]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/age/if_age.c
Update to Zstandard 1.4.5
[FreeBSD/FreeBSD.git] / sys / dev / age / if_age.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/rman.h>
43 #include <sys/module.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70
71 #include <machine/bus.h>
72 #include <machine/in_cksum.h>
73
74 #include <dev/age/if_agereg.h>
75 #include <dev/age/if_agevar.h>
76
77 /* "device miibus" required.  See GENERIC if you get errors here. */
78 #include "miibus_if.h"
79
80 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
81
82 MODULE_DEPEND(age, pci, 1, 1, 1);
83 MODULE_DEPEND(age, ether, 1, 1, 1);
84 MODULE_DEPEND(age, miibus, 1, 1, 1);
85
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
91
92 /*
93  * Devices supported by this driver.
94  */
95 static struct age_dev {
96         uint16_t        age_vendorid;
97         uint16_t        age_deviceid;
98         const char      *age_name;
99 } age_devs[] = {
100         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
101             "Attansic Technology Corp, L1 Gigabit Ethernet" },
102 };
103
104 static int age_miibus_readreg(device_t, int, int);
105 static int age_miibus_writereg(device_t, int, int, int);
106 static void age_miibus_statchg(device_t);
107 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
108 static int age_mediachange(struct ifnet *);
109 static int age_probe(device_t);
110 static void age_get_macaddr(struct age_softc *);
111 static void age_phy_reset(struct age_softc *);
112 static int age_attach(device_t);
113 static int age_detach(device_t);
114 static void age_sysctl_node(struct age_softc *);
115 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
116 static int age_check_boundary(struct age_softc *);
117 static int age_dma_alloc(struct age_softc *);
118 static void age_dma_free(struct age_softc *);
119 static int age_shutdown(device_t);
120 static void age_setwol(struct age_softc *);
121 static int age_suspend(device_t);
122 static int age_resume(device_t);
123 static int age_encap(struct age_softc *, struct mbuf **);
124 static void age_start(struct ifnet *);
125 static void age_start_locked(struct ifnet *);
126 static void age_watchdog(struct age_softc *);
127 static int age_ioctl(struct ifnet *, u_long, caddr_t);
128 static void age_mac_config(struct age_softc *);
129 static void age_link_task(void *, int);
130 static void age_stats_update(struct age_softc *);
131 static int age_intr(void *);
132 static void age_int_task(void *, int);
133 static void age_txintr(struct age_softc *, int);
134 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
135 static int age_rxintr(struct age_softc *, int, int);
136 static void age_tick(void *);
137 static void age_reset(struct age_softc *);
138 static void age_init(void *);
139 static void age_init_locked(struct age_softc *);
140 static void age_stop(struct age_softc *);
141 static void age_stop_txmac(struct age_softc *);
142 static void age_stop_rxmac(struct age_softc *);
143 static void age_init_tx_ring(struct age_softc *);
144 static int age_init_rx_ring(struct age_softc *);
145 static void age_init_rr_ring(struct age_softc *);
146 static void age_init_cmb_block(struct age_softc *);
147 static void age_init_smb_block(struct age_softc *);
148 #ifndef __NO_STRICT_ALIGNMENT
149 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
150 #endif
151 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
152 static void age_rxvlan(struct age_softc *);
153 static void age_rxfilter(struct age_softc *);
154 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
155 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
156 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
157 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
158
159
160 static device_method_t age_methods[] = {
161         /* Device interface. */
162         DEVMETHOD(device_probe,         age_probe),
163         DEVMETHOD(device_attach,        age_attach),
164         DEVMETHOD(device_detach,        age_detach),
165         DEVMETHOD(device_shutdown,      age_shutdown),
166         DEVMETHOD(device_suspend,       age_suspend),
167         DEVMETHOD(device_resume,        age_resume),
168
169         /* MII interface. */
170         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
171         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
172         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
173
174         { NULL, NULL }
175 };
176
177 static driver_t age_driver = {
178         "age",
179         age_methods,
180         sizeof(struct age_softc)
181 };
182
183 static devclass_t age_devclass;
184
185 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
186 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
187     nitems(age_devs));
188 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
189
190 static struct resource_spec age_res_spec_mem[] = {
191         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
192         { -1,                   0,              0 }
193 };
194
195 static struct resource_spec age_irq_spec_legacy[] = {
196         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
197         { -1,                   0,              0 }
198 };
199
200 static struct resource_spec age_irq_spec_msi[] = {
201         { SYS_RES_IRQ,          1,              RF_ACTIVE },
202         { -1,                   0,              0 }
203 };
204
205 static struct resource_spec age_irq_spec_msix[] = {
206         { SYS_RES_IRQ,          1,              RF_ACTIVE },
207         { -1,                   0,              0 }
208 };
209
210 /*
211  *      Read a PHY register on the MII of the L1.
212  */
213 static int
214 age_miibus_readreg(device_t dev, int phy, int reg)
215 {
216         struct age_softc *sc;
217         uint32_t v;
218         int i;
219
220         sc = device_get_softc(dev);
221
222         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
223             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
224         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
225                 DELAY(1);
226                 v = CSR_READ_4(sc, AGE_MDIO);
227                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
228                         break;
229         }
230
231         if (i == 0) {
232                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
233                 return (0);
234         }
235
236         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
237 }
238
239 /*
240  *      Write a PHY register on the MII of the L1.
241  */
242 static int
243 age_miibus_writereg(device_t dev, int phy, int reg, int val)
244 {
245         struct age_softc *sc;
246         uint32_t v;
247         int i;
248
249         sc = device_get_softc(dev);
250
251         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
252             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
253             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
254         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
255                 DELAY(1);
256                 v = CSR_READ_4(sc, AGE_MDIO);
257                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
258                         break;
259         }
260
261         if (i == 0)
262                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
263
264         return (0);
265 }
266
267 /*
268  *      Callback from MII layer when media changes.
269  */
270 static void
271 age_miibus_statchg(device_t dev)
272 {
273         struct age_softc *sc;
274
275         sc = device_get_softc(dev);
276         taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
277 }
278
279 /*
280  *      Get the current interface media status.
281  */
282 static void
283 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
284 {
285         struct age_softc *sc;
286         struct mii_data *mii;
287
288         sc = ifp->if_softc;
289         AGE_LOCK(sc);
290         mii = device_get_softc(sc->age_miibus);
291
292         mii_pollstat(mii);
293         ifmr->ifm_status = mii->mii_media_status;
294         ifmr->ifm_active = mii->mii_media_active;
295         AGE_UNLOCK(sc);
296 }
297
298 /*
299  *      Set hardware to newly-selected media.
300  */
301 static int
302 age_mediachange(struct ifnet *ifp)
303 {
304         struct age_softc *sc;
305         struct mii_data *mii;
306         struct mii_softc *miisc;
307         int error;
308
309         sc = ifp->if_softc;
310         AGE_LOCK(sc);
311         mii = device_get_softc(sc->age_miibus);
312         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
313                 PHY_RESET(miisc);
314         error = mii_mediachg(mii);
315         AGE_UNLOCK(sc);
316
317         return (error);
318 }
319
320 static int
321 age_probe(device_t dev)
322 {
323         struct age_dev *sp;
324         int i;
325         uint16_t vendor, devid;
326
327         vendor = pci_get_vendor(dev);
328         devid = pci_get_device(dev);
329         sp = age_devs;
330         for (i = 0; i < nitems(age_devs); i++, sp++) {
331                 if (vendor == sp->age_vendorid &&
332                     devid == sp->age_deviceid) {
333                         device_set_desc(dev, sp->age_name);
334                         return (BUS_PROBE_DEFAULT);
335                 }
336         }
337
338         return (ENXIO);
339 }
340
341 static void
342 age_get_macaddr(struct age_softc *sc)
343 {
344         uint32_t ea[2], reg;
345         int i, vpdc;
346
347         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
348         if ((reg & SPI_VPD_ENB) != 0) {
349                 /* Get VPD stored in TWSI EEPROM. */
350                 reg &= ~SPI_VPD_ENB;
351                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
352         }
353
354         if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
355                 /*
356                  * PCI VPD capability found, let TWSI reload EEPROM.
357                  * This will set ethernet address of controller.
358                  */
359                 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
360                     TWSI_CTRL_SW_LD_START);
361                 for (i = 100; i > 0; i--) {
362                         DELAY(1000);
363                         reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
364                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
365                                 break;
366                 }
367                 if (i == 0)
368                         device_printf(sc->age_dev,
369                             "reloading EEPROM timeout!\n");
370         } else {
371                 if (bootverbose)
372                         device_printf(sc->age_dev,
373                             "PCI VPD capability not found!\n");
374         }
375
376         ea[0] = CSR_READ_4(sc, AGE_PAR0);
377         ea[1] = CSR_READ_4(sc, AGE_PAR1);
378         sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
379         sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
380         sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
381         sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
382         sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
383         sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
384 }
385
386 static void
387 age_phy_reset(struct age_softc *sc)
388 {
389         uint16_t reg, pn;
390         int i, linkup;
391
392         /* Reset PHY. */
393         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
394         DELAY(2000);
395         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
396         DELAY(2000);
397
398 #define ATPHY_DBG_ADDR          0x1D
399 #define ATPHY_DBG_DATA          0x1E
400 #define ATPHY_CDTC              0x16
401 #define PHY_CDTC_ENB            0x0001
402 #define PHY_CDTC_POFF           8
403 #define ATPHY_CDTS              0x1C
404 #define PHY_CDTS_STAT_OK        0x0000
405 #define PHY_CDTS_STAT_SHORT     0x0100
406 #define PHY_CDTS_STAT_OPEN      0x0200
407 #define PHY_CDTS_STAT_INVAL     0x0300
408 #define PHY_CDTS_STAT_MASK      0x0300
409
410         /* Check power saving mode. Magic from Linux. */
411         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
412         for (linkup = 0, pn = 0; pn < 4; pn++) {
413                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
414                     (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
415                 for (i = 200; i > 0; i--) {
416                         DELAY(1000);
417                         reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
418                             ATPHY_CDTC);
419                         if ((reg & PHY_CDTC_ENB) == 0)
420                                 break;
421                 }
422                 DELAY(1000);
423                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
424                     ATPHY_CDTS);
425                 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
426                         linkup++;
427                         break;
428                 }
429         }
430         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
431             BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
432         if (linkup == 0) {
433                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
434                     ATPHY_DBG_ADDR, 0);
435                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
436                     ATPHY_DBG_DATA, 0x124E);
437                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438                     ATPHY_DBG_ADDR, 1);
439                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
440                     ATPHY_DBG_DATA);
441                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
442                     ATPHY_DBG_DATA, reg | 0x03);
443                 /* XXX */
444                 DELAY(1500 * 1000);
445                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
446                     ATPHY_DBG_ADDR, 0);
447                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
448                     ATPHY_DBG_DATA, 0x024E);
449     }
450
451 #undef  ATPHY_DBG_ADDR
452 #undef  ATPHY_DBG_DATA
453 #undef  ATPHY_CDTC
454 #undef  PHY_CDTC_ENB
455 #undef  PHY_CDTC_POFF
456 #undef  ATPHY_CDTS
457 #undef  PHY_CDTS_STAT_OK
458 #undef  PHY_CDTS_STAT_SHORT
459 #undef  PHY_CDTS_STAT_OPEN
460 #undef  PHY_CDTS_STAT_INVAL
461 #undef  PHY_CDTS_STAT_MASK
462 }
463
464 static int
465 age_attach(device_t dev)
466 {
467         struct age_softc *sc;
468         struct ifnet *ifp;
469         uint16_t burst;
470         int error, i, msic, msixc, pmc;
471
472         error = 0;
473         sc = device_get_softc(dev);
474         sc->age_dev = dev;
475
476         mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
477             MTX_DEF);
478         callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
479         TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
480         TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
481
482         /* Map the device. */
483         pci_enable_busmaster(dev);
484         sc->age_res_spec = age_res_spec_mem;
485         sc->age_irq_spec = age_irq_spec_legacy;
486         error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
487         if (error != 0) {
488                 device_printf(dev, "cannot allocate memory resources.\n");
489                 goto fail;
490         }
491
492         /* Set PHY address. */
493         sc->age_phyaddr = AGE_PHY_ADDR;
494
495         /* Reset PHY. */
496         age_phy_reset(sc);
497
498         /* Reset the ethernet controller. */
499         age_reset(sc);
500
501         /* Get PCI and chip id/revision. */
502         sc->age_rev = pci_get_revid(dev);
503         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
504             MASTER_CHIP_REV_SHIFT;
505         if (bootverbose) {
506                 device_printf(dev, "PCI device revision : 0x%04x\n",
507                     sc->age_rev);
508                 device_printf(dev, "Chip id/revision : 0x%04x\n",
509                     sc->age_chip_rev);
510         }
511
512         /*
513          * XXX
514          * Unintialized hardware returns an invalid chip id/revision
515          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
516          * unplugged cable results in putting hardware into automatic
517          * power down mode which in turn returns invalld chip revision.
518          */
519         if (sc->age_chip_rev == 0xFFFF) {
520                 device_printf(dev,"invalid chip revision : 0x%04x -- "
521                     "not initialized?\n", sc->age_chip_rev);
522                 error = ENXIO;
523                 goto fail;
524         }
525
526         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
527             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
528             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
529
530         /* Allocate IRQ resources. */
531         msixc = pci_msix_count(dev);
532         msic = pci_msi_count(dev);
533         if (bootverbose) {
534                 device_printf(dev, "MSIX count : %d\n", msixc);
535                 device_printf(dev, "MSI count : %d\n", msic);
536         }
537
538         /* Prefer MSIX over MSI. */
539         if (msix_disable == 0 || msi_disable == 0) {
540                 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
541                     pci_alloc_msix(dev, &msixc) == 0) {
542                         if (msic == AGE_MSIX_MESSAGES) {
543                                 device_printf(dev, "Using %d MSIX messages.\n",
544                                     msixc);
545                                 sc->age_flags |= AGE_FLAG_MSIX;
546                                 sc->age_irq_spec = age_irq_spec_msix;
547                         } else
548                                 pci_release_msi(dev);
549                 }
550                 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
551                     msic == AGE_MSI_MESSAGES &&
552                     pci_alloc_msi(dev, &msic) == 0) {
553                         if (msic == AGE_MSI_MESSAGES) {
554                                 device_printf(dev, "Using %d MSI messages.\n",
555                                     msic);
556                                 sc->age_flags |= AGE_FLAG_MSI;
557                                 sc->age_irq_spec = age_irq_spec_msi;
558                         } else
559                                 pci_release_msi(dev);
560                 }
561         }
562
563         error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
564         if (error != 0) {
565                 device_printf(dev, "cannot allocate IRQ resources.\n");
566                 goto fail;
567         }
568
569
570         /* Get DMA parameters from PCIe device control register. */
571         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
572                 sc->age_flags |= AGE_FLAG_PCIE;
573                 burst = pci_read_config(dev, i + 0x08, 2);
574                 /* Max read request size. */
575                 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
576                     DMA_CFG_RD_BURST_SHIFT;
577                 /* Max payload size. */
578                 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
579                     DMA_CFG_WR_BURST_SHIFT;
580                 if (bootverbose) {
581                         device_printf(dev, "Read request size : %d bytes.\n",
582                             128 << ((burst >> 12) & 0x07));
583                         device_printf(dev, "TLP payload size : %d bytes.\n",
584                             128 << ((burst >> 5) & 0x07));
585                 }
586         } else {
587                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
588                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
589         }
590
591         /* Create device sysctl node. */
592         age_sysctl_node(sc);
593
594         if ((error = age_dma_alloc(sc)) != 0)
595                 goto fail;
596
597         /* Load station address. */
598         age_get_macaddr(sc);
599
600         ifp = sc->age_ifp = if_alloc(IFT_ETHER);
601         if (ifp == NULL) {
602                 device_printf(dev, "cannot allocate ifnet structure.\n");
603                 error = ENXIO;
604                 goto fail;
605         }
606
607         ifp->if_softc = sc;
608         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
609         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
610         ifp->if_ioctl = age_ioctl;
611         ifp->if_start = age_start;
612         ifp->if_init = age_init;
613         ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
614         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
615         IFQ_SET_READY(&ifp->if_snd);
616         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
617         ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
618         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
619                 sc->age_flags |= AGE_FLAG_PMCAP;
620                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
621         }
622         ifp->if_capenable = ifp->if_capabilities;
623
624         /* Set up MII bus. */
625         error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
626             age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
627             0);
628         if (error != 0) {
629                 device_printf(dev, "attaching PHYs failed\n");
630                 goto fail;
631         }
632
633         ether_ifattach(ifp, sc->age_eaddr);
634
635         /* VLAN capability setup. */
636         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
637             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
638         ifp->if_capenable = ifp->if_capabilities;
639
640         /* Tell the upper layer(s) we support long frames. */
641         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
642
643         /* Create local taskq. */
644         sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
645             taskqueue_thread_enqueue, &sc->age_tq);
646         if (sc->age_tq == NULL) {
647                 device_printf(dev, "could not create taskqueue.\n");
648                 ether_ifdetach(ifp);
649                 error = ENXIO;
650                 goto fail;
651         }
652         taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
653             device_get_nameunit(sc->age_dev));
654
655         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
656                 msic = AGE_MSIX_MESSAGES;
657         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
658                 msic = AGE_MSI_MESSAGES;
659         else
660                 msic = 1;
661         for (i = 0; i < msic; i++) {
662                 error = bus_setup_intr(dev, sc->age_irq[i],
663                     INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
664                     &sc->age_intrhand[i]);
665                 if (error != 0)
666                         break;
667         }
668         if (error != 0) {
669                 device_printf(dev, "could not set up interrupt handler.\n");
670                 taskqueue_free(sc->age_tq);
671                 sc->age_tq = NULL;
672                 ether_ifdetach(ifp);
673                 goto fail;
674         }
675
676 fail:
677         if (error != 0)
678                 age_detach(dev);
679
680         return (error);
681 }
682
683 static int
684 age_detach(device_t dev)
685 {
686         struct age_softc *sc;
687         struct ifnet *ifp;
688         int i, msic;
689
690         sc = device_get_softc(dev);
691
692         ifp = sc->age_ifp;
693         if (device_is_attached(dev)) {
694                 AGE_LOCK(sc);
695                 sc->age_flags |= AGE_FLAG_DETACH;
696                 age_stop(sc);
697                 AGE_UNLOCK(sc);
698                 callout_drain(&sc->age_tick_ch);
699                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
700                 taskqueue_drain(taskqueue_swi, &sc->age_link_task);
701                 ether_ifdetach(ifp);
702         }
703
704         if (sc->age_tq != NULL) {
705                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
706                 taskqueue_free(sc->age_tq);
707                 sc->age_tq = NULL;
708         }
709
710         if (sc->age_miibus != NULL) {
711                 device_delete_child(dev, sc->age_miibus);
712                 sc->age_miibus = NULL;
713         }
714         bus_generic_detach(dev);
715         age_dma_free(sc);
716
717         if (ifp != NULL) {
718                 if_free(ifp);
719                 sc->age_ifp = NULL;
720         }
721
722         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
723                 msic = AGE_MSIX_MESSAGES;
724         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
725                 msic = AGE_MSI_MESSAGES;
726         else
727                 msic = 1;
728         for (i = 0; i < msic; i++) {
729                 if (sc->age_intrhand[i] != NULL) {
730                         bus_teardown_intr(dev, sc->age_irq[i],
731                             sc->age_intrhand[i]);
732                         sc->age_intrhand[i] = NULL;
733                 }
734         }
735
736         bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
737         if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
738                 pci_release_msi(dev);
739         bus_release_resources(dev, sc->age_res_spec, sc->age_res);
740         mtx_destroy(&sc->age_mtx);
741
742         return (0);
743 }
744
745 static void
746 age_sysctl_node(struct age_softc *sc)
747 {
748         int error;
749
750         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
751             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
752             "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
753             sc, 0, sysctl_age_stats, "I", "Statistics");
754
755         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
756             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
757             "int_mod", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
758             &sc->age_int_mod, 0, sysctl_hw_age_int_mod, "I",
759             "age interrupt moderation");
760
761         /* Pull in device tunables. */
762         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
763         error = resource_int_value(device_get_name(sc->age_dev),
764             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
765         if (error == 0) {
766                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
767                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
768                         device_printf(sc->age_dev,
769                             "int_mod value out of range; using default: %d\n",
770                             AGE_IM_TIMER_DEFAULT);
771                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
772                 }
773         }
774
775         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
776             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
777             "process_limit", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
778             &sc->age_process_limit, 0, sysctl_hw_age_proc_limit, "I",
779             "max number of Rx events to process");
780
781         /* Pull in device tunables. */
782         sc->age_process_limit = AGE_PROC_DEFAULT;
783         error = resource_int_value(device_get_name(sc->age_dev),
784             device_get_unit(sc->age_dev), "process_limit",
785             &sc->age_process_limit);
786         if (error == 0) {
787                 if (sc->age_process_limit < AGE_PROC_MIN ||
788                     sc->age_process_limit > AGE_PROC_MAX) {
789                         device_printf(sc->age_dev,
790                             "process_limit value out of range; "
791                             "using default: %d\n", AGE_PROC_DEFAULT);
792                         sc->age_process_limit = AGE_PROC_DEFAULT;
793                 }
794         }
795 }
796
797 struct age_dmamap_arg {
798         bus_addr_t      age_busaddr;
799 };
800
801 static void
802 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
803 {
804         struct age_dmamap_arg *ctx;
805
806         if (error != 0)
807                 return;
808
809         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
810
811         ctx = (struct age_dmamap_arg *)arg;
812         ctx->age_busaddr = segs[0].ds_addr;
813 }
814
815 /*
816  * Attansic L1 controller have single register to specify high
817  * address part of DMA blocks. So all descriptor structures and
818  * DMA memory blocks should have the same high address of given
819  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
820  */
821 static int
822 age_check_boundary(struct age_softc *sc)
823 {
824         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
825         bus_addr_t cmb_block_end, smb_block_end;
826
827         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
828         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
829         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
830         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
831         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
832         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
833
834         if ((AGE_ADDR_HI(tx_ring_end) !=
835             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
836             (AGE_ADDR_HI(rx_ring_end) !=
837             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
838             (AGE_ADDR_HI(rr_ring_end) !=
839             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
840             (AGE_ADDR_HI(cmb_block_end) !=
841             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
842             (AGE_ADDR_HI(smb_block_end) !=
843             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
844                 return (EFBIG);
845
846         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
847             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
848             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
849             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
850                 return (EFBIG);
851
852         return (0);
853 }
854
855 static int
856 age_dma_alloc(struct age_softc *sc)
857 {
858         struct age_txdesc *txd;
859         struct age_rxdesc *rxd;
860         bus_addr_t lowaddr;
861         struct age_dmamap_arg ctx;
862         int error, i;
863
864         lowaddr = BUS_SPACE_MAXADDR;
865
866 again:
867         /* Create parent ring/DMA block tag. */
868         error = bus_dma_tag_create(
869             bus_get_dma_tag(sc->age_dev), /* parent */
870             1, 0,                       /* alignment, boundary */
871             lowaddr,                    /* lowaddr */
872             BUS_SPACE_MAXADDR,          /* highaddr */
873             NULL, NULL,                 /* filter, filterarg */
874             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
875             0,                          /* nsegments */
876             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
877             0,                          /* flags */
878             NULL, NULL,                 /* lockfunc, lockarg */
879             &sc->age_cdata.age_parent_tag);
880         if (error != 0) {
881                 device_printf(sc->age_dev,
882                     "could not create parent DMA tag.\n");
883                 goto fail;
884         }
885
886         /* Create tag for Tx ring. */
887         error = bus_dma_tag_create(
888             sc->age_cdata.age_parent_tag, /* parent */
889             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
890             BUS_SPACE_MAXADDR,          /* lowaddr */
891             BUS_SPACE_MAXADDR,          /* highaddr */
892             NULL, NULL,                 /* filter, filterarg */
893             AGE_TX_RING_SZ,             /* maxsize */
894             1,                          /* nsegments */
895             AGE_TX_RING_SZ,             /* maxsegsize */
896             0,                          /* flags */
897             NULL, NULL,                 /* lockfunc, lockarg */
898             &sc->age_cdata.age_tx_ring_tag);
899         if (error != 0) {
900                 device_printf(sc->age_dev,
901                     "could not create Tx ring DMA tag.\n");
902                 goto fail;
903         }
904
905         /* Create tag for Rx ring. */
906         error = bus_dma_tag_create(
907             sc->age_cdata.age_parent_tag, /* parent */
908             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
909             BUS_SPACE_MAXADDR,          /* lowaddr */
910             BUS_SPACE_MAXADDR,          /* highaddr */
911             NULL, NULL,                 /* filter, filterarg */
912             AGE_RX_RING_SZ,             /* maxsize */
913             1,                          /* nsegments */
914             AGE_RX_RING_SZ,             /* maxsegsize */
915             0,                          /* flags */
916             NULL, NULL,                 /* lockfunc, lockarg */
917             &sc->age_cdata.age_rx_ring_tag);
918         if (error != 0) {
919                 device_printf(sc->age_dev,
920                     "could not create Rx ring DMA tag.\n");
921                 goto fail;
922         }
923
924         /* Create tag for Rx return ring. */
925         error = bus_dma_tag_create(
926             sc->age_cdata.age_parent_tag, /* parent */
927             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
928             BUS_SPACE_MAXADDR,          /* lowaddr */
929             BUS_SPACE_MAXADDR,          /* highaddr */
930             NULL, NULL,                 /* filter, filterarg */
931             AGE_RR_RING_SZ,             /* maxsize */
932             1,                          /* nsegments */
933             AGE_RR_RING_SZ,             /* maxsegsize */
934             0,                          /* flags */
935             NULL, NULL,                 /* lockfunc, lockarg */
936             &sc->age_cdata.age_rr_ring_tag);
937         if (error != 0) {
938                 device_printf(sc->age_dev,
939                     "could not create Rx return ring DMA tag.\n");
940                 goto fail;
941         }
942
943         /* Create tag for coalesing message block. */
944         error = bus_dma_tag_create(
945             sc->age_cdata.age_parent_tag, /* parent */
946             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
947             BUS_SPACE_MAXADDR,          /* lowaddr */
948             BUS_SPACE_MAXADDR,          /* highaddr */
949             NULL, NULL,                 /* filter, filterarg */
950             AGE_CMB_BLOCK_SZ,           /* maxsize */
951             1,                          /* nsegments */
952             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
953             0,                          /* flags */
954             NULL, NULL,                 /* lockfunc, lockarg */
955             &sc->age_cdata.age_cmb_block_tag);
956         if (error != 0) {
957                 device_printf(sc->age_dev,
958                     "could not create CMB DMA tag.\n");
959                 goto fail;
960         }
961
962         /* Create tag for statistics message block. */
963         error = bus_dma_tag_create(
964             sc->age_cdata.age_parent_tag, /* parent */
965             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
966             BUS_SPACE_MAXADDR,          /* lowaddr */
967             BUS_SPACE_MAXADDR,          /* highaddr */
968             NULL, NULL,                 /* filter, filterarg */
969             AGE_SMB_BLOCK_SZ,           /* maxsize */
970             1,                          /* nsegments */
971             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
972             0,                          /* flags */
973             NULL, NULL,                 /* lockfunc, lockarg */
974             &sc->age_cdata.age_smb_block_tag);
975         if (error != 0) {
976                 device_printf(sc->age_dev,
977                     "could not create SMB DMA tag.\n");
978                 goto fail;
979         }
980
981         /* Allocate DMA'able memory and load the DMA map. */
982         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
983             (void **)&sc->age_rdata.age_tx_ring,
984             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
985             &sc->age_cdata.age_tx_ring_map);
986         if (error != 0) {
987                 device_printf(sc->age_dev,
988                     "could not allocate DMA'able memory for Tx ring.\n");
989                 goto fail;
990         }
991         ctx.age_busaddr = 0;
992         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
993             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
994             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
995         if (error != 0 || ctx.age_busaddr == 0) {
996                 device_printf(sc->age_dev,
997                     "could not load DMA'able memory for Tx ring.\n");
998                 goto fail;
999         }
1000         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
1001         /* Rx ring */
1002         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1003             (void **)&sc->age_rdata.age_rx_ring,
1004             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1005             &sc->age_cdata.age_rx_ring_map);
1006         if (error != 0) {
1007                 device_printf(sc->age_dev,
1008                     "could not allocate DMA'able memory for Rx ring.\n");
1009                 goto fail;
1010         }
1011         ctx.age_busaddr = 0;
1012         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1013             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1014             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1015         if (error != 0 || ctx.age_busaddr == 0) {
1016                 device_printf(sc->age_dev,
1017                     "could not load DMA'able memory for Rx ring.\n");
1018                 goto fail;
1019         }
1020         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1021         /* Rx return ring */
1022         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1023             (void **)&sc->age_rdata.age_rr_ring,
1024             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1025             &sc->age_cdata.age_rr_ring_map);
1026         if (error != 0) {
1027                 device_printf(sc->age_dev,
1028                     "could not allocate DMA'able memory for Rx return ring.\n");
1029                 goto fail;
1030         }
1031         ctx.age_busaddr = 0;
1032         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1033             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1034             AGE_RR_RING_SZ, age_dmamap_cb,
1035             &ctx, 0);
1036         if (error != 0 || ctx.age_busaddr == 0) {
1037                 device_printf(sc->age_dev,
1038                     "could not load DMA'able memory for Rx return ring.\n");
1039                 goto fail;
1040         }
1041         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1042         /* CMB block */
1043         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1044             (void **)&sc->age_rdata.age_cmb_block,
1045             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1046             &sc->age_cdata.age_cmb_block_map);
1047         if (error != 0) {
1048                 device_printf(sc->age_dev,
1049                     "could not allocate DMA'able memory for CMB block.\n");
1050                 goto fail;
1051         }
1052         ctx.age_busaddr = 0;
1053         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1054             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1055             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1056         if (error != 0 || ctx.age_busaddr == 0) {
1057                 device_printf(sc->age_dev,
1058                     "could not load DMA'able memory for CMB block.\n");
1059                 goto fail;
1060         }
1061         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1062         /* SMB block */
1063         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1064             (void **)&sc->age_rdata.age_smb_block,
1065             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1066             &sc->age_cdata.age_smb_block_map);
1067         if (error != 0) {
1068                 device_printf(sc->age_dev,
1069                     "could not allocate DMA'able memory for SMB block.\n");
1070                 goto fail;
1071         }
1072         ctx.age_busaddr = 0;
1073         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1074             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1075             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1076         if (error != 0 || ctx.age_busaddr == 0) {
1077                 device_printf(sc->age_dev,
1078                     "could not load DMA'able memory for SMB block.\n");
1079                 goto fail;
1080         }
1081         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1082
1083         /*
1084          * All ring buffer and DMA blocks should have the same
1085          * high address part of 64bit DMA address space.
1086          */
1087         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1088             (error = age_check_boundary(sc)) != 0) {
1089                 device_printf(sc->age_dev, "4GB boundary crossed, "
1090                     "switching to 32bit DMA addressing mode.\n");
1091                 age_dma_free(sc);
1092                 /* Limit DMA address space to 32bit and try again. */
1093                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1094                 goto again;
1095         }
1096
1097         /*
1098          * Create Tx/Rx buffer parent tag.
1099          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1100          * so it needs separate parent DMA tag.
1101          * XXX
1102          * It seems enabling 64bit DMA causes data corruption. Limit
1103          * DMA address space to 32bit.
1104          */
1105         error = bus_dma_tag_create(
1106             bus_get_dma_tag(sc->age_dev), /* parent */
1107             1, 0,                       /* alignment, boundary */
1108             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1109             BUS_SPACE_MAXADDR,          /* highaddr */
1110             NULL, NULL,                 /* filter, filterarg */
1111             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1112             0,                          /* nsegments */
1113             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1114             0,                          /* flags */
1115             NULL, NULL,                 /* lockfunc, lockarg */
1116             &sc->age_cdata.age_buffer_tag);
1117         if (error != 0) {
1118                 device_printf(sc->age_dev,
1119                     "could not create parent buffer DMA tag.\n");
1120                 goto fail;
1121         }
1122
1123         /* Create tag for Tx buffers. */
1124         error = bus_dma_tag_create(
1125             sc->age_cdata.age_buffer_tag, /* parent */
1126             1, 0,                       /* alignment, boundary */
1127             BUS_SPACE_MAXADDR,          /* lowaddr */
1128             BUS_SPACE_MAXADDR,          /* highaddr */
1129             NULL, NULL,                 /* filter, filterarg */
1130             AGE_TSO_MAXSIZE,            /* maxsize */
1131             AGE_MAXTXSEGS,              /* nsegments */
1132             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
1133             0,                          /* flags */
1134             NULL, NULL,                 /* lockfunc, lockarg */
1135             &sc->age_cdata.age_tx_tag);
1136         if (error != 0) {
1137                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1138                 goto fail;
1139         }
1140
1141         /* Create tag for Rx buffers. */
1142         error = bus_dma_tag_create(
1143             sc->age_cdata.age_buffer_tag, /* parent */
1144             AGE_RX_BUF_ALIGN, 0,        /* alignment, boundary */
1145             BUS_SPACE_MAXADDR,          /* lowaddr */
1146             BUS_SPACE_MAXADDR,          /* highaddr */
1147             NULL, NULL,                 /* filter, filterarg */
1148             MCLBYTES,                   /* maxsize */
1149             1,                          /* nsegments */
1150             MCLBYTES,                   /* maxsegsize */
1151             0,                          /* flags */
1152             NULL, NULL,                 /* lockfunc, lockarg */
1153             &sc->age_cdata.age_rx_tag);
1154         if (error != 0) {
1155                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1156                 goto fail;
1157         }
1158
1159         /* Create DMA maps for Tx buffers. */
1160         for (i = 0; i < AGE_TX_RING_CNT; i++) {
1161                 txd = &sc->age_cdata.age_txdesc[i];
1162                 txd->tx_m = NULL;
1163                 txd->tx_dmamap = NULL;
1164                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1165                     &txd->tx_dmamap);
1166                 if (error != 0) {
1167                         device_printf(sc->age_dev,
1168                             "could not create Tx dmamap.\n");
1169                         goto fail;
1170                 }
1171         }
1172         /* Create DMA maps for Rx buffers. */
1173         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1174             &sc->age_cdata.age_rx_sparemap)) != 0) {
1175                 device_printf(sc->age_dev,
1176                     "could not create spare Rx dmamap.\n");
1177                 goto fail;
1178         }
1179         for (i = 0; i < AGE_RX_RING_CNT; i++) {
1180                 rxd = &sc->age_cdata.age_rxdesc[i];
1181                 rxd->rx_m = NULL;
1182                 rxd->rx_dmamap = NULL;
1183                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1184                     &rxd->rx_dmamap);
1185                 if (error != 0) {
1186                         device_printf(sc->age_dev,
1187                             "could not create Rx dmamap.\n");
1188                         goto fail;
1189                 }
1190         }
1191
1192 fail:
1193         return (error);
1194 }
1195
1196 static void
1197 age_dma_free(struct age_softc *sc)
1198 {
1199         struct age_txdesc *txd;
1200         struct age_rxdesc *rxd;
1201         int i;
1202
1203         /* Tx buffers */
1204         if (sc->age_cdata.age_tx_tag != NULL) {
1205                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1206                         txd = &sc->age_cdata.age_txdesc[i];
1207                         if (txd->tx_dmamap != NULL) {
1208                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1209                                     txd->tx_dmamap);
1210                                 txd->tx_dmamap = NULL;
1211                         }
1212                 }
1213                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1214                 sc->age_cdata.age_tx_tag = NULL;
1215         }
1216         /* Rx buffers */
1217         if (sc->age_cdata.age_rx_tag != NULL) {
1218                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1219                         rxd = &sc->age_cdata.age_rxdesc[i];
1220                         if (rxd->rx_dmamap != NULL) {
1221                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1222                                     rxd->rx_dmamap);
1223                                 rxd->rx_dmamap = NULL;
1224                         }
1225                 }
1226                 if (sc->age_cdata.age_rx_sparemap != NULL) {
1227                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1228                             sc->age_cdata.age_rx_sparemap);
1229                         sc->age_cdata.age_rx_sparemap = NULL;
1230                 }
1231                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1232                 sc->age_cdata.age_rx_tag = NULL;
1233         }
1234         /* Tx ring. */
1235         if (sc->age_cdata.age_tx_ring_tag != NULL) {
1236                 if (sc->age_rdata.age_tx_ring_paddr != 0)
1237                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1238                             sc->age_cdata.age_tx_ring_map);
1239                 if (sc->age_rdata.age_tx_ring != NULL)
1240                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1241                             sc->age_rdata.age_tx_ring,
1242                             sc->age_cdata.age_tx_ring_map);
1243                 sc->age_rdata.age_tx_ring_paddr = 0;
1244                 sc->age_rdata.age_tx_ring = NULL;
1245                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1246                 sc->age_cdata.age_tx_ring_tag = NULL;
1247         }
1248         /* Rx ring. */
1249         if (sc->age_cdata.age_rx_ring_tag != NULL) {
1250                 if (sc->age_rdata.age_rx_ring_paddr != 0)
1251                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1252                             sc->age_cdata.age_rx_ring_map);
1253                 if (sc->age_rdata.age_rx_ring != NULL)
1254                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1255                             sc->age_rdata.age_rx_ring,
1256                             sc->age_cdata.age_rx_ring_map);
1257                 sc->age_rdata.age_rx_ring_paddr = 0;
1258                 sc->age_rdata.age_rx_ring = NULL;
1259                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1260                 sc->age_cdata.age_rx_ring_tag = NULL;
1261         }
1262         /* Rx return ring. */
1263         if (sc->age_cdata.age_rr_ring_tag != NULL) {
1264                 if (sc->age_rdata.age_rr_ring_paddr != 0)
1265                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1266                             sc->age_cdata.age_rr_ring_map);
1267                 if (sc->age_rdata.age_rr_ring != NULL)
1268                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1269                             sc->age_rdata.age_rr_ring,
1270                             sc->age_cdata.age_rr_ring_map);
1271                 sc->age_rdata.age_rr_ring_paddr = 0;
1272                 sc->age_rdata.age_rr_ring = NULL;
1273                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1274                 sc->age_cdata.age_rr_ring_tag = NULL;
1275         }
1276         /* CMB block */
1277         if (sc->age_cdata.age_cmb_block_tag != NULL) {
1278                 if (sc->age_rdata.age_cmb_block_paddr != 0)
1279                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1280                             sc->age_cdata.age_cmb_block_map);
1281                 if (sc->age_rdata.age_cmb_block != NULL)
1282                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1283                             sc->age_rdata.age_cmb_block,
1284                             sc->age_cdata.age_cmb_block_map);
1285                 sc->age_rdata.age_cmb_block_paddr = 0;
1286                 sc->age_rdata.age_cmb_block = NULL;
1287                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1288                 sc->age_cdata.age_cmb_block_tag = NULL;
1289         }
1290         /* SMB block */
1291         if (sc->age_cdata.age_smb_block_tag != NULL) {
1292                 if (sc->age_rdata.age_smb_block_paddr != 0)
1293                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1294                             sc->age_cdata.age_smb_block_map);
1295                 if (sc->age_rdata.age_smb_block != NULL)
1296                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1297                             sc->age_rdata.age_smb_block,
1298                             sc->age_cdata.age_smb_block_map);
1299                 sc->age_rdata.age_smb_block_paddr = 0;
1300                 sc->age_rdata.age_smb_block = NULL;
1301                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1302                 sc->age_cdata.age_smb_block_tag = NULL;
1303         }
1304
1305         if (sc->age_cdata.age_buffer_tag != NULL) {
1306                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1307                 sc->age_cdata.age_buffer_tag = NULL;
1308         }
1309         if (sc->age_cdata.age_parent_tag != NULL) {
1310                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1311                 sc->age_cdata.age_parent_tag = NULL;
1312         }
1313 }
1314
1315 /*
1316  *      Make sure the interface is stopped at reboot time.
1317  */
1318 static int
1319 age_shutdown(device_t dev)
1320 {
1321
1322         return (age_suspend(dev));
1323 }
1324
1325 static void
1326 age_setwol(struct age_softc *sc)
1327 {
1328         struct ifnet *ifp;
1329         struct mii_data *mii;
1330         uint32_t reg, pmcs;
1331         uint16_t pmstat;
1332         int aneg, i, pmc;
1333
1334         AGE_LOCK_ASSERT(sc);
1335
1336         if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1337                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1338                 /*
1339                  * No PME capability, PHY power down.
1340                  * XXX
1341                  * Due to an unknown reason powering down PHY resulted
1342                  * in unexpected results such as inaccessbility of
1343                  * hardware of freshly rebooted system. Disable
1344                  * powering down PHY until I got more information for
1345                  * Attansic/Atheros PHY hardwares.
1346                  */
1347 #ifdef notyet
1348                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1349                     MII_BMCR, BMCR_PDOWN);
1350 #endif
1351                 return;
1352         }
1353
1354         ifp = sc->age_ifp;
1355         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1356                 /*
1357                  * Note, this driver resets the link speed to 10/100Mbps with
1358                  * auto-negotiation but we don't know whether that operation
1359                  * would succeed or not as it have no control after powering
1360                  * off. If the renegotiation fail WOL may not work. Running
1361                  * at 1Gbps will draw more power than 375mA at 3.3V which is
1362                  * specified in PCI specification and that would result in
1363                  * complete shutdowning power to ethernet controller.
1364                  *
1365                  * TODO
1366                  *  Save current negotiated media speed/duplex/flow-control
1367                  *  to softc and restore the same link again after resuming.
1368                  *  PHY handling such as power down/resetting to 100Mbps
1369                  *  may be better handled in suspend method in phy driver.
1370                  */
1371                 mii = device_get_softc(sc->age_miibus);
1372                 mii_pollstat(mii);
1373                 aneg = 0;
1374                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1375                         switch IFM_SUBTYPE(mii->mii_media_active) {
1376                         case IFM_10_T:
1377                         case IFM_100_TX:
1378                                 goto got_link;
1379                         case IFM_1000_T:
1380                                 aneg++;
1381                         default:
1382                                 break;
1383                         }
1384                 }
1385                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1386                     MII_100T2CR, 0);
1387                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1389                     ANAR_10 | ANAR_CSMA);
1390                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1391                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1392                 DELAY(1000);
1393                 if (aneg != 0) {
1394                         /* Poll link state until age(4) get a 10/100 link. */
1395                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1396                                 mii_pollstat(mii);
1397                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1398                                         switch (IFM_SUBTYPE(
1399                                             mii->mii_media_active)) {
1400                                         case IFM_10_T:
1401                                         case IFM_100_TX:
1402                                                 age_mac_config(sc);
1403                                                 goto got_link;
1404                                         default:
1405                                                 break;
1406                                         }
1407                                 }
1408                                 AGE_UNLOCK(sc);
1409                                 pause("agelnk", hz);
1410                                 AGE_LOCK(sc);
1411                         }
1412                         if (i == MII_ANEGTICKS_GIGE)
1413                                 device_printf(sc->age_dev,
1414                                     "establishing link failed, "
1415                                     "WOL may not work!");
1416                 }
1417                 /*
1418                  * No link, force MAC to have 100Mbps, full-duplex link.
1419                  * This is the last resort and may/may not work.
1420                  */
1421                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1422                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1423                 age_mac_config(sc);
1424         }
1425
1426 got_link:
1427         pmcs = 0;
1428         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1429                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1430         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1431         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1432         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1433         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1434         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1435                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1436         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1437                 reg |= MAC_CFG_RX_ENB;
1438                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1439         }
1440
1441         /* Request PME. */
1442         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1443         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1444         if ((ifp->if_capenable & IFCAP_WOL) != 0)
1445                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1446         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1447 #ifdef notyet
1448         /* See above for powering down PHY issues. */
1449         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1450                 /* No WOL, PHY power down. */
1451                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1452                     MII_BMCR, BMCR_PDOWN);
1453         }
1454 #endif
1455 }
1456
1457 static int
1458 age_suspend(device_t dev)
1459 {
1460         struct age_softc *sc;
1461
1462         sc = device_get_softc(dev);
1463
1464         AGE_LOCK(sc);
1465         age_stop(sc);
1466         age_setwol(sc);
1467         AGE_UNLOCK(sc);
1468
1469         return (0);
1470 }
1471
1472 static int
1473 age_resume(device_t dev)
1474 {
1475         struct age_softc *sc;
1476         struct ifnet *ifp;
1477
1478         sc = device_get_softc(dev);
1479
1480         AGE_LOCK(sc);
1481         age_phy_reset(sc);
1482         ifp = sc->age_ifp;
1483         if ((ifp->if_flags & IFF_UP) != 0)
1484                 age_init_locked(sc);
1485
1486         AGE_UNLOCK(sc);
1487
1488         return (0);
1489 }
1490
1491 static int
1492 age_encap(struct age_softc *sc, struct mbuf **m_head)
1493 {
1494         struct age_txdesc *txd, *txd_last;
1495         struct tx_desc *desc;
1496         struct mbuf *m;
1497         struct ip *ip;
1498         struct tcphdr *tcp;
1499         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1500         bus_dmamap_t map;
1501         uint32_t cflags, hdrlen, ip_off, poff, vtag;
1502         int error, i, nsegs, prod, si;
1503
1504         AGE_LOCK_ASSERT(sc);
1505
1506         M_ASSERTPKTHDR((*m_head));
1507
1508         m = *m_head;
1509         ip = NULL;
1510         tcp = NULL;
1511         cflags = vtag = 0;
1512         ip_off = poff = 0;
1513         if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1514                 /*
1515                  * L1 requires offset of TCP/UDP payload in its Tx
1516                  * descriptor to perform hardware Tx checksum offload.
1517                  * Additionally, TSO requires IP/TCP header size and
1518                  * modification of IP/TCP header in order to make TSO
1519                  * engine work. This kind of operation takes many CPU
1520                  * cycles on FreeBSD so fast host CPU is needed to get
1521                  * smooth TSO performance.
1522                  */
1523                 struct ether_header *eh;
1524
1525                 if (M_WRITABLE(m) == 0) {
1526                         /* Get a writable copy. */
1527                         m = m_dup(*m_head, M_NOWAIT);
1528                         /* Release original mbufs. */
1529                         m_freem(*m_head);
1530                         if (m == NULL) {
1531                                 *m_head = NULL;
1532                                 return (ENOBUFS);
1533                         }
1534                         *m_head = m;
1535                 }
1536                 ip_off = sizeof(struct ether_header);
1537                 m = m_pullup(m, ip_off);
1538                 if (m == NULL) {
1539                         *m_head = NULL;
1540                         return (ENOBUFS);
1541                 }
1542                 eh = mtod(m, struct ether_header *);
1543                 /*
1544                  * Check if hardware VLAN insertion is off.
1545                  * Additional check for LLC/SNAP frame?
1546                  */
1547                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1548                         ip_off = sizeof(struct ether_vlan_header);
1549                         m = m_pullup(m, ip_off);
1550                         if (m == NULL) {
1551                                 *m_head = NULL;
1552                                 return (ENOBUFS);
1553                         }
1554                 }
1555                 m = m_pullup(m, ip_off + sizeof(struct ip));
1556                 if (m == NULL) {
1557                         *m_head = NULL;
1558                         return (ENOBUFS);
1559                 }
1560                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1561                 poff = ip_off + (ip->ip_hl << 2);
1562                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1563                         m = m_pullup(m, poff + sizeof(struct tcphdr));
1564                         if (m == NULL) {
1565                                 *m_head = NULL;
1566                                 return (ENOBUFS);
1567                         }
1568                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1569                         m = m_pullup(m, poff + (tcp->th_off << 2));
1570                         if (m == NULL) {
1571                                 *m_head = NULL;
1572                                 return (ENOBUFS);
1573                         }
1574                         /*
1575                          * L1 requires IP/TCP header size and offset as
1576                          * well as TCP pseudo checksum which complicates
1577                          * TSO configuration. I guess this comes from the
1578                          * adherence to Microsoft NDIS Large Send
1579                          * specification which requires insertion of
1580                          * pseudo checksum by upper stack. The pseudo
1581                          * checksum that NDIS refers to doesn't include
1582                          * TCP payload length so age(4) should recompute
1583                          * the pseudo checksum here. Hopefully this wouldn't
1584                          * be much burden on modern CPUs.
1585                          * Reset IP checksum and recompute TCP pseudo
1586                          * checksum as NDIS specification said.
1587                          */
1588                         ip = (struct ip *)(mtod(m, char *) + ip_off);
1589                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1590                         ip->ip_sum = 0;
1591                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1592                             ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1593                 }
1594                 *m_head = m;
1595         }
1596
1597         si = prod = sc->age_cdata.age_tx_prod;
1598         txd = &sc->age_cdata.age_txdesc[prod];
1599         txd_last = txd;
1600         map = txd->tx_dmamap;
1601
1602         error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1603             *m_head, txsegs, &nsegs, 0);
1604         if (error == EFBIG) {
1605                 m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1606                 if (m == NULL) {
1607                         m_freem(*m_head);
1608                         *m_head = NULL;
1609                         return (ENOMEM);
1610                 }
1611                 *m_head = m;
1612                 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1613                     *m_head, txsegs, &nsegs, 0);
1614                 if (error != 0) {
1615                         m_freem(*m_head);
1616                         *m_head = NULL;
1617                         return (error);
1618                 }
1619         } else if (error != 0)
1620                 return (error);
1621         if (nsegs == 0) {
1622                 m_freem(*m_head);
1623                 *m_head = NULL;
1624                 return (EIO);
1625         }
1626
1627         /* Check descriptor overrun. */
1628         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1629                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1630                 return (ENOBUFS);
1631         }
1632
1633         m = *m_head;
1634         /* Configure VLAN hardware tag insertion. */
1635         if ((m->m_flags & M_VLANTAG) != 0) {
1636                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1637                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1638                 cflags |= AGE_TD_INSERT_VLAN_TAG;
1639         }
1640
1641         desc = NULL;
1642         i = 0;
1643         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1644                 /* Request TSO and set MSS. */
1645                 cflags |= AGE_TD_TSO_IPV4;
1646                 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1647                 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1648                     AGE_TD_TSO_MSS_SHIFT);
1649                 /* Set IP/TCP header size. */
1650                 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1651                 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1652                 /*
1653                  * L1 requires the first buffer should only hold IP/TCP
1654                  * header data. TCP payload should be handled in other
1655                  * descriptors.
1656                  */
1657                 hdrlen = poff + (tcp->th_off << 2);
1658                 desc = &sc->age_rdata.age_tx_ring[prod];
1659                 desc->addr = htole64(txsegs[0].ds_addr);
1660                 desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1661                 desc->flags = htole32(cflags);
1662                 sc->age_cdata.age_tx_cnt++;
1663                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1664                 if (m->m_len - hdrlen > 0) {
1665                         /* Handle remaining payload of the 1st fragment. */
1666                         desc = &sc->age_rdata.age_tx_ring[prod];
1667                         desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1668                         desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1669                             vtag);
1670                         desc->flags = htole32(cflags);
1671                         sc->age_cdata.age_tx_cnt++;
1672                         AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1673                 }
1674                 /* Handle remaining fragments. */
1675                 i = 1;
1676         } else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1677                 /* Configure Tx IP/TCP/UDP checksum offload. */
1678                 cflags |= AGE_TD_CSUM;
1679                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1680                         cflags |= AGE_TD_TCPCSUM;
1681                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1682                         cflags |= AGE_TD_UDPCSUM;
1683                 /* Set checksum start offset. */
1684                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1685                 /* Set checksum insertion position of TCP/UDP. */
1686                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1687                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1688         }
1689         for (; i < nsegs; i++) {
1690                 desc = &sc->age_rdata.age_tx_ring[prod];
1691                 desc->addr = htole64(txsegs[i].ds_addr);
1692                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1693                 desc->flags = htole32(cflags);
1694                 sc->age_cdata.age_tx_cnt++;
1695                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1696         }
1697         /* Update producer index. */
1698         sc->age_cdata.age_tx_prod = prod;
1699
1700         /* Set EOP on the last descriptor. */
1701         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1702         desc = &sc->age_rdata.age_tx_ring[prod];
1703         desc->flags |= htole32(AGE_TD_EOP);
1704
1705         /* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1706         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1707                 desc = &sc->age_rdata.age_tx_ring[si];
1708                 desc->flags |= htole32(AGE_TD_TSO_HDR);
1709         }
1710
1711         /* Swap dmamap of the first and the last. */
1712         txd = &sc->age_cdata.age_txdesc[prod];
1713         map = txd_last->tx_dmamap;
1714         txd_last->tx_dmamap = txd->tx_dmamap;
1715         txd->tx_dmamap = map;
1716         txd->tx_m = m;
1717
1718         /* Sync descriptors. */
1719         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1720         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1721             sc->age_cdata.age_tx_ring_map,
1722             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1723
1724         return (0);
1725 }
1726
1727 static void
1728 age_start(struct ifnet *ifp)
1729 {
1730         struct age_softc *sc;
1731
1732         sc = ifp->if_softc;
1733         AGE_LOCK(sc);
1734         age_start_locked(ifp);
1735         AGE_UNLOCK(sc);
1736 }
1737
1738 static void
1739 age_start_locked(struct ifnet *ifp)
1740 {
1741         struct age_softc *sc;
1742         struct mbuf *m_head;
1743         int enq;
1744
1745         sc = ifp->if_softc;
1746
1747         AGE_LOCK_ASSERT(sc);
1748
1749         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1750             IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1751                 return;
1752
1753         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1754                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1755                 if (m_head == NULL)
1756                         break;
1757                 /*
1758                  * Pack the data into the transmit ring. If we
1759                  * don't have room, set the OACTIVE flag and wait
1760                  * for the NIC to drain the ring.
1761                  */
1762                 if (age_encap(sc, &m_head)) {
1763                         if (m_head == NULL)
1764                                 break;
1765                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1766                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1767                         break;
1768                 }
1769
1770                 enq++;
1771                 /*
1772                  * If there's a BPF listener, bounce a copy of this frame
1773                  * to him.
1774                  */
1775                 ETHER_BPF_MTAP(ifp, m_head);
1776         }
1777
1778         if (enq > 0) {
1779                 /* Update mbox. */
1780                 AGE_COMMIT_MBOX(sc);
1781                 /* Set a timeout in case the chip goes out to lunch. */
1782                 sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1783         }
1784 }
1785
1786 static void
1787 age_watchdog(struct age_softc *sc)
1788 {
1789         struct ifnet *ifp;
1790
1791         AGE_LOCK_ASSERT(sc);
1792
1793         if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1794                 return;
1795
1796         ifp = sc->age_ifp;
1797         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1798                 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1799                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1800                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1801                 age_init_locked(sc);
1802                 return;
1803         }
1804         if (sc->age_cdata.age_tx_cnt == 0) {
1805                 if_printf(sc->age_ifp,
1806                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
1807                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1808                         age_start_locked(ifp);
1809                 return;
1810         }
1811         if_printf(sc->age_ifp, "watchdog timeout\n");
1812         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1813         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1814         age_init_locked(sc);
1815         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1816                 age_start_locked(ifp);
1817 }
1818
1819 static int
1820 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1821 {
1822         struct age_softc *sc;
1823         struct ifreq *ifr;
1824         struct mii_data *mii;
1825         uint32_t reg;
1826         int error, mask;
1827
1828         sc = ifp->if_softc;
1829         ifr = (struct ifreq *)data;
1830         error = 0;
1831         switch (cmd) {
1832         case SIOCSIFMTU:
1833                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1834                         error = EINVAL;
1835                 else if (ifp->if_mtu != ifr->ifr_mtu) {
1836                         AGE_LOCK(sc);
1837                         ifp->if_mtu = ifr->ifr_mtu;
1838                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1839                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1840                                 age_init_locked(sc);
1841                         }
1842                         AGE_UNLOCK(sc);
1843                 }
1844                 break;
1845         case SIOCSIFFLAGS:
1846                 AGE_LOCK(sc);
1847                 if ((ifp->if_flags & IFF_UP) != 0) {
1848                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1849                                 if (((ifp->if_flags ^ sc->age_if_flags)
1850                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1851                                         age_rxfilter(sc);
1852                         } else {
1853                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1854                                         age_init_locked(sc);
1855                         }
1856                 } else {
1857                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1858                                 age_stop(sc);
1859                 }
1860                 sc->age_if_flags = ifp->if_flags;
1861                 AGE_UNLOCK(sc);
1862                 break;
1863         case SIOCADDMULTI:
1864         case SIOCDELMULTI:
1865                 AGE_LOCK(sc);
1866                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1867                         age_rxfilter(sc);
1868                 AGE_UNLOCK(sc);
1869                 break;
1870         case SIOCSIFMEDIA:
1871         case SIOCGIFMEDIA:
1872                 mii = device_get_softc(sc->age_miibus);
1873                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1874                 break;
1875         case SIOCSIFCAP:
1876                 AGE_LOCK(sc);
1877                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1878                 if ((mask & IFCAP_TXCSUM) != 0 &&
1879                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1880                         ifp->if_capenable ^= IFCAP_TXCSUM;
1881                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1882                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
1883                         else
1884                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1885                 }
1886                 if ((mask & IFCAP_RXCSUM) != 0 &&
1887                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1888                         ifp->if_capenable ^= IFCAP_RXCSUM;
1889                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1890                         reg &= ~MAC_CFG_RXCSUM_ENB;
1891                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1892                                 reg |= MAC_CFG_RXCSUM_ENB;
1893                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1894                 }
1895                 if ((mask & IFCAP_TSO4) != 0 &&
1896                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1897                         ifp->if_capenable ^= IFCAP_TSO4;
1898                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1899                                 ifp->if_hwassist |= CSUM_TSO;
1900                         else
1901                                 ifp->if_hwassist &= ~CSUM_TSO;
1902                 }
1903
1904                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
1905                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1906                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
1907                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1908                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1909                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1910                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1911                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1912                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1913                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1914                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1915                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1916                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1917                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1918                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1919                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1920                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1921                         age_rxvlan(sc);
1922                 }
1923                 AGE_UNLOCK(sc);
1924                 VLAN_CAPABILITIES(ifp);
1925                 break;
1926         default:
1927                 error = ether_ioctl(ifp, cmd, data);
1928                 break;
1929         }
1930
1931         return (error);
1932 }
1933
1934 static void
1935 age_mac_config(struct age_softc *sc)
1936 {
1937         struct mii_data *mii;
1938         uint32_t reg;
1939
1940         AGE_LOCK_ASSERT(sc);
1941
1942         mii = device_get_softc(sc->age_miibus);
1943         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1944         reg &= ~MAC_CFG_FULL_DUPLEX;
1945         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1946         reg &= ~MAC_CFG_SPEED_MASK;
1947         /* Reprogram MAC with resolved speed/duplex. */
1948         switch (IFM_SUBTYPE(mii->mii_media_active)) {
1949         case IFM_10_T:
1950         case IFM_100_TX:
1951                 reg |= MAC_CFG_SPEED_10_100;
1952                 break;
1953         case IFM_1000_T:
1954                 reg |= MAC_CFG_SPEED_1000;
1955                 break;
1956         }
1957         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1958                 reg |= MAC_CFG_FULL_DUPLEX;
1959 #ifdef notyet
1960                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1961                         reg |= MAC_CFG_TX_FC;
1962                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1963                         reg |= MAC_CFG_RX_FC;
1964 #endif
1965         }
1966
1967         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1968 }
1969
1970 static void
1971 age_link_task(void *arg, int pending)
1972 {
1973         struct age_softc *sc;
1974         struct mii_data *mii;
1975         struct ifnet *ifp;
1976         uint32_t reg;
1977
1978         sc = (struct age_softc *)arg;
1979
1980         AGE_LOCK(sc);
1981         mii = device_get_softc(sc->age_miibus);
1982         ifp = sc->age_ifp;
1983         if (mii == NULL || ifp == NULL ||
1984             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1985                 AGE_UNLOCK(sc);
1986                 return;
1987         }
1988
1989         sc->age_flags &= ~AGE_FLAG_LINK;
1990         if ((mii->mii_media_status & IFM_AVALID) != 0) {
1991                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1992                 case IFM_10_T:
1993                 case IFM_100_TX:
1994                 case IFM_1000_T:
1995                         sc->age_flags |= AGE_FLAG_LINK;
1996                         break;
1997                 default:
1998                         break;
1999                 }
2000         }
2001
2002         /* Stop Rx/Tx MACs. */
2003         age_stop_rxmac(sc);
2004         age_stop_txmac(sc);
2005
2006         /* Program MACs with resolved speed/duplex/flow-control. */
2007         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2008                 age_mac_config(sc);
2009                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2010                 /* Restart DMA engine and Tx/Rx MAC. */
2011                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2012                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2013                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2014                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2015         }
2016
2017         AGE_UNLOCK(sc);
2018 }
2019
2020 static void
2021 age_stats_update(struct age_softc *sc)
2022 {
2023         struct age_stats *stat;
2024         struct smb *smb;
2025         struct ifnet *ifp;
2026
2027         AGE_LOCK_ASSERT(sc);
2028
2029         stat = &sc->age_stat;
2030
2031         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2032             sc->age_cdata.age_smb_block_map,
2033             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2034
2035         smb = sc->age_rdata.age_smb_block;
2036         if (smb->updated == 0)
2037                 return;
2038
2039         ifp = sc->age_ifp;
2040         /* Rx stats. */
2041         stat->rx_frames += smb->rx_frames;
2042         stat->rx_bcast_frames += smb->rx_bcast_frames;
2043         stat->rx_mcast_frames += smb->rx_mcast_frames;
2044         stat->rx_pause_frames += smb->rx_pause_frames;
2045         stat->rx_control_frames += smb->rx_control_frames;
2046         stat->rx_crcerrs += smb->rx_crcerrs;
2047         stat->rx_lenerrs += smb->rx_lenerrs;
2048         stat->rx_bytes += smb->rx_bytes;
2049         stat->rx_runts += smb->rx_runts;
2050         stat->rx_fragments += smb->rx_fragments;
2051         stat->rx_pkts_64 += smb->rx_pkts_64;
2052         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2053         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2054         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2055         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2056         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2057         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2058         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2059         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2060         stat->rx_desc_oflows += smb->rx_desc_oflows;
2061         stat->rx_alignerrs += smb->rx_alignerrs;
2062         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2063         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2064         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2065
2066         /* Tx stats. */
2067         stat->tx_frames += smb->tx_frames;
2068         stat->tx_bcast_frames += smb->tx_bcast_frames;
2069         stat->tx_mcast_frames += smb->tx_mcast_frames;
2070         stat->tx_pause_frames += smb->tx_pause_frames;
2071         stat->tx_excess_defer += smb->tx_excess_defer;
2072         stat->tx_control_frames += smb->tx_control_frames;
2073         stat->tx_deferred += smb->tx_deferred;
2074         stat->tx_bytes += smb->tx_bytes;
2075         stat->tx_pkts_64 += smb->tx_pkts_64;
2076         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2077         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2078         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2079         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2080         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2081         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2082         stat->tx_single_colls += smb->tx_single_colls;
2083         stat->tx_multi_colls += smb->tx_multi_colls;
2084         stat->tx_late_colls += smb->tx_late_colls;
2085         stat->tx_excess_colls += smb->tx_excess_colls;
2086         stat->tx_underrun += smb->tx_underrun;
2087         stat->tx_desc_underrun += smb->tx_desc_underrun;
2088         stat->tx_lenerrs += smb->tx_lenerrs;
2089         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2090         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2091         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2092
2093         /* Update counters in ifnet. */
2094         if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2095
2096         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2097             smb->tx_multi_colls + smb->tx_late_colls +
2098             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2099
2100         if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2101             smb->tx_late_colls + smb->tx_underrun +
2102             smb->tx_pkts_truncated);
2103
2104         if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2105
2106         if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2107             smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2108             smb->rx_fifo_oflows + smb->rx_desc_oflows +
2109             smb->rx_alignerrs);
2110
2111         /* Update done, clear. */
2112         smb->updated = 0;
2113
2114         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2115             sc->age_cdata.age_smb_block_map,
2116             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2117 }
2118
2119 static int
2120 age_intr(void *arg)
2121 {
2122         struct age_softc *sc;
2123         uint32_t status;
2124
2125         sc = (struct age_softc *)arg;
2126
2127         status = CSR_READ_4(sc, AGE_INTR_STATUS);
2128         if (status == 0 || (status & AGE_INTRS) == 0)
2129                 return (FILTER_STRAY);
2130         /* Disable interrupts. */
2131         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2132         taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2133
2134         return (FILTER_HANDLED);
2135 }
2136
2137 static void
2138 age_int_task(void *arg, int pending)
2139 {
2140         struct age_softc *sc;
2141         struct ifnet *ifp;
2142         struct cmb *cmb;
2143         uint32_t status;
2144
2145         sc = (struct age_softc *)arg;
2146
2147         AGE_LOCK(sc);
2148
2149         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2150             sc->age_cdata.age_cmb_block_map,
2151             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2152         cmb = sc->age_rdata.age_cmb_block;
2153         status = le32toh(cmb->intr_status);
2154         if (sc->age_morework != 0)
2155                 status |= INTR_CMB_RX;
2156         if ((status & AGE_INTRS) == 0)
2157                 goto done;
2158
2159         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2160             TPD_CONS_SHIFT;
2161         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2162             RRD_PROD_SHIFT;
2163         /* Let hardware know CMB was served. */
2164         cmb->intr_status = 0;
2165         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2166             sc->age_cdata.age_cmb_block_map,
2167             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2168
2169         ifp = sc->age_ifp;
2170         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2171                 if ((status & INTR_CMB_RX) != 0)
2172                         sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2173                             sc->age_process_limit);
2174                 if ((status & INTR_CMB_TX) != 0)
2175                         age_txintr(sc, sc->age_tpd_cons);
2176                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2177                         if ((status & INTR_DMA_RD_TO_RST) != 0)
2178                                 device_printf(sc->age_dev,
2179                                     "DMA read error! -- resetting\n");
2180                         if ((status & INTR_DMA_WR_TO_RST) != 0)
2181                                 device_printf(sc->age_dev,
2182                                     "DMA write error! -- resetting\n");
2183                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2184                         age_init_locked(sc);
2185                 }
2186                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2187                         age_start_locked(ifp);
2188                 if ((status & INTR_SMB) != 0)
2189                         age_stats_update(sc);
2190         }
2191
2192         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2193         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2194             sc->age_cdata.age_cmb_block_map,
2195             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2196         status = le32toh(cmb->intr_status);
2197         if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2198                 taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2199                 AGE_UNLOCK(sc);
2200                 return;
2201         }
2202
2203 done:
2204         /* Re-enable interrupts. */
2205         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2206         AGE_UNLOCK(sc);
2207 }
2208
2209 static void
2210 age_txintr(struct age_softc *sc, int tpd_cons)
2211 {
2212         struct ifnet *ifp;
2213         struct age_txdesc *txd;
2214         int cons, prog;
2215
2216         AGE_LOCK_ASSERT(sc);
2217
2218         ifp = sc->age_ifp;
2219
2220         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2221             sc->age_cdata.age_tx_ring_map,
2222             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2223
2224         /*
2225          * Go through our Tx list and free mbufs for those
2226          * frames which have been transmitted.
2227          */
2228         cons = sc->age_cdata.age_tx_cons;
2229         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2230                 if (sc->age_cdata.age_tx_cnt <= 0)
2231                         break;
2232                 prog++;
2233                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2234                 sc->age_cdata.age_tx_cnt--;
2235                 txd = &sc->age_cdata.age_txdesc[cons];
2236                 /*
2237                  * Clear Tx descriptors, it's not required but would
2238                  * help debugging in case of Tx issues.
2239                  */
2240                 txd->tx_desc->addr = 0;
2241                 txd->tx_desc->len = 0;
2242                 txd->tx_desc->flags = 0;
2243
2244                 if (txd->tx_m == NULL)
2245                         continue;
2246                 /* Reclaim transmitted mbufs. */
2247                 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2248                     BUS_DMASYNC_POSTWRITE);
2249                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2250                 m_freem(txd->tx_m);
2251                 txd->tx_m = NULL;
2252         }
2253
2254         if (prog > 0) {
2255                 sc->age_cdata.age_tx_cons = cons;
2256
2257                 /*
2258                  * Unarm watchdog timer only when there are no pending
2259                  * Tx descriptors in queue.
2260                  */
2261                 if (sc->age_cdata.age_tx_cnt == 0)
2262                         sc->age_watchdog_timer = 0;
2263                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2264                     sc->age_cdata.age_tx_ring_map,
2265                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2266         }
2267 }
2268
2269 #ifndef __NO_STRICT_ALIGNMENT
2270 static struct mbuf *
2271 age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2272 {
2273         struct mbuf *n;
2274         int i;
2275         uint16_t *src, *dst;
2276
2277         src = mtod(m, uint16_t *);
2278         dst = src - 3;
2279
2280         if (m->m_next == NULL) {
2281                 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2282                         *dst++ = *src++;
2283                 m->m_data -= 6;
2284                 return (m);
2285         }
2286         /*
2287          * Append a new mbuf to received mbuf chain and copy ethernet
2288          * header from the mbuf chain. This can save lots of CPU
2289          * cycles for jumbo frame.
2290          */
2291         MGETHDR(n, M_NOWAIT, MT_DATA);
2292         if (n == NULL) {
2293                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2294                 m_freem(m);
2295                 return (NULL);
2296         }
2297         bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2298         m->m_data += ETHER_HDR_LEN;
2299         m->m_len -= ETHER_HDR_LEN;
2300         n->m_len = ETHER_HDR_LEN;
2301         M_MOVE_PKTHDR(n, m);
2302         n->m_next = m;
2303         return (n);
2304 }
2305 #endif
2306
2307 /* Receive a frame. */
2308 static void
2309 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2310 {
2311         struct age_rxdesc *rxd;
2312         struct ifnet *ifp;
2313         struct mbuf *mp, *m;
2314         uint32_t status, index, vtag;
2315         int count, nsegs;
2316         int rx_cons;
2317
2318         AGE_LOCK_ASSERT(sc);
2319
2320         ifp = sc->age_ifp;
2321         status = le32toh(rxrd->flags);
2322         index = le32toh(rxrd->index);
2323         rx_cons = AGE_RX_CONS(index);
2324         nsegs = AGE_RX_NSEGS(index);
2325
2326         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2327         if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2328                 /*
2329                  * We want to pass the following frames to upper
2330                  * layer regardless of error status of Rx return
2331                  * ring.
2332                  *
2333                  *  o IP/TCP/UDP checksum is bad.
2334                  *  o frame length and protocol specific length
2335                  *     does not match.
2336                  */
2337                 status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2338                 if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2339                     AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2340                         return;
2341         }
2342
2343         for (count = 0; count < nsegs; count++,
2344             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2345                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2346                 mp = rxd->rx_m;
2347                 /* Add a new receive buffer to the ring. */
2348                 if (age_newbuf(sc, rxd) != 0) {
2349                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2350                         /* Reuse Rx buffers. */
2351                         if (sc->age_cdata.age_rxhead != NULL)
2352                                 m_freem(sc->age_cdata.age_rxhead);
2353                         break;
2354                 }
2355
2356                 /*
2357                  * Assume we've received a full sized frame.
2358                  * Actual size is fixed when we encounter the end of
2359                  * multi-segmented frame.
2360                  */
2361                 mp->m_len = AGE_RX_BUF_SIZE;
2362
2363                 /* Chain received mbufs. */
2364                 if (sc->age_cdata.age_rxhead == NULL) {
2365                         sc->age_cdata.age_rxhead = mp;
2366                         sc->age_cdata.age_rxtail = mp;
2367                 } else {
2368                         mp->m_flags &= ~M_PKTHDR;
2369                         sc->age_cdata.age_rxprev_tail =
2370                             sc->age_cdata.age_rxtail;
2371                         sc->age_cdata.age_rxtail->m_next = mp;
2372                         sc->age_cdata.age_rxtail = mp;
2373                 }
2374
2375                 if (count == nsegs - 1) {
2376                         /* Last desc. for this frame. */
2377                         m = sc->age_cdata.age_rxhead;
2378                         m->m_flags |= M_PKTHDR;
2379                         /*
2380                          * It seems that L1 controller has no way
2381                          * to tell hardware to strip CRC bytes.
2382                          */
2383                         m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2384                             ETHER_CRC_LEN;
2385                         if (nsegs > 1) {
2386                                 /* Set last mbuf size. */
2387                                 mp->m_len = sc->age_cdata.age_rxlen -
2388                                     ((nsegs - 1) * AGE_RX_BUF_SIZE);
2389                                 /* Remove the CRC bytes in chained mbufs. */
2390                                 if (mp->m_len <= ETHER_CRC_LEN) {
2391                                         sc->age_cdata.age_rxtail =
2392                                             sc->age_cdata.age_rxprev_tail;
2393                                         sc->age_cdata.age_rxtail->m_len -=
2394                                             (ETHER_CRC_LEN - mp->m_len);
2395                                         sc->age_cdata.age_rxtail->m_next = NULL;
2396                                         m_freem(mp);
2397                                 } else {
2398                                         mp->m_len -= ETHER_CRC_LEN;
2399                                 }
2400                         } else
2401                                 m->m_len = m->m_pkthdr.len;
2402                         m->m_pkthdr.rcvif = ifp;
2403                         /*
2404                          * Set checksum information.
2405                          * It seems that L1 controller can compute partial
2406                          * checksum. The partial checksum value can be used
2407                          * to accelerate checksum computation for fragmented
2408                          * TCP/UDP packets. Upper network stack already
2409                          * takes advantage of the partial checksum value in
2410                          * IP reassembly stage. But I'm not sure the
2411                          * correctness of the partial hardware checksum
2412                          * assistance due to lack of data sheet. If it is
2413                          * proven to work on L1 I'll enable it.
2414                          */
2415                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2416                             (status & AGE_RRD_IPV4) != 0) {
2417                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2418                                         m->m_pkthdr.csum_flags |=
2419                                             CSUM_IP_CHECKED | CSUM_IP_VALID;
2420                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2421                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2422                                         m->m_pkthdr.csum_flags |=
2423                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2424                                         m->m_pkthdr.csum_data = 0xffff;
2425                                 }
2426                                 /*
2427                                  * Don't mark bad checksum for TCP/UDP frames
2428                                  * as fragmented frames may always have set
2429                                  * bad checksummed bit of descriptor status.
2430                                  */
2431                         }
2432
2433                         /* Check for VLAN tagged frames. */
2434                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2435                             (status & AGE_RRD_VLAN) != 0) {
2436                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2437                                 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2438                                 m->m_flags |= M_VLANTAG;
2439                         }
2440 #ifndef __NO_STRICT_ALIGNMENT
2441                         m = age_fixup_rx(ifp, m);
2442                         if (m != NULL)
2443 #endif
2444                         {
2445                         /* Pass it on. */
2446                         AGE_UNLOCK(sc);
2447                         (*ifp->if_input)(ifp, m);
2448                         AGE_LOCK(sc);
2449                         }
2450                 }
2451         }
2452
2453         /* Reset mbuf chains. */
2454         AGE_RXCHAIN_RESET(sc);
2455 }
2456
2457 static int
2458 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2459 {
2460         struct rx_rdesc *rxrd;
2461         int rr_cons, nsegs, pktlen, prog;
2462
2463         AGE_LOCK_ASSERT(sc);
2464
2465         rr_cons = sc->age_cdata.age_rr_cons;
2466         if (rr_cons == rr_prod)
2467                 return (0);
2468
2469         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2470             sc->age_cdata.age_rr_ring_map,
2471             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2472         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2473             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2474
2475         for (prog = 0; rr_cons != rr_prod; prog++) {
2476                 if (count-- <= 0)
2477                         break;
2478                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2479                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2480                 if (nsegs == 0)
2481                         break;
2482                 /*
2483                  * Check number of segments against received bytes.
2484                  * Non-matching value would indicate that hardware
2485                  * is still trying to update Rx return descriptors.
2486                  * I'm not sure whether this check is really needed.
2487                  */
2488                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2489                 if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2490                         break;
2491
2492                 /* Received a frame. */
2493                 age_rxeof(sc, rxrd);
2494                 /* Clear return ring. */
2495                 rxrd->index = 0;
2496                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2497                 sc->age_cdata.age_rx_cons += nsegs;
2498                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2499         }
2500
2501         if (prog > 0) {
2502                 /* Update the consumer index. */
2503                 sc->age_cdata.age_rr_cons = rr_cons;
2504
2505                 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2506                     sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2507                 /* Sync descriptors. */
2508                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2509                     sc->age_cdata.age_rr_ring_map,
2510                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2511
2512                 /* Notify hardware availability of new Rx buffers. */
2513                 AGE_COMMIT_MBOX(sc);
2514         }
2515
2516         return (count > 0 ? 0 : EAGAIN);
2517 }
2518
2519 static void
2520 age_tick(void *arg)
2521 {
2522         struct age_softc *sc;
2523         struct mii_data *mii;
2524
2525         sc = (struct age_softc *)arg;
2526
2527         AGE_LOCK_ASSERT(sc);
2528
2529         mii = device_get_softc(sc->age_miibus);
2530         mii_tick(mii);
2531         age_watchdog(sc);
2532         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2533 }
2534
2535 static void
2536 age_reset(struct age_softc *sc)
2537 {
2538         uint32_t reg;
2539         int i;
2540
2541         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2542         CSR_READ_4(sc, AGE_MASTER_CFG);
2543         DELAY(1000);
2544         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2545                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2546                         break;
2547                 DELAY(10);
2548         }
2549
2550         if (i == 0)
2551                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2552         /* Initialize PCIe module. From Linux. */
2553         CSR_WRITE_4(sc, 0x12FC, 0x6500);
2554         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2555 }
2556
2557 static void
2558 age_init(void *xsc)
2559 {
2560         struct age_softc *sc;
2561
2562         sc = (struct age_softc *)xsc;
2563         AGE_LOCK(sc);
2564         age_init_locked(sc);
2565         AGE_UNLOCK(sc);
2566 }
2567
2568 static void
2569 age_init_locked(struct age_softc *sc)
2570 {
2571         struct ifnet *ifp;
2572         struct mii_data *mii;
2573         uint8_t eaddr[ETHER_ADDR_LEN];
2574         bus_addr_t paddr;
2575         uint32_t reg, fsize;
2576         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2577         int error;
2578
2579         AGE_LOCK_ASSERT(sc);
2580
2581         ifp = sc->age_ifp;
2582         mii = device_get_softc(sc->age_miibus);
2583
2584         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2585                 return;
2586
2587         /*
2588          * Cancel any pending I/O.
2589          */
2590         age_stop(sc);
2591
2592         /*
2593          * Reset the chip to a known state.
2594          */
2595         age_reset(sc);
2596
2597         /* Initialize descriptors. */
2598         error = age_init_rx_ring(sc);
2599         if (error != 0) {
2600                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2601                 age_stop(sc);
2602                 return;
2603         }
2604         age_init_rr_ring(sc);
2605         age_init_tx_ring(sc);
2606         age_init_cmb_block(sc);
2607         age_init_smb_block(sc);
2608
2609         /* Reprogram the station address. */
2610         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2611         CSR_WRITE_4(sc, AGE_PAR0,
2612             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2613         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2614
2615         /* Set descriptor base addresses. */
2616         paddr = sc->age_rdata.age_tx_ring_paddr;
2617         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2618         paddr = sc->age_rdata.age_rx_ring_paddr;
2619         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2620         paddr = sc->age_rdata.age_rr_ring_paddr;
2621         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2622         paddr = sc->age_rdata.age_tx_ring_paddr;
2623         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2624         paddr = sc->age_rdata.age_cmb_block_paddr;
2625         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2626         paddr = sc->age_rdata.age_smb_block_paddr;
2627         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2628         /* Set Rx/Rx return descriptor counter. */
2629         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2630             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2631             DESC_RRD_CNT_MASK) |
2632             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2633         /* Set Tx descriptor counter. */
2634         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2635             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2636
2637         /* Tell hardware that we're ready to load descriptors. */
2638         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2639
2640         /*
2641          * Initialize mailbox register.
2642          * Updated producer/consumer index information is exchanged
2643          * through this mailbox register. However Tx producer and
2644          * Rx return consumer/Rx producer are all shared such that
2645          * it's hard to separate code path between Tx and Rx without
2646          * locking. If L1 hardware have a separate mail box register
2647          * for Tx and Rx consumer/producer management we could have
2648          * indepent Tx/Rx handler which in turn Rx handler could have
2649          * been run without any locking.
2650          */
2651         AGE_COMMIT_MBOX(sc);
2652
2653         /* Configure IPG/IFG parameters. */
2654         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2655             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2656             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2657             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2658             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2659
2660         /* Set parameters for half-duplex media. */
2661         CSR_WRITE_4(sc, AGE_HDPX_CFG,
2662             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2663             HDPX_CFG_LCOL_MASK) |
2664             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2665             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2666             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2667             HDPX_CFG_ABEBT_MASK) |
2668             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2669             HDPX_CFG_JAMIPG_MASK));
2670
2671         /* Configure interrupt moderation timer. */
2672         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2673         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2674         reg &= ~MASTER_MTIMER_ENB;
2675         if (AGE_USECS(sc->age_int_mod) == 0)
2676                 reg &= ~MASTER_ITIMER_ENB;
2677         else
2678                 reg |= MASTER_ITIMER_ENB;
2679         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2680         if (bootverbose)
2681                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2682                     sc->age_int_mod);
2683         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2684
2685         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2686         if (ifp->if_mtu < ETHERMTU)
2687                 sc->age_max_frame_size = ETHERMTU;
2688         else
2689                 sc->age_max_frame_size = ifp->if_mtu;
2690         sc->age_max_frame_size += ETHER_HDR_LEN +
2691             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2692         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2693         /* Configure jumbo frame. */
2694         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2695         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2696             (((fsize / sizeof(uint64_t)) <<
2697             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2698             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2699             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2700             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2701             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2702
2703         /* Configure flow-control parameters. From Linux. */
2704         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2705                 /*
2706                  * Magic workaround for old-L1.
2707                  * Don't know which hw revision requires this magic.
2708                  */
2709                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
2710                 /*
2711                  * Another magic workaround for flow-control mode
2712                  * change. From Linux.
2713                  */
2714                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2715         }
2716         /*
2717          * TODO
2718          *  Should understand pause parameter relationships between FIFO
2719          *  size and number of Rx descriptors and Rx return descriptors.
2720          *
2721          *  Magic parameters came from Linux.
2722          */
2723         switch (sc->age_chip_rev) {
2724         case 0x8001:
2725         case 0x9001:
2726         case 0x9002:
2727         case 0x9003:
2728                 rxf_hi = AGE_RX_RING_CNT / 16;
2729                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2730                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2731                 rrd_lo = AGE_RR_RING_CNT / 16;
2732                 break;
2733         default:
2734                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2735                 rxf_lo = reg / 16;
2736                 if (rxf_lo < 192)
2737                         rxf_lo = 192;
2738                 rxf_hi = (reg * 7) / 8;
2739                 if (rxf_hi < rxf_lo)
2740                         rxf_hi = rxf_lo + 16;
2741                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2742                 rrd_lo = reg / 8;
2743                 rrd_hi = (reg * 7) / 8;
2744                 if (rrd_lo < 2)
2745                         rrd_lo = 2;
2746                 if (rrd_hi < rrd_lo)
2747                         rrd_hi = rrd_lo + 3;
2748                 break;
2749         }
2750         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2751             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2752             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2753             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2754             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2755         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2756             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2757             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2758             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2759             RXQ_RRD_PAUSE_THRESH_HI_MASK));
2760
2761         /* Configure RxQ. */
2762         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2763             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2764             RXQ_CFG_RD_BURST_MASK) |
2765             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2766             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2767             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2768             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2769             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2770
2771         /* Configure TxQ. */
2772         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2773             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2774             TXQ_CFG_TPD_BURST_MASK) |
2775             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2776             TXQ_CFG_TX_FIFO_BURST_MASK) |
2777             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2778             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2779             TXQ_CFG_ENB);
2780
2781         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2782             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2783             TX_JUMBO_TPD_TH_MASK) |
2784             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2785             TX_JUMBO_TPD_IPG_MASK));
2786         /* Configure DMA parameters. */
2787         CSR_WRITE_4(sc, AGE_DMA_CFG,
2788             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2789             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2790             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2791
2792         /* Configure CMB DMA write threshold. */
2793         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2794             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2795             CMB_WR_THRESH_RRD_MASK) |
2796             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2797             CMB_WR_THRESH_TPD_MASK));
2798
2799         /* Set CMB/SMB timer and enable them. */
2800         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2801             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2802             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2803         /* Request SMB updates for every seconds. */
2804         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2805         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2806
2807         /*
2808          * Disable all WOL bits as WOL can interfere normal Rx
2809          * operation.
2810          */
2811         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2812
2813         /*
2814          * Configure Tx/Rx MACs.
2815          *  - Auto-padding for short frames.
2816          *  - Enable CRC generation.
2817          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2818          *  of MAC is followed after link establishment.
2819          */
2820         CSR_WRITE_4(sc, AGE_MAC_CFG,
2821             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2822             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2823             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2824             MAC_CFG_PREAMBLE_MASK));
2825         /* Set up the receive filter. */
2826         age_rxfilter(sc);
2827         age_rxvlan(sc);
2828
2829         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2830         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2831                 reg |= MAC_CFG_RXCSUM_ENB;
2832
2833         /* Ack all pending interrupts and clear it. */
2834         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2835         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2836
2837         /* Finally enable Tx/Rx MAC. */
2838         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2839
2840         sc->age_flags &= ~AGE_FLAG_LINK;
2841         /* Switch to the current media. */
2842         mii_mediachg(mii);
2843
2844         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2845
2846         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2847         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2848 }
2849
2850 static void
2851 age_stop(struct age_softc *sc)
2852 {
2853         struct ifnet *ifp;
2854         struct age_txdesc *txd;
2855         struct age_rxdesc *rxd;
2856         uint32_t reg;
2857         int i;
2858
2859         AGE_LOCK_ASSERT(sc);
2860         /*
2861          * Mark the interface down and cancel the watchdog timer.
2862          */
2863         ifp = sc->age_ifp;
2864         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2865         sc->age_flags &= ~AGE_FLAG_LINK;
2866         callout_stop(&sc->age_tick_ch);
2867         sc->age_watchdog_timer = 0;
2868
2869         /*
2870          * Disable interrupts.
2871          */
2872         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2873         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2874         /* Stop CMB/SMB updates. */
2875         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2876         /* Stop Rx/Tx MAC. */
2877         age_stop_rxmac(sc);
2878         age_stop_txmac(sc);
2879         /* Stop DMA. */
2880         CSR_WRITE_4(sc, AGE_DMA_CFG,
2881             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2882         /* Stop TxQ/RxQ. */
2883         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2884             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2885         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2886             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2887         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2888                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2889                         break;
2890                 DELAY(10);
2891         }
2892         if (i == 0)
2893                 device_printf(sc->age_dev,
2894                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2895
2896          /* Reclaim Rx buffers that have been processed. */
2897         if (sc->age_cdata.age_rxhead != NULL)
2898                 m_freem(sc->age_cdata.age_rxhead);
2899         AGE_RXCHAIN_RESET(sc);
2900         /*
2901          * Free RX and TX mbufs still in the queues.
2902          */
2903         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2904                 rxd = &sc->age_cdata.age_rxdesc[i];
2905                 if (rxd->rx_m != NULL) {
2906                         bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2907                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2908                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2909                             rxd->rx_dmamap);
2910                         m_freem(rxd->rx_m);
2911                         rxd->rx_m = NULL;
2912                 }
2913         }
2914         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2915                 txd = &sc->age_cdata.age_txdesc[i];
2916                 if (txd->tx_m != NULL) {
2917                         bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2918                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2919                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2920                             txd->tx_dmamap);
2921                         m_freem(txd->tx_m);
2922                         txd->tx_m = NULL;
2923                 }
2924         }
2925 }
2926
2927 static void
2928 age_stop_txmac(struct age_softc *sc)
2929 {
2930         uint32_t reg;
2931         int i;
2932
2933         AGE_LOCK_ASSERT(sc);
2934
2935         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2936         if ((reg & MAC_CFG_TX_ENB) != 0) {
2937                 reg &= ~MAC_CFG_TX_ENB;
2938                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2939         }
2940         /* Stop Tx DMA engine. */
2941         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2942         if ((reg & DMA_CFG_RD_ENB) != 0) {
2943                 reg &= ~DMA_CFG_RD_ENB;
2944                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2945         }
2946         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2947                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2948                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2949                         break;
2950                 DELAY(10);
2951         }
2952         if (i == 0)
2953                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2954 }
2955
2956 static void
2957 age_stop_rxmac(struct age_softc *sc)
2958 {
2959         uint32_t reg;
2960         int i;
2961
2962         AGE_LOCK_ASSERT(sc);
2963
2964         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2965         if ((reg & MAC_CFG_RX_ENB) != 0) {
2966                 reg &= ~MAC_CFG_RX_ENB;
2967                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2968         }
2969         /* Stop Rx DMA engine. */
2970         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2971         if ((reg & DMA_CFG_WR_ENB) != 0) {
2972                 reg &= ~DMA_CFG_WR_ENB;
2973                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2974         }
2975         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2976                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2977                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2978                         break;
2979                 DELAY(10);
2980         }
2981         if (i == 0)
2982                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2983 }
2984
2985 static void
2986 age_init_tx_ring(struct age_softc *sc)
2987 {
2988         struct age_ring_data *rd;
2989         struct age_txdesc *txd;
2990         int i;
2991
2992         AGE_LOCK_ASSERT(sc);
2993
2994         sc->age_cdata.age_tx_prod = 0;
2995         sc->age_cdata.age_tx_cons = 0;
2996         sc->age_cdata.age_tx_cnt = 0;
2997
2998         rd = &sc->age_rdata;
2999         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
3000         for (i = 0; i < AGE_TX_RING_CNT; i++) {
3001                 txd = &sc->age_cdata.age_txdesc[i];
3002                 txd->tx_desc = &rd->age_tx_ring[i];
3003                 txd->tx_m = NULL;
3004         }
3005
3006         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3007             sc->age_cdata.age_tx_ring_map,
3008             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3009 }
3010
3011 static int
3012 age_init_rx_ring(struct age_softc *sc)
3013 {
3014         struct age_ring_data *rd;
3015         struct age_rxdesc *rxd;
3016         int i;
3017
3018         AGE_LOCK_ASSERT(sc);
3019
3020         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3021         sc->age_morework = 0;
3022         rd = &sc->age_rdata;
3023         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3024         for (i = 0; i < AGE_RX_RING_CNT; i++) {
3025                 rxd = &sc->age_cdata.age_rxdesc[i];
3026                 rxd->rx_m = NULL;
3027                 rxd->rx_desc = &rd->age_rx_ring[i];
3028                 if (age_newbuf(sc, rxd) != 0)
3029                         return (ENOBUFS);
3030         }
3031
3032         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3033             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3034
3035         return (0);
3036 }
3037
3038 static void
3039 age_init_rr_ring(struct age_softc *sc)
3040 {
3041         struct age_ring_data *rd;
3042
3043         AGE_LOCK_ASSERT(sc);
3044
3045         sc->age_cdata.age_rr_cons = 0;
3046         AGE_RXCHAIN_RESET(sc);
3047
3048         rd = &sc->age_rdata;
3049         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3050         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3051             sc->age_cdata.age_rr_ring_map,
3052             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3053 }
3054
3055 static void
3056 age_init_cmb_block(struct age_softc *sc)
3057 {
3058         struct age_ring_data *rd;
3059
3060         AGE_LOCK_ASSERT(sc);
3061
3062         rd = &sc->age_rdata;
3063         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3064         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3065             sc->age_cdata.age_cmb_block_map,
3066             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3067 }
3068
3069 static void
3070 age_init_smb_block(struct age_softc *sc)
3071 {
3072         struct age_ring_data *rd;
3073
3074         AGE_LOCK_ASSERT(sc);
3075
3076         rd = &sc->age_rdata;
3077         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3078         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3079             sc->age_cdata.age_smb_block_map,
3080             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3081 }
3082
3083 static int
3084 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3085 {
3086         struct rx_desc *desc;
3087         struct mbuf *m;
3088         bus_dma_segment_t segs[1];
3089         bus_dmamap_t map;
3090         int nsegs;
3091
3092         AGE_LOCK_ASSERT(sc);
3093
3094         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3095         if (m == NULL)
3096                 return (ENOBUFS);
3097         m->m_len = m->m_pkthdr.len = MCLBYTES;
3098 #ifndef __NO_STRICT_ALIGNMENT
3099         m_adj(m, AGE_RX_BUF_ALIGN);
3100 #endif
3101
3102         if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3103             sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3104                 m_freem(m);
3105                 return (ENOBUFS);
3106         }
3107         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3108
3109         if (rxd->rx_m != NULL) {
3110                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3111                     BUS_DMASYNC_POSTREAD);
3112                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3113         }
3114         map = rxd->rx_dmamap;
3115         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3116         sc->age_cdata.age_rx_sparemap = map;
3117         bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3118             BUS_DMASYNC_PREREAD);
3119         rxd->rx_m = m;
3120
3121         desc = rxd->rx_desc;
3122         desc->addr = htole64(segs[0].ds_addr);
3123         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3124             AGE_RD_LEN_SHIFT);
3125         return (0);
3126 }
3127
3128 static void
3129 age_rxvlan(struct age_softc *sc)
3130 {
3131         struct ifnet *ifp;
3132         uint32_t reg;
3133
3134         AGE_LOCK_ASSERT(sc);
3135
3136         ifp = sc->age_ifp;
3137         reg = CSR_READ_4(sc, AGE_MAC_CFG);
3138         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3139         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3140                 reg |= MAC_CFG_VLAN_TAG_STRIP;
3141         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3142 }
3143
3144 static u_int
3145 age_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3146 {
3147         uint32_t *mchash = arg;
3148         uint32_t crc;
3149
3150         crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3151         mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3152
3153         return (1);
3154 }
3155
3156 static void
3157 age_rxfilter(struct age_softc *sc)
3158 {
3159         struct ifnet *ifp;
3160         uint32_t mchash[2];
3161         uint32_t rxcfg;
3162
3163         AGE_LOCK_ASSERT(sc);
3164
3165         ifp = sc->age_ifp;
3166
3167         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3168         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3169         if ((ifp->if_flags & IFF_BROADCAST) != 0)
3170                 rxcfg |= MAC_CFG_BCAST;
3171         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3172                 if ((ifp->if_flags & IFF_PROMISC) != 0)
3173                         rxcfg |= MAC_CFG_PROMISC;
3174                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3175                         rxcfg |= MAC_CFG_ALLMULTI;
3176                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3177                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3178                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3179                 return;
3180         }
3181
3182         /* Program new filter. */
3183         bzero(mchash, sizeof(mchash));
3184         if_foreach_llmaddr(ifp, age_hash_maddr, mchash);
3185
3186         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3187         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3188         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3189 }
3190
3191 static int
3192 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3193 {
3194         struct age_softc *sc;
3195         struct age_stats *stats;
3196         int error, result;
3197
3198         result = -1;
3199         error = sysctl_handle_int(oidp, &result, 0, req);
3200
3201         if (error != 0 || req->newptr == NULL)
3202                 return (error);
3203
3204         if (result != 1)
3205                 return (error);
3206
3207         sc = (struct age_softc *)arg1;
3208         stats = &sc->age_stat;
3209         printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3210         printf("Transmit good frames : %ju\n",
3211             (uintmax_t)stats->tx_frames);
3212         printf("Transmit good broadcast frames : %ju\n",
3213             (uintmax_t)stats->tx_bcast_frames);
3214         printf("Transmit good multicast frames : %ju\n",
3215             (uintmax_t)stats->tx_mcast_frames);
3216         printf("Transmit pause control frames : %u\n",
3217             stats->tx_pause_frames);
3218         printf("Transmit control frames : %u\n",
3219             stats->tx_control_frames);
3220         printf("Transmit frames with excessive deferrals : %u\n",
3221             stats->tx_excess_defer);
3222         printf("Transmit deferrals : %u\n",
3223             stats->tx_deferred);
3224         printf("Transmit good octets : %ju\n",
3225             (uintmax_t)stats->tx_bytes);
3226         printf("Transmit good broadcast octets : %ju\n",
3227             (uintmax_t)stats->tx_bcast_bytes);
3228         printf("Transmit good multicast octets : %ju\n",
3229             (uintmax_t)stats->tx_mcast_bytes);
3230         printf("Transmit frames 64 bytes : %ju\n",
3231             (uintmax_t)stats->tx_pkts_64);
3232         printf("Transmit frames 65 to 127 bytes : %ju\n",
3233             (uintmax_t)stats->tx_pkts_65_127);
3234         printf("Transmit frames 128 to 255 bytes : %ju\n",
3235             (uintmax_t)stats->tx_pkts_128_255);
3236         printf("Transmit frames 256 to 511 bytes : %ju\n",
3237             (uintmax_t)stats->tx_pkts_256_511);
3238         printf("Transmit frames 512 to 1024 bytes : %ju\n",
3239             (uintmax_t)stats->tx_pkts_512_1023);
3240         printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3241             (uintmax_t)stats->tx_pkts_1024_1518);
3242         printf("Transmit frames 1519 to MTU bytes : %ju\n",
3243             (uintmax_t)stats->tx_pkts_1519_max);
3244         printf("Transmit single collisions : %u\n",
3245             stats->tx_single_colls);
3246         printf("Transmit multiple collisions : %u\n",
3247             stats->tx_multi_colls);
3248         printf("Transmit late collisions : %u\n",
3249             stats->tx_late_colls);
3250         printf("Transmit abort due to excessive collisions : %u\n",
3251             stats->tx_excess_colls);
3252         printf("Transmit underruns due to FIFO underruns : %u\n",
3253             stats->tx_underrun);
3254         printf("Transmit descriptor write-back errors : %u\n",
3255             stats->tx_desc_underrun);
3256         printf("Transmit frames with length mismatched frame size : %u\n",
3257             stats->tx_lenerrs);
3258         printf("Transmit frames with truncated due to MTU size : %u\n",
3259             stats->tx_lenerrs);
3260
3261         printf("Receive good frames : %ju\n",
3262             (uintmax_t)stats->rx_frames);
3263         printf("Receive good broadcast frames : %ju\n",
3264             (uintmax_t)stats->rx_bcast_frames);
3265         printf("Receive good multicast frames : %ju\n",
3266             (uintmax_t)stats->rx_mcast_frames);
3267         printf("Receive pause control frames : %u\n",
3268             stats->rx_pause_frames);
3269         printf("Receive control frames : %u\n",
3270             stats->rx_control_frames);
3271         printf("Receive CRC errors : %u\n",
3272             stats->rx_crcerrs);
3273         printf("Receive frames with length errors : %u\n",
3274             stats->rx_lenerrs);
3275         printf("Receive good octets : %ju\n",
3276             (uintmax_t)stats->rx_bytes);
3277         printf("Receive good broadcast octets : %ju\n",
3278             (uintmax_t)stats->rx_bcast_bytes);
3279         printf("Receive good multicast octets : %ju\n",
3280             (uintmax_t)stats->rx_mcast_bytes);
3281         printf("Receive frames too short : %u\n",
3282             stats->rx_runts);
3283         printf("Receive fragmented frames : %ju\n",
3284             (uintmax_t)stats->rx_fragments);
3285         printf("Receive frames 64 bytes : %ju\n",
3286             (uintmax_t)stats->rx_pkts_64);
3287         printf("Receive frames 65 to 127 bytes : %ju\n",
3288             (uintmax_t)stats->rx_pkts_65_127);
3289         printf("Receive frames 128 to 255 bytes : %ju\n",
3290             (uintmax_t)stats->rx_pkts_128_255);
3291         printf("Receive frames 256 to 511 bytes : %ju\n",
3292             (uintmax_t)stats->rx_pkts_256_511);
3293         printf("Receive frames 512 to 1024 bytes : %ju\n",
3294             (uintmax_t)stats->rx_pkts_512_1023);
3295         printf("Receive frames 1024 to 1518 bytes : %ju\n",
3296             (uintmax_t)stats->rx_pkts_1024_1518);
3297         printf("Receive frames 1519 to MTU bytes : %ju\n",
3298             (uintmax_t)stats->rx_pkts_1519_max);
3299         printf("Receive frames too long : %ju\n",
3300             (uint64_t)stats->rx_pkts_truncated);
3301         printf("Receive frames with FIFO overflow : %u\n",
3302             stats->rx_fifo_oflows);
3303         printf("Receive frames with return descriptor overflow : %u\n",
3304             stats->rx_desc_oflows);
3305         printf("Receive frames with alignment errors : %u\n",
3306             stats->rx_alignerrs);
3307         printf("Receive frames dropped due to address filtering : %ju\n",
3308             (uint64_t)stats->rx_pkts_filtered);
3309
3310         return (error);
3311 }
3312
3313 static int
3314 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3315 {
3316         int error, value;
3317
3318         if (arg1 == NULL)
3319                 return (EINVAL);
3320         value = *(int *)arg1;
3321         error = sysctl_handle_int(oidp, &value, 0, req);
3322         if (error || req->newptr == NULL)
3323                 return (error);
3324         if (value < low || value > high)
3325                 return (EINVAL);
3326         *(int *)arg1 = value;
3327
3328         return (0);
3329 }
3330
3331 static int
3332 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3333 {
3334         return (sysctl_int_range(oidp, arg1, arg2, req,
3335             AGE_PROC_MIN, AGE_PROC_MAX));
3336 }
3337
3338 static int
3339 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3340 {
3341
3342         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3343             AGE_IM_TIMER_MAX));
3344 }