
462     acpi_rman_io.rm_type = RMAN_ARRAY;
463     acpi_rman_io.rm_start = 0;
464     acpi_rman_io.rm_end = 0xffff;
465     acpi_rman_io.rm_descr = "ACPI I/O ports";
466     if (rman_init(&acpi_rman_io) != 0)
467         panic("acpi rman_init IO ports failed");
468     acpi_rman_mem.rm_type = RMAN_ARRAY;
469     acpi_rman_mem.rm_descr = "ACPI I/O memory addresses";
470     if (rman_init(&acpi_rman_mem) != 0)
471         panic("acpi rman_init memory failed");
472
473     /* Initialise the ACPI mutex */
474     mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF);
475
476     /*
477      * Set the globals from our tunables.  This is needed because ACPI-CA
478      * uses UINT8 for some values and we have no tunable_byte.
479      */
480     AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE;
481     AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
482     AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE;
483
484 #ifndef ACPI_DEBUG
485     /*
486      * Disable all debugging layers and levels.
487      */
488     AcpiDbgLayer = 0;
489     AcpiDbgLevel = 0;
490 #endif
491
492     /* Override OS interfaces if the user requested. */
493     acpi_reset_interfaces(dev);
494
495     /* Load ACPI name space. */
496     status = AcpiLoadTables();
497     if (ACPI_FAILURE(status)) {
498         device_printf(dev, "Could not load Namespace: %s\n",
499                       AcpiFormatException(status));
500         goto out;
501     }
502
503     /* Handle MCFG table if present. */
504     acpi_enable_pcie();
505
506     /*
507      * Note that some systems (specifically, those with namespace evaluation
508      * issues that require the avoidance of parts of the namespace) must
509      * avoid running _INI and _STA on everything, as well as dodging the final
510      * object init pass.
511      *
512      * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT).
513      *
514      * XXX We should arrange for the object init pass after we have attached
515      *     all our child devices, but on many systems it works here.
516      */
517     flags = 0;
518     if (testenv("debug.acpi.avoid"))
519         flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT;
520
521     /* Bring the hardware and basic handlers online. */
522     if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) {
523         device_printf(dev, "Could not enable ACPI: %s\n",
524                       AcpiFormatException(status));
525         goto out;
526     }
527
528     /*
529      * Call the ECDT probe function to provide EC functionality before
530      * the namespace has been evaluated.
531      *
532      * XXX This happens before the sysresource devices have been probed and
533      * attached so its resources come from nexus0.  In practice, this isn't
534      * a problem but should be addressed eventually.
535      */
536     acpi_ec_ecdt_probe(dev);
537
538     /* Bring device objects and regions online. */
539     if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) {
540         device_printf(dev, "Could not initialize ACPI objects: %s\n",
541                       AcpiFormatException(status));
542         goto out;
543     }
544
545     /*
546      * Setup our sysctl tree.
547      *
548      * XXX: This doesn't check to make sure that none of these fail.
549      */
550     sysctl_ctx_init(&sc->acpi_sysctl_ctx);
551     sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx,
552                                SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
553                                device_get_name(dev), CTLFLAG_RD, 0, "");
554     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
555         OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD,
556         0, 0, acpi_supported_sleep_state_sysctl, "A",
557         "List supported ACPI sleep states.");
558     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
559         OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW,
560         &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A",
561         "Power button ACPI sleep state.");
562     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
563         OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW,
564         &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A",
565         "Sleep button ACPI sleep state.");
566     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
567         OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW,
568         &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A",
569         "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid.");
570     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
571         OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW,
572         &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", "");
573     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
574         OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW,
575         &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", "");
576     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
577         OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0,
578         "sleep delay in seconds");
579     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
580         OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode");
581     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
582         OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode");
583     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
584         OID_AUTO, "disable_on_reboot", CTLFLAG_RW,
585         &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system");
586     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
587         OID_AUTO, "handle_reboot", CTLFLAG_RW,
588         &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot");
589
590     /*
591      * Default to 1 second before sleeping to give some machines time to
592      * stabilize.
593      */
594     sc->acpi_sleep_delay = 1;
595     if (bootverbose)
596         sc->acpi_verbose = 1;
597     if ((env = kern_getenv("hw.acpi.verbose")) != NULL) {
598         if (strcmp(env, "0") != 0)
599             sc->acpi_verbose = 1;
600         freeenv(env);
601     }
602
603     /* Only enable reboot by default if the FADT says it is available. */
604     if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER)
605         sc->acpi_handle_reboot = 1;
606
607 #if !ACPI_REDUCED_HARDWARE
608     /* Only enable S4BIOS by default if the FACS says it is available. */
609     if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT)
610         sc->acpi_s4bios = 1;
611 #endif
612
613     /* Probe all supported sleep states. */
614     acpi_sleep_states[ACPI_STATE_S0] = TRUE;
615     for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++)
616         if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT,
617             __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) &&
618             ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB)))
619             acpi_sleep_states[state] = TRUE;
620
621     /*
622      * Dispatch the default sleep state to devices.  The lid switch is set
623      * to UNKNOWN by default to avoid surprising users.
624      */
625     sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ?
626         ACPI_STATE_S5 : ACPI_STATE_UNKNOWN;
627     sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN;
628     sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ?
629         ACPI_STATE_S1 : ACPI_STATE_UNKNOWN;
630     sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ?
631         ACPI_STATE_S3 : ACPI_STATE_UNKNOWN;
632
633     /* Pick the first valid sleep state for the sleep button default. */
634     sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN;
635     for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++)
636         if (acpi_sleep_states[state]) {
637             sc->acpi_sleep_button_sx = state;
638             break;
639         }
640
641     acpi_enable_fixed_events(sc);
642
643     /*
644      * Scan the namespace and attach/initialise children.
645      */
646
647     /* Register our shutdown handler. */
648     EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc,
649         SHUTDOWN_PRI_LAST);
650
651     /*
652      * Register our acpi event handlers.
653      * XXX should be configurable eg. via userland policy manager.
654      */
655     EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep,
656         sc, ACPI_EVENT_PRI_LAST);
657     EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup,
658         sc, ACPI_EVENT_PRI_LAST);
659
660     /* Flag our initial states. */
661     sc->acpi_enabled = TRUE;
662     sc->acpi_sstate = ACPI_STATE_S0;
663     sc->acpi_sleep_disabled = TRUE;
664
665     /* Create the control device */
666     sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664,
667                               "acpi");
668     sc->acpi_dev_t->si_drv1 = sc;
669
670     if ((error = acpi_machdep_init(dev)))
671         goto out;
672
673     /* Register ACPI again to pass the correct argument of pm_func. */
674     power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc);
675
676     if (!acpi_disabled("bus")) {
677         EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000);
678         acpi_probe_children(dev);
679     }
680
681     /* Update all GPEs and enable runtime GPEs. */
682     status = AcpiUpdateAllGpes();
683     if (ACPI_FAILURE(status))
684         device_printf(dev, "Could not update all GPEs: %s\n",
685             AcpiFormatException(status));
686
687     /* Allow sleep request after a while. */
688     callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0);
689     callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME,
690         acpi_sleep_enable, sc);
691
692     error = 0;
693
694  out:
695     return_VALUE (error);
696 }
697
698 static void
699 acpi_set_power_children(device_t dev, int state)
700 {
701         device_t child;
702         device_t *devlist;
703         int dstate, i, numdevs;
704
705         if (device_get_children(dev, &devlist, &numdevs) != 0)
706                 return;
707
708         /*
709          * Retrieve and set D-state for the sleep state if _SxD is present.
710          * Skip children who aren't attached since they are handled separately.
711          */
712         for (i = 0; i < numdevs; i++) {
713                 child = devlist[i];
714                 dstate = state;
715                 if (device_is_attached(child) &&
716                     acpi_device_pwr_for_sleep(dev, child, &dstate) == 0)
717                         acpi_set_powerstate(child, dstate);
718         }
719         free(devlist, M_TEMP);
720 }
721
722 static int
723 acpi_suspend(device_t dev)
724 {
725     int error;
726
727     GIANT_REQUIRED;
728
729     error = bus_generic_suspend(dev);
730     if (error == 0)
731         acpi_set_power_children(dev, ACPI_STATE_D3);
732
733     return (error);
734 }
735
736 static int
737 acpi_resume(device_t dev)
738 {
739
740     GIANT_REQUIRED;
741
742     acpi_set_power_children(dev, ACPI_STATE_D0);
743
744     return (bus_generic_resume(dev));
745 }
746
747 static int
748 acpi_shutdown(device_t dev)
749 {
750
751     GIANT_REQUIRED;
752
753     /* Allow children to shutdown first. */
754     bus_generic_shutdown(dev);
755
756     /*
757      * Enable any GPEs that are able to power-on the system (i.e., RTC).
758      * Also, disable any that are not valid for this state (most).
759      */
760     acpi_wake_prep_walk(ACPI_STATE_S5);
761
762     return (0);
763 }
764
765 /*
766  * Handle a new device being added
767  */
768 static device_t
769 acpi_add_child(device_t bus, u_int order, const char *name, int unit)
770 {
771     struct acpi_device  *ad;
772     device_t            child;
773
774     if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL)
775         return (NULL);
776
777     resource_list_init(&ad->ad_rl);
778
779     child = device_add_child_ordered(bus, order, name, unit);
780     if (child != NULL)
781         device_set_ivars(child, ad);
782     else
783         free(ad, M_ACPIDEV);
784     return (child);
785 }
786
787 static int
788 acpi_print_child(device_t bus, device_t child)
789 {
790     struct acpi_device   *adev = device_get_ivars(child);
791     struct resource_list *rl = &adev->ad_rl;
792     int retval = 0;
793
794     retval += bus_print_child_header(bus, child);
795     retval += resource_list_print_type(rl, "port",  SYS_RES_IOPORT, "%#jx");
796     retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx");
797     retval += resource_list_print_type(rl, "irq",   SYS_RES_IRQ,    "%jd");
798     retval += resource_list_print_type(rl, "drq",   SYS_RES_DRQ,    "%jd");
799     if (device_get_flags(child))
800         retval += printf(" flags %#x", device_get_flags(child));
801     retval += bus_print_child_domain(bus, child);
802     retval += bus_print_child_footer(bus, child);
803
804     return (retval);
805 }
806
807 /*
808  * If this device is an ACPI child but no one claimed it, attempt
809  * to power it off.  We'll power it back up when a driver is added.
810  *
811  * XXX Disabled for now since many necessary devices (like fdc and
812  * ATA) don't claim the devices we created for them but still expect
813  * them to be powered up.
814  */
815 static void
816 acpi_probe_nomatch(device_t bus, device_t child)
817 {
818 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
819     acpi_set_powerstate(child, ACPI_STATE_D3);
820 #endif
821 }
822
823 /*
824  * If a new driver has a chance to probe a child, first power it up.
825  *
826  * XXX Disabled for now (see acpi_probe_nomatch for details).
827  */
828 static void
829 acpi_driver_added(device_t dev, driver_t *driver)
830 {
831     device_t child, *devlist;
832     int i, numdevs;
833
834     DEVICE_IDENTIFY(driver, dev);
835     if (device_get_children(dev, &devlist, &numdevs))
836             return;
837     for (i = 0; i < numdevs; i++) {
838         child = devlist[i];
839         if (device_get_state(child) == DS_NOTPRESENT) {
840 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
841             acpi_set_powerstate(child, ACPI_STATE_D0);
842             if (device_probe_and_attach(child) != 0)
843                 acpi_set_powerstate(child, ACPI_STATE_D3);
844 #else
845             device_probe_and_attach(child);
846 #endif
847         }
848     }
849     free(devlist, M_TEMP);
850 }
851
852 /* Location hint for devctl(8) */
853 static int
854 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf,
855     size_t buflen)
856 {
857     struct acpi_device *dinfo = device_get_ivars(child);
858     char buf2[32];
859     int pxm;
860
861     if (dinfo->ad_handle) {
862         snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle));
863         if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) {
864                 snprintf(buf2, 32, " _PXM=%d", pxm);
865                 strlcat(buf, buf2, buflen);
866         }
867     } else {
868         snprintf(buf, buflen, "unknown");
869     }
870     return (0);
871 }
872
873 /* PnP information for devctl(8) */
874 static int
875 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
876     size_t buflen)
877 {
878     struct acpi_device *dinfo = device_get_ivars(child);
879     ACPI_DEVICE_INFO *adinfo;
880
881     if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) {
882         snprintf(buf, buflen, "unknown");
883         return (0);
884     }
885
886     snprintf(buf, buflen, "_HID=%s _UID=%lu",
887         (adinfo->Valid & ACPI_VALID_HID) ?
888         adinfo->HardwareId.String : "none",
889         (adinfo->Valid & ACPI_VALID_UID) ?
890         strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL);
891     AcpiOsFree(adinfo);
892
893     return (0);
894 }
895
896 /*
897  * Handle per-device ivars
898  */
899 static int
900 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
901 {
902     struct acpi_device  *ad;
903
904     if ((ad = device_get_ivars(child)) == NULL) {
905         device_printf(child, "device has no ivars\n");
906         return (ENOENT);
907     }
908
909     /* ACPI and ISA compatibility ivars */
910     switch(index) {
911     case ACPI_IVAR_HANDLE:
912         *(ACPI_HANDLE *)result = ad->ad_handle;
913         break;
914     case ACPI_IVAR_PRIVATE:
915         *(void **)result = ad->ad_private;
916         break;
917     case ACPI_IVAR_FLAGS:
918         *(int *)result = ad->ad_flags;
919         break;
920     case ISA_IVAR_VENDORID:
921     case ISA_IVAR_SERIAL:
922     case ISA_IVAR_COMPATID:
923         *(int *)result = -1;
924         break;
925     case ISA_IVAR_LOGICALID:
926         *(int *)result = acpi_isa_get_logicalid(child);
927         break;
928     case PCI_IVAR_CLASS:
929         *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff;
930         break;
931     case PCI_IVAR_SUBCLASS:
932         *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff;
933         break;
934     case PCI_IVAR_PROGIF:
935         *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff;
936         break;
937     default:
938         return (ENOENT);
939     }
940
941     return (0);
942 }
943
944 static int
945 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value)
946 {
947     struct acpi_device  *ad;
948
949     if ((ad = device_get_ivars(child)) == NULL) {
950         device_printf(child, "device has no ivars\n");
951         return (ENOENT);
952     }
953
954     switch(index) {
955     case ACPI_IVAR_HANDLE:
956         ad->ad_handle = (ACPI_HANDLE)value;
957         break;
958     case ACPI_IVAR_PRIVATE:
959         ad->ad_private = (void *)value;
960         break;
961     case ACPI_IVAR_FLAGS:
962         ad->ad_flags = (int)value;
963         break;
964     default:
965         panic("bad ivar write request (%d)", index);
966         return (ENOENT);
967     }
968
969     return (0);
970 }
971
972 /*
973  * Handle child resource allocation/removal
974  */
975 static struct resource_list *
976 acpi_get_rlist(device_t dev, device_t child)
977 {
978     struct acpi_device          *ad;
979
980     ad = device_get_ivars(child);
981     return (&ad->ad_rl);
982 }
983
984 static int
985 acpi_match_resource_hint(device_t dev, int type, long value)
986 {
987     struct acpi_device *ad = device_get_ivars(dev);
988     struct resource_list *rl = &ad->ad_rl;
989     struct resource_list_entry *rle;
990
991     STAILQ_FOREACH(rle, rl, link) {
992         if (rle->type != type)
993             continue;
994         if (rle->start <= value && rle->end >= value)
995             return (1);
996     }
997     return (0);
998 }
999
1000 /*
1001  * Wire device unit numbers based on resource matches in hints.
1002  */
1003 static void
1004 acpi_hint_device_unit(device_t acdev, device_t child, const char *name,
1005     int *unitp)
1006 {
1007     const char *s;
1008     long value;
1009     int line, matches, unit;
1010
1011     /*
1012      * Iterate over all the hints for the devices with the specified
1013      * name to see if one's resources are a subset of this device.
1014      */
1015     line = 0;
1016     while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
1017         /* Must have an "at" for acpi or isa. */
1018         resource_string_value(name, unit, "at", &s);
1019         if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 ||
1020             strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0))
1021             continue;
1022
1023         /*
1024          * Check for matching resources.  We must have at least one match.
1025          * Since I/O and memory resources cannot be shared, if we get a
1026          * match on either of those, ignore any mismatches in IRQs or DRQs.
1027          *
1028          * XXX: We may want to revisit this to be more lenient and wire
1029          * as long as it gets one match.
1030          */
1031         matches = 0;
1032         if (resource_long_value(name, unit, "port", &value) == 0) {
1033             /*
1034              * Floppy drive controllers are notorious for having a
1035              * wide variety of resources not all of which include the
1036              * first port that is specified by the hint (typically
1037              * 0x3f0) (see the comment above fdc_isa_alloc_resources()
1038              * in fdc_isa.c).  However, they do all seem to include
1039              * port + 2 (e.g. 0x3f2) so for a floppy device, look for
1040              * 'value + 2' in the port resources instead of the hint
1041              * value.
1042              */
1043             if (strcmp(name, "fdc") == 0)
1044                 value += 2;
1045             if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value))
1046                 matches++;
1047             else
1048                 continue;
1049         }
1050         if (resource_long_value(name, unit, "maddr", &value) == 0) {
1051             if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value))
1052                 matches++;
1053             else
1054                 continue;
1055         }
1056         if (matches > 0)
1057             goto matched;
1058         if (resource_long_value(name, unit, "irq", &value) == 0) {
1059             if (acpi_match_resource_hint(child, SYS_RES_IRQ, value))
1060                 matches++;
1061             else
1062                 continue;
1063         }
1064         if (resource_long_value(name, unit, "drq", &value) == 0) {
1065             if (acpi_match_resource_hint(child, SYS_RES_DRQ, value))
1066                 matches++;
1067             else
1068                 continue;
1069         }
1070
1071     matched:
1072         if (matches > 0) {
1073             /* We have a winner! */
1074             *unitp = unit;
1075             break;
1076         }
1077     }
1078 }
1079
1080 /*
1081  * Fetch the NUMA domain for a device by mapping the value returned by
1082  * _PXM to a NUMA domain.  If the device does not have a _PXM method,
1083  * -2 is returned.  If any other error occurs, -1 is returned.
1084  */
1085 static int
1086 acpi_parse_pxm(device_t dev)
1087 {
1088 #ifdef NUMA
1089 #if defined(__i386__) || defined(__amd64__)
1090         ACPI_HANDLE handle;
1091         ACPI_STATUS status;
1092         int pxm;
1093
1094         handle = acpi_get_handle(dev);
1095         if (handle == NULL)
1096                 return (-2);
1097         status = acpi_GetInteger(handle, "_PXM", &pxm);
1098         if (ACPI_SUCCESS(status))
1099                 return (acpi_map_pxm_to_vm_domainid(pxm));
1100         if (status == AE_NOT_FOUND)
1101                 return (-2);
1102 #endif
1103 #endif
1104         return (-1);
1105 }
1106
1107 int
1108 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
1109     cpuset_t *cpuset)
1110 {
1111         int d, error;
1112
1113         d = acpi_parse_pxm(child);
1114         if (d < 0)
1115                 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
1116
1117         switch (op) {
1118         case LOCAL_CPUS:
1119                 if (setsize != sizeof(cpuset_t))
1120                         return (EINVAL);
1121                 *cpuset = cpuset_domain[d];
1122                 return (0);
1123         case INTR_CPUS:
1124                 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset);
1125                 if (error != 0)
1126                         return (error);
1127                 if (setsize != sizeof(cpuset_t))
1128                         return (EINVAL);
1129                 CPU_AND(cpuset, &cpuset_domain[d]);
1130                 return (0);
1131         default:
1132                 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
1133         }
1134 }
1135
1136 /*
1137  * Fetch the NUMA domain for the given device 'dev'.
1138  *
1139  * If a device has a _PXM method, map that to a NUMA domain.
1140  * Otherwise, pass the request up to the parent.
1141  * If there's no matching domain or the domain cannot be
1142  * determined, return ENOENT.
1143  */
1144 int
1145 acpi_get_domain(device_t dev, device_t child, int *domain)
1146 {
1147         int d;
1148
1149         d = acpi_parse_pxm(child);
1150         if (d >= 0) {
1151                 *domain = d;
1152                 return (0);
1153         }
1154         if (d == -1)
1155                 return (ENOENT);
1156
1157         /* No _PXM node; go up a level */
1158         return (bus_generic_get_domain(dev, child, domain));
1159 }
1160
1161 /*
1162  * Pre-allocate/manage all memory and IO resources.  Since rman can't handle
1163  * duplicates, we merge any in the sysresource attach routine.
1164  */
1165 static int
1166 acpi_sysres_alloc(device_t dev)
1167 {
1168     struct resource *res;
1169     struct resource_list *rl;
1170     struct resource_list_entry *rle;
1171     struct rman *rm;
1172     device_t *children;
1173     int child_count, i;
1174
1175     /*
1176      * Probe/attach any sysresource devices.  This would be unnecessary if we
1177      * had multi-pass probe/attach.
1178      */
1179     if (device_get_children(dev, &children, &child_count) != 0)
1180         return (ENXIO);
1181     for (i = 0; i < child_count; i++) {
1182         if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0)
1183             device_probe_and_attach(children[i]);
1184     }
1185     free(children, M_TEMP);
1186
1187     rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev);
1188     STAILQ_FOREACH(rle, rl, link) {
1189         if (rle->res != NULL) {
1190             device_printf(dev, "duplicate resource for %jx\n", rle->start);
1191             continue;
1192         }
1193
1194         /* Only memory and IO resources are valid here. */
1195         switch (rle->type) {
1196         case SYS_RES_IOPORT:
1197             rm = &acpi_rman_io;
1198             break;
1199         case SYS_RES_MEMORY:
1200             rm = &acpi_rman_mem;
1201             break;
1202         default:
1203             continue;
1204         }
1205
1206         /* Pre-allocate resource and add to our rman pool. */
1207         res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type,
1208             &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0);
1209         if (res != NULL) {
1210             rman_manage_region(rm, rman_get_start(res), rman_get_end(res));
1211             rle->res = res;
1212         } else if (bootverbose)
1213             device_printf(dev, "reservation of %jx, %jx (%d) failed\n",
1214                 rle->start, rle->count, rle->type);
1215     }
1216     return (0);
1217 }
1218
1219 /*
1220  * Reserve declared resources for devices found during attach once system
1221  * resources have been allocated.
1222  */
1223 static void
1224 acpi_reserve_resources(device_t dev)
1225 {
1226     struct resource_list_entry *rle;
1227     struct resource_list *rl;
1228     struct acpi_device *ad;
1229     struct acpi_softc *sc;
1230     device_t *children;
1231     int child_count, i;
1232
1233     sc = device_get_softc(dev);
1234     if (device_get_children(dev, &children, &child_count) != 0)
1235         return;
1236     for (i = 0; i < child_count; i++) {
1237         ad = device_get_ivars(children[i]);
1238         rl = &ad->ad_rl;
1239
1240         /* Don't reserve system resources. */
1241         if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0)
1242             continue;
1243
1244         STAILQ_FOREACH(rle, rl, link) {
1245             /*
1246              * Don't reserve IRQ resources.  There are many sticky things
1247              * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET
1248              * when using legacy routing).
1249              */
1250             if (rle->type == SYS_RES_IRQ)
1251                 continue;
1252
1253             /*
1254              * Don't reserve the resource if it is already allocated.
1255              * The acpi_ec(4) driver can allocate its resources early
1256              * if ECDT is present.
1257              */
1258             if (rle->res != NULL)
1259                 continue;
1260
1261             /*
1262              * Try to reserve the resource from our parent.  If this
1263              * fails because the resource is a system resource, just
1264              * let it be.  The resource range is already reserved so
1265              * that other devices will not use it.  If the driver
1266              * needs to allocate the resource, then
1267              * acpi_alloc_resource() will sub-alloc from the system
1268              * resource.
1269              */
1270             resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid,
1271                 rle->start, rle->end, rle->count, 0);
1272         }
1273     }
1274     free(children, M_TEMP);
1275     sc->acpi_resources_reserved = 1;
1276 }
1277
1278 static int
1279 acpi_set_resource(device_t dev, device_t child, int type, int rid,
1280     rman_res_t start, rman_res_t count)
1281 {
1282     struct acpi_softc *sc = device_get_softc(dev);
1283     struct acpi_device *ad = device_get_ivars(child);
1284     struct resource_list *rl = &ad->ad_rl;
1285     ACPI_DEVICE_INFO *devinfo;
1286     rman_res_t end;
1287     int allow;
1288
1289     /* Ignore IRQ resources for PCI link devices. */
1290     if (type == SYS_RES_IRQ &&
1291         ACPI_ID_PROBE(dev, child, pcilink_ids, NULL) <= 0)
1292         return (0);
1293
1294     /*
1295      * Ignore most resources for PCI root bridges.  Some BIOSes
1296      * incorrectly enumerate the memory ranges they decode as plain
1297      * memory resources instead of as ResourceProducer ranges.  Other
1298      * BIOSes incorrectly list system resource entries for I/O ranges
1299      * under the PCI bridge.  Do allow the one known-correct case on
1300      * x86 of a PCI bridge claiming the I/O ports used for PCI config
1301      * access.
1302      */
1303     if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) {
1304         if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) {
1305             if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) {
1306 #if defined(__i386__) || defined(__amd64__)
1307                 allow = (type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT);
1308 #else
1309                 allow = 0;
1310 #endif
1311                 if (!allow) {
1312                     AcpiOsFree(devinfo);
1313                     return (0);
1314                 }
1315             }
1316             AcpiOsFree(devinfo);
1317         }
1318     }
1319
1320 #ifdef INTRNG
1321     /* map with default for now */
1322     if (type == SYS_RES_IRQ)
1323         start = (rman_res_t)acpi_map_intr(child, (u_int)start,
1324                         acpi_get_handle(child));
1325 #endif
1326
1327     /* If the resource is already allocated, fail. */
1328     if (resource_list_busy(rl, type, rid))
1329         return (EBUSY);
1330
1331     /* If the resource is already reserved, release it. */
1332     if (resource_list_reserved(rl, type, rid))
1333         resource_list_unreserve(rl, dev, child, type, rid);
1334
1335     /* Add the resource. */
1336     end = (start + count - 1);
1337     resource_list_add(rl, type, rid, start, end, count);
1338
1339     /* Don't reserve resources until the system resources are allocated. */
1340     if (!sc->acpi_resources_reserved)
1341         return (0);
1342
1343     /* Don't reserve system resources. */
1344     if (ACPI_ID_PROBE(dev, child, sysres_ids, NULL) <= 0)
1345         return (0);
1346
1347     /*
1348      * Don't reserve IRQ resources.  There are many sticky things to
1349      * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when
1350      * using legacy routing).
1351      */
1352     if (type == SYS_RES_IRQ)
1353         return (0);
1354
1355     /*
1356      * Don't reserve resources for CPU devices.  Some of these
1357      * resources need to be allocated as shareable, but reservations
1358      * are always non-shareable.
1359      */
1360     if (device_get_devclass(child) == devclass_find("cpu"))
1361         return (0);
1362
1363     /*
1364      * Reserve the resource.
1365      *
1366      * XXX: Ignores failure for now.  Failure here is probably a
1367      * BIOS/firmware bug?
1368      */
1369     resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0);
1370     return (0);
1371 }
1372
1373 static struct resource *
1374 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid,
1375     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
1376 {
1377 #ifndef INTRNG
1378     ACPI_RESOURCE ares;
1379 #endif
1380     struct acpi_device *ad;
1381     struct resource_list_entry *rle;
1382     struct resource_list *rl;
1383     struct resource *res;
1384     int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
1385
1386     /*
1387      * First attempt at allocating the resource.  For direct children,
1388      * use resource_list_alloc() to handle reserved resources.  For
1389      * other devices, pass the request up to our parent.
1390      */
1391     if (bus == device_get_parent(child)) {
1392         ad = device_get_ivars(child);
1393         rl = &ad->ad_rl;
1394
1395         /*
1396          * Simulate the behavior of the ISA bus for direct children
1397          * devices.  That is, if a non-default range is specified for
1398          * a resource that doesn't exist, use bus_set_resource() to
1399          * add the resource before allocating it.  Note that these
1400          * resources will not be reserved.
1401          */
1402         if (!isdefault && resource_list_find(rl, type, *rid) == NULL)
1403                 resource_list_add(rl, type, *rid, start, end, count);
1404         res = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
1405             flags);
1406 #ifndef INTRNG
1407         if (res != NULL && type == SYS_RES_IRQ) {
1408             /*
1409              * Since bus_config_intr() takes immediate effect, we cannot
1410              * configure the interrupt associated with a device when we
1411              * parse the resources but have to defer it until a driver
1412              * actually allocates the interrupt via bus_alloc_resource().
1413              *
1414              * XXX: Should we handle the lookup failing?
1415              */
1416             if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares)))
1417                 acpi_config_intr(child, &ares);
1418         }
1419 #endif
1420
1421         /*
1422          * If this is an allocation of the "default" range for a given
1423          * RID, fetch the exact bounds for this resource from the
1424          * resource list entry to try to allocate the range from the
1425          * system resource regions.
1426          */
1427         if (res == NULL && isdefault) {
1428             rle = resource_list_find(rl, type, *rid);
1429             if (rle != NULL) {
1430                 start = rle->start;
1431                 end = rle->end;
1432                 count = rle->count;
1433             }
1434         }
1435     } else
1436         res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid,
1437             start, end, count, flags);
1438
1439     /*
1440      * If the first attempt failed and this is an allocation of a
1441      * specific range, try to satisfy the request via a suballocation
1442      * from our system resource regions.
1443      */
1444     if (res == NULL && start + count - 1 == end)
1445         res = acpi_alloc_sysres(child, type, rid, start, end, count, flags);
1446     return (res);
1447 }
1448
1449 /*
1450  * Attempt to allocate a specific resource range from the system
1451  * resource ranges.  Note that we only handle memory and I/O port
1452  * system resources.
1453  */
1454 struct resource *
1455 acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start,
1456     rman_res_t end, rman_res_t count, u_int flags)
1457 {
1458     struct rman *rm;
1459     struct resource *res;
1460
1461     switch (type) {
1462     case SYS_RES_IOPORT:
1463         rm = &acpi_rman_io;
1464         break;
1465     case SYS_RES_MEMORY:
1466         rm = &acpi_rman_mem;
1467         break;
1468     default:
1469         return (NULL);
1470     }
1471
1472     KASSERT(start + count - 1 == end, ("wildcard resource range"));
1473     res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
1474         child);
1475     if (res == NULL)
1476         return (NULL);
1477
1478     rman_set_rid(res, *rid);
1479
1480     /* If requested, activate the resource using the parent's method. */
1481     if (flags & RF_ACTIVE)
1482         if (bus_activate_resource(child, type, *rid, res) != 0) {
1483             rman_release_resource(res);
1484             return (NULL);
1485         }
1486
1487     return (res);
1488 }
1489
1490 static int
1491 acpi_is_resource_managed(int type, struct resource *r)
1492 {
1493
1494     /* We only handle memory and IO resources through rman. */
1495     switch (type) {
1496     case SYS_RES_IOPORT:
1497         return (rman_is_region_manager(r, &acpi_rman_io));
1498     case SYS_RES_MEMORY:
1499         return (rman_is_region_manager(r, &acpi_rman_mem));
1500     }
1501     return (0);
1502 }
1503
1504 static int
1505 acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r,
1506     rman_res_t start, rman_res_t end)
1507 {
1508
1509     if (acpi_is_resource_managed(type, r))
1510         return (rman_adjust_resource(r, start, end));
1511     return (bus_generic_adjust_resource(bus, child, type, r, start, end));
1512 }
1513
1514 static int
1515 acpi_release_resource(device_t bus, device_t child, int type, int rid,
1516     struct resource *r)
1517 {
1518     int ret;
1519
1520     /*
1521      * If this resource belongs to one of our internal managers,
1522      * deactivate it and release it to the local pool.
1523      */
1524     if (acpi_is_resource_managed(type, r)) {
1525         if (rman_get_flags(r) & RF_ACTIVE) {
1526             ret = bus_deactivate_resource(child, type, rid, r);
1527             if (ret != 0)
1528                 return (ret);
1529         }
1530         return (rman_release_resource(r));
1531     }
1532
1533     return (bus_generic_rl_release_resource(bus, child, type, rid, r));
1534 }
1535
1536 static void
1537 acpi_delete_resource(device_t bus, device_t child, int type, int rid)
1538 {
1539     struct resource_list *rl;
1540
1541     rl = acpi_get_rlist(bus, child);
1542     if (resource_list_busy(rl, type, rid)) {
1543         device_printf(bus, "delete_resource: Resource still owned by child"
1544             " (type=%d, rid=%d)\n", type, rid);
1545         return;
1546     }
1547     resource_list_unreserve(rl, bus, child, type, rid);
1548     resource_list_delete(rl, type, rid);
1549 }
1550
1551 /* Allocate an IO port or memory resource, given its GAS. */
1552 int
1553 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas,
1554     struct resource **res, u_int flags)
1555 {
1556     int error, res_type;
1557
1558     error = ENOMEM;
1559     if (type == NULL || rid == NULL || gas == NULL || res == NULL)
1560         return (EINVAL);
1561
1562     /* We only support memory and IO spaces. */
1563     switch (gas->SpaceId) {
1564     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1565         res_type = SYS_RES_MEMORY;
1566         break;
1567     case ACPI_ADR_SPACE_SYSTEM_IO:
1568         res_type = SYS_RES_IOPORT;
1569         break;
1570     default:
1571         return (EOPNOTSUPP);
1572     }
1573
1574     /*
1575      * If the register width is less than 8, assume the BIOS author means
1576      * it is a bit field and just allocate a byte.
1577      */
1578     if (gas->BitWidth && gas->BitWidth < 8)
1579         gas->BitWidth = 8;
1580
1581     /* Validate the address after we're sure we support the space. */
1582     if (gas->Address == 0 || gas->BitWidth == 0)
1583         return (EINVAL);
1584
1585     bus_set_resource(dev, res_type, *rid, gas->Address,
1586         gas->BitWidth / 8);
1587     *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags);
1588     if (*res != NULL) {
1589         *type = res_type;
1590         error = 0;
1591     } else
1592         bus_delete_resource(dev, res_type, *rid);
1593
1594     return (error);
1595 }
1596
1597 /* Probe _HID and _CID for compatible ISA PNP ids. */
1598 static uint32_t
1599 acpi_isa_get_logicalid(device_t dev)
1600 {
1601     ACPI_DEVICE_INFO    *devinfo;
1602     ACPI_HANDLE         h;
1603     uint32_t            pnpid;
1604
1605     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1606
1607     /* Fetch and validate the HID. */
1608     if ((h = acpi_get_handle(dev)) == NULL ||
1609         ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1610         return_VALUE (0);
1611
1612     pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 &&
1613         devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ?
1614         PNP_EISAID(devinfo->HardwareId.String) : 0;
1615     AcpiOsFree(devinfo);
1616
1617     return_VALUE (pnpid);
1618 }
1619
1620 static int
1621 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count)
1622 {
1623     ACPI_DEVICE_INFO    *devinfo;
1624     ACPI_PNP_DEVICE_ID  *ids;
1625     ACPI_HANDLE         h;
1626     uint32_t            *pnpid;
1627     int                 i, valid;
1628
1629     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1630
1631     pnpid = cids;
1632
1633     /* Fetch and validate the CID */
1634     if ((h = acpi_get_handle(dev)) == NULL ||
1635         ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1636         return_VALUE (0);
1637
1638     if ((devinfo->Valid & ACPI_VALID_CID) == 0) {
1639         AcpiOsFree(devinfo);
1640         return_VALUE (0);
1641     }
1642
1643     if (devinfo->CompatibleIdList.Count < count)
1644         count = devinfo->CompatibleIdList.Count;
1645     ids = devinfo->CompatibleIdList.Ids;
1646     for (i = 0, valid = 0; i < count; i++)
1647         if (ids[i].Length >= ACPI_EISAID_STRING_SIZE &&
1648             strncmp(ids[i].String, "PNP", 3) == 0) {
1649             *pnpid++ = PNP_EISAID(ids[i].String);
1650             valid++;
1651         }
1652     AcpiOsFree(devinfo);
1653
1654     return_VALUE (valid);
1655 }
1656
1657 static int
1658 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match) 
1659 {
1660     ACPI_HANDLE h;
1661     ACPI_OBJECT_TYPE t;
1662     int rv;
1663     int i;
1664
1665     h = acpi_get_handle(dev);
1666     if (ids == NULL || h == NULL)
1667         return (ENXIO);
1668     t = acpi_get_type(dev);
1669     if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR)
1670         return (ENXIO);
1671
1672     /* Try to match one of the array of IDs with a HID or CID. */
1673     for (i = 0; ids[i] != NULL; i++) {
1674         rv = acpi_MatchHid(h, ids[i]);
1675         if (rv == ACPI_MATCHHID_NOMATCH)
1676             continue;
1677         
1678         if (match != NULL) {
1679             *match = ids[i];
1680         }
1681         return ((rv == ACPI_MATCHHID_HID)?
1682                     BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY);
1683     }
1684     return (ENXIO);
1685 }
1686
1687 static ACPI_STATUS
1688 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname,
1689     ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret)
1690 {
1691     ACPI_HANDLE h;
1692
1693     if (dev == NULL)
1694         h = ACPI_ROOT_OBJECT;
1695     else if ((h = acpi_get_handle(dev)) == NULL)
1696         return (AE_BAD_PARAMETER);
1697     return (AcpiEvaluateObject(h, pathname, parameters, ret));
1698 }
1699
1700 int
1701 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate)
1702 {
1703     struct acpi_softc *sc;
1704     ACPI_HANDLE handle;
1705     ACPI_STATUS status;
1706     char sxd[8];
1707
1708     handle = acpi_get_handle(dev);
1709
1710     /*
1711      * XXX If we find these devices, don't try to power them down.
1712      * The serial and IRDA ports on my T23 hang the system when
1713      * set to D3 and it appears that such legacy devices may
1714      * need special handling in their drivers.
1715      */
1716     if (dstate == NULL || handle == NULL ||
1717         acpi_MatchHid(handle, "PNP0500") ||
1718         acpi_MatchHid(handle, "PNP0501") ||
1719         acpi_MatchHid(handle, "PNP0502") ||
1720         acpi_MatchHid(handle, "PNP0510") ||
1721         acpi_MatchHid(handle, "PNP0511"))
1722         return (ENXIO);
1723
1724     /*
1725      * Override next state with the value from _SxD, if present.
1726      * Note illegal _S0D is evaluated because some systems expect this.
1727      */
1728     sc = device_get_softc(bus);
1729     snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate);
1730     status = acpi_GetInteger(handle, sxd, dstate);
1731     if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
1732             device_printf(dev, "failed to get %s on %s: %s\n", sxd,
1733                 acpi_name(handle), AcpiFormatException(status));
1734             return (ENXIO);
1735     }
1736
1737     return (0);
1738 }
1739
1740 /* Callback arg for our implementation of walking the namespace. */
1741 struct acpi_device_scan_ctx {
1742     acpi_scan_cb_t      user_fn;
1743     void                *arg;
1744     ACPI_HANDLE         parent;
1745 };
1746
1747 static ACPI_STATUS
1748 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval)
1749 {
1750     struct acpi_device_scan_ctx *ctx;
1751     device_t dev, old_dev;
1752     ACPI_STATUS status;
1753     ACPI_OBJECT_TYPE type;
1754
1755     /*
1756      * Skip this device if we think we'll have trouble with it or it is
1757      * the parent where the scan began.
1758      */
1759     ctx = (struct acpi_device_scan_ctx *)arg;
1760     if (acpi_avoid(h) || h == ctx->parent)
1761         return (AE_OK);
1762
1763     /* If this is not a valid device type (e.g., a method), skip it. */
1764     if (ACPI_FAILURE(AcpiGetType(h, &type)))
1765         return (AE_OK);
1766     if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR &&
1767         type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER)
1768         return (AE_OK);
1769
1770     /*
1771      * Call the user function with the current device.  If it is unchanged
1772      * afterwards, return.  Otherwise, we update the handle to the new dev.
1773      */
1774     old_dev = acpi_get_device(h);
1775     dev = old_dev;
1776     status = ctx->user_fn(h, &dev, level, ctx->arg);
1777     if (ACPI_FAILURE(status) || old_dev == dev)
1778         return (status);
1779
1780     /* Remove the old child and its connection to the handle. */
1781     if (old_dev != NULL) {
1782         device_delete_child(device_get_parent(old_dev), old_dev);
1783         AcpiDetachData(h, acpi_fake_objhandler);
1784     }
1785
1786     /* Recreate the handle association if the user created a device. */
1787     if (dev != NULL)
1788         AcpiAttachData(h, acpi_fake_objhandler, dev);
1789
1790     return (AE_OK);
1791 }
1792
1793 static ACPI_STATUS
1794 acpi_device_scan_children(device_t bus, device_t dev, int max_depth,
1795     acpi_scan_cb_t user_fn, void *arg)
1796 {
1797     ACPI_HANDLE h;
1798     struct acpi_device_scan_ctx ctx;
1799
1800     if (acpi_disabled("children"))
1801         return (AE_OK);
1802
1803     if (dev == NULL)
1804         h = ACPI_ROOT_OBJECT;
1805     else if ((h = acpi_get_handle(dev)) == NULL)
1806         return (AE_BAD_PARAMETER);
1807     ctx.user_fn = user_fn;
1808     ctx.arg = arg;
1809     ctx.parent = h;
1810     return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth,
1811         acpi_device_scan_cb, NULL, &ctx, NULL));
1812 }
1813
1814 /*
1815  * Even though ACPI devices are not PCI, we use the PCI approach for setting
1816  * device power states since it's close enough to ACPI.
1817  */
1818 static int
1819 acpi_set_powerstate(device_t child, int state)
1820 {
1821     ACPI_HANDLE h;
1822     ACPI_STATUS status;
1823
1824     h = acpi_get_handle(child);
1825     if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX)
1826         return (EINVAL);
1827     if (h == NULL)
1828         return (0);
1829
1830     /* Ignore errors if the power methods aren't present. */
1831     status = acpi_pwr_switch_consumer(h, state);
1832     if (ACPI_SUCCESS(status)) {
1833         if (bootverbose)
1834             device_printf(child, "set ACPI power state D%d on %s\n",
1835                 state, acpi_name(h));
1836     } else if (status != AE_NOT_FOUND)
1837         device_printf(child,
1838             "failed to set ACPI power state D%d on %s: %s\n", state,
1839             acpi_name(h), AcpiFormatException(status));
1840
1841     return (0);
1842 }
1843
1844 static int
1845 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids)
1846 {
1847     int                 result, cid_count, i;
1848     uint32_t            lid, cids[8];
1849
1850     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1851
1852     /*
1853      * ISA-style drivers attached to ACPI may persist and
1854      * probe manually if we return ENOENT.  We never want
1855      * that to happen, so don't ever return it.
1856      */
1857     result = ENXIO;
1858
1859     /* Scan the supplied IDs for a match */
1860     lid = acpi_isa_get_logicalid(child);
1861     cid_count = acpi_isa_get_compatid(child, cids, 8);
1862     while (ids && ids->ip_id) {
1863         if (lid == ids->ip_id) {
1864             result = 0;
1865             goto out;
1866         }
1867         for (i = 0; i < cid_count; i++) {
1868             if (cids[i] == ids->ip_id) {
1869                 result = 0;
1870                 goto out;
1871             }
1872         }
1873         ids++;
1874     }
1875
1876  out:
1877     if (result == 0 && ids->ip_desc)
1878         device_set_desc(child, ids->ip_desc);
1879
1880     return_VALUE (result);
1881 }
1882
1883 /*
1884  * Look for a MCFG table.  If it is present, use the settings for
1885  * domain (segment) 0 to setup PCI config space access via the memory
1886  * map.
1887  *
1888  * On non-x86 architectures (arm64 for now), this will be done from the
1889  * PCI host bridge driver.
1890  */
1891 static void
1892 acpi_enable_pcie(void)
1893 {
1894 #if defined(__i386__) || defined(__amd64__)
1895         ACPI_TABLE_HEADER *hdr;
1896         ACPI_MCFG_ALLOCATION *alloc, *end;
1897         ACPI_STATUS status;
1898
1899         status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr);
1900         if (ACPI_FAILURE(status))
1901                 return;
1902
1903         end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length);
1904         alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1);
1905         while (alloc < end) {
1906                 if (alloc->PciSegment == 0) {
1907                         pcie_cfgregopen(alloc->Address, alloc->StartBusNumber,
1908                             alloc->EndBusNumber);
1909                         return;
1910                 }
1911                 alloc++;
1912         }
1913 #endif
1914 }
1915
1916 /*
1917  * Scan all of the ACPI namespace and attach child devices.
1918  *
1919  * We should only expect to find devices in the \_PR, \_TZ, \_SI, and
1920  * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec.
1921  * However, in violation of the spec, some systems place their PCI link
1922  * devices in \, so we have to walk the whole namespace.  We check the
1923  * type of namespace nodes, so this should be ok.
1924  */
1925 static void
1926 acpi_probe_children(device_t bus)
1927 {
1928
1929     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1930
1931     /*
1932      * Scan the namespace and insert placeholders for all the devices that
1933      * we find.  We also probe/attach any early devices.
1934      *
1935      * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because
1936      * we want to create nodes for all devices, not just those that are
1937      * currently present. (This assumes that we don't want to create/remove
1938      * devices as they appear, which might be smarter.)
1939      */
1940     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n"));
1941     AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child,
1942         NULL, bus, NULL);
1943
1944     /* Pre-allocate resources for our rman from any sysresource devices. */
1945     acpi_sysres_alloc(bus);
1946
1947     /* Reserve resources already allocated to children. */
1948     acpi_reserve_resources(bus);
1949
1950     /* Create any static children by calling device identify methods. */
1951     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n"));
1952     bus_generic_probe(bus);
1953
1954     /* Probe/attach all children, created statically and from the namespace. */
1955     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n"));
1956     bus_generic_attach(bus);
1957
1958     /* Attach wake sysctls. */
1959     acpi_wake_sysctl_walk(bus);
1960
1961     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n"));
1962     return_VOID;
1963 }
1964
1965 /*
1966  * Determine the probe order for a given device.
1967  */
1968 static void
1969 acpi_probe_order(ACPI_HANDLE handle, int *order)
1970 {
1971         ACPI_OBJECT_TYPE type;
1972
1973         /*
1974          * 0. CPUs
1975          * 1. I/O port and memory system resource holders
1976          * 2. Clocks and timers (to handle early accesses)
1977          * 3. Embedded controllers (to handle early accesses)
1978          * 4. PCI Link Devices
1979          */
1980         AcpiGetType(handle, &type);
1981         if (type == ACPI_TYPE_PROCESSOR)
1982                 *order = 0;
1983         else if (acpi_MatchHid(handle, "PNP0C01") ||
1984             acpi_MatchHid(handle, "PNP0C02"))
1985                 *order = 1;
1986         else if (acpi_MatchHid(handle, "PNP0100") ||
1987             acpi_MatchHid(handle, "PNP0103") ||
1988             acpi_MatchHid(handle, "PNP0B00"))
1989                 *order = 2;
1990         else if (acpi_MatchHid(handle, "PNP0C09"))
1991                 *order = 3;
1992         else if (acpi_MatchHid(handle, "PNP0C0F"))
1993                 *order = 4;
1994 }
1995
1996 /*
1997  * Evaluate a child device and determine whether we might attach a device to
1998  * it.
1999  */
2000 static ACPI_STATUS
2001 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
2002 {
2003     ACPI_DEVICE_INFO *devinfo;
2004     struct acpi_device  *ad;
2005     struct acpi_prw_data prw;
2006     ACPI_OBJECT_TYPE type;
2007     ACPI_HANDLE h;
2008     device_t bus, child;
2009     char *handle_str;
2010     int order;
2011
2012     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2013
2014     if (acpi_disabled("children"))
2015         return_ACPI_STATUS (AE_OK);
2016
2017     /* Skip this device if we think we'll have trouble with it. */
2018     if (acpi_avoid(handle))
2019         return_ACPI_STATUS (AE_OK);
2020
2021     bus = (device_t)context;
2022     if (ACPI_SUCCESS(AcpiGetType(handle, &type))) {
2023         handle_str = acpi_name(handle);
2024         switch (type) {
2025         case ACPI_TYPE_DEVICE:
2026             /*
2027              * Since we scan from \, be sure to skip system scope objects.
2028              * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around
2029              * BIOS bugs.  For example, \_SB_ is to allow \_SB_._INI to be run
2030              * during the initialization and \_TZ_ is to support Notify() on it.
2031              */
2032             if (strcmp(handle_str, "\\_SB_") == 0 ||
2033                 strcmp(handle_str, "\\_TZ_") == 0)
2034                 break;
2035             if (acpi_parse_prw(handle, &prw) == 0)
2036                 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit);
2037
2038             /*
2039              * Ignore devices that do not have a _HID or _CID.  They should
2040              * be discovered by other buses (e.g. the PCI bus driver).
2041              */
2042             if (!acpi_has_hid(handle))
2043                 break;
2044             /* FALLTHROUGH */
2045         case ACPI_TYPE_PROCESSOR:
2046         case ACPI_TYPE_THERMAL:
2047         case ACPI_TYPE_POWER:
2048             /* 
2049              * Create a placeholder device for this node.  Sort the
2050              * placeholder so that the probe/attach passes will run
2051              * breadth-first.  Orders less than ACPI_DEV_BASE_ORDER
2052              * are reserved for special objects (i.e., system
2053              * resources).
2054              */
2055             ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str));
2056             order = level * 10 + ACPI_DEV_BASE_ORDER;
2057             acpi_probe_order(handle, &order);
2058             child = BUS_ADD_CHILD(bus, order, NULL, -1);
2059             if (child == NULL)
2060                 break;
2061
2062             /* Associate the handle with the device_t and vice versa. */
2063             acpi_set_handle(child, handle);
2064             AcpiAttachData(handle, acpi_fake_objhandler, child);
2065
2066             /*
2067              * Check that the device is present.  If it's not present,
2068              * leave it disabled (so that we have a device_t attached to
2069              * the handle, but we don't probe it).
2070              *
2071              * XXX PCI link devices sometimes report "present" but not
2072              * "functional" (i.e. if disabled).  Go ahead and probe them
2073              * anyway since we may enable them later.
2074              */
2075             if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) {
2076                 /* Never disable PCI link devices. */
2077                 if (acpi_MatchHid(handle, "PNP0C0F"))
2078                     break;
2079                 /*
2080                  * Docking stations should remain enabled since the system
2081                  * may be undocked at boot.
2082                  */
2083                 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h)))
2084                     break;
2085
2086                 device_disable(child);
2087                 break;
2088             }
2089
2090             /*
2091              * Get the device's resource settings and attach them.
2092              * Note that if the device has _PRS but no _CRS, we need
2093              * to decide when it's appropriate to try to configure the
2094              * device.  Ignore the return value here; it's OK for the
2095              * device not to have any resources.
2096              */
2097             acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL);
2098
2099             ad = device_get_ivars(child);
2100             ad->ad_cls_class = 0xffffff;
2101             if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) {
2102                 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 &&
2103                     devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) {
2104                     ad->ad_cls_class = strtoul(devinfo->ClassCode.String,
2105                         NULL, 16);
2106                 }
2107                 AcpiOsFree(devinfo);
2108             }
2109             break;
2110         }
2111     }
2112
2113     return_ACPI_STATUS (AE_OK);
2114 }
2115
2116 /*
2117  * AcpiAttachData() requires an object handler but never uses it.  This is a
2118  * placeholder object handler so we can store a device_t in an ACPI_HANDLE.
2119  */
2120 void
2121 acpi_fake_objhandler(ACPI_HANDLE h, void *data)
2122 {
2123 }
2124
2125 static void
2126 acpi_shutdown_final(void *arg, int howto)
2127 {
2128     struct acpi_softc *sc = (struct acpi_softc *)arg;
2129     register_t intr;
2130     ACPI_STATUS status;
2131
2132     /*
2133      * XXX Shutdown code should only run on the BSP (cpuid 0).
2134      * Some chipsets do not power off the system correctly if called from
2135      * an AP.
2136      */
2137     if ((howto & RB_POWEROFF) != 0) {
2138         status = AcpiEnterSleepStatePrep(ACPI_STATE_S5);
2139         if (ACPI_FAILURE(status)) {
2140             device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
2141                 AcpiFormatException(status));
2142             return;
2143         }
2144         device_printf(sc->acpi_dev, "Powering system off\n");
2145         intr = intr_disable();
2146         status = AcpiEnterSleepState(ACPI_STATE_S5);
2147         if (ACPI_FAILURE(status)) {
2148             intr_restore(intr);
2149             device_printf(sc->acpi_dev, "power-off failed - %s\n",
2150                 AcpiFormatException(status));
2151         } else {
2152             DELAY(1000000);
2153             intr_restore(intr);
2154             device_printf(sc->acpi_dev, "power-off failed - timeout\n");
2155         }
2156     } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) {
2157         /* Reboot using the reset register. */
2158         status = AcpiReset();
2159         if (ACPI_SUCCESS(status)) {
2160             DELAY(1000000);
2161             device_printf(sc->acpi_dev, "reset failed - timeout\n");
2162         } else if (status != AE_NOT_EXIST)
2163             device_printf(sc->acpi_dev, "reset failed - %s\n",
2164                 AcpiFormatException(status));
2165     } else if (sc->acpi_do_disable && panicstr == NULL) {
2166         /*
2167          * Only disable ACPI if the user requested.  On some systems, writing
2168          * the disable value to SMI_CMD hangs the system.
2169          */
2170         device_printf(sc->acpi_dev, "Shutting down\n");
2171         AcpiTerminate();
2172     }
2173 }
2174
2175 static void
2176 acpi_enable_fixed_events(struct acpi_softc *sc)
2177 {
2178     static int  first_time = 1;
2179
2180     /* Enable and clear fixed events and install handlers. */
2181     if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) {
2182         AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
2183         AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON,
2184                                      acpi_event_power_button_sleep, sc);
2185         if (first_time)
2186             device_printf(sc->acpi_dev, "Power Button (fixed)\n");
2187     }
2188     if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) {
2189         AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON);
2190         AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON,
2191                                      acpi_event_sleep_button_sleep, sc);
2192         if (first_time)
2193             device_printf(sc->acpi_dev, "Sleep Button (fixed)\n");
2194     }
2195
2196     first_time = 0;
2197 }
2198
2199 /*
2200  * Returns true if the device is actually present and should
2201  * be attached to.  This requires the present, enabled, UI-visible 
2202  * and diagnostics-passed bits to be set.
2203  */
2204 BOOLEAN
2205 acpi_DeviceIsPresent(device_t dev)
2206 {
2207         ACPI_HANDLE h;
2208         UINT32 s;
2209         ACPI_STATUS status;
2210
2211         h = acpi_get_handle(dev);
2212         if (h == NULL)
2213                 return (FALSE);
2214         /*
2215          * Certain Treadripper boards always returns 0 for FreeBSD because it
2216          * only returns non-zero for the OS string "Windows 2015". Otherwise it
2217          * will return zero. Force them to always be treated as present.
2218          * Beata versions were worse: they always returned 0.
2219          */
2220         if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010"))
2221                 return (TRUE);
2222
2223         status = acpi_GetInteger(h, "_STA", &s);
2224
2225         /*
2226          * If no _STA method or if it failed, then assume that
2227          * the device is present.
2228          */
2229         if (ACPI_FAILURE(status))
2230                 return (TRUE);
2231
2232         return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE);
2233 }
2234
2235 /*
2236  * Returns true if the battery is actually present and inserted.
2237  */
2238 BOOLEAN
2239 acpi_BatteryIsPresent(device_t dev)
2240 {
2241         ACPI_HANDLE h;
2242         UINT32 s;
2243         ACPI_STATUS status;
2244
2245         h = acpi_get_handle(dev);
2246         if (h == NULL)
2247                 return (FALSE);
2248         status = acpi_GetInteger(h, "_STA", &s);
2249
2250         /*
2251          * If no _STA method or if it failed, then assume that
2252          * the device is present.
2253          */
2254         if (ACPI_FAILURE(status))
2255                 return (TRUE);
2256
2257         return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE);
2258 }
2259
2260 /*
2261  * Returns true if a device has at least one valid device ID.
2262  */
2263 static BOOLEAN
2264 acpi_has_hid(ACPI_HANDLE h)
2265 {
2266     ACPI_DEVICE_INFO    *devinfo;
2267     BOOLEAN             ret;
2268
2269     if (h == NULL ||
2270         ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
2271         return (FALSE);
2272
2273     ret = FALSE;
2274     if ((devinfo->Valid & ACPI_VALID_HID) != 0)
2275         ret = TRUE;
2276     else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
2277         if (devinfo->CompatibleIdList.Count > 0)
2278             ret = TRUE;
2279
2280     AcpiOsFree(devinfo);
2281     return (ret);
2282 }
2283
2284 /*
2285  * Match a HID string against a handle
2286  * returns ACPI_MATCHHID_HID if _HID match
2287  *         ACPI_MATCHHID_CID if _CID match and not _HID match.
2288  *         ACPI_MATCHHID_NOMATCH=0 if no match.
2289  */
2290 int
2291 acpi_MatchHid(ACPI_HANDLE h, const char *hid) 
2292 {
2293     ACPI_DEVICE_INFO    *devinfo;
2294     BOOLEAN             ret;
2295     int                 i;
2296
2297     if (hid == NULL || h == NULL ||
2298         ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
2299         return (ACPI_MATCHHID_NOMATCH);
2300
2301     ret = ACPI_MATCHHID_NOMATCH;
2302     if ((devinfo->Valid & ACPI_VALID_HID) != 0 &&
2303         strcmp(hid, devinfo->HardwareId.String) == 0)
2304             ret = ACPI_MATCHHID_HID;
2305     else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
2306         for (i = 0; i < devinfo->CompatibleIdList.Count; i++) {
2307             if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) {
2308                 ret = ACPI_MATCHHID_CID;
2309                 break;
2310             }
2311         }
2312
2313     AcpiOsFree(devinfo);
2314     return (ret);
2315 }
2316
2317 /*
2318  * Return the handle of a named object within our scope, ie. that of (parent)
2319  * or one if its parents.
2320  */
2321 ACPI_STATUS
2322 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result)
2323 {
2324     ACPI_HANDLE         r;
2325     ACPI_STATUS         status;
2326
2327     /* Walk back up the tree to the root */
2328     for (;;) {
2329         status = AcpiGetHandle(parent, path, &r);
2330         if (ACPI_SUCCESS(status)) {
2331             *result = r;
2332             return (AE_OK);
2333         }
2334         /* XXX Return error here? */
2335         if (status != AE_NOT_FOUND)
2336             return (AE_OK);
2337         if (ACPI_FAILURE(AcpiGetParent(parent, &r)))
2338             return (AE_NOT_FOUND);
2339         parent = r;
2340     }
2341 }
2342
2343 /*
2344  * Allocate a buffer with a preset data size.
2345  */
2346 ACPI_BUFFER *
2347 acpi_AllocBuffer(int size)
2348 {
2349     ACPI_BUFFER *buf;
2350
2351     if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL)
2352         return (NULL);
2353     buf->Length = size;
2354     buf->Pointer = (void *)(buf + 1);
2355     return (buf);
2356 }
2357
2358 ACPI_STATUS
2359 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number)
2360 {
2361     ACPI_OBJECT arg1;
2362     ACPI_OBJECT_LIST args;
2363
2364     arg1.Type = ACPI_TYPE_INTEGER;
2365     arg1.Integer.Value = number;
2366     args.Count = 1;
2367     args.Pointer = &arg1;
2368
2369     return (AcpiEvaluateObject(handle, path, &args, NULL));
2370 }
2371
2372 /*
2373  * Evaluate a path that should return an integer.
2374  */
2375 ACPI_STATUS
2376 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number)
2377 {
2378     ACPI_STATUS status;
2379     ACPI_BUFFER buf;
2380     ACPI_OBJECT param;
2381
2382     if (handle == NULL)
2383         handle = ACPI_ROOT_OBJECT;
2384
2385     /*
2386      * Assume that what we've been pointed at is an Integer object, or
2387      * a method that will return an Integer.
2388      */
2389     buf.Pointer = &param;
2390     buf.Length = sizeof(param);
2391     status = AcpiEvaluateObject(handle, path, NULL, &buf);
2392     if (ACPI_SUCCESS(status)) {
2393         if (param.Type == ACPI_TYPE_INTEGER)
2394             *number = param.Integer.Value;
2395         else
2396             status = AE_TYPE;
2397     }
2398
2399     /* 
2400      * In some applications, a method that's expected to return an Integer
2401      * may instead return a Buffer (probably to simplify some internal
2402      * arithmetic).  We'll try to fetch whatever it is, and if it's a Buffer,
2403      * convert it into an Integer as best we can.
2404      *
2405      * This is a hack.
2406      */
2407     if (status == AE_BUFFER_OVERFLOW) {
2408         if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) {
2409             status = AE_NO_MEMORY;
2410         } else {
2411             status = AcpiEvaluateObject(handle, path, NULL, &buf);
2412             if (ACPI_SUCCESS(status))
2413                 status = acpi_ConvertBufferToInteger(&buf, number);
2414             AcpiOsFree(buf.Pointer);
2415         }
2416     }
2417     return (status);
2418 }
2419
2420 ACPI_STATUS
2421 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number)
2422 {
2423     ACPI_OBJECT *p;
2424     UINT8       *val;
2425     int         i;
2426
2427     p = (ACPI_OBJECT *)bufp->Pointer;
2428     if (p->Type == ACPI_TYPE_INTEGER) {
2429         *number = p->Integer.Value;
2430         return (AE_OK);
2431     }
2432     if (p->Type != ACPI_TYPE_BUFFER)
2433         return (AE_TYPE);
2434     if (p->Buffer.Length > sizeof(int))
2435         return (AE_BAD_DATA);
2436
2437     *number = 0;
2438     val = p->Buffer.Pointer;
2439     for (i = 0; i < p->Buffer.Length; i++)
2440         *number += val[i] << (i * 8);
2441     return (AE_OK);
2442 }
2443
2444 /*
2445  * Iterate over the elements of an a package object, calling the supplied
2446  * function for each element.
2447  *
2448  * XXX possible enhancement might be to abort traversal on error.
2449  */
2450 ACPI_STATUS
2451 acpi_ForeachPackageObject(ACPI_OBJECT *pkg,
2452         void (*func)(ACPI_OBJECT *comp, void *arg), void *arg)
2453 {
2454     ACPI_OBJECT *comp;
2455     int         i;
2456
2457     if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE)
2458         return (AE_BAD_PARAMETER);
2459
2460     /* Iterate over components */
2461     i = 0;
2462     comp = pkg->Package.Elements;
2463     for (; i < pkg->Package.Count; i++, comp++)
2464         func(comp, arg);
2465
2466     return (AE_OK);
2467 }
2468
2469 /*
2470  * Find the (index)th resource object in a set.
2471  */
2472 ACPI_STATUS
2473 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp)
2474 {
2475     ACPI_RESOURCE       *rp;
2476     int                 i;
2477
2478     rp = (ACPI_RESOURCE *)buf->Pointer;
2479     i = index;
2480     while (i-- > 0) {
2481         /* Range check */
2482         if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
2483             return (AE_BAD_PARAMETER);
2484
2485         /* Check for terminator */
2486         if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
2487             return (AE_NOT_FOUND);
2488         rp = ACPI_NEXT_RESOURCE(rp);
2489     }
2490     if (resp != NULL)
2491         *resp = rp;
2492
2493     return (AE_OK);
2494 }
2495
2496 /*
2497  * Append an ACPI_RESOURCE to an ACPI_BUFFER.
2498  *
2499  * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER
2500  * provided to contain it.  If the ACPI_BUFFER is empty, allocate a sensible
2501  * backing block.  If the ACPI_RESOURCE is NULL, return an empty set of
2502  * resources.
2503  */
2504 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE       512
2505
2506 ACPI_STATUS
2507 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res)
2508 {
2509     ACPI_RESOURCE       *rp;
2510     void                *newp;
2511
2512     /* Initialise the buffer if necessary. */
2513     if (buf->Pointer == NULL) {
2514         buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE;
2515         if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL)
2516             return (AE_NO_MEMORY);
2517         rp = (ACPI_RESOURCE *)buf->Pointer;
2518         rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
2519         rp->Length = ACPI_RS_SIZE_MIN;
2520     }
2521     if (res == NULL)
2522         return (AE_OK);
2523
2524     /*
2525      * Scan the current buffer looking for the terminator.
2526      * This will either find the terminator or hit the end
2527      * of the buffer and return an error.
2528      */
2529     rp = (ACPI_RESOURCE *)buf->Pointer;
2530     for (;;) {
2531         /* Range check, don't go outside the buffer */
2532         if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
2533             return (AE_BAD_PARAMETER);
2534         if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
2535             break;
2536         rp = ACPI_NEXT_RESOURCE(rp);
2537     }
2538
2539     /*
2540      * Check the size of the buffer and expand if required.
2541      *
2542      * Required size is:
2543      *  size of existing resources before terminator + 
2544      *  size of new resource and header +
2545      *  size of terminator.
2546      *
2547      * Note that this loop should really only run once, unless
2548      * for some reason we are stuffing a *really* huge resource.
2549      */
2550     while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + 
2551             res->Length + ACPI_RS_SIZE_NO_DATA +
2552             ACPI_RS_SIZE_MIN) >= buf->Length) {
2553         if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL)
2554             return (AE_NO_MEMORY);
2555         bcopy(buf->Pointer, newp, buf->Length);
2556         rp = (ACPI_RESOURCE *)((u_int8_t *)newp +
2557                                ((u_int8_t *)rp - (u_int8_t *)buf->Pointer));
2558         AcpiOsFree(buf->Pointer);
2559         buf->Pointer = newp;
2560         buf->Length += buf->Length;
2561     }
2562
2563     /* Insert the new resource. */
2564     bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA);
2565
2566     /* And add the terminator. */
2567     rp = ACPI_NEXT_RESOURCE(rp);
2568     rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
2569     rp->Length = ACPI_RS_SIZE_MIN;
2570
2571     return (AE_OK);
2572 }
2573
2574 UINT8
2575 acpi_DSMQuery(ACPI_HANDLE h, uint8_t *uuid, int revision)
2576 {
2577     /*
2578      * ACPI spec 9.1.1 defines this.
2579      *
2580      * "Arg2: Function Index Represents a specific function whose meaning is
2581      * specific to the UUID and Revision ID. Function indices should start
2582      * with 1. Function number zero is a query function (see the special
2583      * return code defined below)."
2584      */
2585     ACPI_BUFFER buf;
2586     ACPI_OBJECT *obj;
2587     UINT8 ret = 0;
2588
2589     if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) {
2590         ACPI_INFO(("Failed to enumerate DSM functions\n"));
2591         return (0);
2592     }
2593
2594     obj = (ACPI_OBJECT *)buf.Pointer;
2595     KASSERT(obj, ("Object not allowed to be NULL\n"));
2596
2597     /*
2598      * From ACPI 6.2 spec 9.1.1:
2599      * If Function Index = 0, a Buffer containing a function index bitfield.
2600      * Otherwise, the return value and type depends on the UUID and revision
2601      * ID (see below).
2602      */
2603     switch (obj->Type) {
2604     case ACPI_TYPE_BUFFER:
2605         ret = *(uint8_t *)obj->Buffer.Pointer;
2606         break;
2607     case ACPI_TYPE_INTEGER:
2608         ACPI_BIOS_WARNING((AE_INFO,
2609             "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n"));
2610         ret = obj->Integer.Value & 0xFF;
2611         break;
2612     default:
2613         ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type));
2614     };
2615
2616     AcpiOsFree(obj);
2617     return ret;
2618 }
2619
2620 /*
2621  * DSM may return multiple types depending on the function. It is therefore
2622  * unsafe to use the typed evaluation. It is highly recommended that the caller
2623  * check the type of the returned object.
2624  */
2625 ACPI_STATUS
2626 acpi_EvaluateDSM(ACPI_HANDLE handle, uint8_t *uuid, int revision,
2627     uint64_t function, union acpi_object *package, ACPI_BUFFER *out_buf)
2628 {
2629     ACPI_OBJECT arg[4];
2630     ACPI_OBJECT_LIST arglist;
2631     ACPI_BUFFER buf;
2632     ACPI_STATUS status;
2633
2634     if (out_buf == NULL)
2635         return (AE_NO_MEMORY);
2636
2637     arg[0].Type = ACPI_TYPE_BUFFER;
2638     arg[0].Buffer.Length = ACPI_UUID_LENGTH;
2639     arg[0].Buffer.Pointer = uuid;
2640     arg[1].Type = ACPI_TYPE_INTEGER;
2641     arg[1].Integer.Value = revision;
2642     arg[2].Type = ACPI_TYPE_INTEGER;
2643     arg[2].Integer.Value = function;
2644     if (package) {
2645         arg[3] = *package;
2646     } else {
2647         arg[3].Type = ACPI_TYPE_PACKAGE;
2648         arg[3].Package.Count = 0;
2649         arg[3].Package.Elements = NULL;
2650     }
2651
2652     arglist.Pointer = arg;
2653     arglist.Count = 4;
2654     buf.Pointer = NULL;
2655     buf.Length = ACPI_ALLOCATE_BUFFER;
2656     status = AcpiEvaluateObject(handle, "_DSM", &arglist, &buf);
2657     if (ACPI_FAILURE(status))
2658         return (status);
2659
2660     KASSERT(ACPI_SUCCESS(status), ("Unexpected status"));
2661
2662     *out_buf = buf;
2663     return (status);
2664 }
2665
2666 ACPI_STATUS
2667 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count,
2668     uint32_t *caps_in, uint32_t *caps_out, bool query)
2669 {
2670         ACPI_OBJECT arg[4], *ret;
2671         ACPI_OBJECT_LIST arglist;
2672         ACPI_BUFFER buf;
2673         ACPI_STATUS status;
2674
2675         arglist.Pointer = arg;
2676         arglist.Count = 4;
2677         arg[0].Type = ACPI_TYPE_BUFFER;
2678         arg[0].Buffer.Length = ACPI_UUID_LENGTH;
2679         arg[0].Buffer.Pointer = uuid;
2680         arg[1].Type = ACPI_TYPE_INTEGER;
2681         arg[1].Integer.Value = revision;
2682         arg[2].Type = ACPI_TYPE_INTEGER;
2683         arg[2].Integer.Value = count;
2684         arg[3].Type = ACPI_TYPE_BUFFER;
2685         arg[3].Buffer.Length = count * sizeof(*caps_in);
2686         arg[3].Buffer.Pointer = (uint8_t *)caps_in;
2687         caps_in[0] = query ? 1 : 0;
2688         buf.Pointer = NULL;
2689         buf.Length = ACPI_ALLOCATE_BUFFER;
2690         status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf,
2691             ACPI_TYPE_BUFFER);
2692         if (ACPI_FAILURE(status))
2693                 return (status);
2694         if (caps_out != NULL) {
2695                 ret = buf.Pointer;
2696                 if (ret->Buffer.Length != count * sizeof(*caps_out)) {
2697                         AcpiOsFree(buf.Pointer);
2698                         return (AE_BUFFER_OVERFLOW);
2699                 }
2700                 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length);
2701         }
2702         AcpiOsFree(buf.Pointer);
2703         return (status);
2704 }
2705
2706 /*
2707  * Set interrupt model.
2708  */
2709 ACPI_STATUS
2710 acpi_SetIntrModel(int model)
2711 {
2712
2713     return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model));
2714 }
2715
2716 /*
2717  * Walk subtables of a table and call a callback routine for each
2718  * subtable.  The caller should provide the first subtable and a
2719  * pointer to the end of the table.  This can be used to walk tables
2720  * such as MADT and SRAT that use subtable entries.
2721  */
2722 void
2723 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler,
2724     void *arg)
2725 {
2726     ACPI_SUBTABLE_HEADER *entry;
2727
2728     for (entry = first; (void *)entry < end; ) {
2729         /* Avoid an infinite loop if we hit a bogus entry. */
2730         if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER))
2731             return;
2732
2733         handler(entry, arg);
2734         entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length);
2735     }
2736 }
2737
2738 /*
2739  * DEPRECATED.  This interface has serious deficiencies and will be
2740  * removed.
2741  *
2742  * Immediately enter the sleep state.  In the old model, acpiconf(8) ran
2743  * rc.suspend and rc.resume so we don't have to notify devd(8) to do this.
2744  */
2745 ACPI_STATUS
2746 acpi_SetSleepState(struct acpi_softc *sc, int state)
2747 {
2748     static int once;
2749
2750     if (!once) {
2751         device_printf(sc->acpi_dev,
2752 "warning: acpi_SetSleepState() deprecated, need to update your software\n");
2753         once = 1;
2754     }
2755     return (acpi_EnterSleepState(sc, state));
2756 }
2757
2758 #if defined(__amd64__) || defined(__i386__)
2759 static void
2760 acpi_sleep_force_task(void *context)
2761 {
2762     struct acpi_softc *sc = (struct acpi_softc *)context;
2763
2764     if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
2765         device_printf(sc->acpi_dev, "force sleep state S%d failed\n",
2766             sc->acpi_next_sstate);
2767 }
2768
2769 static void
2770 acpi_sleep_force(void *arg)
2771 {
2772     struct acpi_softc *sc = (struct acpi_softc *)arg;
2773
2774     device_printf(sc->acpi_dev,
2775         "suspend request timed out, forcing sleep now\n");
2776     /*
2777      * XXX Suspending from callout causes freezes in DEVICE_SUSPEND().
2778      * Suspend from acpi_task thread instead.
2779      */
2780     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
2781         acpi_sleep_force_task, sc)))
2782         device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n");
2783 }
2784 #endif
2785
2786 /*
2787  * Request that the system enter the given suspend state.  All /dev/apm
2788  * devices and devd(8) will be notified.  Userland then has a chance to
2789  * save state and acknowledge the request.  The system sleeps once all
2790  * acks are in.
2791  */
2792 int
2793 acpi_ReqSleepState(struct acpi_softc *sc, int state)
2794 {
2795 #if defined(__amd64__) || defined(__i386__)
2796     struct apm_clone_data *clone;
2797     ACPI_STATUS status;
2798
2799     if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX)
2800         return (EINVAL);
2801     if (!acpi_sleep_states[state])
2802         return (EOPNOTSUPP);
2803
2804     /*
2805      * If a reboot/shutdown/suspend request is already in progress or
2806      * suspend is blocked due to an upcoming shutdown, just return.
2807      */
2808     if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) {
2809         return (0);
2810     }
2811
2812     /* Wait until sleep is enabled. */
2813     while (sc->acpi_sleep_disabled) {
2814         AcpiOsSleep(1000);
2815     }
2816
2817     ACPI_LOCK(acpi);
2818
2819     sc->acpi_next_sstate = state;
2820
2821     /* S5 (soft-off) should be entered directly with no waiting. */
2822     if (state == ACPI_STATE_S5) {
2823         ACPI_UNLOCK(acpi);
2824         status = acpi_EnterSleepState(sc, state);
2825         return (ACPI_SUCCESS(status) ? 0 : ENXIO);
2826     }
2827
2828     /* Record the pending state and notify all apm devices. */
2829     STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
2830         clone->notify_status = APM_EV_NONE;
2831         if ((clone->flags & ACPI_EVF_DEVD) == 0) {
2832             selwakeuppri(&clone->sel_read, PZERO);
2833             KNOTE_LOCKED(&clone->sel_read.si_note, 0);
2834         }
2835     }
2836
2837     /* If devd(8) is not running, immediately enter the sleep state. */
2838     if (!devctl_process_running()) {
2839         ACPI_UNLOCK(acpi);
2840         status = acpi_EnterSleepState(sc, state);
2841         return (ACPI_SUCCESS(status) ? 0 : ENXIO);
2842     }
2843
2844     /*
2845      * Set a timeout to fire if userland doesn't ack the suspend request
2846      * in time.  This way we still eventually go to sleep if we were
2847      * overheating or running low on battery, even if userland is hung.
2848      * We cancel this timeout once all userland acks are in or the
2849      * suspend request is aborted.
2850      */
2851     callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc);
2852     ACPI_UNLOCK(acpi);
2853
2854     /* Now notify devd(8) also. */
2855     acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state);
2856
2857     return (0);
2858 #else
2859     /* This platform does not support acpi suspend/resume. */
2860     return (EOPNOTSUPP);
2861 #endif
2862 }
2863
2864 /*
2865  * Acknowledge (or reject) a pending sleep state.  The caller has
2866  * prepared for suspend and is now ready for it to proceed.  If the
2867  * error argument is non-zero, it indicates suspend should be cancelled
2868  * and gives an errno value describing why.  Once all votes are in,
2869  * we suspend the system.
2870  */
2871 int
2872 acpi_AckSleepState(struct apm_clone_data *clone, int error)
2873 {
2874 #if defined(__amd64__) || defined(__i386__)
2875     struct acpi_softc *sc;
2876     int ret, sleeping;
2877
2878     /* If no pending sleep state, return an error. */
2879     ACPI_LOCK(acpi);
2880     sc = clone->acpi_sc;
2881     if (sc->acpi_next_sstate == 0) {
2882         ACPI_UNLOCK(acpi);
2883         return (ENXIO);
2884     }
2885
2886     /* Caller wants to abort suspend process. */
2887     if (error) {
2888         sc->acpi_next_sstate = 0;
2889         callout_stop(&sc->susp_force_to);
2890         device_printf(sc->acpi_dev,
2891             "listener on %s cancelled the pending suspend\n",
2892             devtoname(clone->cdev));
2893         ACPI_UNLOCK(acpi);
2894         return (0);
2895     }
2896
2897     /*
2898      * Mark this device as acking the suspend request.  Then, walk through
2899      * all devices, seeing if they agree yet.  We only count devices that
2900      * are writable since read-only devices couldn't ack the request.
2901      */
2902     sleeping = TRUE;
2903     clone->notify_status = APM_EV_ACKED;
2904     STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
2905         if ((clone->flags & ACPI_EVF_WRITE) != 0 &&
2906             clone->notify_status != APM_EV_ACKED) {
2907             sleeping = FALSE;
2908             break;
2909         }
2910     }
2911
2912     /* If all devices have voted "yes", we will suspend now. */
2913     if (sleeping)
2914         callout_stop(&sc->susp_force_to);
2915     ACPI_UNLOCK(acpi);
2916     ret = 0;
2917     if (sleeping) {
2918         if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
2919                 ret = ENODEV;
2920     }
2921     return (ret);
2922 #else
2923     /* This platform does not support acpi suspend/resume. */
2924     return (EOPNOTSUPP);
2925 #endif
2926 }
2927
2928 static void
2929 acpi_sleep_enable(void *arg)
2930 {
2931     struct acpi_softc   *sc = (struct acpi_softc *)arg;
2932
2933     ACPI_LOCK_ASSERT(acpi);
2934
2935     /* Reschedule if the system is not fully up and running. */
2936     if (!AcpiGbl_SystemAwakeAndRunning) {
2937         callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
2938         return;
2939     }
2940
2941     sc->acpi_sleep_disabled = FALSE;
2942 }
2943
2944 static ACPI_STATUS
2945 acpi_sleep_disable(struct acpi_softc *sc)
2946 {
2947     ACPI_STATUS         status;
2948
2949     /* Fail if the system is not fully up and running. */
2950     if (!AcpiGbl_SystemAwakeAndRunning)
2951         return (AE_ERROR);
2952
2953     ACPI_LOCK(acpi);
2954     status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK;
2955     sc->acpi_sleep_disabled = TRUE;
2956     ACPI_UNLOCK(acpi);
2957
2958     return (status);
2959 }
2960
2961 enum acpi_sleep_state {
2962     ACPI_SS_NONE,
2963     ACPI_SS_GPE_SET,
2964     ACPI_SS_DEV_SUSPEND,
2965     ACPI_SS_SLP_PREP,
2966     ACPI_SS_SLEPT,
2967 };
2968
2969 /*
2970  * Enter the desired system sleep state.
2971  *
2972  * Currently we support S1-S5 but S4 is only S4BIOS
2973  */
2974 static ACPI_STATUS
2975 acpi_EnterSleepState(struct acpi_softc *sc, int state)
2976 {
2977     register_t intr;
2978     ACPI_STATUS status;
2979     ACPI_EVENT_STATUS power_button_status;
2980     enum acpi_sleep_state slp_state;
2981     int sleep_result;
2982
2983     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
2984
2985     if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX)
2986         return_ACPI_STATUS (AE_BAD_PARAMETER);
2987     if (!acpi_sleep_states[state]) {
2988         device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n",
2989             state);
2990         return (AE_SUPPORT);
2991     }
2992
2993     /* Re-entry once we're suspending is not allowed. */
2994     status = acpi_sleep_disable(sc);
2995     if (ACPI_FAILURE(status)) {
2996         device_printf(sc->acpi_dev,
2997             "suspend request ignored (not ready yet)\n");
2998         return (status);
2999     }
3000
3001     if (state == ACPI_STATE_S5) {
3002         /*
3003          * Shut down cleanly and power off.  This will call us back through the
3004          * shutdown handlers.
3005          */
3006         shutdown_nice(RB_POWEROFF);
3007         return_ACPI_STATUS (AE_OK);
3008     }
3009
3010     EVENTHANDLER_INVOKE(power_suspend_early);
3011     stop_all_proc();
3012     EVENTHANDLER_INVOKE(power_suspend);
3013
3014 #ifdef EARLY_AP_STARTUP
3015     MPASS(mp_ncpus == 1 || smp_started);
3016     thread_lock(curthread);
3017     sched_bind(curthread, 0);
3018     thread_unlock(curthread);
3019 #else
3020     if (smp_started) {
3021         thread_lock(curthread);
3022         sched_bind(curthread, 0);
3023         thread_unlock(curthread);
3024     }
3025 #endif
3026
3027     /*
3028      * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE
3029      * drivers need this.
3030      */
3031     mtx_lock(&Giant);
3032
3033     slp_state = ACPI_SS_NONE;
3034
3035     sc->acpi_sstate = state;
3036
3037     /* Enable any GPEs as appropriate and requested by the user. */
3038     acpi_wake_prep_walk(state);
3039     slp_state = ACPI_SS_GPE_SET;
3040
3041     /*
3042      * Inform all devices that we are going to sleep.  If at least one
3043      * device fails, DEVICE_SUSPEND() automatically resumes the tree.
3044      *
3045      * XXX Note that a better two-pass approach with a 'veto' pass
3046      * followed by a "real thing" pass would be better, but the current
3047      * bus interface does not provide for this.
3048      */
3049     if (DEVICE_SUSPEND(root_bus) != 0) {
3050         device_printf(sc->acpi_dev, "device_suspend failed\n");
3051         goto backout;
3052     }
3053     slp_state = ACPI_SS_DEV_SUSPEND;
3054
3055     status = AcpiEnterSleepStatePrep(state);
3056     if (ACPI_FAILURE(status)) {
3057         device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
3058                       AcpiFormatException(status));
3059         goto backout;
3060     }
3061     slp_state = ACPI_SS_SLP_PREP;
3062
3063     if (sc->acpi_sleep_delay > 0)
3064         DELAY(sc->acpi_sleep_delay * 1000000);
3065
3066     suspendclock();
3067     intr = intr_disable();
3068     if (state != ACPI_STATE_S1) {
3069         sleep_result = acpi_sleep_machdep(sc, state);
3070         acpi_wakeup_machdep(sc, state, sleep_result, 0);
3071
3072         /*
3073          * XXX According to ACPI specification SCI_EN bit should be restored
3074          * by ACPI platform (BIOS, firmware) to its pre-sleep state.
3075          * Unfortunately some BIOSes fail to do that and that leads to
3076          * unexpected and serious consequences during wake up like a system
3077          * getting stuck in SMI handlers.
3078          * This hack is picked up from Linux, which claims that it follows
3079          * Windows behavior.
3080          */
3081         if (sleep_result == 1 && state != ACPI_STATE_S4)
3082             AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT);
3083
3084         if (sleep_result == 1 && state == ACPI_STATE_S3) {
3085             /*
3086              * Prevent mis-interpretation of the wakeup by power button
3087              * as a request for power off.
3088              * Ideally we should post an appropriate wakeup event,
3089              * perhaps using acpi_event_power_button_wake or alike.
3090              *
3091              * Clearing of power button status after wakeup is mandated
3092              * by ACPI specification in section "Fixed Power Button".
3093              *
3094              * XXX As of ACPICA 20121114 AcpiGetEventStatus provides
3095              * status as 0/1 corressponding to inactive/active despite
3096              * its type being ACPI_EVENT_STATUS.  In other words,
3097              * we should not test for ACPI_EVENT_FLAG_SET for time being.
3098              */
3099             if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON,
3100                 &power_button_status)) && power_button_status != 0) {
3101                 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
3102                 device_printf(sc->acpi_dev,
3103                     "cleared fixed power button status\n");
3104             }
3105         }
3106
3107         intr_restore(intr);
3108
3109         /* call acpi_wakeup_machdep() again with interrupt enabled */
3110         acpi_wakeup_machdep(sc, state, sleep_result, 1);
3111
3112         AcpiLeaveSleepStatePrep(state);
3113
3114         if (sleep_result == -1)
3115                 goto backout;
3116
3117         /* Re-enable ACPI hardware on wakeup from sleep state 4. */
3118         if (state == ACPI_STATE_S4)
3119             AcpiEnable();
3120     } else {
3121         status = AcpiEnterSleepState(state);
3122         intr_restore(intr);
3123         AcpiLeaveSleepStatePrep(state);
3124         if (ACPI_FAILURE(status)) {
3125             device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n",
3126                           AcpiFormatException(status));
3127             goto backout;
3128         }
3129     }
3130     slp_state = ACPI_SS_SLEPT;
3131
3132     /*
3133      * Back out state according to how far along we got in the suspend
3134      * process.  This handles both the error and success cases.
3135      */
3136 backout:
3137     if (slp_state >= ACPI_SS_SLP_PREP)
3138         resumeclock();
3139     if (slp_state >= ACPI_SS_GPE_SET) {
3140         acpi_wake_prep_walk(state);
3141         sc->acpi_sstate = ACPI_STATE_S0;
3142     }
3143     if (slp_state >= ACPI_SS_DEV_SUSPEND)
3144         DEVICE_RESUME(root_bus);
3145     if (slp_state >= ACPI_SS_SLP_PREP)
3146         AcpiLeaveSleepState(state);
3147     if (slp_state >= ACPI_SS_SLEPT) {
3148 #if defined(__i386__) || defined(__amd64__)
3149         /* NB: we are still using ACPI timecounter at this point. */
3150         resume_TSC();
3151 #endif
3152         acpi_resync_clock(sc);
3153         acpi_enable_fixed_events(sc);
3154     }
3155     sc->acpi_next_sstate = 0;
3156
3157     mtx_unlock(&Giant);
3158
3159 #ifdef EARLY_AP_STARTUP
3160     thread_lock(curthread);
3161     sched_unbind(curthread);
3162     thread_unlock(curthread);
3163 #else
3164     if (smp_started) {
3165         thread_lock(curthread);
3166         sched_unbind(curthread);
3167         thread_unlock(curthread);
3168     }
3169 #endif
3170
3171     resume_all_proc();
3172
3173     EVENTHANDLER_INVOKE(power_resume);
3174
3175     /* Allow another sleep request after a while. */
3176     callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
3177
3178     /* Run /etc/rc.resume after we are back. */
3179     if (devctl_process_running())
3180         acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state);
3181
3182     return_ACPI_STATUS (status);
3183 }
3184
3185 static void
3186 acpi_resync_clock(struct acpi_softc *sc)
3187 {
3188
3189     /*
3190      * Warm up timecounter again and reset system clock.
3191      */
3192     (void)timecounter->tc_get_timecount(timecounter);
3193     (void)timecounter->tc_get_timecount(timecounter);
3194     inittodr(time_second + sc->acpi_sleep_delay);
3195 }
3196
3197 /* Enable or disable the device's wake GPE. */
3198 int
3199 acpi_wake_set_enable(device_t dev, int enable)
3200 {
3201     struct acpi_prw_data prw;
3202     ACPI_STATUS status;
3203     int flags;
3204
3205     /* Make sure the device supports waking the system and get the GPE. */
3206     if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0)
3207         return (ENXIO);
3208
3209     flags = acpi_get_flags(dev);
3210     if (enable) {
3211         status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
3212             ACPI_GPE_ENABLE);
3213         if (ACPI_FAILURE(status)) {
3214             device_printf(dev, "enable wake failed\n");
3215             return (ENXIO);
3216         }
3217         acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED);
3218     } else {
3219         status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
3220             ACPI_GPE_DISABLE);
3221         if (ACPI_FAILURE(status)) {
3222             device_printf(dev, "disable wake failed\n");
3223             return (ENXIO);
3224         }
3225         acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED);
3226     }
3227
3228     return (0);
3229 }
3230
3231 static int
3232 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate)
3233 {
3234     struct acpi_prw_data prw;
3235     device_t dev;
3236
3237     /* Check that this is a wake-capable device and get its GPE. */
3238     if (acpi_parse_prw(handle, &prw) != 0)
3239         return (ENXIO);
3240     dev = acpi_get_device(handle);
3241
3242     /*
3243      * The destination sleep state must be less than (i.e., higher power)
3244      * or equal to the value specified by _PRW.  If this GPE cannot be
3245      * enabled for the next sleep state, then disable it.  If it can and
3246      * the user requested it be enabled, turn on any required power resources
3247      * and set _PSW.
3248      */
3249     if (sstate > prw.lowest_wake) {
3250         AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE);
3251         if (bootverbose)
3252             device_printf(dev, "wake_prep disabled wake for %s (S%d)\n",
3253                 acpi_name(handle), sstate);
3254     } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) {
3255         acpi_pwr_wake_enable(handle, 1);
3256         acpi_SetInteger(handle, "_PSW", 1);
3257         if (bootverbose)
3258             device_printf(dev, "wake_prep enabled for %s (S%d)\n",
3259                 acpi_name(handle), sstate);
3260     }
3261
3262     return (0);
3263 }
3264
3265 static int
3266 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate)
3267 {
3268     struct acpi_prw_data prw;
3269     device_t dev;
3270
3271     /*
3272      * Check that this is a wake-capable device and get its GPE.  Return
3273      * now if the user didn't enable this device for wake.
3274      */
3275     if (acpi_parse_prw(handle, &prw) != 0)
3276         return (ENXIO);
3277     dev = acpi_get_device(handle);
3278     if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0)
3279         return (0);
3280
3281     /*
3282      * If this GPE couldn't be enabled for the previous sleep state, it was
3283      * disabled before going to sleep so re-enable it.  If it was enabled,
3284      * clear _PSW and turn off any power resources it used.
3285      */
3286     if (sstate > prw.lowest_wake) {
3287         AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE);
3288         if (bootverbose)
3289             device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle));
3290     } else {
3291         acpi_SetInteger(handle, "_PSW", 0);
3292         acpi_pwr_wake_enable(handle, 0);
3293         if (bootverbose)
3294             device_printf(dev, "run_prep cleaned up for %s\n",
3295                 acpi_name(handle));
3296     }
3297
3298     return (0);
3299 }
3300
3301 static ACPI_STATUS
3302 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
3303 {
3304     int sstate;
3305
3306     /* If suspending, run the sleep prep function, otherwise wake. */
3307     sstate = *(int *)context;
3308     if (AcpiGbl_SystemAwakeAndRunning)
3309         acpi_wake_sleep_prep(handle, sstate);
3310     else
3311         acpi_wake_run_prep(handle, sstate);
3312     return (AE_OK);
3313 }
3314
3315 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */
3316 static int
3317 acpi_wake_prep_walk(int sstate)
3318 {
3319     ACPI_HANDLE sb_handle;
3320
3321     if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle)))
3322         AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100,
3323             acpi_wake_prep, NULL, &sstate, NULL);
3324     return (0);
3325 }
3326
3327 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */
3328 static int
3329 acpi_wake_sysctl_walk(device_t dev)
3330 {
3331     int error, i, numdevs;
3332     device_t *devlist;
3333     device_t child;
3334     ACPI_STATUS status;
3335
3336     error = device_get_children(dev, &devlist, &numdevs);
3337     if (error != 0 || numdevs == 0) {
3338         if (numdevs == 0)
3339             free(devlist, M_TEMP);
3340         return (error);
3341     }
3342     for (i = 0; i < numdevs; i++) {
3343         child = devlist[i];
3344         acpi_wake_sysctl_walk(child);
3345         if (!device_is_attached(child))
3346             continue;
3347         status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL);
3348         if (ACPI_SUCCESS(status)) {
3349             SYSCTL_ADD_PROC(device_get_sysctl_ctx(child),
3350                 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO,
3351                 "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0,
3352                 acpi_wake_set_sysctl, "I", "Device set to wake the system");
3353         }
3354     }
3355     free(devlist, M_TEMP);
3356
3357     return (0);
3358 }
3359
3360 /* Enable or disable wake from userland. */
3361 static int
3362 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS)
3363 {
3364     int enable, error;
3365     device_t dev;
3366
3367     dev = (device_t)arg1;
3368     enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0;
3369
3370     error = sysctl_handle_int(oidp, &enable, 0, req);
3371     if (error != 0 || req->newptr == NULL)
3372         return (error);
3373     if (enable != 0 && enable != 1)
3374         return (EINVAL);
3375
3376     return (acpi_wake_set_enable(dev, enable));
3377 }
3378
3379 /* Parse a device's _PRW into a structure. */
3380 int
3381 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw)
3382 {
3383     ACPI_STATUS                 status;
3384     ACPI_BUFFER                 prw_buffer;
3385     ACPI_OBJECT                 *res, *res2;
3386     int                         error, i, power_count;
3387
3388     if (h == NULL || prw == NULL)
3389         return (EINVAL);
3390
3391     /*
3392      * The _PRW object (7.2.9) is only required for devices that have the
3393      * ability to wake the system from a sleeping state.
3394      */
3395     error = EINVAL;
3396     prw_buffer.Pointer = NULL;
3397     prw_buffer.Length = ACPI_ALLOCATE_BUFFER;
3398     status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer);
3399     if (ACPI_FAILURE(status))
3400         return (ENOENT);
3401     res = (ACPI_OBJECT *)prw_buffer.Pointer;
3402     if (res == NULL)
3403         return (ENOENT);
3404     if (!ACPI_PKG_VALID(res, 2))
3405         goto out;
3406
3407     /*
3408      * Element 1 of the _PRW object:
3409      * The lowest power system sleeping state that can be entered while still
3410      * providing wake functionality.  The sleeping state being entered must
3411      * be less than (i.e., higher power) or equal to this value.
3412      */
3413     if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0)
3414         goto out;
3415
3416     /*
3417      * Element 0 of the _PRW object:
3418      */
3419     switch (res->Package.Elements[0].Type) {
3420     case ACPI_TYPE_INTEGER:
3421         /*
3422          * If the data type of this package element is numeric, then this
3423          * _PRW package element is the bit index in the GPEx_EN, in the
3424          * GPE blocks described in the FADT, of the enable bit that is
3425          * enabled for the wake event.
3426          */
3427         prw->gpe_handle = NULL;
3428         prw->gpe_bit = res->Package.Elements[0].Integer.Value;
3429         error = 0;
3430         break;
3431     case ACPI_TYPE_PACKAGE:
3432         /*
3433          * If the data type of this package element is a package, then this
3434          * _PRW package element is itself a package containing two
3435          * elements.  The first is an object reference to the GPE Block
3436          * device that contains the GPE that will be triggered by the wake
3437          * event.  The second element is numeric and it contains the bit
3438          * index in the GPEx_EN, in the GPE Block referenced by the
3439          * first element in the package, of the enable bit that is enabled for
3440          * the wake event.
3441          *
3442          * For example, if this field is a package then it is of the form:
3443          * Package() {\_SB.PCI0.ISA.GPE, 2}
3444          */
3445         res2 = &res->Package.Elements[0];
3446         if (!ACPI_PKG_VALID(res2, 2))
3447             goto out;
3448         prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]);
3449         if (prw->gpe_handle == NULL)
3450             goto out;
3451         if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0)
3452             goto out;
3453         error = 0;
3454         break;
3455     default:
3456         goto out;
3457     }
3458
3459     /* Elements 2 to N of the _PRW object are power resources. */
3460     power_count = res->Package.Count - 2;
3461     if (power_count > ACPI_PRW_MAX_POWERRES) {
3462         printf("ACPI device %s has too many power resources\n", acpi_name(h));
3463         power_count = 0;
3464     }
3465     prw->power_res_count = power_count;
3466     for (i = 0; i < power_count; i++)
3467         prw->power_res[i] = res->Package.Elements[i];
3468
3469 out:
3470     if (prw_buffer.Pointer != NULL)
3471         AcpiOsFree(prw_buffer.Pointer);
3472     return (error);
3473 }
3474
3475 /*
3476  * ACPI Event Handlers
3477  */
3478
3479 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */
3480
3481 static void
3482 acpi_system_eventhandler_sleep(void *arg, int state)
3483 {
3484     struct acpi_softc *sc = (struct acpi_softc *)arg;
3485     int ret;
3486
3487     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3488
3489     /* Check if button action is disabled or unknown. */
3490     if (state == ACPI_STATE_UNKNOWN)
3491         return;
3492
3493     /* Request that the system prepare to enter the given suspend state. */
3494     ret = acpi_ReqSleepState(sc, state);
3495     if (ret != 0)
3496         device_printf(sc->acpi_dev,
3497             "request to enter state S%d failed (err %d)\n", state, ret);
3498
3499     return_VOID;
3500 }
3501
3502 static void
3503 acpi_system_eventhandler_wakeup(void *arg, int state)
3504 {
3505
3506     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3507
3508     /* Currently, nothing to do for wakeup. */
3509
3510     return_VOID;
3511 }
3512
3513 /* 
3514  * ACPICA Event Handlers (FixedEvent, also called from button notify handler)
3515  */
3516 static void
3517 acpi_invoke_sleep_eventhandler(void *context)
3518 {
3519
3520     EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context);
3521 }
3522
3523 static void
3524 acpi_invoke_wake_eventhandler(void *context)
3525 {
3526
3527     EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context);
3528 }
3529
3530 UINT32
3531 acpi_event_power_button_sleep(void *context)
3532 {
3533     struct acpi_softc   *sc = (struct acpi_softc *)context;
3534
3535     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3536
3537     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3538         acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx)))
3539         return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3540     return_VALUE (ACPI_INTERRUPT_HANDLED);
3541 }
3542
3543 UINT32
3544 acpi_event_power_button_wake(void *context)
3545 {
3546     struct acpi_softc   *sc = (struct acpi_softc *)context;
3547
3548     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3549
3550     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3551         acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx)))
3552         return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3553     return_VALUE (ACPI_INTERRUPT_HANDLED);
3554 }
3555
3556 UINT32
3557 acpi_event_sleep_button_sleep(void *context)
3558 {
3559     struct acpi_softc   *sc = (struct acpi_softc *)context;
3560
3561     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3562
3563     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3564         acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx)))
3565         return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3566     return_VALUE (ACPI_INTERRUPT_HANDLED);
3567 }
3568
3569 UINT32
3570 acpi_event_sleep_button_wake(void *context)
3571 {
3572     struct acpi_softc   *sc = (struct acpi_softc *)context;
3573
3574     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3575
3576     if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3577         acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx)))
3578         return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3579     return_VALUE (ACPI_INTERRUPT_HANDLED);
3580 }
3581
3582 /*
3583  * XXX This static buffer is suboptimal.  There is no locking so only
3584  * use this for single-threaded callers.
3585  */
3586 char *
3587 acpi_name(ACPI_HANDLE handle)
3588 {
3589     ACPI_BUFFER buf;
3590     static char data[256];
3591
3592     buf.Length = sizeof(data);
3593     buf.Pointer = data;
3594
3595     if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf)))
3596         return (data);
3597     return ("(unknown)");
3598 }
3599
3600 /*
3601  * Debugging/bug-avoidance.  Avoid trying to fetch info on various
3602  * parts of the namespace.
3603  */
3604 int
3605 acpi_avoid(ACPI_HANDLE handle)
3606 {
3607     char        *cp, *env, *np;
3608     int         len;
3609
3610     np = acpi_name(handle);
3611     if (*np == '\\')
3612         np++;
3613     if ((env = kern_getenv("debug.acpi.avoid")) == NULL)
3614         return (0);
3615
3616     /* Scan the avoid list checking for a match */
3617     cp = env;
3618     for (;;) {
3619         while (*cp != 0 && isspace(*cp))
3620             cp++;
3621         if (*cp == 0)
3622             break;
3623         len = 0;
3624         while (cp[len] != 0 && !isspace(cp[len]))
3625             len++;
3626         if (!strncmp(cp, np, len)) {
3627             freeenv(env);
3628             return(1);
3629         }
3630         cp += len;
3631     }
3632     freeenv(env);
3633
3634     return (0);
3635 }
3636
3637 /*
3638  * Debugging/bug-avoidance.  Disable ACPI subsystem components.
3639  */
3640 int
3641 acpi_disabled(char *subsys)
3642 {
3643     char        *cp, *env;
3644     int         len;
3645
3646     if ((env = kern_getenv("debug.acpi.disabled")) == NULL)
3647         return (0);
3648     if (strcmp(env, "all") == 0) {
3649         freeenv(env);
3650         return (1);
3651     }
3652
3653     /* Scan the disable list, checking for a match. */
3654     cp = env;
3655     for (;;) {
3656         while (*cp != '\0' && isspace(*cp))
3657             cp++;
3658         if (*cp == '\0')
3659             break;
3660         len = 0;
3661         while (cp[len] != '\0' && !isspace(cp[len]))
3662             len++;
3663         if (strncmp(cp, subsys, len) == 0) {
3664             freeenv(env);
3665             return (1);
3666         }
3667         cp += len;
3668     }
3669     freeenv(env);
3670
3671     return (0);
3672 }
3673
3674 static void
3675 acpi_lookup(void *arg, const char *name, device_t *dev)
3676 {
3677     ACPI_HANDLE handle;
3678
3679     if (*dev != NULL)
3680         return;
3681
3682     /*
3683      * Allow any handle name that is specified as an absolute path and
3684      * starts with '\'.  We could restrict this to \_SB and friends,
3685      * but see acpi_probe_children() for notes on why we scan the entire
3686      * namespace for devices.
3687      *
3688      * XXX: The pathname argument to AcpiGetHandle() should be fixed to
3689      * be const.
3690      */
3691     if (name[0] != '\\')
3692         return;
3693     if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name),
3694         &handle)))
3695         return;
3696     *dev = acpi_get_device(handle);
3697 }
3698
3699 /*
3700  * Control interface.
3701  *
3702  * We multiplex ioctls for all participating ACPI devices here.  Individual 
3703  * drivers wanting to be accessible via /dev/acpi should use the
3704  * register/deregister interface to make their handlers visible.
3705  */
3706 struct acpi_ioctl_hook
3707 {
3708     TAILQ_ENTRY(acpi_ioctl_hook) link;
3709     u_long                       cmd;
3710     acpi_ioctl_fn                fn;
3711     void                         *arg;
3712 };
3713
3714 static TAILQ_HEAD(,acpi_ioctl_hook)     acpi_ioctl_hooks;
3715 static int                              acpi_ioctl_hooks_initted;
3716
3717 int
3718 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg)
3719 {
3720     struct acpi_ioctl_hook      *hp;
3721
3722     if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL)
3723         return (ENOMEM);
3724     hp->cmd = cmd;
3725     hp->fn = fn;
3726     hp->arg = arg;
3727
3728     ACPI_LOCK(acpi);
3729     if (acpi_ioctl_hooks_initted == 0) {
3730         TAILQ_INIT(&acpi_ioctl_hooks);
3731         acpi_ioctl_hooks_initted = 1;
3732     }
3733     TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link);
3734     ACPI_UNLOCK(acpi);
3735
3736     return (0);
3737 }
3738
3739 void
3740 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn)
3741 {
3742     struct acpi_ioctl_hook      *hp;
3743
3744     ACPI_LOCK(acpi);
3745     TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link)
3746         if (hp->cmd == cmd && hp->fn == fn)
3747             break;
3748
3749     if (hp != NULL) {
3750         TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link);
3751         free(hp, M_ACPIDEV);
3752     }
3753     ACPI_UNLOCK(acpi);
3754 }
3755
3756 static int
3757 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td)
3758 {
3759     return (0);
3760 }
3761
3762 static int
3763 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td)
3764 {
3765     return (0);
3766 }
3767
3768 static int
3769 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3770 {
3771     struct acpi_softc           *sc;
3772     struct acpi_ioctl_hook      *hp;
3773     int                         error, state;
3774
3775     error = 0;
3776     hp = NULL;
3777     sc = dev->si_drv1;
3778
3779     /*
3780      * Scan the list of registered ioctls, looking for handlers.
3781      */
3782     ACPI_LOCK(acpi);
3783     if (acpi_ioctl_hooks_initted)
3784         TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) {
3785             if (hp->cmd == cmd)
3786                 break;
3787         }
3788     ACPI_UNLOCK(acpi);
3789     if (hp)
3790         return (hp->fn(cmd, addr, hp->arg));
3791
3792     /*
3793      * Core ioctls are not permitted for non-writable user.
3794      * Currently, other ioctls just fetch information.
3795      * Not changing system behavior.
3796      */
3797     if ((flag & FWRITE) == 0)
3798         return (EPERM);
3799
3800     /* Core system ioctls. */
3801     switch (cmd) {
3802     case ACPIIO_REQSLPSTATE:
3803         state = *(int *)addr;
3804         if (state != ACPI_STATE_S5)
3805             return (acpi_ReqSleepState(sc, state));
3806         device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n");
3807         error = EOPNOTSUPP;
3808         break;
3809     case ACPIIO_ACKSLPSTATE:
3810         error = *(int *)addr;
3811         error = acpi_AckSleepState(sc->acpi_clone, error);
3812         break;
3813     case ACPIIO_SETSLPSTATE:    /* DEPRECATED */
3814         state = *(int *)addr;
3815         if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX)
3816             return (EINVAL);
3817         if (!acpi_sleep_states[state])
3818             return (EOPNOTSUPP);
3819         if (ACPI_FAILURE(acpi_SetSleepState(sc, state)))
3820             error = ENXIO;
3821         break;
3822     default:
3823         error = ENXIO;
3824         break;
3825     }
3826
3827     return (error);
3828 }
3829
3830 static int
3831 acpi_sname2sstate(const char *sname)
3832 {
3833     int sstate;
3834
3835     if (toupper(sname[0]) == 'S') {
3836         sstate = sname[1] - '0';
3837         if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 &&
3838             sname[2] == '\0')
3839             return (sstate);
3840     } else if (strcasecmp(sname, "NONE") == 0)
3841         return (ACPI_STATE_UNKNOWN);
3842     return (-1);
3843 }
3844
3845 static const char *
3846 acpi_sstate2sname(int sstate)
3847 {
3848     static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" };
3849
3850     if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5)
3851         return (snames[sstate]);
3852     else if (sstate == ACPI_STATE_UNKNOWN)
3853         return ("NONE");
3854     return (NULL);
3855 }
3856
3857 static int
3858 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
3859 {
3860     int error;
3861     struct sbuf sb;
3862     UINT8 state;
3863
3864     sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
3865     for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++)
3866         if (acpi_sleep_states[state])
3867             sbuf_printf(&sb, "%s ", acpi_sstate2sname(state));
3868     sbuf_trim(&sb);
3869     sbuf_finish(&sb);
3870     error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
3871     sbuf_delete(&sb);
3872     return (error);
3873 }
3874
3875 static int
3876 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
3877 {
3878     char sleep_state[10];
3879     int error, new_state, old_state;
3880
3881     old_state = *(int *)oidp->oid_arg1;
3882     strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state));
3883     error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req);
3884     if (error == 0 && req->newptr != NULL) {
3885         new_state = acpi_sname2sstate(sleep_state);
3886         if (new_state < ACPI_STATE_S1)
3887             return (EINVAL);
3888         if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state])
3889             return (EOPNOTSUPP);
3890         if (new_state != old_state)
3891             *(int *)oidp->oid_arg1 = new_state;
3892     }
3893     return (error);
3894 }
3895
3896 /* Inform devctl(4) when we receive a Notify. */
3897 void
3898 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify)
3899 {
3900     char                notify_buf[16];
3901     ACPI_BUFFER         handle_buf;
3902     ACPI_STATUS         status;
3903
3904     if (subsystem == NULL)
3905         return;
3906
3907     handle_buf.Pointer = NULL;
3908     handle_buf.Length = ACPI_ALLOCATE_BUFFER;
3909     status = AcpiNsHandleToPathname(h, &handle_buf, FALSE);
3910     if (ACPI_FAILURE(status))
3911         return;
3912     snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify);
3913     devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf);
3914     AcpiOsFree(handle_buf.Pointer);
3915 }
3916
3917 #ifdef ACPI_DEBUG
3918 /*
3919  * Support for parsing debug options from the kernel environment.
3920  *
3921  * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers
3922  * by specifying the names of the bits in the debug.acpi.layer and
3923  * debug.acpi.level environment variables.  Bits may be unset by 
3924  * prefixing the bit name with !.
3925  */
3926 struct debugtag
3927 {
3928     char        *name;
3929     UINT32      value;
3930 };
3931
3932 static struct debugtag  dbg_layer[] = {
3933     {"ACPI_UTILITIES",          ACPI_UTILITIES},
3934     {"ACPI_HARDWARE",           ACPI_HARDWARE},
3935     {"ACPI_EVENTS",             ACPI_EVENTS},
3936     {"ACPI_TABLES",             ACPI_TABLES},
3937     {"ACPI_NAMESPACE",          ACPI_NAMESPACE},
3938     {"ACPI_PARSER",             ACPI_PARSER},
3939     {"ACPI_DISPATCHER",         ACPI_DISPATCHER},
3940     {"ACPI_EXECUTER",           ACPI_EXECUTER},
3941     {"ACPI_RESOURCES",          ACPI_RESOURCES},
3942     {"ACPI_CA_DEBUGGER",        ACPI_CA_DEBUGGER},
3943     {"ACPI_OS_SERVICES",        ACPI_OS_SERVICES},
3944     {"ACPI_CA_DISASSEMBLER",    ACPI_CA_DISASSEMBLER},
3945     {"ACPI_ALL_COMPONENTS",     ACPI_ALL_COMPONENTS},
3946
3947     {"ACPI_AC_ADAPTER",         ACPI_AC_ADAPTER},
3948     {"ACPI_BATTERY",            ACPI_BATTERY},
3949     {"ACPI_BUS",                ACPI_BUS},
3950     {"ACPI_BUTTON",             ACPI_BUTTON},
3951     {"ACPI_EC",                 ACPI_EC},
3952     {"ACPI_FAN",                ACPI_FAN},
3953     {"ACPI_POWERRES",           ACPI_POWERRES},
3954     {"ACPI_PROCESSOR",          ACPI_PROCESSOR},
3955     {"ACPI_THERMAL",            ACPI_THERMAL},
3956     {"ACPI_TIMER",              ACPI_TIMER},
3957     {"ACPI_ALL_DRIVERS",        ACPI_ALL_DRIVERS},
3958     {NULL, 0}
3959 };
3960
3961 static struct debugtag dbg_level[] = {
3962     {"ACPI_LV_INIT",            ACPI_LV_INIT},
3963     {"ACPI_LV_DEBUG_OBJECT",    ACPI_LV_DEBUG_OBJECT},
3964     {"ACPI_LV_INFO",            ACPI_LV_INFO},
3965     {"ACPI_LV_REPAIR",          ACPI_LV_REPAIR},
3966     {"ACPI_LV_ALL_EXCEPTIONS",  ACPI_LV_ALL_EXCEPTIONS},
3967
3968     /* Trace verbosity level 1 [Standard Trace Level] */
3969     {"ACPI_LV_INIT_NAMES",      ACPI_LV_INIT_NAMES},
3970     {"ACPI_LV_PARSE",           ACPI_LV_PARSE},
3971     {"ACPI_LV_LOAD",            ACPI_LV_LOAD},
3972     {"ACPI_LV_DISPATCH",        ACPI_LV_DISPATCH},
3973     {"ACPI_LV_EXEC",            ACPI_LV_EXEC},
3974     {"ACPI_LV_NAMES",           ACPI_LV_NAMES},
3975     {"ACPI_LV_OPREGION",        ACPI_LV_OPREGION},
3976     {"ACPI_LV_BFIELD",          ACPI_LV_BFIELD},
3977     {"ACPI_LV_TABLES",          ACPI_LV_TABLES},
3978     {"ACPI_LV_VALUES",          ACPI_LV_VALUES},
3979     {"ACPI_LV_OBJECTS",         ACPI_LV_OBJECTS},
3980     {"ACPI_LV_RESOURCES",       ACPI_LV_RESOURCES},
3981     {"ACPI_LV_USER_REQUESTS",   ACPI_LV_USER_REQUESTS},
3982     {"ACPI_LV_PACKAGE",         ACPI_LV_PACKAGE},
3983     {"ACPI_LV_VERBOSITY1",      ACPI_LV_VERBOSITY1},
3984
3985     /* Trace verbosity level 2 [Function tracing and memory allocation] */
3986     {"ACPI_LV_ALLOCATIONS",     ACPI_LV_ALLOCATIONS},
3987     {"ACPI_LV_FUNCTIONS",       ACPI_LV_FUNCTIONS},
3988     {"ACPI_LV_OPTIMIZATIONS",   ACPI_LV_OPTIMIZATIONS},
3989     {"ACPI_LV_VERBOSITY2",      ACPI_LV_VERBOSITY2},
3990     {"ACPI_LV_ALL",             ACPI_LV_ALL},
3991
3992     /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */
3993     {"ACPI_LV_MUTEX",           ACPI_LV_MUTEX},
3994     {"ACPI_LV_THREADS",         ACPI_LV_THREADS},
3995     {"ACPI_LV_IO",              ACPI_LV_IO},
3996     {"ACPI_LV_INTERRUPTS",      ACPI_LV_INTERRUPTS},
3997     {"ACPI_LV_VERBOSITY3",      ACPI_LV_VERBOSITY3},
3998
3999     /* Exceptionally verbose output -- also used in the global "DebugLevel"  */
4000     {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE},
4001     {"ACPI_LV_VERBOSE_INFO",    ACPI_LV_VERBOSE_INFO},
4002     {"ACPI_LV_FULL_TABLES",     ACPI_LV_FULL_TABLES},
4003     {"ACPI_LV_EVENTS",          ACPI_LV_EVENTS},
4004     {"ACPI_LV_VERBOSE",         ACPI_LV_VERBOSE},
4005     {NULL, 0}
4006 };    
4007
4008 static void
4009 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag)
4010 {
4011     char        *ep;
4012     int         i, l;
4013     int         set;
4014
4015     while (*cp) {
4016         if (isspace(*cp)) {
4017             cp++;
4018             continue;
4019         }
4020         ep = cp;
4021         while (*ep && !isspace(*ep))
4022             ep++;
4023         if (*cp == '!') {
4024             set = 0;
4025             cp++;
4026             if (cp == ep)
4027                 continue;
4028         } else {
4029             set = 1;
4030         }
4031         l = ep - cp;
4032         for (i = 0; tag[i].name != NULL; i++) {
4033             if (!strncmp(cp, tag[i].name, l)) {
4034                 if (set)
4035                     *flag |= tag[i].value;
4036                 else
4037                     *flag &= ~tag[i].value;
4038             }
4039         }
4040         cp = ep;
4041     }
4042 }
4043
4044 static void
4045 acpi_set_debugging(void *junk)
4046 {
4047     char        *layer, *level;
4048
4049     if (cold) {
4050         AcpiDbgLayer = 0;
4051         AcpiDbgLevel = 0;
4052     }
4053
4054     layer = kern_getenv("debug.acpi.layer");
4055     level = kern_getenv("debug.acpi.level");
4056     if (layer == NULL && level == NULL)
4057         return;
4058
4059     printf("ACPI set debug");
4060     if (layer != NULL) {
4061         if (strcmp("NONE", layer) != 0)
4062             printf(" layer '%s'", layer);
4063         acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer);
4064         freeenv(layer);
4065     }
4066     if (level != NULL) {
4067         if (strcmp("NONE", level) != 0)
4068             printf(" level '%s'", level);
4069         acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel);
4070         freeenv(level);
4071     }
4072     printf("\n");
4073 }
4074
4075 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging,
4076         NULL);
4077
4078 static int
4079 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS)
4080 {
4081     int          error, *dbg;
4082     struct       debugtag *tag;
4083     struct       sbuf sb;
4084     char         temp[128];
4085
4086     if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL)
4087         return (ENOMEM);
4088     if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) {
4089         tag = &dbg_layer[0];
4090         dbg = &AcpiDbgLayer;
4091     } else {
4092         tag = &dbg_level[0];
4093         dbg = &AcpiDbgLevel;
4094     }
4095
4096     /* Get old values if this is a get request. */
4097     ACPI_SERIAL_BEGIN(acpi);
4098     if (*dbg == 0) {
4099         sbuf_cpy(&sb, "NONE");
4100     } else if (req->newptr == NULL) {
4101         for (; tag->name != NULL; tag++) {
4102             if ((*dbg & tag->value) == tag->value)
4103                 sbuf_printf(&sb, "%s ", tag->name);
4104         }
4105     }
4106     sbuf_trim(&sb);
4107     sbuf_finish(&sb);
4108     strlcpy(temp, sbuf_data(&sb), sizeof(temp));
4109     sbuf_delete(&sb);
4110
4111     error = sysctl_handle_string(oidp, temp, sizeof(temp), req);
4112
4113     /* Check for error or no change */
4114     if (error == 0 && req->newptr != NULL) {
4115         *dbg = 0;
4116         kern_setenv((char *)oidp->oid_arg1, temp);
4117         acpi_set_debugging(NULL);
4118     }
4119     ACPI_SERIAL_END(acpi);
4120
4121     return (error);
4122 }
4123
4124 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING,
4125             "debug.acpi.layer", 0, acpi_debug_sysctl, "A", "");
4126 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING,
4127             "debug.acpi.level", 0, acpi_debug_sysctl, "A", "");
4128 #endif /* ACPI_DEBUG */
4129
4130 static int
4131 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS)
4132 {
4133         int     error;
4134         int     old;
4135
4136         old = acpi_debug_objects;
4137         error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req);
4138         if (error != 0 || req->newptr == NULL)
4139                 return (error);
4140         if (old == acpi_debug_objects || (old && acpi_debug_objects))
4141                 return (0);
4142
4143         ACPI_SERIAL_BEGIN(acpi);
4144         AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
4145         ACPI_SERIAL_END(acpi);
4146
4147         return (0);
4148 }
4149
4150 static int
4151 acpi_parse_interfaces(char *str, struct acpi_interface *iface)
4152 {
4153         char *p;
4154         size_t len;
4155         int i, j;
4156
4157         p = str;
4158         while (isspace(*p) || *p == ',')
4159                 p++;
4160         len = strlen(p);
4161         if (len == 0)
4162                 return (0);
4163         p = strdup(p, M_TEMP);
4164         for (i = 0; i < len; i++)
4165                 if (p[i] == ',')
4166                         p[i] = '\0';
4167         i = j = 0;
4168         while (i < len)
4169                 if (isspace(p[i]) || p[i] == '\0')
4170                         i++;
4171                 else {
4172                         i += strlen(p + i) + 1;
4173                         j++;
4174                 }
4175         if (j == 0) {
4176                 free(p, M_TEMP);
4177                 return (0);
4178         }
4179         iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK);
4180         iface->num = j;
4181         i = j = 0;
4182         while (i < len)
4183                 if (isspace(p[i]) || p[i] == '\0')
4184                         i++;
4185                 else {
4186                         iface->data[j] = p + i;
4187                         i += strlen(p + i) + 1;
4188                         j++;
4189                 }
4190
4191         return (j);
4192 }
4193
4194 static void
4195 acpi_free_interfaces(struct acpi_interface *iface)
4196 {
4197
4198         free(iface->data[0], M_TEMP);
4199         free(iface->data, M_TEMP);
4200 }
4201
4202 static void
4203 acpi_reset_interfaces(device_t dev)
4204 {
4205         struct acpi_interface list;
4206         ACPI_STATUS status;
4207         int i;
4208
4209         if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) {
4210                 for (i = 0; i < list.num; i++) {
4211                         status = AcpiInstallInterface(list.data[i]);
4212                         if (ACPI_FAILURE(status))
4213                                 device_printf(dev,
4214                                     "failed to install _OSI(\"%s\"): %s\n",
4215                                     list.data[i], AcpiFormatException(status));
4216                         else if (bootverbose)
4217                                 device_printf(dev, "installed _OSI(\"%s\")\n",
4218                                     list.data[i]);
4219                 }
4220                 acpi_free_interfaces(&list);
4221         }
4222         if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) {
4223                 for (i = 0; i < list.num; i++) {
4224                         status = AcpiRemoveInterface(list.data[i]);
4225                         if (ACPI_FAILURE(status))
4226                                 device_printf(dev,
4227                                     "failed to remove _OSI(\"%s\"): %s\n",
4228                                     list.data[i], AcpiFormatException(status));
4229                         else if (bootverbose)
4230                                 device_printf(dev, "removed _OSI(\"%s\")\n",
4231                                     list.data[i]);
4232                 }
4233                 acpi_free_interfaces(&list);
4234         }
4235 }
4236
4237 static int
4238 acpi_pm_func(u_long cmd, void *arg, ...)
4239 {
4240         int     state, acpi_state;
4241         int     error;
4242         struct  acpi_softc *sc;
4243         va_list ap;
4244
4245         error = 0;
4246         switch (cmd) {
4247         case POWER_CMD_SUSPEND:
4248                 sc = (struct acpi_softc *)arg;
4249                 if (sc == NULL) {
4250                         error = EINVAL;
4251                         goto out;
4252                 }
4253
4254                 va_start(ap, arg);
4255                 state = va_arg(ap, int);
4256                 va_end(ap);
4257
4258                 switch (state) {
4259                 case POWER_SLEEP_STATE_STANDBY:
4260                         acpi_state = sc->acpi_standby_sx;
4261                         break;
4262                 case POWER_SLEEP_STATE_SUSPEND:
4263                         acpi_state = sc->acpi_suspend_sx;
4264                         break;
4265                 case POWER_SLEEP_STATE_HIBERNATE:
4266                         acpi_state = ACPI_STATE_S4;
4267                         break;
4268                 default:
4269                         error = EINVAL;
4270                         goto out;
4271                 }
4272
4273                 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state)))
4274                         error = ENXIO;
4275                 break;
4276         default:
4277                 error = EINVAL;
4278                 goto out;
4279         }
4280
4281 out:
4282         return (error);
4283 }
4284
4285 static void
4286 acpi_pm_register(void *arg)
4287 {
4288     if (!cold || resource_disabled("acpi", 0))
4289         return;
4290
4291     power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL);
4292 }
4293
4294 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL);