]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/acpica/acpi_hpet.c
Merge libc++ trunk r338150, and resolve conflicts.
[FreeBSD/FreeBSD.git] / sys / dev / acpica / acpi_hpet.c
1 /*-
2  * Copyright (c) 2005 Poul-Henning Kamp
3  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_acpi.h"
32
33 #if defined(__amd64__)
34 #define DEV_APIC
35 #else
36 #include "opt_apic.h"
37 #endif
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/bus.h>
41 #include <sys/kernel.h>
42 #include <sys/module.h>
43 #include <sys/proc.h>
44 #include <sys/rman.h>
45 #include <sys/mman.h>
46 #include <sys/time.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51 #include <sys/vdso.h>
52
53 #include <contrib/dev/acpica/include/acpi.h>
54 #include <contrib/dev/acpica/include/accommon.h>
55
56 #include <dev/acpica/acpivar.h>
57 #include <dev/acpica/acpi_hpet.h>
58
59 #ifdef DEV_APIC
60 #include "pcib_if.h"
61 #endif
62
63 #define HPET_VENDID_AMD         0x4353
64 #define HPET_VENDID_AMD2        0x1022
65 #define HPET_VENDID_INTEL       0x8086
66 #define HPET_VENDID_NVIDIA      0x10de
67 #define HPET_VENDID_SW          0x1166
68
69 ACPI_SERIAL_DECL(hpet, "ACPI HPET support");
70
71 static devclass_t hpet_devclass;
72
73 /* ACPI CA debugging */
74 #define _COMPONENT      ACPI_TIMER
75 ACPI_MODULE_NAME("HPET")
76
77 struct hpet_softc {
78         device_t                dev;
79         int                     mem_rid;
80         int                     intr_rid;
81         int                     irq;
82         int                     useirq;
83         int                     legacy_route;
84         int                     per_cpu;
85         uint32_t                allowed_irqs;
86         struct resource         *mem_res;
87         struct resource         *intr_res;
88         void                    *intr_handle;
89         ACPI_HANDLE             handle;
90         uint32_t                acpi_uid;
91         uint64_t                freq;
92         uint32_t                caps;
93         struct timecounter      tc;
94         struct hpet_timer {
95                 struct eventtimer       et;
96                 struct hpet_softc       *sc;
97                 int                     num;
98                 int                     mode;
99 #define TIMER_STOPPED   0
100 #define TIMER_PERIODIC  1
101 #define TIMER_ONESHOT   2
102                 int                     intr_rid;
103                 int                     irq;
104                 int                     pcpu_cpu;
105                 int                     pcpu_misrouted;
106                 int                     pcpu_master;
107                 int                     pcpu_slaves[MAXCPU];
108                 struct resource         *intr_res;
109                 void                    *intr_handle;
110                 uint32_t                caps;
111                 uint32_t                vectors;
112                 uint32_t                div;
113                 uint32_t                next;
114                 char                    name[8];
115         }                       t[32];
116         int                     num_timers;
117         struct cdev             *pdev;
118         int                     mmap_allow;
119         int                     mmap_allow_write;
120 };
121
122 static d_open_t hpet_open;
123 static d_mmap_t hpet_mmap;
124
125 static struct cdevsw hpet_cdevsw = {
126         .d_version =    D_VERSION,
127         .d_name =       "hpet",
128         .d_open =       hpet_open,
129         .d_mmap =       hpet_mmap,
130 };
131
132 static u_int hpet_get_timecount(struct timecounter *tc);
133 static void hpet_test(struct hpet_softc *sc);
134
135 static char *hpet_ids[] = { "PNP0103", NULL };
136
137 /* Knob to disable acpi_hpet device */
138 bool acpi_hpet_disabled = false;
139
140 static u_int
141 hpet_get_timecount(struct timecounter *tc)
142 {
143         struct hpet_softc *sc;
144
145         sc = tc->tc_priv;
146         return (bus_read_4(sc->mem_res, HPET_MAIN_COUNTER));
147 }
148
149 uint32_t
150 hpet_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
151 {
152         struct hpet_softc *sc;
153
154         sc = tc->tc_priv;
155         vdso_th->th_algo = VDSO_TH_ALGO_X86_HPET;
156         vdso_th->th_x86_shift = 0;
157         vdso_th->th_x86_hpet_idx = device_get_unit(sc->dev);
158         bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
159         return (sc->mmap_allow != 0);
160 }
161
162 #ifdef COMPAT_FREEBSD32
163 uint32_t
164 hpet_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
165     struct timecounter *tc)
166 {
167         struct hpet_softc *sc;
168
169         sc = tc->tc_priv;
170         vdso_th32->th_algo = VDSO_TH_ALGO_X86_HPET;
171         vdso_th32->th_x86_shift = 0;
172         vdso_th32->th_x86_hpet_idx = device_get_unit(sc->dev);
173         bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
174         return (sc->mmap_allow != 0);
175 }
176 #endif
177
178 static void
179 hpet_enable(struct hpet_softc *sc)
180 {
181         uint32_t val;
182
183         val = bus_read_4(sc->mem_res, HPET_CONFIG);
184         if (sc->legacy_route)
185                 val |= HPET_CNF_LEG_RT;
186         else
187                 val &= ~HPET_CNF_LEG_RT;
188         val |= HPET_CNF_ENABLE;
189         bus_write_4(sc->mem_res, HPET_CONFIG, val);
190 }
191
192 static void
193 hpet_disable(struct hpet_softc *sc)
194 {
195         uint32_t val;
196
197         val = bus_read_4(sc->mem_res, HPET_CONFIG);
198         val &= ~HPET_CNF_ENABLE;
199         bus_write_4(sc->mem_res, HPET_CONFIG, val);
200 }
201
202 static int
203 hpet_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
204 {
205         struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
206         struct hpet_timer *t;
207         struct hpet_softc *sc = mt->sc;
208         uint32_t fdiv, now;
209
210         t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
211         if (period != 0) {
212                 t->mode = TIMER_PERIODIC;
213                 t->div = (sc->freq * period) >> 32;
214         } else {
215                 t->mode = TIMER_ONESHOT;
216                 t->div = 0;
217         }
218         if (first != 0)
219                 fdiv = (sc->freq * first) >> 32;
220         else
221                 fdiv = t->div;
222         if (t->irq < 0)
223                 bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
224         t->caps |= HPET_TCNF_INT_ENB;
225         now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
226 restart:
227         t->next = now + fdiv;
228         if (t->mode == TIMER_PERIODIC && (t->caps & HPET_TCAP_PER_INT)) {
229                 t->caps |= HPET_TCNF_TYPE;
230                 bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
231                     t->caps | HPET_TCNF_VAL_SET);
232                 bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
233                     t->next);
234                 bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
235                     t->div);
236         } else {
237                 t->caps &= ~HPET_TCNF_TYPE;
238                 bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
239                     t->caps);
240                 bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
241                     t->next);
242         }
243         now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
244         if ((int32_t)(now - t->next + HPET_MIN_CYCLES) >= 0) {
245                 fdiv *= 2;
246                 goto restart;
247         }
248         return (0);
249 }
250
251 static int
252 hpet_stop(struct eventtimer *et)
253 {
254         struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
255         struct hpet_timer *t;
256         struct hpet_softc *sc = mt->sc;
257
258         t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
259         t->mode = TIMER_STOPPED;
260         t->caps &= ~(HPET_TCNF_INT_ENB | HPET_TCNF_TYPE);
261         bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
262         return (0);
263 }
264
265 static int
266 hpet_intr_single(void *arg)
267 {
268         struct hpet_timer *t = (struct hpet_timer *)arg;
269         struct hpet_timer *mt;
270         struct hpet_softc *sc = t->sc;
271         uint32_t now;
272
273         if (t->mode == TIMER_STOPPED)
274                 return (FILTER_STRAY);
275         /* Check that per-CPU timer interrupt reached right CPU. */
276         if (t->pcpu_cpu >= 0 && t->pcpu_cpu != curcpu) {
277                 if ((++t->pcpu_misrouted) % 32 == 0) {
278                         printf("HPET interrupt routed to the wrong CPU"
279                             " (timer %d CPU %d -> %d)!\n",
280                             t->num, t->pcpu_cpu, curcpu);
281                 }
282
283                 /*
284                  * Reload timer, hoping that next time may be more lucky
285                  * (system will manage proper interrupt binding).
286                  */
287                 if ((t->mode == TIMER_PERIODIC &&
288                     (t->caps & HPET_TCAP_PER_INT) == 0) ||
289                     t->mode == TIMER_ONESHOT) {
290                         t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER) +
291                             sc->freq / 8;
292                         bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
293                             t->next);
294                 }
295                 return (FILTER_HANDLED);
296         }
297         if (t->mode == TIMER_PERIODIC &&
298             (t->caps & HPET_TCAP_PER_INT) == 0) {
299                 t->next += t->div;
300                 now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
301                 if ((int32_t)((now + t->div / 2) - t->next) > 0)
302                         t->next = now + t->div / 2;
303                 bus_write_4(sc->mem_res,
304                     HPET_TIMER_COMPARATOR(t->num), t->next);
305         } else if (t->mode == TIMER_ONESHOT)
306                 t->mode = TIMER_STOPPED;
307         mt = (t->pcpu_master < 0) ? t : &sc->t[t->pcpu_master];
308         if (mt->et.et_active)
309                 mt->et.et_event_cb(&mt->et, mt->et.et_arg);
310         return (FILTER_HANDLED);
311 }
312
313 static int
314 hpet_intr(void *arg)
315 {
316         struct hpet_softc *sc = (struct hpet_softc *)arg;
317         int i;
318         uint32_t val;
319
320         val = bus_read_4(sc->mem_res, HPET_ISR);
321         if (val) {
322                 bus_write_4(sc->mem_res, HPET_ISR, val);
323                 val &= sc->useirq;
324                 for (i = 0; i < sc->num_timers; i++) {
325                         if ((val & (1 << i)) == 0)
326                                 continue;
327                         hpet_intr_single(&sc->t[i]);
328                 }
329                 return (FILTER_HANDLED);
330         }
331         return (FILTER_STRAY);
332 }
333
334 uint32_t
335 hpet_get_uid(device_t dev)
336 {
337         struct hpet_softc *sc;
338
339         sc = device_get_softc(dev);
340         return (sc->acpi_uid);
341 }
342
343 static ACPI_STATUS
344 hpet_find(ACPI_HANDLE handle, UINT32 level, void *context,
345     void **status)
346 {
347         char            **ids;
348         uint32_t        id = (uint32_t)(uintptr_t)context;
349         uint32_t        uid = 0;
350
351         for (ids = hpet_ids; *ids != NULL; ids++) {
352                 if (acpi_MatchHid(handle, *ids))
353                         break;
354         }
355         if (*ids == NULL)
356                 return (AE_OK);
357         if (ACPI_FAILURE(acpi_GetInteger(handle, "_UID", &uid)) ||
358             id == uid)
359                 *status = acpi_get_device(handle);
360         return (AE_OK);
361 }
362
363 /*
364  * Find an existing IRQ resource that matches the requested IRQ range
365  * and return its RID.  If one is not found, use a new RID.
366  */
367 static int
368 hpet_find_irq_rid(device_t dev, u_long start, u_long end)
369 {
370         rman_res_t irq;
371         int error, rid;
372
373         for (rid = 0;; rid++) {
374                 error = bus_get_resource(dev, SYS_RES_IRQ, rid, &irq, NULL);
375                 if (error != 0 || (start <= irq && irq <= end))
376                         return (rid);
377         }
378 }
379
380 static int
381 hpet_open(struct cdev *cdev, int oflags, int devtype, struct thread *td)
382 {
383         struct hpet_softc *sc;
384
385         sc = cdev->si_drv1;
386         if (!sc->mmap_allow)
387                 return (EPERM);
388         else
389                 return (0);
390 }
391
392 static int
393 hpet_mmap(struct cdev *cdev, vm_ooffset_t offset, vm_paddr_t *paddr,
394     int nprot, vm_memattr_t *memattr)
395 {
396         struct hpet_softc *sc;
397
398         sc = cdev->si_drv1;
399         if (offset > rman_get_size(sc->mem_res))
400                 return (EINVAL);
401         if (!sc->mmap_allow_write && (nprot & PROT_WRITE))
402                 return (EPERM);
403         *paddr = rman_get_start(sc->mem_res) + offset;
404         *memattr = VM_MEMATTR_UNCACHEABLE;
405
406         return (0);
407 }
408
409 /* Discover the HPET via the ACPI table of the same name. */
410 static void
411 hpet_identify(driver_t *driver, device_t parent)
412 {
413         ACPI_TABLE_HPET *hpet;
414         ACPI_STATUS     status;
415         device_t        child;
416         int             i;
417
418         /* Only one HPET device can be added. */
419         if (devclass_get_device(hpet_devclass, 0))
420                 return;
421         for (i = 1; ; i++) {
422                 /* Search for HPET table. */
423                 status = AcpiGetTable(ACPI_SIG_HPET, i, (ACPI_TABLE_HEADER **)&hpet);
424                 if (ACPI_FAILURE(status))
425                         return;
426                 /* Search for HPET device with same ID. */
427                 child = NULL;
428                 AcpiWalkNamespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
429                     100, hpet_find, NULL, (void *)(uintptr_t)hpet->Sequence,
430                     (void *)&child);
431                 /* If found - let it be probed in normal way. */
432                 if (child) {
433                         if (bus_get_resource(child, SYS_RES_MEMORY, 0,
434                             NULL, NULL) != 0)
435                                 bus_set_resource(child, SYS_RES_MEMORY, 0,
436                                     hpet->Address.Address, HPET_MEM_WIDTH);
437                         continue;
438                 }
439                 /* If not - create it from table info. */
440                 child = BUS_ADD_CHILD(parent, 2, "hpet", 0);
441                 if (child == NULL) {
442                         printf("%s: can't add child\n", __func__);
443                         continue;
444                 }
445                 bus_set_resource(child, SYS_RES_MEMORY, 0, hpet->Address.Address,
446                     HPET_MEM_WIDTH);
447         }
448 }
449
450 static int
451 hpet_probe(device_t dev)
452 {
453         ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
454
455         if (acpi_disabled("hpet") || acpi_hpet_disabled)
456                 return (ENXIO);
457         if (acpi_get_handle(dev) != NULL &&
458             ACPI_ID_PROBE(device_get_parent(dev), dev, hpet_ids) == NULL)
459                 return (ENXIO);
460
461         device_set_desc(dev, "High Precision Event Timer");
462         return (0);
463 }
464
465 static int
466 hpet_attach(device_t dev)
467 {
468         struct hpet_softc *sc;
469         struct hpet_timer *t;
470         struct make_dev_args mda;
471         int i, j, num_msi, num_timers, num_percpu_et, num_percpu_t, cur_cpu;
472         int pcpu_master, error;
473         static int maxhpetet = 0;
474         uint32_t val, val2, cvectors, dvectors;
475         uint16_t vendor, rev;
476
477         ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
478
479         sc = device_get_softc(dev);
480         sc->dev = dev;
481         sc->handle = acpi_get_handle(dev);
482
483         sc->mem_rid = 0;
484         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
485             RF_ACTIVE);
486         if (sc->mem_res == NULL)
487                 return (ENOMEM);
488
489         /* Validate that we can access the whole region. */
490         if (rman_get_size(sc->mem_res) < HPET_MEM_WIDTH) {
491                 device_printf(dev, "memory region width %jd too small\n",
492                     rman_get_size(sc->mem_res));
493                 bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
494                 return (ENXIO);
495         }
496
497         /* Be sure timer is enabled. */
498         hpet_enable(sc);
499
500         /* Read basic statistics about the timer. */
501         val = bus_read_4(sc->mem_res, HPET_PERIOD);
502         if (val == 0) {
503                 device_printf(dev, "invalid period\n");
504                 hpet_disable(sc);
505                 bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
506                 return (ENXIO);
507         }
508
509         sc->freq = (1000000000000000LL + val / 2) / val;
510         sc->caps = bus_read_4(sc->mem_res, HPET_CAPABILITIES);
511         vendor = (sc->caps & HPET_CAP_VENDOR_ID) >> 16;
512         rev = sc->caps & HPET_CAP_REV_ID;
513         num_timers = 1 + ((sc->caps & HPET_CAP_NUM_TIM) >> 8);
514         /*
515          * ATI/AMD violates IA-PC HPET (High Precision Event Timers)
516          * Specification and provides an off by one number
517          * of timers/comparators.
518          * Additionally, they use unregistered value in VENDOR_ID field.
519          */
520         if (vendor == HPET_VENDID_AMD && rev < 0x10 && num_timers > 0)
521                 num_timers--;
522         sc->num_timers = num_timers;
523         if (bootverbose) {
524                 device_printf(dev,
525                     "vendor 0x%x, rev 0x%x, %jdHz%s, %d timers,%s\n",
526                     vendor, rev, sc->freq,
527                     (sc->caps & HPET_CAP_COUNT_SIZE) ? " 64bit" : "",
528                     num_timers,
529                     (sc->caps & HPET_CAP_LEG_RT) ? " legacy route" : "");
530         }
531         for (i = 0; i < num_timers; i++) {
532                 t = &sc->t[i];
533                 t->sc = sc;
534                 t->num = i;
535                 t->mode = TIMER_STOPPED;
536                 t->intr_rid = -1;
537                 t->irq = -1;
538                 t->pcpu_cpu = -1;
539                 t->pcpu_misrouted = 0;
540                 t->pcpu_master = -1;
541                 t->caps = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i));
542                 t->vectors = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i) + 4);
543                 if (bootverbose) {
544                         device_printf(dev,
545                             " t%d: irqs 0x%08x (%d)%s%s%s\n", i,
546                             t->vectors, (t->caps & HPET_TCNF_INT_ROUTE) >> 9,
547                             (t->caps & HPET_TCAP_FSB_INT_DEL) ? ", MSI" : "",
548                             (t->caps & HPET_TCAP_SIZE) ? ", 64bit" : "",
549                             (t->caps & HPET_TCAP_PER_INT) ? ", periodic" : "");
550                 }
551         }
552         if (testenv("debug.acpi.hpet_test"))
553                 hpet_test(sc);
554         /*
555          * Don't attach if the timer never increments.  Since the spec
556          * requires it to be at least 10 MHz, it has to change in 1 us.
557          */
558         val = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
559         DELAY(1);
560         val2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
561         if (val == val2) {
562                 device_printf(dev, "HPET never increments, disabling\n");
563                 hpet_disable(sc);
564                 bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
565                 return (ENXIO);
566         }
567         /* Announce first HPET as timecounter. */
568         if (device_get_unit(dev) == 0) {
569                 sc->tc.tc_get_timecount = hpet_get_timecount,
570                 sc->tc.tc_counter_mask = ~0u,
571                 sc->tc.tc_name = "HPET",
572                 sc->tc.tc_quality = 950,
573                 sc->tc.tc_frequency = sc->freq;
574                 sc->tc.tc_priv = sc;
575                 sc->tc.tc_fill_vdso_timehands = hpet_vdso_timehands;
576 #ifdef COMPAT_FREEBSD32
577                 sc->tc.tc_fill_vdso_timehands32 = hpet_vdso_timehands32;
578 #endif
579                 tc_init(&sc->tc);
580         }
581         /* If not disabled - setup and announce event timers. */
582         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
583              "clock", &i) == 0 && i == 0)
584                 return (0);
585
586         /* Check whether we can and want legacy routing. */
587         sc->legacy_route = 0;
588         resource_int_value(device_get_name(dev), device_get_unit(dev),
589              "legacy_route", &sc->legacy_route);
590         if ((sc->caps & HPET_CAP_LEG_RT) == 0)
591                 sc->legacy_route = 0;
592         if (sc->legacy_route) {
593                 sc->t[0].vectors = 0;
594                 sc->t[1].vectors = 0;
595         }
596
597         /* Check what IRQs we want use. */
598         /* By default allow any PCI IRQs. */
599         sc->allowed_irqs = 0xffff0000;
600         /*
601          * HPETs in AMD chipsets before SB800 have problems with IRQs >= 16
602          * Lower are also not always working for different reasons.
603          * SB800 fixed it, but seems do not implements level triggering
604          * properly, that makes it very unreliable - it freezes after any
605          * interrupt loss. Avoid legacy IRQs for AMD.
606          */
607         if (vendor == HPET_VENDID_AMD || vendor == HPET_VENDID_AMD2)
608                 sc->allowed_irqs = 0x00000000;
609         /*
610          * NVidia MCP5x chipsets have number of unexplained interrupt
611          * problems. For some reason, using HPET interrupts breaks HDA sound.
612          */
613         if (vendor == HPET_VENDID_NVIDIA && rev <= 0x01)
614                 sc->allowed_irqs = 0x00000000;
615         /*
616          * ServerWorks HT1000 reported to have problems with IRQs >= 16.
617          * Lower IRQs are working, but allowed mask is not set correctly.
618          * Legacy_route mode works fine.
619          */
620         if (vendor == HPET_VENDID_SW && rev <= 0x01)
621                 sc->allowed_irqs = 0x00000000;
622         /*
623          * Neither QEMU nor VirtualBox report supported IRQs correctly.
624          * The only way to use HPET there is to specify IRQs manually
625          * and/or use legacy_route. Legacy_route mode works on both.
626          */
627         if (vm_guest)
628                 sc->allowed_irqs = 0x00000000;
629         /* Let user override. */
630         resource_int_value(device_get_name(dev), device_get_unit(dev),
631              "allowed_irqs", &sc->allowed_irqs);
632
633         /* Get how much per-CPU timers we should try to provide. */
634         sc->per_cpu = 1;
635         resource_int_value(device_get_name(dev), device_get_unit(dev),
636              "per_cpu", &sc->per_cpu);
637
638         num_msi = 0;
639         sc->useirq = 0;
640         /* Find IRQ vectors for all timers. */
641         cvectors = sc->allowed_irqs & 0xffff0000;
642         dvectors = sc->allowed_irqs & 0x0000ffff;
643         if (sc->legacy_route)
644                 dvectors &= 0x0000fefe;
645         for (i = 0; i < num_timers; i++) {
646                 t = &sc->t[i];
647                 if (sc->legacy_route && i < 2)
648                         t->irq = (i == 0) ? 0 : 8;
649 #ifdef DEV_APIC
650                 else if (t->caps & HPET_TCAP_FSB_INT_DEL) {
651                         if ((j = PCIB_ALLOC_MSIX(
652                             device_get_parent(device_get_parent(dev)), dev,
653                             &t->irq))) {
654                                 device_printf(dev,
655                                     "Can't allocate interrupt for t%d: %d\n",
656                                     i, j);
657                         }
658                 }
659 #endif
660                 else if (dvectors & t->vectors) {
661                         t->irq = ffs(dvectors & t->vectors) - 1;
662                         dvectors &= ~(1 << t->irq);
663                 }
664                 if (t->irq >= 0) {
665                         t->intr_rid = hpet_find_irq_rid(dev, t->irq, t->irq);
666                         t->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
667                             &t->intr_rid, t->irq, t->irq, 1, RF_ACTIVE);
668                         if (t->intr_res == NULL) {
669                                 t->irq = -1;
670                                 device_printf(dev,
671                                     "Can't map interrupt for t%d.\n", i);
672                         } else if (bus_setup_intr(dev, t->intr_res,
673                             INTR_TYPE_CLK, hpet_intr_single, NULL, t,
674                             &t->intr_handle) != 0) {
675                                 t->irq = -1;
676                                 device_printf(dev,
677                                     "Can't setup interrupt for t%d.\n", i);
678                         } else {
679                                 bus_describe_intr(dev, t->intr_res,
680                                     t->intr_handle, "t%d", i);
681                                 num_msi++;
682                         }
683                 }
684                 if (t->irq < 0 && (cvectors & t->vectors) != 0) {
685                         cvectors &= t->vectors;
686                         sc->useirq |= (1 << i);
687                 }
688         }
689         if (sc->legacy_route && sc->t[0].irq < 0 && sc->t[1].irq < 0)
690                 sc->legacy_route = 0;
691         if (sc->legacy_route)
692                 hpet_enable(sc);
693         /* Group timers for per-CPU operation. */
694         num_percpu_et = min(num_msi / mp_ncpus, sc->per_cpu);
695         num_percpu_t = num_percpu_et * mp_ncpus;
696         pcpu_master = 0;
697         cur_cpu = CPU_FIRST();
698         for (i = 0; i < num_timers; i++) {
699                 t = &sc->t[i];
700                 if (t->irq >= 0 && num_percpu_t > 0) {
701                         if (cur_cpu == CPU_FIRST())
702                                 pcpu_master = i;
703                         t->pcpu_cpu = cur_cpu;
704                         t->pcpu_master = pcpu_master;
705                         sc->t[pcpu_master].
706                             pcpu_slaves[cur_cpu] = i;
707                         bus_bind_intr(dev, t->intr_res, cur_cpu);
708                         cur_cpu = CPU_NEXT(cur_cpu);
709                         num_percpu_t--;
710                 } else if (t->irq >= 0)
711                         bus_bind_intr(dev, t->intr_res, CPU_FIRST());
712         }
713         bus_write_4(sc->mem_res, HPET_ISR, 0xffffffff);
714         sc->irq = -1;
715         /* If at least one timer needs legacy IRQ - set it up. */
716         if (sc->useirq) {
717                 j = i = fls(cvectors) - 1;
718                 while (j > 0 && (cvectors & (1 << (j - 1))) != 0)
719                         j--;
720                 sc->intr_rid = hpet_find_irq_rid(dev, j, i);
721                 sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
722                     &sc->intr_rid, j, i, 1, RF_SHAREABLE | RF_ACTIVE);
723                 if (sc->intr_res == NULL)
724                         device_printf(dev, "Can't map interrupt.\n");
725                 else if (bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
726                     hpet_intr, NULL, sc, &sc->intr_handle) != 0) {
727                         device_printf(dev, "Can't setup interrupt.\n");
728                 } else {
729                         sc->irq = rman_get_start(sc->intr_res);
730                         /* Bind IRQ to BSP to avoid live migration. */
731                         bus_bind_intr(dev, sc->intr_res, CPU_FIRST());
732                 }
733         }
734         /* Program and announce event timers. */
735         for (i = 0; i < num_timers; i++) {
736                 t = &sc->t[i];
737                 t->caps &= ~(HPET_TCNF_FSB_EN | HPET_TCNF_INT_ROUTE);
738                 t->caps &= ~(HPET_TCNF_VAL_SET | HPET_TCNF_INT_ENB);
739                 t->caps &= ~(HPET_TCNF_INT_TYPE);
740                 t->caps |= HPET_TCNF_32MODE;
741                 if (t->irq >= 0 && sc->legacy_route && i < 2) {
742                         /* Legacy route doesn't need more configuration. */
743                 } else
744 #ifdef DEV_APIC
745                 if ((t->caps & HPET_TCAP_FSB_INT_DEL) && t->irq >= 0) {
746                         uint64_t addr;
747                         uint32_t data;
748
749                         if (PCIB_MAP_MSI(
750                             device_get_parent(device_get_parent(dev)), dev,
751                             t->irq, &addr, &data) == 0) {
752                                 bus_write_4(sc->mem_res,
753                                     HPET_TIMER_FSB_ADDR(i), addr);
754                                 bus_write_4(sc->mem_res,
755                                     HPET_TIMER_FSB_VAL(i), data);
756                                 t->caps |= HPET_TCNF_FSB_EN;
757                         } else
758                                 t->irq = -2;
759                 } else
760 #endif
761                 if (t->irq >= 0)
762                         t->caps |= (t->irq << 9);
763                 else if (sc->irq >= 0 && (t->vectors & (1 << sc->irq)))
764                         t->caps |= (sc->irq << 9) | HPET_TCNF_INT_TYPE;
765                 bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(i), t->caps);
766                 /* Skip event timers without set up IRQ. */
767                 if (t->irq < 0 &&
768                     (sc->irq < 0 || (t->vectors & (1 << sc->irq)) == 0))
769                         continue;
770                 /* Announce the reset. */
771                 if (maxhpetet == 0)
772                         t->et.et_name = "HPET";
773                 else {
774                         sprintf(t->name, "HPET%d", maxhpetet);
775                         t->et.et_name = t->name;
776                 }
777                 t->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT;
778                 t->et.et_quality = 450;
779                 if (t->pcpu_master >= 0) {
780                         t->et.et_flags |= ET_FLAGS_PERCPU;
781                         t->et.et_quality += 100;
782                 } else if (mp_ncpus >= 8)
783                         t->et.et_quality -= 100;
784                 if ((t->caps & HPET_TCAP_PER_INT) == 0)
785                         t->et.et_quality -= 10;
786                 t->et.et_frequency = sc->freq;
787                 t->et.et_min_period =
788                     ((uint64_t)(HPET_MIN_CYCLES * 2) << 32) / sc->freq;
789                 t->et.et_max_period = (0xfffffffeLLU << 32) / sc->freq;
790                 t->et.et_start = hpet_start;
791                 t->et.et_stop = hpet_stop;
792                 t->et.et_priv = &sc->t[i];
793                 if (t->pcpu_master < 0 || t->pcpu_master == i) {
794                         et_register(&t->et);
795                         maxhpetet++;
796                 }
797         }
798         acpi_GetInteger(sc->handle, "_UID", &sc->acpi_uid);
799
800         make_dev_args_init(&mda);
801         mda.mda_devsw = &hpet_cdevsw;
802         mda.mda_uid = UID_ROOT;
803         mda.mda_gid = GID_WHEEL;
804         mda.mda_mode = 0644;
805         mda.mda_si_drv1 = sc;
806         error = make_dev_s(&mda, &sc->pdev, "hpet%d", device_get_unit(dev));
807         if (error == 0) {
808                 sc->mmap_allow = 1;
809                 TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow",
810                     &sc->mmap_allow);
811                 sc->mmap_allow_write = 0;
812                 TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow_write",
813                     &sc->mmap_allow_write);
814                 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
815                     SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
816                     OID_AUTO, "mmap_allow",
817                     CTLFLAG_RW, &sc->mmap_allow, 0,
818                     "Allow userland to memory map HPET");
819                 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
820                     SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
821                     OID_AUTO, "mmap_allow_write",
822                     CTLFLAG_RW, &sc->mmap_allow_write, 0,
823                     "Allow userland write to the HPET register space");
824         } else {
825                 device_printf(dev, "could not create /dev/hpet%d, error %d\n",
826                     device_get_unit(dev), error);
827         }
828
829         return (0);
830 }
831
832 static int
833 hpet_detach(device_t dev)
834 {
835         ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
836
837         /* XXX Without a tc_remove() function, we can't detach. */
838         return (EBUSY);
839 }
840
841 static int
842 hpet_suspend(device_t dev)
843 {
844 //      struct hpet_softc *sc;
845
846         /*
847          * Disable the timer during suspend.  The timer will not lose
848          * its state in S1 or S2, but we are required to disable
849          * it.
850          */
851 //      sc = device_get_softc(dev);
852 //      hpet_disable(sc);
853
854         return (0);
855 }
856
857 static int
858 hpet_resume(device_t dev)
859 {
860         struct hpet_softc *sc;
861         struct hpet_timer *t;
862         int i;
863
864         /* Re-enable the timer after a resume to keep the clock advancing. */
865         sc = device_get_softc(dev);
866         hpet_enable(sc);
867         /* Restart event timers that were running on suspend. */
868         for (i = 0; i < sc->num_timers; i++) {
869                 t = &sc->t[i];
870 #ifdef DEV_APIC
871                 if (t->irq >= 0 && (sc->legacy_route == 0 || i >= 2)) {
872                         uint64_t addr;
873                         uint32_t data;
874
875                         if (PCIB_MAP_MSI(
876                             device_get_parent(device_get_parent(dev)), dev,
877                             t->irq, &addr, &data) == 0) {
878                                 bus_write_4(sc->mem_res,
879                                     HPET_TIMER_FSB_ADDR(i), addr);
880                                 bus_write_4(sc->mem_res,
881                                     HPET_TIMER_FSB_VAL(i), data);
882                         }
883                 }
884 #endif
885                 if (t->mode == TIMER_STOPPED)
886                         continue;
887                 t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
888                 if (t->mode == TIMER_PERIODIC &&
889                     (t->caps & HPET_TCAP_PER_INT) != 0) {
890                         t->caps |= HPET_TCNF_TYPE;
891                         t->next += t->div;
892                         bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
893                             t->caps | HPET_TCNF_VAL_SET);
894                         bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
895                             t->next);
896                         bus_read_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num));
897                         bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
898                             t->div);
899                 } else {
900                         t->next += sc->freq / 1024;
901                         bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
902                             t->next);
903                 }
904                 bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
905                 bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
906         }
907         return (0);
908 }
909
910 /* Print some basic latency/rate information to assist in debugging. */
911 static void
912 hpet_test(struct hpet_softc *sc)
913 {
914         int i;
915         uint32_t u1, u2;
916         struct bintime b0, b1, b2;
917         struct timespec ts;
918
919         binuptime(&b0);
920         binuptime(&b0);
921         binuptime(&b1);
922         u1 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
923         for (i = 1; i < 1000; i++)
924                 u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
925         binuptime(&b2);
926         u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
927
928         bintime_sub(&b2, &b1);
929         bintime_sub(&b1, &b0);
930         bintime_sub(&b2, &b1);
931         bintime2timespec(&b2, &ts);
932
933         device_printf(sc->dev, "%ld.%09ld: %u ... %u = %u\n",
934             (long)ts.tv_sec, ts.tv_nsec, u1, u2, u2 - u1);
935
936         device_printf(sc->dev, "time per call: %ld ns\n", ts.tv_nsec / 1000);
937 }
938
939 #ifdef DEV_APIC
940 static int
941 hpet_remap_intr(device_t dev, device_t child, u_int irq)
942 {
943         struct hpet_softc *sc = device_get_softc(dev);
944         struct hpet_timer *t;
945         uint64_t addr;
946         uint32_t data;
947         int error, i;
948
949         for (i = 0; i < sc->num_timers; i++) {
950                 t = &sc->t[i];
951                 if (t->irq != irq)
952                         continue;
953                 error = PCIB_MAP_MSI(
954                     device_get_parent(device_get_parent(dev)), dev,
955                     irq, &addr, &data);
956                 if (error)
957                         return (error);
958                 hpet_disable(sc); /* Stop timer to avoid interrupt loss. */
959                 bus_write_4(sc->mem_res, HPET_TIMER_FSB_ADDR(i), addr);
960                 bus_write_4(sc->mem_res, HPET_TIMER_FSB_VAL(i), data);
961                 hpet_enable(sc);
962                 return (0);
963         }
964         return (ENOENT);
965 }
966 #endif
967
968 static device_method_t hpet_methods[] = {
969         /* Device interface */
970         DEVMETHOD(device_identify, hpet_identify),
971         DEVMETHOD(device_probe, hpet_probe),
972         DEVMETHOD(device_attach, hpet_attach),
973         DEVMETHOD(device_detach, hpet_detach),
974         DEVMETHOD(device_suspend, hpet_suspend),
975         DEVMETHOD(device_resume, hpet_resume),
976
977 #ifdef DEV_APIC
978         DEVMETHOD(bus_remap_intr, hpet_remap_intr),
979 #endif
980
981         DEVMETHOD_END
982 };
983
984 static driver_t hpet_driver = {
985         "hpet",
986         hpet_methods,
987         sizeof(struct hpet_softc),
988 };
989
990 DRIVER_MODULE(hpet, acpi, hpet_driver, hpet_devclass, 0, 0);
991 MODULE_DEPEND(hpet, acpi, 1, 1, 1);