]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/acpica/acpi_cpu.c
This commit was generated by cvs2svn to compensate for changes in r156803,
[FreeBSD/FreeBSD.git] / sys / dev / acpica / acpi_cpu.c
1 /*-
2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
3  * Copyright (c) 2001 Michael Smith
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_acpi.h"
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/cpu.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/pcpu.h>
39 #include <sys/power.h>
40 #include <sys/proc.h>
41 #include <sys/sbuf.h>
42 #include <sys/smp.h>
43
44 #include <dev/pci/pcivar.h>
45 #include <machine/atomic.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48
49 #include <contrib/dev/acpica/acpi.h>
50 #include <dev/acpica/acpivar.h>
51
52 /*
53  * Support for ACPI Processor devices, including C[1-3] sleep states.
54  *
55  * TODO: implement scans of all CPUs to be sure all Cx states are
56  * equivalent.
57  */
58
59 /* Hooks for the ACPI CA debugging infrastructure */
60 #define _COMPONENT      ACPI_PROCESSOR
61 ACPI_MODULE_NAME("PROCESSOR")
62
63 struct acpi_cx {
64     struct resource     *p_lvlx;        /* Register to read to enter state. */
65     uint32_t             type;          /* C1-3 (C4 and up treated as C3). */
66     uint32_t             trans_lat;     /* Transition latency (usec). */
67     uint32_t             power;         /* Power consumed (mW). */
68     int                  res_type;      /* Resource type for p_lvlx. */
69 };
70 #define MAX_CX_STATES    8
71
72 struct acpi_cpu_softc {
73     device_t             cpu_dev;
74     ACPI_HANDLE          cpu_handle;
75     struct pcpu         *cpu_pcpu;
76     uint32_t             cpu_acpi_id;   /* ACPI processor id */
77     uint32_t             cpu_p_blk;     /* ACPI P_BLK location */
78     uint32_t             cpu_p_blk_len; /* P_BLK length (must be 6). */
79     struct acpi_cx       cpu_cx_states[MAX_CX_STATES];
80     int                  cpu_cx_count;  /* Number of valid Cx states. */
81     int                  cpu_prev_sleep;/* Last idle sleep duration. */
82     int                  cpu_features;  /* Child driver supported features. */
83 };
84
85 struct acpi_cpu_device {
86     struct resource_list        ad_rl;
87 };
88
89 #define CPU_GET_REG(reg, width)                                         \
90     (bus_space_read_ ## width(rman_get_bustag((reg)),                   \
91                       rman_get_bushandle((reg)), 0))
92 #define CPU_SET_REG(reg, width, val)                                    \
93     (bus_space_write_ ## width(rman_get_bustag((reg)),                  \
94                        rman_get_bushandle((reg)), 0, (val)))
95
96 #define PM_USEC(x)       ((x) >> 2)     /* ~4 clocks per usec (3.57955 Mhz) */
97
98 #define ACPI_NOTIFY_CX_STATES   0x81    /* _CST changed. */
99
100 #define CPU_QUIRK_NO_C3         (1<<0)  /* C3-type states are not usable. */
101 #define CPU_QUIRK_NO_BM_CTRL    (1<<2)  /* No bus mastering control. */
102
103 #define PCI_VENDOR_INTEL        0x8086
104 #define PCI_DEVICE_82371AB_3    0x7113  /* PIIX4 chipset for quirks. */
105 #define PCI_REVISION_A_STEP     0
106 #define PCI_REVISION_B_STEP     1
107 #define PCI_REVISION_4E         2
108 #define PCI_REVISION_4M         3
109
110 /* Platform hardware resource information. */
111 static uint32_t          cpu_smi_cmd;   /* Value to write to SMI_CMD. */
112 static uint8_t           cpu_cst_cnt;   /* Indicate we are _CST aware. */
113 static int               cpu_rid;       /* Driver-wide resource id. */
114 static int               cpu_quirks;    /* Indicate any hardware bugs. */
115
116 /* Runtime state. */
117 static int               cpu_cx_count;  /* Number of valid states */
118 static int               cpu_non_c3;    /* Index of lowest non-C3 state. */
119 static int               cpu_short_slp; /* Count of < 1us sleeps. */
120 static u_int             cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
121
122 /* Values for sysctl. */
123 static struct sysctl_ctx_list acpi_cpu_sysctl_ctx;
124 static struct sysctl_oid *acpi_cpu_sysctl_tree;
125 static int               cpu_cx_lowest;
126 static char              cpu_cx_supported[64];
127
128 static device_t         *cpu_devices;
129 static int               cpu_ndevices;
130 static struct acpi_cpu_softc **cpu_softc;
131 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
132
133 static int      acpi_cpu_probe(device_t dev);
134 static int      acpi_cpu_attach(device_t dev);
135 static int      acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
136                     uint32_t *cpu_id);
137 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
138 static device_t acpi_cpu_add_child(device_t dev, int order, const char *name,
139                     int unit);
140 static int      acpi_cpu_read_ivar(device_t dev, device_t child, int index,
141                     uintptr_t *result);
142 static int      acpi_cpu_shutdown(device_t dev);
143 static int      acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
144 static int      acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
145 static void     acpi_cpu_startup(void *arg);
146 static void     acpi_cpu_startup_cx(void);
147 static void     acpi_cpu_idle(void);
148 static void     acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
149 static int      acpi_cpu_quirks(struct acpi_cpu_softc *sc);
150 static int      acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
151 static int      acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
152
153 static device_method_t acpi_cpu_methods[] = {
154     /* Device interface */
155     DEVMETHOD(device_probe,     acpi_cpu_probe),
156     DEVMETHOD(device_attach,    acpi_cpu_attach),
157     DEVMETHOD(device_detach,    bus_generic_detach),
158     DEVMETHOD(device_shutdown,  acpi_cpu_shutdown),
159     DEVMETHOD(device_suspend,   bus_generic_suspend),
160     DEVMETHOD(device_resume,    bus_generic_resume),
161
162     /* Bus interface */
163     DEVMETHOD(bus_add_child,    acpi_cpu_add_child),
164     DEVMETHOD(bus_read_ivar,    acpi_cpu_read_ivar),
165     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
166     DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
167     DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
168     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
169     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
170     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
171     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
172     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
173     DEVMETHOD(bus_setup_intr,   bus_generic_setup_intr),
174     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
175
176     {0, 0}
177 };
178
179 static driver_t acpi_cpu_driver = {
180     "cpu",
181     acpi_cpu_methods,
182     sizeof(struct acpi_cpu_softc),
183 };
184
185 static devclass_t acpi_cpu_devclass;
186 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
187 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
188
189 static int
190 acpi_cpu_probe(device_t dev)
191 {
192     int                    acpi_id, cpu_id;
193     ACPI_BUFFER            buf;
194     ACPI_HANDLE            handle;
195     ACPI_OBJECT            *obj;
196     ACPI_STATUS            status;
197
198     if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
199         return (ENXIO);
200
201     handle = acpi_get_handle(dev);
202     if (cpu_softc == NULL)
203         cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
204             (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
205
206     /* Get our Processor object. */
207     buf.Pointer = NULL;
208     buf.Length = ACPI_ALLOCATE_BUFFER;
209     status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
210     if (ACPI_FAILURE(status)) {
211         device_printf(dev, "probe failed to get Processor obj - %s\n",
212                       AcpiFormatException(status));
213         return (ENXIO);
214     }
215     obj = (ACPI_OBJECT *)buf.Pointer;
216     if (obj->Type != ACPI_TYPE_PROCESSOR) {
217         device_printf(dev, "Processor object has bad type %d\n", obj->Type);
218         AcpiOsFree(obj);
219         return (ENXIO);
220     }
221
222     /*
223      * Find the processor associated with our unit.  We could use the
224      * ProcId as a key, however, some boxes do not have the same values
225      * in their Processor object as the ProcId values in the MADT.
226      */
227     acpi_id = obj->Processor.ProcId;
228     AcpiOsFree(obj);
229     if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
230         return (ENXIO);
231
232     /*
233      * Check if we already probed this processor.  We scan the bus twice
234      * so it's possible we've already seen this one.
235      */
236     if (cpu_softc[cpu_id] != NULL)
237         return (ENXIO);
238
239     /* Mark this processor as in-use and save our derived id for attach. */
240     cpu_softc[cpu_id] = (void *)1;
241     acpi_set_magic(dev, cpu_id);
242     device_set_desc(dev, "ACPI CPU");
243
244     return (0);
245 }
246
247 static int
248 acpi_cpu_attach(device_t dev)
249 {
250     ACPI_BUFFER            buf;
251     ACPI_OBJECT            arg, *obj;
252     ACPI_OBJECT_LIST       arglist;
253     struct pcpu            *pcpu_data;
254     struct acpi_cpu_softc *sc;
255     struct acpi_softc     *acpi_sc;
256     ACPI_STATUS            status;
257     u_int                  features;
258     int                    cpu_id, drv_count, i;
259     driver_t              **drivers;
260     uint32_t               cap_set[3];
261
262     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
263
264     sc = device_get_softc(dev);
265     sc->cpu_dev = dev;
266     sc->cpu_handle = acpi_get_handle(dev);
267     cpu_id = acpi_get_magic(dev);
268     cpu_softc[cpu_id] = sc;
269     pcpu_data = pcpu_find(cpu_id);
270     pcpu_data->pc_device = dev;
271     sc->cpu_pcpu = pcpu_data;
272     cpu_smi_cmd = AcpiGbl_FADT->SmiCmd;
273     cpu_cst_cnt = AcpiGbl_FADT->CstCnt;
274
275     buf.Pointer = NULL;
276     buf.Length = ACPI_ALLOCATE_BUFFER;
277     status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
278     if (ACPI_FAILURE(status)) {
279         device_printf(dev, "attach failed to get Processor obj - %s\n",
280                       AcpiFormatException(status));
281         return (ENXIO);
282     }
283     obj = (ACPI_OBJECT *)buf.Pointer;
284     sc->cpu_p_blk = obj->Processor.PblkAddress;
285     sc->cpu_p_blk_len = obj->Processor.PblkLength;
286     sc->cpu_acpi_id = obj->Processor.ProcId;
287     AcpiOsFree(obj);
288     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
289                      device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
290
291     acpi_sc = acpi_device_get_parent_softc(dev);
292     sysctl_ctx_init(&acpi_cpu_sysctl_ctx);
293     acpi_cpu_sysctl_tree = SYSCTL_ADD_NODE(&acpi_cpu_sysctl_ctx,
294         SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
295         CTLFLAG_RD, 0, "");
296
297     /*
298      * Before calling any CPU methods, collect child driver feature hints
299      * and notify ACPI of them.  We support unified SMP power control
300      * so advertise this ourselves.  Note this is not the same as independent
301      * SMP control where each CPU can have different settings.
302      */
303     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
304     if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
305         for (i = 0; i < drv_count; i++) {
306             if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
307                 sc->cpu_features |= features;
308         }
309         free(drivers, M_TEMP);
310     }
311
312     /*
313      * CPU capabilities are specified as a buffer of 32-bit integers:
314      * revision, count, and one or more capabilities.  The revision of
315      * "1" is not specified anywhere but seems to match Linux.  We should
316      * also support _OSC here.
317      */
318     if (sc->cpu_features) {
319         arglist.Pointer = &arg;
320         arglist.Count = 1;
321         arg.Type = ACPI_TYPE_BUFFER;
322         arg.Buffer.Length = sizeof(cap_set);
323         arg.Buffer.Pointer = (uint8_t *)cap_set;
324         cap_set[0] = 1; /* revision */
325         cap_set[1] = 1; /* number of capabilities integers */
326         cap_set[2] = sc->cpu_features;
327         AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
328     }
329
330     /*
331      * Probe for Cx state support.  If it isn't present, free up unused
332      * resources.
333      */
334     if (acpi_cpu_cx_probe(sc) == 0) {
335         status = AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
336                                           acpi_cpu_notify, sc);
337         if (device_get_unit(dev) == 0)
338             AcpiOsQueueForExecution(OSD_PRIORITY_LO, acpi_cpu_startup, NULL);
339     } else
340         sysctl_ctx_free(&acpi_cpu_sysctl_ctx);
341
342     /* Finally,  call identify and probe/attach for child devices. */
343     bus_generic_probe(dev);
344     bus_generic_attach(dev);
345
346     return (0);
347 }
348
349 /*
350  * Find the nth present CPU and return its pc_cpuid as well as set the
351  * pc_acpi_id from the most reliable source.
352  */
353 static int
354 acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
355 {
356     struct pcpu *pcpu_data;
357     uint32_t     i;
358
359     KASSERT(acpi_id != NULL, ("Null acpi_id"));
360     KASSERT(cpu_id != NULL, ("Null cpu_id"));
361     for (i = 0; i <= mp_maxid; i++) {
362         if (CPU_ABSENT(i))
363             continue;
364         pcpu_data = pcpu_find(i);
365         KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
366         if (idx-- == 0) {
367             /*
368              * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
369              * override it with the value from the ASL.  Otherwise, if the
370              * two don't match, prefer the MADT-derived value.  Finally,
371              * return the pc_cpuid to reference this processor.
372              */
373             if (pcpu_data->pc_acpi_id == 0xffffffff)
374                  pcpu_data->pc_acpi_id = *acpi_id;
375             else if (pcpu_data->pc_acpi_id != *acpi_id)
376                 *acpi_id = pcpu_data->pc_acpi_id;
377             *cpu_id = pcpu_data->pc_cpuid;
378             return (0);
379         }
380     }
381
382     return (ESRCH);
383 }
384
385 static struct resource_list *
386 acpi_cpu_get_rlist(device_t dev, device_t child)
387 {
388     struct acpi_cpu_device *ad;
389
390     ad = device_get_ivars(child);
391     if (ad == NULL)
392         return (NULL);
393     return (&ad->ad_rl);
394 }
395
396 static device_t
397 acpi_cpu_add_child(device_t dev, int order, const char *name, int unit)
398 {
399     struct acpi_cpu_device  *ad;
400     device_t            child;
401
402     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
403         return (NULL);
404
405     resource_list_init(&ad->ad_rl);
406     
407     child = device_add_child_ordered(dev, order, name, unit);
408     if (child != NULL)
409         device_set_ivars(child, ad);
410     else
411         free(ad, M_TEMP);
412     return (child);
413 }
414
415 static int
416 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
417 {
418     struct acpi_cpu_softc *sc;
419
420     sc = device_get_softc(dev);
421     switch (index) {
422     case ACPI_IVAR_HANDLE:
423         *result = (uintptr_t)sc->cpu_handle;
424         break;
425     case CPU_IVAR_PCPU:
426         *result = (uintptr_t)sc->cpu_pcpu;
427         break;
428     default:
429         return (ENOENT);
430     }
431     return (0);
432 }
433
434 static int
435 acpi_cpu_shutdown(device_t dev)
436 {
437     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
438
439     /* Allow children to shutdown first. */
440     bus_generic_shutdown(dev);
441
442     /* Disable any entry to the idle function. */
443     cpu_cx_count = 0;
444
445     /* Signal and wait for all processors to exit acpi_cpu_idle(). */
446     smp_rendezvous(NULL, NULL, NULL, NULL);
447
448     return_VALUE (0);
449 }
450
451 static int
452 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
453 {
454     ACPI_GENERIC_ADDRESS gas;
455     struct acpi_cx      *cx_ptr;
456     int                  error;
457
458     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
459
460     /*
461      * Bus mastering arbitration control is needed to keep caches coherent
462      * while sleeping in C3.  If it's not present but a working flush cache
463      * instruction is present, flush the caches before entering C3 instead.
464      * Otherwise, just disable C3 completely.
465      */
466     if (AcpiGbl_FADT->V1_Pm2CntBlk == 0 || AcpiGbl_FADT->Pm2CntLen == 0) {
467         if (AcpiGbl_FADT->WbInvd && AcpiGbl_FADT->WbInvdFlush == 0) {
468             cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
469             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
470                 "acpi_cpu%d: no BM control, using flush cache method\n",
471                 device_get_unit(sc->cpu_dev)));
472         } else {
473             cpu_quirks |= CPU_QUIRK_NO_C3;
474             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
475                 "acpi_cpu%d: no BM control, C3 not available\n",
476                 device_get_unit(sc->cpu_dev)));
477         }
478     }
479
480     /*
481      * First, check for the ACPI 2.0 _CST sleep states object.
482      * If not usable, fall back to the P_BLK's P_LVL2 and P_LVL3.
483      */
484     sc->cpu_cx_count = 0;
485     error = acpi_cpu_cx_cst(sc);
486     if (error != 0) {
487         cx_ptr = sc->cpu_cx_states;
488
489         /* C1 has been required since just after ACPI 1.0 */
490         cx_ptr->type = ACPI_STATE_C1;
491         cx_ptr->trans_lat = 0;
492         cpu_non_c3 = 0;
493         cx_ptr++;
494         sc->cpu_cx_count++;
495
496         /* 
497          * The spec says P_BLK must be 6 bytes long.  However, some systems
498          * use it to indicate a fractional set of features present so we
499          * take 5 as C2.  Some may also have a value of 7 to indicate
500          * another C3 but most use _CST for this (as required) and having
501          * "only" C1-C3 is not a hardship.
502          */
503         if (sc->cpu_p_blk_len < 5)
504             goto done;
505
506         /* Validate and allocate resources for C2 (P_LVL2). */
507         gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
508         gas.RegisterBitWidth = 8;
509         if (AcpiGbl_FADT->Plvl2Lat <= 100) {
510             gas.Address = sc->cpu_p_blk + 4;
511             acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cpu_rid, &gas,
512                 &cx_ptr->p_lvlx);
513             if (cx_ptr->p_lvlx != NULL) {
514                 cpu_rid++;
515                 cx_ptr->type = ACPI_STATE_C2;
516                 cx_ptr->trans_lat = AcpiGbl_FADT->Plvl2Lat;
517                 cpu_non_c3 = 1;
518                 cx_ptr++;
519                 sc->cpu_cx_count++;
520             }
521         }
522         if (sc->cpu_p_blk_len < 6)
523             goto done;
524
525         /* Validate and allocate resources for C3 (P_LVL3). */
526         if (AcpiGbl_FADT->Plvl3Lat <= 1000 &&
527             (cpu_quirks & CPU_QUIRK_NO_C3) == 0) {
528             gas.Address = sc->cpu_p_blk + 5;
529             acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cpu_rid, &gas,
530                 &cx_ptr->p_lvlx);
531             if (cx_ptr->p_lvlx != NULL) {
532                 cpu_rid++;
533                 cx_ptr->type = ACPI_STATE_C3;
534                 cx_ptr->trans_lat = AcpiGbl_FADT->Plvl3Lat;
535                 cx_ptr++;
536                 sc->cpu_cx_count++;
537             }
538         }
539     }
540
541 done:
542     /* If no valid registers were found, don't attach. */
543     if (sc->cpu_cx_count == 0)
544         return (ENXIO);
545
546     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
547     sc->cpu_prev_sleep = 1000000;
548
549     return (0);
550 }
551
552 /*
553  * Parse a _CST package and set up its Cx states.  Since the _CST object
554  * can change dynamically, our notify handler may call this function
555  * to clean up and probe the new _CST package.
556  */
557 static int
558 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
559 {
560     struct       acpi_cx *cx_ptr;
561     ACPI_STATUS  status;
562     ACPI_BUFFER  buf;
563     ACPI_OBJECT *top;
564     ACPI_OBJECT *pkg;
565     uint32_t     count;
566     int          i;
567
568     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
569
570     buf.Pointer = NULL;
571     buf.Length = ACPI_ALLOCATE_BUFFER;
572     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
573     if (ACPI_FAILURE(status))
574         return (ENXIO);
575
576     /* _CST is a package with a count and at least one Cx package. */
577     top = (ACPI_OBJECT *)buf.Pointer;
578     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
579         device_printf(sc->cpu_dev, "Invalid _CST package\n");
580         AcpiOsFree(buf.Pointer);
581         return (ENXIO);
582     }
583     if (count != top->Package.Count - 1) {
584         device_printf(sc->cpu_dev, "Invalid _CST state count (%d != %d)\n",
585                count, top->Package.Count - 1);
586         count = top->Package.Count - 1;
587     }
588     if (count > MAX_CX_STATES) {
589         device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
590         count = MAX_CX_STATES;
591     }
592
593     /* Set up all valid states. */
594     sc->cpu_cx_count = 0;
595     cx_ptr = sc->cpu_cx_states;
596     for (i = 0; i < count; i++) {
597         pkg = &top->Package.Elements[i + 1];
598         if (!ACPI_PKG_VALID(pkg, 4) ||
599             acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
600             acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
601             acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
602
603             device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
604             continue;
605         }
606
607         /* Validate the state to see if we should use it. */
608         switch (cx_ptr->type) {
609         case ACPI_STATE_C1:
610             cpu_non_c3 = i;
611             cx_ptr++;
612             sc->cpu_cx_count++;
613             continue;
614         case ACPI_STATE_C2:
615             if (cx_ptr->trans_lat > 100) {
616                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
617                                  "acpi_cpu%d: C2[%d] not available.\n",
618                                  device_get_unit(sc->cpu_dev), i));
619                 continue;
620             }
621             cpu_non_c3 = i;
622             break;
623         case ACPI_STATE_C3:
624         default:
625             if (cx_ptr->trans_lat > 1000 ||
626                 (cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
627
628                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
629                                  "acpi_cpu%d: C3[%d] not available.\n",
630                                  device_get_unit(sc->cpu_dev), i));
631                 continue;
632             }
633             break;
634         }
635
636 #ifdef notyet
637         /* Free up any previous register. */
638         if (cx_ptr->p_lvlx != NULL) {
639             bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
640             cx_ptr->p_lvlx = NULL;
641         }
642 #endif
643
644         /* Allocate the control register for C2 or C3. */
645         acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &cpu_rid,
646             &cx_ptr->p_lvlx);
647         if (cx_ptr->p_lvlx) {
648             cpu_rid++;
649             ACPI_DEBUG_PRINT((ACPI_DB_INFO,
650                              "acpi_cpu%d: Got C%d - %d latency\n",
651                              device_get_unit(sc->cpu_dev), cx_ptr->type,
652                              cx_ptr->trans_lat));
653             cx_ptr++;
654             sc->cpu_cx_count++;
655         }
656     }
657     AcpiOsFree(buf.Pointer);
658
659     return (0);
660 }
661
662 /*
663  * Call this *after* all CPUs have been attached.
664  */
665 static void
666 acpi_cpu_startup(void *arg)
667 {
668     struct acpi_cpu_softc *sc;
669     int count, i;
670
671     /* Get set of CPU devices */
672     devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
673
674     /* Check for quirks via the first CPU device. */
675     sc = device_get_softc(cpu_devices[0]);
676     acpi_cpu_quirks(sc);
677
678     /*
679      * Make sure all the processors' Cx counts match.  We should probably
680      * also check the contents of each.  However, no known systems have
681      * non-matching Cx counts so we'll deal with this later.
682      */
683     count = MAX_CX_STATES;
684     for (i = 0; i < cpu_ndevices; i++) {
685         sc = device_get_softc(cpu_devices[i]);
686         count = min(sc->cpu_cx_count, count);
687     }
688     cpu_cx_count = count;
689
690     /* Perform Cx final initialization. */
691     sc = device_get_softc(cpu_devices[0]);
692     if (cpu_cx_count > 0)
693         acpi_cpu_startup_cx();
694 }
695
696 static void
697 acpi_cpu_startup_cx()
698 {
699     struct acpi_cpu_softc *sc;
700     struct sbuf sb;
701     int i;
702
703     /*
704      * Set up the list of Cx states, eliminating C3 states by truncating
705      * cpu_cx_count if quirks indicate C3 is not usable.
706      */
707     sc = device_get_softc(cpu_devices[0]);
708     sbuf_new(&sb, cpu_cx_supported, sizeof(cpu_cx_supported), SBUF_FIXEDLEN);
709     for (i = 0; i < cpu_cx_count; i++) {
710         if ((cpu_quirks & CPU_QUIRK_NO_C3) == 0 ||
711             sc->cpu_cx_states[i].type != ACPI_STATE_C3)
712             sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
713         else
714             cpu_cx_count = i;
715     }
716     sbuf_trim(&sb);
717     sbuf_finish(&sb);
718     SYSCTL_ADD_STRING(&acpi_cpu_sysctl_ctx,
719                       SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
720                       OID_AUTO, "cx_supported", CTLFLAG_RD, cpu_cx_supported,
721                       0, "Cx/microsecond values for supported Cx states");
722     SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
723                     SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
724                     OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
725                     NULL, 0, acpi_cpu_cx_lowest_sysctl, "A",
726                     "lowest Cx sleep state to use");
727     SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
728                     SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
729                     OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
730                     NULL, 0, acpi_cpu_usage_sysctl, "A",
731                     "percent usage for each Cx state");
732
733 #ifdef notyet
734     /* Signal platform that we can handle _CST notification. */
735     if (cpu_cst_cnt != 0) {
736         ACPI_LOCK(acpi);
737         AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
738         ACPI_UNLOCK(acpi);
739     }
740 #endif
741
742     /* Take over idling from cpu_idle_default(). */
743     cpu_idle_hook = acpi_cpu_idle;
744 }
745
746 /*
747  * Idle the CPU in the lowest state possible.  This function is called with
748  * interrupts disabled.  Note that once it re-enables interrupts, a task
749  * switch can occur so do not access shared data (i.e. the softc) after
750  * interrupts are re-enabled.
751  */
752 static void
753 acpi_cpu_idle()
754 {
755     struct      acpi_cpu_softc *sc;
756     struct      acpi_cx *cx_next;
757     uint32_t    start_time, end_time;
758     int         bm_active, cx_next_idx, i;
759
760     /* If disabled, return immediately. */
761     if (cpu_cx_count == 0) {
762         ACPI_ENABLE_IRQS();
763         return;
764     }
765
766     /*
767      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
768      * since there is no ACPI processor object for this CPU.  This occurs
769      * for logical CPUs in the HTT case.
770      */
771     sc = cpu_softc[PCPU_GET(cpuid)];
772     if (sc == NULL) {
773         acpi_cpu_c1();
774         return;
775     }
776
777     /*
778      * If we slept 100 us or more, use the lowest Cx state.  Otherwise,
779      * find the lowest state that has a latency less than or equal to
780      * the length of our last sleep.
781      */
782     cx_next_idx = cpu_cx_lowest;
783     if (sc->cpu_prev_sleep < 100) {
784         /*
785          * If we sleep too short all the time, this system may not implement
786          * C2/3 correctly (i.e. reads return immediately).  In this case,
787          * back off and use the next higher level.
788          */
789         if (sc->cpu_prev_sleep <= 1) {
790             cpu_short_slp++;
791             if (cpu_short_slp == 1000 && cpu_cx_lowest != 0) {
792                 if (cpu_non_c3 == cpu_cx_lowest && cpu_non_c3 != 0)
793                     cpu_non_c3--;
794                 cpu_cx_lowest--;
795                 cpu_short_slp = 0;
796                 device_printf(sc->cpu_dev,
797                     "too many short sleeps, backing off to C%d\n",
798                     cpu_cx_lowest + 1);
799             }
800         } else
801             cpu_short_slp = 0;
802
803         for (i = cpu_cx_lowest; i >= 0; i--)
804             if (sc->cpu_cx_states[i].trans_lat <= sc->cpu_prev_sleep) {
805                 cx_next_idx = i;
806                 break;
807             }
808     }
809
810     /*
811      * Check for bus master activity.  If there was activity, clear
812      * the bit and use the lowest non-C3 state.  Note that the USB
813      * driver polling for new devices keeps this bit set all the
814      * time if USB is loaded.
815      */
816     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
817         AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active,
818             ACPI_MTX_DO_NOT_LOCK);
819         if (bm_active != 0) {
820             AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1,
821                 ACPI_MTX_DO_NOT_LOCK);
822             cx_next_idx = min(cx_next_idx, cpu_non_c3);
823         }
824     }
825
826     /* Select the next state and update statistics. */
827     cx_next = &sc->cpu_cx_states[cx_next_idx];
828     cpu_cx_stats[cx_next_idx]++;
829     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
830
831     /*
832      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
833      * calculate the time spent in C1 since the place we wake up is an
834      * ISR.  Assume we slept one quantum and return.
835      */
836     if (cx_next->type == ACPI_STATE_C1) {
837         sc->cpu_prev_sleep = 1000000 / hz;
838         acpi_cpu_c1();
839         return;
840     }
841
842     /*
843      * For C3, disable bus master arbitration and enable bus master wake
844      * if BM control is available, otherwise flush the CPU cache.
845      */
846     if (cx_next->type == ACPI_STATE_C3) {
847         if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
848             AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK);
849             AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1,
850                 ACPI_MTX_DO_NOT_LOCK);
851         } else
852             ACPI_FLUSH_CPU_CACHE();
853     }
854
855     /*
856      * Read from P_LVLx to enter C2(+), checking time spent asleep.
857      * Use the ACPI timer for measuring sleep time.  Since we need to
858      * get the time very close to the CPU start/stop clock logic, this
859      * is the only reliable time source.
860      */
861     AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT->XPmTmrBlk);
862     CPU_GET_REG(cx_next->p_lvlx, 1);
863
864     /*
865      * Read the end time twice.  Since it may take an arbitrary time
866      * to enter the idle state, the first read may be executed before
867      * the processor has stopped.  Doing it again provides enough
868      * margin that we are certain to have a correct value.
869      */
870     AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
871     AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
872
873     /* Enable bus master arbitration and disable bus master wakeup. */
874     if (cx_next->type == ACPI_STATE_C3 &&
875         (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
876         AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
877         AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
878     }
879     ACPI_ENABLE_IRQS();
880
881     /* Find the actual time asleep in microseconds, minus overhead. */
882     end_time = acpi_TimerDelta(end_time, start_time);
883     sc->cpu_prev_sleep = PM_USEC(end_time) - cx_next->trans_lat;
884 }
885
886 /*
887  * Re-evaluate the _CST object when we are notified that it changed.
888  *
889  * XXX Re-evaluation disabled until locking is done.
890  */
891 static void
892 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
893 {
894     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
895
896     if (notify != ACPI_NOTIFY_CX_STATES)
897         return;
898
899     device_printf(sc->cpu_dev, "Cx states changed\n");
900     /* acpi_cpu_cx_cst(sc); */
901 }
902
903 static int
904 acpi_cpu_quirks(struct acpi_cpu_softc *sc)
905 {
906     device_t acpi_dev;
907
908     /*
909      * C3 on multiple CPUs requires using the expensive flush cache
910      * instruction.
911      */
912     if (mp_ncpus > 1)
913         cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
914
915     /* Look for various quirks of the PIIX4 part. */
916     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
917     if (acpi_dev != NULL) {
918         switch (pci_get_revid(acpi_dev)) {
919         /*
920          * Disable C3 support for all PIIX4 chipsets.  Some of these parts
921          * do not report the BMIDE status to the BM status register and
922          * others have a livelock bug if Type-F DMA is enabled.  Linux
923          * works around the BMIDE bug by reading the BM status directly
924          * but we take the simpler approach of disabling C3 for these
925          * parts.
926          *
927          * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
928          * Livelock") from the January 2002 PIIX4 specification update.
929          * Applies to all PIIX4 models.
930          */
931         case PCI_REVISION_4E:
932         case PCI_REVISION_4M:
933             cpu_quirks |= CPU_QUIRK_NO_C3;
934             break;
935         default:
936             break;
937         }
938     }
939
940     return (0);
941 }
942
943 static int
944 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
945 {
946     struct sbuf  sb;
947     char         buf[128];
948     int          i;
949     uintmax_t    fract, sum, whole;
950
951     sum = 0;
952     for (i = 0; i < cpu_cx_count; i++)
953         sum += cpu_cx_stats[i];
954     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
955     for (i = 0; i < cpu_cx_count; i++) {
956         if (sum > 0) {
957             whole = (uintmax_t)cpu_cx_stats[i] * 100;
958             fract = (whole % sum) * 100;
959             sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
960                 (u_int)(fract / sum));
961         } else
962             sbuf_printf(&sb, "0%% ");
963     }
964     sbuf_trim(&sb);
965     sbuf_finish(&sb);
966     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
967     sbuf_delete(&sb);
968
969     return (0);
970 }
971
972 static int
973 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
974 {
975     struct       acpi_cpu_softc *sc;
976     char         state[8];
977     int          val, error, i;
978
979     sc = device_get_softc(cpu_devices[0]);
980     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
981     error = sysctl_handle_string(oidp, state, sizeof(state), req);
982     if (error != 0 || req->newptr == NULL)
983         return (error);
984     if (strlen(state) < 2 || toupper(state[0]) != 'C')
985         return (EINVAL);
986     val = (int) strtol(state + 1, NULL, 10) - 1;
987     if (val < 0 || val > cpu_cx_count - 1)
988         return (EINVAL);
989
990     ACPI_SERIAL_BEGIN(cpu);
991     cpu_cx_lowest = val;
992
993     /* If not disabling, cache the new lowest non-C3 state. */
994     cpu_non_c3 = 0;
995     for (i = cpu_cx_lowest; i >= 0; i--) {
996         if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
997             cpu_non_c3 = i;
998             break;
999         }
1000     }
1001
1002     /* Reset the statistics counters. */
1003     bzero(cpu_cx_stats, sizeof(cpu_cx_stats));
1004     ACPI_SERIAL_END(cpu);
1005
1006     return (0);
1007 }