]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/ath/ath_hal/ar5212/ar2413.c
Import DTS files from Linux 5.0
[FreeBSD/FreeBSD.git] / sys / dev / ath / ath_hal / ar5212 / ar2413.c
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21 #include "opt_ah.h"
22
23 #include "ah.h"
24 #include "ah_internal.h"
25
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29
30 #include "ah_eeprom_v3.h"
31
32 #define AH_5212_2413
33 #include "ar5212/ar5212.ini"
34
35 #define N(a)    (sizeof(a)/sizeof(a[0]))
36
37 struct ar2413State {
38         RF_HAL_FUNCS    base;           /* public state, must be first */
39         uint16_t        pcdacTable[PWR_TABLE_SIZE_2413];
40
41         uint32_t        Bank1Data[N(ar5212Bank1_2413)];
42         uint32_t        Bank2Data[N(ar5212Bank2_2413)];
43         uint32_t        Bank3Data[N(ar5212Bank3_2413)];
44         uint32_t        Bank6Data[N(ar5212Bank6_2413)];
45         uint32_t        Bank7Data[N(ar5212Bank7_2413)];
46
47         /*
48          * Private state for reduced stack usage.
49          */
50         /* filled out Vpd table for all pdGains (chanL) */
51         uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
52                             [MAX_PWR_RANGE_IN_HALF_DB];
53         /* filled out Vpd table for all pdGains (chanR) */
54         uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
55                             [MAX_PWR_RANGE_IN_HALF_DB];
56         /* filled out Vpd table for all pdGains (interpolated) */
57         uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
58                             [MAX_PWR_RANGE_IN_HALF_DB];
59 };
60 #define AR2413(ah)      ((struct ar2413State *) AH5212(ah)->ah_rfHal)
61
62 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
63                 uint32_t numBits, uint32_t firstBit, uint32_t column);
64
65 static void
66 ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
67         int writes)
68 {
69         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
70         HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
71         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
72 }
73
74 /*
75  * Take the MHz channel value and set the Channel value
76  *
77  * ASSUMES: Writes enabled to analog bus
78  */
79 static HAL_BOOL
80 ar2413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
81 {
82         uint16_t freq = ath_hal_gethwchannel(ah, chan);
83         uint32_t channelSel  = 0;
84         uint32_t bModeSynth  = 0;
85         uint32_t aModeRefSel = 0;
86         uint32_t reg32       = 0;
87
88         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
89
90         if (freq < 4800) {
91                 uint32_t txctl;
92
93                 if (((freq - 2192) % 5) == 0) {
94                         channelSel = ((freq - 672) * 2 - 3040)/10;
95                         bModeSynth = 0;
96                 } else if (((freq - 2224) % 5) == 0) {
97                         channelSel = ((freq - 704) * 2 - 3040) / 10;
98                         bModeSynth = 1;
99                 } else {
100                         HALDEBUG(ah, HAL_DEBUG_ANY,
101                             "%s: invalid channel %u MHz\n",
102                             __func__, freq);
103                         return AH_FALSE;
104                 }
105
106                 channelSel = (channelSel << 2) & 0xff;
107                 channelSel = ath_hal_reverseBits(channelSel, 8);
108
109                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
110                 if (freq == 2484) {
111                         /* Enable channel spreading for channel 14 */
112                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
113                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
114                 } else {
115                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
116                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
117                 }
118         } else if (((freq % 5) == 2) && (freq <= 5435)) {
119                 freq = freq - 2; /* Align to even 5MHz raster */
120                 channelSel = ath_hal_reverseBits(
121                         (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
122                 aModeRefSel = ath_hal_reverseBits(0, 2);
123         } else if ((freq % 20) == 0 && freq >= 5120) {
124                 channelSel = ath_hal_reverseBits(
125                         ((freq - 4800) / 20 << 2), 8);
126                 aModeRefSel = ath_hal_reverseBits(3, 2);
127         } else if ((freq % 10) == 0) {
128                 channelSel = ath_hal_reverseBits(
129                         ((freq - 4800) / 10 << 1), 8);
130                 aModeRefSel = ath_hal_reverseBits(2, 2);
131         } else if ((freq % 5) == 0) {
132                 channelSel = ath_hal_reverseBits(
133                         (freq - 4800) / 5, 8);
134                 aModeRefSel = ath_hal_reverseBits(1, 2);
135         } else {
136                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
137                     __func__, freq);
138                 return AH_FALSE;
139         }
140
141         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
142                         (1 << 12) | 0x1;
143         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
144
145         reg32 >>= 8;
146         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
147
148         AH_PRIVATE(ah)->ah_curchan = chan;
149
150         return AH_TRUE;
151 }
152
153 /*
154  * Reads EEPROM header info from device structure and programs
155  * all rf registers
156  *
157  * REQUIRES: Access to the analog rf device
158  */
159 static HAL_BOOL
160 ar2413SetRfRegs(struct ath_hal *ah,
161         const struct ieee80211_channel *chan,
162         uint16_t modesIndex, uint16_t *rfXpdGain)
163 {
164 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
165         int i;                                                              \
166         for (i = 0; i < N(ar5212Bank##_ix##_2413); i++)                     \
167                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
168 } while (0)
169         struct ath_hal_5212 *ahp = AH5212(ah);
170         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
171         uint16_t ob2GHz = 0, db2GHz = 0;
172         struct ar2413State *priv = AR2413(ah);
173         int regWrites = 0;
174
175         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
176             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
177
178         HALASSERT(priv);
179
180         /* Setup rf parameters */
181         if (IEEE80211_IS_CHAN_B(chan)) {
182                 ob2GHz = ee->ee_obFor24;
183                 db2GHz = ee->ee_dbFor24;
184         } else {
185                 ob2GHz = ee->ee_obFor24g;
186                 db2GHz = ee->ee_dbFor24g;
187         }
188
189         /* Bank 1 Write */
190         RF_BANK_SETUP(priv, 1, 1);
191
192         /* Bank 2 Write */
193         RF_BANK_SETUP(priv, 2, modesIndex);
194
195         /* Bank 3 Write */
196         RF_BANK_SETUP(priv, 3, modesIndex);
197
198         /* Bank 6 Write */
199         RF_BANK_SETUP(priv, 6, modesIndex);
200
201         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 168, 0);
202         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 165, 0);
203
204         /* Bank 7 Setup */
205         RF_BANK_SETUP(priv, 7, modesIndex);
206
207         /* Write Analog registers */
208         HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
209         HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
210         HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
211         HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
212         HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
213
214         /* Now that we have reprogrammed rfgain value, clear the flag. */
215         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
216
217         return AH_TRUE;
218 #undef  RF_BANK_SETUP
219 }
220
221 /*
222  * Return a reference to the requested RF Bank.
223  */
224 static uint32_t *
225 ar2413GetRfBank(struct ath_hal *ah, int bank)
226 {
227         struct ar2413State *priv = AR2413(ah);
228
229         HALASSERT(priv != AH_NULL);
230         switch (bank) {
231         case 1: return priv->Bank1Data;
232         case 2: return priv->Bank2Data;
233         case 3: return priv->Bank3Data;
234         case 6: return priv->Bank6Data;
235         case 7: return priv->Bank7Data;
236         }
237         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
238             __func__, bank);
239         return AH_NULL;
240 }
241
242 /*
243  * Return indices surrounding the value in sorted integer lists.
244  *
245  * NB: the input list is assumed to be sorted in ascending order
246  */
247 static void
248 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
249                           uint32_t *vlo, uint32_t *vhi)
250 {
251         int16_t target = v;
252         const uint16_t *ep = lp+listSize;
253         const uint16_t *tp;
254
255         /*
256          * Check first and last elements for out-of-bounds conditions.
257          */
258         if (target < lp[0]) {
259                 *vlo = *vhi = 0;
260                 return;
261         }
262         if (target >= ep[-1]) {
263                 *vlo = *vhi = listSize - 1;
264                 return;
265         }
266
267         /* look for value being near or between 2 values in list */
268         for (tp = lp; tp < ep; tp++) {
269                 /*
270                  * If value is close to the current value of the list
271                  * then target is not between values, it is one of the values
272                  */
273                 if (*tp == target) {
274                         *vlo = *vhi = tp - (const uint16_t *) lp;
275                         return;
276                 }
277                 /*
278                  * Look for value being between current value and next value
279                  * if so return these 2 values
280                  */
281                 if (target < tp[1]) {
282                         *vlo = tp - (const uint16_t *) lp;
283                         *vhi = *vlo + 1;
284                         return;
285                 }
286         }
287 }
288
289 /*
290  * Fill the Vpdlist for indices Pmax-Pmin
291  */
292 static HAL_BOOL
293 ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
294                    const int16_t *pwrList, const uint16_t *VpdList,
295                    uint16_t numIntercepts, uint16_t retVpdList[][64])
296 {
297         uint16_t ii, jj, kk;
298         int16_t currPwr = (int16_t)(2*Pmin);
299         /* since Pmin is pwr*2 and pwrList is 4*pwr */
300         uint32_t  idxL, idxR;
301
302         ii = 0;
303         jj = 0;
304
305         if (numIntercepts < 2)
306                 return AH_FALSE;
307
308         while (ii <= (uint16_t)(Pmax - Pmin)) {
309                 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
310                                    numIntercepts, &(idxL), &(idxR));
311                 if (idxR < 1)
312                         idxR = 1;                       /* extrapolate below */
313                 if (idxL == (uint32_t)(numIntercepts - 1))
314                         idxL = numIntercepts - 2;       /* extrapolate above */
315                 if (pwrList[idxL] == pwrList[idxR])
316                         kk = VpdList[idxL];
317                 else
318                         kk = (uint16_t)
319                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
320                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
321                                  (pwrList[idxR] - pwrList[idxL]));
322                 retVpdList[pdGainIdx][ii] = kk;
323                 ii++;
324                 currPwr += 2;                           /* half dB steps */
325         }
326
327         return AH_TRUE;
328 }
329
330 /*
331  * Returns interpolated or the scaled up interpolated value
332  */
333 static int16_t
334 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
335         int16_t targetLeft, int16_t targetRight)
336 {
337         int16_t rv;
338
339         if (srcRight != srcLeft) {
340                 rv = ((target - srcLeft)*targetRight +
341                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
342         } else {
343                 rv = targetLeft;
344         }
345         return rv;
346 }
347
348 /*
349  * Uses the data points read from EEPROM to reconstruct the pdadc power table
350  * Called by ar2413SetPowerTable()
351  */
352 static int 
353 ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
354                 const RAW_DATA_STRUCT_2413 *pRawDataset,
355                 uint16_t pdGainOverlap_t2, 
356                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
357                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
358 {
359         struct ar2413State *priv = AR2413(ah);
360 #define VpdTable_L      priv->vpdTable_L
361 #define VpdTable_R      priv->vpdTable_R
362 #define VpdTable_I      priv->vpdTable_I
363         uint32_t ii, jj, kk;
364         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
365         uint32_t idxL, idxR;
366         uint32_t numPdGainsUsed = 0;
367         /* 
368          * If desired to support -ve power levels in future, just
369          * change pwr_I_0 to signed 5-bits.
370          */
371         int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
372         /* to accommodate -ve power levels later on. */
373         int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
374         /* to accommodate -ve power levels later on */
375         uint16_t numVpd = 0;
376         uint16_t Vpd_step;
377         int16_t tmpVal ; 
378         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
379
380         /* Get upper lower index */
381         GetLowerUpperIndex(channel, pRawDataset->pChannels,
382                                  pRawDataset->numChannels, &(idxL), &(idxR));
383
384         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
385                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
386                 /* work backwards 'cause highest pdGain for lowest power */
387                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
388                 if (numVpd > 0) {
389                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
390                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
391                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
392                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
393                         }
394                         Pmin_t2[numPdGainsUsed] = (int16_t)
395                                 (Pmin_t2[numPdGainsUsed] / 2);
396                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
397                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
398                                 Pmax_t2[numPdGainsUsed] = 
399                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
400                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
401                         ar2413FillVpdTable(
402                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
403                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
404                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
405                                            );
406                         ar2413FillVpdTable(
407                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
408                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
409                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
410                                            );
411                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
412                                 VpdTable_I[numPdGainsUsed][kk] = 
413                                         interpolate_signed(
414                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
415                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
416                         }
417                         /* fill VpdTable_I for this pdGain */
418                         numPdGainsUsed++;
419                 }
420                 /* if this pdGain is used */
421         }
422
423         *pMinCalPower = Pmin_t2[0];
424         kk = 0; /* index for the final table */
425         for (ii = 0; ii < numPdGainsUsed; ii++) {
426                 if (ii == (numPdGainsUsed - 1))
427                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
428                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
429                 else 
430                         pPdGainBoundaries[ii] = (uint16_t)
431                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
432                 if (pPdGainBoundaries[ii] > 63) {
433                         HALDEBUG(ah, HAL_DEBUG_ANY,
434                             "%s: clamp pPdGainBoundaries[%d] %d\n",
435                             __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
436                         pPdGainBoundaries[ii] = 63;
437                 }
438
439                 /* Find starting index for this pdGain */
440                 if (ii == 0) 
441                         ss = 0; /* for the first pdGain, start from index 0 */
442                 else 
443                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
444                                 pdGainOverlap_t2;
445                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
446                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
447                 /*
448                  *-ve ss indicates need to extrapolate data below for this pdGain
449                  */
450                 while (ss < 0) {
451                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
452                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
453                         ss++;
454                 }
455
456                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
457                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
458                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
459
460                 while (ss < (int16_t)maxIndex)
461                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
462
463                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
464                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
465                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
466                 /*
467                  * for last gain, pdGainBoundary == Pmax_t2, so will 
468                  * have to extrapolate
469                  */
470                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
471                         while(ss < (int16_t)tgtIndex) {
472                                 tmpVal = (uint16_t)
473                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
474                                          (ss-maxIndex)*Vpd_step);
475                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
476                                         127 : tmpVal;
477                                 ss++;
478                         }
479                 }                               /* extrapolated above */
480         }                                       /* for all pdGainUsed */
481
482         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
483                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
484                 ii++;
485         }
486         while (kk < 128) {
487                 pPDADCValues[kk] = pPDADCValues[kk-1];
488                 kk++;
489         }
490
491         return numPdGainsUsed;
492 #undef VpdTable_L
493 #undef VpdTable_R
494 #undef VpdTable_I
495 }
496
497 static HAL_BOOL
498 ar2413SetPowerTable(struct ath_hal *ah,
499         int16_t *minPower, int16_t *maxPower,
500         const struct ieee80211_channel *chan, 
501         uint16_t *rfXpdGain)
502 {
503         uint16_t freq = ath_hal_gethwchannel(ah, chan);
504         struct ath_hal_5212 *ahp = AH5212(ah);
505         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
506         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
507         uint16_t pdGainOverlap_t2;
508         int16_t minCalPower2413_t2;
509         uint16_t *pdadcValues = ahp->ah_pcdacTable;
510         uint16_t gainBoundaries[4];
511         uint32_t reg32, regoffset;
512         int i, numPdGainsUsed;
513 #ifndef AH_USE_INIPDGAIN
514         uint32_t tpcrg1;
515 #endif
516
517         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
518             __func__, freq, chan->ic_flags);
519
520         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
521                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
522         else if (IEEE80211_IS_CHAN_B(chan))
523                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
524         else {
525                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
526                 return AH_FALSE;
527         }
528
529         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
530                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
531     
532         numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
533                 freq, pRawDataset, pdGainOverlap_t2,
534                 &minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
535         HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
536
537 #ifdef AH_USE_INIPDGAIN
538         /*
539          * Use pd_gains curve from eeprom; Atheros always uses
540          * the default curve from the ini file but some vendors
541          * (e.g. Zcomax) want to override this curve and not
542          * honoring their settings results in tx power 5dBm low.
543          */
544         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
545                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
546 #else
547         tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
548         tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
549                   | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
550         switch (numPdGainsUsed) {
551         case 3:
552                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
553                 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
554                 /* fall thru... */
555         case 2:
556                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
557                 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
558                 /* fall thru... */
559         case 1:
560                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
561                 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
562                 break;
563         }
564 #ifdef AH_DEBUG
565         if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
566                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
567                     "pd_gains (default 0x%x, calculated 0x%x)\n",
568                     __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
569 #endif
570         OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
571 #endif
572
573         /*
574          * Note the pdadc table may not start at 0 dBm power, could be
575          * negative or greater than 0.  Need to offset the power
576          * values by the amount of minPower for griffin
577          */
578         if (minCalPower2413_t2 != 0)
579                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
580         else
581                 ahp->ah_txPowerIndexOffset = 0;
582
583         /* Finally, write the power values into the baseband power table */
584         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
585         for (i = 0; i < 32; i++) {
586                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
587                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
588                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
589                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
590                 OS_REG_WRITE(ah, regoffset, reg32);
591                 regoffset += 4;
592         }
593
594         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
595                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
596                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
597                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
598                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
599                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
600
601         return AH_TRUE;
602 }
603
604 static int16_t
605 ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
606 {
607         uint32_t ii,jj;
608         uint16_t Pmin=0,numVpd;
609
610         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
611                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
612                 /* work backwards 'cause highest pdGain for lowest power */
613                 numVpd = data->pDataPerPDGain[jj].numVpd;
614                 if (numVpd > 0) {
615                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
616                         return(Pmin);
617                 }
618         }
619         return(Pmin);
620 }
621
622 static int16_t
623 ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
624 {
625         uint32_t ii;
626         uint16_t Pmax=0,numVpd;
627         
628         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
629                 /* work forwards cuase lowest pdGain for highest power */
630                 numVpd = data->pDataPerPDGain[ii].numVpd;
631                 if (numVpd > 0) {
632                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
633                         return(Pmax);
634                 }
635         }
636         return(Pmax);
637 }
638
639 static HAL_BOOL
640 ar2413GetChannelMaxMinPower(struct ath_hal *ah,
641         const struct ieee80211_channel *chan,
642         int16_t *maxPow, int16_t *minPow)
643 {
644         uint16_t freq = chan->ic_freq;          /* NB: never mapped */
645         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
646         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
647         const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
648         uint16_t numChannels;
649         int totalD,totalF, totalMin,last, i;
650
651         *maxPow = 0;
652
653         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
654                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
655         else if (IEEE80211_IS_CHAN_B(chan))
656                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
657         else
658                 return(AH_FALSE);
659
660         numChannels = pRawDataset->numChannels;
661         data = pRawDataset->pDataPerChannel;
662         
663         /* Make sure the channel is in the range of the TP values 
664          *  (freq piers)
665          */
666         if (numChannels < 1)
667                 return(AH_FALSE);
668
669         if ((freq < data[0].channelValue) ||
670             (freq > data[numChannels-1].channelValue)) {
671                 if (freq < data[0].channelValue) {
672                         *maxPow = ar2413GetMaxPower(ah, &data[0]);
673                         *minPow = ar2413GetMinPower(ah, &data[0]);
674                         return(AH_TRUE);
675                 } else {
676                         *maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
677                         *minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
678                         return(AH_TRUE);
679                 }
680         }
681
682         /* Linearly interpolate the power value now */
683         for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
684              last = i++);
685         totalD = data[i].channelValue - data[last].channelValue;
686         if (totalD > 0) {
687                 totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
688                 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 
689                                      ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
690                 totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
691                 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
692                                      ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
693                 return(AH_TRUE);
694         } else {
695                 if (freq == data[i].channelValue) {
696                         *maxPow = ar2413GetMaxPower(ah, &data[i]);
697                         *minPow = ar2413GetMinPower(ah, &data[i]);
698                         return(AH_TRUE);
699                 } else
700                         return(AH_FALSE);
701         }
702 }
703
704 /*
705  * Free memory for analog bank scratch buffers
706  */
707 static void
708 ar2413RfDetach(struct ath_hal *ah)
709 {
710         struct ath_hal_5212 *ahp = AH5212(ah);
711
712         HALASSERT(ahp->ah_rfHal != AH_NULL);
713         ath_hal_free(ahp->ah_rfHal);
714         ahp->ah_rfHal = AH_NULL;
715 }
716
717 /*
718  * Allocate memory for analog bank scratch buffers
719  * Scratch Buffer will be reinitialized every reset so no need to zero now
720  */
721 static HAL_BOOL
722 ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
723 {
724         struct ath_hal_5212 *ahp = AH5212(ah);
725         struct ar2413State *priv;
726
727         HALASSERT(ah->ah_magic == AR5212_MAGIC);
728
729         HALASSERT(ahp->ah_rfHal == AH_NULL);
730         priv = ath_hal_malloc(sizeof(struct ar2413State));
731         if (priv == AH_NULL) {
732                 HALDEBUG(ah, HAL_DEBUG_ANY,
733                     "%s: cannot allocate private state\n", __func__);
734                 *status = HAL_ENOMEM;           /* XXX */
735                 return AH_FALSE;
736         }
737         priv->base.rfDetach             = ar2413RfDetach;
738         priv->base.writeRegs            = ar2413WriteRegs;
739         priv->base.getRfBank            = ar2413GetRfBank;
740         priv->base.setChannel           = ar2413SetChannel;
741         priv->base.setRfRegs            = ar2413SetRfRegs;
742         priv->base.setPowerTable        = ar2413SetPowerTable;
743         priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
744         priv->base.getNfAdjust          = ar5212GetNfAdjust;
745
746         ahp->ah_pcdacTable = priv->pcdacTable;
747         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
748         ahp->ah_rfHal = &priv->base;
749
750         return AH_TRUE;
751 }
752
753 static HAL_BOOL
754 ar2413Probe(struct ath_hal *ah)
755 {
756         return IS_2413(ah);
757 }
758 AH_RF(RF2413, ar2413Probe, ar2413RfAttach);