]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/age/if_age.c
Merge ACPICA 20150515.
[FreeBSD/FreeBSD.git] / sys / dev / age / if_age.c
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68
69 #include <machine/bus.h>
70 #include <machine/in_cksum.h>
71
72 #include <dev/age/if_agereg.h>
73 #include <dev/age/if_agevar.h>
74
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77
78 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
79
80 MODULE_DEPEND(age, pci, 1, 1, 1);
81 MODULE_DEPEND(age, ether, 1, 1, 1);
82 MODULE_DEPEND(age, miibus, 1, 1, 1);
83
84 /* Tunables. */
85 static int msi_disable = 0;
86 static int msix_disable = 0;
87 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
88 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
89
90 /*
91  * Devices supported by this driver.
92  */
93 static struct age_dev {
94         uint16_t        age_vendorid;
95         uint16_t        age_deviceid;
96         const char      *age_name;
97 } age_devs[] = {
98         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
99             "Attansic Technology Corp, L1 Gigabit Ethernet" },
100 };
101
102 static int age_miibus_readreg(device_t, int, int);
103 static int age_miibus_writereg(device_t, int, int, int);
104 static void age_miibus_statchg(device_t);
105 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
106 static int age_mediachange(struct ifnet *);
107 static int age_probe(device_t);
108 static void age_get_macaddr(struct age_softc *);
109 static void age_phy_reset(struct age_softc *);
110 static int age_attach(device_t);
111 static int age_detach(device_t);
112 static void age_sysctl_node(struct age_softc *);
113 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
114 static int age_check_boundary(struct age_softc *);
115 static int age_dma_alloc(struct age_softc *);
116 static void age_dma_free(struct age_softc *);
117 static int age_shutdown(device_t);
118 static void age_setwol(struct age_softc *);
119 static int age_suspend(device_t);
120 static int age_resume(device_t);
121 static int age_encap(struct age_softc *, struct mbuf **);
122 static void age_start(struct ifnet *);
123 static void age_start_locked(struct ifnet *);
124 static void age_watchdog(struct age_softc *);
125 static int age_ioctl(struct ifnet *, u_long, caddr_t);
126 static void age_mac_config(struct age_softc *);
127 static void age_link_task(void *, int);
128 static void age_stats_update(struct age_softc *);
129 static int age_intr(void *);
130 static void age_int_task(void *, int);
131 static void age_txintr(struct age_softc *, int);
132 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
133 static int age_rxintr(struct age_softc *, int, int);
134 static void age_tick(void *);
135 static void age_reset(struct age_softc *);
136 static void age_init(void *);
137 static void age_init_locked(struct age_softc *);
138 static void age_stop(struct age_softc *);
139 static void age_stop_txmac(struct age_softc *);
140 static void age_stop_rxmac(struct age_softc *);
141 static void age_init_tx_ring(struct age_softc *);
142 static int age_init_rx_ring(struct age_softc *);
143 static void age_init_rr_ring(struct age_softc *);
144 static void age_init_cmb_block(struct age_softc *);
145 static void age_init_smb_block(struct age_softc *);
146 #ifndef __NO_STRICT_ALIGNMENT
147 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
148 #endif
149 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
150 static void age_rxvlan(struct age_softc *);
151 static void age_rxfilter(struct age_softc *);
152 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
153 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
154 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
155 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
156
157
158 static device_method_t age_methods[] = {
159         /* Device interface. */
160         DEVMETHOD(device_probe,         age_probe),
161         DEVMETHOD(device_attach,        age_attach),
162         DEVMETHOD(device_detach,        age_detach),
163         DEVMETHOD(device_shutdown,      age_shutdown),
164         DEVMETHOD(device_suspend,       age_suspend),
165         DEVMETHOD(device_resume,        age_resume),
166
167         /* MII interface. */
168         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
169         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
170         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
171
172         { NULL, NULL }
173 };
174
175 static driver_t age_driver = {
176         "age",
177         age_methods,
178         sizeof(struct age_softc)
179 };
180
181 static devclass_t age_devclass;
182
183 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
184 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
185
186 static struct resource_spec age_res_spec_mem[] = {
187         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
188         { -1,                   0,              0 }
189 };
190
191 static struct resource_spec age_irq_spec_legacy[] = {
192         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
193         { -1,                   0,              0 }
194 };
195
196 static struct resource_spec age_irq_spec_msi[] = {
197         { SYS_RES_IRQ,          1,              RF_ACTIVE },
198         { -1,                   0,              0 }
199 };
200
201 static struct resource_spec age_irq_spec_msix[] = {
202         { SYS_RES_IRQ,          1,              RF_ACTIVE },
203         { -1,                   0,              0 }
204 };
205
206 /*
207  *      Read a PHY register on the MII of the L1.
208  */
209 static int
210 age_miibus_readreg(device_t dev, int phy, int reg)
211 {
212         struct age_softc *sc;
213         uint32_t v;
214         int i;
215
216         sc = device_get_softc(dev);
217
218         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
219             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
220         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
221                 DELAY(1);
222                 v = CSR_READ_4(sc, AGE_MDIO);
223                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
224                         break;
225         }
226
227         if (i == 0) {
228                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
229                 return (0);
230         }
231
232         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
233 }
234
235 /*
236  *      Write a PHY register on the MII of the L1.
237  */
238 static int
239 age_miibus_writereg(device_t dev, int phy, int reg, int val)
240 {
241         struct age_softc *sc;
242         uint32_t v;
243         int i;
244
245         sc = device_get_softc(dev);
246
247         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
248             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
249             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
250         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
251                 DELAY(1);
252                 v = CSR_READ_4(sc, AGE_MDIO);
253                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
254                         break;
255         }
256
257         if (i == 0)
258                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
259
260         return (0);
261 }
262
263 /*
264  *      Callback from MII layer when media changes.
265  */
266 static void
267 age_miibus_statchg(device_t dev)
268 {
269         struct age_softc *sc;
270
271         sc = device_get_softc(dev);
272         taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
273 }
274
275 /*
276  *      Get the current interface media status.
277  */
278 static void
279 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
280 {
281         struct age_softc *sc;
282         struct mii_data *mii;
283
284         sc = ifp->if_softc;
285         AGE_LOCK(sc);
286         mii = device_get_softc(sc->age_miibus);
287
288         mii_pollstat(mii);
289         ifmr->ifm_status = mii->mii_media_status;
290         ifmr->ifm_active = mii->mii_media_active;
291         AGE_UNLOCK(sc);
292 }
293
294 /*
295  *      Set hardware to newly-selected media.
296  */
297 static int
298 age_mediachange(struct ifnet *ifp)
299 {
300         struct age_softc *sc;
301         struct mii_data *mii;
302         struct mii_softc *miisc;
303         int error;
304
305         sc = ifp->if_softc;
306         AGE_LOCK(sc);
307         mii = device_get_softc(sc->age_miibus);
308         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
309                 PHY_RESET(miisc);
310         error = mii_mediachg(mii);
311         AGE_UNLOCK(sc);
312
313         return (error);
314 }
315
316 static int
317 age_probe(device_t dev)
318 {
319         struct age_dev *sp;
320         int i;
321         uint16_t vendor, devid;
322
323         vendor = pci_get_vendor(dev);
324         devid = pci_get_device(dev);
325         sp = age_devs;
326         for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
327             i++, sp++) {
328                 if (vendor == sp->age_vendorid &&
329                     devid == sp->age_deviceid) {
330                         device_set_desc(dev, sp->age_name);
331                         return (BUS_PROBE_DEFAULT);
332                 }
333         }
334
335         return (ENXIO);
336 }
337
338 static void
339 age_get_macaddr(struct age_softc *sc)
340 {
341         uint32_t ea[2], reg;
342         int i, vpdc;
343
344         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
345         if ((reg & SPI_VPD_ENB) != 0) {
346                 /* Get VPD stored in TWSI EEPROM. */
347                 reg &= ~SPI_VPD_ENB;
348                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
349         }
350
351         if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
352                 /*
353                  * PCI VPD capability found, let TWSI reload EEPROM.
354                  * This will set ethernet address of controller.
355                  */
356                 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
357                     TWSI_CTRL_SW_LD_START);
358                 for (i = 100; i > 0; i--) {
359                         DELAY(1000);
360                         reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
361                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
362                                 break;
363                 }
364                 if (i == 0)
365                         device_printf(sc->age_dev,
366                             "reloading EEPROM timeout!\n");
367         } else {
368                 if (bootverbose)
369                         device_printf(sc->age_dev,
370                             "PCI VPD capability not found!\n");
371         }
372
373         ea[0] = CSR_READ_4(sc, AGE_PAR0);
374         ea[1] = CSR_READ_4(sc, AGE_PAR1);
375         sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
376         sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
377         sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
378         sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
379         sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
380         sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
381 }
382
383 static void
384 age_phy_reset(struct age_softc *sc)
385 {
386         uint16_t reg, pn;
387         int i, linkup;
388
389         /* Reset PHY. */
390         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
391         DELAY(2000);
392         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
393         DELAY(2000);
394
395 #define ATPHY_DBG_ADDR          0x1D
396 #define ATPHY_DBG_DATA          0x1E
397 #define ATPHY_CDTC              0x16
398 #define PHY_CDTC_ENB            0x0001
399 #define PHY_CDTC_POFF           8
400 #define ATPHY_CDTS              0x1C
401 #define PHY_CDTS_STAT_OK        0x0000
402 #define PHY_CDTS_STAT_SHORT     0x0100
403 #define PHY_CDTS_STAT_OPEN      0x0200
404 #define PHY_CDTS_STAT_INVAL     0x0300
405 #define PHY_CDTS_STAT_MASK      0x0300
406
407         /* Check power saving mode. Magic from Linux. */
408         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
409         for (linkup = 0, pn = 0; pn < 4; pn++) {
410                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
411                     (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
412                 for (i = 200; i > 0; i--) {
413                         DELAY(1000);
414                         reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
415                             ATPHY_CDTC);
416                         if ((reg & PHY_CDTC_ENB) == 0)
417                                 break;
418                 }
419                 DELAY(1000);
420                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
421                     ATPHY_CDTS);
422                 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
423                         linkup++;
424                         break;
425                 }
426         }
427         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
428             BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
429         if (linkup == 0) {
430                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431                     ATPHY_DBG_ADDR, 0);
432                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
433                     ATPHY_DBG_DATA, 0x124E);
434                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435                     ATPHY_DBG_ADDR, 1);
436                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
437                     ATPHY_DBG_DATA);
438                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
439                     ATPHY_DBG_DATA, reg | 0x03);
440                 /* XXX */
441                 DELAY(1500 * 1000);
442                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
443                     ATPHY_DBG_ADDR, 0);
444                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
445                     ATPHY_DBG_DATA, 0x024E);
446     }
447
448 #undef  ATPHY_DBG_ADDR
449 #undef  ATPHY_DBG_DATA
450 #undef  ATPHY_CDTC
451 #undef  PHY_CDTC_ENB
452 #undef  PHY_CDTC_POFF
453 #undef  ATPHY_CDTS
454 #undef  PHY_CDTS_STAT_OK
455 #undef  PHY_CDTS_STAT_SHORT
456 #undef  PHY_CDTS_STAT_OPEN
457 #undef  PHY_CDTS_STAT_INVAL
458 #undef  PHY_CDTS_STAT_MASK
459 }
460
461 static int
462 age_attach(device_t dev)
463 {
464         struct age_softc *sc;
465         struct ifnet *ifp;
466         uint16_t burst;
467         int error, i, msic, msixc, pmc;
468
469         error = 0;
470         sc = device_get_softc(dev);
471         sc->age_dev = dev;
472
473         mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
474             MTX_DEF);
475         callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
476         TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
477         TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
478
479         /* Map the device. */
480         pci_enable_busmaster(dev);
481         sc->age_res_spec = age_res_spec_mem;
482         sc->age_irq_spec = age_irq_spec_legacy;
483         error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
484         if (error != 0) {
485                 device_printf(dev, "cannot allocate memory resources.\n");
486                 goto fail;
487         }
488
489         /* Set PHY address. */
490         sc->age_phyaddr = AGE_PHY_ADDR;
491
492         /* Reset PHY. */
493         age_phy_reset(sc);
494
495         /* Reset the ethernet controller. */
496         age_reset(sc);
497
498         /* Get PCI and chip id/revision. */
499         sc->age_rev = pci_get_revid(dev);
500         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
501             MASTER_CHIP_REV_SHIFT;
502         if (bootverbose) {
503                 device_printf(dev, "PCI device revision : 0x%04x\n",
504                     sc->age_rev);
505                 device_printf(dev, "Chip id/revision : 0x%04x\n",
506                     sc->age_chip_rev);
507         }
508
509         /*
510          * XXX
511          * Unintialized hardware returns an invalid chip id/revision
512          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
513          * unplugged cable results in putting hardware into automatic
514          * power down mode which in turn returns invalld chip revision.
515          */
516         if (sc->age_chip_rev == 0xFFFF) {
517                 device_printf(dev,"invalid chip revision : 0x%04x -- "
518                     "not initialized?\n", sc->age_chip_rev);
519                 error = ENXIO;
520                 goto fail;
521         }
522
523         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
524             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
525             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
526
527         /* Allocate IRQ resources. */
528         msixc = pci_msix_count(dev);
529         msic = pci_msi_count(dev);
530         if (bootverbose) {
531                 device_printf(dev, "MSIX count : %d\n", msixc);
532                 device_printf(dev, "MSI count : %d\n", msic);
533         }
534
535         /* Prefer MSIX over MSI. */
536         if (msix_disable == 0 || msi_disable == 0) {
537                 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
538                     pci_alloc_msix(dev, &msixc) == 0) {
539                         if (msic == AGE_MSIX_MESSAGES) {
540                                 device_printf(dev, "Using %d MSIX messages.\n",
541                                     msixc);
542                                 sc->age_flags |= AGE_FLAG_MSIX;
543                                 sc->age_irq_spec = age_irq_spec_msix;
544                         } else
545                                 pci_release_msi(dev);
546                 }
547                 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
548                     msic == AGE_MSI_MESSAGES &&
549                     pci_alloc_msi(dev, &msic) == 0) {
550                         if (msic == AGE_MSI_MESSAGES) {
551                                 device_printf(dev, "Using %d MSI messages.\n",
552                                     msic);
553                                 sc->age_flags |= AGE_FLAG_MSI;
554                                 sc->age_irq_spec = age_irq_spec_msi;
555                         } else
556                                 pci_release_msi(dev);
557                 }
558         }
559
560         error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
561         if (error != 0) {
562                 device_printf(dev, "cannot allocate IRQ resources.\n");
563                 goto fail;
564         }
565
566
567         /* Get DMA parameters from PCIe device control register. */
568         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
569                 sc->age_flags |= AGE_FLAG_PCIE;
570                 burst = pci_read_config(dev, i + 0x08, 2);
571                 /* Max read request size. */
572                 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
573                     DMA_CFG_RD_BURST_SHIFT;
574                 /* Max payload size. */
575                 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
576                     DMA_CFG_WR_BURST_SHIFT;
577                 if (bootverbose) {
578                         device_printf(dev, "Read request size : %d bytes.\n",
579                             128 << ((burst >> 12) & 0x07));
580                         device_printf(dev, "TLP payload size : %d bytes.\n",
581                             128 << ((burst >> 5) & 0x07));
582                 }
583         } else {
584                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
585                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
586         }
587
588         /* Create device sysctl node. */
589         age_sysctl_node(sc);
590
591         if ((error = age_dma_alloc(sc) != 0))
592                 goto fail;
593
594         /* Load station address. */
595         age_get_macaddr(sc);
596
597         ifp = sc->age_ifp = if_alloc(IFT_ETHER);
598         if (ifp == NULL) {
599                 device_printf(dev, "cannot allocate ifnet structure.\n");
600                 error = ENXIO;
601                 goto fail;
602         }
603
604         ifp->if_softc = sc;
605         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
606         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
607         ifp->if_ioctl = age_ioctl;
608         ifp->if_start = age_start;
609         ifp->if_init = age_init;
610         ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
611         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
612         IFQ_SET_READY(&ifp->if_snd);
613         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
614         ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
615         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
616                 sc->age_flags |= AGE_FLAG_PMCAP;
617                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
618         }
619         ifp->if_capenable = ifp->if_capabilities;
620
621         /* Set up MII bus. */
622         error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
623             age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
624             0);
625         if (error != 0) {
626                 device_printf(dev, "attaching PHYs failed\n");
627                 goto fail;
628         }
629
630         ether_ifattach(ifp, sc->age_eaddr);
631
632         /* VLAN capability setup. */
633         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
634             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
635         ifp->if_capenable = ifp->if_capabilities;
636
637         /* Tell the upper layer(s) we support long frames. */
638         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
639
640         /* Create local taskq. */
641         sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
642             taskqueue_thread_enqueue, &sc->age_tq);
643         if (sc->age_tq == NULL) {
644                 device_printf(dev, "could not create taskqueue.\n");
645                 ether_ifdetach(ifp);
646                 error = ENXIO;
647                 goto fail;
648         }
649         taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
650             device_get_nameunit(sc->age_dev));
651
652         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
653                 msic = AGE_MSIX_MESSAGES;
654         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
655                 msic = AGE_MSI_MESSAGES;
656         else
657                 msic = 1;
658         for (i = 0; i < msic; i++) {
659                 error = bus_setup_intr(dev, sc->age_irq[i],
660                     INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
661                     &sc->age_intrhand[i]);
662                 if (error != 0)
663                         break;
664         }
665         if (error != 0) {
666                 device_printf(dev, "could not set up interrupt handler.\n");
667                 taskqueue_free(sc->age_tq);
668                 sc->age_tq = NULL;
669                 ether_ifdetach(ifp);
670                 goto fail;
671         }
672
673 fail:
674         if (error != 0)
675                 age_detach(dev);
676
677         return (error);
678 }
679
680 static int
681 age_detach(device_t dev)
682 {
683         struct age_softc *sc;
684         struct ifnet *ifp;
685         int i, msic;
686
687         sc = device_get_softc(dev);
688
689         ifp = sc->age_ifp;
690         if (device_is_attached(dev)) {
691                 AGE_LOCK(sc);
692                 sc->age_flags |= AGE_FLAG_DETACH;
693                 age_stop(sc);
694                 AGE_UNLOCK(sc);
695                 callout_drain(&sc->age_tick_ch);
696                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
697                 taskqueue_drain(taskqueue_swi, &sc->age_link_task);
698                 ether_ifdetach(ifp);
699         }
700
701         if (sc->age_tq != NULL) {
702                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
703                 taskqueue_free(sc->age_tq);
704                 sc->age_tq = NULL;
705         }
706
707         if (sc->age_miibus != NULL) {
708                 device_delete_child(dev, sc->age_miibus);
709                 sc->age_miibus = NULL;
710         }
711         bus_generic_detach(dev);
712         age_dma_free(sc);
713
714         if (ifp != NULL) {
715                 if_free(ifp);
716                 sc->age_ifp = NULL;
717         }
718
719         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
720                 msic = AGE_MSIX_MESSAGES;
721         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
722                 msic = AGE_MSI_MESSAGES;
723         else
724                 msic = 1;
725         for (i = 0; i < msic; i++) {
726                 if (sc->age_intrhand[i] != NULL) {
727                         bus_teardown_intr(dev, sc->age_irq[i],
728                             sc->age_intrhand[i]);
729                         sc->age_intrhand[i] = NULL;
730                 }
731         }
732
733         bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
734         if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
735                 pci_release_msi(dev);
736         bus_release_resources(dev, sc->age_res_spec, sc->age_res);
737         mtx_destroy(&sc->age_mtx);
738
739         return (0);
740 }
741
742 static void
743 age_sysctl_node(struct age_softc *sc)
744 {
745         int error;
746
747         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
748             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
749             "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
750             "I", "Statistics");
751
752         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
753             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
754             "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
755             sysctl_hw_age_int_mod, "I", "age interrupt moderation");
756
757         /* Pull in device tunables. */
758         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
759         error = resource_int_value(device_get_name(sc->age_dev),
760             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
761         if (error == 0) {
762                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
763                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
764                         device_printf(sc->age_dev,
765                             "int_mod value out of range; using default: %d\n",
766                             AGE_IM_TIMER_DEFAULT);
767                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
768                 }
769         }
770
771         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
772             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
773             "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
774             0, sysctl_hw_age_proc_limit, "I",
775             "max number of Rx events to process");
776
777         /* Pull in device tunables. */
778         sc->age_process_limit = AGE_PROC_DEFAULT;
779         error = resource_int_value(device_get_name(sc->age_dev),
780             device_get_unit(sc->age_dev), "process_limit",
781             &sc->age_process_limit);
782         if (error == 0) {
783                 if (sc->age_process_limit < AGE_PROC_MIN ||
784                     sc->age_process_limit > AGE_PROC_MAX) {
785                         device_printf(sc->age_dev,
786                             "process_limit value out of range; "
787                             "using default: %d\n", AGE_PROC_DEFAULT);
788                         sc->age_process_limit = AGE_PROC_DEFAULT;
789                 }
790         }
791 }
792
793 struct age_dmamap_arg {
794         bus_addr_t      age_busaddr;
795 };
796
797 static void
798 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
799 {
800         struct age_dmamap_arg *ctx;
801
802         if (error != 0)
803                 return;
804
805         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
806
807         ctx = (struct age_dmamap_arg *)arg;
808         ctx->age_busaddr = segs[0].ds_addr;
809 }
810
811 /*
812  * Attansic L1 controller have single register to specify high
813  * address part of DMA blocks. So all descriptor structures and
814  * DMA memory blocks should have the same high address of given
815  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
816  */
817 static int
818 age_check_boundary(struct age_softc *sc)
819 {
820         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
821         bus_addr_t cmb_block_end, smb_block_end;
822
823         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
824         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
825         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
826         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
827         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
828         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
829
830         if ((AGE_ADDR_HI(tx_ring_end) !=
831             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
832             (AGE_ADDR_HI(rx_ring_end) !=
833             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
834             (AGE_ADDR_HI(rr_ring_end) !=
835             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
836             (AGE_ADDR_HI(cmb_block_end) !=
837             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
838             (AGE_ADDR_HI(smb_block_end) !=
839             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
840                 return (EFBIG);
841
842         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
843             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
844             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
845             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
846                 return (EFBIG);
847
848         return (0);
849 }
850
851 static int
852 age_dma_alloc(struct age_softc *sc)
853 {
854         struct age_txdesc *txd;
855         struct age_rxdesc *rxd;
856         bus_addr_t lowaddr;
857         struct age_dmamap_arg ctx;
858         int error, i;
859
860         lowaddr = BUS_SPACE_MAXADDR;
861
862 again:
863         /* Create parent ring/DMA block tag. */
864         error = bus_dma_tag_create(
865             bus_get_dma_tag(sc->age_dev), /* parent */
866             1, 0,                       /* alignment, boundary */
867             lowaddr,                    /* lowaddr */
868             BUS_SPACE_MAXADDR,          /* highaddr */
869             NULL, NULL,                 /* filter, filterarg */
870             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
871             0,                          /* nsegments */
872             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
873             0,                          /* flags */
874             NULL, NULL,                 /* lockfunc, lockarg */
875             &sc->age_cdata.age_parent_tag);
876         if (error != 0) {
877                 device_printf(sc->age_dev,
878                     "could not create parent DMA tag.\n");
879                 goto fail;
880         }
881
882         /* Create tag for Tx ring. */
883         error = bus_dma_tag_create(
884             sc->age_cdata.age_parent_tag, /* parent */
885             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
886             BUS_SPACE_MAXADDR,          /* lowaddr */
887             BUS_SPACE_MAXADDR,          /* highaddr */
888             NULL, NULL,                 /* filter, filterarg */
889             AGE_TX_RING_SZ,             /* maxsize */
890             1,                          /* nsegments */
891             AGE_TX_RING_SZ,             /* maxsegsize */
892             0,                          /* flags */
893             NULL, NULL,                 /* lockfunc, lockarg */
894             &sc->age_cdata.age_tx_ring_tag);
895         if (error != 0) {
896                 device_printf(sc->age_dev,
897                     "could not create Tx ring DMA tag.\n");
898                 goto fail;
899         }
900
901         /* Create tag for Rx ring. */
902         error = bus_dma_tag_create(
903             sc->age_cdata.age_parent_tag, /* parent */
904             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
905             BUS_SPACE_MAXADDR,          /* lowaddr */
906             BUS_SPACE_MAXADDR,          /* highaddr */
907             NULL, NULL,                 /* filter, filterarg */
908             AGE_RX_RING_SZ,             /* maxsize */
909             1,                          /* nsegments */
910             AGE_RX_RING_SZ,             /* maxsegsize */
911             0,                          /* flags */
912             NULL, NULL,                 /* lockfunc, lockarg */
913             &sc->age_cdata.age_rx_ring_tag);
914         if (error != 0) {
915                 device_printf(sc->age_dev,
916                     "could not create Rx ring DMA tag.\n");
917                 goto fail;
918         }
919
920         /* Create tag for Rx return ring. */
921         error = bus_dma_tag_create(
922             sc->age_cdata.age_parent_tag, /* parent */
923             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
924             BUS_SPACE_MAXADDR,          /* lowaddr */
925             BUS_SPACE_MAXADDR,          /* highaddr */
926             NULL, NULL,                 /* filter, filterarg */
927             AGE_RR_RING_SZ,             /* maxsize */
928             1,                          /* nsegments */
929             AGE_RR_RING_SZ,             /* maxsegsize */
930             0,                          /* flags */
931             NULL, NULL,                 /* lockfunc, lockarg */
932             &sc->age_cdata.age_rr_ring_tag);
933         if (error != 0) {
934                 device_printf(sc->age_dev,
935                     "could not create Rx return ring DMA tag.\n");
936                 goto fail;
937         }
938
939         /* Create tag for coalesing message block. */
940         error = bus_dma_tag_create(
941             sc->age_cdata.age_parent_tag, /* parent */
942             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
943             BUS_SPACE_MAXADDR,          /* lowaddr */
944             BUS_SPACE_MAXADDR,          /* highaddr */
945             NULL, NULL,                 /* filter, filterarg */
946             AGE_CMB_BLOCK_SZ,           /* maxsize */
947             1,                          /* nsegments */
948             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
949             0,                          /* flags */
950             NULL, NULL,                 /* lockfunc, lockarg */
951             &sc->age_cdata.age_cmb_block_tag);
952         if (error != 0) {
953                 device_printf(sc->age_dev,
954                     "could not create CMB DMA tag.\n");
955                 goto fail;
956         }
957
958         /* Create tag for statistics message block. */
959         error = bus_dma_tag_create(
960             sc->age_cdata.age_parent_tag, /* parent */
961             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
962             BUS_SPACE_MAXADDR,          /* lowaddr */
963             BUS_SPACE_MAXADDR,          /* highaddr */
964             NULL, NULL,                 /* filter, filterarg */
965             AGE_SMB_BLOCK_SZ,           /* maxsize */
966             1,                          /* nsegments */
967             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
968             0,                          /* flags */
969             NULL, NULL,                 /* lockfunc, lockarg */
970             &sc->age_cdata.age_smb_block_tag);
971         if (error != 0) {
972                 device_printf(sc->age_dev,
973                     "could not create SMB DMA tag.\n");
974                 goto fail;
975         }
976
977         /* Allocate DMA'able memory and load the DMA map. */
978         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
979             (void **)&sc->age_rdata.age_tx_ring,
980             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
981             &sc->age_cdata.age_tx_ring_map);
982         if (error != 0) {
983                 device_printf(sc->age_dev,
984                     "could not allocate DMA'able memory for Tx ring.\n");
985                 goto fail;
986         }
987         ctx.age_busaddr = 0;
988         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
989             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
990             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
991         if (error != 0 || ctx.age_busaddr == 0) {
992                 device_printf(sc->age_dev,
993                     "could not load DMA'able memory for Tx ring.\n");
994                 goto fail;
995         }
996         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
997         /* Rx ring */
998         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
999             (void **)&sc->age_rdata.age_rx_ring,
1000             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1001             &sc->age_cdata.age_rx_ring_map);
1002         if (error != 0) {
1003                 device_printf(sc->age_dev,
1004                     "could not allocate DMA'able memory for Rx ring.\n");
1005                 goto fail;
1006         }
1007         ctx.age_busaddr = 0;
1008         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1009             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1010             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1011         if (error != 0 || ctx.age_busaddr == 0) {
1012                 device_printf(sc->age_dev,
1013                     "could not load DMA'able memory for Rx ring.\n");
1014                 goto fail;
1015         }
1016         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1017         /* Rx return ring */
1018         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1019             (void **)&sc->age_rdata.age_rr_ring,
1020             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1021             &sc->age_cdata.age_rr_ring_map);
1022         if (error != 0) {
1023                 device_printf(sc->age_dev,
1024                     "could not allocate DMA'able memory for Rx return ring.\n");
1025                 goto fail;
1026         }
1027         ctx.age_busaddr = 0;
1028         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1029             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1030             AGE_RR_RING_SZ, age_dmamap_cb,
1031             &ctx, 0);
1032         if (error != 0 || ctx.age_busaddr == 0) {
1033                 device_printf(sc->age_dev,
1034                     "could not load DMA'able memory for Rx return ring.\n");
1035                 goto fail;
1036         }
1037         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1038         /* CMB block */
1039         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1040             (void **)&sc->age_rdata.age_cmb_block,
1041             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1042             &sc->age_cdata.age_cmb_block_map);
1043         if (error != 0) {
1044                 device_printf(sc->age_dev,
1045                     "could not allocate DMA'able memory for CMB block.\n");
1046                 goto fail;
1047         }
1048         ctx.age_busaddr = 0;
1049         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1050             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1051             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1052         if (error != 0 || ctx.age_busaddr == 0) {
1053                 device_printf(sc->age_dev,
1054                     "could not load DMA'able memory for CMB block.\n");
1055                 goto fail;
1056         }
1057         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1058         /* SMB block */
1059         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1060             (void **)&sc->age_rdata.age_smb_block,
1061             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1062             &sc->age_cdata.age_smb_block_map);
1063         if (error != 0) {
1064                 device_printf(sc->age_dev,
1065                     "could not allocate DMA'able memory for SMB block.\n");
1066                 goto fail;
1067         }
1068         ctx.age_busaddr = 0;
1069         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1070             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1071             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1072         if (error != 0 || ctx.age_busaddr == 0) {
1073                 device_printf(sc->age_dev,
1074                     "could not load DMA'able memory for SMB block.\n");
1075                 goto fail;
1076         }
1077         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1078
1079         /*
1080          * All ring buffer and DMA blocks should have the same
1081          * high address part of 64bit DMA address space.
1082          */
1083         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1084             (error = age_check_boundary(sc)) != 0) {
1085                 device_printf(sc->age_dev, "4GB boundary crossed, "
1086                     "switching to 32bit DMA addressing mode.\n");
1087                 age_dma_free(sc);
1088                 /* Limit DMA address space to 32bit and try again. */
1089                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1090                 goto again;
1091         }
1092
1093         /*
1094          * Create Tx/Rx buffer parent tag.
1095          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1096          * so it needs separate parent DMA tag.
1097          * XXX
1098          * It seems enabling 64bit DMA causes data corruption. Limit
1099          * DMA address space to 32bit.
1100          */
1101         error = bus_dma_tag_create(
1102             bus_get_dma_tag(sc->age_dev), /* parent */
1103             1, 0,                       /* alignment, boundary */
1104             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1105             BUS_SPACE_MAXADDR,          /* highaddr */
1106             NULL, NULL,                 /* filter, filterarg */
1107             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1108             0,                          /* nsegments */
1109             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1110             0,                          /* flags */
1111             NULL, NULL,                 /* lockfunc, lockarg */
1112             &sc->age_cdata.age_buffer_tag);
1113         if (error != 0) {
1114                 device_printf(sc->age_dev,
1115                     "could not create parent buffer DMA tag.\n");
1116                 goto fail;
1117         }
1118
1119         /* Create tag for Tx buffers. */
1120         error = bus_dma_tag_create(
1121             sc->age_cdata.age_buffer_tag, /* parent */
1122             1, 0,                       /* alignment, boundary */
1123             BUS_SPACE_MAXADDR,          /* lowaddr */
1124             BUS_SPACE_MAXADDR,          /* highaddr */
1125             NULL, NULL,                 /* filter, filterarg */
1126             AGE_TSO_MAXSIZE,            /* maxsize */
1127             AGE_MAXTXSEGS,              /* nsegments */
1128             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
1129             0,                          /* flags */
1130             NULL, NULL,                 /* lockfunc, lockarg */
1131             &sc->age_cdata.age_tx_tag);
1132         if (error != 0) {
1133                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1134                 goto fail;
1135         }
1136
1137         /* Create tag for Rx buffers. */
1138         error = bus_dma_tag_create(
1139             sc->age_cdata.age_buffer_tag, /* parent */
1140             AGE_RX_BUF_ALIGN, 0,        /* alignment, boundary */
1141             BUS_SPACE_MAXADDR,          /* lowaddr */
1142             BUS_SPACE_MAXADDR,          /* highaddr */
1143             NULL, NULL,                 /* filter, filterarg */
1144             MCLBYTES,                   /* maxsize */
1145             1,                          /* nsegments */
1146             MCLBYTES,                   /* maxsegsize */
1147             0,                          /* flags */
1148             NULL, NULL,                 /* lockfunc, lockarg */
1149             &sc->age_cdata.age_rx_tag);
1150         if (error != 0) {
1151                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1152                 goto fail;
1153         }
1154
1155         /* Create DMA maps for Tx buffers. */
1156         for (i = 0; i < AGE_TX_RING_CNT; i++) {
1157                 txd = &sc->age_cdata.age_txdesc[i];
1158                 txd->tx_m = NULL;
1159                 txd->tx_dmamap = NULL;
1160                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1161                     &txd->tx_dmamap);
1162                 if (error != 0) {
1163                         device_printf(sc->age_dev,
1164                             "could not create Tx dmamap.\n");
1165                         goto fail;
1166                 }
1167         }
1168         /* Create DMA maps for Rx buffers. */
1169         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1170             &sc->age_cdata.age_rx_sparemap)) != 0) {
1171                 device_printf(sc->age_dev,
1172                     "could not create spare Rx dmamap.\n");
1173                 goto fail;
1174         }
1175         for (i = 0; i < AGE_RX_RING_CNT; i++) {
1176                 rxd = &sc->age_cdata.age_rxdesc[i];
1177                 rxd->rx_m = NULL;
1178                 rxd->rx_dmamap = NULL;
1179                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1180                     &rxd->rx_dmamap);
1181                 if (error != 0) {
1182                         device_printf(sc->age_dev,
1183                             "could not create Rx dmamap.\n");
1184                         goto fail;
1185                 }
1186         }
1187
1188 fail:
1189         return (error);
1190 }
1191
1192 static void
1193 age_dma_free(struct age_softc *sc)
1194 {
1195         struct age_txdesc *txd;
1196         struct age_rxdesc *rxd;
1197         int i;
1198
1199         /* Tx buffers */
1200         if (sc->age_cdata.age_tx_tag != NULL) {
1201                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1202                         txd = &sc->age_cdata.age_txdesc[i];
1203                         if (txd->tx_dmamap != NULL) {
1204                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1205                                     txd->tx_dmamap);
1206                                 txd->tx_dmamap = NULL;
1207                         }
1208                 }
1209                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1210                 sc->age_cdata.age_tx_tag = NULL;
1211         }
1212         /* Rx buffers */
1213         if (sc->age_cdata.age_rx_tag != NULL) {
1214                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1215                         rxd = &sc->age_cdata.age_rxdesc[i];
1216                         if (rxd->rx_dmamap != NULL) {
1217                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1218                                     rxd->rx_dmamap);
1219                                 rxd->rx_dmamap = NULL;
1220                         }
1221                 }
1222                 if (sc->age_cdata.age_rx_sparemap != NULL) {
1223                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1224                             sc->age_cdata.age_rx_sparemap);
1225                         sc->age_cdata.age_rx_sparemap = NULL;
1226                 }
1227                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1228                 sc->age_cdata.age_rx_tag = NULL;
1229         }
1230         /* Tx ring. */
1231         if (sc->age_cdata.age_tx_ring_tag != NULL) {
1232                 if (sc->age_rdata.age_tx_ring_paddr != 0)
1233                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1234                             sc->age_cdata.age_tx_ring_map);
1235                 if (sc->age_rdata.age_tx_ring != NULL)
1236                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1237                             sc->age_rdata.age_tx_ring,
1238                             sc->age_cdata.age_tx_ring_map);
1239                 sc->age_rdata.age_tx_ring_paddr = 0;
1240                 sc->age_rdata.age_tx_ring = NULL;
1241                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1242                 sc->age_cdata.age_tx_ring_tag = NULL;
1243         }
1244         /* Rx ring. */
1245         if (sc->age_cdata.age_rx_ring_tag != NULL) {
1246                 if (sc->age_rdata.age_rx_ring_paddr != 0)
1247                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1248                             sc->age_cdata.age_rx_ring_map);
1249                 if (sc->age_rdata.age_rx_ring != NULL)
1250                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1251                             sc->age_rdata.age_rx_ring,
1252                             sc->age_cdata.age_rx_ring_map);
1253                 sc->age_rdata.age_rx_ring_paddr = 0;
1254                 sc->age_rdata.age_rx_ring = NULL;
1255                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1256                 sc->age_cdata.age_rx_ring_tag = NULL;
1257         }
1258         /* Rx return ring. */
1259         if (sc->age_cdata.age_rr_ring_tag != NULL) {
1260                 if (sc->age_rdata.age_rr_ring_paddr != 0)
1261                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1262                             sc->age_cdata.age_rr_ring_map);
1263                 if (sc->age_rdata.age_rr_ring != NULL)
1264                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1265                             sc->age_rdata.age_rr_ring,
1266                             sc->age_cdata.age_rr_ring_map);
1267                 sc->age_rdata.age_rr_ring_paddr = 0;
1268                 sc->age_rdata.age_rr_ring = NULL;
1269                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1270                 sc->age_cdata.age_rr_ring_tag = NULL;
1271         }
1272         /* CMB block */
1273         if (sc->age_cdata.age_cmb_block_tag != NULL) {
1274                 if (sc->age_rdata.age_cmb_block_paddr != 0)
1275                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1276                             sc->age_cdata.age_cmb_block_map);
1277                 if (sc->age_rdata.age_cmb_block != NULL)
1278                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1279                             sc->age_rdata.age_cmb_block,
1280                             sc->age_cdata.age_cmb_block_map);
1281                 sc->age_rdata.age_cmb_block_paddr = 0;
1282                 sc->age_rdata.age_cmb_block = NULL;
1283                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1284                 sc->age_cdata.age_cmb_block_tag = NULL;
1285         }
1286         /* SMB block */
1287         if (sc->age_cdata.age_smb_block_tag != NULL) {
1288                 if (sc->age_rdata.age_smb_block_paddr != 0)
1289                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1290                             sc->age_cdata.age_smb_block_map);
1291                 if (sc->age_rdata.age_smb_block != NULL)
1292                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1293                             sc->age_rdata.age_smb_block,
1294                             sc->age_cdata.age_smb_block_map);
1295                 sc->age_rdata.age_smb_block_paddr = 0;
1296                 sc->age_rdata.age_smb_block = NULL;
1297                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1298                 sc->age_cdata.age_smb_block_tag = NULL;
1299         }
1300
1301         if (sc->age_cdata.age_buffer_tag != NULL) {
1302                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1303                 sc->age_cdata.age_buffer_tag = NULL;
1304         }
1305         if (sc->age_cdata.age_parent_tag != NULL) {
1306                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1307                 sc->age_cdata.age_parent_tag = NULL;
1308         }
1309 }
1310
1311 /*
1312  *      Make sure the interface is stopped at reboot time.
1313  */
1314 static int
1315 age_shutdown(device_t dev)
1316 {
1317
1318         return (age_suspend(dev));
1319 }
1320
1321 static void
1322 age_setwol(struct age_softc *sc)
1323 {
1324         struct ifnet *ifp;
1325         struct mii_data *mii;
1326         uint32_t reg, pmcs;
1327         uint16_t pmstat;
1328         int aneg, i, pmc;
1329
1330         AGE_LOCK_ASSERT(sc);
1331
1332         if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1333                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1334                 /*
1335                  * No PME capability, PHY power down.
1336                  * XXX
1337                  * Due to an unknown reason powering down PHY resulted
1338                  * in unexpected results such as inaccessbility of
1339                  * hardware of freshly rebooted system. Disable
1340                  * powering down PHY until I got more information for
1341                  * Attansic/Atheros PHY hardwares.
1342                  */
1343 #ifdef notyet
1344                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1345                     MII_BMCR, BMCR_PDOWN);
1346 #endif
1347                 return;
1348         }
1349
1350         ifp = sc->age_ifp;
1351         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1352                 /*
1353                  * Note, this driver resets the link speed to 10/100Mbps with
1354                  * auto-negotiation but we don't know whether that operation
1355                  * would succeed or not as it have no control after powering
1356                  * off. If the renegotiation fail WOL may not work. Running
1357                  * at 1Gbps will draw more power than 375mA at 3.3V which is
1358                  * specified in PCI specification and that would result in
1359                  * complete shutdowning power to ethernet controller.
1360                  *
1361                  * TODO
1362                  *  Save current negotiated media speed/duplex/flow-control
1363                  *  to softc and restore the same link again after resuming.
1364                  *  PHY handling such as power down/resetting to 100Mbps
1365                  *  may be better handled in suspend method in phy driver.
1366                  */
1367                 mii = device_get_softc(sc->age_miibus);
1368                 mii_pollstat(mii);
1369                 aneg = 0;
1370                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1371                         switch IFM_SUBTYPE(mii->mii_media_active) {
1372                         case IFM_10_T:
1373                         case IFM_100_TX:
1374                                 goto got_link;
1375                         case IFM_1000_T:
1376                                 aneg++;
1377                         default:
1378                                 break;
1379                         }
1380                 }
1381                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1382                     MII_100T2CR, 0);
1383                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1384                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1385                     ANAR_10 | ANAR_CSMA);
1386                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1387                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1388                 DELAY(1000);
1389                 if (aneg != 0) {
1390                         /* Poll link state until age(4) get a 10/100 link. */
1391                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1392                                 mii_pollstat(mii);
1393                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1394                                         switch (IFM_SUBTYPE(
1395                                             mii->mii_media_active)) {
1396                                         case IFM_10_T:
1397                                         case IFM_100_TX:
1398                                                 age_mac_config(sc);
1399                                                 goto got_link;
1400                                         default:
1401                                                 break;
1402                                         }
1403                                 }
1404                                 AGE_UNLOCK(sc);
1405                                 pause("agelnk", hz);
1406                                 AGE_LOCK(sc);
1407                         }
1408                         if (i == MII_ANEGTICKS_GIGE)
1409                                 device_printf(sc->age_dev,
1410                                     "establishing link failed, "
1411                                     "WOL may not work!");
1412                 }
1413                 /*
1414                  * No link, force MAC to have 100Mbps, full-duplex link.
1415                  * This is the last resort and may/may not work.
1416                  */
1417                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1418                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1419                 age_mac_config(sc);
1420         }
1421
1422 got_link:
1423         pmcs = 0;
1424         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1425                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1426         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1427         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1428         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1429         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1430         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1431                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1432         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1433                 reg |= MAC_CFG_RX_ENB;
1434                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1435         }
1436
1437         /* Request PME. */
1438         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1439         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1440         if ((ifp->if_capenable & IFCAP_WOL) != 0)
1441                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1442         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1443 #ifdef notyet
1444         /* See above for powering down PHY issues. */
1445         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1446                 /* No WOL, PHY power down. */
1447                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1448                     MII_BMCR, BMCR_PDOWN);
1449         }
1450 #endif
1451 }
1452
1453 static int
1454 age_suspend(device_t dev)
1455 {
1456         struct age_softc *sc;
1457
1458         sc = device_get_softc(dev);
1459
1460         AGE_LOCK(sc);
1461         age_stop(sc);
1462         age_setwol(sc);
1463         AGE_UNLOCK(sc);
1464
1465         return (0);
1466 }
1467
1468 static int
1469 age_resume(device_t dev)
1470 {
1471         struct age_softc *sc;
1472         struct ifnet *ifp;
1473
1474         sc = device_get_softc(dev);
1475
1476         AGE_LOCK(sc);
1477         age_phy_reset(sc);
1478         ifp = sc->age_ifp;
1479         if ((ifp->if_flags & IFF_UP) != 0)
1480                 age_init_locked(sc);
1481
1482         AGE_UNLOCK(sc);
1483
1484         return (0);
1485 }
1486
1487 static int
1488 age_encap(struct age_softc *sc, struct mbuf **m_head)
1489 {
1490         struct age_txdesc *txd, *txd_last;
1491         struct tx_desc *desc;
1492         struct mbuf *m;
1493         struct ip *ip;
1494         struct tcphdr *tcp;
1495         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1496         bus_dmamap_t map;
1497         uint32_t cflags, hdrlen, ip_off, poff, vtag;
1498         int error, i, nsegs, prod, si;
1499
1500         AGE_LOCK_ASSERT(sc);
1501
1502         M_ASSERTPKTHDR((*m_head));
1503
1504         m = *m_head;
1505         ip = NULL;
1506         tcp = NULL;
1507         cflags = vtag = 0;
1508         ip_off = poff = 0;
1509         if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1510                 /*
1511                  * L1 requires offset of TCP/UDP payload in its Tx
1512                  * descriptor to perform hardware Tx checksum offload.
1513                  * Additionally, TSO requires IP/TCP header size and
1514                  * modification of IP/TCP header in order to make TSO
1515                  * engine work. This kind of operation takes many CPU
1516                  * cycles on FreeBSD so fast host CPU is needed to get
1517                  * smooth TSO performance.
1518                  */
1519                 struct ether_header *eh;
1520
1521                 if (M_WRITABLE(m) == 0) {
1522                         /* Get a writable copy. */
1523                         m = m_dup(*m_head, M_NOWAIT);
1524                         /* Release original mbufs. */
1525                         m_freem(*m_head);
1526                         if (m == NULL) {
1527                                 *m_head = NULL;
1528                                 return (ENOBUFS);
1529                         }
1530                         *m_head = m;
1531                 }
1532                 ip_off = sizeof(struct ether_header);
1533                 m = m_pullup(m, ip_off);
1534                 if (m == NULL) {
1535                         *m_head = NULL;
1536                         return (ENOBUFS);
1537                 }
1538                 eh = mtod(m, struct ether_header *);
1539                 /*
1540                  * Check if hardware VLAN insertion is off.
1541                  * Additional check for LLC/SNAP frame?
1542                  */
1543                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1544                         ip_off = sizeof(struct ether_vlan_header);
1545                         m = m_pullup(m, ip_off);
1546                         if (m == NULL) {
1547                                 *m_head = NULL;
1548                                 return (ENOBUFS);
1549                         }
1550                 }
1551                 m = m_pullup(m, ip_off + sizeof(struct ip));
1552                 if (m == NULL) {
1553                         *m_head = NULL;
1554                         return (ENOBUFS);
1555                 }
1556                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1557                 poff = ip_off + (ip->ip_hl << 2);
1558                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1559                         m = m_pullup(m, poff + sizeof(struct tcphdr));
1560                         if (m == NULL) {
1561                                 *m_head = NULL;
1562                                 return (ENOBUFS);
1563                         }
1564                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1565                         m = m_pullup(m, poff + (tcp->th_off << 2));
1566                         if (m == NULL) {
1567                                 *m_head = NULL;
1568                                 return (ENOBUFS);
1569                         }
1570                         /*
1571                          * L1 requires IP/TCP header size and offset as
1572                          * well as TCP pseudo checksum which complicates
1573                          * TSO configuration. I guess this comes from the
1574                          * adherence to Microsoft NDIS Large Send
1575                          * specification which requires insertion of
1576                          * pseudo checksum by upper stack. The pseudo
1577                          * checksum that NDIS refers to doesn't include
1578                          * TCP payload length so age(4) should recompute
1579                          * the pseudo checksum here. Hopefully this wouldn't
1580                          * be much burden on modern CPUs.
1581                          * Reset IP checksum and recompute TCP pseudo
1582                          * checksum as NDIS specification said.
1583                          */
1584                         ip = (struct ip *)(mtod(m, char *) + ip_off);
1585                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1586                         ip->ip_sum = 0;
1587                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1588                             ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1589                 }
1590                 *m_head = m;
1591         }
1592
1593         si = prod = sc->age_cdata.age_tx_prod;
1594         txd = &sc->age_cdata.age_txdesc[prod];
1595         txd_last = txd;
1596         map = txd->tx_dmamap;
1597
1598         error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1599             *m_head, txsegs, &nsegs, 0);
1600         if (error == EFBIG) {
1601                 m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1602                 if (m == NULL) {
1603                         m_freem(*m_head);
1604                         *m_head = NULL;
1605                         return (ENOMEM);
1606                 }
1607                 *m_head = m;
1608                 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1609                     *m_head, txsegs, &nsegs, 0);
1610                 if (error != 0) {
1611                         m_freem(*m_head);
1612                         *m_head = NULL;
1613                         return (error);
1614                 }
1615         } else if (error != 0)
1616                 return (error);
1617         if (nsegs == 0) {
1618                 m_freem(*m_head);
1619                 *m_head = NULL;
1620                 return (EIO);
1621         }
1622
1623         /* Check descriptor overrun. */
1624         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1625                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1626                 return (ENOBUFS);
1627         }
1628
1629         m = *m_head;
1630         /* Configure VLAN hardware tag insertion. */
1631         if ((m->m_flags & M_VLANTAG) != 0) {
1632                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1633                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1634                 cflags |= AGE_TD_INSERT_VLAN_TAG;
1635         }
1636
1637         desc = NULL;
1638         i = 0;
1639         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1640                 /* Request TSO and set MSS. */
1641                 cflags |= AGE_TD_TSO_IPV4;
1642                 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1643                 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1644                     AGE_TD_TSO_MSS_SHIFT);
1645                 /* Set IP/TCP header size. */
1646                 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1647                 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1648                 /*
1649                  * L1 requires the first buffer should only hold IP/TCP
1650                  * header data. TCP payload should be handled in other
1651                  * descriptors.
1652                  */
1653                 hdrlen = poff + (tcp->th_off << 2);
1654                 desc = &sc->age_rdata.age_tx_ring[prod];
1655                 desc->addr = htole64(txsegs[0].ds_addr);
1656                 desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1657                 desc->flags = htole32(cflags);
1658                 sc->age_cdata.age_tx_cnt++;
1659                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1660                 if (m->m_len - hdrlen > 0) {
1661                         /* Handle remaining payload of the 1st fragment. */
1662                         desc = &sc->age_rdata.age_tx_ring[prod];
1663                         desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1664                         desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1665                             vtag);
1666                         desc->flags = htole32(cflags);
1667                         sc->age_cdata.age_tx_cnt++;
1668                         AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1669                 }
1670                 /* Handle remaining fragments. */
1671                 i = 1;
1672         } else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1673                 /* Configure Tx IP/TCP/UDP checksum offload. */
1674                 cflags |= AGE_TD_CSUM;
1675                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1676                         cflags |= AGE_TD_TCPCSUM;
1677                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1678                         cflags |= AGE_TD_UDPCSUM;
1679                 /* Set checksum start offset. */
1680                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1681                 /* Set checksum insertion position of TCP/UDP. */
1682                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1683                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1684         }
1685         for (; i < nsegs; i++) {
1686                 desc = &sc->age_rdata.age_tx_ring[prod];
1687                 desc->addr = htole64(txsegs[i].ds_addr);
1688                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1689                 desc->flags = htole32(cflags);
1690                 sc->age_cdata.age_tx_cnt++;
1691                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1692         }
1693         /* Update producer index. */
1694         sc->age_cdata.age_tx_prod = prod;
1695
1696         /* Set EOP on the last descriptor. */
1697         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1698         desc = &sc->age_rdata.age_tx_ring[prod];
1699         desc->flags |= htole32(AGE_TD_EOP);
1700
1701         /* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1702         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1703                 desc = &sc->age_rdata.age_tx_ring[si];
1704                 desc->flags |= htole32(AGE_TD_TSO_HDR);
1705         }
1706
1707         /* Swap dmamap of the first and the last. */
1708         txd = &sc->age_cdata.age_txdesc[prod];
1709         map = txd_last->tx_dmamap;
1710         txd_last->tx_dmamap = txd->tx_dmamap;
1711         txd->tx_dmamap = map;
1712         txd->tx_m = m;
1713
1714         /* Sync descriptors. */
1715         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1716         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1717             sc->age_cdata.age_tx_ring_map,
1718             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1719
1720         return (0);
1721 }
1722
1723 static void
1724 age_start(struct ifnet *ifp)
1725 {
1726         struct age_softc *sc;
1727
1728         sc = ifp->if_softc;
1729         AGE_LOCK(sc);
1730         age_start_locked(ifp);
1731         AGE_UNLOCK(sc);
1732 }
1733
1734 static void
1735 age_start_locked(struct ifnet *ifp)
1736 {
1737         struct age_softc *sc;
1738         struct mbuf *m_head;
1739         int enq;
1740
1741         sc = ifp->if_softc;
1742
1743         AGE_LOCK_ASSERT(sc);
1744
1745         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1746             IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1747                 return;
1748
1749         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1750                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1751                 if (m_head == NULL)
1752                         break;
1753                 /*
1754                  * Pack the data into the transmit ring. If we
1755                  * don't have room, set the OACTIVE flag and wait
1756                  * for the NIC to drain the ring.
1757                  */
1758                 if (age_encap(sc, &m_head)) {
1759                         if (m_head == NULL)
1760                                 break;
1761                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1762                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1763                         break;
1764                 }
1765
1766                 enq++;
1767                 /*
1768                  * If there's a BPF listener, bounce a copy of this frame
1769                  * to him.
1770                  */
1771                 ETHER_BPF_MTAP(ifp, m_head);
1772         }
1773
1774         if (enq > 0) {
1775                 /* Update mbox. */
1776                 AGE_COMMIT_MBOX(sc);
1777                 /* Set a timeout in case the chip goes out to lunch. */
1778                 sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1779         }
1780 }
1781
1782 static void
1783 age_watchdog(struct age_softc *sc)
1784 {
1785         struct ifnet *ifp;
1786
1787         AGE_LOCK_ASSERT(sc);
1788
1789         if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1790                 return;
1791
1792         ifp = sc->age_ifp;
1793         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1794                 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1795                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1796                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1797                 age_init_locked(sc);
1798                 return;
1799         }
1800         if (sc->age_cdata.age_tx_cnt == 0) {
1801                 if_printf(sc->age_ifp,
1802                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
1803                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1804                         age_start_locked(ifp);
1805                 return;
1806         }
1807         if_printf(sc->age_ifp, "watchdog timeout\n");
1808         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1809         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1810         age_init_locked(sc);
1811         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1812                 age_start_locked(ifp);
1813 }
1814
1815 static int
1816 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1817 {
1818         struct age_softc *sc;
1819         struct ifreq *ifr;
1820         struct mii_data *mii;
1821         uint32_t reg;
1822         int error, mask;
1823
1824         sc = ifp->if_softc;
1825         ifr = (struct ifreq *)data;
1826         error = 0;
1827         switch (cmd) {
1828         case SIOCSIFMTU:
1829                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1830                         error = EINVAL;
1831                 else if (ifp->if_mtu != ifr->ifr_mtu) {
1832                         AGE_LOCK(sc);
1833                         ifp->if_mtu = ifr->ifr_mtu;
1834                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1835                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1836                                 age_init_locked(sc);
1837                         }
1838                         AGE_UNLOCK(sc);
1839                 }
1840                 break;
1841         case SIOCSIFFLAGS:
1842                 AGE_LOCK(sc);
1843                 if ((ifp->if_flags & IFF_UP) != 0) {
1844                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1845                                 if (((ifp->if_flags ^ sc->age_if_flags)
1846                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1847                                         age_rxfilter(sc);
1848                         } else {
1849                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1850                                         age_init_locked(sc);
1851                         }
1852                 } else {
1853                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1854                                 age_stop(sc);
1855                 }
1856                 sc->age_if_flags = ifp->if_flags;
1857                 AGE_UNLOCK(sc);
1858                 break;
1859         case SIOCADDMULTI:
1860         case SIOCDELMULTI:
1861                 AGE_LOCK(sc);
1862                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1863                         age_rxfilter(sc);
1864                 AGE_UNLOCK(sc);
1865                 break;
1866         case SIOCSIFMEDIA:
1867         case SIOCGIFMEDIA:
1868                 mii = device_get_softc(sc->age_miibus);
1869                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1870                 break;
1871         case SIOCSIFCAP:
1872                 AGE_LOCK(sc);
1873                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1874                 if ((mask & IFCAP_TXCSUM) != 0 &&
1875                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1876                         ifp->if_capenable ^= IFCAP_TXCSUM;
1877                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1878                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
1879                         else
1880                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1881                 }
1882                 if ((mask & IFCAP_RXCSUM) != 0 &&
1883                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1884                         ifp->if_capenable ^= IFCAP_RXCSUM;
1885                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1886                         reg &= ~MAC_CFG_RXCSUM_ENB;
1887                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1888                                 reg |= MAC_CFG_RXCSUM_ENB;
1889                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1890                 }
1891                 if ((mask & IFCAP_TSO4) != 0 &&
1892                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1893                         ifp->if_capenable ^= IFCAP_TSO4;
1894                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1895                                 ifp->if_hwassist |= CSUM_TSO;
1896                         else
1897                                 ifp->if_hwassist &= ~CSUM_TSO;
1898                 }
1899
1900                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
1901                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1902                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
1903                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1904                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1905                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1906                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1907                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1908                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1909                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1910                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1911                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1912                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1913                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1914                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1915                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1916                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1917                         age_rxvlan(sc);
1918                 }
1919                 AGE_UNLOCK(sc);
1920                 VLAN_CAPABILITIES(ifp);
1921                 break;
1922         default:
1923                 error = ether_ioctl(ifp, cmd, data);
1924                 break;
1925         }
1926
1927         return (error);
1928 }
1929
1930 static void
1931 age_mac_config(struct age_softc *sc)
1932 {
1933         struct mii_data *mii;
1934         uint32_t reg;
1935
1936         AGE_LOCK_ASSERT(sc);
1937
1938         mii = device_get_softc(sc->age_miibus);
1939         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1940         reg &= ~MAC_CFG_FULL_DUPLEX;
1941         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1942         reg &= ~MAC_CFG_SPEED_MASK;
1943         /* Reprogram MAC with resolved speed/duplex. */
1944         switch (IFM_SUBTYPE(mii->mii_media_active)) {
1945         case IFM_10_T:
1946         case IFM_100_TX:
1947                 reg |= MAC_CFG_SPEED_10_100;
1948                 break;
1949         case IFM_1000_T:
1950                 reg |= MAC_CFG_SPEED_1000;
1951                 break;
1952         }
1953         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1954                 reg |= MAC_CFG_FULL_DUPLEX;
1955 #ifdef notyet
1956                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1957                         reg |= MAC_CFG_TX_FC;
1958                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1959                         reg |= MAC_CFG_RX_FC;
1960 #endif
1961         }
1962
1963         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1964 }
1965
1966 static void
1967 age_link_task(void *arg, int pending)
1968 {
1969         struct age_softc *sc;
1970         struct mii_data *mii;
1971         struct ifnet *ifp;
1972         uint32_t reg;
1973
1974         sc = (struct age_softc *)arg;
1975
1976         AGE_LOCK(sc);
1977         mii = device_get_softc(sc->age_miibus);
1978         ifp = sc->age_ifp;
1979         if (mii == NULL || ifp == NULL ||
1980             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1981                 AGE_UNLOCK(sc);
1982                 return;
1983         }
1984
1985         sc->age_flags &= ~AGE_FLAG_LINK;
1986         if ((mii->mii_media_status & IFM_AVALID) != 0) {
1987                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1988                 case IFM_10_T:
1989                 case IFM_100_TX:
1990                 case IFM_1000_T:
1991                         sc->age_flags |= AGE_FLAG_LINK;
1992                         break;
1993                 default:
1994                         break;
1995                 }
1996         }
1997
1998         /* Stop Rx/Tx MACs. */
1999         age_stop_rxmac(sc);
2000         age_stop_txmac(sc);
2001
2002         /* Program MACs with resolved speed/duplex/flow-control. */
2003         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2004                 age_mac_config(sc);
2005                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2006                 /* Restart DMA engine and Tx/Rx MAC. */
2007                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2008                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2009                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2010                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2011         }
2012
2013         AGE_UNLOCK(sc);
2014 }
2015
2016 static void
2017 age_stats_update(struct age_softc *sc)
2018 {
2019         struct age_stats *stat;
2020         struct smb *smb;
2021         struct ifnet *ifp;
2022
2023         AGE_LOCK_ASSERT(sc);
2024
2025         stat = &sc->age_stat;
2026
2027         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2028             sc->age_cdata.age_smb_block_map,
2029             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2030
2031         smb = sc->age_rdata.age_smb_block;
2032         if (smb->updated == 0)
2033                 return;
2034
2035         ifp = sc->age_ifp;
2036         /* Rx stats. */
2037         stat->rx_frames += smb->rx_frames;
2038         stat->rx_bcast_frames += smb->rx_bcast_frames;
2039         stat->rx_mcast_frames += smb->rx_mcast_frames;
2040         stat->rx_pause_frames += smb->rx_pause_frames;
2041         stat->rx_control_frames += smb->rx_control_frames;
2042         stat->rx_crcerrs += smb->rx_crcerrs;
2043         stat->rx_lenerrs += smb->rx_lenerrs;
2044         stat->rx_bytes += smb->rx_bytes;
2045         stat->rx_runts += smb->rx_runts;
2046         stat->rx_fragments += smb->rx_fragments;
2047         stat->rx_pkts_64 += smb->rx_pkts_64;
2048         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2049         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2050         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2051         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2052         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2053         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2054         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2055         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2056         stat->rx_desc_oflows += smb->rx_desc_oflows;
2057         stat->rx_alignerrs += smb->rx_alignerrs;
2058         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2059         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2060         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2061
2062         /* Tx stats. */
2063         stat->tx_frames += smb->tx_frames;
2064         stat->tx_bcast_frames += smb->tx_bcast_frames;
2065         stat->tx_mcast_frames += smb->tx_mcast_frames;
2066         stat->tx_pause_frames += smb->tx_pause_frames;
2067         stat->tx_excess_defer += smb->tx_excess_defer;
2068         stat->tx_control_frames += smb->tx_control_frames;
2069         stat->tx_deferred += smb->tx_deferred;
2070         stat->tx_bytes += smb->tx_bytes;
2071         stat->tx_pkts_64 += smb->tx_pkts_64;
2072         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2073         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2074         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2075         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2076         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2077         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2078         stat->tx_single_colls += smb->tx_single_colls;
2079         stat->tx_multi_colls += smb->tx_multi_colls;
2080         stat->tx_late_colls += smb->tx_late_colls;
2081         stat->tx_excess_colls += smb->tx_excess_colls;
2082         stat->tx_underrun += smb->tx_underrun;
2083         stat->tx_desc_underrun += smb->tx_desc_underrun;
2084         stat->tx_lenerrs += smb->tx_lenerrs;
2085         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2086         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2087         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2088
2089         /* Update counters in ifnet. */
2090         if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2091
2092         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2093             smb->tx_multi_colls + smb->tx_late_colls +
2094             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2095
2096         if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2097             smb->tx_late_colls + smb->tx_underrun +
2098             smb->tx_pkts_truncated);
2099
2100         if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2101
2102         if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2103             smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2104             smb->rx_fifo_oflows + smb->rx_desc_oflows +
2105             smb->rx_alignerrs);
2106
2107         /* Update done, clear. */
2108         smb->updated = 0;
2109
2110         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2111             sc->age_cdata.age_smb_block_map,
2112             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2113 }
2114
2115 static int
2116 age_intr(void *arg)
2117 {
2118         struct age_softc *sc;
2119         uint32_t status;
2120
2121         sc = (struct age_softc *)arg;
2122
2123         status = CSR_READ_4(sc, AGE_INTR_STATUS);
2124         if (status == 0 || (status & AGE_INTRS) == 0)
2125                 return (FILTER_STRAY);
2126         /* Disable interrupts. */
2127         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2128         taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2129
2130         return (FILTER_HANDLED);
2131 }
2132
2133 static void
2134 age_int_task(void *arg, int pending)
2135 {
2136         struct age_softc *sc;
2137         struct ifnet *ifp;
2138         struct cmb *cmb;
2139         uint32_t status;
2140
2141         sc = (struct age_softc *)arg;
2142
2143         AGE_LOCK(sc);
2144
2145         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2146             sc->age_cdata.age_cmb_block_map,
2147             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2148         cmb = sc->age_rdata.age_cmb_block;
2149         status = le32toh(cmb->intr_status);
2150         if (sc->age_morework != 0)
2151                 status |= INTR_CMB_RX;
2152         if ((status & AGE_INTRS) == 0)
2153                 goto done;
2154
2155         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2156             TPD_CONS_SHIFT;
2157         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2158             RRD_PROD_SHIFT;
2159         /* Let hardware know CMB was served. */
2160         cmb->intr_status = 0;
2161         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2162             sc->age_cdata.age_cmb_block_map,
2163             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2164
2165 #if 0
2166         printf("INTR: 0x%08x\n", status);
2167         status &= ~INTR_DIS_DMA;
2168         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2169 #endif
2170         ifp = sc->age_ifp;
2171         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2172                 if ((status & INTR_CMB_RX) != 0)
2173                         sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2174                             sc->age_process_limit);
2175                 if ((status & INTR_CMB_TX) != 0)
2176                         age_txintr(sc, sc->age_tpd_cons);
2177                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2178                         if ((status & INTR_DMA_RD_TO_RST) != 0)
2179                                 device_printf(sc->age_dev,
2180                                     "DMA read error! -- resetting\n");
2181                         if ((status & INTR_DMA_WR_TO_RST) != 0)
2182                                 device_printf(sc->age_dev,
2183                                     "DMA write error! -- resetting\n");
2184                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2185                         age_init_locked(sc);
2186                 }
2187                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2188                         age_start_locked(ifp);
2189                 if ((status & INTR_SMB) != 0)
2190                         age_stats_update(sc);
2191         }
2192
2193         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2194         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2195             sc->age_cdata.age_cmb_block_map,
2196             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2197         status = le32toh(cmb->intr_status);
2198         if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2199                 taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2200                 AGE_UNLOCK(sc);
2201                 return;
2202         }
2203
2204 done:
2205         /* Re-enable interrupts. */
2206         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2207         AGE_UNLOCK(sc);
2208 }
2209
2210 static void
2211 age_txintr(struct age_softc *sc, int tpd_cons)
2212 {
2213         struct ifnet *ifp;
2214         struct age_txdesc *txd;
2215         int cons, prog;
2216
2217         AGE_LOCK_ASSERT(sc);
2218
2219         ifp = sc->age_ifp;
2220
2221         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2222             sc->age_cdata.age_tx_ring_map,
2223             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2224
2225         /*
2226          * Go through our Tx list and free mbufs for those
2227          * frames which have been transmitted.
2228          */
2229         cons = sc->age_cdata.age_tx_cons;
2230         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2231                 if (sc->age_cdata.age_tx_cnt <= 0)
2232                         break;
2233                 prog++;
2234                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2235                 sc->age_cdata.age_tx_cnt--;
2236                 txd = &sc->age_cdata.age_txdesc[cons];
2237                 /*
2238                  * Clear Tx descriptors, it's not required but would
2239                  * help debugging in case of Tx issues.
2240                  */
2241                 txd->tx_desc->addr = 0;
2242                 txd->tx_desc->len = 0;
2243                 txd->tx_desc->flags = 0;
2244
2245                 if (txd->tx_m == NULL)
2246                         continue;
2247                 /* Reclaim transmitted mbufs. */
2248                 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2249                     BUS_DMASYNC_POSTWRITE);
2250                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2251                 m_freem(txd->tx_m);
2252                 txd->tx_m = NULL;
2253         }
2254
2255         if (prog > 0) {
2256                 sc->age_cdata.age_tx_cons = cons;
2257
2258                 /*
2259                  * Unarm watchdog timer only when there are no pending
2260                  * Tx descriptors in queue.
2261                  */
2262                 if (sc->age_cdata.age_tx_cnt == 0)
2263                         sc->age_watchdog_timer = 0;
2264                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2265                     sc->age_cdata.age_tx_ring_map,
2266                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2267         }
2268 }
2269
2270 #ifndef __NO_STRICT_ALIGNMENT
2271 static struct mbuf *
2272 age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2273 {
2274         struct mbuf *n;
2275         int i;
2276         uint16_t *src, *dst;
2277
2278         src = mtod(m, uint16_t *);
2279         dst = src - 3;
2280
2281         if (m->m_next == NULL) {
2282                 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2283                         *dst++ = *src++;
2284                 m->m_data -= 6;
2285                 return (m);
2286         }
2287         /*
2288          * Append a new mbuf to received mbuf chain and copy ethernet
2289          * header from the mbuf chain. This can save lots of CPU
2290          * cycles for jumbo frame.
2291          */
2292         MGETHDR(n, M_NOWAIT, MT_DATA);
2293         if (n == NULL) {
2294                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2295                 m_freem(m);
2296                 return (NULL);
2297         }
2298         bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2299         m->m_data += ETHER_HDR_LEN;
2300         m->m_len -= ETHER_HDR_LEN;
2301         n->m_len = ETHER_HDR_LEN;
2302         M_MOVE_PKTHDR(n, m);
2303         n->m_next = m;
2304         return (n);
2305 }
2306 #endif
2307
2308 /* Receive a frame. */
2309 static void
2310 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2311 {
2312         struct age_rxdesc *rxd;
2313         struct ifnet *ifp;
2314         struct mbuf *mp, *m;
2315         uint32_t status, index, vtag;
2316         int count, nsegs;
2317         int rx_cons;
2318
2319         AGE_LOCK_ASSERT(sc);
2320
2321         ifp = sc->age_ifp;
2322         status = le32toh(rxrd->flags);
2323         index = le32toh(rxrd->index);
2324         rx_cons = AGE_RX_CONS(index);
2325         nsegs = AGE_RX_NSEGS(index);
2326
2327         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2328         if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2329                 /*
2330                  * We want to pass the following frames to upper
2331                  * layer regardless of error status of Rx return
2332                  * ring.
2333                  *
2334                  *  o IP/TCP/UDP checksum is bad.
2335                  *  o frame length and protocol specific length
2336                  *     does not match.
2337                  */
2338                 status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2339                 if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2340                     AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2341                         return;
2342         }
2343
2344         for (count = 0; count < nsegs; count++,
2345             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2346                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2347                 mp = rxd->rx_m;
2348                 /* Add a new receive buffer to the ring. */
2349                 if (age_newbuf(sc, rxd) != 0) {
2350                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2351                         /* Reuse Rx buffers. */
2352                         if (sc->age_cdata.age_rxhead != NULL)
2353                                 m_freem(sc->age_cdata.age_rxhead);
2354                         break;
2355                 }
2356
2357                 /*
2358                  * Assume we've received a full sized frame.
2359                  * Actual size is fixed when we encounter the end of
2360                  * multi-segmented frame.
2361                  */
2362                 mp->m_len = AGE_RX_BUF_SIZE;
2363
2364                 /* Chain received mbufs. */
2365                 if (sc->age_cdata.age_rxhead == NULL) {
2366                         sc->age_cdata.age_rxhead = mp;
2367                         sc->age_cdata.age_rxtail = mp;
2368                 } else {
2369                         mp->m_flags &= ~M_PKTHDR;
2370                         sc->age_cdata.age_rxprev_tail =
2371                             sc->age_cdata.age_rxtail;
2372                         sc->age_cdata.age_rxtail->m_next = mp;
2373                         sc->age_cdata.age_rxtail = mp;
2374                 }
2375
2376                 if (count == nsegs - 1) {
2377                         /* Last desc. for this frame. */
2378                         m = sc->age_cdata.age_rxhead;
2379                         m->m_flags |= M_PKTHDR;
2380                         /*
2381                          * It seems that L1 controller has no way
2382                          * to tell hardware to strip CRC bytes.
2383                          */
2384                         m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2385                             ETHER_CRC_LEN;
2386                         if (nsegs > 1) {
2387                                 /* Set last mbuf size. */
2388                                 mp->m_len = sc->age_cdata.age_rxlen -
2389                                     ((nsegs - 1) * AGE_RX_BUF_SIZE);
2390                                 /* Remove the CRC bytes in chained mbufs. */
2391                                 if (mp->m_len <= ETHER_CRC_LEN) {
2392                                         sc->age_cdata.age_rxtail =
2393                                             sc->age_cdata.age_rxprev_tail;
2394                                         sc->age_cdata.age_rxtail->m_len -=
2395                                             (ETHER_CRC_LEN - mp->m_len);
2396                                         sc->age_cdata.age_rxtail->m_next = NULL;
2397                                         m_freem(mp);
2398                                 } else {
2399                                         mp->m_len -= ETHER_CRC_LEN;
2400                                 }
2401                         } else
2402                                 m->m_len = m->m_pkthdr.len;
2403                         m->m_pkthdr.rcvif = ifp;
2404                         /*
2405                          * Set checksum information.
2406                          * It seems that L1 controller can compute partial
2407                          * checksum. The partial checksum value can be used
2408                          * to accelerate checksum computation for fragmented
2409                          * TCP/UDP packets. Upper network stack already
2410                          * takes advantage of the partial checksum value in
2411                          * IP reassembly stage. But I'm not sure the
2412                          * correctness of the partial hardware checksum
2413                          * assistance due to lack of data sheet. If it is
2414                          * proven to work on L1 I'll enable it.
2415                          */
2416                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2417                             (status & AGE_RRD_IPV4) != 0) {
2418                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2419                                         m->m_pkthdr.csum_flags |=
2420                                             CSUM_IP_CHECKED | CSUM_IP_VALID;
2421                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2422                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2423                                         m->m_pkthdr.csum_flags |=
2424                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2425                                         m->m_pkthdr.csum_data = 0xffff;
2426                                 }
2427                                 /*
2428                                  * Don't mark bad checksum for TCP/UDP frames
2429                                  * as fragmented frames may always have set
2430                                  * bad checksummed bit of descriptor status.
2431                                  */
2432                         }
2433
2434                         /* Check for VLAN tagged frames. */
2435                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2436                             (status & AGE_RRD_VLAN) != 0) {
2437                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2438                                 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2439                                 m->m_flags |= M_VLANTAG;
2440                         }
2441 #ifndef __NO_STRICT_ALIGNMENT
2442                         m = age_fixup_rx(ifp, m);
2443                         if (m != NULL)
2444 #endif
2445                         {
2446                         /* Pass it on. */
2447                         AGE_UNLOCK(sc);
2448                         (*ifp->if_input)(ifp, m);
2449                         AGE_LOCK(sc);
2450                         }
2451                 }
2452         }
2453
2454         /* Reset mbuf chains. */
2455         AGE_RXCHAIN_RESET(sc);
2456 }
2457
2458 static int
2459 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2460 {
2461         struct rx_rdesc *rxrd;
2462         int rr_cons, nsegs, pktlen, prog;
2463
2464         AGE_LOCK_ASSERT(sc);
2465
2466         rr_cons = sc->age_cdata.age_rr_cons;
2467         if (rr_cons == rr_prod)
2468                 return (0);
2469
2470         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2471             sc->age_cdata.age_rr_ring_map,
2472             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2473         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2474             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2475
2476         for (prog = 0; rr_cons != rr_prod; prog++) {
2477                 if (count-- <= 0)
2478                         break;
2479                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2480                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2481                 if (nsegs == 0)
2482                         break;
2483                 /*
2484                  * Check number of segments against received bytes.
2485                  * Non-matching value would indicate that hardware
2486                  * is still trying to update Rx return descriptors.
2487                  * I'm not sure whether this check is really needed.
2488                  */
2489                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2490                 if (nsegs != (pktlen + (AGE_RX_BUF_SIZE - 1)) / AGE_RX_BUF_SIZE)
2491                         break;
2492
2493                 /* Received a frame. */
2494                 age_rxeof(sc, rxrd);
2495                 /* Clear return ring. */
2496                 rxrd->index = 0;
2497                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2498                 sc->age_cdata.age_rx_cons += nsegs;
2499                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2500         }
2501
2502         if (prog > 0) {
2503                 /* Update the consumer index. */
2504                 sc->age_cdata.age_rr_cons = rr_cons;
2505
2506                 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2507                     sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2508                 /* Sync descriptors. */
2509                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2510                     sc->age_cdata.age_rr_ring_map,
2511                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2512
2513                 /* Notify hardware availability of new Rx buffers. */
2514                 AGE_COMMIT_MBOX(sc);
2515         }
2516
2517         return (count > 0 ? 0 : EAGAIN);
2518 }
2519
2520 static void
2521 age_tick(void *arg)
2522 {
2523         struct age_softc *sc;
2524         struct mii_data *mii;
2525
2526         sc = (struct age_softc *)arg;
2527
2528         AGE_LOCK_ASSERT(sc);
2529
2530         mii = device_get_softc(sc->age_miibus);
2531         mii_tick(mii);
2532         age_watchdog(sc);
2533         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2534 }
2535
2536 static void
2537 age_reset(struct age_softc *sc)
2538 {
2539         uint32_t reg;
2540         int i;
2541
2542         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2543         CSR_READ_4(sc, AGE_MASTER_CFG);
2544         DELAY(1000);
2545         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2546                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2547                         break;
2548                 DELAY(10);
2549         }
2550
2551         if (i == 0)
2552                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2553         /* Initialize PCIe module. From Linux. */
2554         CSR_WRITE_4(sc, 0x12FC, 0x6500);
2555         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2556 }
2557
2558 static void
2559 age_init(void *xsc)
2560 {
2561         struct age_softc *sc;
2562
2563         sc = (struct age_softc *)xsc;
2564         AGE_LOCK(sc);
2565         age_init_locked(sc);
2566         AGE_UNLOCK(sc);
2567 }
2568
2569 static void
2570 age_init_locked(struct age_softc *sc)
2571 {
2572         struct ifnet *ifp;
2573         struct mii_data *mii;
2574         uint8_t eaddr[ETHER_ADDR_LEN];
2575         bus_addr_t paddr;
2576         uint32_t reg, fsize;
2577         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2578         int error;
2579
2580         AGE_LOCK_ASSERT(sc);
2581
2582         ifp = sc->age_ifp;
2583         mii = device_get_softc(sc->age_miibus);
2584
2585         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2586                 return;
2587
2588         /*
2589          * Cancel any pending I/O.
2590          */
2591         age_stop(sc);
2592
2593         /*
2594          * Reset the chip to a known state.
2595          */
2596         age_reset(sc);
2597
2598         /* Initialize descriptors. */
2599         error = age_init_rx_ring(sc);
2600         if (error != 0) {
2601                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2602                 age_stop(sc);
2603                 return;
2604         }
2605         age_init_rr_ring(sc);
2606         age_init_tx_ring(sc);
2607         age_init_cmb_block(sc);
2608         age_init_smb_block(sc);
2609
2610         /* Reprogram the station address. */
2611         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2612         CSR_WRITE_4(sc, AGE_PAR0,
2613             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2614         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2615
2616         /* Set descriptor base addresses. */
2617         paddr = sc->age_rdata.age_tx_ring_paddr;
2618         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2619         paddr = sc->age_rdata.age_rx_ring_paddr;
2620         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2621         paddr = sc->age_rdata.age_rr_ring_paddr;
2622         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2623         paddr = sc->age_rdata.age_tx_ring_paddr;
2624         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2625         paddr = sc->age_rdata.age_cmb_block_paddr;
2626         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2627         paddr = sc->age_rdata.age_smb_block_paddr;
2628         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2629         /* Set Rx/Rx return descriptor counter. */
2630         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2631             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2632             DESC_RRD_CNT_MASK) |
2633             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2634         /* Set Tx descriptor counter. */
2635         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2636             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2637
2638         /* Tell hardware that we're ready to load descriptors. */
2639         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2640
2641         /*
2642          * Initialize mailbox register.
2643          * Updated producer/consumer index information is exchanged
2644          * through this mailbox register. However Tx producer and
2645          * Rx return consumer/Rx producer are all shared such that
2646          * it's hard to separate code path between Tx and Rx without
2647          * locking. If L1 hardware have a separate mail box register
2648          * for Tx and Rx consumer/producer management we could have
2649          * indepent Tx/Rx handler which in turn Rx handler could have
2650          * been run without any locking.
2651          */
2652         AGE_COMMIT_MBOX(sc);
2653
2654         /* Configure IPG/IFG parameters. */
2655         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2656             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2657             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2658             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2659             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2660
2661         /* Set parameters for half-duplex media. */
2662         CSR_WRITE_4(sc, AGE_HDPX_CFG,
2663             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2664             HDPX_CFG_LCOL_MASK) |
2665             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2666             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2667             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2668             HDPX_CFG_ABEBT_MASK) |
2669             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2670             HDPX_CFG_JAMIPG_MASK));
2671
2672         /* Configure interrupt moderation timer. */
2673         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2674         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2675         reg &= ~MASTER_MTIMER_ENB;
2676         if (AGE_USECS(sc->age_int_mod) == 0)
2677                 reg &= ~MASTER_ITIMER_ENB;
2678         else
2679                 reg |= MASTER_ITIMER_ENB;
2680         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2681         if (bootverbose)
2682                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2683                     sc->age_int_mod);
2684         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2685
2686         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2687         if (ifp->if_mtu < ETHERMTU)
2688                 sc->age_max_frame_size = ETHERMTU;
2689         else
2690                 sc->age_max_frame_size = ifp->if_mtu;
2691         sc->age_max_frame_size += ETHER_HDR_LEN +
2692             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2693         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2694         /* Configure jumbo frame. */
2695         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2696         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2697             (((fsize / sizeof(uint64_t)) <<
2698             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2699             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2700             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2701             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2702             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2703
2704         /* Configure flow-control parameters. From Linux. */
2705         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2706                 /*
2707                  * Magic workaround for old-L1.
2708                  * Don't know which hw revision requires this magic.
2709                  */
2710                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
2711                 /*
2712                  * Another magic workaround for flow-control mode
2713                  * change. From Linux.
2714                  */
2715                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2716         }
2717         /*
2718          * TODO
2719          *  Should understand pause parameter relationships between FIFO
2720          *  size and number of Rx descriptors and Rx return descriptors.
2721          *
2722          *  Magic parameters came from Linux.
2723          */
2724         switch (sc->age_chip_rev) {
2725         case 0x8001:
2726         case 0x9001:
2727         case 0x9002:
2728         case 0x9003:
2729                 rxf_hi = AGE_RX_RING_CNT / 16;
2730                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2731                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2732                 rrd_lo = AGE_RR_RING_CNT / 16;
2733                 break;
2734         default:
2735                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2736                 rxf_lo = reg / 16;
2737                 if (rxf_lo < 192)
2738                         rxf_lo = 192;
2739                 rxf_hi = (reg * 7) / 8;
2740                 if (rxf_hi < rxf_lo)
2741                         rxf_hi = rxf_lo + 16;
2742                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2743                 rrd_lo = reg / 8;
2744                 rrd_hi = (reg * 7) / 8;
2745                 if (rrd_lo < 2)
2746                         rrd_lo = 2;
2747                 if (rrd_hi < rrd_lo)
2748                         rrd_hi = rrd_lo + 3;
2749                 break;
2750         }
2751         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2752             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2753             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2754             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2755             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2756         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2757             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2758             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2759             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2760             RXQ_RRD_PAUSE_THRESH_HI_MASK));
2761
2762         /* Configure RxQ. */
2763         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2764             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2765             RXQ_CFG_RD_BURST_MASK) |
2766             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2767             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2768             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2769             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2770             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2771
2772         /* Configure TxQ. */
2773         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2774             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2775             TXQ_CFG_TPD_BURST_MASK) |
2776             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2777             TXQ_CFG_TX_FIFO_BURST_MASK) |
2778             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2779             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2780             TXQ_CFG_ENB);
2781
2782         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2783             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2784             TX_JUMBO_TPD_TH_MASK) |
2785             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2786             TX_JUMBO_TPD_IPG_MASK));
2787         /* Configure DMA parameters. */
2788         CSR_WRITE_4(sc, AGE_DMA_CFG,
2789             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2790             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2791             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2792
2793         /* Configure CMB DMA write threshold. */
2794         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2795             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2796             CMB_WR_THRESH_RRD_MASK) |
2797             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2798             CMB_WR_THRESH_TPD_MASK));
2799
2800         /* Set CMB/SMB timer and enable them. */
2801         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2802             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2803             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2804         /* Request SMB updates for every seconds. */
2805         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2806         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2807
2808         /*
2809          * Disable all WOL bits as WOL can interfere normal Rx
2810          * operation.
2811          */
2812         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2813
2814         /*
2815          * Configure Tx/Rx MACs.
2816          *  - Auto-padding for short frames.
2817          *  - Enable CRC generation.
2818          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2819          *  of MAC is followed after link establishment.
2820          */
2821         CSR_WRITE_4(sc, AGE_MAC_CFG,
2822             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2823             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2824             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2825             MAC_CFG_PREAMBLE_MASK));
2826         /* Set up the receive filter. */
2827         age_rxfilter(sc);
2828         age_rxvlan(sc);
2829
2830         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2831         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2832                 reg |= MAC_CFG_RXCSUM_ENB;
2833
2834         /* Ack all pending interrupts and clear it. */
2835         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2836         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2837
2838         /* Finally enable Tx/Rx MAC. */
2839         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2840
2841         sc->age_flags &= ~AGE_FLAG_LINK;
2842         /* Switch to the current media. */
2843         mii_mediachg(mii);
2844
2845         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2846
2847         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2848         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2849 }
2850
2851 static void
2852 age_stop(struct age_softc *sc)
2853 {
2854         struct ifnet *ifp;
2855         struct age_txdesc *txd;
2856         struct age_rxdesc *rxd;
2857         uint32_t reg;
2858         int i;
2859
2860         AGE_LOCK_ASSERT(sc);
2861         /*
2862          * Mark the interface down and cancel the watchdog timer.
2863          */
2864         ifp = sc->age_ifp;
2865         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2866         sc->age_flags &= ~AGE_FLAG_LINK;
2867         callout_stop(&sc->age_tick_ch);
2868         sc->age_watchdog_timer = 0;
2869
2870         /*
2871          * Disable interrupts.
2872          */
2873         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2874         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2875         /* Stop CMB/SMB updates. */
2876         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2877         /* Stop Rx/Tx MAC. */
2878         age_stop_rxmac(sc);
2879         age_stop_txmac(sc);
2880         /* Stop DMA. */
2881         CSR_WRITE_4(sc, AGE_DMA_CFG,
2882             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2883         /* Stop TxQ/RxQ. */
2884         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2885             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2886         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2887             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2888         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2889                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2890                         break;
2891                 DELAY(10);
2892         }
2893         if (i == 0)
2894                 device_printf(sc->age_dev,
2895                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2896
2897          /* Reclaim Rx buffers that have been processed. */
2898         if (sc->age_cdata.age_rxhead != NULL)
2899                 m_freem(sc->age_cdata.age_rxhead);
2900         AGE_RXCHAIN_RESET(sc);
2901         /*
2902          * Free RX and TX mbufs still in the queues.
2903          */
2904         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2905                 rxd = &sc->age_cdata.age_rxdesc[i];
2906                 if (rxd->rx_m != NULL) {
2907                         bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2908                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2909                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2910                             rxd->rx_dmamap);
2911                         m_freem(rxd->rx_m);
2912                         rxd->rx_m = NULL;
2913                 }
2914         }
2915         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2916                 txd = &sc->age_cdata.age_txdesc[i];
2917                 if (txd->tx_m != NULL) {
2918                         bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2919                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2920                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2921                             txd->tx_dmamap);
2922                         m_freem(txd->tx_m);
2923                         txd->tx_m = NULL;
2924                 }
2925         }
2926 }
2927
2928 static void
2929 age_stop_txmac(struct age_softc *sc)
2930 {
2931         uint32_t reg;
2932         int i;
2933
2934         AGE_LOCK_ASSERT(sc);
2935
2936         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2937         if ((reg & MAC_CFG_TX_ENB) != 0) {
2938                 reg &= ~MAC_CFG_TX_ENB;
2939                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2940         }
2941         /* Stop Tx DMA engine. */
2942         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2943         if ((reg & DMA_CFG_RD_ENB) != 0) {
2944                 reg &= ~DMA_CFG_RD_ENB;
2945                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2946         }
2947         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2948                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2949                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2950                         break;
2951                 DELAY(10);
2952         }
2953         if (i == 0)
2954                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2955 }
2956
2957 static void
2958 age_stop_rxmac(struct age_softc *sc)
2959 {
2960         uint32_t reg;
2961         int i;
2962
2963         AGE_LOCK_ASSERT(sc);
2964
2965         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2966         if ((reg & MAC_CFG_RX_ENB) != 0) {
2967                 reg &= ~MAC_CFG_RX_ENB;
2968                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2969         }
2970         /* Stop Rx DMA engine. */
2971         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2972         if ((reg & DMA_CFG_WR_ENB) != 0) {
2973                 reg &= ~DMA_CFG_WR_ENB;
2974                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2975         }
2976         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2977                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2978                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2979                         break;
2980                 DELAY(10);
2981         }
2982         if (i == 0)
2983                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2984 }
2985
2986 static void
2987 age_init_tx_ring(struct age_softc *sc)
2988 {
2989         struct age_ring_data *rd;
2990         struct age_txdesc *txd;
2991         int i;
2992
2993         AGE_LOCK_ASSERT(sc);
2994
2995         sc->age_cdata.age_tx_prod = 0;
2996         sc->age_cdata.age_tx_cons = 0;
2997         sc->age_cdata.age_tx_cnt = 0;
2998
2999         rd = &sc->age_rdata;
3000         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
3001         for (i = 0; i < AGE_TX_RING_CNT; i++) {
3002                 txd = &sc->age_cdata.age_txdesc[i];
3003                 txd->tx_desc = &rd->age_tx_ring[i];
3004                 txd->tx_m = NULL;
3005         }
3006
3007         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3008             sc->age_cdata.age_tx_ring_map,
3009             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3010 }
3011
3012 static int
3013 age_init_rx_ring(struct age_softc *sc)
3014 {
3015         struct age_ring_data *rd;
3016         struct age_rxdesc *rxd;
3017         int i;
3018
3019         AGE_LOCK_ASSERT(sc);
3020
3021         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3022         sc->age_morework = 0;
3023         rd = &sc->age_rdata;
3024         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3025         for (i = 0; i < AGE_RX_RING_CNT; i++) {
3026                 rxd = &sc->age_cdata.age_rxdesc[i];
3027                 rxd->rx_m = NULL;
3028                 rxd->rx_desc = &rd->age_rx_ring[i];
3029                 if (age_newbuf(sc, rxd) != 0)
3030                         return (ENOBUFS);
3031         }
3032
3033         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3034             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3035
3036         return (0);
3037 }
3038
3039 static void
3040 age_init_rr_ring(struct age_softc *sc)
3041 {
3042         struct age_ring_data *rd;
3043
3044         AGE_LOCK_ASSERT(sc);
3045
3046         sc->age_cdata.age_rr_cons = 0;
3047         AGE_RXCHAIN_RESET(sc);
3048
3049         rd = &sc->age_rdata;
3050         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3051         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3052             sc->age_cdata.age_rr_ring_map,
3053             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3054 }
3055
3056 static void
3057 age_init_cmb_block(struct age_softc *sc)
3058 {
3059         struct age_ring_data *rd;
3060
3061         AGE_LOCK_ASSERT(sc);
3062
3063         rd = &sc->age_rdata;
3064         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3065         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3066             sc->age_cdata.age_cmb_block_map,
3067             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3068 }
3069
3070 static void
3071 age_init_smb_block(struct age_softc *sc)
3072 {
3073         struct age_ring_data *rd;
3074
3075         AGE_LOCK_ASSERT(sc);
3076
3077         rd = &sc->age_rdata;
3078         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3079         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3080             sc->age_cdata.age_smb_block_map,
3081             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3082 }
3083
3084 static int
3085 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3086 {
3087         struct rx_desc *desc;
3088         struct mbuf *m;
3089         bus_dma_segment_t segs[1];
3090         bus_dmamap_t map;
3091         int nsegs;
3092
3093         AGE_LOCK_ASSERT(sc);
3094
3095         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3096         if (m == NULL)
3097                 return (ENOBUFS);
3098         m->m_len = m->m_pkthdr.len = MCLBYTES;
3099 #ifndef __NO_STRICT_ALIGNMENT
3100         m_adj(m, AGE_RX_BUF_ALIGN);
3101 #endif
3102
3103         if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3104             sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3105                 m_freem(m);
3106                 return (ENOBUFS);
3107         }
3108         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3109
3110         if (rxd->rx_m != NULL) {
3111                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3112                     BUS_DMASYNC_POSTREAD);
3113                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3114         }
3115         map = rxd->rx_dmamap;
3116         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3117         sc->age_cdata.age_rx_sparemap = map;
3118         bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3119             BUS_DMASYNC_PREREAD);
3120         rxd->rx_m = m;
3121
3122         desc = rxd->rx_desc;
3123         desc->addr = htole64(segs[0].ds_addr);
3124         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3125             AGE_RD_LEN_SHIFT);
3126         return (0);
3127 }
3128
3129 static void
3130 age_rxvlan(struct age_softc *sc)
3131 {
3132         struct ifnet *ifp;
3133         uint32_t reg;
3134
3135         AGE_LOCK_ASSERT(sc);
3136
3137         ifp = sc->age_ifp;
3138         reg = CSR_READ_4(sc, AGE_MAC_CFG);
3139         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3140         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3141                 reg |= MAC_CFG_VLAN_TAG_STRIP;
3142         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3143 }
3144
3145 static void
3146 age_rxfilter(struct age_softc *sc)
3147 {
3148         struct ifnet *ifp;
3149         struct ifmultiaddr *ifma;
3150         uint32_t crc;
3151         uint32_t mchash[2];
3152         uint32_t rxcfg;
3153
3154         AGE_LOCK_ASSERT(sc);
3155
3156         ifp = sc->age_ifp;
3157
3158         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3159         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3160         if ((ifp->if_flags & IFF_BROADCAST) != 0)
3161                 rxcfg |= MAC_CFG_BCAST;
3162         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3163                 if ((ifp->if_flags & IFF_PROMISC) != 0)
3164                         rxcfg |= MAC_CFG_PROMISC;
3165                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3166                         rxcfg |= MAC_CFG_ALLMULTI;
3167                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3168                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3169                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3170                 return;
3171         }
3172
3173         /* Program new filter. */
3174         bzero(mchash, sizeof(mchash));
3175
3176         if_maddr_rlock(ifp);
3177         TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3178                 if (ifma->ifma_addr->sa_family != AF_LINK)
3179                         continue;
3180                 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3181                     ifma->ifma_addr), ETHER_ADDR_LEN);
3182                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3183         }
3184         if_maddr_runlock(ifp);
3185
3186         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3187         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3188         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3189 }
3190
3191 static int
3192 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3193 {
3194         struct age_softc *sc;
3195         struct age_stats *stats;
3196         int error, result;
3197
3198         result = -1;
3199         error = sysctl_handle_int(oidp, &result, 0, req);
3200
3201         if (error != 0 || req->newptr == NULL)
3202                 return (error);
3203
3204         if (result != 1)
3205                 return (error);
3206
3207         sc = (struct age_softc *)arg1;
3208         stats = &sc->age_stat;
3209         printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3210         printf("Transmit good frames : %ju\n",
3211             (uintmax_t)stats->tx_frames);
3212         printf("Transmit good broadcast frames : %ju\n",
3213             (uintmax_t)stats->tx_bcast_frames);
3214         printf("Transmit good multicast frames : %ju\n",
3215             (uintmax_t)stats->tx_mcast_frames);
3216         printf("Transmit pause control frames : %u\n",
3217             stats->tx_pause_frames);
3218         printf("Transmit control frames : %u\n",
3219             stats->tx_control_frames);
3220         printf("Transmit frames with excessive deferrals : %u\n",
3221             stats->tx_excess_defer);
3222         printf("Transmit deferrals : %u\n",
3223             stats->tx_deferred);
3224         printf("Transmit good octets : %ju\n",
3225             (uintmax_t)stats->tx_bytes);
3226         printf("Transmit good broadcast octets : %ju\n",
3227             (uintmax_t)stats->tx_bcast_bytes);
3228         printf("Transmit good multicast octets : %ju\n",
3229             (uintmax_t)stats->tx_mcast_bytes);
3230         printf("Transmit frames 64 bytes : %ju\n",
3231             (uintmax_t)stats->tx_pkts_64);
3232         printf("Transmit frames 65 to 127 bytes : %ju\n",
3233             (uintmax_t)stats->tx_pkts_65_127);
3234         printf("Transmit frames 128 to 255 bytes : %ju\n",
3235             (uintmax_t)stats->tx_pkts_128_255);
3236         printf("Transmit frames 256 to 511 bytes : %ju\n",
3237             (uintmax_t)stats->tx_pkts_256_511);
3238         printf("Transmit frames 512 to 1024 bytes : %ju\n",
3239             (uintmax_t)stats->tx_pkts_512_1023);
3240         printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3241             (uintmax_t)stats->tx_pkts_1024_1518);
3242         printf("Transmit frames 1519 to MTU bytes : %ju\n",
3243             (uintmax_t)stats->tx_pkts_1519_max);
3244         printf("Transmit single collisions : %u\n",
3245             stats->tx_single_colls);
3246         printf("Transmit multiple collisions : %u\n",
3247             stats->tx_multi_colls);
3248         printf("Transmit late collisions : %u\n",
3249             stats->tx_late_colls);
3250         printf("Transmit abort due to excessive collisions : %u\n",
3251             stats->tx_excess_colls);
3252         printf("Transmit underruns due to FIFO underruns : %u\n",
3253             stats->tx_underrun);
3254         printf("Transmit descriptor write-back errors : %u\n",
3255             stats->tx_desc_underrun);
3256         printf("Transmit frames with length mismatched frame size : %u\n",
3257             stats->tx_lenerrs);
3258         printf("Transmit frames with truncated due to MTU size : %u\n",
3259             stats->tx_lenerrs);
3260
3261         printf("Receive good frames : %ju\n",
3262             (uintmax_t)stats->rx_frames);
3263         printf("Receive good broadcast frames : %ju\n",
3264             (uintmax_t)stats->rx_bcast_frames);
3265         printf("Receive good multicast frames : %ju\n",
3266             (uintmax_t)stats->rx_mcast_frames);
3267         printf("Receive pause control frames : %u\n",
3268             stats->rx_pause_frames);
3269         printf("Receive control frames : %u\n",
3270             stats->rx_control_frames);
3271         printf("Receive CRC errors : %u\n",
3272             stats->rx_crcerrs);
3273         printf("Receive frames with length errors : %u\n",
3274             stats->rx_lenerrs);
3275         printf("Receive good octets : %ju\n",
3276             (uintmax_t)stats->rx_bytes);
3277         printf("Receive good broadcast octets : %ju\n",
3278             (uintmax_t)stats->rx_bcast_bytes);
3279         printf("Receive good multicast octets : %ju\n",
3280             (uintmax_t)stats->rx_mcast_bytes);
3281         printf("Receive frames too short : %u\n",
3282             stats->rx_runts);
3283         printf("Receive fragmented frames : %ju\n",
3284             (uintmax_t)stats->rx_fragments);
3285         printf("Receive frames 64 bytes : %ju\n",
3286             (uintmax_t)stats->rx_pkts_64);
3287         printf("Receive frames 65 to 127 bytes : %ju\n",
3288             (uintmax_t)stats->rx_pkts_65_127);
3289         printf("Receive frames 128 to 255 bytes : %ju\n",
3290             (uintmax_t)stats->rx_pkts_128_255);
3291         printf("Receive frames 256 to 511 bytes : %ju\n",
3292             (uintmax_t)stats->rx_pkts_256_511);
3293         printf("Receive frames 512 to 1024 bytes : %ju\n",
3294             (uintmax_t)stats->rx_pkts_512_1023);
3295         printf("Receive frames 1024 to 1518 bytes : %ju\n",
3296             (uintmax_t)stats->rx_pkts_1024_1518);
3297         printf("Receive frames 1519 to MTU bytes : %ju\n",
3298             (uintmax_t)stats->rx_pkts_1519_max);
3299         printf("Receive frames too long : %ju\n",
3300             (uint64_t)stats->rx_pkts_truncated);
3301         printf("Receive frames with FIFO overflow : %u\n",
3302             stats->rx_fifo_oflows);
3303         printf("Receive frames with return descriptor overflow : %u\n",
3304             stats->rx_desc_oflows);
3305         printf("Receive frames with alignment errors : %u\n",
3306             stats->rx_alignerrs);
3307         printf("Receive frames dropped due to address filtering : %ju\n",
3308             (uint64_t)stats->rx_pkts_filtered);
3309
3310         return (error);
3311 }
3312
3313 static int
3314 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3315 {
3316         int error, value;
3317
3318         if (arg1 == NULL)
3319                 return (EINVAL);
3320         value = *(int *)arg1;
3321         error = sysctl_handle_int(oidp, &value, 0, req);
3322         if (error || req->newptr == NULL)
3323                 return (error);
3324         if (value < low || value > high)
3325                 return (EINVAL);
3326         *(int *)arg1 = value;
3327
3328         return (0);
3329 }
3330
3331 static int
3332 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3333 {
3334         return (sysctl_int_range(oidp, arg1, arg2, req,
3335             AGE_PROC_MIN, AGE_PROC_MAX));
3336 }
3337
3338 static int
3339 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3340 {
3341
3342         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3343             AGE_IM_TIMER_MAX));
3344 }