]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/age/if_age.c
THIS BRANCH IS OBSOLETE, PLEASE READ:
[FreeBSD/FreeBSD.git] / sys / dev / age / if_age.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/rman.h>
43 #include <sys/module.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70
71 #include <machine/bus.h>
72 #include <machine/in_cksum.h>
73
74 #include <dev/age/if_agereg.h>
75 #include <dev/age/if_agevar.h>
76
77 /* "device miibus" required.  See GENERIC if you get errors here. */
78 #include "miibus_if.h"
79
80 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
81
82 MODULE_DEPEND(age, pci, 1, 1, 1);
83 MODULE_DEPEND(age, ether, 1, 1, 1);
84 MODULE_DEPEND(age, miibus, 1, 1, 1);
85
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
91
92 /*
93  * Devices supported by this driver.
94  */
95 static struct age_dev {
96         uint16_t        age_vendorid;
97         uint16_t        age_deviceid;
98         const char      *age_name;
99 } age_devs[] = {
100         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
101             "Attansic Technology Corp, L1 Gigabit Ethernet" },
102 };
103
104 static int age_miibus_readreg(device_t, int, int);
105 static int age_miibus_writereg(device_t, int, int, int);
106 static void age_miibus_statchg(device_t);
107 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
108 static int age_mediachange(struct ifnet *);
109 static int age_probe(device_t);
110 static void age_get_macaddr(struct age_softc *);
111 static void age_phy_reset(struct age_softc *);
112 static int age_attach(device_t);
113 static int age_detach(device_t);
114 static void age_sysctl_node(struct age_softc *);
115 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
116 static int age_check_boundary(struct age_softc *);
117 static int age_dma_alloc(struct age_softc *);
118 static void age_dma_free(struct age_softc *);
119 static int age_shutdown(device_t);
120 static void age_setwol(struct age_softc *);
121 static int age_suspend(device_t);
122 static int age_resume(device_t);
123 static int age_encap(struct age_softc *, struct mbuf **);
124 static void age_start(struct ifnet *);
125 static void age_start_locked(struct ifnet *);
126 static void age_watchdog(struct age_softc *);
127 static int age_ioctl(struct ifnet *, u_long, caddr_t);
128 static void age_mac_config(struct age_softc *);
129 static void age_link_task(void *, int);
130 static void age_stats_update(struct age_softc *);
131 static int age_intr(void *);
132 static void age_int_task(void *, int);
133 static void age_txintr(struct age_softc *, int);
134 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
135 static int age_rxintr(struct age_softc *, int, int);
136 static void age_tick(void *);
137 static void age_reset(struct age_softc *);
138 static void age_init(void *);
139 static void age_init_locked(struct age_softc *);
140 static void age_stop(struct age_softc *);
141 static void age_stop_txmac(struct age_softc *);
142 static void age_stop_rxmac(struct age_softc *);
143 static void age_init_tx_ring(struct age_softc *);
144 static int age_init_rx_ring(struct age_softc *);
145 static void age_init_rr_ring(struct age_softc *);
146 static void age_init_cmb_block(struct age_softc *);
147 static void age_init_smb_block(struct age_softc *);
148 #ifndef __NO_STRICT_ALIGNMENT
149 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
150 #endif
151 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
152 static void age_rxvlan(struct age_softc *);
153 static void age_rxfilter(struct age_softc *);
154 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
155 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
156 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
157 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
158
159 static device_method_t age_methods[] = {
160         /* Device interface. */
161         DEVMETHOD(device_probe,         age_probe),
162         DEVMETHOD(device_attach,        age_attach),
163         DEVMETHOD(device_detach,        age_detach),
164         DEVMETHOD(device_shutdown,      age_shutdown),
165         DEVMETHOD(device_suspend,       age_suspend),
166         DEVMETHOD(device_resume,        age_resume),
167
168         /* MII interface. */
169         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
170         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
171         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
172         { NULL, NULL }
173 };
174
175 static driver_t age_driver = {
176         "age",
177         age_methods,
178         sizeof(struct age_softc)
179 };
180
181 static devclass_t age_devclass;
182
183 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
184 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
185     nitems(age_devs));
186 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
187
188 static struct resource_spec age_res_spec_mem[] = {
189         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
190         { -1,                   0,              0 }
191 };
192
193 static struct resource_spec age_irq_spec_legacy[] = {
194         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
195         { -1,                   0,              0 }
196 };
197
198 static struct resource_spec age_irq_spec_msi[] = {
199         { SYS_RES_IRQ,          1,              RF_ACTIVE },
200         { -1,                   0,              0 }
201 };
202
203 static struct resource_spec age_irq_spec_msix[] = {
204         { SYS_RES_IRQ,          1,              RF_ACTIVE },
205         { -1,                   0,              0 }
206 };
207
208 /*
209  *      Read a PHY register on the MII of the L1.
210  */
211 static int
212 age_miibus_readreg(device_t dev, int phy, int reg)
213 {
214         struct age_softc *sc;
215         uint32_t v;
216         int i;
217
218         sc = device_get_softc(dev);
219
220         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
221             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
222         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
223                 DELAY(1);
224                 v = CSR_READ_4(sc, AGE_MDIO);
225                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
226                         break;
227         }
228
229         if (i == 0) {
230                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
231                 return (0);
232         }
233
234         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
235 }
236
237 /*
238  *      Write a PHY register on the MII of the L1.
239  */
240 static int
241 age_miibus_writereg(device_t dev, int phy, int reg, int val)
242 {
243         struct age_softc *sc;
244         uint32_t v;
245         int i;
246
247         sc = device_get_softc(dev);
248
249         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
250             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
251             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
252         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
253                 DELAY(1);
254                 v = CSR_READ_4(sc, AGE_MDIO);
255                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
256                         break;
257         }
258
259         if (i == 0)
260                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
261
262         return (0);
263 }
264
265 /*
266  *      Callback from MII layer when media changes.
267  */
268 static void
269 age_miibus_statchg(device_t dev)
270 {
271         struct age_softc *sc;
272
273         sc = device_get_softc(dev);
274         taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
275 }
276
277 /*
278  *      Get the current interface media status.
279  */
280 static void
281 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
282 {
283         struct age_softc *sc;
284         struct mii_data *mii;
285
286         sc = ifp->if_softc;
287         AGE_LOCK(sc);
288         mii = device_get_softc(sc->age_miibus);
289
290         mii_pollstat(mii);
291         ifmr->ifm_status = mii->mii_media_status;
292         ifmr->ifm_active = mii->mii_media_active;
293         AGE_UNLOCK(sc);
294 }
295
296 /*
297  *      Set hardware to newly-selected media.
298  */
299 static int
300 age_mediachange(struct ifnet *ifp)
301 {
302         struct age_softc *sc;
303         struct mii_data *mii;
304         struct mii_softc *miisc;
305         int error;
306
307         sc = ifp->if_softc;
308         AGE_LOCK(sc);
309         mii = device_get_softc(sc->age_miibus);
310         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
311                 PHY_RESET(miisc);
312         error = mii_mediachg(mii);
313         AGE_UNLOCK(sc);
314
315         return (error);
316 }
317
318 static int
319 age_probe(device_t dev)
320 {
321         struct age_dev *sp;
322         int i;
323         uint16_t vendor, devid;
324
325         vendor = pci_get_vendor(dev);
326         devid = pci_get_device(dev);
327         sp = age_devs;
328         for (i = 0; i < nitems(age_devs); i++, sp++) {
329                 if (vendor == sp->age_vendorid &&
330                     devid == sp->age_deviceid) {
331                         device_set_desc(dev, sp->age_name);
332                         return (BUS_PROBE_DEFAULT);
333                 }
334         }
335
336         return (ENXIO);
337 }
338
339 static void
340 age_get_macaddr(struct age_softc *sc)
341 {
342         uint32_t ea[2], reg;
343         int i, vpdc;
344
345         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
346         if ((reg & SPI_VPD_ENB) != 0) {
347                 /* Get VPD stored in TWSI EEPROM. */
348                 reg &= ~SPI_VPD_ENB;
349                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
350         }
351
352         if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
353                 /*
354                  * PCI VPD capability found, let TWSI reload EEPROM.
355                  * This will set ethernet address of controller.
356                  */
357                 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
358                     TWSI_CTRL_SW_LD_START);
359                 for (i = 100; i > 0; i--) {
360                         DELAY(1000);
361                         reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
362                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
363                                 break;
364                 }
365                 if (i == 0)
366                         device_printf(sc->age_dev,
367                             "reloading EEPROM timeout!\n");
368         } else {
369                 if (bootverbose)
370                         device_printf(sc->age_dev,
371                             "PCI VPD capability not found!\n");
372         }
373
374         ea[0] = CSR_READ_4(sc, AGE_PAR0);
375         ea[1] = CSR_READ_4(sc, AGE_PAR1);
376         sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
377         sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
378         sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
379         sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
380         sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
381         sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
382 }
383
384 static void
385 age_phy_reset(struct age_softc *sc)
386 {
387         uint16_t reg, pn;
388         int i, linkup;
389
390         /* Reset PHY. */
391         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
392         DELAY(2000);
393         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
394         DELAY(2000);
395
396 #define ATPHY_DBG_ADDR          0x1D
397 #define ATPHY_DBG_DATA          0x1E
398 #define ATPHY_CDTC              0x16
399 #define PHY_CDTC_ENB            0x0001
400 #define PHY_CDTC_POFF           8
401 #define ATPHY_CDTS              0x1C
402 #define PHY_CDTS_STAT_OK        0x0000
403 #define PHY_CDTS_STAT_SHORT     0x0100
404 #define PHY_CDTS_STAT_OPEN      0x0200
405 #define PHY_CDTS_STAT_INVAL     0x0300
406 #define PHY_CDTS_STAT_MASK      0x0300
407
408         /* Check power saving mode. Magic from Linux. */
409         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
410         for (linkup = 0, pn = 0; pn < 4; pn++) {
411                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
412                     (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
413                 for (i = 200; i > 0; i--) {
414                         DELAY(1000);
415                         reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
416                             ATPHY_CDTC);
417                         if ((reg & PHY_CDTC_ENB) == 0)
418                                 break;
419                 }
420                 DELAY(1000);
421                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
422                     ATPHY_CDTS);
423                 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
424                         linkup++;
425                         break;
426                 }
427         }
428         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
429             BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
430         if (linkup == 0) {
431                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
432                     ATPHY_DBG_ADDR, 0);
433                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
434                     ATPHY_DBG_DATA, 0x124E);
435                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
436                     ATPHY_DBG_ADDR, 1);
437                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
438                     ATPHY_DBG_DATA);
439                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
440                     ATPHY_DBG_DATA, reg | 0x03);
441                 /* XXX */
442                 DELAY(1500 * 1000);
443                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
444                     ATPHY_DBG_ADDR, 0);
445                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
446                     ATPHY_DBG_DATA, 0x024E);
447     }
448
449 #undef  ATPHY_DBG_ADDR
450 #undef  ATPHY_DBG_DATA
451 #undef  ATPHY_CDTC
452 #undef  PHY_CDTC_ENB
453 #undef  PHY_CDTC_POFF
454 #undef  ATPHY_CDTS
455 #undef  PHY_CDTS_STAT_OK
456 #undef  PHY_CDTS_STAT_SHORT
457 #undef  PHY_CDTS_STAT_OPEN
458 #undef  PHY_CDTS_STAT_INVAL
459 #undef  PHY_CDTS_STAT_MASK
460 }
461
462 static int
463 age_attach(device_t dev)
464 {
465         struct age_softc *sc;
466         struct ifnet *ifp;
467         uint16_t burst;
468         int error, i, msic, msixc, pmc;
469
470         error = 0;
471         sc = device_get_softc(dev);
472         sc->age_dev = dev;
473
474         mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
475             MTX_DEF);
476         callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
477         TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
478         TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
479
480         /* Map the device. */
481         pci_enable_busmaster(dev);
482         sc->age_res_spec = age_res_spec_mem;
483         sc->age_irq_spec = age_irq_spec_legacy;
484         error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
485         if (error != 0) {
486                 device_printf(dev, "cannot allocate memory resources.\n");
487                 goto fail;
488         }
489
490         /* Set PHY address. */
491         sc->age_phyaddr = AGE_PHY_ADDR;
492
493         /* Reset PHY. */
494         age_phy_reset(sc);
495
496         /* Reset the ethernet controller. */
497         age_reset(sc);
498
499         /* Get PCI and chip id/revision. */
500         sc->age_rev = pci_get_revid(dev);
501         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
502             MASTER_CHIP_REV_SHIFT;
503         if (bootverbose) {
504                 device_printf(dev, "PCI device revision : 0x%04x\n",
505                     sc->age_rev);
506                 device_printf(dev, "Chip id/revision : 0x%04x\n",
507                     sc->age_chip_rev);
508         }
509
510         /*
511          * XXX
512          * Unintialized hardware returns an invalid chip id/revision
513          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
514          * unplugged cable results in putting hardware into automatic
515          * power down mode which in turn returns invalld chip revision.
516          */
517         if (sc->age_chip_rev == 0xFFFF) {
518                 device_printf(dev,"invalid chip revision : 0x%04x -- "
519                     "not initialized?\n", sc->age_chip_rev);
520                 error = ENXIO;
521                 goto fail;
522         }
523
524         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
525             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
526             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
527
528         /* Allocate IRQ resources. */
529         msixc = pci_msix_count(dev);
530         msic = pci_msi_count(dev);
531         if (bootverbose) {
532                 device_printf(dev, "MSIX count : %d\n", msixc);
533                 device_printf(dev, "MSI count : %d\n", msic);
534         }
535
536         /* Prefer MSIX over MSI. */
537         if (msix_disable == 0 || msi_disable == 0) {
538                 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
539                     pci_alloc_msix(dev, &msixc) == 0) {
540                         if (msic == AGE_MSIX_MESSAGES) {
541                                 device_printf(dev, "Using %d MSIX messages.\n",
542                                     msixc);
543                                 sc->age_flags |= AGE_FLAG_MSIX;
544                                 sc->age_irq_spec = age_irq_spec_msix;
545                         } else
546                                 pci_release_msi(dev);
547                 }
548                 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
549                     msic == AGE_MSI_MESSAGES &&
550                     pci_alloc_msi(dev, &msic) == 0) {
551                         if (msic == AGE_MSI_MESSAGES) {
552                                 device_printf(dev, "Using %d MSI messages.\n",
553                                     msic);
554                                 sc->age_flags |= AGE_FLAG_MSI;
555                                 sc->age_irq_spec = age_irq_spec_msi;
556                         } else
557                                 pci_release_msi(dev);
558                 }
559         }
560
561         error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
562         if (error != 0) {
563                 device_printf(dev, "cannot allocate IRQ resources.\n");
564                 goto fail;
565         }
566
567         /* Get DMA parameters from PCIe device control register. */
568         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
569                 sc->age_flags |= AGE_FLAG_PCIE;
570                 burst = pci_read_config(dev, i + 0x08, 2);
571                 /* Max read request size. */
572                 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
573                     DMA_CFG_RD_BURST_SHIFT;
574                 /* Max payload size. */
575                 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
576                     DMA_CFG_WR_BURST_SHIFT;
577                 if (bootverbose) {
578                         device_printf(dev, "Read request size : %d bytes.\n",
579                             128 << ((burst >> 12) & 0x07));
580                         device_printf(dev, "TLP payload size : %d bytes.\n",
581                             128 << ((burst >> 5) & 0x07));
582                 }
583         } else {
584                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
585                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
586         }
587
588         /* Create device sysctl node. */
589         age_sysctl_node(sc);
590
591         if ((error = age_dma_alloc(sc)) != 0)
592                 goto fail;
593
594         /* Load station address. */
595         age_get_macaddr(sc);
596
597         ifp = sc->age_ifp = if_alloc(IFT_ETHER);
598         if (ifp == NULL) {
599                 device_printf(dev, "cannot allocate ifnet structure.\n");
600                 error = ENXIO;
601                 goto fail;
602         }
603
604         ifp->if_softc = sc;
605         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
606         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
607         ifp->if_ioctl = age_ioctl;
608         ifp->if_start = age_start;
609         ifp->if_init = age_init;
610         ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
611         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
612         IFQ_SET_READY(&ifp->if_snd);
613         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
614         ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
615         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
616                 sc->age_flags |= AGE_FLAG_PMCAP;
617                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
618         }
619         ifp->if_capenable = ifp->if_capabilities;
620
621         /* Set up MII bus. */
622         error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
623             age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
624             0);
625         if (error != 0) {
626                 device_printf(dev, "attaching PHYs failed\n");
627                 goto fail;
628         }
629
630         ether_ifattach(ifp, sc->age_eaddr);
631
632         /* VLAN capability setup. */
633         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
634             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
635         ifp->if_capenable = ifp->if_capabilities;
636
637         /* Tell the upper layer(s) we support long frames. */
638         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
639
640         /* Create local taskq. */
641         sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
642             taskqueue_thread_enqueue, &sc->age_tq);
643         if (sc->age_tq == NULL) {
644                 device_printf(dev, "could not create taskqueue.\n");
645                 ether_ifdetach(ifp);
646                 error = ENXIO;
647                 goto fail;
648         }
649         taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
650             device_get_nameunit(sc->age_dev));
651
652         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
653                 msic = AGE_MSIX_MESSAGES;
654         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
655                 msic = AGE_MSI_MESSAGES;
656         else
657                 msic = 1;
658         for (i = 0; i < msic; i++) {
659                 error = bus_setup_intr(dev, sc->age_irq[i],
660                     INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
661                     &sc->age_intrhand[i]);
662                 if (error != 0)
663                         break;
664         }
665         if (error != 0) {
666                 device_printf(dev, "could not set up interrupt handler.\n");
667                 taskqueue_free(sc->age_tq);
668                 sc->age_tq = NULL;
669                 ether_ifdetach(ifp);
670                 goto fail;
671         }
672
673 fail:
674         if (error != 0)
675                 age_detach(dev);
676
677         return (error);
678 }
679
680 static int
681 age_detach(device_t dev)
682 {
683         struct age_softc *sc;
684         struct ifnet *ifp;
685         int i, msic;
686
687         sc = device_get_softc(dev);
688
689         ifp = sc->age_ifp;
690         if (device_is_attached(dev)) {
691                 AGE_LOCK(sc);
692                 sc->age_flags |= AGE_FLAG_DETACH;
693                 age_stop(sc);
694                 AGE_UNLOCK(sc);
695                 callout_drain(&sc->age_tick_ch);
696                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
697                 taskqueue_drain(taskqueue_swi, &sc->age_link_task);
698                 ether_ifdetach(ifp);
699         }
700
701         if (sc->age_tq != NULL) {
702                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
703                 taskqueue_free(sc->age_tq);
704                 sc->age_tq = NULL;
705         }
706
707         if (sc->age_miibus != NULL) {
708                 device_delete_child(dev, sc->age_miibus);
709                 sc->age_miibus = NULL;
710         }
711         bus_generic_detach(dev);
712         age_dma_free(sc);
713
714         if (ifp != NULL) {
715                 if_free(ifp);
716                 sc->age_ifp = NULL;
717         }
718
719         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
720                 msic = AGE_MSIX_MESSAGES;
721         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
722                 msic = AGE_MSI_MESSAGES;
723         else
724                 msic = 1;
725         for (i = 0; i < msic; i++) {
726                 if (sc->age_intrhand[i] != NULL) {
727                         bus_teardown_intr(dev, sc->age_irq[i],
728                             sc->age_intrhand[i]);
729                         sc->age_intrhand[i] = NULL;
730                 }
731         }
732
733         bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
734         if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
735                 pci_release_msi(dev);
736         bus_release_resources(dev, sc->age_res_spec, sc->age_res);
737         mtx_destroy(&sc->age_mtx);
738
739         return (0);
740 }
741
742 static void
743 age_sysctl_node(struct age_softc *sc)
744 {
745         int error;
746
747         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
748             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
749             "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
750             sc, 0, sysctl_age_stats, "I", "Statistics");
751
752         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
753             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
754             "int_mod", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
755             &sc->age_int_mod, 0, sysctl_hw_age_int_mod, "I",
756             "age interrupt moderation");
757
758         /* Pull in device tunables. */
759         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
760         error = resource_int_value(device_get_name(sc->age_dev),
761             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
762         if (error == 0) {
763                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
764                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
765                         device_printf(sc->age_dev,
766                             "int_mod value out of range; using default: %d\n",
767                             AGE_IM_TIMER_DEFAULT);
768                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
769                 }
770         }
771
772         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
773             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
774             "process_limit", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
775             &sc->age_process_limit, 0, sysctl_hw_age_proc_limit, "I",
776             "max number of Rx events to process");
777
778         /* Pull in device tunables. */
779         sc->age_process_limit = AGE_PROC_DEFAULT;
780         error = resource_int_value(device_get_name(sc->age_dev),
781             device_get_unit(sc->age_dev), "process_limit",
782             &sc->age_process_limit);
783         if (error == 0) {
784                 if (sc->age_process_limit < AGE_PROC_MIN ||
785                     sc->age_process_limit > AGE_PROC_MAX) {
786                         device_printf(sc->age_dev,
787                             "process_limit value out of range; "
788                             "using default: %d\n", AGE_PROC_DEFAULT);
789                         sc->age_process_limit = AGE_PROC_DEFAULT;
790                 }
791         }
792 }
793
794 struct age_dmamap_arg {
795         bus_addr_t      age_busaddr;
796 };
797
798 static void
799 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
800 {
801         struct age_dmamap_arg *ctx;
802
803         if (error != 0)
804                 return;
805
806         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
807
808         ctx = (struct age_dmamap_arg *)arg;
809         ctx->age_busaddr = segs[0].ds_addr;
810 }
811
812 /*
813  * Attansic L1 controller have single register to specify high
814  * address part of DMA blocks. So all descriptor structures and
815  * DMA memory blocks should have the same high address of given
816  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
817  */
818 static int
819 age_check_boundary(struct age_softc *sc)
820 {
821         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
822         bus_addr_t cmb_block_end, smb_block_end;
823
824         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
825         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
826         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
827         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
828         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
829         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
830
831         if ((AGE_ADDR_HI(tx_ring_end) !=
832             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
833             (AGE_ADDR_HI(rx_ring_end) !=
834             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
835             (AGE_ADDR_HI(rr_ring_end) !=
836             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
837             (AGE_ADDR_HI(cmb_block_end) !=
838             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
839             (AGE_ADDR_HI(smb_block_end) !=
840             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
841                 return (EFBIG);
842
843         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
844             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
845             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
846             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
847                 return (EFBIG);
848
849         return (0);
850 }
851
852 static int
853 age_dma_alloc(struct age_softc *sc)
854 {
855         struct age_txdesc *txd;
856         struct age_rxdesc *rxd;
857         bus_addr_t lowaddr;
858         struct age_dmamap_arg ctx;
859         int error, i;
860
861         lowaddr = BUS_SPACE_MAXADDR;
862
863 again:
864         /* Create parent ring/DMA block tag. */
865         error = bus_dma_tag_create(
866             bus_get_dma_tag(sc->age_dev), /* parent */
867             1, 0,                       /* alignment, boundary */
868             lowaddr,                    /* lowaddr */
869             BUS_SPACE_MAXADDR,          /* highaddr */
870             NULL, NULL,                 /* filter, filterarg */
871             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
872             0,                          /* nsegments */
873             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
874             0,                          /* flags */
875             NULL, NULL,                 /* lockfunc, lockarg */
876             &sc->age_cdata.age_parent_tag);
877         if (error != 0) {
878                 device_printf(sc->age_dev,
879                     "could not create parent DMA tag.\n");
880                 goto fail;
881         }
882
883         /* Create tag for Tx ring. */
884         error = bus_dma_tag_create(
885             sc->age_cdata.age_parent_tag, /* parent */
886             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
887             BUS_SPACE_MAXADDR,          /* lowaddr */
888             BUS_SPACE_MAXADDR,          /* highaddr */
889             NULL, NULL,                 /* filter, filterarg */
890             AGE_TX_RING_SZ,             /* maxsize */
891             1,                          /* nsegments */
892             AGE_TX_RING_SZ,             /* maxsegsize */
893             0,                          /* flags */
894             NULL, NULL,                 /* lockfunc, lockarg */
895             &sc->age_cdata.age_tx_ring_tag);
896         if (error != 0) {
897                 device_printf(sc->age_dev,
898                     "could not create Tx ring DMA tag.\n");
899                 goto fail;
900         }
901
902         /* Create tag for Rx ring. */
903         error = bus_dma_tag_create(
904             sc->age_cdata.age_parent_tag, /* parent */
905             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
906             BUS_SPACE_MAXADDR,          /* lowaddr */
907             BUS_SPACE_MAXADDR,          /* highaddr */
908             NULL, NULL,                 /* filter, filterarg */
909             AGE_RX_RING_SZ,             /* maxsize */
910             1,                          /* nsegments */
911             AGE_RX_RING_SZ,             /* maxsegsize */
912             0,                          /* flags */
913             NULL, NULL,                 /* lockfunc, lockarg */
914             &sc->age_cdata.age_rx_ring_tag);
915         if (error != 0) {
916                 device_printf(sc->age_dev,
917                     "could not create Rx ring DMA tag.\n");
918                 goto fail;
919         }
920
921         /* Create tag for Rx return ring. */
922         error = bus_dma_tag_create(
923             sc->age_cdata.age_parent_tag, /* parent */
924             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
925             BUS_SPACE_MAXADDR,          /* lowaddr */
926             BUS_SPACE_MAXADDR,          /* highaddr */
927             NULL, NULL,                 /* filter, filterarg */
928             AGE_RR_RING_SZ,             /* maxsize */
929             1,                          /* nsegments */
930             AGE_RR_RING_SZ,             /* maxsegsize */
931             0,                          /* flags */
932             NULL, NULL,                 /* lockfunc, lockarg */
933             &sc->age_cdata.age_rr_ring_tag);
934         if (error != 0) {
935                 device_printf(sc->age_dev,
936                     "could not create Rx return ring DMA tag.\n");
937                 goto fail;
938         }
939
940         /* Create tag for coalesing message block. */
941         error = bus_dma_tag_create(
942             sc->age_cdata.age_parent_tag, /* parent */
943             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
944             BUS_SPACE_MAXADDR,          /* lowaddr */
945             BUS_SPACE_MAXADDR,          /* highaddr */
946             NULL, NULL,                 /* filter, filterarg */
947             AGE_CMB_BLOCK_SZ,           /* maxsize */
948             1,                          /* nsegments */
949             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
950             0,                          /* flags */
951             NULL, NULL,                 /* lockfunc, lockarg */
952             &sc->age_cdata.age_cmb_block_tag);
953         if (error != 0) {
954                 device_printf(sc->age_dev,
955                     "could not create CMB DMA tag.\n");
956                 goto fail;
957         }
958
959         /* Create tag for statistics message block. */
960         error = bus_dma_tag_create(
961             sc->age_cdata.age_parent_tag, /* parent */
962             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
963             BUS_SPACE_MAXADDR,          /* lowaddr */
964             BUS_SPACE_MAXADDR,          /* highaddr */
965             NULL, NULL,                 /* filter, filterarg */
966             AGE_SMB_BLOCK_SZ,           /* maxsize */
967             1,                          /* nsegments */
968             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
969             0,                          /* flags */
970             NULL, NULL,                 /* lockfunc, lockarg */
971             &sc->age_cdata.age_smb_block_tag);
972         if (error != 0) {
973                 device_printf(sc->age_dev,
974                     "could not create SMB DMA tag.\n");
975                 goto fail;
976         }
977
978         /* Allocate DMA'able memory and load the DMA map. */
979         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
980             (void **)&sc->age_rdata.age_tx_ring,
981             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
982             &sc->age_cdata.age_tx_ring_map);
983         if (error != 0) {
984                 device_printf(sc->age_dev,
985                     "could not allocate DMA'able memory for Tx ring.\n");
986                 goto fail;
987         }
988         ctx.age_busaddr = 0;
989         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
990             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
991             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
992         if (error != 0 || ctx.age_busaddr == 0) {
993                 device_printf(sc->age_dev,
994                     "could not load DMA'able memory for Tx ring.\n");
995                 goto fail;
996         }
997         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
998         /* Rx ring */
999         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1000             (void **)&sc->age_rdata.age_rx_ring,
1001             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1002             &sc->age_cdata.age_rx_ring_map);
1003         if (error != 0) {
1004                 device_printf(sc->age_dev,
1005                     "could not allocate DMA'able memory for Rx ring.\n");
1006                 goto fail;
1007         }
1008         ctx.age_busaddr = 0;
1009         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1010             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1011             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1012         if (error != 0 || ctx.age_busaddr == 0) {
1013                 device_printf(sc->age_dev,
1014                     "could not load DMA'able memory for Rx ring.\n");
1015                 goto fail;
1016         }
1017         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1018         /* Rx return ring */
1019         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1020             (void **)&sc->age_rdata.age_rr_ring,
1021             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1022             &sc->age_cdata.age_rr_ring_map);
1023         if (error != 0) {
1024                 device_printf(sc->age_dev,
1025                     "could not allocate DMA'able memory for Rx return ring.\n");
1026                 goto fail;
1027         }
1028         ctx.age_busaddr = 0;
1029         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1030             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1031             AGE_RR_RING_SZ, age_dmamap_cb,
1032             &ctx, 0);
1033         if (error != 0 || ctx.age_busaddr == 0) {
1034                 device_printf(sc->age_dev,
1035                     "could not load DMA'able memory for Rx return ring.\n");
1036                 goto fail;
1037         }
1038         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1039         /* CMB block */
1040         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1041             (void **)&sc->age_rdata.age_cmb_block,
1042             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1043             &sc->age_cdata.age_cmb_block_map);
1044         if (error != 0) {
1045                 device_printf(sc->age_dev,
1046                     "could not allocate DMA'able memory for CMB block.\n");
1047                 goto fail;
1048         }
1049         ctx.age_busaddr = 0;
1050         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1051             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1052             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1053         if (error != 0 || ctx.age_busaddr == 0) {
1054                 device_printf(sc->age_dev,
1055                     "could not load DMA'able memory for CMB block.\n");
1056                 goto fail;
1057         }
1058         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1059         /* SMB block */
1060         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1061             (void **)&sc->age_rdata.age_smb_block,
1062             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1063             &sc->age_cdata.age_smb_block_map);
1064         if (error != 0) {
1065                 device_printf(sc->age_dev,
1066                     "could not allocate DMA'able memory for SMB block.\n");
1067                 goto fail;
1068         }
1069         ctx.age_busaddr = 0;
1070         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1071             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1072             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1073         if (error != 0 || ctx.age_busaddr == 0) {
1074                 device_printf(sc->age_dev,
1075                     "could not load DMA'able memory for SMB block.\n");
1076                 goto fail;
1077         }
1078         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1079
1080         /*
1081          * All ring buffer and DMA blocks should have the same
1082          * high address part of 64bit DMA address space.
1083          */
1084         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1085             (error = age_check_boundary(sc)) != 0) {
1086                 device_printf(sc->age_dev, "4GB boundary crossed, "
1087                     "switching to 32bit DMA addressing mode.\n");
1088                 age_dma_free(sc);
1089                 /* Limit DMA address space to 32bit and try again. */
1090                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1091                 goto again;
1092         }
1093
1094         /*
1095          * Create Tx/Rx buffer parent tag.
1096          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1097          * so it needs separate parent DMA tag.
1098          * XXX
1099          * It seems enabling 64bit DMA causes data corruption. Limit
1100          * DMA address space to 32bit.
1101          */
1102         error = bus_dma_tag_create(
1103             bus_get_dma_tag(sc->age_dev), /* parent */
1104             1, 0,                       /* alignment, boundary */
1105             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1106             BUS_SPACE_MAXADDR,          /* highaddr */
1107             NULL, NULL,                 /* filter, filterarg */
1108             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1109             0,                          /* nsegments */
1110             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1111             0,                          /* flags */
1112             NULL, NULL,                 /* lockfunc, lockarg */
1113             &sc->age_cdata.age_buffer_tag);
1114         if (error != 0) {
1115                 device_printf(sc->age_dev,
1116                     "could not create parent buffer DMA tag.\n");
1117                 goto fail;
1118         }
1119
1120         /* Create tag for Tx buffers. */
1121         error = bus_dma_tag_create(
1122             sc->age_cdata.age_buffer_tag, /* parent */
1123             1, 0,                       /* alignment, boundary */
1124             BUS_SPACE_MAXADDR,          /* lowaddr */
1125             BUS_SPACE_MAXADDR,          /* highaddr */
1126             NULL, NULL,                 /* filter, filterarg */
1127             AGE_TSO_MAXSIZE,            /* maxsize */
1128             AGE_MAXTXSEGS,              /* nsegments */
1129             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
1130             0,                          /* flags */
1131             NULL, NULL,                 /* lockfunc, lockarg */
1132             &sc->age_cdata.age_tx_tag);
1133         if (error != 0) {
1134                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1135                 goto fail;
1136         }
1137
1138         /* Create tag for Rx buffers. */
1139         error = bus_dma_tag_create(
1140             sc->age_cdata.age_buffer_tag, /* parent */
1141             AGE_RX_BUF_ALIGN, 0,        /* alignment, boundary */
1142             BUS_SPACE_MAXADDR,          /* lowaddr */
1143             BUS_SPACE_MAXADDR,          /* highaddr */
1144             NULL, NULL,                 /* filter, filterarg */
1145             MCLBYTES,                   /* maxsize */
1146             1,                          /* nsegments */
1147             MCLBYTES,                   /* maxsegsize */
1148             0,                          /* flags */
1149             NULL, NULL,                 /* lockfunc, lockarg */
1150             &sc->age_cdata.age_rx_tag);
1151         if (error != 0) {
1152                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1153                 goto fail;
1154         }
1155
1156         /* Create DMA maps for Tx buffers. */
1157         for (i = 0; i < AGE_TX_RING_CNT; i++) {
1158                 txd = &sc->age_cdata.age_txdesc[i];
1159                 txd->tx_m = NULL;
1160                 txd->tx_dmamap = NULL;
1161                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1162                     &txd->tx_dmamap);
1163                 if (error != 0) {
1164                         device_printf(sc->age_dev,
1165                             "could not create Tx dmamap.\n");
1166                         goto fail;
1167                 }
1168         }
1169         /* Create DMA maps for Rx buffers. */
1170         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1171             &sc->age_cdata.age_rx_sparemap)) != 0) {
1172                 device_printf(sc->age_dev,
1173                     "could not create spare Rx dmamap.\n");
1174                 goto fail;
1175         }
1176         for (i = 0; i < AGE_RX_RING_CNT; i++) {
1177                 rxd = &sc->age_cdata.age_rxdesc[i];
1178                 rxd->rx_m = NULL;
1179                 rxd->rx_dmamap = NULL;
1180                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1181                     &rxd->rx_dmamap);
1182                 if (error != 0) {
1183                         device_printf(sc->age_dev,
1184                             "could not create Rx dmamap.\n");
1185                         goto fail;
1186                 }
1187         }
1188
1189 fail:
1190         return (error);
1191 }
1192
1193 static void
1194 age_dma_free(struct age_softc *sc)
1195 {
1196         struct age_txdesc *txd;
1197         struct age_rxdesc *rxd;
1198         int i;
1199
1200         /* Tx buffers */
1201         if (sc->age_cdata.age_tx_tag != NULL) {
1202                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1203                         txd = &sc->age_cdata.age_txdesc[i];
1204                         if (txd->tx_dmamap != NULL) {
1205                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1206                                     txd->tx_dmamap);
1207                                 txd->tx_dmamap = NULL;
1208                         }
1209                 }
1210                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1211                 sc->age_cdata.age_tx_tag = NULL;
1212         }
1213         /* Rx buffers */
1214         if (sc->age_cdata.age_rx_tag != NULL) {
1215                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1216                         rxd = &sc->age_cdata.age_rxdesc[i];
1217                         if (rxd->rx_dmamap != NULL) {
1218                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1219                                     rxd->rx_dmamap);
1220                                 rxd->rx_dmamap = NULL;
1221                         }
1222                 }
1223                 if (sc->age_cdata.age_rx_sparemap != NULL) {
1224                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1225                             sc->age_cdata.age_rx_sparemap);
1226                         sc->age_cdata.age_rx_sparemap = NULL;
1227                 }
1228                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1229                 sc->age_cdata.age_rx_tag = NULL;
1230         }
1231         /* Tx ring. */
1232         if (sc->age_cdata.age_tx_ring_tag != NULL) {
1233                 if (sc->age_rdata.age_tx_ring_paddr != 0)
1234                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1235                             sc->age_cdata.age_tx_ring_map);
1236                 if (sc->age_rdata.age_tx_ring != NULL)
1237                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1238                             sc->age_rdata.age_tx_ring,
1239                             sc->age_cdata.age_tx_ring_map);
1240                 sc->age_rdata.age_tx_ring_paddr = 0;
1241                 sc->age_rdata.age_tx_ring = NULL;
1242                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1243                 sc->age_cdata.age_tx_ring_tag = NULL;
1244         }
1245         /* Rx ring. */
1246         if (sc->age_cdata.age_rx_ring_tag != NULL) {
1247                 if (sc->age_rdata.age_rx_ring_paddr != 0)
1248                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1249                             sc->age_cdata.age_rx_ring_map);
1250                 if (sc->age_rdata.age_rx_ring != NULL)
1251                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1252                             sc->age_rdata.age_rx_ring,
1253                             sc->age_cdata.age_rx_ring_map);
1254                 sc->age_rdata.age_rx_ring_paddr = 0;
1255                 sc->age_rdata.age_rx_ring = NULL;
1256                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1257                 sc->age_cdata.age_rx_ring_tag = NULL;
1258         }
1259         /* Rx return ring. */
1260         if (sc->age_cdata.age_rr_ring_tag != NULL) {
1261                 if (sc->age_rdata.age_rr_ring_paddr != 0)
1262                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1263                             sc->age_cdata.age_rr_ring_map);
1264                 if (sc->age_rdata.age_rr_ring != NULL)
1265                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1266                             sc->age_rdata.age_rr_ring,
1267                             sc->age_cdata.age_rr_ring_map);
1268                 sc->age_rdata.age_rr_ring_paddr = 0;
1269                 sc->age_rdata.age_rr_ring = NULL;
1270                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1271                 sc->age_cdata.age_rr_ring_tag = NULL;
1272         }
1273         /* CMB block */
1274         if (sc->age_cdata.age_cmb_block_tag != NULL) {
1275                 if (sc->age_rdata.age_cmb_block_paddr != 0)
1276                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1277                             sc->age_cdata.age_cmb_block_map);
1278                 if (sc->age_rdata.age_cmb_block != NULL)
1279                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1280                             sc->age_rdata.age_cmb_block,
1281                             sc->age_cdata.age_cmb_block_map);
1282                 sc->age_rdata.age_cmb_block_paddr = 0;
1283                 sc->age_rdata.age_cmb_block = NULL;
1284                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1285                 sc->age_cdata.age_cmb_block_tag = NULL;
1286         }
1287         /* SMB block */
1288         if (sc->age_cdata.age_smb_block_tag != NULL) {
1289                 if (sc->age_rdata.age_smb_block_paddr != 0)
1290                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1291                             sc->age_cdata.age_smb_block_map);
1292                 if (sc->age_rdata.age_smb_block != NULL)
1293                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1294                             sc->age_rdata.age_smb_block,
1295                             sc->age_cdata.age_smb_block_map);
1296                 sc->age_rdata.age_smb_block_paddr = 0;
1297                 sc->age_rdata.age_smb_block = NULL;
1298                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1299                 sc->age_cdata.age_smb_block_tag = NULL;
1300         }
1301
1302         if (sc->age_cdata.age_buffer_tag != NULL) {
1303                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1304                 sc->age_cdata.age_buffer_tag = NULL;
1305         }
1306         if (sc->age_cdata.age_parent_tag != NULL) {
1307                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1308                 sc->age_cdata.age_parent_tag = NULL;
1309         }
1310 }
1311
1312 /*
1313  *      Make sure the interface is stopped at reboot time.
1314  */
1315 static int
1316 age_shutdown(device_t dev)
1317 {
1318
1319         return (age_suspend(dev));
1320 }
1321
1322 static void
1323 age_setwol(struct age_softc *sc)
1324 {
1325         struct ifnet *ifp;
1326         struct mii_data *mii;
1327         uint32_t reg, pmcs;
1328         uint16_t pmstat;
1329         int aneg, i, pmc;
1330
1331         AGE_LOCK_ASSERT(sc);
1332
1333         if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1334                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1335                 /*
1336                  * No PME capability, PHY power down.
1337                  * XXX
1338                  * Due to an unknown reason powering down PHY resulted
1339                  * in unexpected results such as inaccessbility of
1340                  * hardware of freshly rebooted system. Disable
1341                  * powering down PHY until I got more information for
1342                  * Attansic/Atheros PHY hardwares.
1343                  */
1344 #ifdef notyet
1345                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1346                     MII_BMCR, BMCR_PDOWN);
1347 #endif
1348                 return;
1349         }
1350
1351         ifp = sc->age_ifp;
1352         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1353                 /*
1354                  * Note, this driver resets the link speed to 10/100Mbps with
1355                  * auto-negotiation but we don't know whether that operation
1356                  * would succeed or not as it have no control after powering
1357                  * off. If the renegotiation fail WOL may not work. Running
1358                  * at 1Gbps will draw more power than 375mA at 3.3V which is
1359                  * specified in PCI specification and that would result in
1360                  * complete shutdowning power to ethernet controller.
1361                  *
1362                  * TODO
1363                  *  Save current negotiated media speed/duplex/flow-control
1364                  *  to softc and restore the same link again after resuming.
1365                  *  PHY handling such as power down/resetting to 100Mbps
1366                  *  may be better handled in suspend method in phy driver.
1367                  */
1368                 mii = device_get_softc(sc->age_miibus);
1369                 mii_pollstat(mii);
1370                 aneg = 0;
1371                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1372                         switch IFM_SUBTYPE(mii->mii_media_active) {
1373                         case IFM_10_T:
1374                         case IFM_100_TX:
1375                                 goto got_link;
1376                         case IFM_1000_T:
1377                                 aneg++;
1378                         default:
1379                                 break;
1380                         }
1381                 }
1382                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1383                     MII_100T2CR, 0);
1384                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1386                     ANAR_10 | ANAR_CSMA);
1387                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1389                 DELAY(1000);
1390                 if (aneg != 0) {
1391                         /* Poll link state until age(4) get a 10/100 link. */
1392                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1393                                 mii_pollstat(mii);
1394                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1395                                         switch (IFM_SUBTYPE(
1396                                             mii->mii_media_active)) {
1397                                         case IFM_10_T:
1398                                         case IFM_100_TX:
1399                                                 age_mac_config(sc);
1400                                                 goto got_link;
1401                                         default:
1402                                                 break;
1403                                         }
1404                                 }
1405                                 AGE_UNLOCK(sc);
1406                                 pause("agelnk", hz);
1407                                 AGE_LOCK(sc);
1408                         }
1409                         if (i == MII_ANEGTICKS_GIGE)
1410                                 device_printf(sc->age_dev,
1411                                     "establishing link failed, "
1412                                     "WOL may not work!");
1413                 }
1414                 /*
1415                  * No link, force MAC to have 100Mbps, full-duplex link.
1416                  * This is the last resort and may/may not work.
1417                  */
1418                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1419                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1420                 age_mac_config(sc);
1421         }
1422
1423 got_link:
1424         pmcs = 0;
1425         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1426                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1427         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1428         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1429         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1430         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1431         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1432                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1433         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1434                 reg |= MAC_CFG_RX_ENB;
1435                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1436         }
1437
1438         /* Request PME. */
1439         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1440         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1441         if ((ifp->if_capenable & IFCAP_WOL) != 0)
1442                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1443         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1444 #ifdef notyet
1445         /* See above for powering down PHY issues. */
1446         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1447                 /* No WOL, PHY power down. */
1448                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1449                     MII_BMCR, BMCR_PDOWN);
1450         }
1451 #endif
1452 }
1453
1454 static int
1455 age_suspend(device_t dev)
1456 {
1457         struct age_softc *sc;
1458
1459         sc = device_get_softc(dev);
1460
1461         AGE_LOCK(sc);
1462         age_stop(sc);
1463         age_setwol(sc);
1464         AGE_UNLOCK(sc);
1465
1466         return (0);
1467 }
1468
1469 static int
1470 age_resume(device_t dev)
1471 {
1472         struct age_softc *sc;
1473         struct ifnet *ifp;
1474
1475         sc = device_get_softc(dev);
1476
1477         AGE_LOCK(sc);
1478         age_phy_reset(sc);
1479         ifp = sc->age_ifp;
1480         if ((ifp->if_flags & IFF_UP) != 0)
1481                 age_init_locked(sc);
1482
1483         AGE_UNLOCK(sc);
1484
1485         return (0);
1486 }
1487
1488 static int
1489 age_encap(struct age_softc *sc, struct mbuf **m_head)
1490 {
1491         struct age_txdesc *txd, *txd_last;
1492         struct tx_desc *desc;
1493         struct mbuf *m;
1494         struct ip *ip;
1495         struct tcphdr *tcp;
1496         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1497         bus_dmamap_t map;
1498         uint32_t cflags, hdrlen, ip_off, poff, vtag;
1499         int error, i, nsegs, prod, si;
1500
1501         AGE_LOCK_ASSERT(sc);
1502
1503         M_ASSERTPKTHDR((*m_head));
1504
1505         m = *m_head;
1506         ip = NULL;
1507         tcp = NULL;
1508         cflags = vtag = 0;
1509         ip_off = poff = 0;
1510         if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1511                 /*
1512                  * L1 requires offset of TCP/UDP payload in its Tx
1513                  * descriptor to perform hardware Tx checksum offload.
1514                  * Additionally, TSO requires IP/TCP header size and
1515                  * modification of IP/TCP header in order to make TSO
1516                  * engine work. This kind of operation takes many CPU
1517                  * cycles on FreeBSD so fast host CPU is needed to get
1518                  * smooth TSO performance.
1519                  */
1520                 struct ether_header *eh;
1521
1522                 if (M_WRITABLE(m) == 0) {
1523                         /* Get a writable copy. */
1524                         m = m_dup(*m_head, M_NOWAIT);
1525                         /* Release original mbufs. */
1526                         m_freem(*m_head);
1527                         if (m == NULL) {
1528                                 *m_head = NULL;
1529                                 return (ENOBUFS);
1530                         }
1531                         *m_head = m;
1532                 }
1533                 ip_off = sizeof(struct ether_header);
1534                 m = m_pullup(m, ip_off);
1535                 if (m == NULL) {
1536                         *m_head = NULL;
1537                         return (ENOBUFS);
1538                 }
1539                 eh = mtod(m, struct ether_header *);
1540                 /*
1541                  * Check if hardware VLAN insertion is off.
1542                  * Additional check for LLC/SNAP frame?
1543                  */
1544                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1545                         ip_off = sizeof(struct ether_vlan_header);
1546                         m = m_pullup(m, ip_off);
1547                         if (m == NULL) {
1548                                 *m_head = NULL;
1549                                 return (ENOBUFS);
1550                         }
1551                 }
1552                 m = m_pullup(m, ip_off + sizeof(struct ip));
1553                 if (m == NULL) {
1554                         *m_head = NULL;
1555                         return (ENOBUFS);
1556                 }
1557                 ip = (struct ip *)(mtod(m, char *) + ip_off);
1558                 poff = ip_off + (ip->ip_hl << 2);
1559                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1560                         m = m_pullup(m, poff + sizeof(struct tcphdr));
1561                         if (m == NULL) {
1562                                 *m_head = NULL;
1563                                 return (ENOBUFS);
1564                         }
1565                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1566                         m = m_pullup(m, poff + (tcp->th_off << 2));
1567                         if (m == NULL) {
1568                                 *m_head = NULL;
1569                                 return (ENOBUFS);
1570                         }
1571                         /*
1572                          * L1 requires IP/TCP header size and offset as
1573                          * well as TCP pseudo checksum which complicates
1574                          * TSO configuration. I guess this comes from the
1575                          * adherence to Microsoft NDIS Large Send
1576                          * specification which requires insertion of
1577                          * pseudo checksum by upper stack. The pseudo
1578                          * checksum that NDIS refers to doesn't include
1579                          * TCP payload length so age(4) should recompute
1580                          * the pseudo checksum here. Hopefully this wouldn't
1581                          * be much burden on modern CPUs.
1582                          * Reset IP checksum and recompute TCP pseudo
1583                          * checksum as NDIS specification said.
1584                          */
1585                         ip = (struct ip *)(mtod(m, char *) + ip_off);
1586                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1587                         ip->ip_sum = 0;
1588                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1589                             ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1590                 }
1591                 *m_head = m;
1592         }
1593
1594         si = prod = sc->age_cdata.age_tx_prod;
1595         txd = &sc->age_cdata.age_txdesc[prod];
1596         txd_last = txd;
1597         map = txd->tx_dmamap;
1598
1599         error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1600             *m_head, txsegs, &nsegs, 0);
1601         if (error == EFBIG) {
1602                 m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1603                 if (m == NULL) {
1604                         m_freem(*m_head);
1605                         *m_head = NULL;
1606                         return (ENOMEM);
1607                 }
1608                 *m_head = m;
1609                 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1610                     *m_head, txsegs, &nsegs, 0);
1611                 if (error != 0) {
1612                         m_freem(*m_head);
1613                         *m_head = NULL;
1614                         return (error);
1615                 }
1616         } else if (error != 0)
1617                 return (error);
1618         if (nsegs == 0) {
1619                 m_freem(*m_head);
1620                 *m_head = NULL;
1621                 return (EIO);
1622         }
1623
1624         /* Check descriptor overrun. */
1625         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1626                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1627                 return (ENOBUFS);
1628         }
1629
1630         m = *m_head;
1631         /* Configure VLAN hardware tag insertion. */
1632         if ((m->m_flags & M_VLANTAG) != 0) {
1633                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1634                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1635                 cflags |= AGE_TD_INSERT_VLAN_TAG;
1636         }
1637
1638         desc = NULL;
1639         i = 0;
1640         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1641                 /* Request TSO and set MSS. */
1642                 cflags |= AGE_TD_TSO_IPV4;
1643                 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1644                 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1645                     AGE_TD_TSO_MSS_SHIFT);
1646                 /* Set IP/TCP header size. */
1647                 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1648                 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1649                 /*
1650                  * L1 requires the first buffer should only hold IP/TCP
1651                  * header data. TCP payload should be handled in other
1652                  * descriptors.
1653                  */
1654                 hdrlen = poff + (tcp->th_off << 2);
1655                 desc = &sc->age_rdata.age_tx_ring[prod];
1656                 desc->addr = htole64(txsegs[0].ds_addr);
1657                 desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1658                 desc->flags = htole32(cflags);
1659                 sc->age_cdata.age_tx_cnt++;
1660                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1661                 if (m->m_len - hdrlen > 0) {
1662                         /* Handle remaining payload of the 1st fragment. */
1663                         desc = &sc->age_rdata.age_tx_ring[prod];
1664                         desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1665                         desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1666                             vtag);
1667                         desc->flags = htole32(cflags);
1668                         sc->age_cdata.age_tx_cnt++;
1669                         AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1670                 }
1671                 /* Handle remaining fragments. */
1672                 i = 1;
1673         } else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1674                 /* Configure Tx IP/TCP/UDP checksum offload. */
1675                 cflags |= AGE_TD_CSUM;
1676                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1677                         cflags |= AGE_TD_TCPCSUM;
1678                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1679                         cflags |= AGE_TD_UDPCSUM;
1680                 /* Set checksum start offset. */
1681                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1682                 /* Set checksum insertion position of TCP/UDP. */
1683                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1684                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1685         }
1686         for (; i < nsegs; i++) {
1687                 desc = &sc->age_rdata.age_tx_ring[prod];
1688                 desc->addr = htole64(txsegs[i].ds_addr);
1689                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1690                 desc->flags = htole32(cflags);
1691                 sc->age_cdata.age_tx_cnt++;
1692                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1693         }
1694         /* Update producer index. */
1695         sc->age_cdata.age_tx_prod = prod;
1696
1697         /* Set EOP on the last descriptor. */
1698         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1699         desc = &sc->age_rdata.age_tx_ring[prod];
1700         desc->flags |= htole32(AGE_TD_EOP);
1701
1702         /* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1703         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1704                 desc = &sc->age_rdata.age_tx_ring[si];
1705                 desc->flags |= htole32(AGE_TD_TSO_HDR);
1706         }
1707
1708         /* Swap dmamap of the first and the last. */
1709         txd = &sc->age_cdata.age_txdesc[prod];
1710         map = txd_last->tx_dmamap;
1711         txd_last->tx_dmamap = txd->tx_dmamap;
1712         txd->tx_dmamap = map;
1713         txd->tx_m = m;
1714
1715         /* Sync descriptors. */
1716         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1717         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1718             sc->age_cdata.age_tx_ring_map,
1719             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1720
1721         return (0);
1722 }
1723
1724 static void
1725 age_start(struct ifnet *ifp)
1726 {
1727         struct age_softc *sc;
1728
1729         sc = ifp->if_softc;
1730         AGE_LOCK(sc);
1731         age_start_locked(ifp);
1732         AGE_UNLOCK(sc);
1733 }
1734
1735 static void
1736 age_start_locked(struct ifnet *ifp)
1737 {
1738         struct age_softc *sc;
1739         struct mbuf *m_head;
1740         int enq;
1741
1742         sc = ifp->if_softc;
1743
1744         AGE_LOCK_ASSERT(sc);
1745
1746         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1747             IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1748                 return;
1749
1750         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1751                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1752                 if (m_head == NULL)
1753                         break;
1754                 /*
1755                  * Pack the data into the transmit ring. If we
1756                  * don't have room, set the OACTIVE flag and wait
1757                  * for the NIC to drain the ring.
1758                  */
1759                 if (age_encap(sc, &m_head)) {
1760                         if (m_head == NULL)
1761                                 break;
1762                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1763                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1764                         break;
1765                 }
1766
1767                 enq++;
1768                 /*
1769                  * If there's a BPF listener, bounce a copy of this frame
1770                  * to him.
1771                  */
1772                 ETHER_BPF_MTAP(ifp, m_head);
1773         }
1774
1775         if (enq > 0) {
1776                 /* Update mbox. */
1777                 AGE_COMMIT_MBOX(sc);
1778                 /* Set a timeout in case the chip goes out to lunch. */
1779                 sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1780         }
1781 }
1782
1783 static void
1784 age_watchdog(struct age_softc *sc)
1785 {
1786         struct ifnet *ifp;
1787
1788         AGE_LOCK_ASSERT(sc);
1789
1790         if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1791                 return;
1792
1793         ifp = sc->age_ifp;
1794         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1795                 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1796                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1797                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1798                 age_init_locked(sc);
1799                 return;
1800         }
1801         if (sc->age_cdata.age_tx_cnt == 0) {
1802                 if_printf(sc->age_ifp,
1803                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
1804                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1805                         age_start_locked(ifp);
1806                 return;
1807         }
1808         if_printf(sc->age_ifp, "watchdog timeout\n");
1809         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1810         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1811         age_init_locked(sc);
1812         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1813                 age_start_locked(ifp);
1814 }
1815
1816 static int
1817 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1818 {
1819         struct age_softc *sc;
1820         struct ifreq *ifr;
1821         struct mii_data *mii;
1822         uint32_t reg;
1823         int error, mask;
1824
1825         sc = ifp->if_softc;
1826         ifr = (struct ifreq *)data;
1827         error = 0;
1828         switch (cmd) {
1829         case SIOCSIFMTU:
1830                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1831                         error = EINVAL;
1832                 else if (ifp->if_mtu != ifr->ifr_mtu) {
1833                         AGE_LOCK(sc);
1834                         ifp->if_mtu = ifr->ifr_mtu;
1835                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1836                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1837                                 age_init_locked(sc);
1838                         }
1839                         AGE_UNLOCK(sc);
1840                 }
1841                 break;
1842         case SIOCSIFFLAGS:
1843                 AGE_LOCK(sc);
1844                 if ((ifp->if_flags & IFF_UP) != 0) {
1845                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1846                                 if (((ifp->if_flags ^ sc->age_if_flags)
1847                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1848                                         age_rxfilter(sc);
1849                         } else {
1850                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1851                                         age_init_locked(sc);
1852                         }
1853                 } else {
1854                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1855                                 age_stop(sc);
1856                 }
1857                 sc->age_if_flags = ifp->if_flags;
1858                 AGE_UNLOCK(sc);
1859                 break;
1860         case SIOCADDMULTI:
1861         case SIOCDELMULTI:
1862                 AGE_LOCK(sc);
1863                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1864                         age_rxfilter(sc);
1865                 AGE_UNLOCK(sc);
1866                 break;
1867         case SIOCSIFMEDIA:
1868         case SIOCGIFMEDIA:
1869                 mii = device_get_softc(sc->age_miibus);
1870                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1871                 break;
1872         case SIOCSIFCAP:
1873                 AGE_LOCK(sc);
1874                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1875                 if ((mask & IFCAP_TXCSUM) != 0 &&
1876                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1877                         ifp->if_capenable ^= IFCAP_TXCSUM;
1878                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1879                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
1880                         else
1881                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1882                 }
1883                 if ((mask & IFCAP_RXCSUM) != 0 &&
1884                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1885                         ifp->if_capenable ^= IFCAP_RXCSUM;
1886                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1887                         reg &= ~MAC_CFG_RXCSUM_ENB;
1888                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1889                                 reg |= MAC_CFG_RXCSUM_ENB;
1890                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1891                 }
1892                 if ((mask & IFCAP_TSO4) != 0 &&
1893                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1894                         ifp->if_capenable ^= IFCAP_TSO4;
1895                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1896                                 ifp->if_hwassist |= CSUM_TSO;
1897                         else
1898                                 ifp->if_hwassist &= ~CSUM_TSO;
1899                 }
1900
1901                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
1902                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1903                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
1904                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1905                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1906                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1907                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1908                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1909                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1910                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1911                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1912                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1913                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1914                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1915                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1916                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1917                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1918                         age_rxvlan(sc);
1919                 }
1920                 AGE_UNLOCK(sc);
1921                 VLAN_CAPABILITIES(ifp);
1922                 break;
1923         default:
1924                 error = ether_ioctl(ifp, cmd, data);
1925                 break;
1926         }
1927
1928         return (error);
1929 }
1930
1931 static void
1932 age_mac_config(struct age_softc *sc)
1933 {
1934         struct mii_data *mii;
1935         uint32_t reg;
1936
1937         AGE_LOCK_ASSERT(sc);
1938
1939         mii = device_get_softc(sc->age_miibus);
1940         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1941         reg &= ~MAC_CFG_FULL_DUPLEX;
1942         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1943         reg &= ~MAC_CFG_SPEED_MASK;
1944         /* Reprogram MAC with resolved speed/duplex. */
1945         switch (IFM_SUBTYPE(mii->mii_media_active)) {
1946         case IFM_10_T:
1947         case IFM_100_TX:
1948                 reg |= MAC_CFG_SPEED_10_100;
1949                 break;
1950         case IFM_1000_T:
1951                 reg |= MAC_CFG_SPEED_1000;
1952                 break;
1953         }
1954         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1955                 reg |= MAC_CFG_FULL_DUPLEX;
1956 #ifdef notyet
1957                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1958                         reg |= MAC_CFG_TX_FC;
1959                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1960                         reg |= MAC_CFG_RX_FC;
1961 #endif
1962         }
1963
1964         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1965 }
1966
1967 static void
1968 age_link_task(void *arg, int pending)
1969 {
1970         struct age_softc *sc;
1971         struct mii_data *mii;
1972         struct ifnet *ifp;
1973         uint32_t reg;
1974
1975         sc = (struct age_softc *)arg;
1976
1977         AGE_LOCK(sc);
1978         mii = device_get_softc(sc->age_miibus);
1979         ifp = sc->age_ifp;
1980         if (mii == NULL || ifp == NULL ||
1981             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1982                 AGE_UNLOCK(sc);
1983                 return;
1984         }
1985
1986         sc->age_flags &= ~AGE_FLAG_LINK;
1987         if ((mii->mii_media_status & IFM_AVALID) != 0) {
1988                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1989                 case IFM_10_T:
1990                 case IFM_100_TX:
1991                 case IFM_1000_T:
1992                         sc->age_flags |= AGE_FLAG_LINK;
1993                         break;
1994                 default:
1995                         break;
1996                 }
1997         }
1998
1999         /* Stop Rx/Tx MACs. */
2000         age_stop_rxmac(sc);
2001         age_stop_txmac(sc);
2002
2003         /* Program MACs with resolved speed/duplex/flow-control. */
2004         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2005                 age_mac_config(sc);
2006                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
2007                 /* Restart DMA engine and Tx/Rx MAC. */
2008                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2009                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2010                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2011                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2012         }
2013
2014         AGE_UNLOCK(sc);
2015 }
2016
2017 static void
2018 age_stats_update(struct age_softc *sc)
2019 {
2020         struct age_stats *stat;
2021         struct smb *smb;
2022         struct ifnet *ifp;
2023
2024         AGE_LOCK_ASSERT(sc);
2025
2026         stat = &sc->age_stat;
2027
2028         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2029             sc->age_cdata.age_smb_block_map,
2030             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2031
2032         smb = sc->age_rdata.age_smb_block;
2033         if (smb->updated == 0)
2034                 return;
2035
2036         ifp = sc->age_ifp;
2037         /* Rx stats. */
2038         stat->rx_frames += smb->rx_frames;
2039         stat->rx_bcast_frames += smb->rx_bcast_frames;
2040         stat->rx_mcast_frames += smb->rx_mcast_frames;
2041         stat->rx_pause_frames += smb->rx_pause_frames;
2042         stat->rx_control_frames += smb->rx_control_frames;
2043         stat->rx_crcerrs += smb->rx_crcerrs;
2044         stat->rx_lenerrs += smb->rx_lenerrs;
2045         stat->rx_bytes += smb->rx_bytes;
2046         stat->rx_runts += smb->rx_runts;
2047         stat->rx_fragments += smb->rx_fragments;
2048         stat->rx_pkts_64 += smb->rx_pkts_64;
2049         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2050         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2051         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2052         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2053         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2054         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2055         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2056         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2057         stat->rx_desc_oflows += smb->rx_desc_oflows;
2058         stat->rx_alignerrs += smb->rx_alignerrs;
2059         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2060         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2061         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2062
2063         /* Tx stats. */
2064         stat->tx_frames += smb->tx_frames;
2065         stat->tx_bcast_frames += smb->tx_bcast_frames;
2066         stat->tx_mcast_frames += smb->tx_mcast_frames;
2067         stat->tx_pause_frames += smb->tx_pause_frames;
2068         stat->tx_excess_defer += smb->tx_excess_defer;
2069         stat->tx_control_frames += smb->tx_control_frames;
2070         stat->tx_deferred += smb->tx_deferred;
2071         stat->tx_bytes += smb->tx_bytes;
2072         stat->tx_pkts_64 += smb->tx_pkts_64;
2073         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2074         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2075         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2076         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2077         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2078         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2079         stat->tx_single_colls += smb->tx_single_colls;
2080         stat->tx_multi_colls += smb->tx_multi_colls;
2081         stat->tx_late_colls += smb->tx_late_colls;
2082         stat->tx_excess_colls += smb->tx_excess_colls;
2083         stat->tx_underrun += smb->tx_underrun;
2084         stat->tx_desc_underrun += smb->tx_desc_underrun;
2085         stat->tx_lenerrs += smb->tx_lenerrs;
2086         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2087         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2088         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2089
2090         /* Update counters in ifnet. */
2091         if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2092
2093         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2094             smb->tx_multi_colls + smb->tx_late_colls +
2095             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2096
2097         if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2098             smb->tx_late_colls + smb->tx_underrun +
2099             smb->tx_pkts_truncated);
2100
2101         if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2102
2103         if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2104             smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2105             smb->rx_fifo_oflows + smb->rx_desc_oflows +
2106             smb->rx_alignerrs);
2107
2108         /* Update done, clear. */
2109         smb->updated = 0;
2110
2111         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2112             sc->age_cdata.age_smb_block_map,
2113             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2114 }
2115
2116 static int
2117 age_intr(void *arg)
2118 {
2119         struct age_softc *sc;
2120         uint32_t status;
2121
2122         sc = (struct age_softc *)arg;
2123
2124         status = CSR_READ_4(sc, AGE_INTR_STATUS);
2125         if (status == 0 || (status & AGE_INTRS) == 0)
2126                 return (FILTER_STRAY);
2127         /* Disable interrupts. */
2128         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2129         taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2130
2131         return (FILTER_HANDLED);
2132 }
2133
2134 static void
2135 age_int_task(void *arg, int pending)
2136 {
2137         struct age_softc *sc;
2138         struct ifnet *ifp;
2139         struct cmb *cmb;
2140         uint32_t status;
2141
2142         sc = (struct age_softc *)arg;
2143
2144         AGE_LOCK(sc);
2145
2146         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2147             sc->age_cdata.age_cmb_block_map,
2148             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2149         cmb = sc->age_rdata.age_cmb_block;
2150         status = le32toh(cmb->intr_status);
2151         if (sc->age_morework != 0)
2152                 status |= INTR_CMB_RX;
2153         if ((status & AGE_INTRS) == 0)
2154                 goto done;
2155
2156         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2157             TPD_CONS_SHIFT;
2158         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2159             RRD_PROD_SHIFT;
2160         /* Let hardware know CMB was served. */
2161         cmb->intr_status = 0;
2162         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2163             sc->age_cdata.age_cmb_block_map,
2164             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2165
2166         ifp = sc->age_ifp;
2167         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2168                 if ((status & INTR_CMB_RX) != 0)
2169                         sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2170                             sc->age_process_limit);
2171                 if ((status & INTR_CMB_TX) != 0)
2172                         age_txintr(sc, sc->age_tpd_cons);
2173                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2174                         if ((status & INTR_DMA_RD_TO_RST) != 0)
2175                                 device_printf(sc->age_dev,
2176                                     "DMA read error! -- resetting\n");
2177                         if ((status & INTR_DMA_WR_TO_RST) != 0)
2178                                 device_printf(sc->age_dev,
2179                                     "DMA write error! -- resetting\n");
2180                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2181                         age_init_locked(sc);
2182                 }
2183                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2184                         age_start_locked(ifp);
2185                 if ((status & INTR_SMB) != 0)
2186                         age_stats_update(sc);
2187         }
2188
2189         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2190         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2191             sc->age_cdata.age_cmb_block_map,
2192             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2193         status = le32toh(cmb->intr_status);
2194         if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2195                 taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2196                 AGE_UNLOCK(sc);
2197                 return;
2198         }
2199
2200 done:
2201         /* Re-enable interrupts. */
2202         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2203         AGE_UNLOCK(sc);
2204 }
2205
2206 static void
2207 age_txintr(struct age_softc *sc, int tpd_cons)
2208 {
2209         struct ifnet *ifp;
2210         struct age_txdesc *txd;
2211         int cons, prog;
2212
2213         AGE_LOCK_ASSERT(sc);
2214
2215         ifp = sc->age_ifp;
2216
2217         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2218             sc->age_cdata.age_tx_ring_map,
2219             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2220
2221         /*
2222          * Go through our Tx list and free mbufs for those
2223          * frames which have been transmitted.
2224          */
2225         cons = sc->age_cdata.age_tx_cons;
2226         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2227                 if (sc->age_cdata.age_tx_cnt <= 0)
2228                         break;
2229                 prog++;
2230                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2231                 sc->age_cdata.age_tx_cnt--;
2232                 txd = &sc->age_cdata.age_txdesc[cons];
2233                 /*
2234                  * Clear Tx descriptors, it's not required but would
2235                  * help debugging in case of Tx issues.
2236                  */
2237                 txd->tx_desc->addr = 0;
2238                 txd->tx_desc->len = 0;
2239                 txd->tx_desc->flags = 0;
2240
2241                 if (txd->tx_m == NULL)
2242                         continue;
2243                 /* Reclaim transmitted mbufs. */
2244                 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2245                     BUS_DMASYNC_POSTWRITE);
2246                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2247                 m_freem(txd->tx_m);
2248                 txd->tx_m = NULL;
2249         }
2250
2251         if (prog > 0) {
2252                 sc->age_cdata.age_tx_cons = cons;
2253
2254                 /*
2255                  * Unarm watchdog timer only when there are no pending
2256                  * Tx descriptors in queue.
2257                  */
2258                 if (sc->age_cdata.age_tx_cnt == 0)
2259                         sc->age_watchdog_timer = 0;
2260                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2261                     sc->age_cdata.age_tx_ring_map,
2262                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2263         }
2264 }
2265
2266 #ifndef __NO_STRICT_ALIGNMENT
2267 static struct mbuf *
2268 age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2269 {
2270         struct mbuf *n;
2271         int i;
2272         uint16_t *src, *dst;
2273
2274         src = mtod(m, uint16_t *);
2275         dst = src - 3;
2276
2277         if (m->m_next == NULL) {
2278                 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2279                         *dst++ = *src++;
2280                 m->m_data -= 6;
2281                 return (m);
2282         }
2283         /*
2284          * Append a new mbuf to received mbuf chain and copy ethernet
2285          * header from the mbuf chain. This can save lots of CPU
2286          * cycles for jumbo frame.
2287          */
2288         MGETHDR(n, M_NOWAIT, MT_DATA);
2289         if (n == NULL) {
2290                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2291                 m_freem(m);
2292                 return (NULL);
2293         }
2294         bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2295         m->m_data += ETHER_HDR_LEN;
2296         m->m_len -= ETHER_HDR_LEN;
2297         n->m_len = ETHER_HDR_LEN;
2298         M_MOVE_PKTHDR(n, m);
2299         n->m_next = m;
2300         return (n);
2301 }
2302 #endif
2303
2304 /* Receive a frame. */
2305 static void
2306 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2307 {
2308         struct age_rxdesc *rxd;
2309         struct ifnet *ifp;
2310         struct mbuf *mp, *m;
2311         uint32_t status, index, vtag;
2312         int count, nsegs;
2313         int rx_cons;
2314
2315         AGE_LOCK_ASSERT(sc);
2316
2317         ifp = sc->age_ifp;
2318         status = le32toh(rxrd->flags);
2319         index = le32toh(rxrd->index);
2320         rx_cons = AGE_RX_CONS(index);
2321         nsegs = AGE_RX_NSEGS(index);
2322
2323         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2324         if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2325                 /*
2326                  * We want to pass the following frames to upper
2327                  * layer regardless of error status of Rx return
2328                  * ring.
2329                  *
2330                  *  o IP/TCP/UDP checksum is bad.
2331                  *  o frame length and protocol specific length
2332                  *     does not match.
2333                  */
2334                 status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2335                 if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2336                     AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2337                         return;
2338         }
2339
2340         for (count = 0; count < nsegs; count++,
2341             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2342                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2343                 mp = rxd->rx_m;
2344                 /* Add a new receive buffer to the ring. */
2345                 if (age_newbuf(sc, rxd) != 0) {
2346                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2347                         /* Reuse Rx buffers. */
2348                         if (sc->age_cdata.age_rxhead != NULL)
2349                                 m_freem(sc->age_cdata.age_rxhead);
2350                         break;
2351                 }
2352
2353                 /*
2354                  * Assume we've received a full sized frame.
2355                  * Actual size is fixed when we encounter the end of
2356                  * multi-segmented frame.
2357                  */
2358                 mp->m_len = AGE_RX_BUF_SIZE;
2359
2360                 /* Chain received mbufs. */
2361                 if (sc->age_cdata.age_rxhead == NULL) {
2362                         sc->age_cdata.age_rxhead = mp;
2363                         sc->age_cdata.age_rxtail = mp;
2364                 } else {
2365                         mp->m_flags &= ~M_PKTHDR;
2366                         sc->age_cdata.age_rxprev_tail =
2367                             sc->age_cdata.age_rxtail;
2368                         sc->age_cdata.age_rxtail->m_next = mp;
2369                         sc->age_cdata.age_rxtail = mp;
2370                 }
2371
2372                 if (count == nsegs - 1) {
2373                         /* Last desc. for this frame. */
2374                         m = sc->age_cdata.age_rxhead;
2375                         m->m_flags |= M_PKTHDR;
2376                         /*
2377                          * It seems that L1 controller has no way
2378                          * to tell hardware to strip CRC bytes.
2379                          */
2380                         m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2381                             ETHER_CRC_LEN;
2382                         if (nsegs > 1) {
2383                                 /* Set last mbuf size. */
2384                                 mp->m_len = sc->age_cdata.age_rxlen -
2385                                     ((nsegs - 1) * AGE_RX_BUF_SIZE);
2386                                 /* Remove the CRC bytes in chained mbufs. */
2387                                 if (mp->m_len <= ETHER_CRC_LEN) {
2388                                         sc->age_cdata.age_rxtail =
2389                                             sc->age_cdata.age_rxprev_tail;
2390                                         sc->age_cdata.age_rxtail->m_len -=
2391                                             (ETHER_CRC_LEN - mp->m_len);
2392                                         sc->age_cdata.age_rxtail->m_next = NULL;
2393                                         m_freem(mp);
2394                                 } else {
2395                                         mp->m_len -= ETHER_CRC_LEN;
2396                                 }
2397                         } else
2398                                 m->m_len = m->m_pkthdr.len;
2399                         m->m_pkthdr.rcvif = ifp;
2400                         /*
2401                          * Set checksum information.
2402                          * It seems that L1 controller can compute partial
2403                          * checksum. The partial checksum value can be used
2404                          * to accelerate checksum computation for fragmented
2405                          * TCP/UDP packets. Upper network stack already
2406                          * takes advantage of the partial checksum value in
2407                          * IP reassembly stage. But I'm not sure the
2408                          * correctness of the partial hardware checksum
2409                          * assistance due to lack of data sheet. If it is
2410                          * proven to work on L1 I'll enable it.
2411                          */
2412                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2413                             (status & AGE_RRD_IPV4) != 0) {
2414                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2415                                         m->m_pkthdr.csum_flags |=
2416                                             CSUM_IP_CHECKED | CSUM_IP_VALID;
2417                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2418                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2419                                         m->m_pkthdr.csum_flags |=
2420                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2421                                         m->m_pkthdr.csum_data = 0xffff;
2422                                 }
2423                                 /*
2424                                  * Don't mark bad checksum for TCP/UDP frames
2425                                  * as fragmented frames may always have set
2426                                  * bad checksummed bit of descriptor status.
2427                                  */
2428                         }
2429
2430                         /* Check for VLAN tagged frames. */
2431                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2432                             (status & AGE_RRD_VLAN) != 0) {
2433                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2434                                 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2435                                 m->m_flags |= M_VLANTAG;
2436                         }
2437 #ifndef __NO_STRICT_ALIGNMENT
2438                         m = age_fixup_rx(ifp, m);
2439                         if (m != NULL)
2440 #endif
2441                         {
2442                         /* Pass it on. */
2443                         AGE_UNLOCK(sc);
2444                         (*ifp->if_input)(ifp, m);
2445                         AGE_LOCK(sc);
2446                         }
2447                 }
2448         }
2449
2450         /* Reset mbuf chains. */
2451         AGE_RXCHAIN_RESET(sc);
2452 }
2453
2454 static int
2455 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2456 {
2457         struct rx_rdesc *rxrd;
2458         int rr_cons, nsegs, pktlen, prog;
2459
2460         AGE_LOCK_ASSERT(sc);
2461
2462         rr_cons = sc->age_cdata.age_rr_cons;
2463         if (rr_cons == rr_prod)
2464                 return (0);
2465
2466         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2467             sc->age_cdata.age_rr_ring_map,
2468             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2469         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2470             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2471
2472         for (prog = 0; rr_cons != rr_prod; prog++) {
2473                 if (count-- <= 0)
2474                         break;
2475                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2476                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2477                 if (nsegs == 0)
2478                         break;
2479                 /*
2480                  * Check number of segments against received bytes.
2481                  * Non-matching value would indicate that hardware
2482                  * is still trying to update Rx return descriptors.
2483                  * I'm not sure whether this check is really needed.
2484                  */
2485                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2486                 if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2487                         break;
2488
2489                 /* Received a frame. */
2490                 age_rxeof(sc, rxrd);
2491                 /* Clear return ring. */
2492                 rxrd->index = 0;
2493                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2494                 sc->age_cdata.age_rx_cons += nsegs;
2495                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2496         }
2497
2498         if (prog > 0) {
2499                 /* Update the consumer index. */
2500                 sc->age_cdata.age_rr_cons = rr_cons;
2501
2502                 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2503                     sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2504                 /* Sync descriptors. */
2505                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2506                     sc->age_cdata.age_rr_ring_map,
2507                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2508
2509                 /* Notify hardware availability of new Rx buffers. */
2510                 AGE_COMMIT_MBOX(sc);
2511         }
2512
2513         return (count > 0 ? 0 : EAGAIN);
2514 }
2515
2516 static void
2517 age_tick(void *arg)
2518 {
2519         struct age_softc *sc;
2520         struct mii_data *mii;
2521
2522         sc = (struct age_softc *)arg;
2523
2524         AGE_LOCK_ASSERT(sc);
2525
2526         mii = device_get_softc(sc->age_miibus);
2527         mii_tick(mii);
2528         age_watchdog(sc);
2529         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2530 }
2531
2532 static void
2533 age_reset(struct age_softc *sc)
2534 {
2535         uint32_t reg;
2536         int i;
2537
2538         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2539         CSR_READ_4(sc, AGE_MASTER_CFG);
2540         DELAY(1000);
2541         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2542                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2543                         break;
2544                 DELAY(10);
2545         }
2546
2547         if (i == 0)
2548                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2549         /* Initialize PCIe module. From Linux. */
2550         CSR_WRITE_4(sc, 0x12FC, 0x6500);
2551         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2552 }
2553
2554 static void
2555 age_init(void *xsc)
2556 {
2557         struct age_softc *sc;
2558
2559         sc = (struct age_softc *)xsc;
2560         AGE_LOCK(sc);
2561         age_init_locked(sc);
2562         AGE_UNLOCK(sc);
2563 }
2564
2565 static void
2566 age_init_locked(struct age_softc *sc)
2567 {
2568         struct ifnet *ifp;
2569         struct mii_data *mii;
2570         uint8_t eaddr[ETHER_ADDR_LEN];
2571         bus_addr_t paddr;
2572         uint32_t reg, fsize;
2573         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2574         int error;
2575
2576         AGE_LOCK_ASSERT(sc);
2577
2578         ifp = sc->age_ifp;
2579         mii = device_get_softc(sc->age_miibus);
2580
2581         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2582                 return;
2583
2584         /*
2585          * Cancel any pending I/O.
2586          */
2587         age_stop(sc);
2588
2589         /*
2590          * Reset the chip to a known state.
2591          */
2592         age_reset(sc);
2593
2594         /* Initialize descriptors. */
2595         error = age_init_rx_ring(sc);
2596         if (error != 0) {
2597                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2598                 age_stop(sc);
2599                 return;
2600         }
2601         age_init_rr_ring(sc);
2602         age_init_tx_ring(sc);
2603         age_init_cmb_block(sc);
2604         age_init_smb_block(sc);
2605
2606         /* Reprogram the station address. */
2607         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2608         CSR_WRITE_4(sc, AGE_PAR0,
2609             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2610         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2611
2612         /* Set descriptor base addresses. */
2613         paddr = sc->age_rdata.age_tx_ring_paddr;
2614         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2615         paddr = sc->age_rdata.age_rx_ring_paddr;
2616         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2617         paddr = sc->age_rdata.age_rr_ring_paddr;
2618         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2619         paddr = sc->age_rdata.age_tx_ring_paddr;
2620         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2621         paddr = sc->age_rdata.age_cmb_block_paddr;
2622         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2623         paddr = sc->age_rdata.age_smb_block_paddr;
2624         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2625         /* Set Rx/Rx return descriptor counter. */
2626         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2627             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2628             DESC_RRD_CNT_MASK) |
2629             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2630         /* Set Tx descriptor counter. */
2631         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2632             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2633
2634         /* Tell hardware that we're ready to load descriptors. */
2635         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2636
2637         /*
2638          * Initialize mailbox register.
2639          * Updated producer/consumer index information is exchanged
2640          * through this mailbox register. However Tx producer and
2641          * Rx return consumer/Rx producer are all shared such that
2642          * it's hard to separate code path between Tx and Rx without
2643          * locking. If L1 hardware have a separate mail box register
2644          * for Tx and Rx consumer/producer management we could have
2645          * indepent Tx/Rx handler which in turn Rx handler could have
2646          * been run without any locking.
2647          */
2648         AGE_COMMIT_MBOX(sc);
2649
2650         /* Configure IPG/IFG parameters. */
2651         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2652             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2653             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2654             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2655             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2656
2657         /* Set parameters for half-duplex media. */
2658         CSR_WRITE_4(sc, AGE_HDPX_CFG,
2659             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2660             HDPX_CFG_LCOL_MASK) |
2661             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2662             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2663             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2664             HDPX_CFG_ABEBT_MASK) |
2665             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2666             HDPX_CFG_JAMIPG_MASK));
2667
2668         /* Configure interrupt moderation timer. */
2669         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2670         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2671         reg &= ~MASTER_MTIMER_ENB;
2672         if (AGE_USECS(sc->age_int_mod) == 0)
2673                 reg &= ~MASTER_ITIMER_ENB;
2674         else
2675                 reg |= MASTER_ITIMER_ENB;
2676         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2677         if (bootverbose)
2678                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2679                     sc->age_int_mod);
2680         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2681
2682         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2683         if (ifp->if_mtu < ETHERMTU)
2684                 sc->age_max_frame_size = ETHERMTU;
2685         else
2686                 sc->age_max_frame_size = ifp->if_mtu;
2687         sc->age_max_frame_size += ETHER_HDR_LEN +
2688             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2689         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2690         /* Configure jumbo frame. */
2691         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2692         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2693             (((fsize / sizeof(uint64_t)) <<
2694             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2695             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2696             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2697             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2698             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2699
2700         /* Configure flow-control parameters. From Linux. */
2701         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2702                 /*
2703                  * Magic workaround for old-L1.
2704                  * Don't know which hw revision requires this magic.
2705                  */
2706                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
2707                 /*
2708                  * Another magic workaround for flow-control mode
2709                  * change. From Linux.
2710                  */
2711                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2712         }
2713         /*
2714          * TODO
2715          *  Should understand pause parameter relationships between FIFO
2716          *  size and number of Rx descriptors and Rx return descriptors.
2717          *
2718          *  Magic parameters came from Linux.
2719          */
2720         switch (sc->age_chip_rev) {
2721         case 0x8001:
2722         case 0x9001:
2723         case 0x9002:
2724         case 0x9003:
2725                 rxf_hi = AGE_RX_RING_CNT / 16;
2726                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2727                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2728                 rrd_lo = AGE_RR_RING_CNT / 16;
2729                 break;
2730         default:
2731                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2732                 rxf_lo = reg / 16;
2733                 if (rxf_lo < 192)
2734                         rxf_lo = 192;
2735                 rxf_hi = (reg * 7) / 8;
2736                 if (rxf_hi < rxf_lo)
2737                         rxf_hi = rxf_lo + 16;
2738                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2739                 rrd_lo = reg / 8;
2740                 rrd_hi = (reg * 7) / 8;
2741                 if (rrd_lo < 2)
2742                         rrd_lo = 2;
2743                 if (rrd_hi < rrd_lo)
2744                         rrd_hi = rrd_lo + 3;
2745                 break;
2746         }
2747         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2748             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2749             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2750             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2751             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2752         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2753             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2754             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2755             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2756             RXQ_RRD_PAUSE_THRESH_HI_MASK));
2757
2758         /* Configure RxQ. */
2759         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2760             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2761             RXQ_CFG_RD_BURST_MASK) |
2762             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2763             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2764             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2765             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2766             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2767
2768         /* Configure TxQ. */
2769         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2770             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2771             TXQ_CFG_TPD_BURST_MASK) |
2772             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2773             TXQ_CFG_TX_FIFO_BURST_MASK) |
2774             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2775             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2776             TXQ_CFG_ENB);
2777
2778         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2779             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2780             TX_JUMBO_TPD_TH_MASK) |
2781             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2782             TX_JUMBO_TPD_IPG_MASK));
2783         /* Configure DMA parameters. */
2784         CSR_WRITE_4(sc, AGE_DMA_CFG,
2785             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2786             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2787             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2788
2789         /* Configure CMB DMA write threshold. */
2790         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2791             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2792             CMB_WR_THRESH_RRD_MASK) |
2793             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2794             CMB_WR_THRESH_TPD_MASK));
2795
2796         /* Set CMB/SMB timer and enable them. */
2797         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2798             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2799             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2800         /* Request SMB updates for every seconds. */
2801         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2802         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2803
2804         /*
2805          * Disable all WOL bits as WOL can interfere normal Rx
2806          * operation.
2807          */
2808         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2809
2810         /*
2811          * Configure Tx/Rx MACs.
2812          *  - Auto-padding for short frames.
2813          *  - Enable CRC generation.
2814          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2815          *  of MAC is followed after link establishment.
2816          */
2817         CSR_WRITE_4(sc, AGE_MAC_CFG,
2818             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2819             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2820             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2821             MAC_CFG_PREAMBLE_MASK));
2822         /* Set up the receive filter. */
2823         age_rxfilter(sc);
2824         age_rxvlan(sc);
2825
2826         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2827         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2828                 reg |= MAC_CFG_RXCSUM_ENB;
2829
2830         /* Ack all pending interrupts and clear it. */
2831         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2832         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2833
2834         /* Finally enable Tx/Rx MAC. */
2835         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2836
2837         sc->age_flags &= ~AGE_FLAG_LINK;
2838         /* Switch to the current media. */
2839         mii_mediachg(mii);
2840
2841         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2842
2843         ifp->if_drv_flags |= IFF_DRV_RUNNING;
2844         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2845 }
2846
2847 static void
2848 age_stop(struct age_softc *sc)
2849 {
2850         struct ifnet *ifp;
2851         struct age_txdesc *txd;
2852         struct age_rxdesc *rxd;
2853         uint32_t reg;
2854         int i;
2855
2856         AGE_LOCK_ASSERT(sc);
2857         /*
2858          * Mark the interface down and cancel the watchdog timer.
2859          */
2860         ifp = sc->age_ifp;
2861         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2862         sc->age_flags &= ~AGE_FLAG_LINK;
2863         callout_stop(&sc->age_tick_ch);
2864         sc->age_watchdog_timer = 0;
2865
2866         /*
2867          * Disable interrupts.
2868          */
2869         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2870         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2871         /* Stop CMB/SMB updates. */
2872         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2873         /* Stop Rx/Tx MAC. */
2874         age_stop_rxmac(sc);
2875         age_stop_txmac(sc);
2876         /* Stop DMA. */
2877         CSR_WRITE_4(sc, AGE_DMA_CFG,
2878             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2879         /* Stop TxQ/RxQ. */
2880         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2881             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2882         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2883             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2884         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2885                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2886                         break;
2887                 DELAY(10);
2888         }
2889         if (i == 0)
2890                 device_printf(sc->age_dev,
2891                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2892
2893          /* Reclaim Rx buffers that have been processed. */
2894         if (sc->age_cdata.age_rxhead != NULL)
2895                 m_freem(sc->age_cdata.age_rxhead);
2896         AGE_RXCHAIN_RESET(sc);
2897         /*
2898          * Free RX and TX mbufs still in the queues.
2899          */
2900         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2901                 rxd = &sc->age_cdata.age_rxdesc[i];
2902                 if (rxd->rx_m != NULL) {
2903                         bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2904                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2905                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2906                             rxd->rx_dmamap);
2907                         m_freem(rxd->rx_m);
2908                         rxd->rx_m = NULL;
2909                 }
2910         }
2911         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2912                 txd = &sc->age_cdata.age_txdesc[i];
2913                 if (txd->tx_m != NULL) {
2914                         bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2915                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2916                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2917                             txd->tx_dmamap);
2918                         m_freem(txd->tx_m);
2919                         txd->tx_m = NULL;
2920                 }
2921         }
2922 }
2923
2924 static void
2925 age_stop_txmac(struct age_softc *sc)
2926 {
2927         uint32_t reg;
2928         int i;
2929
2930         AGE_LOCK_ASSERT(sc);
2931
2932         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2933         if ((reg & MAC_CFG_TX_ENB) != 0) {
2934                 reg &= ~MAC_CFG_TX_ENB;
2935                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2936         }
2937         /* Stop Tx DMA engine. */
2938         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2939         if ((reg & DMA_CFG_RD_ENB) != 0) {
2940                 reg &= ~DMA_CFG_RD_ENB;
2941                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2942         }
2943         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2944                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2945                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2946                         break;
2947                 DELAY(10);
2948         }
2949         if (i == 0)
2950                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2951 }
2952
2953 static void
2954 age_stop_rxmac(struct age_softc *sc)
2955 {
2956         uint32_t reg;
2957         int i;
2958
2959         AGE_LOCK_ASSERT(sc);
2960
2961         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2962         if ((reg & MAC_CFG_RX_ENB) != 0) {
2963                 reg &= ~MAC_CFG_RX_ENB;
2964                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2965         }
2966         /* Stop Rx DMA engine. */
2967         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2968         if ((reg & DMA_CFG_WR_ENB) != 0) {
2969                 reg &= ~DMA_CFG_WR_ENB;
2970                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2971         }
2972         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2973                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2974                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2975                         break;
2976                 DELAY(10);
2977         }
2978         if (i == 0)
2979                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2980 }
2981
2982 static void
2983 age_init_tx_ring(struct age_softc *sc)
2984 {
2985         struct age_ring_data *rd;
2986         struct age_txdesc *txd;
2987         int i;
2988
2989         AGE_LOCK_ASSERT(sc);
2990
2991         sc->age_cdata.age_tx_prod = 0;
2992         sc->age_cdata.age_tx_cons = 0;
2993         sc->age_cdata.age_tx_cnt = 0;
2994
2995         rd = &sc->age_rdata;
2996         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2997         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2998                 txd = &sc->age_cdata.age_txdesc[i];
2999                 txd->tx_desc = &rd->age_tx_ring[i];
3000                 txd->tx_m = NULL;
3001         }
3002
3003         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3004             sc->age_cdata.age_tx_ring_map,
3005             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3006 }
3007
3008 static int
3009 age_init_rx_ring(struct age_softc *sc)
3010 {
3011         struct age_ring_data *rd;
3012         struct age_rxdesc *rxd;
3013         int i;
3014
3015         AGE_LOCK_ASSERT(sc);
3016
3017         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3018         sc->age_morework = 0;
3019         rd = &sc->age_rdata;
3020         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3021         for (i = 0; i < AGE_RX_RING_CNT; i++) {
3022                 rxd = &sc->age_cdata.age_rxdesc[i];
3023                 rxd->rx_m = NULL;
3024                 rxd->rx_desc = &rd->age_rx_ring[i];
3025                 if (age_newbuf(sc, rxd) != 0)
3026                         return (ENOBUFS);
3027         }
3028
3029         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3030             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3031
3032         return (0);
3033 }
3034
3035 static void
3036 age_init_rr_ring(struct age_softc *sc)
3037 {
3038         struct age_ring_data *rd;
3039
3040         AGE_LOCK_ASSERT(sc);
3041
3042         sc->age_cdata.age_rr_cons = 0;
3043         AGE_RXCHAIN_RESET(sc);
3044
3045         rd = &sc->age_rdata;
3046         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3047         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3048             sc->age_cdata.age_rr_ring_map,
3049             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3050 }
3051
3052 static void
3053 age_init_cmb_block(struct age_softc *sc)
3054 {
3055         struct age_ring_data *rd;
3056
3057         AGE_LOCK_ASSERT(sc);
3058
3059         rd = &sc->age_rdata;
3060         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3061         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3062             sc->age_cdata.age_cmb_block_map,
3063             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3064 }
3065
3066 static void
3067 age_init_smb_block(struct age_softc *sc)
3068 {
3069         struct age_ring_data *rd;
3070
3071         AGE_LOCK_ASSERT(sc);
3072
3073         rd = &sc->age_rdata;
3074         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3075         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3076             sc->age_cdata.age_smb_block_map,
3077             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3078 }
3079
3080 static int
3081 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3082 {
3083         struct rx_desc *desc;
3084         struct mbuf *m;
3085         bus_dma_segment_t segs[1];
3086         bus_dmamap_t map;
3087         int nsegs;
3088
3089         AGE_LOCK_ASSERT(sc);
3090
3091         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3092         if (m == NULL)
3093                 return (ENOBUFS);
3094         m->m_len = m->m_pkthdr.len = MCLBYTES;
3095 #ifndef __NO_STRICT_ALIGNMENT
3096         m_adj(m, AGE_RX_BUF_ALIGN);
3097 #endif
3098
3099         if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3100             sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3101                 m_freem(m);
3102                 return (ENOBUFS);
3103         }
3104         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3105
3106         if (rxd->rx_m != NULL) {
3107                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3108                     BUS_DMASYNC_POSTREAD);
3109                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3110         }
3111         map = rxd->rx_dmamap;
3112         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3113         sc->age_cdata.age_rx_sparemap = map;
3114         bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3115             BUS_DMASYNC_PREREAD);
3116         rxd->rx_m = m;
3117
3118         desc = rxd->rx_desc;
3119         desc->addr = htole64(segs[0].ds_addr);
3120         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3121             AGE_RD_LEN_SHIFT);
3122         return (0);
3123 }
3124
3125 static void
3126 age_rxvlan(struct age_softc *sc)
3127 {
3128         struct ifnet *ifp;
3129         uint32_t reg;
3130
3131         AGE_LOCK_ASSERT(sc);
3132
3133         ifp = sc->age_ifp;
3134         reg = CSR_READ_4(sc, AGE_MAC_CFG);
3135         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3136         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3137                 reg |= MAC_CFG_VLAN_TAG_STRIP;
3138         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3139 }
3140
3141 static u_int
3142 age_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3143 {
3144         uint32_t *mchash = arg;
3145         uint32_t crc;
3146
3147         crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3148         mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3149
3150         return (1);
3151 }
3152
3153 static void
3154 age_rxfilter(struct age_softc *sc)
3155 {
3156         struct ifnet *ifp;
3157         uint32_t mchash[2];
3158         uint32_t rxcfg;
3159
3160         AGE_LOCK_ASSERT(sc);
3161
3162         ifp = sc->age_ifp;
3163
3164         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3165         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3166         if ((ifp->if_flags & IFF_BROADCAST) != 0)
3167                 rxcfg |= MAC_CFG_BCAST;
3168         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3169                 if ((ifp->if_flags & IFF_PROMISC) != 0)
3170                         rxcfg |= MAC_CFG_PROMISC;
3171                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3172                         rxcfg |= MAC_CFG_ALLMULTI;
3173                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3174                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3175                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3176                 return;
3177         }
3178
3179         /* Program new filter. */
3180         bzero(mchash, sizeof(mchash));
3181         if_foreach_llmaddr(ifp, age_hash_maddr, mchash);
3182
3183         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3184         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3185         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3186 }
3187
3188 static int
3189 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3190 {
3191         struct age_softc *sc;
3192         struct age_stats *stats;
3193         int error, result;
3194
3195         result = -1;
3196         error = sysctl_handle_int(oidp, &result, 0, req);
3197
3198         if (error != 0 || req->newptr == NULL)
3199                 return (error);
3200
3201         if (result != 1)
3202                 return (error);
3203
3204         sc = (struct age_softc *)arg1;
3205         stats = &sc->age_stat;
3206         printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3207         printf("Transmit good frames : %ju\n",
3208             (uintmax_t)stats->tx_frames);
3209         printf("Transmit good broadcast frames : %ju\n",
3210             (uintmax_t)stats->tx_bcast_frames);
3211         printf("Transmit good multicast frames : %ju\n",
3212             (uintmax_t)stats->tx_mcast_frames);
3213         printf("Transmit pause control frames : %u\n",
3214             stats->tx_pause_frames);
3215         printf("Transmit control frames : %u\n",
3216             stats->tx_control_frames);
3217         printf("Transmit frames with excessive deferrals : %u\n",
3218             stats->tx_excess_defer);
3219         printf("Transmit deferrals : %u\n",
3220             stats->tx_deferred);
3221         printf("Transmit good octets : %ju\n",
3222             (uintmax_t)stats->tx_bytes);
3223         printf("Transmit good broadcast octets : %ju\n",
3224             (uintmax_t)stats->tx_bcast_bytes);
3225         printf("Transmit good multicast octets : %ju\n",
3226             (uintmax_t)stats->tx_mcast_bytes);
3227         printf("Transmit frames 64 bytes : %ju\n",
3228             (uintmax_t)stats->tx_pkts_64);
3229         printf("Transmit frames 65 to 127 bytes : %ju\n",
3230             (uintmax_t)stats->tx_pkts_65_127);
3231         printf("Transmit frames 128 to 255 bytes : %ju\n",
3232             (uintmax_t)stats->tx_pkts_128_255);
3233         printf("Transmit frames 256 to 511 bytes : %ju\n",
3234             (uintmax_t)stats->tx_pkts_256_511);
3235         printf("Transmit frames 512 to 1024 bytes : %ju\n",
3236             (uintmax_t)stats->tx_pkts_512_1023);
3237         printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3238             (uintmax_t)stats->tx_pkts_1024_1518);
3239         printf("Transmit frames 1519 to MTU bytes : %ju\n",
3240             (uintmax_t)stats->tx_pkts_1519_max);
3241         printf("Transmit single collisions : %u\n",
3242             stats->tx_single_colls);
3243         printf("Transmit multiple collisions : %u\n",
3244             stats->tx_multi_colls);
3245         printf("Transmit late collisions : %u\n",
3246             stats->tx_late_colls);
3247         printf("Transmit abort due to excessive collisions : %u\n",
3248             stats->tx_excess_colls);
3249         printf("Transmit underruns due to FIFO underruns : %u\n",
3250             stats->tx_underrun);
3251         printf("Transmit descriptor write-back errors : %u\n",
3252             stats->tx_desc_underrun);
3253         printf("Transmit frames with length mismatched frame size : %u\n",
3254             stats->tx_lenerrs);
3255         printf("Transmit frames with truncated due to MTU size : %u\n",
3256             stats->tx_lenerrs);
3257
3258         printf("Receive good frames : %ju\n",
3259             (uintmax_t)stats->rx_frames);
3260         printf("Receive good broadcast frames : %ju\n",
3261             (uintmax_t)stats->rx_bcast_frames);
3262         printf("Receive good multicast frames : %ju\n",
3263             (uintmax_t)stats->rx_mcast_frames);
3264         printf("Receive pause control frames : %u\n",
3265             stats->rx_pause_frames);
3266         printf("Receive control frames : %u\n",
3267             stats->rx_control_frames);
3268         printf("Receive CRC errors : %u\n",
3269             stats->rx_crcerrs);
3270         printf("Receive frames with length errors : %u\n",
3271             stats->rx_lenerrs);
3272         printf("Receive good octets : %ju\n",
3273             (uintmax_t)stats->rx_bytes);
3274         printf("Receive good broadcast octets : %ju\n",
3275             (uintmax_t)stats->rx_bcast_bytes);
3276         printf("Receive good multicast octets : %ju\n",
3277             (uintmax_t)stats->rx_mcast_bytes);
3278         printf("Receive frames too short : %u\n",
3279             stats->rx_runts);
3280         printf("Receive fragmented frames : %ju\n",
3281             (uintmax_t)stats->rx_fragments);
3282         printf("Receive frames 64 bytes : %ju\n",
3283             (uintmax_t)stats->rx_pkts_64);
3284         printf("Receive frames 65 to 127 bytes : %ju\n",
3285             (uintmax_t)stats->rx_pkts_65_127);
3286         printf("Receive frames 128 to 255 bytes : %ju\n",
3287             (uintmax_t)stats->rx_pkts_128_255);
3288         printf("Receive frames 256 to 511 bytes : %ju\n",
3289             (uintmax_t)stats->rx_pkts_256_511);
3290         printf("Receive frames 512 to 1024 bytes : %ju\n",
3291             (uintmax_t)stats->rx_pkts_512_1023);
3292         printf("Receive frames 1024 to 1518 bytes : %ju\n",
3293             (uintmax_t)stats->rx_pkts_1024_1518);
3294         printf("Receive frames 1519 to MTU bytes : %ju\n",
3295             (uintmax_t)stats->rx_pkts_1519_max);
3296         printf("Receive frames too long : %ju\n",
3297             (uint64_t)stats->rx_pkts_truncated);
3298         printf("Receive frames with FIFO overflow : %u\n",
3299             stats->rx_fifo_oflows);
3300         printf("Receive frames with return descriptor overflow : %u\n",
3301             stats->rx_desc_oflows);
3302         printf("Receive frames with alignment errors : %u\n",
3303             stats->rx_alignerrs);
3304         printf("Receive frames dropped due to address filtering : %ju\n",
3305             (uint64_t)stats->rx_pkts_filtered);
3306
3307         return (error);
3308 }
3309
3310 static int
3311 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3312 {
3313         int error, value;
3314
3315         if (arg1 == NULL)
3316                 return (EINVAL);
3317         value = *(int *)arg1;
3318         error = sysctl_handle_int(oidp, &value, 0, req);
3319         if (error || req->newptr == NULL)
3320                 return (error);
3321         if (value < low || value > high)
3322                 return (EINVAL);
3323         *(int *)arg1 = value;
3324
3325         return (0);
3326 }
3327
3328 static int
3329 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3330 {
3331         return (sysctl_int_range(oidp, arg1, arg2, req,
3332             AGE_PROC_MIN, AGE_PROC_MAX));
3333 }
3334
3335 static int
3336 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3337 {
3338
3339         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3340             AGE_IM_TIMER_MAX));
3341 }