]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/acpica/acpi_hpet.c
Avoid relying on header pollution from sys/refcount.h.
[FreeBSD/FreeBSD.git] / sys / dev / acpica / acpi_hpet.c
1 /*-
2  * Copyright (c) 2005 Poul-Henning Kamp
3  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_acpi.h"
32
33 #if defined(__amd64__)
34 #define DEV_APIC
35 #else
36 #include "opt_apic.h"
37 #endif
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/bus.h>
41 #include <sys/kernel.h>
42 #include <sys/module.h>
43 #include <sys/proc.h>
44 #include <sys/rman.h>
45 #include <sys/mman.h>
46 #include <sys/time.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51 #include <sys/vdso.h>
52
53 #include <contrib/dev/acpica/include/acpi.h>
54 #include <contrib/dev/acpica/include/accommon.h>
55
56 #include <dev/acpica/acpivar.h>
57 #include <dev/acpica/acpi_hpet.h>
58
59 #ifdef DEV_APIC
60 #include "pcib_if.h"
61 #endif
62
63 #define HPET_VENDID_AMD         0x4353
64 #define HPET_VENDID_AMD2        0x1022
65 #define HPET_VENDID_INTEL       0x8086
66 #define HPET_VENDID_NVIDIA      0x10de
67 #define HPET_VENDID_SW          0x1166
68
69 ACPI_SERIAL_DECL(hpet, "ACPI HPET support");
70
71 static devclass_t hpet_devclass;
72
73 /* ACPI CA debugging */
74 #define _COMPONENT      ACPI_TIMER
75 ACPI_MODULE_NAME("HPET")
76
77 struct hpet_softc {
78         device_t                dev;
79         int                     mem_rid;
80         int                     intr_rid;
81         int                     irq;
82         int                     useirq;
83         int                     legacy_route;
84         int                     per_cpu;
85         uint32_t                allowed_irqs;
86         struct resource         *mem_res;
87         struct resource         *intr_res;
88         void                    *intr_handle;
89         ACPI_HANDLE             handle;
90         uint32_t                acpi_uid;
91         uint64_t                freq;
92         uint32_t                caps;
93         struct timecounter      tc;
94         struct hpet_timer {
95                 struct eventtimer       et;
96                 struct hpet_softc       *sc;
97                 int                     num;
98                 int                     mode;
99 #define TIMER_STOPPED   0
100 #define TIMER_PERIODIC  1
101 #define TIMER_ONESHOT   2
102                 int                     intr_rid;
103                 int                     irq;
104                 int                     pcpu_cpu;
105                 int                     pcpu_misrouted;
106                 int                     pcpu_master;
107                 int                     pcpu_slaves[MAXCPU];
108                 struct resource         *intr_res;
109                 void                    *intr_handle;
110                 uint32_t                caps;
111                 uint32_t                vectors;
112                 uint32_t                div;
113                 uint32_t                next;
114                 char                    name[8];
115         }                       t[32];
116         int                     num_timers;
117         struct cdev             *pdev;
118         int                     mmap_allow;
119         int                     mmap_allow_write;
120 };
121
122 static d_open_t hpet_open;
123 static d_mmap_t hpet_mmap;
124
125 static struct cdevsw hpet_cdevsw = {
126         .d_version =    D_VERSION,
127         .d_name =       "hpet",
128         .d_open =       hpet_open,
129         .d_mmap =       hpet_mmap,
130 };
131
132 static u_int hpet_get_timecount(struct timecounter *tc);
133 static void hpet_test(struct hpet_softc *sc);
134
135 static char *hpet_ids[] = { "PNP0103", NULL };
136
137 /* Knob to disable acpi_hpet device */
138 bool acpi_hpet_disabled = false;
139
140 static u_int
141 hpet_get_timecount(struct timecounter *tc)
142 {
143         struct hpet_softc *sc;
144
145         sc = tc->tc_priv;
146         return (bus_read_4(sc->mem_res, HPET_MAIN_COUNTER));
147 }
148
149 uint32_t
150 hpet_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
151 {
152         struct hpet_softc *sc;
153
154         sc = tc->tc_priv;
155         vdso_th->th_algo = VDSO_TH_ALGO_X86_HPET;
156         vdso_th->th_x86_shift = 0;
157         vdso_th->th_x86_hpet_idx = device_get_unit(sc->dev);
158         bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
159         return (sc->mmap_allow != 0);
160 }
161
162 #ifdef COMPAT_FREEBSD32
163 uint32_t
164 hpet_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
165     struct timecounter *tc)
166 {
167         struct hpet_softc *sc;
168
169         sc = tc->tc_priv;
170         vdso_th32->th_algo = VDSO_TH_ALGO_X86_HPET;
171         vdso_th32->th_x86_shift = 0;
172         vdso_th32->th_x86_hpet_idx = device_get_unit(sc->dev);
173         bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
174         return (sc->mmap_allow != 0);
175 }
176 #endif
177
178 static void
179 hpet_enable(struct hpet_softc *sc)
180 {
181         uint32_t val;
182
183         val = bus_read_4(sc->mem_res, HPET_CONFIG);
184         if (sc->legacy_route)
185                 val |= HPET_CNF_LEG_RT;
186         else
187                 val &= ~HPET_CNF_LEG_RT;
188         val |= HPET_CNF_ENABLE;
189         bus_write_4(sc->mem_res, HPET_CONFIG, val);
190 }
191
192 static void
193 hpet_disable(struct hpet_softc *sc)
194 {
195         uint32_t val;
196
197         val = bus_read_4(sc->mem_res, HPET_CONFIG);
198         val &= ~HPET_CNF_ENABLE;
199         bus_write_4(sc->mem_res, HPET_CONFIG, val);
200 }
201
202 static int
203 hpet_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
204 {
205         struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
206         struct hpet_timer *t;
207         struct hpet_softc *sc = mt->sc;
208         uint32_t fdiv, now;
209
210         t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
211         if (period != 0) {
212                 t->mode = TIMER_PERIODIC;
213                 t->div = (sc->freq * period) >> 32;
214         } else {
215                 t->mode = TIMER_ONESHOT;
216                 t->div = 0;
217         }
218         if (first != 0)
219                 fdiv = (sc->freq * first) >> 32;
220         else
221                 fdiv = t->div;
222         if (t->irq < 0)
223                 bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
224         t->caps |= HPET_TCNF_INT_ENB;
225         now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
226 restart:
227         t->next = now + fdiv;
228         if (t->mode == TIMER_PERIODIC && (t->caps & HPET_TCAP_PER_INT)) {
229                 t->caps |= HPET_TCNF_TYPE;
230                 bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
231                     t->caps | HPET_TCNF_VAL_SET);
232                 bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
233                     t->next);
234                 bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
235                     t->div);
236         } else {
237                 t->caps &= ~HPET_TCNF_TYPE;
238                 bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
239                     t->caps);
240                 bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
241                     t->next);
242         }
243         now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
244         if ((int32_t)(now - t->next + HPET_MIN_CYCLES) >= 0) {
245                 fdiv *= 2;
246                 goto restart;
247         }
248         return (0);
249 }
250
251 static int
252 hpet_stop(struct eventtimer *et)
253 {
254         struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
255         struct hpet_timer *t;
256         struct hpet_softc *sc = mt->sc;
257
258         t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
259         t->mode = TIMER_STOPPED;
260         t->caps &= ~(HPET_TCNF_INT_ENB | HPET_TCNF_TYPE);
261         bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
262         return (0);
263 }
264
265 static int
266 hpet_intr_single(void *arg)
267 {
268         struct hpet_timer *t = (struct hpet_timer *)arg;
269         struct hpet_timer *mt;
270         struct hpet_softc *sc = t->sc;
271         uint32_t now;
272
273         if (t->mode == TIMER_STOPPED)
274                 return (FILTER_STRAY);
275         /* Check that per-CPU timer interrupt reached right CPU. */
276         if (t->pcpu_cpu >= 0 && t->pcpu_cpu != curcpu) {
277                 if ((++t->pcpu_misrouted) % 32 == 0) {
278                         printf("HPET interrupt routed to the wrong CPU"
279                             " (timer %d CPU %d -> %d)!\n",
280                             t->num, t->pcpu_cpu, curcpu);
281                 }
282
283                 /*
284                  * Reload timer, hoping that next time may be more lucky
285                  * (system will manage proper interrupt binding).
286                  */
287                 if ((t->mode == TIMER_PERIODIC &&
288                     (t->caps & HPET_TCAP_PER_INT) == 0) ||
289                     t->mode == TIMER_ONESHOT) {
290                         t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER) +
291                             sc->freq / 8;
292                         bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
293                             t->next);
294                 }
295                 return (FILTER_HANDLED);
296         }
297         if (t->mode == TIMER_PERIODIC &&
298             (t->caps & HPET_TCAP_PER_INT) == 0) {
299                 t->next += t->div;
300                 now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
301                 if ((int32_t)((now + t->div / 2) - t->next) > 0)
302                         t->next = now + t->div / 2;
303                 bus_write_4(sc->mem_res,
304                     HPET_TIMER_COMPARATOR(t->num), t->next);
305         } else if (t->mode == TIMER_ONESHOT)
306                 t->mode = TIMER_STOPPED;
307         mt = (t->pcpu_master < 0) ? t : &sc->t[t->pcpu_master];
308         if (mt->et.et_active)
309                 mt->et.et_event_cb(&mt->et, mt->et.et_arg);
310         return (FILTER_HANDLED);
311 }
312
313 static int
314 hpet_intr(void *arg)
315 {
316         struct hpet_softc *sc = (struct hpet_softc *)arg;
317         int i;
318         uint32_t val;
319
320         val = bus_read_4(sc->mem_res, HPET_ISR);
321         if (val) {
322                 bus_write_4(sc->mem_res, HPET_ISR, val);
323                 val &= sc->useirq;
324                 for (i = 0; i < sc->num_timers; i++) {
325                         if ((val & (1 << i)) == 0)
326                                 continue;
327                         hpet_intr_single(&sc->t[i]);
328                 }
329                 return (FILTER_HANDLED);
330         }
331         return (FILTER_STRAY);
332 }
333
334 uint32_t
335 hpet_get_uid(device_t dev)
336 {
337         struct hpet_softc *sc;
338
339         sc = device_get_softc(dev);
340         return (sc->acpi_uid);
341 }
342
343 static ACPI_STATUS
344 hpet_find(ACPI_HANDLE handle, UINT32 level, void *context,
345     void **status)
346 {
347         char            **ids;
348         uint32_t        id = (uint32_t)(uintptr_t)context;
349         uint32_t        uid = 0;
350
351         for (ids = hpet_ids; *ids != NULL; ids++) {
352                 if (acpi_MatchHid(handle, *ids))
353                         break;
354         }
355         if (*ids == NULL)
356                 return (AE_OK);
357         if (ACPI_FAILURE(acpi_GetInteger(handle, "_UID", &uid)) ||
358             id == uid)
359                 *status = acpi_get_device(handle);
360         return (AE_OK);
361 }
362
363 /*
364  * Find an existing IRQ resource that matches the requested IRQ range
365  * and return its RID.  If one is not found, use a new RID.
366  */
367 static int
368 hpet_find_irq_rid(device_t dev, u_long start, u_long end)
369 {
370         rman_res_t irq;
371         int error, rid;
372
373         for (rid = 0;; rid++) {
374                 error = bus_get_resource(dev, SYS_RES_IRQ, rid, &irq, NULL);
375                 if (error != 0 || (start <= irq && irq <= end))
376                         return (rid);
377         }
378 }
379
380 static int
381 hpet_open(struct cdev *cdev, int oflags, int devtype, struct thread *td)
382 {
383         struct hpet_softc *sc;
384
385         sc = cdev->si_drv1;
386         if (!sc->mmap_allow)
387                 return (EPERM);
388         else
389                 return (0);
390 }
391
392 static int
393 hpet_mmap(struct cdev *cdev, vm_ooffset_t offset, vm_paddr_t *paddr,
394     int nprot, vm_memattr_t *memattr)
395 {
396         struct hpet_softc *sc;
397
398         sc = cdev->si_drv1;
399         if (offset >= rman_get_size(sc->mem_res))
400                 return (EINVAL);
401         if (!sc->mmap_allow_write && (nprot & PROT_WRITE))
402                 return (EPERM);
403         *paddr = rman_get_start(sc->mem_res) + offset;
404         *memattr = VM_MEMATTR_UNCACHEABLE;
405
406         return (0);
407 }
408
409 /* Discover the HPET via the ACPI table of the same name. */
410 static void
411 hpet_identify(driver_t *driver, device_t parent)
412 {
413         ACPI_TABLE_HPET *hpet;
414         ACPI_STATUS     status;
415         device_t        child;
416         int             i;
417
418         /* Only one HPET device can be added. */
419         if (devclass_get_device(hpet_devclass, 0))
420                 return;
421         for (i = 1; ; i++) {
422                 /* Search for HPET table. */
423                 status = AcpiGetTable(ACPI_SIG_HPET, i, (ACPI_TABLE_HEADER **)&hpet);
424                 if (ACPI_FAILURE(status))
425                         return;
426                 /* Search for HPET device with same ID. */
427                 child = NULL;
428                 AcpiWalkNamespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
429                     100, hpet_find, NULL, (void *)(uintptr_t)hpet->Sequence,
430                     (void *)&child);
431                 /* If found - let it be probed in normal way. */
432                 if (child) {
433                         if (bus_get_resource(child, SYS_RES_MEMORY, 0,
434                             NULL, NULL) != 0)
435                                 bus_set_resource(child, SYS_RES_MEMORY, 0,
436                                     hpet->Address.Address, HPET_MEM_WIDTH);
437                         continue;
438                 }
439                 /* If not - create it from table info. */
440                 child = BUS_ADD_CHILD(parent, 2, "hpet", 0);
441                 if (child == NULL) {
442                         printf("%s: can't add child\n", __func__);
443                         continue;
444                 }
445                 bus_set_resource(child, SYS_RES_MEMORY, 0, hpet->Address.Address,
446                     HPET_MEM_WIDTH);
447         }
448 }
449
450 static int
451 hpet_probe(device_t dev)
452 {
453         int rv;
454
455         ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
456         if (acpi_disabled("hpet") || acpi_hpet_disabled)
457                 return (ENXIO);
458         if (acpi_get_handle(dev) != NULL)
459                 rv = ACPI_ID_PROBE(device_get_parent(dev), dev, hpet_ids, NULL);
460         else
461                 rv = 0;
462         if (rv <= 0)
463                 device_set_desc(dev, "High Precision Event Timer");
464         return (rv);
465 }
466
467 static int
468 hpet_attach(device_t dev)
469 {
470         struct hpet_softc *sc;
471         struct hpet_timer *t;
472         struct make_dev_args mda;
473         int i, j, num_msi, num_timers, num_percpu_et, num_percpu_t, cur_cpu;
474         int pcpu_master, error;
475         static int maxhpetet = 0;
476         uint32_t val, val2, cvectors, dvectors;
477         uint16_t vendor, rev;
478
479         ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
480
481         sc = device_get_softc(dev);
482         sc->dev = dev;
483         sc->handle = acpi_get_handle(dev);
484
485         sc->mem_rid = 0;
486         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
487             RF_ACTIVE);
488         if (sc->mem_res == NULL)
489                 return (ENOMEM);
490
491         /* Validate that we can access the whole region. */
492         if (rman_get_size(sc->mem_res) < HPET_MEM_WIDTH) {
493                 device_printf(dev, "memory region width %jd too small\n",
494                     rman_get_size(sc->mem_res));
495                 bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
496                 return (ENXIO);
497         }
498
499         /* Be sure timer is enabled. */
500         hpet_enable(sc);
501
502         /* Read basic statistics about the timer. */
503         val = bus_read_4(sc->mem_res, HPET_PERIOD);
504         if (val == 0) {
505                 device_printf(dev, "invalid period\n");
506                 hpet_disable(sc);
507                 bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
508                 return (ENXIO);
509         }
510
511         sc->freq = (1000000000000000LL + val / 2) / val;
512         sc->caps = bus_read_4(sc->mem_res, HPET_CAPABILITIES);
513         vendor = (sc->caps & HPET_CAP_VENDOR_ID) >> 16;
514         rev = sc->caps & HPET_CAP_REV_ID;
515         num_timers = 1 + ((sc->caps & HPET_CAP_NUM_TIM) >> 8);
516         /*
517          * ATI/AMD violates IA-PC HPET (High Precision Event Timers)
518          * Specification and provides an off by one number
519          * of timers/comparators.
520          * Additionally, they use unregistered value in VENDOR_ID field.
521          */
522         if (vendor == HPET_VENDID_AMD && rev < 0x10 && num_timers > 0)
523                 num_timers--;
524         sc->num_timers = num_timers;
525         if (bootverbose) {
526                 device_printf(dev,
527                     "vendor 0x%x, rev 0x%x, %jdHz%s, %d timers,%s\n",
528                     vendor, rev, sc->freq,
529                     (sc->caps & HPET_CAP_COUNT_SIZE) ? " 64bit" : "",
530                     num_timers,
531                     (sc->caps & HPET_CAP_LEG_RT) ? " legacy route" : "");
532         }
533         for (i = 0; i < num_timers; i++) {
534                 t = &sc->t[i];
535                 t->sc = sc;
536                 t->num = i;
537                 t->mode = TIMER_STOPPED;
538                 t->intr_rid = -1;
539                 t->irq = -1;
540                 t->pcpu_cpu = -1;
541                 t->pcpu_misrouted = 0;
542                 t->pcpu_master = -1;
543                 t->caps = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i));
544                 t->vectors = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i) + 4);
545                 if (bootverbose) {
546                         device_printf(dev,
547                             " t%d: irqs 0x%08x (%d)%s%s%s\n", i,
548                             t->vectors, (t->caps & HPET_TCNF_INT_ROUTE) >> 9,
549                             (t->caps & HPET_TCAP_FSB_INT_DEL) ? ", MSI" : "",
550                             (t->caps & HPET_TCAP_SIZE) ? ", 64bit" : "",
551                             (t->caps & HPET_TCAP_PER_INT) ? ", periodic" : "");
552                 }
553         }
554         if (testenv("debug.acpi.hpet_test"))
555                 hpet_test(sc);
556         /*
557          * Don't attach if the timer never increments.  Since the spec
558          * requires it to be at least 10 MHz, it has to change in 1 us.
559          */
560         val = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
561         DELAY(1);
562         val2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
563         if (val == val2) {
564                 device_printf(dev, "HPET never increments, disabling\n");
565                 hpet_disable(sc);
566                 bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
567                 return (ENXIO);
568         }
569         /* Announce first HPET as timecounter. */
570         if (device_get_unit(dev) == 0) {
571                 sc->tc.tc_get_timecount = hpet_get_timecount,
572                 sc->tc.tc_counter_mask = ~0u,
573                 sc->tc.tc_name = "HPET",
574                 sc->tc.tc_quality = 950,
575                 sc->tc.tc_frequency = sc->freq;
576                 sc->tc.tc_priv = sc;
577                 sc->tc.tc_fill_vdso_timehands = hpet_vdso_timehands;
578 #ifdef COMPAT_FREEBSD32
579                 sc->tc.tc_fill_vdso_timehands32 = hpet_vdso_timehands32;
580 #endif
581                 tc_init(&sc->tc);
582         }
583         /* If not disabled - setup and announce event timers. */
584         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
585              "clock", &i) == 0 && i == 0)
586                 return (0);
587
588         /* Check whether we can and want legacy routing. */
589         sc->legacy_route = 0;
590         resource_int_value(device_get_name(dev), device_get_unit(dev),
591              "legacy_route", &sc->legacy_route);
592         if ((sc->caps & HPET_CAP_LEG_RT) == 0)
593                 sc->legacy_route = 0;
594         if (sc->legacy_route) {
595                 sc->t[0].vectors = 0;
596                 sc->t[1].vectors = 0;
597         }
598
599         /* Check what IRQs we want use. */
600         /* By default allow any PCI IRQs. */
601         sc->allowed_irqs = 0xffff0000;
602         /*
603          * HPETs in AMD chipsets before SB800 have problems with IRQs >= 16
604          * Lower are also not always working for different reasons.
605          * SB800 fixed it, but seems do not implements level triggering
606          * properly, that makes it very unreliable - it freezes after any
607          * interrupt loss. Avoid legacy IRQs for AMD.
608          */
609         if (vendor == HPET_VENDID_AMD || vendor == HPET_VENDID_AMD2)
610                 sc->allowed_irqs = 0x00000000;
611         /*
612          * NVidia MCP5x chipsets have number of unexplained interrupt
613          * problems. For some reason, using HPET interrupts breaks HDA sound.
614          */
615         if (vendor == HPET_VENDID_NVIDIA && rev <= 0x01)
616                 sc->allowed_irqs = 0x00000000;
617         /*
618          * ServerWorks HT1000 reported to have problems with IRQs >= 16.
619          * Lower IRQs are working, but allowed mask is not set correctly.
620          * Legacy_route mode works fine.
621          */
622         if (vendor == HPET_VENDID_SW && rev <= 0x01)
623                 sc->allowed_irqs = 0x00000000;
624         /*
625          * Neither QEMU nor VirtualBox report supported IRQs correctly.
626          * The only way to use HPET there is to specify IRQs manually
627          * and/or use legacy_route. Legacy_route mode works on both.
628          */
629         if (vm_guest)
630                 sc->allowed_irqs = 0x00000000;
631         /* Let user override. */
632         resource_int_value(device_get_name(dev), device_get_unit(dev),
633              "allowed_irqs", &sc->allowed_irqs);
634
635         /* Get how much per-CPU timers we should try to provide. */
636         sc->per_cpu = 1;
637         resource_int_value(device_get_name(dev), device_get_unit(dev),
638              "per_cpu", &sc->per_cpu);
639
640         num_msi = 0;
641         sc->useirq = 0;
642         /* Find IRQ vectors for all timers. */
643         cvectors = sc->allowed_irqs & 0xffff0000;
644         dvectors = sc->allowed_irqs & 0x0000ffff;
645         if (sc->legacy_route)
646                 dvectors &= 0x0000fefe;
647         for (i = 0; i < num_timers; i++) {
648                 t = &sc->t[i];
649                 if (sc->legacy_route && i < 2)
650                         t->irq = (i == 0) ? 0 : 8;
651 #ifdef DEV_APIC
652                 else if (t->caps & HPET_TCAP_FSB_INT_DEL) {
653                         if ((j = PCIB_ALLOC_MSIX(
654                             device_get_parent(device_get_parent(dev)), dev,
655                             &t->irq))) {
656                                 device_printf(dev,
657                                     "Can't allocate interrupt for t%d: %d\n",
658                                     i, j);
659                         }
660                 }
661 #endif
662                 else if (dvectors & t->vectors) {
663                         t->irq = ffs(dvectors & t->vectors) - 1;
664                         dvectors &= ~(1 << t->irq);
665                 }
666                 if (t->irq >= 0) {
667                         t->intr_rid = hpet_find_irq_rid(dev, t->irq, t->irq);
668                         t->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
669                             &t->intr_rid, t->irq, t->irq, 1, RF_ACTIVE);
670                         if (t->intr_res == NULL) {
671                                 t->irq = -1;
672                                 device_printf(dev,
673                                     "Can't map interrupt for t%d.\n", i);
674                         } else if (bus_setup_intr(dev, t->intr_res,
675                             INTR_TYPE_CLK, hpet_intr_single, NULL, t,
676                             &t->intr_handle) != 0) {
677                                 t->irq = -1;
678                                 device_printf(dev,
679                                     "Can't setup interrupt for t%d.\n", i);
680                         } else {
681                                 bus_describe_intr(dev, t->intr_res,
682                                     t->intr_handle, "t%d", i);
683                                 num_msi++;
684                         }
685                 }
686                 if (t->irq < 0 && (cvectors & t->vectors) != 0) {
687                         cvectors &= t->vectors;
688                         sc->useirq |= (1 << i);
689                 }
690         }
691         if (sc->legacy_route && sc->t[0].irq < 0 && sc->t[1].irq < 0)
692                 sc->legacy_route = 0;
693         if (sc->legacy_route)
694                 hpet_enable(sc);
695         /* Group timers for per-CPU operation. */
696         num_percpu_et = min(num_msi / mp_ncpus, sc->per_cpu);
697         num_percpu_t = num_percpu_et * mp_ncpus;
698         pcpu_master = 0;
699         cur_cpu = CPU_FIRST();
700         for (i = 0; i < num_timers; i++) {
701                 t = &sc->t[i];
702                 if (t->irq >= 0 && num_percpu_t > 0) {
703                         if (cur_cpu == CPU_FIRST())
704                                 pcpu_master = i;
705                         t->pcpu_cpu = cur_cpu;
706                         t->pcpu_master = pcpu_master;
707                         sc->t[pcpu_master].
708                             pcpu_slaves[cur_cpu] = i;
709                         bus_bind_intr(dev, t->intr_res, cur_cpu);
710                         cur_cpu = CPU_NEXT(cur_cpu);
711                         num_percpu_t--;
712                 } else if (t->irq >= 0)
713                         bus_bind_intr(dev, t->intr_res, CPU_FIRST());
714         }
715         bus_write_4(sc->mem_res, HPET_ISR, 0xffffffff);
716         sc->irq = -1;
717         /* If at least one timer needs legacy IRQ - set it up. */
718         if (sc->useirq) {
719                 j = i = fls(cvectors) - 1;
720                 while (j > 0 && (cvectors & (1 << (j - 1))) != 0)
721                         j--;
722                 sc->intr_rid = hpet_find_irq_rid(dev, j, i);
723                 sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
724                     &sc->intr_rid, j, i, 1, RF_SHAREABLE | RF_ACTIVE);
725                 if (sc->intr_res == NULL)
726                         device_printf(dev, "Can't map interrupt.\n");
727                 else if (bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
728                     hpet_intr, NULL, sc, &sc->intr_handle) != 0) {
729                         device_printf(dev, "Can't setup interrupt.\n");
730                 } else {
731                         sc->irq = rman_get_start(sc->intr_res);
732                         /* Bind IRQ to BSP to avoid live migration. */
733                         bus_bind_intr(dev, sc->intr_res, CPU_FIRST());
734                 }
735         }
736         /* Program and announce event timers. */
737         for (i = 0; i < num_timers; i++) {
738                 t = &sc->t[i];
739                 t->caps &= ~(HPET_TCNF_FSB_EN | HPET_TCNF_INT_ROUTE);
740                 t->caps &= ~(HPET_TCNF_VAL_SET | HPET_TCNF_INT_ENB);
741                 t->caps &= ~(HPET_TCNF_INT_TYPE);
742                 t->caps |= HPET_TCNF_32MODE;
743                 if (t->irq >= 0 && sc->legacy_route && i < 2) {
744                         /* Legacy route doesn't need more configuration. */
745                 } else
746 #ifdef DEV_APIC
747                 if ((t->caps & HPET_TCAP_FSB_INT_DEL) && t->irq >= 0) {
748                         uint64_t addr;
749                         uint32_t data;
750
751                         if (PCIB_MAP_MSI(
752                             device_get_parent(device_get_parent(dev)), dev,
753                             t->irq, &addr, &data) == 0) {
754                                 bus_write_4(sc->mem_res,
755                                     HPET_TIMER_FSB_ADDR(i), addr);
756                                 bus_write_4(sc->mem_res,
757                                     HPET_TIMER_FSB_VAL(i), data);
758                                 t->caps |= HPET_TCNF_FSB_EN;
759                         } else
760                                 t->irq = -2;
761                 } else
762 #endif
763                 if (t->irq >= 0)
764                         t->caps |= (t->irq << 9);
765                 else if (sc->irq >= 0 && (t->vectors & (1 << sc->irq)))
766                         t->caps |= (sc->irq << 9) | HPET_TCNF_INT_TYPE;
767                 bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(i), t->caps);
768                 /* Skip event timers without set up IRQ. */
769                 if (t->irq < 0 &&
770                     (sc->irq < 0 || (t->vectors & (1 << sc->irq)) == 0))
771                         continue;
772                 /* Announce the reset. */
773                 if (maxhpetet == 0)
774                         t->et.et_name = "HPET";
775                 else {
776                         sprintf(t->name, "HPET%d", maxhpetet);
777                         t->et.et_name = t->name;
778                 }
779                 t->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT;
780                 t->et.et_quality = 450;
781                 if (t->pcpu_master >= 0) {
782                         t->et.et_flags |= ET_FLAGS_PERCPU;
783                         t->et.et_quality += 100;
784                 } else if (mp_ncpus >= 8)
785                         t->et.et_quality -= 100;
786                 if ((t->caps & HPET_TCAP_PER_INT) == 0)
787                         t->et.et_quality -= 10;
788                 t->et.et_frequency = sc->freq;
789                 t->et.et_min_period =
790                     ((uint64_t)(HPET_MIN_CYCLES * 2) << 32) / sc->freq;
791                 t->et.et_max_period = (0xfffffffeLLU << 32) / sc->freq;
792                 t->et.et_start = hpet_start;
793                 t->et.et_stop = hpet_stop;
794                 t->et.et_priv = &sc->t[i];
795                 if (t->pcpu_master < 0 || t->pcpu_master == i) {
796                         et_register(&t->et);
797                         maxhpetet++;
798                 }
799         }
800         acpi_GetInteger(sc->handle, "_UID", &sc->acpi_uid);
801
802         make_dev_args_init(&mda);
803         mda.mda_devsw = &hpet_cdevsw;
804         mda.mda_uid = UID_ROOT;
805         mda.mda_gid = GID_WHEEL;
806         mda.mda_mode = 0644;
807         mda.mda_si_drv1 = sc;
808         error = make_dev_s(&mda, &sc->pdev, "hpet%d", device_get_unit(dev));
809         if (error == 0) {
810                 sc->mmap_allow = 1;
811                 TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow",
812                     &sc->mmap_allow);
813                 sc->mmap_allow_write = 0;
814                 TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow_write",
815                     &sc->mmap_allow_write);
816                 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
817                     SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
818                     OID_AUTO, "mmap_allow",
819                     CTLFLAG_RW, &sc->mmap_allow, 0,
820                     "Allow userland to memory map HPET");
821                 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
822                     SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
823                     OID_AUTO, "mmap_allow_write",
824                     CTLFLAG_RW, &sc->mmap_allow_write, 0,
825                     "Allow userland write to the HPET register space");
826         } else {
827                 device_printf(dev, "could not create /dev/hpet%d, error %d\n",
828                     device_get_unit(dev), error);
829         }
830
831         return (0);
832 }
833
834 static int
835 hpet_detach(device_t dev)
836 {
837         ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
838
839         /* XXX Without a tc_remove() function, we can't detach. */
840         return (EBUSY);
841 }
842
843 static int
844 hpet_suspend(device_t dev)
845 {
846 //      struct hpet_softc *sc;
847
848         /*
849          * Disable the timer during suspend.  The timer will not lose
850          * its state in S1 or S2, but we are required to disable
851          * it.
852          */
853 //      sc = device_get_softc(dev);
854 //      hpet_disable(sc);
855
856         return (0);
857 }
858
859 static int
860 hpet_resume(device_t dev)
861 {
862         struct hpet_softc *sc;
863         struct hpet_timer *t;
864         int i;
865
866         /* Re-enable the timer after a resume to keep the clock advancing. */
867         sc = device_get_softc(dev);
868         hpet_enable(sc);
869         /* Restart event timers that were running on suspend. */
870         for (i = 0; i < sc->num_timers; i++) {
871                 t = &sc->t[i];
872 #ifdef DEV_APIC
873                 if (t->irq >= 0 && (sc->legacy_route == 0 || i >= 2)) {
874                         uint64_t addr;
875                         uint32_t data;
876
877                         if (PCIB_MAP_MSI(
878                             device_get_parent(device_get_parent(dev)), dev,
879                             t->irq, &addr, &data) == 0) {
880                                 bus_write_4(sc->mem_res,
881                                     HPET_TIMER_FSB_ADDR(i), addr);
882                                 bus_write_4(sc->mem_res,
883                                     HPET_TIMER_FSB_VAL(i), data);
884                         }
885                 }
886 #endif
887                 if (t->mode == TIMER_STOPPED)
888                         continue;
889                 t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
890                 if (t->mode == TIMER_PERIODIC &&
891                     (t->caps & HPET_TCAP_PER_INT) != 0) {
892                         t->caps |= HPET_TCNF_TYPE;
893                         t->next += t->div;
894                         bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
895                             t->caps | HPET_TCNF_VAL_SET);
896                         bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
897                             t->next);
898                         bus_read_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num));
899                         bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
900                             t->div);
901                 } else {
902                         t->next += sc->freq / 1024;
903                         bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
904                             t->next);
905                 }
906                 bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
907                 bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
908         }
909         return (0);
910 }
911
912 /* Print some basic latency/rate information to assist in debugging. */
913 static void
914 hpet_test(struct hpet_softc *sc)
915 {
916         int i;
917         uint32_t u1, u2;
918         struct bintime b0, b1, b2;
919         struct timespec ts;
920
921         binuptime(&b0);
922         binuptime(&b0);
923         binuptime(&b1);
924         u1 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
925         for (i = 1; i < 1000; i++)
926                 u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
927         binuptime(&b2);
928         u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
929
930         bintime_sub(&b2, &b1);
931         bintime_sub(&b1, &b0);
932         bintime_sub(&b2, &b1);
933         bintime2timespec(&b2, &ts);
934
935         device_printf(sc->dev, "%ld.%09ld: %u ... %u = %u\n",
936             (long)ts.tv_sec, ts.tv_nsec, u1, u2, u2 - u1);
937
938         device_printf(sc->dev, "time per call: %ld ns\n", ts.tv_nsec / 1000);
939 }
940
941 #ifdef DEV_APIC
942 static int
943 hpet_remap_intr(device_t dev, device_t child, u_int irq)
944 {
945         struct hpet_softc *sc = device_get_softc(dev);
946         struct hpet_timer *t;
947         uint64_t addr;
948         uint32_t data;
949         int error, i;
950
951         for (i = 0; i < sc->num_timers; i++) {
952                 t = &sc->t[i];
953                 if (t->irq != irq)
954                         continue;
955                 error = PCIB_MAP_MSI(
956                     device_get_parent(device_get_parent(dev)), dev,
957                     irq, &addr, &data);
958                 if (error)
959                         return (error);
960                 hpet_disable(sc); /* Stop timer to avoid interrupt loss. */
961                 bus_write_4(sc->mem_res, HPET_TIMER_FSB_ADDR(i), addr);
962                 bus_write_4(sc->mem_res, HPET_TIMER_FSB_VAL(i), data);
963                 hpet_enable(sc);
964                 return (0);
965         }
966         return (ENOENT);
967 }
968 #endif
969
970 static device_method_t hpet_methods[] = {
971         /* Device interface */
972         DEVMETHOD(device_identify, hpet_identify),
973         DEVMETHOD(device_probe, hpet_probe),
974         DEVMETHOD(device_attach, hpet_attach),
975         DEVMETHOD(device_detach, hpet_detach),
976         DEVMETHOD(device_suspend, hpet_suspend),
977         DEVMETHOD(device_resume, hpet_resume),
978
979 #ifdef DEV_APIC
980         DEVMETHOD(bus_remap_intr, hpet_remap_intr),
981 #endif
982
983         DEVMETHOD_END
984 };
985
986 static driver_t hpet_driver = {
987         "hpet",
988         hpet_methods,
989         sizeof(struct hpet_softc),
990 };
991
992 DRIVER_MODULE(hpet, acpi, hpet_driver, hpet_devclass, 0, 0);
993 MODULE_DEPEND(hpet, acpi, 1, 1, 1);