]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/age/if_age.c
Update llvm, clang, lld and lldb to release_39 branch r288513.
[FreeBSD/FreeBSD.git] / sys / dev / age / if_age.c
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68
69 #include <machine/bus.h>
70 #include <machine/in_cksum.h>
71
72 #include <dev/age/if_agereg.h>
73 #include <dev/age/if_agevar.h>
74
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77
78 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
79
80 MODULE_DEPEND(age, pci, 1, 1, 1);
81 MODULE_DEPEND(age, ether, 1, 1, 1);
82 MODULE_DEPEND(age, miibus, 1, 1, 1);
83
84 /* Tunables. */
85 static int msi_disable = 0;
86 static int msix_disable = 0;
87 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
88 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
89
90 /*
91  * Devices supported by this driver.
92  */
93 static struct age_dev {
94         uint16_t        age_vendorid;
95         uint16_t        age_deviceid;
96         const char      *age_name;
97 } age_devs[] = {
98         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
99             "Attansic Technology Corp, L1 Gigabit Ethernet" },
100 };
101
102 static int age_miibus_readreg(device_t, int, int);
103 static int age_miibus_writereg(device_t, int, int, int);
104 static void age_miibus_statchg(device_t);
105 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
106 static int age_mediachange(struct ifnet *);
107 static int age_probe(device_t);
108 static void age_get_macaddr(struct age_softc *);
109 static void age_phy_reset(struct age_softc *);
110 static int age_attach(device_t);
111 static int age_detach(device_t);
112 static void age_sysctl_node(struct age_softc *);
113 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
114 static int age_check_boundary(struct age_softc *);
115 static int age_dma_alloc(struct age_softc *);
116 static void age_dma_free(struct age_softc *);
117 static int age_shutdown(device_t);
118 static void age_setwol(struct age_softc *);
119 static int age_suspend(device_t);
120 static int age_resume(device_t);
121 static int age_encap(struct age_softc *, struct mbuf **);
122 static void age_start(struct ifnet *);
123 static void age_start_locked(struct ifnet *);
124 static void age_watchdog(struct age_softc *);
125 static int age_ioctl(struct ifnet *, u_long, caddr_t);
126 static void age_mac_config(struct age_softc *);
127 static void age_link_task(void *, int);
128 static void age_stats_update(struct age_softc *);
129 static int age_intr(void *);
130 static void age_int_task(void *, int);
131 static void age_txintr(struct age_softc *, int);
132 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
133 static int age_rxintr(struct age_softc *, int, int);
134 static void age_tick(void *);
135 static void age_reset(struct age_softc *);
136 static void age_init(void *);
137 static void age_init_locked(struct age_softc *);
138 static void age_stop(struct age_softc *);
139 static void age_stop_txmac(struct age_softc *);
140 static void age_stop_rxmac(struct age_softc *);
141 static void age_init_tx_ring(struct age_softc *);
142 static int age_init_rx_ring(struct age_softc *);
143 static void age_init_rr_ring(struct age_softc *);
144 static void age_init_cmb_block(struct age_softc *);
145 static void age_init_smb_block(struct age_softc *);
146 #ifndef __NO_STRICT_ALIGNMENT
147 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
148 #endif
149 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
150 static void age_rxvlan(struct age_softc *);
151 static void age_rxfilter(struct age_softc *);
152 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
153 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
154 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
155 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
156
157
158 static device_method_t age_methods[] = {
159         /* Device interface. */
160         DEVMETHOD(device_probe,         age_probe),
161         DEVMETHOD(device_attach,        age_attach),
162         DEVMETHOD(device_detach,        age_detach),
163         DEVMETHOD(device_shutdown,      age_shutdown),
164         DEVMETHOD(device_suspend,       age_suspend),
165         DEVMETHOD(device_resume,        age_resume),
166
167         /* MII interface. */
168         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
169         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
170         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
171
172         { NULL, NULL }
173 };
174
175 static driver_t age_driver = {
176         "age",
177         age_methods,
178         sizeof(struct age_softc)
179 };
180
181 static devclass_t age_devclass;
182
183 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
184 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
185
186 static struct resource_spec age_res_spec_mem[] = {
187         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
188         { -1,                   0,              0 }
189 };
190
191 static struct resource_spec age_irq_spec_legacy[] = {
192         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
193         { -1,                   0,              0 }
194 };
195
196 static struct resource_spec age_irq_spec_msi[] = {
197         { SYS_RES_IRQ,          1,              RF_ACTIVE },
198         { -1,                   0,              0 }
199 };
200
201 static struct resource_spec age_irq_spec_msix[] = {
202         { SYS_RES_IRQ,          1,              RF_ACTIVE },
203         { -1,                   0,              0 }
204 };
205
206 /*
207  *      Read a PHY register on the MII of the L1.
208  */
209 static int
210 age_miibus_readreg(device_t dev, int phy, int reg)
211 {
212         struct age_softc *sc;
213         uint32_t v;
214         int i;
215
216         sc = device_get_softc(dev);
217
218         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
219             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
220         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
221                 DELAY(1);
222                 v = CSR_READ_4(sc, AGE_MDIO);
223                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
224                         break;
225         }
226
227         if (i == 0) {
228                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
229                 return (0);
230         }
231
232         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
233 }
234
235 /*
236  *      Write a PHY register on the MII of the L1.
237  */
238 static int
239 age_miibus_writereg(device_t dev, int phy, int reg, int val)
240 {
241         struct age_softc *sc;
242         uint32_t v;
243         int i;
244
245         sc = device_get_softc(dev);
246
247         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
248             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
249             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
250         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
251                 DELAY(1);
252                 v = CSR_READ_4(sc, AGE_MDIO);
253                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
254                         break;
255         }
256
257         if (i == 0)
258                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
259
260         return (0);
261 }
262
263 /*
264  *      Callback from MII layer when media changes.
265  */
266 static void
267 age_miibus_statchg(device_t dev)
268 {
269         struct age_softc *sc;
270
271         sc = device_get_softc(dev);
272         taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
273 }
274
275 /*
276  *      Get the current interface media status.
277  */
278 static void
279 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
280 {
281         struct age_softc *sc;
282         struct mii_data *mii;
283
284         sc = ifp->if_softc;
285         AGE_LOCK(sc);
286         mii = device_get_softc(sc->age_miibus);
287
288         mii_pollstat(mii);
289         ifmr->ifm_status = mii->mii_media_status;
290         ifmr->ifm_active = mii->mii_media_active;
291         AGE_UNLOCK(sc);
292 }
293
294 /*
295  *      Set hardware to newly-selected media.
296  */
297 static int
298 age_mediachange(struct ifnet *ifp)
299 {
300         struct age_softc *sc;
301         struct mii_data *mii;
302         struct mii_softc *miisc;
303         int error;
304
305         sc = ifp->if_softc;
306         AGE_LOCK(sc);
307         mii = device_get_softc(sc->age_miibus);
308         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
309                 PHY_RESET(miisc);
310         error = mii_mediachg(mii);
311         AGE_UNLOCK(sc);
312
313         return (error);
314 }
315
316 static int
317 age_probe(device_t dev)
318 {
319         struct age_dev *sp;
320         int i;
321         uint16_t vendor, devid;
322
323         vendor = pci_get_vendor(dev);
324         devid = pci_get_device(dev);
325         sp = age_devs;
326         for (i = 0; i < nitems(age_devs); i++, sp++) {
327                 if (vendor == sp->age_vendorid &&
328                     devid == sp->age_deviceid) {
329                         device_set_desc(dev, sp->age_name);
330                         return (BUS_PROBE_DEFAULT);
331                 }
332         }
333
334         return (ENXIO);
335 }
336
337 static void
338 age_get_macaddr(struct age_softc *sc)
339 {
340         uint32_t ea[2], reg;
341         int i, vpdc;
342
343         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
344         if ((reg & SPI_VPD_ENB) != 0) {
345                 /* Get VPD stored in TWSI EEPROM. */
346                 reg &= ~SPI_VPD_ENB;
347                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
348         }
349
350         if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
351                 /*
352                  * PCI VPD capability found, let TWSI reload EEPROM.
353                  * This will set ethernet address of controller.
354                  */
355                 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
356                     TWSI_CTRL_SW_LD_START);
357                 for (i = 100; i > 0; i--) {
358                         DELAY(1000);
359                         reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
360                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
361                                 break;
362                 }
363                 if (i == 0)
364                         device_printf(sc->age_dev,
365                             "reloading EEPROM timeout!\n");
366         } else {
367                 if (bootverbose)
368                         device_printf(sc->age_dev,
369                             "PCI VPD capability not found!\n");
370         }
371
372         ea[0] = CSR_READ_4(sc, AGE_PAR0);
373         ea[1] = CSR_READ_4(sc, AGE_PAR1);
374         sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
375         sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
376         sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
377         sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
378         sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
379         sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
380 }
381
382 static void
383 age_phy_reset(struct age_softc *sc)
384 {
385         uint16_t reg, pn;
386         int i, linkup;
387
388         /* Reset PHY. */
389         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
390         DELAY(2000);
391         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
392         DELAY(2000);
393
394 #define ATPHY_DBG_ADDR          0x1D
395 #define ATPHY_DBG_DATA          0x1E
396 #define ATPHY_CDTC              0x16
397 #define PHY_CDTC_ENB            0x0001
398 #define PHY_CDTC_POFF           8
399 #define ATPHY_CDTS              0x1C
400 #define PHY_CDTS_STAT_OK        0x0000
401 #define PHY_CDTS_STAT_SHORT     0x0100
402 #define PHY_CDTS_STAT_OPEN      0x0200
403 #define PHY_CDTS_STAT_INVAL     0x0300
404 #define PHY_CDTS_STAT_MASK      0x0300
405
406         /* Check power saving mode. Magic from Linux. */
407         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
408         for (linkup = 0, pn = 0; pn < 4; pn++) {
409                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
410                     (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
411                 for (i = 200; i > 0; i--) {
412                         DELAY(1000);
413                         reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
414                             ATPHY_CDTC);
415                         if ((reg & PHY_CDTC_ENB) == 0)
416                                 break;
417                 }
418                 DELAY(1000);
419                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
420                     ATPHY_CDTS);
421                 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
422                         linkup++;
423                         break;
424                 }
425         }
426         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
427             BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
428         if (linkup == 0) {
429                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
430                     ATPHY_DBG_ADDR, 0);
431                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
432                     ATPHY_DBG_DATA, 0x124E);
433                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
434                     ATPHY_DBG_ADDR, 1);
435                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
436                     ATPHY_DBG_DATA);
437                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438                     ATPHY_DBG_DATA, reg | 0x03);
439                 /* XXX */
440                 DELAY(1500 * 1000);
441                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
442                     ATPHY_DBG_ADDR, 0);
443                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
444                     ATPHY_DBG_DATA, 0x024E);
445     }
446
447 #undef  ATPHY_DBG_ADDR
448 #undef  ATPHY_DBG_DATA
449 #undef  ATPHY_CDTC
450 #undef  PHY_CDTC_ENB
451 #undef  PHY_CDTC_POFF
452 #undef  ATPHY_CDTS
453 #undef  PHY_CDTS_STAT_OK
454 #undef  PHY_CDTS_STAT_SHORT
455 #undef  PHY_CDTS_STAT_OPEN
456 #undef  PHY_CDTS_STAT_INVAL
457 #undef  PHY_CDTS_STAT_MASK
458 }
459
460 static int
461 age_attach(device_t dev)
462 {
463         struct age_softc *sc;
464         struct ifnet *ifp;
465         uint16_t burst;
466         int error, i, msic, msixc, pmc;
467
468         error = 0;
469         sc = device_get_softc(dev);
470         sc->age_dev = dev;
471
472         mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
473             MTX_DEF);
474         callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
475         TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
476         TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
477
478         /* Map the device. */
479         pci_enable_busmaster(dev);
480         sc->age_res_spec = age_res_spec_mem;
481         sc->age_irq_spec = age_irq_spec_legacy;
482         error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
483         if (error != 0) {
484                 device_printf(dev, "cannot allocate memory resources.\n");
485                 goto fail;
486         }
487
488         /* Set PHY address. */
489         sc->age_phyaddr = AGE_PHY_ADDR;
490
491         /* Reset PHY. */
492         age_phy_reset(sc);
493
494         /* Reset the ethernet controller. */
495         age_reset(sc);
496
497         /* Get PCI and chip id/revision. */
498         sc->age_rev = pci_get_revid(dev);
499         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
500             MASTER_CHIP_REV_SHIFT;
501         if (bootverbose) {
502                 device_printf(dev, "PCI device revision : 0x%04x\n",
503                     sc->age_rev);
504                 device_printf(dev, "Chip id/revision : 0x%04x\n",
505                     sc->age_chip_rev);
506         }
507
508         /*
509          * XXX
510          * Unintialized hardware returns an invalid chip id/revision
511          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
512          * unplugged cable results in putting hardware into automatic
513          * power down mode which in turn returns invalld chip revision.
514          */
515         if (sc->age_chip_rev == 0xFFFF) {
516                 device_printf(dev,"invalid chip revision : 0x%04x -- "
517                     "not initialized?\n", sc->age_chip_rev);
518                 error = ENXIO;
519                 goto fail;
520         }
521
522         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
523             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
524             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
525
526         /* Allocate IRQ resources. */
527         msixc = pci_msix_count(dev);
528         msic = pci_msi_count(dev);
529         if (bootverbose) {
530                 device_printf(dev, "MSIX count : %d\n", msixc);
531                 device_printf(dev, "MSI count : %d\n", msic);
532         }
533
534         /* Prefer MSIX over MSI. */
535         if (msix_disable == 0 || msi_disable == 0) {
536                 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
537                     pci_alloc_msix(dev, &msixc) == 0) {
538                         if (msic == AGE_MSIX_MESSAGES) {
539                                 device_printf(dev, "Using %d MSIX messages.\n",
540                                     msixc);
541                                 sc->age_flags |= AGE_FLAG_MSIX;
542                                 sc->age_irq_spec = age_irq_spec_msix;
543                         } else
544                                 pci_release_msi(dev);
545                 }
546                 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
547                     msic == AGE_MSI_MESSAGES &&
548                     pci_alloc_msi(dev, &msic) == 0) {
549                         if (msic == AGE_MSI_MESSAGES) {
550                                 device_printf(dev, "Using %d MSI messages.\n",
551                                     msic);
552                                 sc->age_flags |= AGE_FLAG_MSI;
553                                 sc->age_irq_spec = age_irq_spec_msi;
554                         } else
555                                 pci_release_msi(dev);
556                 }
557         }
558
559         error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
560         if (error != 0) {
561                 device_printf(dev, "cannot allocate IRQ resources.\n");
562                 goto fail;
563         }
564
565
566         /* Get DMA parameters from PCIe device control register. */
567         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
568                 sc->age_flags |= AGE_FLAG_PCIE;
569                 burst = pci_read_config(dev, i + 0x08, 2);
570                 /* Max read request size. */
571                 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
572                     DMA_CFG_RD_BURST_SHIFT;
573                 /* Max payload size. */
574                 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
575                     DMA_CFG_WR_BURST_SHIFT;
576                 if (bootverbose) {
577                         device_printf(dev, "Read request size : %d bytes.\n",
578                             128 << ((burst >> 12) & 0x07));
579                         device_printf(dev, "TLP payload size : %d bytes.\n",
580                             128 << ((burst >> 5) & 0x07));
581                 }
582         } else {
583                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
584                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
585         }
586
587         /* Create device sysctl node. */
588         age_sysctl_node(sc);
589
590         if ((error = age_dma_alloc(sc)) != 0)
591                 goto fail;
592
593         /* Load station address. */
594         age_get_macaddr(sc);
595
596         ifp = sc->age_ifp = if_alloc(IFT_ETHER);
597         if (ifp == NULL) {
598                 device_printf(dev, "cannot allocate ifnet structure.\n");
599                 error = ENXIO;
600                 goto fail;
601         }
602
603         ifp->if_softc = sc;
604         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
605         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
606         ifp->if_ioctl = age_ioctl;
607         ifp->if_start = age_start;
608         ifp->if_init = age_init;
609         ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
610         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
611         IFQ_SET_READY(&ifp->if_snd);
612         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
613         ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
614         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
615                 sc->age_flags |= AGE_FLAG_PMCAP;
616                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
617         }
618         ifp->if_capenable = ifp->if_capabilities;
619
620         /* Set up MII bus. */
621         error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
622             age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
623             0);
624         if (error != 0) {
625                 device_printf(dev, "attaching PHYs failed\n");
626                 goto fail;
627         }
628
629         ether_ifattach(ifp, sc->age_eaddr);
630
631         /* VLAN capability setup. */
632         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
633             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
634         ifp->if_capenable = ifp->if_capabilities;
635
636         /* Tell the upper layer(s) we support long frames. */
637         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
638
639         /* Create local taskq. */
640         sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
641             taskqueue_thread_enqueue, &sc->age_tq);
642         if (sc->age_tq == NULL) {
643                 device_printf(dev, "could not create taskqueue.\n");
644                 ether_ifdetach(ifp);
645                 error = ENXIO;
646                 goto fail;
647         }
648         taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
649             device_get_nameunit(sc->age_dev));
650
651         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
652                 msic = AGE_MSIX_MESSAGES;
653         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
654                 msic = AGE_MSI_MESSAGES;
655         else
656                 msic = 1;
657         for (i = 0; i < msic; i++) {
658                 error = bus_setup_intr(dev, sc->age_irq[i],
659                     INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
660                     &sc->age_intrhand[i]);
661                 if (error != 0)
662                         break;
663         }
664         if (error != 0) {
665                 device_printf(dev, "could not set up interrupt handler.\n");
666                 taskqueue_free(sc->age_tq);
667                 sc->age_tq = NULL;
668                 ether_ifdetach(ifp);
669                 goto fail;
670         }
671
672 fail:
673         if (error != 0)
674                 age_detach(dev);
675
676         return (error);
677 }
678
679 static int
680 age_detach(device_t dev)
681 {
682         struct age_softc *sc;
683         struct ifnet *ifp;
684         int i, msic;
685
686         sc = device_get_softc(dev);
687
688         ifp = sc->age_ifp;
689         if (device_is_attached(dev)) {
690                 AGE_LOCK(sc);
691                 sc->age_flags |= AGE_FLAG_DETACH;
692                 age_stop(sc);
693                 AGE_UNLOCK(sc);
694                 callout_drain(&sc->age_tick_ch);
695                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
696                 taskqueue_drain(taskqueue_swi, &sc->age_link_task);
697                 ether_ifdetach(ifp);
698         }
699
700         if (sc->age_tq != NULL) {
701                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
702                 taskqueue_free(sc->age_tq);
703                 sc->age_tq = NULL;
704         }
705
706         if (sc->age_miibus != NULL) {
707                 device_delete_child(dev, sc->age_miibus);
708                 sc->age_miibus = NULL;
709         }
710         bus_generic_detach(dev);
711         age_dma_free(sc);
712
713         if (ifp != NULL) {
714                 if_free(ifp);
715                 sc->age_ifp = NULL;
716         }
717
718         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
719                 msic = AGE_MSIX_MESSAGES;
720         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
721                 msic = AGE_MSI_MESSAGES;
722         else
723                 msic = 1;
724         for (i = 0; i < msic; i++) {
725                 if (sc->age_intrhand[i] != NULL) {
726                         bus_teardown_intr(dev, sc->age_irq[i],
727                             sc->age_intrhand[i]);
728                         sc->age_intrhand[i] = NULL;
729                 }
730         }
731
732         bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
733         if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
734                 pci_release_msi(dev);
735         bus_release_resources(dev, sc->age_res_spec, sc->age_res);
736         mtx_destroy(&sc->age_mtx);
737
738         return (0);
739 }
740
741 static void
742 age_sysctl_node(struct age_softc *sc)
743 {
744         int error;
745
746         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
747             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
748             "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
749             "I", "Statistics");
750
751         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
752             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
753             "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
754             sysctl_hw_age_int_mod, "I", "age interrupt moderation");
755
756         /* Pull in device tunables. */
757         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
758         error = resource_int_value(device_get_name(sc->age_dev),
759             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
760         if (error == 0) {
761                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
762                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
763                         device_printf(sc->age_dev,
764                             "int_mod value out of range; using default: %d\n",
765                             AGE_IM_TIMER_DEFAULT);
766                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
767                 }
768         }
769
770         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
771             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
772             "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
773             0, sysctl_hw_age_proc_limit, "I",
774             "max number of Rx events to process");
775
776         /* Pull in device tunables. */
777         sc->age_process_limit = AGE_PROC_DEFAULT;
778         error = resource_int_value(device_get_name(sc->age_dev),
779             device_get_unit(sc->age_dev), "process_limit",
780             &sc->age_process_limit);
781         if (error == 0) {
782                 if (sc->age_process_limit < AGE_PROC_MIN ||
783                     sc->age_process_limit > AGE_PROC_MAX) {
784                         device_printf(sc->age_dev,
785                             "process_limit value out of range; "
786                             "using default: %d\n", AGE_PROC_DEFAULT);
787                         sc->age_process_limit = AGE_PROC_DEFAULT;
788                 }
789         }
790 }
791
792 struct age_dmamap_arg {
793         bus_addr_t      age_busaddr;
794 };
795
796 static void
797 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
798 {
799         struct age_dmamap_arg *ctx;
800
801         if (error != 0)
802                 return;
803
804         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
805
806         ctx = (struct age_dmamap_arg *)arg;
807         ctx->age_busaddr = segs[0].ds_addr;
808 }
809
810 /*
811  * Attansic L1 controller have single register to specify high
812  * address part of DMA blocks. So all descriptor structures and
813  * DMA memory blocks should have the same high address of given
814  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
815  */
816 static int
817 age_check_boundary(struct age_softc *sc)
818 {
819         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
820         bus_addr_t cmb_block_end, smb_block_end;
821
822         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
823         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
824         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
825         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
826         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
827         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
828
829         if ((AGE_ADDR_HI(tx_ring_end) !=
830             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
831             (AGE_ADDR_HI(rx_ring_end) !=
832             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
833             (AGE_ADDR_HI(rr_ring_end) !=
834             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
835             (AGE_ADDR_HI(cmb_block_end) !=
836             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
837             (AGE_ADDR_HI(smb_block_end) !=
838             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
839                 return (EFBIG);
840
841         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
842             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
843             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
844             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
845                 return (EFBIG);
846
847         return (0);
848 }
849
850 static int
851 age_dma_alloc(struct age_softc *sc)
852 {
853         struct age_txdesc *txd;
854         struct age_rxdesc *rxd;
855         bus_addr_t lowaddr;
856         struct age_dmamap_arg ctx;
857         int error, i;
858
859         lowaddr = BUS_SPACE_MAXADDR;
860
861 again:
862         /* Create parent ring/DMA block tag. */
863         error = bus_dma_tag_create(
864             bus_get_dma_tag(sc->age_dev), /* parent */
865             1, 0,                       /* alignment, boundary */
866             lowaddr,                    /* lowaddr */
867             BUS_SPACE_MAXADDR,          /* highaddr */
868             NULL, NULL,                 /* filter, filterarg */
869             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
870             0,                          /* nsegments */
871             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
872             0,                          /* flags */
873             NULL, NULL,                 /* lockfunc, lockarg */
874             &sc->age_cdata.age_parent_tag);
875         if (error != 0) {
876                 device_printf(sc->age_dev,
877                     "could not create parent DMA tag.\n");
878                 goto fail;
879         }
880
881         /* Create tag for Tx ring. */
882         error = bus_dma_tag_create(
883             sc->age_cdata.age_parent_tag, /* parent */
884             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
885             BUS_SPACE_MAXADDR,          /* lowaddr */
886             BUS_SPACE_MAXADDR,          /* highaddr */
887             NULL, NULL,                 /* filter, filterarg */
888             AGE_TX_RING_SZ,             /* maxsize */
889             1,                          /* nsegments */
890             AGE_TX_RING_SZ,             /* maxsegsize */
891             0,                          /* flags */
892             NULL, NULL,                 /* lockfunc, lockarg */
893             &sc->age_cdata.age_tx_ring_tag);
894         if (error != 0) {
895                 device_printf(sc->age_dev,
896                     "could not create Tx ring DMA tag.\n");
897                 goto fail;
898         }
899
900         /* Create tag for Rx ring. */
901         error = bus_dma_tag_create(
902             sc->age_cdata.age_parent_tag, /* parent */
903             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
904             BUS_SPACE_MAXADDR,          /* lowaddr */
905             BUS_SPACE_MAXADDR,          /* highaddr */
906             NULL, NULL,                 /* filter, filterarg */
907             AGE_RX_RING_SZ,             /* maxsize */
908             1,                          /* nsegments */
909             AGE_RX_RING_SZ,             /* maxsegsize */
910             0,                          /* flags */
911             NULL, NULL,                 /* lockfunc, lockarg */
912             &sc->age_cdata.age_rx_ring_tag);
913         if (error != 0) {
914                 device_printf(sc->age_dev,
915                     "could not create Rx ring DMA tag.\n");
916                 goto fail;
917         }
918
919         /* Create tag for Rx return ring. */
920         error = bus_dma_tag_create(
921             sc->age_cdata.age_parent_tag, /* parent */
922             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
923             BUS_SPACE_MAXADDR,          /* lowaddr */
924             BUS_SPACE_MAXADDR,          /* highaddr */
925             NULL, NULL,                 /* filter, filterarg */
926             AGE_RR_RING_SZ,             /* maxsize */
927             1,                          /* nsegments */
928             AGE_RR_RING_SZ,             /* maxsegsize */
929             0,                          /* flags */
930             NULL, NULL,                 /* lockfunc, lockarg */
931             &sc->age_cdata.age_rr_ring_tag);
932         if (error != 0) {
933                 device_printf(sc->age_dev,
934                     "could not create Rx return ring DMA tag.\n");
935                 goto fail;
936         }
937
938         /* Create tag for coalesing message block. */
939         error = bus_dma_tag_create(
940             sc->age_cdata.age_parent_tag, /* parent */
941             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
942             BUS_SPACE_MAXADDR,          /* lowaddr */
943             BUS_SPACE_MAXADDR,          /* highaddr */
944             NULL, NULL,                 /* filter, filterarg */
945             AGE_CMB_BLOCK_SZ,           /* maxsize */
946             1,                          /* nsegments */
947             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
948             0,                          /* flags */
949             NULL, NULL,                 /* lockfunc, lockarg */
950             &sc->age_cdata.age_cmb_block_tag);
951         if (error != 0) {
952                 device_printf(sc->age_dev,
953                     "could not create CMB DMA tag.\n");
954                 goto fail;
955         }
956
957         /* Create tag for statistics message block. */
958         error = bus_dma_tag_create(
959             sc->age_cdata.age_parent_tag, /* parent */
960             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
961             BUS_SPACE_MAXADDR,          /* lowaddr */
962             BUS_SPACE_MAXADDR,          /* highaddr */
963             NULL, NULL,                 /* filter, filterarg */
964             AGE_SMB_BLOCK_SZ,           /* maxsize */
965             1,                          /* nsegments */
966             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
967             0,                          /* flags */
968             NULL, NULL,                 /* lockfunc, lockarg */
969             &sc->age_cdata.age_smb_block_tag);
970         if (error != 0) {
971                 device_printf(sc->age_dev,
972                     "could not create SMB DMA tag.\n");
973                 goto fail;
974         }
975
976         /* Allocate DMA'able memory and load the DMA map. */
977         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
978             (void **)&sc->age_rdata.age_tx_ring,
979             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
980             &sc->age_cdata.age_tx_ring_map);
981         if (error != 0) {
982                 device_printf(sc->age_dev,
983                     "could not allocate DMA'able memory for Tx ring.\n");
984                 goto fail;
985         }
986         ctx.age_busaddr = 0;
987         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
988             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
989             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
990         if (error != 0 || ctx.age_busaddr == 0) {
991                 device_printf(sc->age_dev,
992                     "could not load DMA'able memory for Tx ring.\n");
993                 goto fail;
994         }
995         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
996         /* Rx ring */
997         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
998             (void **)&sc->age_rdata.age_rx_ring,
999             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1000             &sc->age_cdata.age_rx_ring_map);
1001         if (error != 0) {
1002                 device_printf(sc->age_dev,
1003                     "could not allocate DMA'able memory for Rx ring.\n");
1004                 goto fail;
1005         }
1006         ctx.age_busaddr = 0;
1007         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1008             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1009             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1010         if (error != 0 || ctx.age_busaddr == 0) {
1011                 device_printf(sc->age_dev,
1012                     "could not load DMA'able memory for Rx ring.\n");
1013                 goto fail;
1014         }
1015         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1016         /* Rx return ring */
1017         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1018             (void **)&sc->age_rdata.age_rr_ring,
1019             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1020             &sc->age_cdata.age_rr_ring_map);
1021         if (error != 0) {
1022                 device_printf(sc->age_dev,
1023                     "could not allocate DMA'able memory for Rx return ring.\n");
1024                 goto fail;
1025         }
1026         ctx.age_busaddr = 0;
1027         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1028             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1029             AGE_RR_RING_SZ, age_dmamap_cb,
1030             &ctx, 0);
1031         if (error != 0 || ctx.age_busaddr == 0) {
1032                 device_printf(sc->age_dev,
1033                     "could not load DMA'able memory for Rx return ring.\n");
1034                 goto fail;
1035         }
1036         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1037         /* CMB block */
1038         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1039             (void **)&sc->age_rdata.age_cmb_block,
1040             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1041             &sc->age_cdata.age_cmb_block_map);
1042         if (error != 0) {
1043                 device_printf(sc->age_dev,
1044                     "could not allocate DMA'able memory for CMB block.\n");
1045                 goto fail;
1046         }
1047         ctx.age_busaddr = 0;
1048         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1049             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1050             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1051         if (error != 0 || ctx.age_busaddr == 0) {
1052                 device_printf(sc->age_dev,
1053                     "could not load DMA'able memory for CMB block.\n");
1054                 goto fail;
1055         }
1056         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1057         /* SMB block */
1058         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1059             (void **)&sc->age_rdata.age_smb_block,
1060             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1061             &sc->age_cdata.age_smb_block_map);
1062         if (error != 0) {
1063                 device_printf(sc->age_dev,
1064                     "could not allocate DMA'able memory for SMB block.\n");
1065                 goto fail;
1066         }
1067         ctx.age_busaddr = 0;
1068         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1069             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1070             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1071         if (error != 0 || ctx.age_busaddr == 0) {
1072                 device_printf(sc->age_dev,
1073                     "could not load DMA'able memory for SMB block.\n");
1074                 goto fail;
1075         }
1076         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1077
1078         /*
1079          * All ring buffer and DMA blocks should have the same
1080          * high address part of 64bit DMA address space.
1081          */
1082         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1083             (error = age_check_boundary(sc)) != 0) {
1084                 device_printf(sc->age_dev, "4GB boundary crossed, "
1085                     "switching to 32bit DMA addressing mode.\n");
1086                 age_dma_free(sc);
1087                 /* Limit DMA address space to 32bit and try again. */
1088                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1089                 goto again;
1090         }
1091
1092         /*
1093          * Create Tx/Rx buffer parent tag.
1094          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1095          * so it needs separate parent DMA tag.
1096          * XXX
1097          * It seems enabling 64bit DMA causes data corruption. Limit
1098          * DMA address space to 32bit.
1099          */
1100         error = bus_dma_tag_create(
1101             bus_get_dma_tag(sc->age_dev), /* parent */
1102             1, 0,                       /* alignment, boundary */
1103             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1104             BUS_SPACE_MAXADDR,          /* highaddr */
1105             NULL, NULL,                 /* filter, filterarg */
1106             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1107             0,                          /* nsegments */
1108             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1109             0,                          /* flags */
1110             NULL, NULL,                 /* lockfunc, lockarg */
1111             &sc->age_cdata.age_buffer_tag);
1112         if (error != 0) {
1113                 device_printf(sc->age_dev,
1114                     "could not create parent buffer DMA tag.\n");
1115                 goto fail;
1116         }
1117
1118         /* Create tag for Tx buffers. */
1119         error = bus_dma_tag_create(
1120             sc->age_cdata.age_buffer_tag, /* parent */
1121             1, 0,                       /* alignment, boundary */
1122             BUS_SPACE_MAXADDR,          /* lowaddr */
1123             BUS_SPACE_MAXADDR,          /* highaddr */
1124             NULL, NULL,                 /* filter, filterarg */
1125             AGE_TSO_MAXSIZE,            /* maxsize */
1126             AGE_MAXTXSEGS,              /* nsegments */
1127             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
1128             0,                          /* flags */
1129             NULL, NULL,                 /* lockfunc, lockarg */
1130             &sc->age_cdata.age_tx_tag);
1131         if (error != 0) {
1132                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1133                 goto fail;
1134         }
1135
1136         /* Create tag for Rx buffers. */
1137         error = bus_dma_tag_create(
1138             sc->age_cdata.age_buffer_tag, /* parent */
1139             AGE_RX_BUF_ALIGN, 0,        /* alignment, boundary */
1140             BUS_SPACE_MAXADDR,          /* lowaddr */
1141             BUS_SPACE_MAXADDR,          /* highaddr */
1142             NULL, NULL,                 /* filter, filterarg */
1143             MCLBYTES,                   /* maxsize */
1144             1,                          /* nsegments */
1145             MCLBYTES,                   /* maxsegsize */
1146             0,                          /* flags */
1147             NULL, NULL,                 /* lockfunc, lockarg */
1148             &sc->age_cdata.age_rx_tag);
1149         if (error != 0) {
1150                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1151                 goto fail;
1152         }
1153
1154         /* Create DMA maps for Tx buffers. */
1155         for (i = 0; i < AGE_TX_RING_CNT; i++) {
1156                 txd = &sc->age_cdata.age_txdesc[i];
1157                 txd->tx_m = NULL;
1158                 txd->tx_dmamap = NULL;
1159                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1160                     &txd->tx_dmamap);
1161                 if (error != 0) {
1162                         device_printf(sc->age_dev,
1163                             "could not create Tx dmamap.\n");
1164                         goto fail;
1165                 }
1166         }
1167         /* Create DMA maps for Rx buffers. */
1168         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1169             &sc->age_cdata.age_rx_sparemap)) != 0) {
1170                 device_printf(sc->age_dev,
1171                     "could not create spare Rx dmamap.\n");
1172                 goto fail;
1173         }
1174         for (i = 0; i < AGE_RX_RING_CNT; i++) {
1175                 rxd = &sc->age_cdata.age_rxdesc[i];
1176                 rxd->rx_m = NULL;
1177                 rxd->rx_dmamap = NULL;
1178                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1179                     &rxd->rx_dmamap);
1180                 if (error != 0) {
1181                         device_printf(sc->age_dev,
1182                             "could not create Rx dmamap.\n");
1183                         goto fail;
1184                 }
1185         }
1186
1187 fail:
1188         return (error);
1189 }
1190
1191 static void
1192 age_dma_free(struct age_softc *sc)
1193 {
1194         struct age_txdesc *txd;
1195         struct age_rxdesc *rxd;
1196         int i;
1197
1198         /* Tx buffers */
1199         if (sc->age_cdata.age_tx_tag != NULL) {
1200                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1201                         txd = &sc->age_cdata.age_txdesc[i];
1202                         if (txd->tx_dmamap != NULL) {
1203                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1204                                     txd->tx_dmamap);
1205                                 txd->tx_dmamap = NULL;
1206                         }
1207                 }
1208                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1209                 sc->age_cdata.age_tx_tag = NULL;
1210         }
1211         /* Rx buffers */
1212         if (sc->age_cdata.age_rx_tag != NULL) {
1213                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1214                         rxd = &sc->age_cdata.age_rxdesc[i];
1215                         if (rxd->rx_dmamap != NULL) {
1216                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1217                                     rxd->rx_dmamap);
1218                                 rxd->rx_dmamap = NULL;
1219                         }
1220                 }
1221                 if (sc->age_cdata.age_rx_sparemap != NULL) {
1222                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1223                             sc->age_cdata.age_rx_sparemap);
1224                         sc->age_cdata.age_rx_sparemap = NULL;
1225                 }
1226                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1227                 sc->age_cdata.age_rx_tag = NULL;
1228         }
1229         /* Tx ring. */
1230         if (sc->age_cdata.age_tx_ring_tag != NULL) {
1231                 if (sc->age_rdata.age_tx_ring_paddr != 0)
1232                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1233                             sc->age_cdata.age_tx_ring_map);
1234                 if (sc->age_rdata.age_tx_ring != NULL)
1235                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1236                             sc->age_rdata.age_tx_ring,
1237                             sc->age_cdata.age_tx_ring_map);
1238                 sc->age_rdata.age_tx_ring_paddr = 0;
1239                 sc->age_rdata.age_tx_ring = NULL;
1240                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1241                 sc->age_cdata.age_tx_ring_tag = NULL;
1242         }
1243         /* Rx ring. */
1244         if (sc->age_cdata.age_rx_ring_tag != NULL) {
1245                 if (sc->age_rdata.age_rx_ring_paddr != 0)
1246                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1247                             sc->age_cdata.age_rx_ring_map);
1248                 if (sc->age_rdata.age_rx_ring != NULL)
1249                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1250                             sc->age_rdata.age_rx_ring,
1251                             sc->age_cdata.age_rx_ring_map);
1252                 sc->age_rdata.age_rx_ring_paddr = 0;
1253                 sc->age_rdata.age_rx_ring = NULL;
1254                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1255                 sc->age_cdata.age_rx_ring_tag = NULL;
1256         }
1257         /* Rx return ring. */
1258         if (sc->age_cdata.age_rr_ring_tag != NULL) {
1259                 if (sc->age_rdata.age_rr_ring_paddr != 0)
1260                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1261                             sc->age_cdata.age_rr_ring_map);
1262                 if (sc->age_rdata.age_rr_ring != NULL)
1263                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1264                             sc->age_rdata.age_rr_ring,
1265                             sc->age_cdata.age_rr_ring_map);
1266                 sc->age_rdata.age_rr_ring_paddr = 0;
1267                 sc->age_rdata.age_rr_ring = NULL;
1268                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1269                 sc->age_cdata.age_rr_ring_tag = NULL;
1270         }
1271         /* CMB block */
1272         if (sc->age_cdata.age_cmb_block_tag != NULL) {
1273                 if (sc->age_rdata.age_cmb_block_paddr != 0)
1274                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1275                             sc->age_cdata.age_cmb_block_map);
1276                 if (sc->age_rdata.age_cmb_block != NULL)
1277                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1278                             sc->age_rdata.age_cmb_block,
1279                             sc->age_cdata.age_cmb_block_map);
1280                 sc->age_rdata.age_cmb_block_paddr = 0;
1281                 sc->age_rdata.age_cmb_block = NULL;
1282                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1283                 sc->age_cdata.age_cmb_block_tag = NULL;
1284         }
1285         /* SMB block */
1286         if (sc->age_cdata.age_smb_block_tag != NULL) {
1287                 if (sc->age_rdata.age_smb_block_paddr != 0)
1288                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1289                             sc->age_cdata.age_smb_block_map);
1290                 if (sc->age_rdata.age_smb_block != NULL)
1291                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1292                             sc->age_rdata.age_smb_block,
1293                             sc->age_cdata.age_smb_block_map);
1294                 sc->age_rdata.age_smb_block_paddr = 0;
1295                 sc->age_rdata.age_smb_block = NULL;
1296                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1297                 sc->age_cdata.age_smb_block_tag = NULL;
1298         }
1299
1300         if (sc->age_cdata.age_buffer_tag != NULL) {
1301                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1302                 sc->age_cdata.age_buffer_tag = NULL;
1303         }
1304         if (sc->age_cdata.age_parent_tag != NULL) {
1305                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1306                 sc->age_cdata.age_parent_tag = NULL;
1307         }
1308 }
1309
1310 /*
1311  *      Make sure the interface is stopped at reboot time.
1312  */
1313 static int
1314 age_shutdown(device_t dev)
1315 {
1316
1317         return (age_suspend(dev));
1318 }
1319
1320 static void
1321 age_setwol(struct age_softc *sc)
1322 {
1323         struct ifnet *ifp;
1324         struct mii_data *mii;
1325         uint32_t reg, pmcs;
1326         uint16_t pmstat;
1327         int aneg, i, pmc;
1328
1329         AGE_LOCK_ASSERT(sc);
1330
1331         if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1332                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1333                 /*
1334                  * No PME capability, PHY power down.
1335                  * XXX
1336                  * Due to an unknown reason powering down PHY resulted
1337                  * in unexpected results such as inaccessbility of
1338                  * hardware of freshly rebooted system. Disable
1339                  * powering down PHY until I got more information for
1340                  * Attansic/Atheros PHY hardwares.
1341                  */
1342 #ifdef notyet
1343                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1344                     MII_BMCR, BMCR_PDOWN);
1345 #endif
1346                 return;
1347         }
1348
1349         ifp = sc->age_ifp;
1350         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1351                 /*
1352                  * Note, this driver resets the link speed to 10/100Mbps with
1353                  * auto-negotiation but we don't know whether that operation
1354                  * would succeed or not as it have no control after powering
1355                  * off. If the renegotiation fail WOL may not work. Running
1356                  * at 1Gbps will draw more power than 375mA at 3.3V which is
1357                  * specified in PCI specification and that would result in
1358                  * complete shutdowning power to ethernet controller.
1359                  *
1360                  * TODO
1361                  *  Save current negotiated media speed/duplex/flow-control
1362                  *  to softc and restore the same link again after resuming.
1363                  *  PHY handling such as power down/resetting to 100Mbps
1364                  *  may be better handled in suspend method in phy driver.
1365                  */
1366                 mii = device_get_softc(sc->age_miibus);
1367                 mii_pollstat(mii);
1368                 aneg = 0;
1369                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1370                         switch IFM_SUBTYPE(mii->mii_media_active) {
1371                         case IFM_10_T:
1372                         case IFM_100_TX:
1373                                 goto got_link;
1374                         case IFM_1000_T:
1375                                 aneg++;
1376                         default:
1377                                 break;
1378                         }
1379                 }
1380                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1381                     MII_100T2CR, 0);
1382                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1383                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1384                     ANAR_10 | ANAR_CSMA);
1385                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1386                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1387                 DELAY(1000);
1388                 if (aneg != 0) {
1389                         /* Poll link state until age(4) get a 10/100 link. */
1390                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1391                                 mii_pollstat(mii);
1392                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1393                                         switch (IFM_SUBTYPE(
1394                                             mii->mii_media_active)) {
1395                                         case IFM_10_T:
1396                                         case IFM_100_TX:
1397                                                 age_mac_config(sc);
1398                                                 goto got_link;
1399                                         default:
1400                                                 break;
1401                                         }
1402                                 }
1403                                 AGE_UNLOCK(sc);
1404                                 pause("agelnk", hz);
1405                                 AGE_LOCK(sc);
1406                         }
1407                         if (i == MII_ANEGTICKS_GIGE)
1408                                 device_printf(sc->age_dev,
1409                                     "establishing link failed, "
1410                                     "WOL may not work!");
1411                 }
1412                 /*
1413                  * No link, force MAC to have 100Mbps, full-duplex link.
1414                  * This is the last resort and may/may not work.
1415                  */
1416                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1417                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1418                 age_mac_config(sc);
1419         }
1420
1421 got_link:
1422         pmcs = 0;
1423         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1424                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1425         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1426         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1427         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1428         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1429         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1430                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1431         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1432                 reg |= MAC_CFG_RX_ENB;
1433                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1434         }
1435
1436         /* Request PME. */
1437         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1438         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1439         if ((ifp->if_capenable & IFCAP_WOL) != 0)
1440                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1441         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1442 #ifdef notyet
1443         /* See above for powering down PHY issues. */
1444         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1445                 /* No WOL, PHY power down. */
1446                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1447                     MII_BMCR, BMCR_PDOWN);
1448         }
1449 #endif
1450 }
1451
1452 static int
1453 age_suspend(device_t dev)
1454 {
1455         struct age_softc *sc;
1456
1457         sc = device_get_softc(dev);
1458
1459         AGE_LOCK(sc);
1460         age_stop(sc);
1461         age_setwol(sc);
1462         AGE_UNLOCK(sc);
1463
1464         return (0);
1465 }
1466
1467 static int
1468 age_resume(device_t dev)
1469 {
1470         struct age_softc *sc;
1471         struct ifnet *ifp;
1472
1473         sc = device_get_softc(dev);
1474
1475         AGE_LOCK(sc);
1476         age_phy_reset(sc);
1477         ifp = sc->age_ifp;
1478         if ((ifp->if_flags & IFF_UP) != 0)
1479                 age_init_locked(sc);
1480
1481         AGE_UNLOCK(sc);
1482
1483         return (0);
1484 }
1485
1486 static int
1487 age_encap(struct age_softc *sc, struct mbuf **m_head)
1488 {
1489         struct age_txdesc *txd, *txd_last;
1490         struct tx_desc *desc;
1491         struct mbuf *m;
1492         struct ip *ip;
1493         struct tcphdr *tcp;
1494         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1495         bus_dmamap_t map;
1496         uint32_t cflags, hdrlen, ip_off, poff, vtag;
1497         int error, i, nsegs, prod, si;
1498
1499         AGE_LOCK_ASSERT(sc);
1500
1501         M_ASSERTPKTHDR((*m_head));
1502
1503         m = *m_head;
1504         ip = NULL;
1505         tcp = NULL;
1506         cflags = vtag = 0;
1507         ip_off = poff = 0;
1508         if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1509                 /*
1510                  * L1 requires offset of TCP/UDP payload in its Tx
1511                  * descriptor to perform hardware Tx checksum offload.
1512                  * Additionally, TSO requires IP/TCP header size and
1513                  * modification of IP/TCP header in order to make TSO
1514                  * engine work. This kind of operation takes many CPU
1515                  * cycles on FreeBSD so fast host CPU is needed to get
1516                  * smooth TSO performance.
1517                  */
1518                 struct ether_header *eh;
1519
1520                 if (M_WRITABLE(m) == 0) {
1521                         /* Get a writable copy. */
1522                         m = m_dup(*m_head, M_NOWAIT);
1523                         /* Release original mbufs. */
1524                         m_freem(*m_head);
1525                         if (m == NULL) {
1526                                 *m_head = NULL;
1527                                 return (ENOBUFS);
1528                         }
1529                         *m_head = m;
1530                 }
1531                 ip_off = sizeof(struct ether_header);
1532                 m = m_pullup(m, ip_off);
1533                 if (m == NULL) {
1534                         *m_head = NULL;
1535                         return (ENOBUFS);
1536                 }
1537                 eh = mtod(m, struct ether_header *);
1538                 /*
1539                  * Check if hardware VLAN insertion is off.
1540                  * Additional check for LLC/SNAP frame?
1541                  */
1542                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1543                         ip_off = sizeof(struct ether_vlan_header);
1544                         m = m_pullup(m, ip_off);
1545                         if (m == NULL) {
1546                                 *m_head = NULL;
1547                                 return (ENOBUFS);
1548                         }
1549                 }
1550                 m = m_pullup(m, ip_off + sizeof(struct ip));
1551                 if (m == NULL) {
1552                         *m_head = NULL;
1553                         return (ENOBUFS);
1554                 }
1555                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1556                 poff = ip_off + (ip->ip_hl << 2);
1557                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1558                         m = m_pullup(m, poff + sizeof(struct tcphdr));
1559                         if (m == NULL) {
1560                                 *m_head = NULL;
1561                                 return (ENOBUFS);
1562                         }
1563                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1564                         m = m_pullup(m, poff + (tcp->th_off << 2));
1565                         if (m == NULL) {
1566                                 *m_head = NULL;
1567                                 return (ENOBUFS);
1568                         }
1569                         /*
1570                          * L1 requires IP/TCP header size and offset as
1571                          * well as TCP pseudo checksum which complicates
1572                          * TSO configuration. I guess this comes from the
1573                          * adherence to Microsoft NDIS Large Send
1574                          * specification which requires insertion of
1575                          * pseudo checksum by upper stack. The pseudo
1576                          * checksum that NDIS refers to doesn't include
1577                          * TCP payload length so age(4) should recompute
1578                          * the pseudo checksum here. Hopefully this wouldn't
1579                          * be much burden on modern CPUs.
1580                          * Reset IP checksum and recompute TCP pseudo
1581                          * checksum as NDIS specification said.
1582                          */
1583                         ip = (struct ip *)(mtod(m, char *) + ip_off);
1584                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1585                         ip->ip_sum = 0;
1586                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1587                             ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1588                 }
1589                 *m_head = m;
1590         }
1591
1592         si = prod = sc->age_cdata.age_tx_prod;
1593         txd = &sc->age_cdata.age_txdesc[prod];
1594         txd_last = txd;
1595         map = txd->tx_dmamap;
1596
1597         error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1598             *m_head, txsegs, &nsegs, 0);
1599         if (error == EFBIG) {
1600                 m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1601                 if (m == NULL) {
1602                         m_freem(*m_head);
1603                         *m_head = NULL;
1604                         return (ENOMEM);
1605                 }
1606                 *m_head = m;
1607                 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1608                     *m_head, txsegs, &nsegs, 0);
1609                 if (error != 0) {
1610                         m_freem(*m_head);
1611                         *m_head = NULL;
1612                         return (error);
1613                 }
1614         } else if (error != 0)
1615                 return (error);
1616         if (nsegs == 0) {
1617                 m_freem(*m_head);
1618                 *m_head = NULL;
1619                 return (EIO);
1620         }
1621
1622         /* Check descriptor overrun. */
1623         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1624                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1625                 return (ENOBUFS);
1626         }
1627
1628         m = *m_head;
1629         /* Configure VLAN hardware tag insertion. */
1630         if ((m->m_flags & M_VLANTAG) != 0) {
1631                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1632                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1633                 cflags |= AGE_TD_INSERT_VLAN_TAG;
1634         }
1635
1636         desc = NULL;
1637         i = 0;
1638         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1639                 /* Request TSO and set MSS. */
1640                 cflags |= AGE_TD_TSO_IPV4;
1641                 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1642                 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1643                     AGE_TD_TSO_MSS_SHIFT);
1644                 /* Set IP/TCP header size. */
1645                 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1646                 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1647                 /*
1648                  * L1 requires the first buffer should only hold IP/TCP
1649                  * header data. TCP payload should be handled in other
1650                  * descriptors.
1651                  */
1652                 hdrlen = poff + (tcp->th_off << 2);
1653                 desc = &sc->age_rdata.age_tx_ring[prod];
1654                 desc->addr = htole64(txsegs[0].ds_addr);
1655                 desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1656                 desc->flags = htole32(cflags);
1657                 sc->age_cdata.age_tx_cnt++;
1658                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1659                 if (m->m_len - hdrlen > 0) {
1660                         /* Handle remaining payload of the 1st fragment. */
1661                         desc = &sc->age_rdata.age_tx_ring[prod];
1662                         desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1663                         desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1664                             vtag);
1665                         desc->flags = htole32(cflags);
1666                         sc->age_cdata.age_tx_cnt++;
1667                         AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1668                 }
1669                 /* Handle remaining fragments. */
1670                 i = 1;
1671         } else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1672                 /* Configure Tx IP/TCP/UDP checksum offload. */
1673                 cflags |= AGE_TD_CSUM;
1674                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1675                         cflags |= AGE_TD_TCPCSUM;
1676                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1677                         cflags |= AGE_TD_UDPCSUM;
1678                 /* Set checksum start offset. */
1679                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1680                 /* Set checksum insertion position of TCP/UDP. */
1681                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1682                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1683         }
1684         for (; i < nsegs; i++) {
1685                 desc = &sc->age_rdata.age_tx_ring[prod];
1686                 desc->addr = htole64(txsegs[i].ds_addr);
1687                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1688                 desc->flags = htole32(cflags);
1689                 sc->age_cdata.age_tx_cnt++;
1690                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1691         }
1692         /* Update producer index. */
1693         sc->age_cdata.age_tx_prod = prod;
1694
1695         /* Set EOP on the last descriptor. */
1696         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1697         desc = &sc->age_rdata.age_tx_ring[prod];
1698         desc->flags |= htole32(AGE_TD_EOP);
1699
1700         /* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1701         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1702                 desc = &sc->age_rdata.age_tx_ring[si];
1703                 desc->flags |= htole32(AGE_TD_TSO_HDR);
1704         }
1705
1706         /* Swap dmamap of the first and the last. */
1707         txd = &sc->age_cdata.age_txdesc[prod];
1708         map = txd_last->tx_dmamap;
1709         txd_last->tx_dmamap = txd->tx_dmamap;
1710         txd->tx_dmamap = map;
1711         txd->tx_m = m;
1712
1713         /* Sync descriptors. */
1714         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1715         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1716             sc->age_cdata.age_tx_ring_map,
1717             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1718
1719         return (0);
1720 }
1721
1722 static void
1723 age_start(struct ifnet *ifp)
1724 {
1725         struct age_softc *sc;
1726
1727         sc = ifp->if_softc;
1728         AGE_LOCK(sc);
1729         age_start_locked(ifp);
1730         AGE_UNLOCK(sc);
1731 }
1732
1733 static void
1734 age_start_locked(struct ifnet *ifp)
1735 {
1736         struct age_softc *sc;
1737         struct mbuf *m_head;
1738         int enq;
1739
1740         sc = ifp->if_softc;
1741
1742         AGE_LOCK_ASSERT(sc);
1743
1744         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1745             IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1746                 return;
1747
1748         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1749                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1750                 if (m_head == NULL)
1751                         break;
1752                 /*
1753                  * Pack the data into the transmit ring. If we
1754                  * don't have room, set the OACTIVE flag and wait
1755                  * for the NIC to drain the ring.
1756                  */
1757                 if (age_encap(sc, &m_head)) {
1758                         if (m_head == NULL)
1759                                 break;
1760                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1761                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1762                         break;
1763                 }
1764
1765                 enq++;
1766                 /*
1767                  * If there's a BPF listener, bounce a copy of this frame
1768                  * to him.
1769                  */
1770                 ETHER_BPF_MTAP(ifp, m_head);
1771         }
1772
1773         if (enq > 0) {
1774                 /* Update mbox. */
1775                 AGE_COMMIT_MBOX(sc);
1776                 /* Set a timeout in case the chip goes out to lunch. */
1777                 sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1778         }
1779 }
1780
1781 static void
1782 age_watchdog(struct age_softc *sc)
1783 {
1784         struct ifnet *ifp;
1785
1786         AGE_LOCK_ASSERT(sc);
1787
1788         if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1789                 return;
1790
1791         ifp = sc->age_ifp;
1792         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1793                 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1794                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1795                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1796                 age_init_locked(sc);
1797                 return;
1798         }
1799         if (sc->age_cdata.age_tx_cnt == 0) {
1800                 if_printf(sc->age_ifp,
1801                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
1802                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1803                         age_start_locked(ifp);
1804                 return;
1805         }
1806         if_printf(sc->age_ifp, "watchdog timeout\n");
1807         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1808         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1809         age_init_locked(sc);
1810         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1811                 age_start_locked(ifp);
1812 }
1813
1814 static int
1815 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1816 {
1817         struct age_softc *sc;
1818         struct ifreq *ifr;
1819         struct mii_data *mii;
1820         uint32_t reg;
1821         int error, mask;
1822
1823         sc = ifp->if_softc;
1824         ifr = (struct ifreq *)data;
1825         error = 0;
1826         switch (cmd) {
1827         case SIOCSIFMTU:
1828                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1829                         error = EINVAL;
1830                 else if (ifp->if_mtu != ifr->ifr_mtu) {
1831                         AGE_LOCK(sc);
1832                         ifp->if_mtu = ifr->ifr_mtu;
1833                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1834                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1835                                 age_init_locked(sc);
1836                         }
1837                         AGE_UNLOCK(sc);
1838                 }
1839                 break;
1840         case SIOCSIFFLAGS:
1841                 AGE_LOCK(sc);
1842                 if ((ifp->if_flags & IFF_UP) != 0) {
1843                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1844                                 if (((ifp->if_flags ^ sc->age_if_flags)
1845                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1846                                         age_rxfilter(sc);
1847                         } else {
1848                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1849                                         age_init_locked(sc);
1850                         }
1851                 } else {
1852                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1853                                 age_stop(sc);
1854                 }
1855                 sc->age_if_flags = ifp->if_flags;
1856                 AGE_UNLOCK(sc);
1857                 break;
1858         case SIOCADDMULTI:
1859         case SIOCDELMULTI:
1860                 AGE_LOCK(sc);
1861                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1862                         age_rxfilter(sc);
1863                 AGE_UNLOCK(sc);
1864                 break;
1865         case SIOCSIFMEDIA:
1866         case SIOCGIFMEDIA:
1867                 mii = device_get_softc(sc->age_miibus);
1868                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1869                 break;
1870         case SIOCSIFCAP:
1871                 AGE_LOCK(sc);
1872                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1873                 if ((mask & IFCAP_TXCSUM) != 0 &&
1874                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1875                         ifp->if_capenable ^= IFCAP_TXCSUM;
1876                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1877                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
1878                         else
1879                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1880                 }
1881                 if ((mask & IFCAP_RXCSUM) != 0 &&
1882                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1883                         ifp->if_capenable ^= IFCAP_RXCSUM;
1884                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1885                         reg &= ~MAC_CFG_RXCSUM_ENB;
1886                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1887                                 reg |= MAC_CFG_RXCSUM_ENB;
1888                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1889                 }
1890                 if ((mask & IFCAP_TSO4) != 0 &&
1891                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1892                         ifp->if_capenable ^= IFCAP_TSO4;
1893                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1894                                 ifp->if_hwassist |= CSUM_TSO;
1895                         else
1896                                 ifp->if_hwassist &= ~CSUM_TSO;
1897                 }
1898
1899                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
1900                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1901                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
1902                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1903                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1904                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1905                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1906                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1907                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1908                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1909                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1910                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1911                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1912                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1913                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1914                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1915                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1916                         age_rxvlan(sc);
1917                 }
1918                 AGE_UNLOCK(sc);
1919                 VLAN_CAPABILITIES(ifp);
1920                 break;
1921         default:
1922                 error = ether_ioctl(ifp, cmd, data);
1923                 break;
1924         }
1925
1926         return (error);
1927 }
1928
1929 static void
1930 age_mac_config(struct age_softc *sc)
1931 {
1932         struct mii_data *mii;
1933         uint32_t reg;
1934
1935         AGE_LOCK_ASSERT(sc);
1936
1937         mii = device_get_softc(sc->age_miibus);
1938         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1939         reg &= ~MAC_CFG_FULL_DUPLEX;
1940         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1941         reg &= ~MAC_CFG_SPEED_MASK;
1942         /* Reprogram MAC with resolved speed/duplex. */
1943         switch (IFM_SUBTYPE(mii->mii_media_active)) {
1944         case IFM_10_T:
1945         case IFM_100_TX:
1946                 reg |= MAC_CFG_SPEED_10_100;
1947                 break;
1948         case IFM_1000_T:
1949                 reg |= MAC_CFG_SPEED_1000;
1950                 break;
1951         }
1952         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1953                 reg |= MAC_CFG_FULL_DUPLEX;
1954 #ifdef notyet
1955                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1956                         reg |= MAC_CFG_TX_FC;
1957                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1958                         reg |= MAC_CFG_RX_FC;
1959 #endif
1960         }
1961
1962         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1963 }
1964
1965 static void
1966 age_link_task(void *arg, int pending)
1967 {
1968         struct age_softc *sc;
1969         struct mii_data *mii;
1970         struct ifnet *ifp;
1971         uint32_t reg;
1972
1973         sc = (struct age_softc *)arg;
1974
1975         AGE_LOCK(sc);
1976         mii = device_get_softc(sc->age_miibus);
1977         ifp = sc->age_ifp;
1978         if (mii == NULL || ifp == NULL ||
1979             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1980                 AGE_UNLOCK(sc);
1981                 return;
1982         }
1983
1984         sc->age_flags &= ~AGE_FLAG_LINK;
1985         if ((mii->mii_media_status & IFM_AVALID) != 0) {
1986                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1987                 case IFM_10_T:
1988                 case IFM_100_TX:
1989                 case IFM_1000_T:
1990                         sc->age_flags |= AGE_FLAG_LINK;
1991                         break;
1992                 default:
1993                         break;
1994                 }
1995         }
1996
1997         /* Stop Rx/Tx MACs. */
1998         age_stop_rxmac(sc);
1999         age_stop_txmac(sc);
2000
2001         /* Program MACs with resolved speed/duplex/flow-control. */
2002         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2003                 age_mac_config(sc);
2004                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2005                 /* Restart DMA engine and Tx/Rx MAC. */
2006                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2007                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2008                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2009                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2010         }
2011
2012         AGE_UNLOCK(sc);
2013 }
2014
2015 static void
2016 age_stats_update(struct age_softc *sc)
2017 {
2018         struct age_stats *stat;
2019         struct smb *smb;
2020         struct ifnet *ifp;
2021
2022         AGE_LOCK_ASSERT(sc);
2023
2024         stat = &sc->age_stat;
2025
2026         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2027             sc->age_cdata.age_smb_block_map,
2028             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2029
2030         smb = sc->age_rdata.age_smb_block;
2031         if (smb->updated == 0)
2032                 return;
2033
2034         ifp = sc->age_ifp;
2035         /* Rx stats. */
2036         stat->rx_frames += smb->rx_frames;
2037         stat->rx_bcast_frames += smb->rx_bcast_frames;
2038         stat->rx_mcast_frames += smb->rx_mcast_frames;
2039         stat->rx_pause_frames += smb->rx_pause_frames;
2040         stat->rx_control_frames += smb->rx_control_frames;
2041         stat->rx_crcerrs += smb->rx_crcerrs;
2042         stat->rx_lenerrs += smb->rx_lenerrs;
2043         stat->rx_bytes += smb->rx_bytes;
2044         stat->rx_runts += smb->rx_runts;
2045         stat->rx_fragments += smb->rx_fragments;
2046         stat->rx_pkts_64 += smb->rx_pkts_64;
2047         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2048         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2049         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2050         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2051         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2052         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2053         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2054         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2055         stat->rx_desc_oflows += smb->rx_desc_oflows;
2056         stat->rx_alignerrs += smb->rx_alignerrs;
2057         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2058         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2059         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2060
2061         /* Tx stats. */
2062         stat->tx_frames += smb->tx_frames;
2063         stat->tx_bcast_frames += smb->tx_bcast_frames;
2064         stat->tx_mcast_frames += smb->tx_mcast_frames;
2065         stat->tx_pause_frames += smb->tx_pause_frames;
2066         stat->tx_excess_defer += smb->tx_excess_defer;
2067         stat->tx_control_frames += smb->tx_control_frames;
2068         stat->tx_deferred += smb->tx_deferred;
2069         stat->tx_bytes += smb->tx_bytes;
2070         stat->tx_pkts_64 += smb->tx_pkts_64;
2071         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2072         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2073         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2074         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2075         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2076         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2077         stat->tx_single_colls += smb->tx_single_colls;
2078         stat->tx_multi_colls += smb->tx_multi_colls;
2079         stat->tx_late_colls += smb->tx_late_colls;
2080         stat->tx_excess_colls += smb->tx_excess_colls;
2081         stat->tx_underrun += smb->tx_underrun;
2082         stat->tx_desc_underrun += smb->tx_desc_underrun;
2083         stat->tx_lenerrs += smb->tx_lenerrs;
2084         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2085         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2086         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2087
2088         /* Update counters in ifnet. */
2089         if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2090
2091         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2092             smb->tx_multi_colls + smb->tx_late_colls +
2093             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2094
2095         if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2096             smb->tx_late_colls + smb->tx_underrun +
2097             smb->tx_pkts_truncated);
2098
2099         if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2100
2101         if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2102             smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2103             smb->rx_fifo_oflows + smb->rx_desc_oflows +
2104             smb->rx_alignerrs);
2105
2106         /* Update done, clear. */
2107         smb->updated = 0;
2108
2109         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2110             sc->age_cdata.age_smb_block_map,
2111             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2112 }
2113
2114 static int
2115 age_intr(void *arg)
2116 {
2117         struct age_softc *sc;
2118         uint32_t status;
2119
2120         sc = (struct age_softc *)arg;
2121
2122         status = CSR_READ_4(sc, AGE_INTR_STATUS);
2123         if (status == 0 || (status & AGE_INTRS) == 0)
2124                 return (FILTER_STRAY);
2125         /* Disable interrupts. */
2126         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2127         taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2128
2129         return (FILTER_HANDLED);
2130 }
2131
2132 static void
2133 age_int_task(void *arg, int pending)
2134 {
2135         struct age_softc *sc;
2136         struct ifnet *ifp;
2137         struct cmb *cmb;
2138         uint32_t status;
2139
2140         sc = (struct age_softc *)arg;
2141
2142         AGE_LOCK(sc);
2143
2144         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2145             sc->age_cdata.age_cmb_block_map,
2146             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2147         cmb = sc->age_rdata.age_cmb_block;
2148         status = le32toh(cmb->intr_status);
2149         if (sc->age_morework != 0)
2150                 status |= INTR_CMB_RX;
2151         if ((status & AGE_INTRS) == 0)
2152                 goto done;
2153
2154         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2155             TPD_CONS_SHIFT;
2156         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2157             RRD_PROD_SHIFT;
2158         /* Let hardware know CMB was served. */
2159         cmb->intr_status = 0;
2160         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2161             sc->age_cdata.age_cmb_block_map,
2162             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2163
2164 #if 0
2165         printf("INTR: 0x%08x\n", status);
2166         status &= ~INTR_DIS_DMA;
2167         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2168 #endif
2169         ifp = sc->age_ifp;
2170         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2171                 if ((status & INTR_CMB_RX) != 0)
2172                         sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2173                             sc->age_process_limit);
2174                 if ((status & INTR_CMB_TX) != 0)
2175                         age_txintr(sc, sc->age_tpd_cons);
2176                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2177                         if ((status & INTR_DMA_RD_TO_RST) != 0)
2178                                 device_printf(sc->age_dev,
2179                                     "DMA read error! -- resetting\n");
2180                         if ((status & INTR_DMA_WR_TO_RST) != 0)
2181                                 device_printf(sc->age_dev,
2182                                     "DMA write error! -- resetting\n");
2183                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2184                         age_init_locked(sc);
2185                 }
2186                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2187                         age_start_locked(ifp);
2188                 if ((status & INTR_SMB) != 0)
2189                         age_stats_update(sc);
2190         }
2191
2192         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2193         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2194             sc->age_cdata.age_cmb_block_map,
2195             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2196         status = le32toh(cmb->intr_status);
2197         if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2198                 taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2199                 AGE_UNLOCK(sc);
2200                 return;
2201         }
2202
2203 done:
2204         /* Re-enable interrupts. */
2205         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2206         AGE_UNLOCK(sc);
2207 }
2208
2209 static void
2210 age_txintr(struct age_softc *sc, int tpd_cons)
2211 {
2212         struct ifnet *ifp;
2213         struct age_txdesc *txd;
2214         int cons, prog;
2215
2216         AGE_LOCK_ASSERT(sc);
2217
2218         ifp = sc->age_ifp;
2219
2220         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2221             sc->age_cdata.age_tx_ring_map,
2222             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2223
2224         /*
2225          * Go through our Tx list and free mbufs for those
2226          * frames which have been transmitted.
2227          */
2228         cons = sc->age_cdata.age_tx_cons;
2229         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2230                 if (sc->age_cdata.age_tx_cnt <= 0)
2231                         break;
2232                 prog++;
2233                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2234                 sc->age_cdata.age_tx_cnt--;
2235                 txd = &sc->age_cdata.age_txdesc[cons];
2236                 /*
2237                  * Clear Tx descriptors, it's not required but would
2238                  * help debugging in case of Tx issues.
2239                  */
2240                 txd->tx_desc->addr = 0;
2241                 txd->tx_desc->len = 0;
2242                 txd->tx_desc->flags = 0;
2243
2244                 if (txd->tx_m == NULL)
2245                         continue;
2246                 /* Reclaim transmitted mbufs. */
2247                 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2248                     BUS_DMASYNC_POSTWRITE);
2249                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2250                 m_freem(txd->tx_m);
2251                 txd->tx_m = NULL;
2252         }
2253
2254         if (prog > 0) {
2255                 sc->age_cdata.age_tx_cons = cons;
2256
2257                 /*
2258                  * Unarm watchdog timer only when there are no pending
2259                  * Tx descriptors in queue.
2260                  */
2261                 if (sc->age_cdata.age_tx_cnt == 0)
2262                         sc->age_watchdog_timer = 0;
2263                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2264                     sc->age_cdata.age_tx_ring_map,
2265                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2266         }
2267 }
2268
2269 #ifndef __NO_STRICT_ALIGNMENT
2270 static struct mbuf *
2271 age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2272 {
2273         struct mbuf *n;
2274         int i;
2275         uint16_t *src, *dst;
2276
2277         src = mtod(m, uint16_t *);
2278         dst = src - 3;
2279
2280         if (m->m_next == NULL) {
2281                 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2282                         *dst++ = *src++;
2283                 m->m_data -= 6;
2284                 return (m);
2285         }
2286         /*
2287          * Append a new mbuf to received mbuf chain and copy ethernet
2288          * header from the mbuf chain. This can save lots of CPU
2289          * cycles for jumbo frame.
2290          */
2291         MGETHDR(n, M_NOWAIT, MT_DATA);
2292         if (n == NULL) {
2293                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2294                 m_freem(m);
2295                 return (NULL);
2296         }
2297         bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2298         m->m_data += ETHER_HDR_LEN;
2299         m->m_len -= ETHER_HDR_LEN;
2300         n->m_len = ETHER_HDR_LEN;
2301         M_MOVE_PKTHDR(n, m);
2302         n->m_next = m;
2303         return (n);
2304 }
2305 #endif
2306
2307 /* Receive a frame. */
2308 static void
2309 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2310 {
2311         struct age_rxdesc *rxd;
2312         struct ifnet *ifp;
2313         struct mbuf *mp, *m;
2314         uint32_t status, index, vtag;
2315         int count, nsegs;
2316         int rx_cons;
2317
2318         AGE_LOCK_ASSERT(sc);
2319
2320         ifp = sc->age_ifp;
2321         status = le32toh(rxrd->flags);
2322         index = le32toh(rxrd->index);
2323         rx_cons = AGE_RX_CONS(index);
2324         nsegs = AGE_RX_NSEGS(index);
2325
2326         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2327         if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2328                 /*
2329                  * We want to pass the following frames to upper
2330                  * layer regardless of error status of Rx return
2331                  * ring.
2332                  *
2333                  *  o IP/TCP/UDP checksum is bad.
2334                  *  o frame length and protocol specific length
2335                  *     does not match.
2336                  */
2337                 status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2338                 if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2339                     AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2340                         return;
2341         }
2342
2343         for (count = 0; count < nsegs; count++,
2344             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2345                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2346                 mp = rxd->rx_m;
2347                 /* Add a new receive buffer to the ring. */
2348                 if (age_newbuf(sc, rxd) != 0) {
2349                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2350                         /* Reuse Rx buffers. */
2351                         if (sc->age_cdata.age_rxhead != NULL)
2352                                 m_freem(sc->age_cdata.age_rxhead);
2353                         break;
2354                 }
2355
2356                 /*
2357                  * Assume we've received a full sized frame.
2358                  * Actual size is fixed when we encounter the end of
2359                  * multi-segmented frame.
2360                  */
2361                 mp->m_len = AGE_RX_BUF_SIZE;
2362
2363                 /* Chain received mbufs. */
2364                 if (sc->age_cdata.age_rxhead == NULL) {
2365                         sc->age_cdata.age_rxhead = mp;
2366                         sc->age_cdata.age_rxtail = mp;
2367                 } else {
2368                         mp->m_flags &= ~M_PKTHDR;
2369                         sc->age_cdata.age_rxprev_tail =
2370                             sc->age_cdata.age_rxtail;
2371                         sc->age_cdata.age_rxtail->m_next = mp;
2372                         sc->age_cdata.age_rxtail = mp;
2373                 }
2374
2375                 if (count == nsegs - 1) {
2376                         /* Last desc. for this frame. */
2377                         m = sc->age_cdata.age_rxhead;
2378                         m->m_flags |= M_PKTHDR;
2379                         /*
2380                          * It seems that L1 controller has no way
2381                          * to tell hardware to strip CRC bytes.
2382                          */
2383                         m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2384                             ETHER_CRC_LEN;
2385                         if (nsegs > 1) {
2386                                 /* Set last mbuf size. */
2387                                 mp->m_len = sc->age_cdata.age_rxlen -
2388                                     ((nsegs - 1) * AGE_RX_BUF_SIZE);
2389                                 /* Remove the CRC bytes in chained mbufs. */
2390                                 if (mp->m_len <= ETHER_CRC_LEN) {
2391                                         sc->age_cdata.age_rxtail =
2392                                             sc->age_cdata.age_rxprev_tail;
2393                                         sc->age_cdata.age_rxtail->m_len -=
2394                                             (ETHER_CRC_LEN - mp->m_len);
2395                                         sc->age_cdata.age_rxtail->m_next = NULL;
2396                                         m_freem(mp);
2397                                 } else {
2398                                         mp->m_len -= ETHER_CRC_LEN;
2399                                 }
2400                         } else
2401                                 m->m_len = m->m_pkthdr.len;
2402                         m->m_pkthdr.rcvif = ifp;
2403                         /*
2404                          * Set checksum information.
2405                          * It seems that L1 controller can compute partial
2406                          * checksum. The partial checksum value can be used
2407                          * to accelerate checksum computation for fragmented
2408                          * TCP/UDP packets. Upper network stack already
2409                          * takes advantage of the partial checksum value in
2410                          * IP reassembly stage. But I'm not sure the
2411                          * correctness of the partial hardware checksum
2412                          * assistance due to lack of data sheet. If it is
2413                          * proven to work on L1 I'll enable it.
2414                          */
2415                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2416                             (status & AGE_RRD_IPV4) != 0) {
2417                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2418                                         m->m_pkthdr.csum_flags |=
2419                                             CSUM_IP_CHECKED | CSUM_IP_VALID;
2420                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2421                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2422                                         m->m_pkthdr.csum_flags |=
2423                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2424                                         m->m_pkthdr.csum_data = 0xffff;
2425                                 }
2426                                 /*
2427                                  * Don't mark bad checksum for TCP/UDP frames
2428                                  * as fragmented frames may always have set
2429                                  * bad checksummed bit of descriptor status.
2430                                  */
2431                         }
2432
2433                         /* Check for VLAN tagged frames. */
2434                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2435                             (status & AGE_RRD_VLAN) != 0) {
2436                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2437                                 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2438                                 m->m_flags |= M_VLANTAG;
2439                         }
2440 #ifndef __NO_STRICT_ALIGNMENT
2441                         m = age_fixup_rx(ifp, m);
2442                         if (m != NULL)
2443 #endif
2444                         {
2445                         /* Pass it on. */
2446                         AGE_UNLOCK(sc);
2447                         (*ifp->if_input)(ifp, m);
2448                         AGE_LOCK(sc);
2449                         }
2450                 }
2451         }
2452
2453         /* Reset mbuf chains. */
2454         AGE_RXCHAIN_RESET(sc);
2455 }
2456
2457 static int
2458 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2459 {
2460         struct rx_rdesc *rxrd;
2461         int rr_cons, nsegs, pktlen, prog;
2462
2463         AGE_LOCK_ASSERT(sc);
2464
2465         rr_cons = sc->age_cdata.age_rr_cons;
2466         if (rr_cons == rr_prod)
2467                 return (0);
2468
2469         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2470             sc->age_cdata.age_rr_ring_map,
2471             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2472         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2473             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2474
2475         for (prog = 0; rr_cons != rr_prod; prog++) {
2476                 if (count-- <= 0)
2477                         break;
2478                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2479                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2480                 if (nsegs == 0)
2481                         break;
2482                 /*
2483                  * Check number of segments against received bytes.
2484                  * Non-matching value would indicate that hardware
2485                  * is still trying to update Rx return descriptors.
2486                  * I'm not sure whether this check is really needed.
2487                  */
2488                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2489                 if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2490                         break;
2491
2492                 /* Received a frame. */
2493                 age_rxeof(sc, rxrd);
2494                 /* Clear return ring. */
2495                 rxrd->index = 0;
2496                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2497                 sc->age_cdata.age_rx_cons += nsegs;
2498                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2499         }
2500
2501         if (prog > 0) {
2502                 /* Update the consumer index. */
2503                 sc->age_cdata.age_rr_cons = rr_cons;
2504
2505                 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2506                     sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2507                 /* Sync descriptors. */
2508                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2509                     sc->age_cdata.age_rr_ring_map,
2510                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2511
2512                 /* Notify hardware availability of new Rx buffers. */
2513                 AGE_COMMIT_MBOX(sc);
2514         }
2515
2516         return (count > 0 ? 0 : EAGAIN);
2517 }
2518
2519 static void
2520 age_tick(void *arg)
2521 {
2522         struct age_softc *sc;
2523         struct mii_data *mii;
2524
2525         sc = (struct age_softc *)arg;
2526
2527         AGE_LOCK_ASSERT(sc);
2528
2529         mii = device_get_softc(sc->age_miibus);
2530         mii_tick(mii);
2531         age_watchdog(sc);
2532         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2533 }
2534
2535 static void
2536 age_reset(struct age_softc *sc)
2537 {
2538         uint32_t reg;
2539         int i;
2540
2541         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2542         CSR_READ_4(sc, AGE_MASTER_CFG);
2543         DELAY(1000);
2544         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2545                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2546                         break;
2547                 DELAY(10);
2548         }
2549
2550         if (i == 0)
2551                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2552         /* Initialize PCIe module. From Linux. */
2553         CSR_WRITE_4(sc, 0x12FC, 0x6500);
2554         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2555 }
2556
2557 static void
2558 age_init(void *xsc)
2559 {
2560         struct age_softc *sc;
2561
2562         sc = (struct age_softc *)xsc;
2563         AGE_LOCK(sc);
2564         age_init_locked(sc);
2565         AGE_UNLOCK(sc);
2566 }
2567
2568 static void
2569 age_init_locked(struct age_softc *sc)
2570 {
2571         struct ifnet *ifp;
2572         struct mii_data *mii;
2573         uint8_t eaddr[ETHER_ADDR_LEN];
2574         bus_addr_t paddr;
2575         uint32_t reg, fsize;
2576         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2577         int error;
2578
2579         AGE_LOCK_ASSERT(sc);
2580
2581         ifp = sc->age_ifp;
2582         mii = device_get_softc(sc->age_miibus);
2583
2584         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2585                 return;
2586
2587         /*
2588          * Cancel any pending I/O.
2589          */
2590         age_stop(sc);
2591
2592         /*
2593          * Reset the chip to a known state.
2594          */
2595         age_reset(sc);
2596
2597         /* Initialize descriptors. */
2598         error = age_init_rx_ring(sc);
2599         if (error != 0) {
2600                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2601                 age_stop(sc);
2602                 return;
2603         }
2604         age_init_rr_ring(sc);
2605         age_init_tx_ring(sc);
2606         age_init_cmb_block(sc);
2607         age_init_smb_block(sc);
2608
2609         /* Reprogram the station address. */
2610         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2611         CSR_WRITE_4(sc, AGE_PAR0,
2612             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2613         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2614
2615         /* Set descriptor base addresses. */
2616         paddr = sc->age_rdata.age_tx_ring_paddr;
2617         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2618         paddr = sc->age_rdata.age_rx_ring_paddr;
2619         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2620         paddr = sc->age_rdata.age_rr_ring_paddr;
2621         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2622         paddr = sc->age_rdata.age_tx_ring_paddr;
2623         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2624         paddr = sc->age_rdata.age_cmb_block_paddr;
2625         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2626         paddr = sc->age_rdata.age_smb_block_paddr;
2627         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2628         /* Set Rx/Rx return descriptor counter. */
2629         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2630             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2631             DESC_RRD_CNT_MASK) |
2632             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2633         /* Set Tx descriptor counter. */
2634         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2635             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2636
2637         /* Tell hardware that we're ready to load descriptors. */
2638         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2639
2640         /*
2641          * Initialize mailbox register.
2642          * Updated producer/consumer index information is exchanged
2643          * through this mailbox register. However Tx producer and
2644          * Rx return consumer/Rx producer are all shared such that
2645          * it's hard to separate code path between Tx and Rx without
2646          * locking. If L1 hardware have a separate mail box register
2647          * for Tx and Rx consumer/producer management we could have
2648          * indepent Tx/Rx handler which in turn Rx handler could have
2649          * been run without any locking.
2650          */
2651         AGE_COMMIT_MBOX(sc);
2652
2653         /* Configure IPG/IFG parameters. */
2654         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2655             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2656             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2657             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2658             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2659
2660         /* Set parameters for half-duplex media. */
2661         CSR_WRITE_4(sc, AGE_HDPX_CFG,
2662             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2663             HDPX_CFG_LCOL_MASK) |
2664             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2665             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2666             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2667             HDPX_CFG_ABEBT_MASK) |
2668             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2669             HDPX_CFG_JAMIPG_MASK));
2670
2671         /* Configure interrupt moderation timer. */
2672         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2673         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2674         reg &= ~MASTER_MTIMER_ENB;
2675         if (AGE_USECS(sc->age_int_mod) == 0)
2676                 reg &= ~MASTER_ITIMER_ENB;
2677         else
2678                 reg |= MASTER_ITIMER_ENB;
2679         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2680         if (bootverbose)
2681                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2682                     sc->age_int_mod);
2683         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2684
2685         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2686         if (ifp->if_mtu < ETHERMTU)
2687                 sc->age_max_frame_size = ETHERMTU;
2688         else
2689                 sc->age_max_frame_size = ifp->if_mtu;
2690         sc->age_max_frame_size += ETHER_HDR_LEN +
2691             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2692         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2693         /* Configure jumbo frame. */
2694         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2695         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2696             (((fsize / sizeof(uint64_t)) <<
2697             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2698             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2699             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2700             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2701             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2702
2703         /* Configure flow-control parameters. From Linux. */
2704         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2705                 /*
2706                  * Magic workaround for old-L1.
2707                  * Don't know which hw revision requires this magic.
2708                  */
2709                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
2710                 /*
2711                  * Another magic workaround for flow-control mode
2712                  * change. From Linux.
2713                  */
2714                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2715         }
2716         /*
2717          * TODO
2718          *  Should understand pause parameter relationships between FIFO
2719          *  size and number of Rx descriptors and Rx return descriptors.
2720          *
2721          *  Magic parameters came from Linux.
2722          */
2723         switch (sc->age_chip_rev) {
2724         case 0x8001:
2725         case 0x9001:
2726         case 0x9002:
2727         case 0x9003:
2728                 rxf_hi = AGE_RX_RING_CNT / 16;
2729                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2730                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2731                 rrd_lo = AGE_RR_RING_CNT / 16;
2732                 break;
2733         default:
2734                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2735                 rxf_lo = reg / 16;
2736                 if (rxf_lo < 192)
2737                         rxf_lo = 192;
2738                 rxf_hi = (reg * 7) / 8;
2739                 if (rxf_hi < rxf_lo)
2740                         rxf_hi = rxf_lo + 16;
2741                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2742                 rrd_lo = reg / 8;
2743                 rrd_hi = (reg * 7) / 8;
2744                 if (rrd_lo < 2)
2745                         rrd_lo = 2;
2746                 if (rrd_hi < rrd_lo)
2747                         rrd_hi = rrd_lo + 3;
2748                 break;
2749         }
2750         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2751             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2752             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2753             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2754             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2755         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2756             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2757             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2758             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2759             RXQ_RRD_PAUSE_THRESH_HI_MASK));
2760
2761         /* Configure RxQ. */
2762         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2763             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2764             RXQ_CFG_RD_BURST_MASK) |
2765             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2766             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2767             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2768             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2769             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2770
2771         /* Configure TxQ. */
2772         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2773             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2774             TXQ_CFG_TPD_BURST_MASK) |
2775             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2776             TXQ_CFG_TX_FIFO_BURST_MASK) |
2777             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2778             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2779             TXQ_CFG_ENB);
2780
2781         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2782             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2783             TX_JUMBO_TPD_TH_MASK) |
2784             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2785             TX_JUMBO_TPD_IPG_MASK));
2786         /* Configure DMA parameters. */
2787         CSR_WRITE_4(sc, AGE_DMA_CFG,
2788             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2789             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2790             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2791
2792         /* Configure CMB DMA write threshold. */
2793         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2794             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2795             CMB_WR_THRESH_RRD_MASK) |
2796             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2797             CMB_WR_THRESH_TPD_MASK));
2798
2799         /* Set CMB/SMB timer and enable them. */
2800         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2801             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2802             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2803         /* Request SMB updates for every seconds. */
2804         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2805         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2806
2807         /*
2808          * Disable all WOL bits as WOL can interfere normal Rx
2809          * operation.
2810          */
2811         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2812
2813         /*
2814          * Configure Tx/Rx MACs.
2815          *  - Auto-padding for short frames.
2816          *  - Enable CRC generation.
2817          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2818          *  of MAC is followed after link establishment.
2819          */
2820         CSR_WRITE_4(sc, AGE_MAC_CFG,
2821             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2822             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2823             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2824             MAC_CFG_PREAMBLE_MASK));
2825         /* Set up the receive filter. */
2826         age_rxfilter(sc);
2827         age_rxvlan(sc);
2828
2829         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2830         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2831                 reg |= MAC_CFG_RXCSUM_ENB;
2832
2833         /* Ack all pending interrupts and clear it. */
2834         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2835         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2836
2837         /* Finally enable Tx/Rx MAC. */
2838         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2839
2840         sc->age_flags &= ~AGE_FLAG_LINK;
2841         /* Switch to the current media. */
2842         mii_mediachg(mii);
2843
2844         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2845
2846         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2847         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2848 }
2849
2850 static void
2851 age_stop(struct age_softc *sc)
2852 {
2853         struct ifnet *ifp;
2854         struct age_txdesc *txd;
2855         struct age_rxdesc *rxd;
2856         uint32_t reg;
2857         int i;
2858
2859         AGE_LOCK_ASSERT(sc);
2860         /*
2861          * Mark the interface down and cancel the watchdog timer.
2862          */
2863         ifp = sc->age_ifp;
2864         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2865         sc->age_flags &= ~AGE_FLAG_LINK;
2866         callout_stop(&sc->age_tick_ch);
2867         sc->age_watchdog_timer = 0;
2868
2869         /*
2870          * Disable interrupts.
2871          */
2872         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2873         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2874         /* Stop CMB/SMB updates. */
2875         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2876         /* Stop Rx/Tx MAC. */
2877         age_stop_rxmac(sc);
2878         age_stop_txmac(sc);
2879         /* Stop DMA. */
2880         CSR_WRITE_4(sc, AGE_DMA_CFG,
2881             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2882         /* Stop TxQ/RxQ. */
2883         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2884             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2885         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2886             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2887         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2888                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2889                         break;
2890                 DELAY(10);
2891         }
2892         if (i == 0)
2893                 device_printf(sc->age_dev,
2894                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2895
2896          /* Reclaim Rx buffers that have been processed. */
2897         if (sc->age_cdata.age_rxhead != NULL)
2898                 m_freem(sc->age_cdata.age_rxhead);
2899         AGE_RXCHAIN_RESET(sc);
2900         /*
2901          * Free RX and TX mbufs still in the queues.
2902          */
2903         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2904                 rxd = &sc->age_cdata.age_rxdesc[i];
2905                 if (rxd->rx_m != NULL) {
2906                         bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2907                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2908                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2909                             rxd->rx_dmamap);
2910                         m_freem(rxd->rx_m);
2911                         rxd->rx_m = NULL;
2912                 }
2913         }
2914         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2915                 txd = &sc->age_cdata.age_txdesc[i];
2916                 if (txd->tx_m != NULL) {
2917                         bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2918                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2919                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2920                             txd->tx_dmamap);
2921                         m_freem(txd->tx_m);
2922                         txd->tx_m = NULL;
2923                 }
2924         }
2925 }
2926
2927 static void
2928 age_stop_txmac(struct age_softc *sc)
2929 {
2930         uint32_t reg;
2931         int i;
2932
2933         AGE_LOCK_ASSERT(sc);
2934
2935         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2936         if ((reg & MAC_CFG_TX_ENB) != 0) {
2937                 reg &= ~MAC_CFG_TX_ENB;
2938                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2939         }
2940         /* Stop Tx DMA engine. */
2941         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2942         if ((reg & DMA_CFG_RD_ENB) != 0) {
2943                 reg &= ~DMA_CFG_RD_ENB;
2944                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2945         }
2946         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2947                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2948                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2949                         break;
2950                 DELAY(10);
2951         }
2952         if (i == 0)
2953                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2954 }
2955
2956 static void
2957 age_stop_rxmac(struct age_softc *sc)
2958 {
2959         uint32_t reg;
2960         int i;
2961
2962         AGE_LOCK_ASSERT(sc);
2963
2964         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2965         if ((reg & MAC_CFG_RX_ENB) != 0) {
2966                 reg &= ~MAC_CFG_RX_ENB;
2967                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2968         }
2969         /* Stop Rx DMA engine. */
2970         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2971         if ((reg & DMA_CFG_WR_ENB) != 0) {
2972                 reg &= ~DMA_CFG_WR_ENB;
2973                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2974         }
2975         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2976                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2977                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2978                         break;
2979                 DELAY(10);
2980         }
2981         if (i == 0)
2982                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2983 }
2984
2985 static void
2986 age_init_tx_ring(struct age_softc *sc)
2987 {
2988         struct age_ring_data *rd;
2989         struct age_txdesc *txd;
2990         int i;
2991
2992         AGE_LOCK_ASSERT(sc);
2993
2994         sc->age_cdata.age_tx_prod = 0;
2995         sc->age_cdata.age_tx_cons = 0;
2996         sc->age_cdata.age_tx_cnt = 0;
2997
2998         rd = &sc->age_rdata;
2999         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
3000         for (i = 0; i < AGE_TX_RING_CNT; i++) {
3001                 txd = &sc->age_cdata.age_txdesc[i];
3002                 txd->tx_desc = &rd->age_tx_ring[i];
3003                 txd->tx_m = NULL;
3004         }
3005
3006         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3007             sc->age_cdata.age_tx_ring_map,
3008             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3009 }
3010
3011 static int
3012 age_init_rx_ring(struct age_softc *sc)
3013 {
3014         struct age_ring_data *rd;
3015         struct age_rxdesc *rxd;
3016         int i;
3017
3018         AGE_LOCK_ASSERT(sc);
3019
3020         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3021         sc->age_morework = 0;
3022         rd = &sc->age_rdata;
3023         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3024         for (i = 0; i < AGE_RX_RING_CNT; i++) {
3025                 rxd = &sc->age_cdata.age_rxdesc[i];
3026                 rxd->rx_m = NULL;
3027                 rxd->rx_desc = &rd->age_rx_ring[i];
3028                 if (age_newbuf(sc, rxd) != 0)
3029                         return (ENOBUFS);
3030         }
3031
3032         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3033             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3034
3035         return (0);
3036 }
3037
3038 static void
3039 age_init_rr_ring(struct age_softc *sc)
3040 {
3041         struct age_ring_data *rd;
3042
3043         AGE_LOCK_ASSERT(sc);
3044
3045         sc->age_cdata.age_rr_cons = 0;
3046         AGE_RXCHAIN_RESET(sc);
3047
3048         rd = &sc->age_rdata;
3049         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3050         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3051             sc->age_cdata.age_rr_ring_map,
3052             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3053 }
3054
3055 static void
3056 age_init_cmb_block(struct age_softc *sc)
3057 {
3058         struct age_ring_data *rd;
3059
3060         AGE_LOCK_ASSERT(sc);
3061
3062         rd = &sc->age_rdata;
3063         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3064         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3065             sc->age_cdata.age_cmb_block_map,
3066             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3067 }
3068
3069 static void
3070 age_init_smb_block(struct age_softc *sc)
3071 {
3072         struct age_ring_data *rd;
3073
3074         AGE_LOCK_ASSERT(sc);
3075
3076         rd = &sc->age_rdata;
3077         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3078         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3079             sc->age_cdata.age_smb_block_map,
3080             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3081 }
3082
3083 static int
3084 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3085 {
3086         struct rx_desc *desc;
3087         struct mbuf *m;
3088         bus_dma_segment_t segs[1];
3089         bus_dmamap_t map;
3090         int nsegs;
3091
3092         AGE_LOCK_ASSERT(sc);
3093
3094         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3095         if (m == NULL)
3096                 return (ENOBUFS);
3097         m->m_len = m->m_pkthdr.len = MCLBYTES;
3098 #ifndef __NO_STRICT_ALIGNMENT
3099         m_adj(m, AGE_RX_BUF_ALIGN);
3100 #endif
3101
3102         if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3103             sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3104                 m_freem(m);
3105                 return (ENOBUFS);
3106         }
3107         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3108
3109         if (rxd->rx_m != NULL) {
3110                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3111                     BUS_DMASYNC_POSTREAD);
3112                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3113         }
3114         map = rxd->rx_dmamap;
3115         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3116         sc->age_cdata.age_rx_sparemap = map;
3117         bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3118             BUS_DMASYNC_PREREAD);
3119         rxd->rx_m = m;
3120
3121         desc = rxd->rx_desc;
3122         desc->addr = htole64(segs[0].ds_addr);
3123         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3124             AGE_RD_LEN_SHIFT);
3125         return (0);
3126 }
3127
3128 static void
3129 age_rxvlan(struct age_softc *sc)
3130 {
3131         struct ifnet *ifp;
3132         uint32_t reg;
3133
3134         AGE_LOCK_ASSERT(sc);
3135
3136         ifp = sc->age_ifp;
3137         reg = CSR_READ_4(sc, AGE_MAC_CFG);
3138         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3139         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3140                 reg |= MAC_CFG_VLAN_TAG_STRIP;
3141         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3142 }
3143
3144 static void
3145 age_rxfilter(struct age_softc *sc)
3146 {
3147         struct ifnet *ifp;
3148         struct ifmultiaddr *ifma;
3149         uint32_t crc;
3150         uint32_t mchash[2];
3151         uint32_t rxcfg;
3152
3153         AGE_LOCK_ASSERT(sc);
3154
3155         ifp = sc->age_ifp;
3156
3157         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3158         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3159         if ((ifp->if_flags & IFF_BROADCAST) != 0)
3160                 rxcfg |= MAC_CFG_BCAST;
3161         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3162                 if ((ifp->if_flags & IFF_PROMISC) != 0)
3163                         rxcfg |= MAC_CFG_PROMISC;
3164                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3165                         rxcfg |= MAC_CFG_ALLMULTI;
3166                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3167                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3168                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3169                 return;
3170         }
3171
3172         /* Program new filter. */
3173         bzero(mchash, sizeof(mchash));
3174
3175         if_maddr_rlock(ifp);
3176         TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3177                 if (ifma->ifma_addr->sa_family != AF_LINK)
3178                         continue;
3179                 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3180                     ifma->ifma_addr), ETHER_ADDR_LEN);
3181                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3182         }
3183         if_maddr_runlock(ifp);
3184
3185         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3186         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3187         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3188 }
3189
3190 static int
3191 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3192 {
3193         struct age_softc *sc;
3194         struct age_stats *stats;
3195         int error, result;
3196
3197         result = -1;
3198         error = sysctl_handle_int(oidp, &result, 0, req);
3199
3200         if (error != 0 || req->newptr == NULL)
3201                 return (error);
3202
3203         if (result != 1)
3204                 return (error);
3205
3206         sc = (struct age_softc *)arg1;
3207         stats = &sc->age_stat;
3208         printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3209         printf("Transmit good frames : %ju\n",
3210             (uintmax_t)stats->tx_frames);
3211         printf("Transmit good broadcast frames : %ju\n",
3212             (uintmax_t)stats->tx_bcast_frames);
3213         printf("Transmit good multicast frames : %ju\n",
3214             (uintmax_t)stats->tx_mcast_frames);
3215         printf("Transmit pause control frames : %u\n",
3216             stats->tx_pause_frames);
3217         printf("Transmit control frames : %u\n",
3218             stats->tx_control_frames);
3219         printf("Transmit frames with excessive deferrals : %u\n",
3220             stats->tx_excess_defer);
3221         printf("Transmit deferrals : %u\n",
3222             stats->tx_deferred);
3223         printf("Transmit good octets : %ju\n",
3224             (uintmax_t)stats->tx_bytes);
3225         printf("Transmit good broadcast octets : %ju\n",
3226             (uintmax_t)stats->tx_bcast_bytes);
3227         printf("Transmit good multicast octets : %ju\n",
3228             (uintmax_t)stats->tx_mcast_bytes);
3229         printf("Transmit frames 64 bytes : %ju\n",
3230             (uintmax_t)stats->tx_pkts_64);
3231         printf("Transmit frames 65 to 127 bytes : %ju\n",
3232             (uintmax_t)stats->tx_pkts_65_127);
3233         printf("Transmit frames 128 to 255 bytes : %ju\n",
3234             (uintmax_t)stats->tx_pkts_128_255);
3235         printf("Transmit frames 256 to 511 bytes : %ju\n",
3236             (uintmax_t)stats->tx_pkts_256_511);
3237         printf("Transmit frames 512 to 1024 bytes : %ju\n",
3238             (uintmax_t)stats->tx_pkts_512_1023);
3239         printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3240             (uintmax_t)stats->tx_pkts_1024_1518);
3241         printf("Transmit frames 1519 to MTU bytes : %ju\n",
3242             (uintmax_t)stats->tx_pkts_1519_max);
3243         printf("Transmit single collisions : %u\n",
3244             stats->tx_single_colls);
3245         printf("Transmit multiple collisions : %u\n",
3246             stats->tx_multi_colls);
3247         printf("Transmit late collisions : %u\n",
3248             stats->tx_late_colls);
3249         printf("Transmit abort due to excessive collisions : %u\n",
3250             stats->tx_excess_colls);
3251         printf("Transmit underruns due to FIFO underruns : %u\n",
3252             stats->tx_underrun);
3253         printf("Transmit descriptor write-back errors : %u\n",
3254             stats->tx_desc_underrun);
3255         printf("Transmit frames with length mismatched frame size : %u\n",
3256             stats->tx_lenerrs);
3257         printf("Transmit frames with truncated due to MTU size : %u\n",
3258             stats->tx_lenerrs);
3259
3260         printf("Receive good frames : %ju\n",
3261             (uintmax_t)stats->rx_frames);
3262         printf("Receive good broadcast frames : %ju\n",
3263             (uintmax_t)stats->rx_bcast_frames);
3264         printf("Receive good multicast frames : %ju\n",
3265             (uintmax_t)stats->rx_mcast_frames);
3266         printf("Receive pause control frames : %u\n",
3267             stats->rx_pause_frames);
3268         printf("Receive control frames : %u\n",
3269             stats->rx_control_frames);
3270         printf("Receive CRC errors : %u\n",
3271             stats->rx_crcerrs);
3272         printf("Receive frames with length errors : %u\n",
3273             stats->rx_lenerrs);
3274         printf("Receive good octets : %ju\n",
3275             (uintmax_t)stats->rx_bytes);
3276         printf("Receive good broadcast octets : %ju\n",
3277             (uintmax_t)stats->rx_bcast_bytes);
3278         printf("Receive good multicast octets : %ju\n",
3279             (uintmax_t)stats->rx_mcast_bytes);
3280         printf("Receive frames too short : %u\n",
3281             stats->rx_runts);
3282         printf("Receive fragmented frames : %ju\n",
3283             (uintmax_t)stats->rx_fragments);
3284         printf("Receive frames 64 bytes : %ju\n",
3285             (uintmax_t)stats->rx_pkts_64);
3286         printf("Receive frames 65 to 127 bytes : %ju\n",
3287             (uintmax_t)stats->rx_pkts_65_127);
3288         printf("Receive frames 128 to 255 bytes : %ju\n",
3289             (uintmax_t)stats->rx_pkts_128_255);
3290         printf("Receive frames 256 to 511 bytes : %ju\n",
3291             (uintmax_t)stats->rx_pkts_256_511);
3292         printf("Receive frames 512 to 1024 bytes : %ju\n",
3293             (uintmax_t)stats->rx_pkts_512_1023);
3294         printf("Receive frames 1024 to 1518 bytes : %ju\n",
3295             (uintmax_t)stats->rx_pkts_1024_1518);
3296         printf("Receive frames 1519 to MTU bytes : %ju\n",
3297             (uintmax_t)stats->rx_pkts_1519_max);
3298         printf("Receive frames too long : %ju\n",
3299             (uint64_t)stats->rx_pkts_truncated);
3300         printf("Receive frames with FIFO overflow : %u\n",
3301             stats->rx_fifo_oflows);
3302         printf("Receive frames with return descriptor overflow : %u\n",
3303             stats->rx_desc_oflows);
3304         printf("Receive frames with alignment errors : %u\n",
3305             stats->rx_alignerrs);
3306         printf("Receive frames dropped due to address filtering : %ju\n",
3307             (uint64_t)stats->rx_pkts_filtered);
3308
3309         return (error);
3310 }
3311
3312 static int
3313 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3314 {
3315         int error, value;
3316
3317         if (arg1 == NULL)
3318                 return (EINVAL);
3319         value = *(int *)arg1;
3320         error = sysctl_handle_int(oidp, &value, 0, req);
3321         if (error || req->newptr == NULL)
3322                 return (error);
3323         if (value < low || value > high)
3324                 return (EINVAL);
3325         *(int *)arg1 = value;
3326
3327         return (0);
3328 }
3329
3330 static int
3331 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3332 {
3333         return (sysctl_int_range(oidp, arg1, arg2, req,
3334             AGE_PROC_MIN, AGE_PROC_MAX));
3335 }
3336
3337 static int
3338 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3339 {
3340
3341         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3342             AGE_IM_TIMER_MAX));
3343 }