]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/ath/ath_hal/ar5212/ar2317.c
MFV r328323,328324:
[FreeBSD/FreeBSD.git] / sys / dev / ath / ath_hal / ar5212 / ar2317.c
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22
23 #include "ah.h"
24 #include "ah_internal.h"
25
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29
30 #include "ah_eeprom_v3.h"
31
32 #define AH_5212_2317
33 #include "ar5212/ar5212.ini"
34
35 #define N(a)    (sizeof(a)/sizeof(a[0]))
36
37 typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
38 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
39 #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
40
41 struct ar2317State {
42         RF_HAL_FUNCS    base;           /* public state, must be first */
43         uint16_t        pcdacTable[PWR_TABLE_SIZE_2317];
44
45         uint32_t        Bank1Data[N(ar5212Bank1_2317)];
46         uint32_t        Bank2Data[N(ar5212Bank2_2317)];
47         uint32_t        Bank3Data[N(ar5212Bank3_2317)];
48         uint32_t        Bank6Data[N(ar5212Bank6_2317)];
49         uint32_t        Bank7Data[N(ar5212Bank7_2317)];
50
51         /*
52          * Private state for reduced stack usage.
53          */
54         /* filled out Vpd table for all pdGains (chanL) */
55         uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
56                             [MAX_PWR_RANGE_IN_HALF_DB];
57         /* filled out Vpd table for all pdGains (chanR) */
58         uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
59                             [MAX_PWR_RANGE_IN_HALF_DB];
60         /* filled out Vpd table for all pdGains (interpolated) */
61         uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
62                             [MAX_PWR_RANGE_IN_HALF_DB];
63 };
64 #define AR2317(ah)      ((struct ar2317State *) AH5212(ah)->ah_rfHal)
65
66 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
67                 uint32_t numBits, uint32_t firstBit, uint32_t column);
68
69 static void
70 ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
71         int writes)
72 {
73         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
74         HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
75         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
76 }
77
78 /*
79  * Take the MHz channel value and set the Channel value
80  *
81  * ASSUMES: Writes enabled to analog bus
82  */
83 static HAL_BOOL
84 ar2317SetChannel(struct ath_hal *ah,  const struct ieee80211_channel *chan)
85 {
86         uint16_t freq = ath_hal_gethwchannel(ah, chan);
87         uint32_t channelSel  = 0;
88         uint32_t bModeSynth  = 0;
89         uint32_t aModeRefSel = 0;
90         uint32_t reg32       = 0;
91
92         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
93
94         if (freq < 4800) {
95                 uint32_t txctl;
96                 channelSel = freq - 2272 ;
97                 channelSel = ath_hal_reverseBits(channelSel, 8);
98
99                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
100                 if (freq == 2484) {
101                         /* Enable channel spreading for channel 14 */
102                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
103                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
104                 } else {
105                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
106                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
107                 }
108         } else if ((freq % 20) == 0 && freq >= 5120) {
109                 channelSel = ath_hal_reverseBits(
110                         ((freq - 4800) / 20 << 2), 8);
111                 aModeRefSel = ath_hal_reverseBits(3, 2);
112         } else if ((freq % 10) == 0) {
113                 channelSel = ath_hal_reverseBits(
114                         ((freq - 4800) / 10 << 1), 8);
115                 aModeRefSel = ath_hal_reverseBits(2, 2);
116         } else if ((freq % 5) == 0) {
117                 channelSel = ath_hal_reverseBits(
118                         (freq - 4800) / 5, 8);
119                 aModeRefSel = ath_hal_reverseBits(1, 2);
120         } else {
121                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
122                     __func__, freq);
123                 return AH_FALSE;
124         }
125
126         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
127                         (1 << 12) | 0x1;
128         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
129
130         reg32 >>= 8;
131         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
132
133         AH_PRIVATE(ah)->ah_curchan = chan;
134         return AH_TRUE;
135 }
136
137 /*
138  * Reads EEPROM header info from device structure and programs
139  * all rf registers
140  *
141  * REQUIRES: Access to the analog rf device
142  */
143 static HAL_BOOL
144 ar2317SetRfRegs(struct ath_hal *ah,
145         const struct ieee80211_channel *chan,
146         uint16_t modesIndex, uint16_t *rfXpdGain)
147 {
148 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
149         int i;                                                              \
150         for (i = 0; i < N(ar5212Bank##_ix##_2317); i++)                     \
151                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
152 } while (0)
153         struct ath_hal_5212 *ahp = AH5212(ah);
154         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
155         uint16_t ob2GHz = 0, db2GHz = 0;
156         struct ar2317State *priv = AR2317(ah);
157         int regWrites = 0;
158
159         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
160             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
161
162         HALASSERT(priv);
163
164         /* Setup rf parameters */
165         if (IEEE80211_IS_CHAN_B(chan)) {
166                 ob2GHz = ee->ee_obFor24;
167                 db2GHz = ee->ee_dbFor24;
168         } else {
169                 ob2GHz = ee->ee_obFor24g;
170                 db2GHz = ee->ee_dbFor24g;
171         }
172
173         /* Bank 1 Write */
174         RF_BANK_SETUP(priv, 1, 1);
175
176         /* Bank 2 Write */
177         RF_BANK_SETUP(priv, 2, modesIndex);
178
179         /* Bank 3 Write */
180         RF_BANK_SETUP(priv, 3, modesIndex);
181
182         /* Bank 6 Write */
183         RF_BANK_SETUP(priv, 6, modesIndex);
184
185         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 193, 0);
186         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 190, 0);
187
188         /* Bank 7 Setup */
189         RF_BANK_SETUP(priv, 7, modesIndex);
190
191         /* Write Analog registers */
192         HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
193         HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
194         HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
195         HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
196         HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);   
197         /* Now that we have reprogrammed rfgain value, clear the flag. */
198         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
199
200         return AH_TRUE;
201 #undef  RF_BANK_SETUP
202 }
203
204 /*
205  * Return a reference to the requested RF Bank.
206  */
207 static uint32_t *
208 ar2317GetRfBank(struct ath_hal *ah, int bank)
209 {
210         struct ar2317State *priv = AR2317(ah);
211
212         HALASSERT(priv != AH_NULL);
213         switch (bank) {
214         case 1: return priv->Bank1Data;
215         case 2: return priv->Bank2Data;
216         case 3: return priv->Bank3Data;
217         case 6: return priv->Bank6Data;
218         case 7: return priv->Bank7Data;
219         }
220         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
221             __func__, bank);
222         return AH_NULL;
223 }
224
225 /*
226  * Return indices surrounding the value in sorted integer lists.
227  *
228  * NB: the input list is assumed to be sorted in ascending order
229  */
230 static void
231 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
232                           uint32_t *vlo, uint32_t *vhi)
233 {
234         int16_t target = v;
235         const int16_t *ep = lp+listSize;
236         const int16_t *tp;
237
238         /*
239          * Check first and last elements for out-of-bounds conditions.
240          */
241         if (target < lp[0]) {
242                 *vlo = *vhi = 0;
243                 return;
244         }
245         if (target >= ep[-1]) {
246                 *vlo = *vhi = listSize - 1;
247                 return;
248         }
249
250         /* look for value being near or between 2 values in list */
251         for (tp = lp; tp < ep; tp++) {
252                 /*
253                  * If value is close to the current value of the list
254                  * then target is not between values, it is one of the values
255                  */
256                 if (*tp == target) {
257                         *vlo = *vhi = tp - (const int16_t *) lp;
258                         return;
259                 }
260                 /*
261                  * Look for value being between current value and next value
262                  * if so return these 2 values
263                  */
264                 if (target < tp[1]) {
265                         *vlo = tp - (const int16_t *) lp;
266                         *vhi = *vlo + 1;
267                         return;
268                 }
269         }
270 }
271
272 /*
273  * Fill the Vpdlist for indices Pmax-Pmin
274  */
275 static HAL_BOOL
276 ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
277                    const int16_t *pwrList, const int16_t *VpdList,
278                    uint16_t numIntercepts, uint16_t retVpdList[][64])
279 {
280         uint16_t ii, jj, kk;
281         int16_t currPwr = (int16_t)(2*Pmin);
282         /* since Pmin is pwr*2 and pwrList is 4*pwr */
283         uint32_t  idxL, idxR;
284
285         ii = 0;
286         jj = 0;
287
288         if (numIntercepts < 2)
289                 return AH_FALSE;
290
291         while (ii <= (uint16_t)(Pmax - Pmin)) {
292                 GetLowerUpperIndex(currPwr, pwrList, numIntercepts, 
293                                          &(idxL), &(idxR));
294                 if (idxR < 1)
295                         idxR = 1;                       /* extrapolate below */
296                 if (idxL == (uint32_t)(numIntercepts - 1))
297                         idxL = numIntercepts - 2;       /* extrapolate above */
298                 if (pwrList[idxL] == pwrList[idxR])
299                         kk = VpdList[idxL];
300                 else
301                         kk = (uint16_t)
302                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
303                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
304                                  (pwrList[idxR] - pwrList[idxL]));
305                 retVpdList[pdGainIdx][ii] = kk;
306                 ii++;
307                 currPwr += 2;                           /* half dB steps */
308         }
309
310         return AH_TRUE;
311 }
312
313 /*
314  * Returns interpolated or the scaled up interpolated value
315  */
316 static int16_t
317 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
318         int16_t targetLeft, int16_t targetRight)
319 {
320         int16_t rv;
321
322         if (srcRight != srcLeft) {
323                 rv = ((target - srcLeft)*targetRight +
324                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
325         } else {
326                 rv = targetLeft;
327         }
328         return rv;
329 }
330
331 /*
332  * Uses the data points read from EEPROM to reconstruct the pdadc power table
333  * Called by ar2317SetPowerTable()
334  */
335 static int 
336 ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
337                 const RAW_DATA_STRUCT_2317 *pRawDataset,
338                 uint16_t pdGainOverlap_t2, 
339                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
340                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
341 {
342         struct ar2317State *priv = AR2317(ah);
343 #define VpdTable_L      priv->vpdTable_L
344 #define VpdTable_R      priv->vpdTable_R
345 #define VpdTable_I      priv->vpdTable_I
346         /* XXX excessive stack usage? */
347         uint32_t ii, jj, kk;
348         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
349         uint32_t idxL, idxR;
350         uint32_t numPdGainsUsed = 0;
351         /* 
352          * If desired to support -ve power levels in future, just
353          * change pwr_I_0 to signed 5-bits.
354          */
355         int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
356         /* to accommodate -ve power levels later on. */
357         int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
358         /* to accommodate -ve power levels later on */
359         uint16_t numVpd = 0;
360         uint16_t Vpd_step;
361         int16_t tmpVal ; 
362         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
363
364         /* Get upper lower index */
365         GetLowerUpperIndex(channel, pRawDataset->pChannels,
366                                  pRawDataset->numChannels, &(idxL), &(idxR));
367
368         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
369                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
370                 /* work backwards 'cause highest pdGain for lowest power */
371                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
372                 if (numVpd > 0) {
373                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
374                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
375                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
376                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
377                         }
378                         Pmin_t2[numPdGainsUsed] = (int16_t)
379                                 (Pmin_t2[numPdGainsUsed] / 2);
380                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
381                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
382                                 Pmax_t2[numPdGainsUsed] = 
383                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
384                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
385                         ar2317FillVpdTable(
386                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
387                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
388                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
389                                            );
390                         ar2317FillVpdTable(
391                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
392                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
393                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
394                                            );
395                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
396                                 VpdTable_I[numPdGainsUsed][kk] = 
397                                         interpolate_signed(
398                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
399                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
400                         }
401                         /* fill VpdTable_I for this pdGain */
402                         numPdGainsUsed++;
403                 }
404                 /* if this pdGain is used */
405         }
406
407         *pMinCalPower = Pmin_t2[0];
408         kk = 0; /* index for the final table */
409         for (ii = 0; ii < numPdGainsUsed; ii++) {
410                 if (ii == (numPdGainsUsed - 1))
411                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
412                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
413                 else 
414                         pPdGainBoundaries[ii] = (uint16_t)
415                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
416                 if (pPdGainBoundaries[ii] > 63) {
417                         HALDEBUG(ah, HAL_DEBUG_ANY,
418                             "%s: clamp pPdGainBoundaries[%d] %d\n",
419                            __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
420                         pPdGainBoundaries[ii] = 63;
421                 }
422
423                 /* Find starting index for this pdGain */
424                 if (ii == 0) 
425                         ss = 0; /* for the first pdGain, start from index 0 */
426                 else 
427                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
428                                 pdGainOverlap_t2;
429                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
430                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
431                 /*
432                  *-ve ss indicates need to extrapolate data below for this pdGain
433                  */
434                 while (ss < 0) {
435                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
436                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
437                         ss++;
438                 }
439
440                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
441                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
442                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
443
444                 while (ss < (int16_t)maxIndex)
445                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
446
447                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
448                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
449                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
450                 /*
451                  * for last gain, pdGainBoundary == Pmax_t2, so will 
452                  * have to extrapolate
453                  */
454                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
455                         while(ss < (int16_t)tgtIndex) {
456                                 tmpVal = (uint16_t)
457                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
458                                          (ss-maxIndex)*Vpd_step);
459                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
460                                         127 : tmpVal;
461                                 ss++;
462                         }
463                 }                               /* extrapolated above */
464         }                                       /* for all pdGainUsed */
465
466         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
467                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
468                 ii++;
469         }
470         while (kk < 128) {
471                 pPDADCValues[kk] = pPDADCValues[kk-1];
472                 kk++;
473         }
474
475         return numPdGainsUsed;
476 #undef VpdTable_L
477 #undef VpdTable_R
478 #undef VpdTable_I
479 }
480
481 static HAL_BOOL
482 ar2317SetPowerTable(struct ath_hal *ah,
483         int16_t *minPower, int16_t *maxPower,
484         const struct ieee80211_channel *chan, 
485         uint16_t *rfXpdGain)
486 {
487         struct ath_hal_5212 *ahp = AH5212(ah);
488         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
489         const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
490         uint16_t pdGainOverlap_t2;
491         int16_t minCalPower2317_t2;
492         uint16_t *pdadcValues = ahp->ah_pcdacTable;
493         uint16_t gainBoundaries[4];
494         uint32_t reg32, regoffset;
495         int i, numPdGainsUsed;
496 #ifndef AH_USE_INIPDGAIN
497         uint32_t tpcrg1;
498 #endif
499
500         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
501             __func__, chan->ic_freq, chan->ic_flags);
502
503         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
504                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
505         else if (IEEE80211_IS_CHAN_B(chan))
506                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
507         else {
508                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
509                 return AH_FALSE;
510         }
511
512         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
513                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
514     
515         numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
516                 chan->channel, pRawDataset, pdGainOverlap_t2,
517                 &minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
518         HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
519
520 #ifdef AH_USE_INIPDGAIN
521         /*
522          * Use pd_gains curve from eeprom; Atheros always uses
523          * the default curve from the ini file but some vendors
524          * (e.g. Zcomax) want to override this curve and not
525          * honoring their settings results in tx power 5dBm low.
526          */
527         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
528                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
529 #else
530         tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
531         tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
532                   | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
533         switch (numPdGainsUsed) {
534         case 3:
535                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
536                 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
537                 /* fall thru... */
538         case 2:
539                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
540                 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
541                 /* fall thru... */
542         case 1:
543                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
544                 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
545                 break;
546         }
547 #ifdef AH_DEBUG
548         if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
549                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
550                     "pd_gains (default 0x%x, calculated 0x%x)\n",
551                     __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
552 #endif
553         OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
554 #endif
555
556         /*
557          * Note the pdadc table may not start at 0 dBm power, could be
558          * negative or greater than 0.  Need to offset the power
559          * values by the amount of minPower for griffin
560          */
561         if (minCalPower2317_t2 != 0)
562                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
563         else
564                 ahp->ah_txPowerIndexOffset = 0;
565
566         /* Finally, write the power values into the baseband power table */
567         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
568         for (i = 0; i < 32; i++) {
569                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
570                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
571                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
572                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
573                 OS_REG_WRITE(ah, regoffset, reg32);
574                 regoffset += 4;
575         }
576
577         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
578                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
579                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
580                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
581                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
582                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
583
584         return AH_TRUE;
585 }
586
587 static int16_t
588 ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
589 {
590         uint32_t ii,jj;
591         uint16_t Pmin=0,numVpd;
592
593         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
594                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
595                 /* work backwards 'cause highest pdGain for lowest power */
596                 numVpd = data->pDataPerPDGain[jj].numVpd;
597                 if (numVpd > 0) {
598                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
599                         return(Pmin);
600                 }
601         }
602         return(Pmin);
603 }
604
605 static int16_t
606 ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
607 {
608         uint32_t ii;
609         uint16_t Pmax=0,numVpd;
610         uint16_t vpdmax;
611         
612         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
613                 /* work forwards cuase lowest pdGain for highest power */
614                 numVpd = data->pDataPerPDGain[ii].numVpd;
615                 if (numVpd > 0) {
616                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
617                         vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1];
618                         return(Pmax);
619                 }
620         }
621         return(Pmax);
622 }
623
624 static HAL_BOOL
625 ar2317GetChannelMaxMinPower(struct ath_hal *ah,
626         const struct ieee80211_channel *chan,
627         int16_t *maxPow, int16_t *minPow)
628 {
629         uint16_t freq = chan->ic_freq;          /* NB: never mapped */
630         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
631         const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
632         const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
633         uint16_t numChannels;
634         int totalD,totalF, totalMin,last, i;
635
636         *maxPow = 0;
637
638         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
639                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
640         else if (IEEE80211_IS_CHAN_B(chan))
641                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
642         else
643                 return(AH_FALSE);
644
645         numChannels = pRawDataset->numChannels;
646         data = pRawDataset->pDataPerChannel;
647         
648         /* Make sure the channel is in the range of the TP values 
649          *  (freq piers)
650          */
651         if (numChannels < 1)
652                 return(AH_FALSE);
653
654         if ((freq < data[0].channelValue) ||
655             (freq > data[numChannels-1].channelValue)) {
656                 if (freq < data[0].channelValue) {
657                         *maxPow = ar2317GetMaxPower(ah, &data[0]);
658                         *minPow = ar2317GetMinPower(ah, &data[0]);
659                         return(AH_TRUE);
660                 } else {
661                         *maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
662                         *minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
663                         return(AH_TRUE);
664                 }
665         }
666
667         /* Linearly interpolate the power value now */
668         for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
669              last = i++);
670         totalD = data[i].channelValue - data[last].channelValue;
671         if (totalD > 0) {
672                 totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
673                 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 
674                                      ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
675                 totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
676                 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
677                                      ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
678                 return(AH_TRUE);
679         } else {
680                 if (freq == data[i].channelValue) {
681                         *maxPow = ar2317GetMaxPower(ah, &data[i]);
682                         *minPow = ar2317GetMinPower(ah, &data[i]);
683                         return(AH_TRUE);
684                 } else
685                         return(AH_FALSE);
686         }
687 }
688
689 /*
690  * Free memory for analog bank scratch buffers
691  */
692 static void
693 ar2317RfDetach(struct ath_hal *ah)
694 {
695         struct ath_hal_5212 *ahp = AH5212(ah);
696
697         HALASSERT(ahp->ah_rfHal != AH_NULL);
698         ath_hal_free(ahp->ah_rfHal);
699         ahp->ah_rfHal = AH_NULL;
700 }
701
702 /*
703  * Allocate memory for analog bank scratch buffers
704  * Scratch Buffer will be reinitialized every reset so no need to zero now
705  */
706 static HAL_BOOL
707 ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
708 {
709         struct ath_hal_5212 *ahp = AH5212(ah);
710         struct ar2317State *priv;
711
712         HALASSERT(ah->ah_magic == AR5212_MAGIC);
713
714         HALASSERT(ahp->ah_rfHal == AH_NULL);
715         priv = ath_hal_malloc(sizeof(struct ar2317State));
716         if (priv == AH_NULL) {
717                 HALDEBUG(ah, HAL_DEBUG_ANY,
718                     "%s: cannot allocate private state\n", __func__);
719                 *status = HAL_ENOMEM;           /* XXX */
720                 return AH_FALSE;
721         }
722         priv->base.rfDetach             = ar2317RfDetach;
723         priv->base.writeRegs            = ar2317WriteRegs;
724         priv->base.getRfBank            = ar2317GetRfBank;
725         priv->base.setChannel           = ar2317SetChannel;
726         priv->base.setRfRegs            = ar2317SetRfRegs;
727         priv->base.setPowerTable        = ar2317SetPowerTable;
728         priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
729         priv->base.getNfAdjust          = ar5212GetNfAdjust;
730
731         ahp->ah_pcdacTable = priv->pcdacTable;
732         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
733         ahp->ah_rfHal = &priv->base;
734
735         return AH_TRUE;
736 }
737
738 static HAL_BOOL
739 ar2317Probe(struct ath_hal *ah)
740 {
741         return IS_2317(ah);
742 }
743 AH_RF(RF2317, ar2317Probe, ar2317RfAttach);