]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/acpica/acpi_hpet.c
zfs: merge openzfs/zfs@3522f57b6 (master) to main
[FreeBSD/FreeBSD.git] / sys / dev / acpica / acpi_hpet.c
1 /*-
2  * Copyright (c) 2005 Poul-Henning Kamp
3  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_acpi.h"
32
33 #if defined(__amd64__)
34 #define DEV_APIC
35 #else
36 #include "opt_apic.h"
37 #endif
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/bus.h>
41 #include <sys/kernel.h>
42 #include <sys/module.h>
43 #include <sys/proc.h>
44 #include <sys/rman.h>
45 #include <sys/mman.h>
46 #include <sys/time.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 #include <sys/timeet.h>
50 #include <sys/timetc.h>
51 #include <sys/vdso.h>
52
53 #include <contrib/dev/acpica/include/acpi.h>
54 #include <contrib/dev/acpica/include/accommon.h>
55
56 #include <dev/acpica/acpivar.h>
57 #include <dev/acpica/acpi_hpet.h>
58
59 #ifdef DEV_APIC
60 #include "pcib_if.h"
61 #endif
62
63 #define HPET_VENDID_AMD         0x4353
64 #define HPET_VENDID_AMD2        0x1022
65 #define HPET_VENDID_HYGON       0x1d94
66 #define HPET_VENDID_INTEL       0x8086
67 #define HPET_VENDID_NVIDIA      0x10de
68 #define HPET_VENDID_SW          0x1166
69
70 ACPI_SERIAL_DECL(hpet, "ACPI HPET support");
71
72 static devclass_t hpet_devclass;
73
74 /* ACPI CA debugging */
75 #define _COMPONENT      ACPI_TIMER
76 ACPI_MODULE_NAME("HPET")
77
78 struct hpet_softc {
79         device_t                dev;
80         int                     mem_rid;
81         int                     intr_rid;
82         int                     irq;
83         int                     useirq;
84         int                     legacy_route;
85         int                     per_cpu;
86         uint32_t                allowed_irqs;
87         struct resource         *mem_res;
88         struct resource         *intr_res;
89         void                    *intr_handle;
90         ACPI_HANDLE             handle;
91         uint32_t                acpi_uid;
92         uint64_t                freq;
93         uint32_t                caps;
94         struct timecounter      tc;
95         struct hpet_timer {
96                 struct eventtimer       et;
97                 struct hpet_softc       *sc;
98                 int                     num;
99                 int                     mode;
100 #define TIMER_STOPPED   0
101 #define TIMER_PERIODIC  1
102 #define TIMER_ONESHOT   2
103                 int                     intr_rid;
104                 int                     irq;
105                 int                     pcpu_cpu;
106                 int                     pcpu_misrouted;
107                 int                     pcpu_master;
108                 int                     pcpu_slaves[MAXCPU];
109                 struct resource         *intr_res;
110                 void                    *intr_handle;
111                 uint32_t                caps;
112                 uint32_t                vectors;
113                 uint32_t                div;
114                 uint32_t                next;
115                 char                    name[8];
116         }                       t[32];
117         int                     num_timers;
118         struct cdev             *pdev;
119         int                     mmap_allow;
120         int                     mmap_allow_write;
121 };
122
123 static d_open_t hpet_open;
124 static d_mmap_t hpet_mmap;
125
126 static struct cdevsw hpet_cdevsw = {
127         .d_version =    D_VERSION,
128         .d_name =       "hpet",
129         .d_open =       hpet_open,
130         .d_mmap =       hpet_mmap,
131 };
132
133 static u_int hpet_get_timecount(struct timecounter *tc);
134 static void hpet_test(struct hpet_softc *sc);
135
136 static char *hpet_ids[] = { "PNP0103", NULL };
137
138 /* Knob to disable acpi_hpet device */
139 bool acpi_hpet_disabled = false;
140
141 static u_int
142 hpet_get_timecount(struct timecounter *tc)
143 {
144         struct hpet_softc *sc;
145
146         sc = tc->tc_priv;
147         return (bus_read_4(sc->mem_res, HPET_MAIN_COUNTER));
148 }
149
150 uint32_t
151 hpet_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
152 {
153         struct hpet_softc *sc;
154
155         sc = tc->tc_priv;
156         vdso_th->th_algo = VDSO_TH_ALGO_X86_HPET;
157         vdso_th->th_x86_shift = 0;
158         vdso_th->th_x86_hpet_idx = device_get_unit(sc->dev);
159         bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
160         return (sc->mmap_allow != 0);
161 }
162
163 #ifdef COMPAT_FREEBSD32
164 uint32_t
165 hpet_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
166     struct timecounter *tc)
167 {
168         struct hpet_softc *sc;
169
170         sc = tc->tc_priv;
171         vdso_th32->th_algo = VDSO_TH_ALGO_X86_HPET;
172         vdso_th32->th_x86_shift = 0;
173         vdso_th32->th_x86_hpet_idx = device_get_unit(sc->dev);
174         bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
175         return (sc->mmap_allow != 0);
176 }
177 #endif
178
179 static void
180 hpet_enable(struct hpet_softc *sc)
181 {
182         uint32_t val;
183
184         val = bus_read_4(sc->mem_res, HPET_CONFIG);
185         if (sc->legacy_route)
186                 val |= HPET_CNF_LEG_RT;
187         else
188                 val &= ~HPET_CNF_LEG_RT;
189         val |= HPET_CNF_ENABLE;
190         bus_write_4(sc->mem_res, HPET_CONFIG, val);
191 }
192
193 static void
194 hpet_disable(struct hpet_softc *sc)
195 {
196         uint32_t val;
197
198         val = bus_read_4(sc->mem_res, HPET_CONFIG);
199         val &= ~HPET_CNF_ENABLE;
200         bus_write_4(sc->mem_res, HPET_CONFIG, val);
201 }
202
203 static int
204 hpet_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
205 {
206         struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
207         struct hpet_timer *t;
208         struct hpet_softc *sc = mt->sc;
209         uint32_t fdiv, now;
210
211         t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
212         if (period != 0) {
213                 t->mode = TIMER_PERIODIC;
214                 t->div = (sc->freq * period) >> 32;
215         } else {
216                 t->mode = TIMER_ONESHOT;
217                 t->div = 0;
218         }
219         if (first != 0)
220                 fdiv = (sc->freq * first) >> 32;
221         else
222                 fdiv = t->div;
223         if (t->irq < 0)
224                 bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
225         t->caps |= HPET_TCNF_INT_ENB;
226         now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
227 restart:
228         t->next = now + fdiv;
229         if (t->mode == TIMER_PERIODIC && (t->caps & HPET_TCAP_PER_INT)) {
230                 t->caps |= HPET_TCNF_TYPE;
231                 bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
232                     t->caps | HPET_TCNF_VAL_SET);
233                 bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
234                     t->next);
235                 bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
236                     t->div);
237         } else {
238                 t->caps &= ~HPET_TCNF_TYPE;
239                 bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
240                     t->caps);
241                 bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
242                     t->next);
243         }
244         now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
245         if ((int32_t)(now - t->next + HPET_MIN_CYCLES) >= 0) {
246                 fdiv *= 2;
247                 goto restart;
248         }
249         return (0);
250 }
251
252 static int
253 hpet_stop(struct eventtimer *et)
254 {
255         struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
256         struct hpet_timer *t;
257         struct hpet_softc *sc = mt->sc;
258
259         t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
260         t->mode = TIMER_STOPPED;
261         t->caps &= ~(HPET_TCNF_INT_ENB | HPET_TCNF_TYPE);
262         bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
263         return (0);
264 }
265
266 static int
267 hpet_intr_single(void *arg)
268 {
269         struct hpet_timer *t = (struct hpet_timer *)arg;
270         struct hpet_timer *mt;
271         struct hpet_softc *sc = t->sc;
272         uint32_t now;
273
274         if (t->mode == TIMER_STOPPED)
275                 return (FILTER_STRAY);
276         /* Check that per-CPU timer interrupt reached right CPU. */
277         if (t->pcpu_cpu >= 0 && t->pcpu_cpu != curcpu) {
278                 if ((++t->pcpu_misrouted) % 32 == 0) {
279                         printf("HPET interrupt routed to the wrong CPU"
280                             " (timer %d CPU %d -> %d)!\n",
281                             t->num, t->pcpu_cpu, curcpu);
282                 }
283
284                 /*
285                  * Reload timer, hoping that next time may be more lucky
286                  * (system will manage proper interrupt binding).
287                  */
288                 if ((t->mode == TIMER_PERIODIC &&
289                     (t->caps & HPET_TCAP_PER_INT) == 0) ||
290                     t->mode == TIMER_ONESHOT) {
291                         t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER) +
292                             sc->freq / 8;
293                         bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
294                             t->next);
295                 }
296                 return (FILTER_HANDLED);
297         }
298         if (t->mode == TIMER_PERIODIC &&
299             (t->caps & HPET_TCAP_PER_INT) == 0) {
300                 t->next += t->div;
301                 now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
302                 if ((int32_t)((now + t->div / 2) - t->next) > 0)
303                         t->next = now + t->div / 2;
304                 bus_write_4(sc->mem_res,
305                     HPET_TIMER_COMPARATOR(t->num), t->next);
306         } else if (t->mode == TIMER_ONESHOT)
307                 t->mode = TIMER_STOPPED;
308         mt = (t->pcpu_master < 0) ? t : &sc->t[t->pcpu_master];
309         if (mt->et.et_active)
310                 mt->et.et_event_cb(&mt->et, mt->et.et_arg);
311         return (FILTER_HANDLED);
312 }
313
314 static int
315 hpet_intr(void *arg)
316 {
317         struct hpet_softc *sc = (struct hpet_softc *)arg;
318         int i;
319         uint32_t val;
320
321         val = bus_read_4(sc->mem_res, HPET_ISR);
322         if (val) {
323                 bus_write_4(sc->mem_res, HPET_ISR, val);
324                 val &= sc->useirq;
325                 for (i = 0; i < sc->num_timers; i++) {
326                         if ((val & (1 << i)) == 0)
327                                 continue;
328                         hpet_intr_single(&sc->t[i]);
329                 }
330                 return (FILTER_HANDLED);
331         }
332         return (FILTER_STRAY);
333 }
334
335 uint32_t
336 hpet_get_uid(device_t dev)
337 {
338         struct hpet_softc *sc;
339
340         sc = device_get_softc(dev);
341         return (sc->acpi_uid);
342 }
343
344 static ACPI_STATUS
345 hpet_find(ACPI_HANDLE handle, UINT32 level, void *context,
346     void **status)
347 {
348         char            **ids;
349         uint32_t        id = (uint32_t)(uintptr_t)context;
350         uint32_t        uid = 0;
351
352         for (ids = hpet_ids; *ids != NULL; ids++) {
353                 if (acpi_MatchHid(handle, *ids))
354                         break;
355         }
356         if (*ids == NULL)
357                 return (AE_OK);
358         if (ACPI_FAILURE(acpi_GetInteger(handle, "_UID", &uid)) ||
359             id == uid)
360                 *status = acpi_get_device(handle);
361         return (AE_OK);
362 }
363
364 /*
365  * Find an existing IRQ resource that matches the requested IRQ range
366  * and return its RID.  If one is not found, use a new RID.
367  */
368 static int
369 hpet_find_irq_rid(device_t dev, u_long start, u_long end)
370 {
371         rman_res_t irq;
372         int error, rid;
373
374         for (rid = 0;; rid++) {
375                 error = bus_get_resource(dev, SYS_RES_IRQ, rid, &irq, NULL);
376                 if (error != 0 || (start <= irq && irq <= end))
377                         return (rid);
378         }
379 }
380
381 static int
382 hpet_open(struct cdev *cdev, int oflags, int devtype, struct thread *td)
383 {
384         struct hpet_softc *sc;
385
386         sc = cdev->si_drv1;
387         if (!sc->mmap_allow)
388                 return (EPERM);
389         else
390                 return (0);
391 }
392
393 static int
394 hpet_mmap(struct cdev *cdev, vm_ooffset_t offset, vm_paddr_t *paddr,
395     int nprot, vm_memattr_t *memattr)
396 {
397         struct hpet_softc *sc;
398
399         sc = cdev->si_drv1;
400         if (offset >= rman_get_size(sc->mem_res))
401                 return (EINVAL);
402         if (!sc->mmap_allow_write && (nprot & PROT_WRITE))
403                 return (EPERM);
404         *paddr = rman_get_start(sc->mem_res) + offset;
405         *memattr = VM_MEMATTR_UNCACHEABLE;
406
407         return (0);
408 }
409
410 /* Discover the HPET via the ACPI table of the same name. */
411 static void
412 hpet_identify(driver_t *driver, device_t parent)
413 {
414         ACPI_TABLE_HPET *hpet;
415         ACPI_STATUS     status;
416         device_t        child;
417         int             i;
418
419         /* Only one HPET device can be added. */
420         if (devclass_get_device(hpet_devclass, 0))
421                 return;
422         for (i = 1; ; i++) {
423                 /* Search for HPET table. */
424                 status = AcpiGetTable(ACPI_SIG_HPET, i, (ACPI_TABLE_HEADER **)&hpet);
425                 if (ACPI_FAILURE(status))
426                         return;
427                 /* Search for HPET device with same ID. */
428                 child = NULL;
429                 AcpiWalkNamespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
430                     100, hpet_find, NULL, (void *)(uintptr_t)hpet->Sequence,
431                     (void *)&child);
432                 /* If found - let it be probed in normal way. */
433                 if (child) {
434                         if (bus_get_resource(child, SYS_RES_MEMORY, 0,
435                             NULL, NULL) != 0)
436                                 bus_set_resource(child, SYS_RES_MEMORY, 0,
437                                     hpet->Address.Address, HPET_MEM_WIDTH);
438                         continue;
439                 }
440                 /* If not - create it from table info. */
441                 child = BUS_ADD_CHILD(parent, 2, "hpet", 0);
442                 if (child == NULL) {
443                         printf("%s: can't add child\n", __func__);
444                         continue;
445                 }
446                 bus_set_resource(child, SYS_RES_MEMORY, 0, hpet->Address.Address,
447                     HPET_MEM_WIDTH);
448         }
449 }
450
451 static int
452 hpet_probe(device_t dev)
453 {
454         int rv;
455
456         ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
457         if (acpi_disabled("hpet") || acpi_hpet_disabled)
458                 return (ENXIO);
459         if (acpi_get_handle(dev) != NULL)
460                 rv = ACPI_ID_PROBE(device_get_parent(dev), dev, hpet_ids, NULL);
461         else
462                 rv = 0;
463         if (rv <= 0)
464                 device_set_desc(dev, "High Precision Event Timer");
465         return (rv);
466 }
467
468 static int
469 hpet_attach(device_t dev)
470 {
471         struct hpet_softc *sc;
472         struct hpet_timer *t;
473         struct make_dev_args mda;
474         int i, j, num_msi, num_timers, num_percpu_et, num_percpu_t, cur_cpu;
475         int pcpu_master, error;
476         static int maxhpetet = 0;
477         uint32_t val, val2, cvectors, dvectors;
478         uint16_t vendor, rev;
479
480         ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
481
482         sc = device_get_softc(dev);
483         sc->dev = dev;
484         sc->handle = acpi_get_handle(dev);
485
486         sc->mem_rid = 0;
487         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
488             RF_ACTIVE);
489         if (sc->mem_res == NULL)
490                 return (ENOMEM);
491
492         /* Validate that we can access the whole region. */
493         if (rman_get_size(sc->mem_res) < HPET_MEM_WIDTH) {
494                 device_printf(dev, "memory region width %jd too small\n",
495                     rman_get_size(sc->mem_res));
496                 bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
497                 return (ENXIO);
498         }
499
500         /* Be sure timer is enabled. */
501         hpet_enable(sc);
502
503         /* Read basic statistics about the timer. */
504         val = bus_read_4(sc->mem_res, HPET_PERIOD);
505         if (val == 0) {
506                 device_printf(dev, "invalid period\n");
507                 hpet_disable(sc);
508                 bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
509                 return (ENXIO);
510         }
511
512         sc->freq = (1000000000000000LL + val / 2) / val;
513         sc->caps = bus_read_4(sc->mem_res, HPET_CAPABILITIES);
514         vendor = (sc->caps & HPET_CAP_VENDOR_ID) >> 16;
515         rev = sc->caps & HPET_CAP_REV_ID;
516         num_timers = 1 + ((sc->caps & HPET_CAP_NUM_TIM) >> 8);
517         /*
518          * ATI/AMD violates IA-PC HPET (High Precision Event Timers)
519          * Specification and provides an off by one number
520          * of timers/comparators.
521          * Additionally, they use unregistered value in VENDOR_ID field.
522          */
523         if (vendor == HPET_VENDID_AMD && rev < 0x10 && num_timers > 0)
524                 num_timers--;
525         sc->num_timers = num_timers;
526         if (bootverbose) {
527                 device_printf(dev,
528                     "vendor 0x%x, rev 0x%x, %jdHz%s, %d timers,%s\n",
529                     vendor, rev, sc->freq,
530                     (sc->caps & HPET_CAP_COUNT_SIZE) ? " 64bit" : "",
531                     num_timers,
532                     (sc->caps & HPET_CAP_LEG_RT) ? " legacy route" : "");
533         }
534         for (i = 0; i < num_timers; i++) {
535                 t = &sc->t[i];
536                 t->sc = sc;
537                 t->num = i;
538                 t->mode = TIMER_STOPPED;
539                 t->intr_rid = -1;
540                 t->irq = -1;
541                 t->pcpu_cpu = -1;
542                 t->pcpu_misrouted = 0;
543                 t->pcpu_master = -1;
544                 t->caps = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i));
545                 t->vectors = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i) + 4);
546                 if (bootverbose) {
547                         device_printf(dev,
548                             " t%d: irqs 0x%08x (%d)%s%s%s\n", i,
549                             t->vectors, (t->caps & HPET_TCNF_INT_ROUTE) >> 9,
550                             (t->caps & HPET_TCAP_FSB_INT_DEL) ? ", MSI" : "",
551                             (t->caps & HPET_TCAP_SIZE) ? ", 64bit" : "",
552                             (t->caps & HPET_TCAP_PER_INT) ? ", periodic" : "");
553                 }
554         }
555         if (testenv("debug.acpi.hpet_test"))
556                 hpet_test(sc);
557         /*
558          * Don't attach if the timer never increments.  Since the spec
559          * requires it to be at least 10 MHz, it has to change in 1 us.
560          */
561         val = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
562         DELAY(1);
563         val2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
564         if (val == val2) {
565                 device_printf(dev, "HPET never increments, disabling\n");
566                 hpet_disable(sc);
567                 bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
568                 return (ENXIO);
569         }
570         /* Announce first HPET as timecounter. */
571         if (device_get_unit(dev) == 0) {
572                 sc->tc.tc_get_timecount = hpet_get_timecount,
573                 sc->tc.tc_counter_mask = ~0u,
574                 sc->tc.tc_name = "HPET",
575                 sc->tc.tc_quality = 950,
576                 sc->tc.tc_frequency = sc->freq;
577                 sc->tc.tc_priv = sc;
578                 sc->tc.tc_fill_vdso_timehands = hpet_vdso_timehands;
579 #ifdef COMPAT_FREEBSD32
580                 sc->tc.tc_fill_vdso_timehands32 = hpet_vdso_timehands32;
581 #endif
582                 tc_init(&sc->tc);
583         }
584         /* If not disabled - setup and announce event timers. */
585         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
586              "clock", &i) == 0 && i == 0)
587                 return (0);
588
589         /* Check whether we can and want legacy routing. */
590         sc->legacy_route = 0;
591         resource_int_value(device_get_name(dev), device_get_unit(dev),
592              "legacy_route", &sc->legacy_route);
593         if ((sc->caps & HPET_CAP_LEG_RT) == 0)
594                 sc->legacy_route = 0;
595         if (sc->legacy_route) {
596                 sc->t[0].vectors = 0;
597                 sc->t[1].vectors = 0;
598         }
599
600         /* Check what IRQs we want use. */
601         /* By default allow any PCI IRQs. */
602         sc->allowed_irqs = 0xffff0000;
603         /*
604          * HPETs in AMD chipsets before SB800 have problems with IRQs >= 16
605          * Lower are also not always working for different reasons.
606          * SB800 fixed it, but seems do not implements level triggering
607          * properly, that makes it very unreliable - it freezes after any
608          * interrupt loss. Avoid legacy IRQs for AMD.
609          */
610         if (vendor == HPET_VENDID_AMD || vendor == HPET_VENDID_AMD2 ||
611             vendor == HPET_VENDID_HYGON)
612                 sc->allowed_irqs = 0x00000000;
613         /*
614          * NVidia MCP5x chipsets have number of unexplained interrupt
615          * problems. For some reason, using HPET interrupts breaks HDA sound.
616          */
617         if (vendor == HPET_VENDID_NVIDIA && rev <= 0x01)
618                 sc->allowed_irqs = 0x00000000;
619         /*
620          * ServerWorks HT1000 reported to have problems with IRQs >= 16.
621          * Lower IRQs are working, but allowed mask is not set correctly.
622          * Legacy_route mode works fine.
623          */
624         if (vendor == HPET_VENDID_SW && rev <= 0x01)
625                 sc->allowed_irqs = 0x00000000;
626         /*
627          * Neither QEMU nor VirtualBox report supported IRQs correctly.
628          * The only way to use HPET there is to specify IRQs manually
629          * and/or use legacy_route. Legacy_route mode works on both.
630          */
631         if (vm_guest)
632                 sc->allowed_irqs = 0x00000000;
633         /* Let user override. */
634         resource_int_value(device_get_name(dev), device_get_unit(dev),
635              "allowed_irqs", &sc->allowed_irqs);
636
637         /* Get how much per-CPU timers we should try to provide. */
638         sc->per_cpu = 1;
639         resource_int_value(device_get_name(dev), device_get_unit(dev),
640              "per_cpu", &sc->per_cpu);
641
642         num_msi = 0;
643         sc->useirq = 0;
644         /* Find IRQ vectors for all timers. */
645         cvectors = sc->allowed_irqs & 0xffff0000;
646         dvectors = sc->allowed_irqs & 0x0000ffff;
647         if (sc->legacy_route)
648                 dvectors &= 0x0000fefe;
649         for (i = 0; i < num_timers; i++) {
650                 t = &sc->t[i];
651                 if (sc->legacy_route && i < 2)
652                         t->irq = (i == 0) ? 0 : 8;
653 #ifdef DEV_APIC
654                 else if (t->caps & HPET_TCAP_FSB_INT_DEL) {
655                         if ((j = PCIB_ALLOC_MSIX(
656                             device_get_parent(device_get_parent(dev)), dev,
657                             &t->irq))) {
658                                 device_printf(dev,
659                                     "Can't allocate interrupt for t%d: %d\n",
660                                     i, j);
661                         }
662                 }
663 #endif
664                 else if (dvectors & t->vectors) {
665                         t->irq = ffs(dvectors & t->vectors) - 1;
666                         dvectors &= ~(1 << t->irq);
667                 }
668                 if (t->irq >= 0) {
669                         t->intr_rid = hpet_find_irq_rid(dev, t->irq, t->irq);
670                         t->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
671                             &t->intr_rid, t->irq, t->irq, 1, RF_ACTIVE);
672                         if (t->intr_res == NULL) {
673                                 t->irq = -1;
674                                 device_printf(dev,
675                                     "Can't map interrupt for t%d.\n", i);
676                         } else if (bus_setup_intr(dev, t->intr_res,
677                             INTR_TYPE_CLK, hpet_intr_single, NULL, t,
678                             &t->intr_handle) != 0) {
679                                 t->irq = -1;
680                                 device_printf(dev,
681                                     "Can't setup interrupt for t%d.\n", i);
682                         } else {
683                                 bus_describe_intr(dev, t->intr_res,
684                                     t->intr_handle, "t%d", i);
685                                 num_msi++;
686                         }
687                 }
688                 if (t->irq < 0 && (cvectors & t->vectors) != 0) {
689                         cvectors &= t->vectors;
690                         sc->useirq |= (1 << i);
691                 }
692         }
693         if (sc->legacy_route && sc->t[0].irq < 0 && sc->t[1].irq < 0)
694                 sc->legacy_route = 0;
695         if (sc->legacy_route)
696                 hpet_enable(sc);
697         /* Group timers for per-CPU operation. */
698         num_percpu_et = min(num_msi / mp_ncpus, sc->per_cpu);
699         num_percpu_t = num_percpu_et * mp_ncpus;
700         pcpu_master = 0;
701         cur_cpu = CPU_FIRST();
702         for (i = 0; i < num_timers; i++) {
703                 t = &sc->t[i];
704                 if (t->irq >= 0 && num_percpu_t > 0) {
705                         if (cur_cpu == CPU_FIRST())
706                                 pcpu_master = i;
707                         t->pcpu_cpu = cur_cpu;
708                         t->pcpu_master = pcpu_master;
709                         sc->t[pcpu_master].
710                             pcpu_slaves[cur_cpu] = i;
711                         bus_bind_intr(dev, t->intr_res, cur_cpu);
712                         cur_cpu = CPU_NEXT(cur_cpu);
713                         num_percpu_t--;
714                 } else if (t->irq >= 0)
715                         bus_bind_intr(dev, t->intr_res, CPU_FIRST());
716         }
717         bus_write_4(sc->mem_res, HPET_ISR, 0xffffffff);
718         sc->irq = -1;
719         /* If at least one timer needs legacy IRQ - set it up. */
720         if (sc->useirq) {
721                 j = i = fls(cvectors) - 1;
722                 while (j > 0 && (cvectors & (1 << (j - 1))) != 0)
723                         j--;
724                 sc->intr_rid = hpet_find_irq_rid(dev, j, i);
725                 sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
726                     &sc->intr_rid, j, i, 1, RF_SHAREABLE | RF_ACTIVE);
727                 if (sc->intr_res == NULL)
728                         device_printf(dev, "Can't map interrupt.\n");
729                 else if (bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
730                     hpet_intr, NULL, sc, &sc->intr_handle) != 0) {
731                         device_printf(dev, "Can't setup interrupt.\n");
732                 } else {
733                         sc->irq = rman_get_start(sc->intr_res);
734                         /* Bind IRQ to BSP to avoid live migration. */
735                         bus_bind_intr(dev, sc->intr_res, CPU_FIRST());
736                 }
737         }
738         /* Program and announce event timers. */
739         for (i = 0; i < num_timers; i++) {
740                 t = &sc->t[i];
741                 t->caps &= ~(HPET_TCNF_FSB_EN | HPET_TCNF_INT_ROUTE);
742                 t->caps &= ~(HPET_TCNF_VAL_SET | HPET_TCNF_INT_ENB);
743                 t->caps &= ~(HPET_TCNF_INT_TYPE);
744                 t->caps |= HPET_TCNF_32MODE;
745                 if (t->irq >= 0 && sc->legacy_route && i < 2) {
746                         /* Legacy route doesn't need more configuration. */
747                 } else
748 #ifdef DEV_APIC
749                 if ((t->caps & HPET_TCAP_FSB_INT_DEL) && t->irq >= 0) {
750                         uint64_t addr;
751                         uint32_t data;
752
753                         if (PCIB_MAP_MSI(
754                             device_get_parent(device_get_parent(dev)), dev,
755                             t->irq, &addr, &data) == 0) {
756                                 bus_write_4(sc->mem_res,
757                                     HPET_TIMER_FSB_ADDR(i), addr);
758                                 bus_write_4(sc->mem_res,
759                                     HPET_TIMER_FSB_VAL(i), data);
760                                 t->caps |= HPET_TCNF_FSB_EN;
761                         } else
762                                 t->irq = -2;
763                 } else
764 #endif
765                 if (t->irq >= 0)
766                         t->caps |= (t->irq << 9);
767                 else if (sc->irq >= 0 && (t->vectors & (1 << sc->irq)))
768                         t->caps |= (sc->irq << 9) | HPET_TCNF_INT_TYPE;
769                 bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(i), t->caps);
770                 /* Skip event timers without set up IRQ. */
771                 if (t->irq < 0 &&
772                     (sc->irq < 0 || (t->vectors & (1 << sc->irq)) == 0))
773                         continue;
774                 /* Announce the reset. */
775                 if (maxhpetet == 0)
776                         t->et.et_name = "HPET";
777                 else {
778                         sprintf(t->name, "HPET%d", maxhpetet);
779                         t->et.et_name = t->name;
780                 }
781                 t->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT;
782                 t->et.et_quality = 450;
783                 if (t->pcpu_master >= 0) {
784                         t->et.et_flags |= ET_FLAGS_PERCPU;
785                         t->et.et_quality += 100;
786                 } else if (mp_ncpus >= 8)
787                         t->et.et_quality -= 100;
788                 if ((t->caps & HPET_TCAP_PER_INT) == 0)
789                         t->et.et_quality -= 10;
790                 t->et.et_frequency = sc->freq;
791                 t->et.et_min_period =
792                     ((uint64_t)(HPET_MIN_CYCLES * 2) << 32) / sc->freq;
793                 t->et.et_max_period = (0xfffffffeLLU << 32) / sc->freq;
794                 t->et.et_start = hpet_start;
795                 t->et.et_stop = hpet_stop;
796                 t->et.et_priv = &sc->t[i];
797                 if (t->pcpu_master < 0 || t->pcpu_master == i) {
798                         et_register(&t->et);
799                         maxhpetet++;
800                 }
801         }
802         acpi_GetInteger(sc->handle, "_UID", &sc->acpi_uid);
803
804         make_dev_args_init(&mda);
805         mda.mda_devsw = &hpet_cdevsw;
806         mda.mda_uid = UID_ROOT;
807         mda.mda_gid = GID_WHEEL;
808         mda.mda_mode = 0644;
809         mda.mda_si_drv1 = sc;
810         error = make_dev_s(&mda, &sc->pdev, "hpet%d", device_get_unit(dev));
811         if (error == 0) {
812                 sc->mmap_allow = 1;
813                 TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow",
814                     &sc->mmap_allow);
815                 sc->mmap_allow_write = 0;
816                 TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow_write",
817                     &sc->mmap_allow_write);
818                 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
819                     SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
820                     OID_AUTO, "mmap_allow",
821                     CTLFLAG_RW, &sc->mmap_allow, 0,
822                     "Allow userland to memory map HPET");
823                 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
824                     SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
825                     OID_AUTO, "mmap_allow_write",
826                     CTLFLAG_RW, &sc->mmap_allow_write, 0,
827                     "Allow userland write to the HPET register space");
828         } else {
829                 device_printf(dev, "could not create /dev/hpet%d, error %d\n",
830                     device_get_unit(dev), error);
831         }
832
833         return (0);
834 }
835
836 static int
837 hpet_detach(device_t dev)
838 {
839         ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
840
841         /* XXX Without a tc_remove() function, we can't detach. */
842         return (EBUSY);
843 }
844
845 static int
846 hpet_suspend(device_t dev)
847 {
848 //      struct hpet_softc *sc;
849
850         /*
851          * Disable the timer during suspend.  The timer will not lose
852          * its state in S1 or S2, but we are required to disable
853          * it.
854          */
855 //      sc = device_get_softc(dev);
856 //      hpet_disable(sc);
857
858         return (0);
859 }
860
861 static int
862 hpet_resume(device_t dev)
863 {
864         struct hpet_softc *sc;
865         struct hpet_timer *t;
866         int i;
867
868         /* Re-enable the timer after a resume to keep the clock advancing. */
869         sc = device_get_softc(dev);
870         hpet_enable(sc);
871         /* Restart event timers that were running on suspend. */
872         for (i = 0; i < sc->num_timers; i++) {
873                 t = &sc->t[i];
874 #ifdef DEV_APIC
875                 if (t->irq >= 0 && (sc->legacy_route == 0 || i >= 2)) {
876                         uint64_t addr;
877                         uint32_t data;
878
879                         if (PCIB_MAP_MSI(
880                             device_get_parent(device_get_parent(dev)), dev,
881                             t->irq, &addr, &data) == 0) {
882                                 bus_write_4(sc->mem_res,
883                                     HPET_TIMER_FSB_ADDR(i), addr);
884                                 bus_write_4(sc->mem_res,
885                                     HPET_TIMER_FSB_VAL(i), data);
886                         }
887                 }
888 #endif
889                 if (t->mode == TIMER_STOPPED)
890                         continue;
891                 t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
892                 if (t->mode == TIMER_PERIODIC &&
893                     (t->caps & HPET_TCAP_PER_INT) != 0) {
894                         t->caps |= HPET_TCNF_TYPE;
895                         t->next += t->div;
896                         bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
897                             t->caps | HPET_TCNF_VAL_SET);
898                         bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
899                             t->next);
900                         bus_read_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num));
901                         bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
902                             t->div);
903                 } else {
904                         t->next += sc->freq / 1024;
905                         bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
906                             t->next);
907                 }
908                 bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
909                 bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
910         }
911         return (0);
912 }
913
914 /* Print some basic latency/rate information to assist in debugging. */
915 static void
916 hpet_test(struct hpet_softc *sc)
917 {
918         int i;
919         uint32_t u1, u2;
920         struct bintime b0, b1, b2;
921         struct timespec ts;
922
923         binuptime(&b0);
924         binuptime(&b0);
925         binuptime(&b1);
926         u1 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
927         for (i = 1; i < 1000; i++)
928                 u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
929         binuptime(&b2);
930         u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
931
932         bintime_sub(&b2, &b1);
933         bintime_sub(&b1, &b0);
934         bintime_sub(&b2, &b1);
935         bintime2timespec(&b2, &ts);
936
937         device_printf(sc->dev, "%ld.%09ld: %u ... %u = %u\n",
938             (long)ts.tv_sec, ts.tv_nsec, u1, u2, u2 - u1);
939
940         device_printf(sc->dev, "time per call: %ld ns\n", ts.tv_nsec / 1000);
941 }
942
943 #ifdef DEV_APIC
944 static int
945 hpet_remap_intr(device_t dev, device_t child, u_int irq)
946 {
947         struct hpet_softc *sc = device_get_softc(dev);
948         struct hpet_timer *t;
949         uint64_t addr;
950         uint32_t data;
951         int error, i;
952
953         for (i = 0; i < sc->num_timers; i++) {
954                 t = &sc->t[i];
955                 if (t->irq != irq)
956                         continue;
957                 error = PCIB_MAP_MSI(
958                     device_get_parent(device_get_parent(dev)), dev,
959                     irq, &addr, &data);
960                 if (error)
961                         return (error);
962                 hpet_disable(sc); /* Stop timer to avoid interrupt loss. */
963                 bus_write_4(sc->mem_res, HPET_TIMER_FSB_ADDR(i), addr);
964                 bus_write_4(sc->mem_res, HPET_TIMER_FSB_VAL(i), data);
965                 hpet_enable(sc);
966                 return (0);
967         }
968         return (ENOENT);
969 }
970 #endif
971
972 static device_method_t hpet_methods[] = {
973         /* Device interface */
974         DEVMETHOD(device_identify, hpet_identify),
975         DEVMETHOD(device_probe, hpet_probe),
976         DEVMETHOD(device_attach, hpet_attach),
977         DEVMETHOD(device_detach, hpet_detach),
978         DEVMETHOD(device_suspend, hpet_suspend),
979         DEVMETHOD(device_resume, hpet_resume),
980
981 #ifdef DEV_APIC
982         DEVMETHOD(bus_remap_intr, hpet_remap_intr),
983 #endif
984
985         DEVMETHOD_END
986 };
987
988 static driver_t hpet_driver = {
989         "hpet",
990         hpet_methods,
991         sizeof(struct hpet_softc),
992 };
993
994 DRIVER_MODULE(hpet, acpi, hpet_driver, hpet_devclass, 0, 0);
995 MODULE_DEPEND(hpet, acpi, 1, 1, 1);