]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/age/if_age.c
Remove unused and easy to misuse PNP macro parameter
[FreeBSD/FreeBSD.git] / sys / dev / age / if_age.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/rman.h>
43 #include <sys/module.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70
71 #include <machine/bus.h>
72 #include <machine/in_cksum.h>
73
74 #include <dev/age/if_agereg.h>
75 #include <dev/age/if_agevar.h>
76
77 /* "device miibus" required.  See GENERIC if you get errors here. */
78 #include "miibus_if.h"
79
80 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
81
82 MODULE_DEPEND(age, pci, 1, 1, 1);
83 MODULE_DEPEND(age, ether, 1, 1, 1);
84 MODULE_DEPEND(age, miibus, 1, 1, 1);
85
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
91
92 /*
93  * Devices supported by this driver.
94  */
95 static struct age_dev {
96         uint16_t        age_vendorid;
97         uint16_t        age_deviceid;
98         const char      *age_name;
99 } age_devs[] = {
100         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
101             "Attansic Technology Corp, L1 Gigabit Ethernet" },
102 };
103
104 static int age_miibus_readreg(device_t, int, int);
105 static int age_miibus_writereg(device_t, int, int, int);
106 static void age_miibus_statchg(device_t);
107 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
108 static int age_mediachange(struct ifnet *);
109 static int age_probe(device_t);
110 static void age_get_macaddr(struct age_softc *);
111 static void age_phy_reset(struct age_softc *);
112 static int age_attach(device_t);
113 static int age_detach(device_t);
114 static void age_sysctl_node(struct age_softc *);
115 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
116 static int age_check_boundary(struct age_softc *);
117 static int age_dma_alloc(struct age_softc *);
118 static void age_dma_free(struct age_softc *);
119 static int age_shutdown(device_t);
120 static void age_setwol(struct age_softc *);
121 static int age_suspend(device_t);
122 static int age_resume(device_t);
123 static int age_encap(struct age_softc *, struct mbuf **);
124 static void age_start(struct ifnet *);
125 static void age_start_locked(struct ifnet *);
126 static void age_watchdog(struct age_softc *);
127 static int age_ioctl(struct ifnet *, u_long, caddr_t);
128 static void age_mac_config(struct age_softc *);
129 static void age_link_task(void *, int);
130 static void age_stats_update(struct age_softc *);
131 static int age_intr(void *);
132 static void age_int_task(void *, int);
133 static void age_txintr(struct age_softc *, int);
134 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
135 static int age_rxintr(struct age_softc *, int, int);
136 static void age_tick(void *);
137 static void age_reset(struct age_softc *);
138 static void age_init(void *);
139 static void age_init_locked(struct age_softc *);
140 static void age_stop(struct age_softc *);
141 static void age_stop_txmac(struct age_softc *);
142 static void age_stop_rxmac(struct age_softc *);
143 static void age_init_tx_ring(struct age_softc *);
144 static int age_init_rx_ring(struct age_softc *);
145 static void age_init_rr_ring(struct age_softc *);
146 static void age_init_cmb_block(struct age_softc *);
147 static void age_init_smb_block(struct age_softc *);
148 #ifndef __NO_STRICT_ALIGNMENT
149 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
150 #endif
151 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
152 static void age_rxvlan(struct age_softc *);
153 static void age_rxfilter(struct age_softc *);
154 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
155 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
156 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
157 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
158
159
160 static device_method_t age_methods[] = {
161         /* Device interface. */
162         DEVMETHOD(device_probe,         age_probe),
163         DEVMETHOD(device_attach,        age_attach),
164         DEVMETHOD(device_detach,        age_detach),
165         DEVMETHOD(device_shutdown,      age_shutdown),
166         DEVMETHOD(device_suspend,       age_suspend),
167         DEVMETHOD(device_resume,        age_resume),
168
169         /* MII interface. */
170         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
171         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
172         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
173
174         { NULL, NULL }
175 };
176
177 static driver_t age_driver = {
178         "age",
179         age_methods,
180         sizeof(struct age_softc)
181 };
182
183 static devclass_t age_devclass;
184
185 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
186 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
187     nitems(age_devs));
188 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
189
190 static struct resource_spec age_res_spec_mem[] = {
191         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
192         { -1,                   0,              0 }
193 };
194
195 static struct resource_spec age_irq_spec_legacy[] = {
196         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
197         { -1,                   0,              0 }
198 };
199
200 static struct resource_spec age_irq_spec_msi[] = {
201         { SYS_RES_IRQ,          1,              RF_ACTIVE },
202         { -1,                   0,              0 }
203 };
204
205 static struct resource_spec age_irq_spec_msix[] = {
206         { SYS_RES_IRQ,          1,              RF_ACTIVE },
207         { -1,                   0,              0 }
208 };
209
210 /*
211  *      Read a PHY register on the MII of the L1.
212  */
213 static int
214 age_miibus_readreg(device_t dev, int phy, int reg)
215 {
216         struct age_softc *sc;
217         uint32_t v;
218         int i;
219
220         sc = device_get_softc(dev);
221
222         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
223             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
224         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
225                 DELAY(1);
226                 v = CSR_READ_4(sc, AGE_MDIO);
227                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
228                         break;
229         }
230
231         if (i == 0) {
232                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
233                 return (0);
234         }
235
236         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
237 }
238
239 /*
240  *      Write a PHY register on the MII of the L1.
241  */
242 static int
243 age_miibus_writereg(device_t dev, int phy, int reg, int val)
244 {
245         struct age_softc *sc;
246         uint32_t v;
247         int i;
248
249         sc = device_get_softc(dev);
250
251         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
252             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
253             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
254         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
255                 DELAY(1);
256                 v = CSR_READ_4(sc, AGE_MDIO);
257                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
258                         break;
259         }
260
261         if (i == 0)
262                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
263
264         return (0);
265 }
266
267 /*
268  *      Callback from MII layer when media changes.
269  */
270 static void
271 age_miibus_statchg(device_t dev)
272 {
273         struct age_softc *sc;
274
275         sc = device_get_softc(dev);
276         taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
277 }
278
279 /*
280  *      Get the current interface media status.
281  */
282 static void
283 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
284 {
285         struct age_softc *sc;
286         struct mii_data *mii;
287
288         sc = ifp->if_softc;
289         AGE_LOCK(sc);
290         mii = device_get_softc(sc->age_miibus);
291
292         mii_pollstat(mii);
293         ifmr->ifm_status = mii->mii_media_status;
294         ifmr->ifm_active = mii->mii_media_active;
295         AGE_UNLOCK(sc);
296 }
297
298 /*
299  *      Set hardware to newly-selected media.
300  */
301 static int
302 age_mediachange(struct ifnet *ifp)
303 {
304         struct age_softc *sc;
305         struct mii_data *mii;
306         struct mii_softc *miisc;
307         int error;
308
309         sc = ifp->if_softc;
310         AGE_LOCK(sc);
311         mii = device_get_softc(sc->age_miibus);
312         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
313                 PHY_RESET(miisc);
314         error = mii_mediachg(mii);
315         AGE_UNLOCK(sc);
316
317         return (error);
318 }
319
320 static int
321 age_probe(device_t dev)
322 {
323         struct age_dev *sp;
324         int i;
325         uint16_t vendor, devid;
326
327         vendor = pci_get_vendor(dev);
328         devid = pci_get_device(dev);
329         sp = age_devs;
330         for (i = 0; i < nitems(age_devs); i++, sp++) {
331                 if (vendor == sp->age_vendorid &&
332                     devid == sp->age_deviceid) {
333                         device_set_desc(dev, sp->age_name);
334                         return (BUS_PROBE_DEFAULT);
335                 }
336         }
337
338         return (ENXIO);
339 }
340
341 static void
342 age_get_macaddr(struct age_softc *sc)
343 {
344         uint32_t ea[2], reg;
345         int i, vpdc;
346
347         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
348         if ((reg & SPI_VPD_ENB) != 0) {
349                 /* Get VPD stored in TWSI EEPROM. */
350                 reg &= ~SPI_VPD_ENB;
351                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
352         }
353
354         if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
355                 /*
356                  * PCI VPD capability found, let TWSI reload EEPROM.
357                  * This will set ethernet address of controller.
358                  */
359                 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
360                     TWSI_CTRL_SW_LD_START);
361                 for (i = 100; i > 0; i--) {
362                         DELAY(1000);
363                         reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
364                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
365                                 break;
366                 }
367                 if (i == 0)
368                         device_printf(sc->age_dev,
369                             "reloading EEPROM timeout!\n");
370         } else {
371                 if (bootverbose)
372                         device_printf(sc->age_dev,
373                             "PCI VPD capability not found!\n");
374         }
375
376         ea[0] = CSR_READ_4(sc, AGE_PAR0);
377         ea[1] = CSR_READ_4(sc, AGE_PAR1);
378         sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
379         sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
380         sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
381         sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
382         sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
383         sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
384 }
385
386 static void
387 age_phy_reset(struct age_softc *sc)
388 {
389         uint16_t reg, pn;
390         int i, linkup;
391
392         /* Reset PHY. */
393         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
394         DELAY(2000);
395         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
396         DELAY(2000);
397
398 #define ATPHY_DBG_ADDR          0x1D
399 #define ATPHY_DBG_DATA          0x1E
400 #define ATPHY_CDTC              0x16
401 #define PHY_CDTC_ENB            0x0001
402 #define PHY_CDTC_POFF           8
403 #define ATPHY_CDTS              0x1C
404 #define PHY_CDTS_STAT_OK        0x0000
405 #define PHY_CDTS_STAT_SHORT     0x0100
406 #define PHY_CDTS_STAT_OPEN      0x0200
407 #define PHY_CDTS_STAT_INVAL     0x0300
408 #define PHY_CDTS_STAT_MASK      0x0300
409
410         /* Check power saving mode. Magic from Linux. */
411         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
412         for (linkup = 0, pn = 0; pn < 4; pn++) {
413                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
414                     (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
415                 for (i = 200; i > 0; i--) {
416                         DELAY(1000);
417                         reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
418                             ATPHY_CDTC);
419                         if ((reg & PHY_CDTC_ENB) == 0)
420                                 break;
421                 }
422                 DELAY(1000);
423                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
424                     ATPHY_CDTS);
425                 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
426                         linkup++;
427                         break;
428                 }
429         }
430         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
431             BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
432         if (linkup == 0) {
433                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
434                     ATPHY_DBG_ADDR, 0);
435                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
436                     ATPHY_DBG_DATA, 0x124E);
437                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438                     ATPHY_DBG_ADDR, 1);
439                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
440                     ATPHY_DBG_DATA);
441                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
442                     ATPHY_DBG_DATA, reg | 0x03);
443                 /* XXX */
444                 DELAY(1500 * 1000);
445                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
446                     ATPHY_DBG_ADDR, 0);
447                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
448                     ATPHY_DBG_DATA, 0x024E);
449     }
450
451 #undef  ATPHY_DBG_ADDR
452 #undef  ATPHY_DBG_DATA
453 #undef  ATPHY_CDTC
454 #undef  PHY_CDTC_ENB
455 #undef  PHY_CDTC_POFF
456 #undef  ATPHY_CDTS
457 #undef  PHY_CDTS_STAT_OK
458 #undef  PHY_CDTS_STAT_SHORT
459 #undef  PHY_CDTS_STAT_OPEN
460 #undef  PHY_CDTS_STAT_INVAL
461 #undef  PHY_CDTS_STAT_MASK
462 }
463
464 static int
465 age_attach(device_t dev)
466 {
467         struct age_softc *sc;
468         struct ifnet *ifp;
469         uint16_t burst;
470         int error, i, msic, msixc, pmc;
471
472         error = 0;
473         sc = device_get_softc(dev);
474         sc->age_dev = dev;
475
476         mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
477             MTX_DEF);
478         callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
479         TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
480         TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
481
482         /* Map the device. */
483         pci_enable_busmaster(dev);
484         sc->age_res_spec = age_res_spec_mem;
485         sc->age_irq_spec = age_irq_spec_legacy;
486         error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
487         if (error != 0) {
488                 device_printf(dev, "cannot allocate memory resources.\n");
489                 goto fail;
490         }
491
492         /* Set PHY address. */
493         sc->age_phyaddr = AGE_PHY_ADDR;
494
495         /* Reset PHY. */
496         age_phy_reset(sc);
497
498         /* Reset the ethernet controller. */
499         age_reset(sc);
500
501         /* Get PCI and chip id/revision. */
502         sc->age_rev = pci_get_revid(dev);
503         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
504             MASTER_CHIP_REV_SHIFT;
505         if (bootverbose) {
506                 device_printf(dev, "PCI device revision : 0x%04x\n",
507                     sc->age_rev);
508                 device_printf(dev, "Chip id/revision : 0x%04x\n",
509                     sc->age_chip_rev);
510         }
511
512         /*
513          * XXX
514          * Unintialized hardware returns an invalid chip id/revision
515          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
516          * unplugged cable results in putting hardware into automatic
517          * power down mode which in turn returns invalld chip revision.
518          */
519         if (sc->age_chip_rev == 0xFFFF) {
520                 device_printf(dev,"invalid chip revision : 0x%04x -- "
521                     "not initialized?\n", sc->age_chip_rev);
522                 error = ENXIO;
523                 goto fail;
524         }
525
526         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
527             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
528             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
529
530         /* Allocate IRQ resources. */
531         msixc = pci_msix_count(dev);
532         msic = pci_msi_count(dev);
533         if (bootverbose) {
534                 device_printf(dev, "MSIX count : %d\n", msixc);
535                 device_printf(dev, "MSI count : %d\n", msic);
536         }
537
538         /* Prefer MSIX over MSI. */
539         if (msix_disable == 0 || msi_disable == 0) {
540                 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
541                     pci_alloc_msix(dev, &msixc) == 0) {
542                         if (msic == AGE_MSIX_MESSAGES) {
543                                 device_printf(dev, "Using %d MSIX messages.\n",
544                                     msixc);
545                                 sc->age_flags |= AGE_FLAG_MSIX;
546                                 sc->age_irq_spec = age_irq_spec_msix;
547                         } else
548                                 pci_release_msi(dev);
549                 }
550                 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
551                     msic == AGE_MSI_MESSAGES &&
552                     pci_alloc_msi(dev, &msic) == 0) {
553                         if (msic == AGE_MSI_MESSAGES) {
554                                 device_printf(dev, "Using %d MSI messages.\n",
555                                     msic);
556                                 sc->age_flags |= AGE_FLAG_MSI;
557                                 sc->age_irq_spec = age_irq_spec_msi;
558                         } else
559                                 pci_release_msi(dev);
560                 }
561         }
562
563         error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
564         if (error != 0) {
565                 device_printf(dev, "cannot allocate IRQ resources.\n");
566                 goto fail;
567         }
568
569
570         /* Get DMA parameters from PCIe device control register. */
571         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
572                 sc->age_flags |= AGE_FLAG_PCIE;
573                 burst = pci_read_config(dev, i + 0x08, 2);
574                 /* Max read request size. */
575                 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
576                     DMA_CFG_RD_BURST_SHIFT;
577                 /* Max payload size. */
578                 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
579                     DMA_CFG_WR_BURST_SHIFT;
580                 if (bootverbose) {
581                         device_printf(dev, "Read request size : %d bytes.\n",
582                             128 << ((burst >> 12) & 0x07));
583                         device_printf(dev, "TLP payload size : %d bytes.\n",
584                             128 << ((burst >> 5) & 0x07));
585                 }
586         } else {
587                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
588                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
589         }
590
591         /* Create device sysctl node. */
592         age_sysctl_node(sc);
593
594         if ((error = age_dma_alloc(sc)) != 0)
595                 goto fail;
596
597         /* Load station address. */
598         age_get_macaddr(sc);
599
600         ifp = sc->age_ifp = if_alloc(IFT_ETHER);
601         if (ifp == NULL) {
602                 device_printf(dev, "cannot allocate ifnet structure.\n");
603                 error = ENXIO;
604                 goto fail;
605         }
606
607         ifp->if_softc = sc;
608         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
609         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
610         ifp->if_ioctl = age_ioctl;
611         ifp->if_start = age_start;
612         ifp->if_init = age_init;
613         ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
614         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
615         IFQ_SET_READY(&ifp->if_snd);
616         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
617         ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
618         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
619                 sc->age_flags |= AGE_FLAG_PMCAP;
620                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
621         }
622         ifp->if_capenable = ifp->if_capabilities;
623
624         /* Set up MII bus. */
625         error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
626             age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
627             0);
628         if (error != 0) {
629                 device_printf(dev, "attaching PHYs failed\n");
630                 goto fail;
631         }
632
633         ether_ifattach(ifp, sc->age_eaddr);
634
635         /* VLAN capability setup. */
636         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
637             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
638         ifp->if_capenable = ifp->if_capabilities;
639
640         /* Tell the upper layer(s) we support long frames. */
641         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
642
643         /* Create local taskq. */
644         sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
645             taskqueue_thread_enqueue, &sc->age_tq);
646         if (sc->age_tq == NULL) {
647                 device_printf(dev, "could not create taskqueue.\n");
648                 ether_ifdetach(ifp);
649                 error = ENXIO;
650                 goto fail;
651         }
652         taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
653             device_get_nameunit(sc->age_dev));
654
655         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
656                 msic = AGE_MSIX_MESSAGES;
657         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
658                 msic = AGE_MSI_MESSAGES;
659         else
660                 msic = 1;
661         for (i = 0; i < msic; i++) {
662                 error = bus_setup_intr(dev, sc->age_irq[i],
663                     INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
664                     &sc->age_intrhand[i]);
665                 if (error != 0)
666                         break;
667         }
668         if (error != 0) {
669                 device_printf(dev, "could not set up interrupt handler.\n");
670                 taskqueue_free(sc->age_tq);
671                 sc->age_tq = NULL;
672                 ether_ifdetach(ifp);
673                 goto fail;
674         }
675
676 fail:
677         if (error != 0)
678                 age_detach(dev);
679
680         return (error);
681 }
682
683 static int
684 age_detach(device_t dev)
685 {
686         struct age_softc *sc;
687         struct ifnet *ifp;
688         int i, msic;
689
690         sc = device_get_softc(dev);
691
692         ifp = sc->age_ifp;
693         if (device_is_attached(dev)) {
694                 AGE_LOCK(sc);
695                 sc->age_flags |= AGE_FLAG_DETACH;
696                 age_stop(sc);
697                 AGE_UNLOCK(sc);
698                 callout_drain(&sc->age_tick_ch);
699                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
700                 taskqueue_drain(taskqueue_swi, &sc->age_link_task);
701                 ether_ifdetach(ifp);
702         }
703
704         if (sc->age_tq != NULL) {
705                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
706                 taskqueue_free(sc->age_tq);
707                 sc->age_tq = NULL;
708         }
709
710         if (sc->age_miibus != NULL) {
711                 device_delete_child(dev, sc->age_miibus);
712                 sc->age_miibus = NULL;
713         }
714         bus_generic_detach(dev);
715         age_dma_free(sc);
716
717         if (ifp != NULL) {
718                 if_free(ifp);
719                 sc->age_ifp = NULL;
720         }
721
722         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
723                 msic = AGE_MSIX_MESSAGES;
724         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
725                 msic = AGE_MSI_MESSAGES;
726         else
727                 msic = 1;
728         for (i = 0; i < msic; i++) {
729                 if (sc->age_intrhand[i] != NULL) {
730                         bus_teardown_intr(dev, sc->age_irq[i],
731                             sc->age_intrhand[i]);
732                         sc->age_intrhand[i] = NULL;
733                 }
734         }
735
736         bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
737         if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
738                 pci_release_msi(dev);
739         bus_release_resources(dev, sc->age_res_spec, sc->age_res);
740         mtx_destroy(&sc->age_mtx);
741
742         return (0);
743 }
744
745 static void
746 age_sysctl_node(struct age_softc *sc)
747 {
748         int error;
749
750         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
751             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
752             "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
753             "I", "Statistics");
754
755         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
756             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
757             "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
758             sysctl_hw_age_int_mod, "I", "age interrupt moderation");
759
760         /* Pull in device tunables. */
761         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
762         error = resource_int_value(device_get_name(sc->age_dev),
763             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
764         if (error == 0) {
765                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
766                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
767                         device_printf(sc->age_dev,
768                             "int_mod value out of range; using default: %d\n",
769                             AGE_IM_TIMER_DEFAULT);
770                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
771                 }
772         }
773
774         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
775             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
776             "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
777             0, sysctl_hw_age_proc_limit, "I",
778             "max number of Rx events to process");
779
780         /* Pull in device tunables. */
781         sc->age_process_limit = AGE_PROC_DEFAULT;
782         error = resource_int_value(device_get_name(sc->age_dev),
783             device_get_unit(sc->age_dev), "process_limit",
784             &sc->age_process_limit);
785         if (error == 0) {
786                 if (sc->age_process_limit < AGE_PROC_MIN ||
787                     sc->age_process_limit > AGE_PROC_MAX) {
788                         device_printf(sc->age_dev,
789                             "process_limit value out of range; "
790                             "using default: %d\n", AGE_PROC_DEFAULT);
791                         sc->age_process_limit = AGE_PROC_DEFAULT;
792                 }
793         }
794 }
795
796 struct age_dmamap_arg {
797         bus_addr_t      age_busaddr;
798 };
799
800 static void
801 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802 {
803         struct age_dmamap_arg *ctx;
804
805         if (error != 0)
806                 return;
807
808         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
809
810         ctx = (struct age_dmamap_arg *)arg;
811         ctx->age_busaddr = segs[0].ds_addr;
812 }
813
814 /*
815  * Attansic L1 controller have single register to specify high
816  * address part of DMA blocks. So all descriptor structures and
817  * DMA memory blocks should have the same high address of given
818  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
819  */
820 static int
821 age_check_boundary(struct age_softc *sc)
822 {
823         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
824         bus_addr_t cmb_block_end, smb_block_end;
825
826         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
827         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
828         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
829         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
830         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
831         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
832
833         if ((AGE_ADDR_HI(tx_ring_end) !=
834             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
835             (AGE_ADDR_HI(rx_ring_end) !=
836             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
837             (AGE_ADDR_HI(rr_ring_end) !=
838             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
839             (AGE_ADDR_HI(cmb_block_end) !=
840             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
841             (AGE_ADDR_HI(smb_block_end) !=
842             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
843                 return (EFBIG);
844
845         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
846             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
847             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
848             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
849                 return (EFBIG);
850
851         return (0);
852 }
853
854 static int
855 age_dma_alloc(struct age_softc *sc)
856 {
857         struct age_txdesc *txd;
858         struct age_rxdesc *rxd;
859         bus_addr_t lowaddr;
860         struct age_dmamap_arg ctx;
861         int error, i;
862
863         lowaddr = BUS_SPACE_MAXADDR;
864
865 again:
866         /* Create parent ring/DMA block tag. */
867         error = bus_dma_tag_create(
868             bus_get_dma_tag(sc->age_dev), /* parent */
869             1, 0,                       /* alignment, boundary */
870             lowaddr,                    /* lowaddr */
871             BUS_SPACE_MAXADDR,          /* highaddr */
872             NULL, NULL,                 /* filter, filterarg */
873             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
874             0,                          /* nsegments */
875             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
876             0,                          /* flags */
877             NULL, NULL,                 /* lockfunc, lockarg */
878             &sc->age_cdata.age_parent_tag);
879         if (error != 0) {
880                 device_printf(sc->age_dev,
881                     "could not create parent DMA tag.\n");
882                 goto fail;
883         }
884
885         /* Create tag for Tx ring. */
886         error = bus_dma_tag_create(
887             sc->age_cdata.age_parent_tag, /* parent */
888             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
889             BUS_SPACE_MAXADDR,          /* lowaddr */
890             BUS_SPACE_MAXADDR,          /* highaddr */
891             NULL, NULL,                 /* filter, filterarg */
892             AGE_TX_RING_SZ,             /* maxsize */
893             1,                          /* nsegments */
894             AGE_TX_RING_SZ,             /* maxsegsize */
895             0,                          /* flags */
896             NULL, NULL,                 /* lockfunc, lockarg */
897             &sc->age_cdata.age_tx_ring_tag);
898         if (error != 0) {
899                 device_printf(sc->age_dev,
900                     "could not create Tx ring DMA tag.\n");
901                 goto fail;
902         }
903
904         /* Create tag for Rx ring. */
905         error = bus_dma_tag_create(
906             sc->age_cdata.age_parent_tag, /* parent */
907             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
908             BUS_SPACE_MAXADDR,          /* lowaddr */
909             BUS_SPACE_MAXADDR,          /* highaddr */
910             NULL, NULL,                 /* filter, filterarg */
911             AGE_RX_RING_SZ,             /* maxsize */
912             1,                          /* nsegments */
913             AGE_RX_RING_SZ,             /* maxsegsize */
914             0,                          /* flags */
915             NULL, NULL,                 /* lockfunc, lockarg */
916             &sc->age_cdata.age_rx_ring_tag);
917         if (error != 0) {
918                 device_printf(sc->age_dev,
919                     "could not create Rx ring DMA tag.\n");
920                 goto fail;
921         }
922
923         /* Create tag for Rx return ring. */
924         error = bus_dma_tag_create(
925             sc->age_cdata.age_parent_tag, /* parent */
926             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
927             BUS_SPACE_MAXADDR,          /* lowaddr */
928             BUS_SPACE_MAXADDR,          /* highaddr */
929             NULL, NULL,                 /* filter, filterarg */
930             AGE_RR_RING_SZ,             /* maxsize */
931             1,                          /* nsegments */
932             AGE_RR_RING_SZ,             /* maxsegsize */
933             0,                          /* flags */
934             NULL, NULL,                 /* lockfunc, lockarg */
935             &sc->age_cdata.age_rr_ring_tag);
936         if (error != 0) {
937                 device_printf(sc->age_dev,
938                     "could not create Rx return ring DMA tag.\n");
939                 goto fail;
940         }
941
942         /* Create tag for coalesing message block. */
943         error = bus_dma_tag_create(
944             sc->age_cdata.age_parent_tag, /* parent */
945             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
946             BUS_SPACE_MAXADDR,          /* lowaddr */
947             BUS_SPACE_MAXADDR,          /* highaddr */
948             NULL, NULL,                 /* filter, filterarg */
949             AGE_CMB_BLOCK_SZ,           /* maxsize */
950             1,                          /* nsegments */
951             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
952             0,                          /* flags */
953             NULL, NULL,                 /* lockfunc, lockarg */
954             &sc->age_cdata.age_cmb_block_tag);
955         if (error != 0) {
956                 device_printf(sc->age_dev,
957                     "could not create CMB DMA tag.\n");
958                 goto fail;
959         }
960
961         /* Create tag for statistics message block. */
962         error = bus_dma_tag_create(
963             sc->age_cdata.age_parent_tag, /* parent */
964             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
965             BUS_SPACE_MAXADDR,          /* lowaddr */
966             BUS_SPACE_MAXADDR,          /* highaddr */
967             NULL, NULL,                 /* filter, filterarg */
968             AGE_SMB_BLOCK_SZ,           /* maxsize */
969             1,                          /* nsegments */
970             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
971             0,                          /* flags */
972             NULL, NULL,                 /* lockfunc, lockarg */
973             &sc->age_cdata.age_smb_block_tag);
974         if (error != 0) {
975                 device_printf(sc->age_dev,
976                     "could not create SMB DMA tag.\n");
977                 goto fail;
978         }
979
980         /* Allocate DMA'able memory and load the DMA map. */
981         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
982             (void **)&sc->age_rdata.age_tx_ring,
983             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
984             &sc->age_cdata.age_tx_ring_map);
985         if (error != 0) {
986                 device_printf(sc->age_dev,
987                     "could not allocate DMA'able memory for Tx ring.\n");
988                 goto fail;
989         }
990         ctx.age_busaddr = 0;
991         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
992             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
993             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
994         if (error != 0 || ctx.age_busaddr == 0) {
995                 device_printf(sc->age_dev,
996                     "could not load DMA'able memory for Tx ring.\n");
997                 goto fail;
998         }
999         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
1000         /* Rx ring */
1001         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1002             (void **)&sc->age_rdata.age_rx_ring,
1003             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1004             &sc->age_cdata.age_rx_ring_map);
1005         if (error != 0) {
1006                 device_printf(sc->age_dev,
1007                     "could not allocate DMA'able memory for Rx ring.\n");
1008                 goto fail;
1009         }
1010         ctx.age_busaddr = 0;
1011         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1012             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1013             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1014         if (error != 0 || ctx.age_busaddr == 0) {
1015                 device_printf(sc->age_dev,
1016                     "could not load DMA'able memory for Rx ring.\n");
1017                 goto fail;
1018         }
1019         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1020         /* Rx return ring */
1021         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1022             (void **)&sc->age_rdata.age_rr_ring,
1023             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1024             &sc->age_cdata.age_rr_ring_map);
1025         if (error != 0) {
1026                 device_printf(sc->age_dev,
1027                     "could not allocate DMA'able memory for Rx return ring.\n");
1028                 goto fail;
1029         }
1030         ctx.age_busaddr = 0;
1031         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1032             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1033             AGE_RR_RING_SZ, age_dmamap_cb,
1034             &ctx, 0);
1035         if (error != 0 || ctx.age_busaddr == 0) {
1036                 device_printf(sc->age_dev,
1037                     "could not load DMA'able memory for Rx return ring.\n");
1038                 goto fail;
1039         }
1040         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1041         /* CMB block */
1042         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1043             (void **)&sc->age_rdata.age_cmb_block,
1044             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1045             &sc->age_cdata.age_cmb_block_map);
1046         if (error != 0) {
1047                 device_printf(sc->age_dev,
1048                     "could not allocate DMA'able memory for CMB block.\n");
1049                 goto fail;
1050         }
1051         ctx.age_busaddr = 0;
1052         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1053             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1054             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1055         if (error != 0 || ctx.age_busaddr == 0) {
1056                 device_printf(sc->age_dev,
1057                     "could not load DMA'able memory for CMB block.\n");
1058                 goto fail;
1059         }
1060         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1061         /* SMB block */
1062         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1063             (void **)&sc->age_rdata.age_smb_block,
1064             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1065             &sc->age_cdata.age_smb_block_map);
1066         if (error != 0) {
1067                 device_printf(sc->age_dev,
1068                     "could not allocate DMA'able memory for SMB block.\n");
1069                 goto fail;
1070         }
1071         ctx.age_busaddr = 0;
1072         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1073             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1074             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1075         if (error != 0 || ctx.age_busaddr == 0) {
1076                 device_printf(sc->age_dev,
1077                     "could not load DMA'able memory for SMB block.\n");
1078                 goto fail;
1079         }
1080         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1081
1082         /*
1083          * All ring buffer and DMA blocks should have the same
1084          * high address part of 64bit DMA address space.
1085          */
1086         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1087             (error = age_check_boundary(sc)) != 0) {
1088                 device_printf(sc->age_dev, "4GB boundary crossed, "
1089                     "switching to 32bit DMA addressing mode.\n");
1090                 age_dma_free(sc);
1091                 /* Limit DMA address space to 32bit and try again. */
1092                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1093                 goto again;
1094         }
1095
1096         /*
1097          * Create Tx/Rx buffer parent tag.
1098          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1099          * so it needs separate parent DMA tag.
1100          * XXX
1101          * It seems enabling 64bit DMA causes data corruption. Limit
1102          * DMA address space to 32bit.
1103          */
1104         error = bus_dma_tag_create(
1105             bus_get_dma_tag(sc->age_dev), /* parent */
1106             1, 0,                       /* alignment, boundary */
1107             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1108             BUS_SPACE_MAXADDR,          /* highaddr */
1109             NULL, NULL,                 /* filter, filterarg */
1110             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1111             0,                          /* nsegments */
1112             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1113             0,                          /* flags */
1114             NULL, NULL,                 /* lockfunc, lockarg */
1115             &sc->age_cdata.age_buffer_tag);
1116         if (error != 0) {
1117                 device_printf(sc->age_dev,
1118                     "could not create parent buffer DMA tag.\n");
1119                 goto fail;
1120         }
1121
1122         /* Create tag for Tx buffers. */
1123         error = bus_dma_tag_create(
1124             sc->age_cdata.age_buffer_tag, /* parent */
1125             1, 0,                       /* alignment, boundary */
1126             BUS_SPACE_MAXADDR,          /* lowaddr */
1127             BUS_SPACE_MAXADDR,          /* highaddr */
1128             NULL, NULL,                 /* filter, filterarg */
1129             AGE_TSO_MAXSIZE,            /* maxsize */
1130             AGE_MAXTXSEGS,              /* nsegments */
1131             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
1132             0,                          /* flags */
1133             NULL, NULL,                 /* lockfunc, lockarg */
1134             &sc->age_cdata.age_tx_tag);
1135         if (error != 0) {
1136                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1137                 goto fail;
1138         }
1139
1140         /* Create tag for Rx buffers. */
1141         error = bus_dma_tag_create(
1142             sc->age_cdata.age_buffer_tag, /* parent */
1143             AGE_RX_BUF_ALIGN, 0,        /* alignment, boundary */
1144             BUS_SPACE_MAXADDR,          /* lowaddr */
1145             BUS_SPACE_MAXADDR,          /* highaddr */
1146             NULL, NULL,                 /* filter, filterarg */
1147             MCLBYTES,                   /* maxsize */
1148             1,                          /* nsegments */
1149             MCLBYTES,                   /* maxsegsize */
1150             0,                          /* flags */
1151             NULL, NULL,                 /* lockfunc, lockarg */
1152             &sc->age_cdata.age_rx_tag);
1153         if (error != 0) {
1154                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1155                 goto fail;
1156         }
1157
1158         /* Create DMA maps for Tx buffers. */
1159         for (i = 0; i < AGE_TX_RING_CNT; i++) {
1160                 txd = &sc->age_cdata.age_txdesc[i];
1161                 txd->tx_m = NULL;
1162                 txd->tx_dmamap = NULL;
1163                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1164                     &txd->tx_dmamap);
1165                 if (error != 0) {
1166                         device_printf(sc->age_dev,
1167                             "could not create Tx dmamap.\n");
1168                         goto fail;
1169                 }
1170         }
1171         /* Create DMA maps for Rx buffers. */
1172         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1173             &sc->age_cdata.age_rx_sparemap)) != 0) {
1174                 device_printf(sc->age_dev,
1175                     "could not create spare Rx dmamap.\n");
1176                 goto fail;
1177         }
1178         for (i = 0; i < AGE_RX_RING_CNT; i++) {
1179                 rxd = &sc->age_cdata.age_rxdesc[i];
1180                 rxd->rx_m = NULL;
1181                 rxd->rx_dmamap = NULL;
1182                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1183                     &rxd->rx_dmamap);
1184                 if (error != 0) {
1185                         device_printf(sc->age_dev,
1186                             "could not create Rx dmamap.\n");
1187                         goto fail;
1188                 }
1189         }
1190
1191 fail:
1192         return (error);
1193 }
1194
1195 static void
1196 age_dma_free(struct age_softc *sc)
1197 {
1198         struct age_txdesc *txd;
1199         struct age_rxdesc *rxd;
1200         int i;
1201
1202         /* Tx buffers */
1203         if (sc->age_cdata.age_tx_tag != NULL) {
1204                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1205                         txd = &sc->age_cdata.age_txdesc[i];
1206                         if (txd->tx_dmamap != NULL) {
1207                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1208                                     txd->tx_dmamap);
1209                                 txd->tx_dmamap = NULL;
1210                         }
1211                 }
1212                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1213                 sc->age_cdata.age_tx_tag = NULL;
1214         }
1215         /* Rx buffers */
1216         if (sc->age_cdata.age_rx_tag != NULL) {
1217                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1218                         rxd = &sc->age_cdata.age_rxdesc[i];
1219                         if (rxd->rx_dmamap != NULL) {
1220                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1221                                     rxd->rx_dmamap);
1222                                 rxd->rx_dmamap = NULL;
1223                         }
1224                 }
1225                 if (sc->age_cdata.age_rx_sparemap != NULL) {
1226                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1227                             sc->age_cdata.age_rx_sparemap);
1228                         sc->age_cdata.age_rx_sparemap = NULL;
1229                 }
1230                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1231                 sc->age_cdata.age_rx_tag = NULL;
1232         }
1233         /* Tx ring. */
1234         if (sc->age_cdata.age_tx_ring_tag != NULL) {
1235                 if (sc->age_rdata.age_tx_ring_paddr != 0)
1236                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1237                             sc->age_cdata.age_tx_ring_map);
1238                 if (sc->age_rdata.age_tx_ring != NULL)
1239                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1240                             sc->age_rdata.age_tx_ring,
1241                             sc->age_cdata.age_tx_ring_map);
1242                 sc->age_rdata.age_tx_ring_paddr = 0;
1243                 sc->age_rdata.age_tx_ring = NULL;
1244                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1245                 sc->age_cdata.age_tx_ring_tag = NULL;
1246         }
1247         /* Rx ring. */
1248         if (sc->age_cdata.age_rx_ring_tag != NULL) {
1249                 if (sc->age_rdata.age_rx_ring_paddr != 0)
1250                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1251                             sc->age_cdata.age_rx_ring_map);
1252                 if (sc->age_rdata.age_rx_ring != NULL)
1253                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1254                             sc->age_rdata.age_rx_ring,
1255                             sc->age_cdata.age_rx_ring_map);
1256                 sc->age_rdata.age_rx_ring_paddr = 0;
1257                 sc->age_rdata.age_rx_ring = NULL;
1258                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1259                 sc->age_cdata.age_rx_ring_tag = NULL;
1260         }
1261         /* Rx return ring. */
1262         if (sc->age_cdata.age_rr_ring_tag != NULL) {
1263                 if (sc->age_rdata.age_rr_ring_paddr != 0)
1264                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1265                             sc->age_cdata.age_rr_ring_map);
1266                 if (sc->age_rdata.age_rr_ring != NULL)
1267                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1268                             sc->age_rdata.age_rr_ring,
1269                             sc->age_cdata.age_rr_ring_map);
1270                 sc->age_rdata.age_rr_ring_paddr = 0;
1271                 sc->age_rdata.age_rr_ring = NULL;
1272                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1273                 sc->age_cdata.age_rr_ring_tag = NULL;
1274         }
1275         /* CMB block */
1276         if (sc->age_cdata.age_cmb_block_tag != NULL) {
1277                 if (sc->age_rdata.age_cmb_block_paddr != 0)
1278                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1279                             sc->age_cdata.age_cmb_block_map);
1280                 if (sc->age_rdata.age_cmb_block != NULL)
1281                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1282                             sc->age_rdata.age_cmb_block,
1283                             sc->age_cdata.age_cmb_block_map);
1284                 sc->age_rdata.age_cmb_block_paddr = 0;
1285                 sc->age_rdata.age_cmb_block = NULL;
1286                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1287                 sc->age_cdata.age_cmb_block_tag = NULL;
1288         }
1289         /* SMB block */
1290         if (sc->age_cdata.age_smb_block_tag != NULL) {
1291                 if (sc->age_rdata.age_smb_block_paddr != 0)
1292                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1293                             sc->age_cdata.age_smb_block_map);
1294                 if (sc->age_rdata.age_smb_block != NULL)
1295                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1296                             sc->age_rdata.age_smb_block,
1297                             sc->age_cdata.age_smb_block_map);
1298                 sc->age_rdata.age_smb_block_paddr = 0;
1299                 sc->age_rdata.age_smb_block = NULL;
1300                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1301                 sc->age_cdata.age_smb_block_tag = NULL;
1302         }
1303
1304         if (sc->age_cdata.age_buffer_tag != NULL) {
1305                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1306                 sc->age_cdata.age_buffer_tag = NULL;
1307         }
1308         if (sc->age_cdata.age_parent_tag != NULL) {
1309                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1310                 sc->age_cdata.age_parent_tag = NULL;
1311         }
1312 }
1313
1314 /*
1315  *      Make sure the interface is stopped at reboot time.
1316  */
1317 static int
1318 age_shutdown(device_t dev)
1319 {
1320
1321         return (age_suspend(dev));
1322 }
1323
1324 static void
1325 age_setwol(struct age_softc *sc)
1326 {
1327         struct ifnet *ifp;
1328         struct mii_data *mii;
1329         uint32_t reg, pmcs;
1330         uint16_t pmstat;
1331         int aneg, i, pmc;
1332
1333         AGE_LOCK_ASSERT(sc);
1334
1335         if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1336                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1337                 /*
1338                  * No PME capability, PHY power down.
1339                  * XXX
1340                  * Due to an unknown reason powering down PHY resulted
1341                  * in unexpected results such as inaccessbility of
1342                  * hardware of freshly rebooted system. Disable
1343                  * powering down PHY until I got more information for
1344                  * Attansic/Atheros PHY hardwares.
1345                  */
1346 #ifdef notyet
1347                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1348                     MII_BMCR, BMCR_PDOWN);
1349 #endif
1350                 return;
1351         }
1352
1353         ifp = sc->age_ifp;
1354         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1355                 /*
1356                  * Note, this driver resets the link speed to 10/100Mbps with
1357                  * auto-negotiation but we don't know whether that operation
1358                  * would succeed or not as it have no control after powering
1359                  * off. If the renegotiation fail WOL may not work. Running
1360                  * at 1Gbps will draw more power than 375mA at 3.3V which is
1361                  * specified in PCI specification and that would result in
1362                  * complete shutdowning power to ethernet controller.
1363                  *
1364                  * TODO
1365                  *  Save current negotiated media speed/duplex/flow-control
1366                  *  to softc and restore the same link again after resuming.
1367                  *  PHY handling such as power down/resetting to 100Mbps
1368                  *  may be better handled in suspend method in phy driver.
1369                  */
1370                 mii = device_get_softc(sc->age_miibus);
1371                 mii_pollstat(mii);
1372                 aneg = 0;
1373                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1374                         switch IFM_SUBTYPE(mii->mii_media_active) {
1375                         case IFM_10_T:
1376                         case IFM_100_TX:
1377                                 goto got_link;
1378                         case IFM_1000_T:
1379                                 aneg++;
1380                         default:
1381                                 break;
1382                         }
1383                 }
1384                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385                     MII_100T2CR, 0);
1386                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1387                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1388                     ANAR_10 | ANAR_CSMA);
1389                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1390                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1391                 DELAY(1000);
1392                 if (aneg != 0) {
1393                         /* Poll link state until age(4) get a 10/100 link. */
1394                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1395                                 mii_pollstat(mii);
1396                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1397                                         switch (IFM_SUBTYPE(
1398                                             mii->mii_media_active)) {
1399                                         case IFM_10_T:
1400                                         case IFM_100_TX:
1401                                                 age_mac_config(sc);
1402                                                 goto got_link;
1403                                         default:
1404                                                 break;
1405                                         }
1406                                 }
1407                                 AGE_UNLOCK(sc);
1408                                 pause("agelnk", hz);
1409                                 AGE_LOCK(sc);
1410                         }
1411                         if (i == MII_ANEGTICKS_GIGE)
1412                                 device_printf(sc->age_dev,
1413                                     "establishing link failed, "
1414                                     "WOL may not work!");
1415                 }
1416                 /*
1417                  * No link, force MAC to have 100Mbps, full-duplex link.
1418                  * This is the last resort and may/may not work.
1419                  */
1420                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1421                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1422                 age_mac_config(sc);
1423         }
1424
1425 got_link:
1426         pmcs = 0;
1427         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1428                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1429         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1430         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1431         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1432         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1433         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1434                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1435         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1436                 reg |= MAC_CFG_RX_ENB;
1437                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1438         }
1439
1440         /* Request PME. */
1441         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1442         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1443         if ((ifp->if_capenable & IFCAP_WOL) != 0)
1444                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1445         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1446 #ifdef notyet
1447         /* See above for powering down PHY issues. */
1448         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1449                 /* No WOL, PHY power down. */
1450                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1451                     MII_BMCR, BMCR_PDOWN);
1452         }
1453 #endif
1454 }
1455
1456 static int
1457 age_suspend(device_t dev)
1458 {
1459         struct age_softc *sc;
1460
1461         sc = device_get_softc(dev);
1462
1463         AGE_LOCK(sc);
1464         age_stop(sc);
1465         age_setwol(sc);
1466         AGE_UNLOCK(sc);
1467
1468         return (0);
1469 }
1470
1471 static int
1472 age_resume(device_t dev)
1473 {
1474         struct age_softc *sc;
1475         struct ifnet *ifp;
1476
1477         sc = device_get_softc(dev);
1478
1479         AGE_LOCK(sc);
1480         age_phy_reset(sc);
1481         ifp = sc->age_ifp;
1482         if ((ifp->if_flags & IFF_UP) != 0)
1483                 age_init_locked(sc);
1484
1485         AGE_UNLOCK(sc);
1486
1487         return (0);
1488 }
1489
1490 static int
1491 age_encap(struct age_softc *sc, struct mbuf **m_head)
1492 {
1493         struct age_txdesc *txd, *txd_last;
1494         struct tx_desc *desc;
1495         struct mbuf *m;
1496         struct ip *ip;
1497         struct tcphdr *tcp;
1498         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1499         bus_dmamap_t map;
1500         uint32_t cflags, hdrlen, ip_off, poff, vtag;
1501         int error, i, nsegs, prod, si;
1502
1503         AGE_LOCK_ASSERT(sc);
1504
1505         M_ASSERTPKTHDR((*m_head));
1506
1507         m = *m_head;
1508         ip = NULL;
1509         tcp = NULL;
1510         cflags = vtag = 0;
1511         ip_off = poff = 0;
1512         if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1513                 /*
1514                  * L1 requires offset of TCP/UDP payload in its Tx
1515                  * descriptor to perform hardware Tx checksum offload.
1516                  * Additionally, TSO requires IP/TCP header size and
1517                  * modification of IP/TCP header in order to make TSO
1518                  * engine work. This kind of operation takes many CPU
1519                  * cycles on FreeBSD so fast host CPU is needed to get
1520                  * smooth TSO performance.
1521                  */
1522                 struct ether_header *eh;
1523
1524                 if (M_WRITABLE(m) == 0) {
1525                         /* Get a writable copy. */
1526                         m = m_dup(*m_head, M_NOWAIT);
1527                         /* Release original mbufs. */
1528                         m_freem(*m_head);
1529                         if (m == NULL) {
1530                                 *m_head = NULL;
1531                                 return (ENOBUFS);
1532                         }
1533                         *m_head = m;
1534                 }
1535                 ip_off = sizeof(struct ether_header);
1536                 m = m_pullup(m, ip_off);
1537                 if (m == NULL) {
1538                         *m_head = NULL;
1539                         return (ENOBUFS);
1540                 }
1541                 eh = mtod(m, struct ether_header *);
1542                 /*
1543                  * Check if hardware VLAN insertion is off.
1544                  * Additional check for LLC/SNAP frame?
1545                  */
1546                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1547                         ip_off = sizeof(struct ether_vlan_header);
1548                         m = m_pullup(m, ip_off);
1549                         if (m == NULL) {
1550                                 *m_head = NULL;
1551                                 return (ENOBUFS);
1552                         }
1553                 }
1554                 m = m_pullup(m, ip_off + sizeof(struct ip));
1555                 if (m == NULL) {
1556                         *m_head = NULL;
1557                         return (ENOBUFS);
1558                 }
1559                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1560                 poff = ip_off + (ip->ip_hl << 2);
1561                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1562                         m = m_pullup(m, poff + sizeof(struct tcphdr));
1563                         if (m == NULL) {
1564                                 *m_head = NULL;
1565                                 return (ENOBUFS);
1566                         }
1567                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1568                         m = m_pullup(m, poff + (tcp->th_off << 2));
1569                         if (m == NULL) {
1570                                 *m_head = NULL;
1571                                 return (ENOBUFS);
1572                         }
1573                         /*
1574                          * L1 requires IP/TCP header size and offset as
1575                          * well as TCP pseudo checksum which complicates
1576                          * TSO configuration. I guess this comes from the
1577                          * adherence to Microsoft NDIS Large Send
1578                          * specification which requires insertion of
1579                          * pseudo checksum by upper stack. The pseudo
1580                          * checksum that NDIS refers to doesn't include
1581                          * TCP payload length so age(4) should recompute
1582                          * the pseudo checksum here. Hopefully this wouldn't
1583                          * be much burden on modern CPUs.
1584                          * Reset IP checksum and recompute TCP pseudo
1585                          * checksum as NDIS specification said.
1586                          */
1587                         ip = (struct ip *)(mtod(m, char *) + ip_off);
1588                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1589                         ip->ip_sum = 0;
1590                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1591                             ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1592                 }
1593                 *m_head = m;
1594         }
1595
1596         si = prod = sc->age_cdata.age_tx_prod;
1597         txd = &sc->age_cdata.age_txdesc[prod];
1598         txd_last = txd;
1599         map = txd->tx_dmamap;
1600
1601         error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1602             *m_head, txsegs, &nsegs, 0);
1603         if (error == EFBIG) {
1604                 m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1605                 if (m == NULL) {
1606                         m_freem(*m_head);
1607                         *m_head = NULL;
1608                         return (ENOMEM);
1609                 }
1610                 *m_head = m;
1611                 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1612                     *m_head, txsegs, &nsegs, 0);
1613                 if (error != 0) {
1614                         m_freem(*m_head);
1615                         *m_head = NULL;
1616                         return (error);
1617                 }
1618         } else if (error != 0)
1619                 return (error);
1620         if (nsegs == 0) {
1621                 m_freem(*m_head);
1622                 *m_head = NULL;
1623                 return (EIO);
1624         }
1625
1626         /* Check descriptor overrun. */
1627         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1628                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1629                 return (ENOBUFS);
1630         }
1631
1632         m = *m_head;
1633         /* Configure VLAN hardware tag insertion. */
1634         if ((m->m_flags & M_VLANTAG) != 0) {
1635                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1636                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1637                 cflags |= AGE_TD_INSERT_VLAN_TAG;
1638         }
1639
1640         desc = NULL;
1641         i = 0;
1642         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1643                 /* Request TSO and set MSS. */
1644                 cflags |= AGE_TD_TSO_IPV4;
1645                 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1646                 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1647                     AGE_TD_TSO_MSS_SHIFT);
1648                 /* Set IP/TCP header size. */
1649                 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1650                 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1651                 /*
1652                  * L1 requires the first buffer should only hold IP/TCP
1653                  * header data. TCP payload should be handled in other
1654                  * descriptors.
1655                  */
1656                 hdrlen = poff + (tcp->th_off << 2);
1657                 desc = &sc->age_rdata.age_tx_ring[prod];
1658                 desc->addr = htole64(txsegs[0].ds_addr);
1659                 desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1660                 desc->flags = htole32(cflags);
1661                 sc->age_cdata.age_tx_cnt++;
1662                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1663                 if (m->m_len - hdrlen > 0) {
1664                         /* Handle remaining payload of the 1st fragment. */
1665                         desc = &sc->age_rdata.age_tx_ring[prod];
1666                         desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1667                         desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1668                             vtag);
1669                         desc->flags = htole32(cflags);
1670                         sc->age_cdata.age_tx_cnt++;
1671                         AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1672                 }
1673                 /* Handle remaining fragments. */
1674                 i = 1;
1675         } else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1676                 /* Configure Tx IP/TCP/UDP checksum offload. */
1677                 cflags |= AGE_TD_CSUM;
1678                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1679                         cflags |= AGE_TD_TCPCSUM;
1680                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1681                         cflags |= AGE_TD_UDPCSUM;
1682                 /* Set checksum start offset. */
1683                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1684                 /* Set checksum insertion position of TCP/UDP. */
1685                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1686                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1687         }
1688         for (; i < nsegs; i++) {
1689                 desc = &sc->age_rdata.age_tx_ring[prod];
1690                 desc->addr = htole64(txsegs[i].ds_addr);
1691                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1692                 desc->flags = htole32(cflags);
1693                 sc->age_cdata.age_tx_cnt++;
1694                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1695         }
1696         /* Update producer index. */
1697         sc->age_cdata.age_tx_prod = prod;
1698
1699         /* Set EOP on the last descriptor. */
1700         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1701         desc = &sc->age_rdata.age_tx_ring[prod];
1702         desc->flags |= htole32(AGE_TD_EOP);
1703
1704         /* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1705         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1706                 desc = &sc->age_rdata.age_tx_ring[si];
1707                 desc->flags |= htole32(AGE_TD_TSO_HDR);
1708         }
1709
1710         /* Swap dmamap of the first and the last. */
1711         txd = &sc->age_cdata.age_txdesc[prod];
1712         map = txd_last->tx_dmamap;
1713         txd_last->tx_dmamap = txd->tx_dmamap;
1714         txd->tx_dmamap = map;
1715         txd->tx_m = m;
1716
1717         /* Sync descriptors. */
1718         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1719         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1720             sc->age_cdata.age_tx_ring_map,
1721             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1722
1723         return (0);
1724 }
1725
1726 static void
1727 age_start(struct ifnet *ifp)
1728 {
1729         struct age_softc *sc;
1730
1731         sc = ifp->if_softc;
1732         AGE_LOCK(sc);
1733         age_start_locked(ifp);
1734         AGE_UNLOCK(sc);
1735 }
1736
1737 static void
1738 age_start_locked(struct ifnet *ifp)
1739 {
1740         struct age_softc *sc;
1741         struct mbuf *m_head;
1742         int enq;
1743
1744         sc = ifp->if_softc;
1745
1746         AGE_LOCK_ASSERT(sc);
1747
1748         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1749             IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1750                 return;
1751
1752         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1753                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1754                 if (m_head == NULL)
1755                         break;
1756                 /*
1757                  * Pack the data into the transmit ring. If we
1758                  * don't have room, set the OACTIVE flag and wait
1759                  * for the NIC to drain the ring.
1760                  */
1761                 if (age_encap(sc, &m_head)) {
1762                         if (m_head == NULL)
1763                                 break;
1764                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1765                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1766                         break;
1767                 }
1768
1769                 enq++;
1770                 /*
1771                  * If there's a BPF listener, bounce a copy of this frame
1772                  * to him.
1773                  */
1774                 ETHER_BPF_MTAP(ifp, m_head);
1775         }
1776
1777         if (enq > 0) {
1778                 /* Update mbox. */
1779                 AGE_COMMIT_MBOX(sc);
1780                 /* Set a timeout in case the chip goes out to lunch. */
1781                 sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1782         }
1783 }
1784
1785 static void
1786 age_watchdog(struct age_softc *sc)
1787 {
1788         struct ifnet *ifp;
1789
1790         AGE_LOCK_ASSERT(sc);
1791
1792         if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1793                 return;
1794
1795         ifp = sc->age_ifp;
1796         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1797                 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1798                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1799                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1800                 age_init_locked(sc);
1801                 return;
1802         }
1803         if (sc->age_cdata.age_tx_cnt == 0) {
1804                 if_printf(sc->age_ifp,
1805                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
1806                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1807                         age_start_locked(ifp);
1808                 return;
1809         }
1810         if_printf(sc->age_ifp, "watchdog timeout\n");
1811         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1812         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1813         age_init_locked(sc);
1814         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1815                 age_start_locked(ifp);
1816 }
1817
1818 static int
1819 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1820 {
1821         struct age_softc *sc;
1822         struct ifreq *ifr;
1823         struct mii_data *mii;
1824         uint32_t reg;
1825         int error, mask;
1826
1827         sc = ifp->if_softc;
1828         ifr = (struct ifreq *)data;
1829         error = 0;
1830         switch (cmd) {
1831         case SIOCSIFMTU:
1832                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1833                         error = EINVAL;
1834                 else if (ifp->if_mtu != ifr->ifr_mtu) {
1835                         AGE_LOCK(sc);
1836                         ifp->if_mtu = ifr->ifr_mtu;
1837                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1838                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1839                                 age_init_locked(sc);
1840                         }
1841                         AGE_UNLOCK(sc);
1842                 }
1843                 break;
1844         case SIOCSIFFLAGS:
1845                 AGE_LOCK(sc);
1846                 if ((ifp->if_flags & IFF_UP) != 0) {
1847                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1848                                 if (((ifp->if_flags ^ sc->age_if_flags)
1849                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1850                                         age_rxfilter(sc);
1851                         } else {
1852                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1853                                         age_init_locked(sc);
1854                         }
1855                 } else {
1856                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1857                                 age_stop(sc);
1858                 }
1859                 sc->age_if_flags = ifp->if_flags;
1860                 AGE_UNLOCK(sc);
1861                 break;
1862         case SIOCADDMULTI:
1863         case SIOCDELMULTI:
1864                 AGE_LOCK(sc);
1865                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1866                         age_rxfilter(sc);
1867                 AGE_UNLOCK(sc);
1868                 break;
1869         case SIOCSIFMEDIA:
1870         case SIOCGIFMEDIA:
1871                 mii = device_get_softc(sc->age_miibus);
1872                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1873                 break;
1874         case SIOCSIFCAP:
1875                 AGE_LOCK(sc);
1876                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1877                 if ((mask & IFCAP_TXCSUM) != 0 &&
1878                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1879                         ifp->if_capenable ^= IFCAP_TXCSUM;
1880                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1881                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
1882                         else
1883                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1884                 }
1885                 if ((mask & IFCAP_RXCSUM) != 0 &&
1886                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1887                         ifp->if_capenable ^= IFCAP_RXCSUM;
1888                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1889                         reg &= ~MAC_CFG_RXCSUM_ENB;
1890                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1891                                 reg |= MAC_CFG_RXCSUM_ENB;
1892                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1893                 }
1894                 if ((mask & IFCAP_TSO4) != 0 &&
1895                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1896                         ifp->if_capenable ^= IFCAP_TSO4;
1897                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1898                                 ifp->if_hwassist |= CSUM_TSO;
1899                         else
1900                                 ifp->if_hwassist &= ~CSUM_TSO;
1901                 }
1902
1903                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
1904                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1905                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
1906                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1907                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1908                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1909                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1910                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1911                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1912                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1913                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1914                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1915                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1916                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1917                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1918                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1919                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1920                         age_rxvlan(sc);
1921                 }
1922                 AGE_UNLOCK(sc);
1923                 VLAN_CAPABILITIES(ifp);
1924                 break;
1925         default:
1926                 error = ether_ioctl(ifp, cmd, data);
1927                 break;
1928         }
1929
1930         return (error);
1931 }
1932
1933 static void
1934 age_mac_config(struct age_softc *sc)
1935 {
1936         struct mii_data *mii;
1937         uint32_t reg;
1938
1939         AGE_LOCK_ASSERT(sc);
1940
1941         mii = device_get_softc(sc->age_miibus);
1942         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1943         reg &= ~MAC_CFG_FULL_DUPLEX;
1944         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1945         reg &= ~MAC_CFG_SPEED_MASK;
1946         /* Reprogram MAC with resolved speed/duplex. */
1947         switch (IFM_SUBTYPE(mii->mii_media_active)) {
1948         case IFM_10_T:
1949         case IFM_100_TX:
1950                 reg |= MAC_CFG_SPEED_10_100;
1951                 break;
1952         case IFM_1000_T:
1953                 reg |= MAC_CFG_SPEED_1000;
1954                 break;
1955         }
1956         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1957                 reg |= MAC_CFG_FULL_DUPLEX;
1958 #ifdef notyet
1959                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1960                         reg |= MAC_CFG_TX_FC;
1961                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1962                         reg |= MAC_CFG_RX_FC;
1963 #endif
1964         }
1965
1966         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1967 }
1968
1969 static void
1970 age_link_task(void *arg, int pending)
1971 {
1972         struct age_softc *sc;
1973         struct mii_data *mii;
1974         struct ifnet *ifp;
1975         uint32_t reg;
1976
1977         sc = (struct age_softc *)arg;
1978
1979         AGE_LOCK(sc);
1980         mii = device_get_softc(sc->age_miibus);
1981         ifp = sc->age_ifp;
1982         if (mii == NULL || ifp == NULL ||
1983             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1984                 AGE_UNLOCK(sc);
1985                 return;
1986         }
1987
1988         sc->age_flags &= ~AGE_FLAG_LINK;
1989         if ((mii->mii_media_status & IFM_AVALID) != 0) {
1990                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1991                 case IFM_10_T:
1992                 case IFM_100_TX:
1993                 case IFM_1000_T:
1994                         sc->age_flags |= AGE_FLAG_LINK;
1995                         break;
1996                 default:
1997                         break;
1998                 }
1999         }
2000
2001         /* Stop Rx/Tx MACs. */
2002         age_stop_rxmac(sc);
2003         age_stop_txmac(sc);
2004
2005         /* Program MACs with resolved speed/duplex/flow-control. */
2006         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2007                 age_mac_config(sc);
2008                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2009                 /* Restart DMA engine and Tx/Rx MAC. */
2010                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2011                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2012                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2013                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2014         }
2015
2016         AGE_UNLOCK(sc);
2017 }
2018
2019 static void
2020 age_stats_update(struct age_softc *sc)
2021 {
2022         struct age_stats *stat;
2023         struct smb *smb;
2024         struct ifnet *ifp;
2025
2026         AGE_LOCK_ASSERT(sc);
2027
2028         stat = &sc->age_stat;
2029
2030         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2031             sc->age_cdata.age_smb_block_map,
2032             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2033
2034         smb = sc->age_rdata.age_smb_block;
2035         if (smb->updated == 0)
2036                 return;
2037
2038         ifp = sc->age_ifp;
2039         /* Rx stats. */
2040         stat->rx_frames += smb->rx_frames;
2041         stat->rx_bcast_frames += smb->rx_bcast_frames;
2042         stat->rx_mcast_frames += smb->rx_mcast_frames;
2043         stat->rx_pause_frames += smb->rx_pause_frames;
2044         stat->rx_control_frames += smb->rx_control_frames;
2045         stat->rx_crcerrs += smb->rx_crcerrs;
2046         stat->rx_lenerrs += smb->rx_lenerrs;
2047         stat->rx_bytes += smb->rx_bytes;
2048         stat->rx_runts += smb->rx_runts;
2049         stat->rx_fragments += smb->rx_fragments;
2050         stat->rx_pkts_64 += smb->rx_pkts_64;
2051         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2052         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2053         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2054         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2055         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2056         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2057         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2058         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2059         stat->rx_desc_oflows += smb->rx_desc_oflows;
2060         stat->rx_alignerrs += smb->rx_alignerrs;
2061         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2062         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2063         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2064
2065         /* Tx stats. */
2066         stat->tx_frames += smb->tx_frames;
2067         stat->tx_bcast_frames += smb->tx_bcast_frames;
2068         stat->tx_mcast_frames += smb->tx_mcast_frames;
2069         stat->tx_pause_frames += smb->tx_pause_frames;
2070         stat->tx_excess_defer += smb->tx_excess_defer;
2071         stat->tx_control_frames += smb->tx_control_frames;
2072         stat->tx_deferred += smb->tx_deferred;
2073         stat->tx_bytes += smb->tx_bytes;
2074         stat->tx_pkts_64 += smb->tx_pkts_64;
2075         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2076         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2077         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2078         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2079         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2080         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2081         stat->tx_single_colls += smb->tx_single_colls;
2082         stat->tx_multi_colls += smb->tx_multi_colls;
2083         stat->tx_late_colls += smb->tx_late_colls;
2084         stat->tx_excess_colls += smb->tx_excess_colls;
2085         stat->tx_underrun += smb->tx_underrun;
2086         stat->tx_desc_underrun += smb->tx_desc_underrun;
2087         stat->tx_lenerrs += smb->tx_lenerrs;
2088         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2089         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2090         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2091
2092         /* Update counters in ifnet. */
2093         if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2094
2095         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2096             smb->tx_multi_colls + smb->tx_late_colls +
2097             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2098
2099         if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2100             smb->tx_late_colls + smb->tx_underrun +
2101             smb->tx_pkts_truncated);
2102
2103         if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2104
2105         if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2106             smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2107             smb->rx_fifo_oflows + smb->rx_desc_oflows +
2108             smb->rx_alignerrs);
2109
2110         /* Update done, clear. */
2111         smb->updated = 0;
2112
2113         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2114             sc->age_cdata.age_smb_block_map,
2115             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2116 }
2117
2118 static int
2119 age_intr(void *arg)
2120 {
2121         struct age_softc *sc;
2122         uint32_t status;
2123
2124         sc = (struct age_softc *)arg;
2125
2126         status = CSR_READ_4(sc, AGE_INTR_STATUS);
2127         if (status == 0 || (status & AGE_INTRS) == 0)
2128                 return (FILTER_STRAY);
2129         /* Disable interrupts. */
2130         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2131         taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2132
2133         return (FILTER_HANDLED);
2134 }
2135
2136 static void
2137 age_int_task(void *arg, int pending)
2138 {
2139         struct age_softc *sc;
2140         struct ifnet *ifp;
2141         struct cmb *cmb;
2142         uint32_t status;
2143
2144         sc = (struct age_softc *)arg;
2145
2146         AGE_LOCK(sc);
2147
2148         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2149             sc->age_cdata.age_cmb_block_map,
2150             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2151         cmb = sc->age_rdata.age_cmb_block;
2152         status = le32toh(cmb->intr_status);
2153         if (sc->age_morework != 0)
2154                 status |= INTR_CMB_RX;
2155         if ((status & AGE_INTRS) == 0)
2156                 goto done;
2157
2158         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2159             TPD_CONS_SHIFT;
2160         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2161             RRD_PROD_SHIFT;
2162         /* Let hardware know CMB was served. */
2163         cmb->intr_status = 0;
2164         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2165             sc->age_cdata.age_cmb_block_map,
2166             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2167
2168         ifp = sc->age_ifp;
2169         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2170                 if ((status & INTR_CMB_RX) != 0)
2171                         sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2172                             sc->age_process_limit);
2173                 if ((status & INTR_CMB_TX) != 0)
2174                         age_txintr(sc, sc->age_tpd_cons);
2175                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2176                         if ((status & INTR_DMA_RD_TO_RST) != 0)
2177                                 device_printf(sc->age_dev,
2178                                     "DMA read error! -- resetting\n");
2179                         if ((status & INTR_DMA_WR_TO_RST) != 0)
2180                                 device_printf(sc->age_dev,
2181                                     "DMA write error! -- resetting\n");
2182                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2183                         age_init_locked(sc);
2184                 }
2185                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2186                         age_start_locked(ifp);
2187                 if ((status & INTR_SMB) != 0)
2188                         age_stats_update(sc);
2189         }
2190
2191         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2192         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2193             sc->age_cdata.age_cmb_block_map,
2194             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2195         status = le32toh(cmb->intr_status);
2196         if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2197                 taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2198                 AGE_UNLOCK(sc);
2199                 return;
2200         }
2201
2202 done:
2203         /* Re-enable interrupts. */
2204         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2205         AGE_UNLOCK(sc);
2206 }
2207
2208 static void
2209 age_txintr(struct age_softc *sc, int tpd_cons)
2210 {
2211         struct ifnet *ifp;
2212         struct age_txdesc *txd;
2213         int cons, prog;
2214
2215         AGE_LOCK_ASSERT(sc);
2216
2217         ifp = sc->age_ifp;
2218
2219         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2220             sc->age_cdata.age_tx_ring_map,
2221             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2222
2223         /*
2224          * Go through our Tx list and free mbufs for those
2225          * frames which have been transmitted.
2226          */
2227         cons = sc->age_cdata.age_tx_cons;
2228         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2229                 if (sc->age_cdata.age_tx_cnt <= 0)
2230                         break;
2231                 prog++;
2232                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2233                 sc->age_cdata.age_tx_cnt--;
2234                 txd = &sc->age_cdata.age_txdesc[cons];
2235                 /*
2236                  * Clear Tx descriptors, it's not required but would
2237                  * help debugging in case of Tx issues.
2238                  */
2239                 txd->tx_desc->addr = 0;
2240                 txd->tx_desc->len = 0;
2241                 txd->tx_desc->flags = 0;
2242
2243                 if (txd->tx_m == NULL)
2244                         continue;
2245                 /* Reclaim transmitted mbufs. */
2246                 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2247                     BUS_DMASYNC_POSTWRITE);
2248                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2249                 m_freem(txd->tx_m);
2250                 txd->tx_m = NULL;
2251         }
2252
2253         if (prog > 0) {
2254                 sc->age_cdata.age_tx_cons = cons;
2255
2256                 /*
2257                  * Unarm watchdog timer only when there are no pending
2258                  * Tx descriptors in queue.
2259                  */
2260                 if (sc->age_cdata.age_tx_cnt == 0)
2261                         sc->age_watchdog_timer = 0;
2262                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2263                     sc->age_cdata.age_tx_ring_map,
2264                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2265         }
2266 }
2267
2268 #ifndef __NO_STRICT_ALIGNMENT
2269 static struct mbuf *
2270 age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2271 {
2272         struct mbuf *n;
2273         int i;
2274         uint16_t *src, *dst;
2275
2276         src = mtod(m, uint16_t *);
2277         dst = src - 3;
2278
2279         if (m->m_next == NULL) {
2280                 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2281                         *dst++ = *src++;
2282                 m->m_data -= 6;
2283                 return (m);
2284         }
2285         /*
2286          * Append a new mbuf to received mbuf chain and copy ethernet
2287          * header from the mbuf chain. This can save lots of CPU
2288          * cycles for jumbo frame.
2289          */
2290         MGETHDR(n, M_NOWAIT, MT_DATA);
2291         if (n == NULL) {
2292                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2293                 m_freem(m);
2294                 return (NULL);
2295         }
2296         bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2297         m->m_data += ETHER_HDR_LEN;
2298         m->m_len -= ETHER_HDR_LEN;
2299         n->m_len = ETHER_HDR_LEN;
2300         M_MOVE_PKTHDR(n, m);
2301         n->m_next = m;
2302         return (n);
2303 }
2304 #endif
2305
2306 /* Receive a frame. */
2307 static void
2308 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2309 {
2310         struct age_rxdesc *rxd;
2311         struct ifnet *ifp;
2312         struct mbuf *mp, *m;
2313         uint32_t status, index, vtag;
2314         int count, nsegs;
2315         int rx_cons;
2316
2317         AGE_LOCK_ASSERT(sc);
2318
2319         ifp = sc->age_ifp;
2320         status = le32toh(rxrd->flags);
2321         index = le32toh(rxrd->index);
2322         rx_cons = AGE_RX_CONS(index);
2323         nsegs = AGE_RX_NSEGS(index);
2324
2325         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2326         if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2327                 /*
2328                  * We want to pass the following frames to upper
2329                  * layer regardless of error status of Rx return
2330                  * ring.
2331                  *
2332                  *  o IP/TCP/UDP checksum is bad.
2333                  *  o frame length and protocol specific length
2334                  *     does not match.
2335                  */
2336                 status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2337                 if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2338                     AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2339                         return;
2340         }
2341
2342         for (count = 0; count < nsegs; count++,
2343             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2344                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2345                 mp = rxd->rx_m;
2346                 /* Add a new receive buffer to the ring. */
2347                 if (age_newbuf(sc, rxd) != 0) {
2348                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2349                         /* Reuse Rx buffers. */
2350                         if (sc->age_cdata.age_rxhead != NULL)
2351                                 m_freem(sc->age_cdata.age_rxhead);
2352                         break;
2353                 }
2354
2355                 /*
2356                  * Assume we've received a full sized frame.
2357                  * Actual size is fixed when we encounter the end of
2358                  * multi-segmented frame.
2359                  */
2360                 mp->m_len = AGE_RX_BUF_SIZE;
2361
2362                 /* Chain received mbufs. */
2363                 if (sc->age_cdata.age_rxhead == NULL) {
2364                         sc->age_cdata.age_rxhead = mp;
2365                         sc->age_cdata.age_rxtail = mp;
2366                 } else {
2367                         mp->m_flags &= ~M_PKTHDR;
2368                         sc->age_cdata.age_rxprev_tail =
2369                             sc->age_cdata.age_rxtail;
2370                         sc->age_cdata.age_rxtail->m_next = mp;
2371                         sc->age_cdata.age_rxtail = mp;
2372                 }
2373
2374                 if (count == nsegs - 1) {
2375                         /* Last desc. for this frame. */
2376                         m = sc->age_cdata.age_rxhead;
2377                         m->m_flags |= M_PKTHDR;
2378                         /*
2379                          * It seems that L1 controller has no way
2380                          * to tell hardware to strip CRC bytes.
2381                          */
2382                         m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2383                             ETHER_CRC_LEN;
2384                         if (nsegs > 1) {
2385                                 /* Set last mbuf size. */
2386                                 mp->m_len = sc->age_cdata.age_rxlen -
2387                                     ((nsegs - 1) * AGE_RX_BUF_SIZE);
2388                                 /* Remove the CRC bytes in chained mbufs. */
2389                                 if (mp->m_len <= ETHER_CRC_LEN) {
2390                                         sc->age_cdata.age_rxtail =
2391                                             sc->age_cdata.age_rxprev_tail;
2392                                         sc->age_cdata.age_rxtail->m_len -=
2393                                             (ETHER_CRC_LEN - mp->m_len);
2394                                         sc->age_cdata.age_rxtail->m_next = NULL;
2395                                         m_freem(mp);
2396                                 } else {
2397                                         mp->m_len -= ETHER_CRC_LEN;
2398                                 }
2399                         } else
2400                                 m->m_len = m->m_pkthdr.len;
2401                         m->m_pkthdr.rcvif = ifp;
2402                         /*
2403                          * Set checksum information.
2404                          * It seems that L1 controller can compute partial
2405                          * checksum. The partial checksum value can be used
2406                          * to accelerate checksum computation for fragmented
2407                          * TCP/UDP packets. Upper network stack already
2408                          * takes advantage of the partial checksum value in
2409                          * IP reassembly stage. But I'm not sure the
2410                          * correctness of the partial hardware checksum
2411                          * assistance due to lack of data sheet. If it is
2412                          * proven to work on L1 I'll enable it.
2413                          */
2414                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2415                             (status & AGE_RRD_IPV4) != 0) {
2416                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2417                                         m->m_pkthdr.csum_flags |=
2418                                             CSUM_IP_CHECKED | CSUM_IP_VALID;
2419                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2420                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2421                                         m->m_pkthdr.csum_flags |=
2422                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2423                                         m->m_pkthdr.csum_data = 0xffff;
2424                                 }
2425                                 /*
2426                                  * Don't mark bad checksum for TCP/UDP frames
2427                                  * as fragmented frames may always have set
2428                                  * bad checksummed bit of descriptor status.
2429                                  */
2430                         }
2431
2432                         /* Check for VLAN tagged frames. */
2433                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2434                             (status & AGE_RRD_VLAN) != 0) {
2435                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2436                                 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2437                                 m->m_flags |= M_VLANTAG;
2438                         }
2439 #ifndef __NO_STRICT_ALIGNMENT
2440                         m = age_fixup_rx(ifp, m);
2441                         if (m != NULL)
2442 #endif
2443                         {
2444                         /* Pass it on. */
2445                         AGE_UNLOCK(sc);
2446                         (*ifp->if_input)(ifp, m);
2447                         AGE_LOCK(sc);
2448                         }
2449                 }
2450         }
2451
2452         /* Reset mbuf chains. */
2453         AGE_RXCHAIN_RESET(sc);
2454 }
2455
2456 static int
2457 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2458 {
2459         struct rx_rdesc *rxrd;
2460         int rr_cons, nsegs, pktlen, prog;
2461
2462         AGE_LOCK_ASSERT(sc);
2463
2464         rr_cons = sc->age_cdata.age_rr_cons;
2465         if (rr_cons == rr_prod)
2466                 return (0);
2467
2468         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2469             sc->age_cdata.age_rr_ring_map,
2470             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2471         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2472             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2473
2474         for (prog = 0; rr_cons != rr_prod; prog++) {
2475                 if (count-- <= 0)
2476                         break;
2477                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2478                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2479                 if (nsegs == 0)
2480                         break;
2481                 /*
2482                  * Check number of segments against received bytes.
2483                  * Non-matching value would indicate that hardware
2484                  * is still trying to update Rx return descriptors.
2485                  * I'm not sure whether this check is really needed.
2486                  */
2487                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2488                 if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2489                         break;
2490
2491                 /* Received a frame. */
2492                 age_rxeof(sc, rxrd);
2493                 /* Clear return ring. */
2494                 rxrd->index = 0;
2495                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2496                 sc->age_cdata.age_rx_cons += nsegs;
2497                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2498         }
2499
2500         if (prog > 0) {
2501                 /* Update the consumer index. */
2502                 sc->age_cdata.age_rr_cons = rr_cons;
2503
2504                 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2505                     sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2506                 /* Sync descriptors. */
2507                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2508                     sc->age_cdata.age_rr_ring_map,
2509                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2510
2511                 /* Notify hardware availability of new Rx buffers. */
2512                 AGE_COMMIT_MBOX(sc);
2513         }
2514
2515         return (count > 0 ? 0 : EAGAIN);
2516 }
2517
2518 static void
2519 age_tick(void *arg)
2520 {
2521         struct age_softc *sc;
2522         struct mii_data *mii;
2523
2524         sc = (struct age_softc *)arg;
2525
2526         AGE_LOCK_ASSERT(sc);
2527
2528         mii = device_get_softc(sc->age_miibus);
2529         mii_tick(mii);
2530         age_watchdog(sc);
2531         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2532 }
2533
2534 static void
2535 age_reset(struct age_softc *sc)
2536 {
2537         uint32_t reg;
2538         int i;
2539
2540         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2541         CSR_READ_4(sc, AGE_MASTER_CFG);
2542         DELAY(1000);
2543         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2544                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2545                         break;
2546                 DELAY(10);
2547         }
2548
2549         if (i == 0)
2550                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2551         /* Initialize PCIe module. From Linux. */
2552         CSR_WRITE_4(sc, 0x12FC, 0x6500);
2553         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2554 }
2555
2556 static void
2557 age_init(void *xsc)
2558 {
2559         struct age_softc *sc;
2560
2561         sc = (struct age_softc *)xsc;
2562         AGE_LOCK(sc);
2563         age_init_locked(sc);
2564         AGE_UNLOCK(sc);
2565 }
2566
2567 static void
2568 age_init_locked(struct age_softc *sc)
2569 {
2570         struct ifnet *ifp;
2571         struct mii_data *mii;
2572         uint8_t eaddr[ETHER_ADDR_LEN];
2573         bus_addr_t paddr;
2574         uint32_t reg, fsize;
2575         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2576         int error;
2577
2578         AGE_LOCK_ASSERT(sc);
2579
2580         ifp = sc->age_ifp;
2581         mii = device_get_softc(sc->age_miibus);
2582
2583         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2584                 return;
2585
2586         /*
2587          * Cancel any pending I/O.
2588          */
2589         age_stop(sc);
2590
2591         /*
2592          * Reset the chip to a known state.
2593          */
2594         age_reset(sc);
2595
2596         /* Initialize descriptors. */
2597         error = age_init_rx_ring(sc);
2598         if (error != 0) {
2599                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2600                 age_stop(sc);
2601                 return;
2602         }
2603         age_init_rr_ring(sc);
2604         age_init_tx_ring(sc);
2605         age_init_cmb_block(sc);
2606         age_init_smb_block(sc);
2607
2608         /* Reprogram the station address. */
2609         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2610         CSR_WRITE_4(sc, AGE_PAR0,
2611             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2612         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2613
2614         /* Set descriptor base addresses. */
2615         paddr = sc->age_rdata.age_tx_ring_paddr;
2616         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2617         paddr = sc->age_rdata.age_rx_ring_paddr;
2618         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2619         paddr = sc->age_rdata.age_rr_ring_paddr;
2620         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2621         paddr = sc->age_rdata.age_tx_ring_paddr;
2622         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2623         paddr = sc->age_rdata.age_cmb_block_paddr;
2624         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2625         paddr = sc->age_rdata.age_smb_block_paddr;
2626         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2627         /* Set Rx/Rx return descriptor counter. */
2628         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2629             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2630             DESC_RRD_CNT_MASK) |
2631             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2632         /* Set Tx descriptor counter. */
2633         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2634             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2635
2636         /* Tell hardware that we're ready to load descriptors. */
2637         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2638
2639         /*
2640          * Initialize mailbox register.
2641          * Updated producer/consumer index information is exchanged
2642          * through this mailbox register. However Tx producer and
2643          * Rx return consumer/Rx producer are all shared such that
2644          * it's hard to separate code path between Tx and Rx without
2645          * locking. If L1 hardware have a separate mail box register
2646          * for Tx and Rx consumer/producer management we could have
2647          * indepent Tx/Rx handler which in turn Rx handler could have
2648          * been run without any locking.
2649          */
2650         AGE_COMMIT_MBOX(sc);
2651
2652         /* Configure IPG/IFG parameters. */
2653         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2654             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2655             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2656             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2657             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2658
2659         /* Set parameters for half-duplex media. */
2660         CSR_WRITE_4(sc, AGE_HDPX_CFG,
2661             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2662             HDPX_CFG_LCOL_MASK) |
2663             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2664             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2665             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2666             HDPX_CFG_ABEBT_MASK) |
2667             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2668             HDPX_CFG_JAMIPG_MASK));
2669
2670         /* Configure interrupt moderation timer. */
2671         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2672         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2673         reg &= ~MASTER_MTIMER_ENB;
2674         if (AGE_USECS(sc->age_int_mod) == 0)
2675                 reg &= ~MASTER_ITIMER_ENB;
2676         else
2677                 reg |= MASTER_ITIMER_ENB;
2678         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2679         if (bootverbose)
2680                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2681                     sc->age_int_mod);
2682         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2683
2684         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2685         if (ifp->if_mtu < ETHERMTU)
2686                 sc->age_max_frame_size = ETHERMTU;
2687         else
2688                 sc->age_max_frame_size = ifp->if_mtu;
2689         sc->age_max_frame_size += ETHER_HDR_LEN +
2690             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2691         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2692         /* Configure jumbo frame. */
2693         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2694         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2695             (((fsize / sizeof(uint64_t)) <<
2696             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2697             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2698             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2699             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2700             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2701
2702         /* Configure flow-control parameters. From Linux. */
2703         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2704                 /*
2705                  * Magic workaround for old-L1.
2706                  * Don't know which hw revision requires this magic.
2707                  */
2708                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
2709                 /*
2710                  * Another magic workaround for flow-control mode
2711                  * change. From Linux.
2712                  */
2713                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2714         }
2715         /*
2716          * TODO
2717          *  Should understand pause parameter relationships between FIFO
2718          *  size and number of Rx descriptors and Rx return descriptors.
2719          *
2720          *  Magic parameters came from Linux.
2721          */
2722         switch (sc->age_chip_rev) {
2723         case 0x8001:
2724         case 0x9001:
2725         case 0x9002:
2726         case 0x9003:
2727                 rxf_hi = AGE_RX_RING_CNT / 16;
2728                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2729                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2730                 rrd_lo = AGE_RR_RING_CNT / 16;
2731                 break;
2732         default:
2733                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2734                 rxf_lo = reg / 16;
2735                 if (rxf_lo < 192)
2736                         rxf_lo = 192;
2737                 rxf_hi = (reg * 7) / 8;
2738                 if (rxf_hi < rxf_lo)
2739                         rxf_hi = rxf_lo + 16;
2740                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2741                 rrd_lo = reg / 8;
2742                 rrd_hi = (reg * 7) / 8;
2743                 if (rrd_lo < 2)
2744                         rrd_lo = 2;
2745                 if (rrd_hi < rrd_lo)
2746                         rrd_hi = rrd_lo + 3;
2747                 break;
2748         }
2749         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2750             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2751             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2752             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2753             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2754         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2755             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2756             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2757             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2758             RXQ_RRD_PAUSE_THRESH_HI_MASK));
2759
2760         /* Configure RxQ. */
2761         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2762             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2763             RXQ_CFG_RD_BURST_MASK) |
2764             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2765             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2766             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2767             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2768             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2769
2770         /* Configure TxQ. */
2771         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2772             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2773             TXQ_CFG_TPD_BURST_MASK) |
2774             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2775             TXQ_CFG_TX_FIFO_BURST_MASK) |
2776             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2777             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2778             TXQ_CFG_ENB);
2779
2780         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2781             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2782             TX_JUMBO_TPD_TH_MASK) |
2783             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2784             TX_JUMBO_TPD_IPG_MASK));
2785         /* Configure DMA parameters. */
2786         CSR_WRITE_4(sc, AGE_DMA_CFG,
2787             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2788             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2789             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2790
2791         /* Configure CMB DMA write threshold. */
2792         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2793             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2794             CMB_WR_THRESH_RRD_MASK) |
2795             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2796             CMB_WR_THRESH_TPD_MASK));
2797
2798         /* Set CMB/SMB timer and enable them. */
2799         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2800             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2801             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2802         /* Request SMB updates for every seconds. */
2803         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2804         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2805
2806         /*
2807          * Disable all WOL bits as WOL can interfere normal Rx
2808          * operation.
2809          */
2810         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2811
2812         /*
2813          * Configure Tx/Rx MACs.
2814          *  - Auto-padding for short frames.
2815          *  - Enable CRC generation.
2816          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2817          *  of MAC is followed after link establishment.
2818          */
2819         CSR_WRITE_4(sc, AGE_MAC_CFG,
2820             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2821             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2822             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2823             MAC_CFG_PREAMBLE_MASK));
2824         /* Set up the receive filter. */
2825         age_rxfilter(sc);
2826         age_rxvlan(sc);
2827
2828         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2829         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2830                 reg |= MAC_CFG_RXCSUM_ENB;
2831
2832         /* Ack all pending interrupts and clear it. */
2833         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2834         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2835
2836         /* Finally enable Tx/Rx MAC. */
2837         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2838
2839         sc->age_flags &= ~AGE_FLAG_LINK;
2840         /* Switch to the current media. */
2841         mii_mediachg(mii);
2842
2843         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2844
2845         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2846         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2847 }
2848
2849 static void
2850 age_stop(struct age_softc *sc)
2851 {
2852         struct ifnet *ifp;
2853         struct age_txdesc *txd;
2854         struct age_rxdesc *rxd;
2855         uint32_t reg;
2856         int i;
2857
2858         AGE_LOCK_ASSERT(sc);
2859         /*
2860          * Mark the interface down and cancel the watchdog timer.
2861          */
2862         ifp = sc->age_ifp;
2863         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2864         sc->age_flags &= ~AGE_FLAG_LINK;
2865         callout_stop(&sc->age_tick_ch);
2866         sc->age_watchdog_timer = 0;
2867
2868         /*
2869          * Disable interrupts.
2870          */
2871         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2872         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2873         /* Stop CMB/SMB updates. */
2874         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2875         /* Stop Rx/Tx MAC. */
2876         age_stop_rxmac(sc);
2877         age_stop_txmac(sc);
2878         /* Stop DMA. */
2879         CSR_WRITE_4(sc, AGE_DMA_CFG,
2880             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2881         /* Stop TxQ/RxQ. */
2882         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2883             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2884         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2885             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2886         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2887                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2888                         break;
2889                 DELAY(10);
2890         }
2891         if (i == 0)
2892                 device_printf(sc->age_dev,
2893                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2894
2895          /* Reclaim Rx buffers that have been processed. */
2896         if (sc->age_cdata.age_rxhead != NULL)
2897                 m_freem(sc->age_cdata.age_rxhead);
2898         AGE_RXCHAIN_RESET(sc);
2899         /*
2900          * Free RX and TX mbufs still in the queues.
2901          */
2902         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2903                 rxd = &sc->age_cdata.age_rxdesc[i];
2904                 if (rxd->rx_m != NULL) {
2905                         bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2906                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2907                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2908                             rxd->rx_dmamap);
2909                         m_freem(rxd->rx_m);
2910                         rxd->rx_m = NULL;
2911                 }
2912         }
2913         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2914                 txd = &sc->age_cdata.age_txdesc[i];
2915                 if (txd->tx_m != NULL) {
2916                         bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2917                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2918                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2919                             txd->tx_dmamap);
2920                         m_freem(txd->tx_m);
2921                         txd->tx_m = NULL;
2922                 }
2923         }
2924 }
2925
2926 static void
2927 age_stop_txmac(struct age_softc *sc)
2928 {
2929         uint32_t reg;
2930         int i;
2931
2932         AGE_LOCK_ASSERT(sc);
2933
2934         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2935         if ((reg & MAC_CFG_TX_ENB) != 0) {
2936                 reg &= ~MAC_CFG_TX_ENB;
2937                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2938         }
2939         /* Stop Tx DMA engine. */
2940         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2941         if ((reg & DMA_CFG_RD_ENB) != 0) {
2942                 reg &= ~DMA_CFG_RD_ENB;
2943                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2944         }
2945         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2946                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2947                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2948                         break;
2949                 DELAY(10);
2950         }
2951         if (i == 0)
2952                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2953 }
2954
2955 static void
2956 age_stop_rxmac(struct age_softc *sc)
2957 {
2958         uint32_t reg;
2959         int i;
2960
2961         AGE_LOCK_ASSERT(sc);
2962
2963         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2964         if ((reg & MAC_CFG_RX_ENB) != 0) {
2965                 reg &= ~MAC_CFG_RX_ENB;
2966                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2967         }
2968         /* Stop Rx DMA engine. */
2969         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2970         if ((reg & DMA_CFG_WR_ENB) != 0) {
2971                 reg &= ~DMA_CFG_WR_ENB;
2972                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2973         }
2974         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2975                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2976                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2977                         break;
2978                 DELAY(10);
2979         }
2980         if (i == 0)
2981                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2982 }
2983
2984 static void
2985 age_init_tx_ring(struct age_softc *sc)
2986 {
2987         struct age_ring_data *rd;
2988         struct age_txdesc *txd;
2989         int i;
2990
2991         AGE_LOCK_ASSERT(sc);
2992
2993         sc->age_cdata.age_tx_prod = 0;
2994         sc->age_cdata.age_tx_cons = 0;
2995         sc->age_cdata.age_tx_cnt = 0;
2996
2997         rd = &sc->age_rdata;
2998         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2999         for (i = 0; i < AGE_TX_RING_CNT; i++) {
3000                 txd = &sc->age_cdata.age_txdesc[i];
3001                 txd->tx_desc = &rd->age_tx_ring[i];
3002                 txd->tx_m = NULL;
3003         }
3004
3005         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3006             sc->age_cdata.age_tx_ring_map,
3007             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3008 }
3009
3010 static int
3011 age_init_rx_ring(struct age_softc *sc)
3012 {
3013         struct age_ring_data *rd;
3014         struct age_rxdesc *rxd;
3015         int i;
3016
3017         AGE_LOCK_ASSERT(sc);
3018
3019         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3020         sc->age_morework = 0;
3021         rd = &sc->age_rdata;
3022         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3023         for (i = 0; i < AGE_RX_RING_CNT; i++) {
3024                 rxd = &sc->age_cdata.age_rxdesc[i];
3025                 rxd->rx_m = NULL;
3026                 rxd->rx_desc = &rd->age_rx_ring[i];
3027                 if (age_newbuf(sc, rxd) != 0)
3028                         return (ENOBUFS);
3029         }
3030
3031         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3032             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3033
3034         return (0);
3035 }
3036
3037 static void
3038 age_init_rr_ring(struct age_softc *sc)
3039 {
3040         struct age_ring_data *rd;
3041
3042         AGE_LOCK_ASSERT(sc);
3043
3044         sc->age_cdata.age_rr_cons = 0;
3045         AGE_RXCHAIN_RESET(sc);
3046
3047         rd = &sc->age_rdata;
3048         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3049         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3050             sc->age_cdata.age_rr_ring_map,
3051             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3052 }
3053
3054 static void
3055 age_init_cmb_block(struct age_softc *sc)
3056 {
3057         struct age_ring_data *rd;
3058
3059         AGE_LOCK_ASSERT(sc);
3060
3061         rd = &sc->age_rdata;
3062         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3063         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3064             sc->age_cdata.age_cmb_block_map,
3065             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3066 }
3067
3068 static void
3069 age_init_smb_block(struct age_softc *sc)
3070 {
3071         struct age_ring_data *rd;
3072
3073         AGE_LOCK_ASSERT(sc);
3074
3075         rd = &sc->age_rdata;
3076         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3077         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3078             sc->age_cdata.age_smb_block_map,
3079             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3080 }
3081
3082 static int
3083 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3084 {
3085         struct rx_desc *desc;
3086         struct mbuf *m;
3087         bus_dma_segment_t segs[1];
3088         bus_dmamap_t map;
3089         int nsegs;
3090
3091         AGE_LOCK_ASSERT(sc);
3092
3093         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3094         if (m == NULL)
3095                 return (ENOBUFS);
3096         m->m_len = m->m_pkthdr.len = MCLBYTES;
3097 #ifndef __NO_STRICT_ALIGNMENT
3098         m_adj(m, AGE_RX_BUF_ALIGN);
3099 #endif
3100
3101         if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3102             sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3103                 m_freem(m);
3104                 return (ENOBUFS);
3105         }
3106         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3107
3108         if (rxd->rx_m != NULL) {
3109                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3110                     BUS_DMASYNC_POSTREAD);
3111                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3112         }
3113         map = rxd->rx_dmamap;
3114         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3115         sc->age_cdata.age_rx_sparemap = map;
3116         bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3117             BUS_DMASYNC_PREREAD);
3118         rxd->rx_m = m;
3119
3120         desc = rxd->rx_desc;
3121         desc->addr = htole64(segs[0].ds_addr);
3122         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3123             AGE_RD_LEN_SHIFT);
3124         return (0);
3125 }
3126
3127 static void
3128 age_rxvlan(struct age_softc *sc)
3129 {
3130         struct ifnet *ifp;
3131         uint32_t reg;
3132
3133         AGE_LOCK_ASSERT(sc);
3134
3135         ifp = sc->age_ifp;
3136         reg = CSR_READ_4(sc, AGE_MAC_CFG);
3137         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3138         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3139                 reg |= MAC_CFG_VLAN_TAG_STRIP;
3140         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3141 }
3142
3143 static void
3144 age_rxfilter(struct age_softc *sc)
3145 {
3146         struct ifnet *ifp;
3147         struct ifmultiaddr *ifma;
3148         uint32_t crc;
3149         uint32_t mchash[2];
3150         uint32_t rxcfg;
3151
3152         AGE_LOCK_ASSERT(sc);
3153
3154         ifp = sc->age_ifp;
3155
3156         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3157         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3158         if ((ifp->if_flags & IFF_BROADCAST) != 0)
3159                 rxcfg |= MAC_CFG_BCAST;
3160         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3161                 if ((ifp->if_flags & IFF_PROMISC) != 0)
3162                         rxcfg |= MAC_CFG_PROMISC;
3163                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3164                         rxcfg |= MAC_CFG_ALLMULTI;
3165                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3166                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3167                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3168                 return;
3169         }
3170
3171         /* Program new filter. */
3172         bzero(mchash, sizeof(mchash));
3173
3174         if_maddr_rlock(ifp);
3175         CK_STAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3176                 if (ifma->ifma_addr->sa_family != AF_LINK)
3177                         continue;
3178                 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3179                     ifma->ifma_addr), ETHER_ADDR_LEN);
3180                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3181         }
3182         if_maddr_runlock(ifp);
3183
3184         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3185         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3186         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3187 }
3188
3189 static int
3190 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3191 {
3192         struct age_softc *sc;
3193         struct age_stats *stats;
3194         int error, result;
3195
3196         result = -1;
3197         error = sysctl_handle_int(oidp, &result, 0, req);
3198
3199         if (error != 0 || req->newptr == NULL)
3200                 return (error);
3201
3202         if (result != 1)
3203                 return (error);
3204
3205         sc = (struct age_softc *)arg1;
3206         stats = &sc->age_stat;
3207         printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3208         printf("Transmit good frames : %ju\n",
3209             (uintmax_t)stats->tx_frames);
3210         printf("Transmit good broadcast frames : %ju\n",
3211             (uintmax_t)stats->tx_bcast_frames);
3212         printf("Transmit good multicast frames : %ju\n",
3213             (uintmax_t)stats->tx_mcast_frames);
3214         printf("Transmit pause control frames : %u\n",
3215             stats->tx_pause_frames);
3216         printf("Transmit control frames : %u\n",
3217             stats->tx_control_frames);
3218         printf("Transmit frames with excessive deferrals : %u\n",
3219             stats->tx_excess_defer);
3220         printf("Transmit deferrals : %u\n",
3221             stats->tx_deferred);
3222         printf("Transmit good octets : %ju\n",
3223             (uintmax_t)stats->tx_bytes);
3224         printf("Transmit good broadcast octets : %ju\n",
3225             (uintmax_t)stats->tx_bcast_bytes);
3226         printf("Transmit good multicast octets : %ju\n",
3227             (uintmax_t)stats->tx_mcast_bytes);
3228         printf("Transmit frames 64 bytes : %ju\n",
3229             (uintmax_t)stats->tx_pkts_64);
3230         printf("Transmit frames 65 to 127 bytes : %ju\n",
3231             (uintmax_t)stats->tx_pkts_65_127);
3232         printf("Transmit frames 128 to 255 bytes : %ju\n",
3233             (uintmax_t)stats->tx_pkts_128_255);
3234         printf("Transmit frames 256 to 511 bytes : %ju\n",
3235             (uintmax_t)stats->tx_pkts_256_511);
3236         printf("Transmit frames 512 to 1024 bytes : %ju\n",
3237             (uintmax_t)stats->tx_pkts_512_1023);
3238         printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3239             (uintmax_t)stats->tx_pkts_1024_1518);
3240         printf("Transmit frames 1519 to MTU bytes : %ju\n",
3241             (uintmax_t)stats->tx_pkts_1519_max);
3242         printf("Transmit single collisions : %u\n",
3243             stats->tx_single_colls);
3244         printf("Transmit multiple collisions : %u\n",
3245             stats->tx_multi_colls);
3246         printf("Transmit late collisions : %u\n",
3247             stats->tx_late_colls);
3248         printf("Transmit abort due to excessive collisions : %u\n",
3249             stats->tx_excess_colls);
3250         printf("Transmit underruns due to FIFO underruns : %u\n",
3251             stats->tx_underrun);
3252         printf("Transmit descriptor write-back errors : %u\n",
3253             stats->tx_desc_underrun);
3254         printf("Transmit frames with length mismatched frame size : %u\n",
3255             stats->tx_lenerrs);
3256         printf("Transmit frames with truncated due to MTU size : %u\n",
3257             stats->tx_lenerrs);
3258
3259         printf("Receive good frames : %ju\n",
3260             (uintmax_t)stats->rx_frames);
3261         printf("Receive good broadcast frames : %ju\n",
3262             (uintmax_t)stats->rx_bcast_frames);
3263         printf("Receive good multicast frames : %ju\n",
3264             (uintmax_t)stats->rx_mcast_frames);
3265         printf("Receive pause control frames : %u\n",
3266             stats->rx_pause_frames);
3267         printf("Receive control frames : %u\n",
3268             stats->rx_control_frames);
3269         printf("Receive CRC errors : %u\n",
3270             stats->rx_crcerrs);
3271         printf("Receive frames with length errors : %u\n",
3272             stats->rx_lenerrs);
3273         printf("Receive good octets : %ju\n",
3274             (uintmax_t)stats->rx_bytes);
3275         printf("Receive good broadcast octets : %ju\n",
3276             (uintmax_t)stats->rx_bcast_bytes);
3277         printf("Receive good multicast octets : %ju\n",
3278             (uintmax_t)stats->rx_mcast_bytes);
3279         printf("Receive frames too short : %u\n",
3280             stats->rx_runts);
3281         printf("Receive fragmented frames : %ju\n",
3282             (uintmax_t)stats->rx_fragments);
3283         printf("Receive frames 64 bytes : %ju\n",
3284             (uintmax_t)stats->rx_pkts_64);
3285         printf("Receive frames 65 to 127 bytes : %ju\n",
3286             (uintmax_t)stats->rx_pkts_65_127);
3287         printf("Receive frames 128 to 255 bytes : %ju\n",
3288             (uintmax_t)stats->rx_pkts_128_255);
3289         printf("Receive frames 256 to 511 bytes : %ju\n",
3290             (uintmax_t)stats->rx_pkts_256_511);
3291         printf("Receive frames 512 to 1024 bytes : %ju\n",
3292             (uintmax_t)stats->rx_pkts_512_1023);
3293         printf("Receive frames 1024 to 1518 bytes : %ju\n",
3294             (uintmax_t)stats->rx_pkts_1024_1518);
3295         printf("Receive frames 1519 to MTU bytes : %ju\n",
3296             (uintmax_t)stats->rx_pkts_1519_max);
3297         printf("Receive frames too long : %ju\n",
3298             (uint64_t)stats->rx_pkts_truncated);
3299         printf("Receive frames with FIFO overflow : %u\n",
3300             stats->rx_fifo_oflows);
3301         printf("Receive frames with return descriptor overflow : %u\n",
3302             stats->rx_desc_oflows);
3303         printf("Receive frames with alignment errors : %u\n",
3304             stats->rx_alignerrs);
3305         printf("Receive frames dropped due to address filtering : %ju\n",
3306             (uint64_t)stats->rx_pkts_filtered);
3307
3308         return (error);
3309 }
3310
3311 static int
3312 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3313 {
3314         int error, value;
3315
3316         if (arg1 == NULL)
3317                 return (EINVAL);
3318         value = *(int *)arg1;
3319         error = sysctl_handle_int(oidp, &value, 0, req);
3320         if (error || req->newptr == NULL)
3321                 return (error);
3322         if (value < low || value > high)
3323                 return (EINVAL);
3324         *(int *)arg1 = value;
3325
3326         return (0);
3327 }
3328
3329 static int
3330 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3331 {
3332         return (sysctl_int_range(oidp, arg1, arg2, req,
3333             AGE_PROC_MIN, AGE_PROC_MAX));
3334 }
3335
3336 static int
3337 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3338 {
3339
3340         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3341             AGE_IM_TIMER_MAX));
3342 }