]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/ath/ath_hal/ar9002/ar9287_reset.c
Update to version 3.1.3
[FreeBSD/FreeBSD.git] / sys / dev / ath / ath_hal / ar9002 / ar9287_reset.c
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21
22 #include "opt_ah.h"
23
24 #include "ah.h"
25 #include "ah_internal.h"
26 #include "ah_devid.h"
27
28 #include "ah_eeprom_v14.h"
29 #include "ah_eeprom_9287.h"
30
31 #include "ar5416/ar5416.h"
32 #include "ar5416/ar5416reg.h"
33 #include "ar5416/ar5416phy.h"
34
35 #include "ar9002/ar9287phy.h"
36 #include "ar9002/ar9287an.h"
37
38 #include "ar9002/ar9287_olc.h"
39 #include "ar9002/ar9287_reset.h"
40
41 /*
42  * Set the TX power calibration table per-chain.
43  *
44  * This only supports open-loop TX power control for the AR9287.
45  */
46 static void
47 ar9287SetPowerCalTable(struct ath_hal *ah,
48     const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
49 {
50         struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
51         uint8_t *pCalBChans = NULL;
52         uint16_t pdGainOverlap_t2;
53         uint16_t numPiers = 0, i;
54         uint16_t numXpdGain, xpdMask;
55         uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
56         uint32_t regChainOffset;
57         HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
58         struct ar9287_eeprom *pEepData = &ee->ee_base;
59
60         xpdMask = pEepData->modalHeader.xpdGain;
61
62         if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
63             AR9287_EEP_MINOR_VER_2)
64                 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
65         else
66                 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
67                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
68
69         /* Note: Kiwi should only be 2ghz.. */
70         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
71                 pCalBChans = pEepData->calFreqPier2G;
72                 numPiers = AR9287_NUM_2G_CAL_PIERS;
73                 pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
74                 AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
75         }
76         numXpdGain = 0;
77
78         /* Calculate the value of xpdgains from the xpdGain Mask */
79         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
80                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
81                         if (numXpdGain >= AR5416_NUM_PD_GAINS)
82                                 break;
83                         xpdGainValues[numXpdGain] =
84                                 (uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
85                         numXpdGain++;
86                 }
87         }
88
89         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
90                       (numXpdGain - 1) & 0x3);
91         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
92                       xpdGainValues[0]);
93         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
94                       xpdGainValues[1]);
95         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
96                       xpdGainValues[2]);
97
98         for (i = 0; i < AR9287_MAX_CHAINS; i++) {
99                 regChainOffset = i * 0x1000;
100
101                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
102                         int8_t txPower;
103                         pRawDatasetOpenLoop =
104                         (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
105                                 ar9287olcGetTxGainIndex(ah, chan,
106                                     pRawDatasetOpenLoop,
107                                     pCalBChans, numPiers,
108                                     &txPower);
109                                 ar9287olcSetPDADCs(ah, txPower, i);
110                 }
111         }
112
113         *pTxPowerIndexOffset = 0;
114 }
115
116
117 /* XXX hard-coded values? */
118 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
119
120 /*
121  * ar9287SetPowerPerRateTable
122  *
123  * Sets the transmit power in the baseband for the given
124  * operating channel and mode.
125  *
126  * This is like the v14 EEPROM table except the 5GHz code.
127  */
128 static HAL_BOOL
129 ar9287SetPowerPerRateTable(struct ath_hal *ah,
130     struct ar9287_eeprom *pEepData,
131     const struct ieee80211_channel *chan,
132     int16_t *ratesArray, uint16_t cfgCtl,
133     uint16_t AntennaReduction, 
134     uint16_t twiceMaxRegulatoryPower,
135     uint16_t powerLimit)
136 {
137 #define N(a)    (sizeof(a)/sizeof(a[0]))
138 /* Local defines to distinguish between extension and control CTL's */
139 #define EXT_ADDITIVE (0x8000)
140 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
141 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
142 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
143
144         uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
145         int i;
146         int16_t  twiceLargestAntenna;
147         struct cal_ctl_data_ar9287 *rep;
148         CAL_TARGET_POWER_LEG targetPowerOfdm;
149         CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
150         CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
151         CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
152         CAL_TARGET_POWER_HT  targetPowerHt20;
153         CAL_TARGET_POWER_HT  targetPowerHt40 = {0, {0, 0, 0, 0}};
154         int16_t scaledPower, minCtlPower;
155
156 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
157         static const uint16_t ctlModesFor11g[] = {
158            CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
159         };
160         const uint16_t *pCtlMode;
161         uint16_t numCtlModes, ctlMode, freq;
162         CHAN_CENTERS centers;
163
164         ar5416GetChannelCenters(ah,  chan, &centers);
165
166         /* Compute TxPower reduction due to Antenna Gain */
167
168         twiceLargestAntenna = AH_MAX(
169             pEepData->modalHeader.antennaGainCh[0],
170             pEepData->modalHeader.antennaGainCh[1]);
171
172         twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
173
174         /* XXX setup for 5212 use (really used?) */
175         ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
176
177         /* 
178          * scaledPower is the minimum of the user input power level and
179          * the regulatory allowed power level
180          */
181         scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
182
183         /* Reduce scaled Power by number of chains active to get to per chain tx power level */
184         /* TODO: better value than these? */
185         switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
186         case 1:
187                 break;
188         case 2:
189                 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
190                 break;
191         default:
192                 return AH_FALSE; /* Unsupported number of chains */
193         }
194
195         scaledPower = AH_MAX(0, scaledPower);
196
197         /* Get target powers from EEPROM - our baseline for TX Power */
198         /* XXX assume channel is 2ghz */
199         if (1) {
200                 /* Setup for CTL modes */
201                 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
202                 pCtlMode = ctlModesFor11g;
203
204                 ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
205                                 AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
206                 ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
207                                 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
208                 ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
209                                 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
210
211                 if (IEEE80211_IS_CHAN_HT40(chan)) {
212                         numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
213
214                         ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
215                                 AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
216                         /* Get target powers for extension channels */
217                         ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
218                                 AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
219                         ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
220                                 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
221                 }
222         }
223
224         /*
225          * For MIMO, need to apply regulatory caps individually across dynamically
226          * running modes: CCK, OFDM, HT20, HT40
227          *
228          * The outer loop walks through each possible applicable runtime mode.
229          * The inner loop walks through each ctlIndex entry in EEPROM.
230          * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
231          *
232          */
233         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
234                 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
235                     (pCtlMode[ctlMode] == CTL_2GHT40);
236                 if (isHt40CtlMode) {
237                         freq = centers.ctl_center;
238                 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
239                         freq = centers.ext_center;
240                 } else {
241                         freq = centers.ctl_center;
242                 }
243
244                 /* walk through each CTL index stored in EEPROM */
245                 for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
246                         uint16_t twiceMinEdgePower;
247
248                         /* compare test group from regulatory channel list with test mode from pCtlMode list */
249                         if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
250                                 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == 
251                                  ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
252                                 rep = &(pEepData->ctlData[i]);
253                                 twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
254                                                         rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
255                                                         IEEE80211_IS_CHAN_2GHZ(chan));
256                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
257                                         /* Find the minimum of all CTL edge powers that apply to this channel */
258                                         twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
259                                 } else {
260                                         /* specific */
261                                         twiceMaxEdgePower = twiceMinEdgePower;
262                                         break;
263                                 }
264                         }
265                 }
266                 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
267                 /* Apply ctl mode to correct target power set */
268                 switch(pCtlMode[ctlMode]) {
269                 case CTL_11B:
270                         for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
271                                 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
272                         }
273                         break;
274                 case CTL_11A:
275                 case CTL_11G:
276                         for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
277                                 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
278                         }
279                         break;
280                 case CTL_5GHT20:
281                 case CTL_2GHT20:
282                         for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
283                                 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
284                         }
285                         break;
286                 case CTL_11B_EXT:
287                         targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
288                         break;
289                 case CTL_11A_EXT:
290                 case CTL_11G_EXT:
291                         targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
292                         break;
293                 case CTL_5GHT40:
294                 case CTL_2GHT40:
295                         for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
296                                 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
297                         }
298                         break;
299                 default:
300                         return AH_FALSE;
301                         break;
302                 }
303         } /* end ctl mode checking */
304
305         /* Set rates Array from collected data */
306         ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
307             &targetPowerCck,
308             &targetPowerCckExt,
309             &targetPowerOfdm,
310             &targetPowerOfdmExt,
311             &targetPowerHt20,
312             &targetPowerHt40);
313         return AH_TRUE;
314 #undef EXT_ADDITIVE
315 #undef CTL_11A_EXT
316 #undef CTL_11G_EXT
317 #undef CTL_11B_EXT
318 #undef SUB_NUM_CTL_MODES_AT_5G_40
319 #undef SUB_NUM_CTL_MODES_AT_2G_40
320 #undef N
321 }
322
323 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
324
325 /*
326  * This is based off of the AR5416/AR9285 code and likely could
327  * be unified in the future.
328  */
329 HAL_BOOL
330 ar9287SetTransmitPower(struct ath_hal *ah,
331         const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
332 {
333 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
334 #define N(a)        (sizeof (a) / sizeof (a[0]))
335
336         const struct modal_eep_ar9287_header *pModal;
337         struct ath_hal_5212 *ahp = AH5212(ah);
338         int16_t      txPowerIndexOffset = 0;
339         int              i;
340
341         uint16_t            cfgCtl;
342         uint16_t            powerLimit;
343         uint16_t            twiceAntennaReduction;
344         uint16_t            twiceMaxRegulatoryPower;
345         int16_t      maxPower;
346         HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
347         struct ar9287_eeprom *pEepData = &ee->ee_base;
348
349         AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
350
351         /* Setup info for the actual eeprom */
352         OS_MEMZERO(AH5416(ah)->ah_ratesArray,
353           sizeof(AH5416(ah)->ah_ratesArray));
354         cfgCtl = ath_hal_getctl(ah, chan);
355         powerLimit = chan->ic_maxregpower * 2;
356         twiceAntennaReduction = chan->ic_maxantgain;
357         twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER,
358             AH_PRIVATE(ah)->ah_powerLimit);
359         pModal = &pEepData->modalHeader;
360         HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
361             __func__,chan->ic_freq, cfgCtl );
362
363         /* XXX Assume Minor is v2 or later */
364         AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
365
366         /* Fetch per-rate power table for the given channel */
367         if (! ar9287SetPowerPerRateTable(ah, pEepData,  chan,
368             &AH5416(ah)->ah_ratesArray[0],
369             cfgCtl,
370             twiceAntennaReduction,
371             twiceMaxRegulatoryPower, powerLimit)) {
372                 HALDEBUG(ah, HAL_DEBUG_ANY,
373                     "%s: unable to set tx power per rate table\n", __func__);
374                 return AH_FALSE;
375         }
376
377         /* Set TX power control calibration curves for each TX chain */
378         ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);
379
380         /* Calculate maximum power level */
381         maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
382             AH5416(ah)->ah_ratesArray[rateHt20_0]);
383         maxPower = AH_MAX(maxPower,
384             AH5416(ah)->ah_ratesArray[rate1l]);
385
386         if (IEEE80211_IS_CHAN_HT40(chan))
387                 maxPower = AH_MAX(maxPower,
388                     AH5416(ah)->ah_ratesArray[rateHt40_0]);
389
390         ahp->ah_tx6PowerInHalfDbm = maxPower;
391         AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
392         ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
393
394         /*
395          * txPowerIndexOffset is set by the SetPowerTable() call -
396          *  adjust the rate table (0 offset if rates EEPROM not loaded)
397          */
398         /* XXX what about the pwrTableOffset? */
399         for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
400                 AH5416(ah)->ah_ratesArray[i] =
401                     (int16_t)(txPowerIndexOffset +
402                       AH5416(ah)->ah_ratesArray[i]);
403                 /* -5 dBm offset for Merlin and later; this includes Kiwi */
404                 AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
405                 if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
406                         AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
407                 if (AH5416(ah)->ah_ratesArray[i] < 0)
408                         AH5416(ah)->ah_ratesArray[i] = 0;
409         }
410
411 #ifdef AH_EEPROM_DUMP
412         ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
413 #endif
414
415         /*
416          * Adjust the HT40 power to meet the correct target TX power
417          * for 40MHz mode, based on TX power curves that are established
418          * for 20MHz mode.
419          *
420          * XXX handle overflow/too high power level?
421          */
422         if (IEEE80211_IS_CHAN_HT40(chan)) {
423                 AH5416(ah)->ah_ratesArray[rateHt40_0] +=
424                   AH5416(ah)->ah_ht40PowerIncForPdadc;
425                 AH5416(ah)->ah_ratesArray[rateHt40_1] +=
426                   AH5416(ah)->ah_ht40PowerIncForPdadc;
427                 AH5416(ah)->ah_ratesArray[rateHt40_2] +=
428                   AH5416(ah)->ah_ht40PowerIncForPdadc;
429                 AH5416(ah)->ah_ratesArray[rateHt40_3] +=
430                   AH5416(ah)->ah_ht40PowerIncForPdadc;
431                 AH5416(ah)->ah_ratesArray[rateHt40_4] +=
432                   AH5416(ah)->ah_ht40PowerIncForPdadc;
433                 AH5416(ah)->ah_ratesArray[rateHt40_5] +=
434                   AH5416(ah)->ah_ht40PowerIncForPdadc;
435                 AH5416(ah)->ah_ratesArray[rateHt40_6] +=
436                   AH5416(ah)->ah_ht40PowerIncForPdadc;
437                 AH5416(ah)->ah_ratesArray[rateHt40_7] +=
438                   AH5416(ah)->ah_ht40PowerIncForPdadc;
439         }
440
441         /* Write the TX power rate registers */
442         ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
443
444         return AH_TRUE;
445 #undef POW_SM
446 #undef N
447 }
448
449 /*
450  * Read EEPROM header info and program the device for correct operation
451  * given the channel value.
452  */
453 HAL_BOOL
454 ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
455 {
456         const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
457         const struct ar9287_eeprom *eep = &ee->ee_base;
458         const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
459         uint16_t antWrites[AR9287_ANT_16S];
460         uint32_t regChainOffset, regval;
461         uint8_t txRxAttenLocal;
462         int i, j, offset_num;
463
464         pModal = &eep->modalHeader;
465
466         antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
467         antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
468         antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
469         antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
470         antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
471         antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
472         antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4)  & 0xF);
473         antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);
474
475         offset_num = 8;
476
477         for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
478                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
479                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
480                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
481                 antWrites[j++] = 0;
482                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
483                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
484                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
485                 antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
486         }
487
488         OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
489
490         for (i = 0; i < AR9287_MAX_CHAINS; i++) {
491                 regChainOffset = i * 0x1000;
492
493                 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
494                           pModal->antCtrlChain[i]);
495
496                 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
497                           (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)
498                               + regChainOffset)
499                            & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
500                                AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
501                           SM(pModal->iqCalICh[i],
502                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
503                           SM(pModal->iqCalQCh[i],
504                              AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
505
506                 txRxAttenLocal = pModal->txRxAttenCh[i];
507
508                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
509                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
510                               pModal->bswMargin[i]);
511                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
512                               AR_PHY_GAIN_2GHZ_XATTEN1_DB,
513                               pModal->bswAtten[i]);
514                 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
515                               AR9280_PHY_RXGAIN_TXRX_ATTEN,
516                               txRxAttenLocal);
517                 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
518                               AR9280_PHY_RXGAIN_TXRX_MARGIN,
519                               pModal->rxTxMarginCh[i]);
520         }
521
522         if (IEEE80211_IS_CHAN_HT40(chan))
523                 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
524                               AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
525         else
526                 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
527                               AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
528
529         OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
530                       AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
531
532         OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
533                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
534                   | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
535                   | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
536                   | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
537
538         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
539                       AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
540
541         OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
542                       AR9280_PHY_CCA_THRESH62, pModal->thresh62);
543         OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
544                       AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
545
546         regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
547         regval &= ~(AR9287_AN_RF2G3_DB1 |
548                     AR9287_AN_RF2G3_DB2 |
549                     AR9287_AN_RF2G3_OB_CCK |
550                     AR9287_AN_RF2G3_OB_PSK |
551                     AR9287_AN_RF2G3_OB_QAM |
552                     AR9287_AN_RF2G3_OB_PAL_OFF);
553         regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
554                    SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
555                    SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
556                    SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
557                    SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
558                    SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
559
560         /* Analog write - requires a 100usec delay */
561         OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
562
563         regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
564         regval &= ~(AR9287_AN_RF2G3_DB1 |
565                     AR9287_AN_RF2G3_DB2 |
566                     AR9287_AN_RF2G3_OB_CCK |
567                     AR9287_AN_RF2G3_OB_PSK |
568                     AR9287_AN_RF2G3_OB_QAM |
569                     AR9287_AN_RF2G3_OB_PAL_OFF);
570         regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
571                    SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
572                    SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
573                    SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
574                    SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
575                    SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
576
577         OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
578
579         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
580             AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
581         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
582             AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
583
584         OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
585             AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
586
587         return AH_TRUE;
588 }