]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/ath/ath_hal/ar9002/ar9287_reset.c
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / sys / dev / ath / ath_hal / ar9002 / ar9287_reset.c
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  * $FreeBSD$
20  */
21
22 #include "opt_ah.h"
23
24 #include "ah.h"
25 #include "ah_internal.h"
26 #include "ah_devid.h"
27
28 #include "ah_eeprom_v14.h"
29 #include "ah_eeprom_9287.h"
30
31 #include "ar5416/ar5416.h"
32 #include "ar5416/ar5416reg.h"
33 #include "ar5416/ar5416phy.h"
34
35 #include "ar9002/ar9287phy.h"
36 #include "ar9002/ar9287an.h"
37
38 #include "ar9002/ar9287_olc.h"
39 #include "ar9002/ar9287_reset.h"
40
41 /*
42  * Set the TX power calibration table per-chain.
43  *
44  * This only supports open-loop TX power control for the AR9287.
45  */
46 static void
47 ar9287SetPowerCalTable(struct ath_hal *ah,
48     const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
49 {
50         struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
51         uint8_t *pCalBChans = NULL;
52         uint16_t pdGainOverlap_t2;
53         uint16_t numPiers = 0, i;
54         uint16_t numXpdGain, xpdMask;
55         uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
56         uint32_t regChainOffset;
57         HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
58         struct ar9287_eeprom *pEepData = &ee->ee_base;
59
60         xpdMask = pEepData->modalHeader.xpdGain;
61
62         if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
63             AR9287_EEP_MINOR_VER_2)
64                 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
65         else
66                 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
67                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
68
69         /* Note: Kiwi should only be 2ghz.. */
70         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
71                 pCalBChans = pEepData->calFreqPier2G;
72                 numPiers = AR9287_NUM_2G_CAL_PIERS;
73                 pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
74                 AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
75         }
76         numXpdGain = 0;
77
78         /* Calculate the value of xpdgains from the xpdGain Mask */
79         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
80                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
81                         if (numXpdGain >= AR5416_NUM_PD_GAINS)
82                                 break;
83                         xpdGainValues[numXpdGain] =
84                                 (uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
85                         numXpdGain++;
86                 }
87         }
88
89         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
90                       (numXpdGain - 1) & 0x3);
91         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
92                       xpdGainValues[0]);
93         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
94                       xpdGainValues[1]);
95         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
96                       xpdGainValues[2]);
97
98         for (i = 0; i < AR9287_MAX_CHAINS; i++) {
99                 regChainOffset = i * 0x1000;
100
101                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
102                         int8_t txPower;
103                         pRawDatasetOpenLoop =
104                         (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
105                                 ar9287olcGetTxGainIndex(ah, chan,
106                                     pRawDatasetOpenLoop,
107                                     pCalBChans, numPiers,
108                                     &txPower);
109                                 ar9287olcSetPDADCs(ah, txPower, i);
110                 }
111         }
112
113         *pTxPowerIndexOffset = 0;
114 }
115
116 /* XXX hard-coded values? */
117 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
118
119 /*
120  * ar9287SetPowerPerRateTable
121  *
122  * Sets the transmit power in the baseband for the given
123  * operating channel and mode.
124  *
125  * This is like the v14 EEPROM table except the 5GHz code.
126  */
127 static HAL_BOOL
128 ar9287SetPowerPerRateTable(struct ath_hal *ah,
129     struct ar9287_eeprom *pEepData,
130     const struct ieee80211_channel *chan,
131     int16_t *ratesArray, uint16_t cfgCtl,
132     uint16_t AntennaReduction, 
133     uint16_t twiceMaxRegulatoryPower,
134     uint16_t powerLimit)
135 {
136 #define N(a)    (sizeof(a)/sizeof(a[0]))
137 /* Local defines to distinguish between extension and control CTL's */
138 #define EXT_ADDITIVE (0x8000)
139 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
140 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
141 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
142
143         uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
144         int i;
145         int16_t  twiceLargestAntenna;
146         struct cal_ctl_data_ar9287 *rep;
147         CAL_TARGET_POWER_LEG targetPowerOfdm;
148         CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
149         CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
150         CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
151         CAL_TARGET_POWER_HT  targetPowerHt20;
152         CAL_TARGET_POWER_HT  targetPowerHt40 = {0, {0, 0, 0, 0}};
153         int16_t scaledPower, minCtlPower;
154
155 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
156         static const uint16_t ctlModesFor11g[] = {
157            CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
158         };
159         const uint16_t *pCtlMode;
160         uint16_t numCtlModes, ctlMode, freq;
161         CHAN_CENTERS centers;
162
163         ar5416GetChannelCenters(ah,  chan, &centers);
164
165         /* Compute TxPower reduction due to Antenna Gain */
166
167         twiceLargestAntenna = AH_MAX(
168             pEepData->modalHeader.antennaGainCh[0],
169             pEepData->modalHeader.antennaGainCh[1]);
170
171         twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
172
173         /* XXX setup for 5212 use (really used?) */
174         ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
175
176         /* 
177          * scaledPower is the minimum of the user input power level and
178          * the regulatory allowed power level
179          */
180         scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
181
182         /* Reduce scaled Power by number of chains active to get to per chain tx power level */
183         /* TODO: better value than these? */
184         switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
185         case 1:
186                 break;
187         case 2:
188                 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
189                 break;
190         default:
191                 return AH_FALSE; /* Unsupported number of chains */
192         }
193
194         scaledPower = AH_MAX(0, scaledPower);
195
196         /* Get target powers from EEPROM - our baseline for TX Power */
197         /* XXX assume channel is 2ghz */
198         if (1) {
199                 /* Setup for CTL modes */
200                 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
201                 pCtlMode = ctlModesFor11g;
202
203                 ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
204                                 AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
205                 ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
206                                 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
207                 ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
208                                 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
209
210                 if (IEEE80211_IS_CHAN_HT40(chan)) {
211                         numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
212
213                         ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
214                                 AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
215                         /* Get target powers for extension channels */
216                         ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
217                                 AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
218                         ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
219                                 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
220                 }
221         }
222
223         /*
224          * For MIMO, need to apply regulatory caps individually across dynamically
225          * running modes: CCK, OFDM, HT20, HT40
226          *
227          * The outer loop walks through each possible applicable runtime mode.
228          * The inner loop walks through each ctlIndex entry in EEPROM.
229          * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
230          *
231          */
232         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
233                 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
234                     (pCtlMode[ctlMode] == CTL_2GHT40);
235                 if (isHt40CtlMode) {
236                         freq = centers.ctl_center;
237                 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
238                         freq = centers.ext_center;
239                 } else {
240                         freq = centers.ctl_center;
241                 }
242
243                 /* walk through each CTL index stored in EEPROM */
244                 for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
245                         uint16_t twiceMinEdgePower;
246
247                         /* compare test group from regulatory channel list with test mode from pCtlMode list */
248                         if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
249                                 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == 
250                                  ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
251                                 rep = &(pEepData->ctlData[i]);
252                                 twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
253                                                         rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
254                                                         IEEE80211_IS_CHAN_2GHZ(chan));
255                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
256                                         /* Find the minimum of all CTL edge powers that apply to this channel */
257                                         twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
258                                 } else {
259                                         /* specific */
260                                         twiceMaxEdgePower = twiceMinEdgePower;
261                                         break;
262                                 }
263                         }
264                 }
265                 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
266                 /* Apply ctl mode to correct target power set */
267                 switch(pCtlMode[ctlMode]) {
268                 case CTL_11B:
269                         for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
270                                 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
271                         }
272                         break;
273                 case CTL_11A:
274                 case CTL_11G:
275                         for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
276                                 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
277                         }
278                         break;
279                 case CTL_5GHT20:
280                 case CTL_2GHT20:
281                         for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
282                                 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
283                         }
284                         break;
285                 case CTL_11B_EXT:
286                         targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
287                         break;
288                 case CTL_11A_EXT:
289                 case CTL_11G_EXT:
290                         targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
291                         break;
292                 case CTL_5GHT40:
293                 case CTL_2GHT40:
294                         for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
295                                 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
296                         }
297                         break;
298                 default:
299                         return AH_FALSE;
300                         break;
301                 }
302         } /* end ctl mode checking */
303
304         /* Set rates Array from collected data */
305         ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
306             &targetPowerCck,
307             &targetPowerCckExt,
308             &targetPowerOfdm,
309             &targetPowerOfdmExt,
310             &targetPowerHt20,
311             &targetPowerHt40);
312         return AH_TRUE;
313 #undef EXT_ADDITIVE
314 #undef CTL_11A_EXT
315 #undef CTL_11G_EXT
316 #undef CTL_11B_EXT
317 #undef SUB_NUM_CTL_MODES_AT_5G_40
318 #undef SUB_NUM_CTL_MODES_AT_2G_40
319 #undef N
320 }
321
322 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
323
324 /*
325  * This is based off of the AR5416/AR9285 code and likely could
326  * be unified in the future.
327  */
328 HAL_BOOL
329 ar9287SetTransmitPower(struct ath_hal *ah,
330         const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
331 {
332 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
333 #define N(a)        (sizeof (a) / sizeof (a[0]))
334
335         const struct modal_eep_ar9287_header *pModal;
336         struct ath_hal_5212 *ahp = AH5212(ah);
337         int16_t      txPowerIndexOffset = 0;
338         int              i;
339
340         uint16_t            cfgCtl;
341         uint16_t            powerLimit;
342         uint16_t            twiceAntennaReduction;
343         uint16_t            twiceMaxRegulatoryPower;
344         int16_t      maxPower;
345         HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
346         struct ar9287_eeprom *pEepData = &ee->ee_base;
347
348         AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
349
350         /* Setup info for the actual eeprom */
351         OS_MEMZERO(AH5416(ah)->ah_ratesArray,
352           sizeof(AH5416(ah)->ah_ratesArray));
353         cfgCtl = ath_hal_getctl(ah, chan);
354         powerLimit = chan->ic_maxregpower * 2;
355         twiceAntennaReduction = chan->ic_maxantgain;
356         twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER,
357             AH_PRIVATE(ah)->ah_powerLimit);
358         pModal = &pEepData->modalHeader;
359         HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
360             __func__,chan->ic_freq, cfgCtl );
361
362         /* XXX Assume Minor is v2 or later */
363         AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
364
365         /* Fetch per-rate power table for the given channel */
366         if (! ar9287SetPowerPerRateTable(ah, pEepData,  chan,
367             &AH5416(ah)->ah_ratesArray[0],
368             cfgCtl,
369             twiceAntennaReduction,
370             twiceMaxRegulatoryPower, powerLimit)) {
371                 HALDEBUG(ah, HAL_DEBUG_ANY,
372                     "%s: unable to set tx power per rate table\n", __func__);
373                 return AH_FALSE;
374         }
375
376         /* Set TX power control calibration curves for each TX chain */
377         ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);
378
379         /* Calculate maximum power level */
380         maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
381             AH5416(ah)->ah_ratesArray[rateHt20_0]);
382         maxPower = AH_MAX(maxPower,
383             AH5416(ah)->ah_ratesArray[rate1l]);
384
385         if (IEEE80211_IS_CHAN_HT40(chan))
386                 maxPower = AH_MAX(maxPower,
387                     AH5416(ah)->ah_ratesArray[rateHt40_0]);
388
389         ahp->ah_tx6PowerInHalfDbm = maxPower;
390         AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
391         ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
392
393         /*
394          * txPowerIndexOffset is set by the SetPowerTable() call -
395          *  adjust the rate table (0 offset if rates EEPROM not loaded)
396          */
397         /* XXX what about the pwrTableOffset? */
398         for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
399                 AH5416(ah)->ah_ratesArray[i] =
400                     (int16_t)(txPowerIndexOffset +
401                       AH5416(ah)->ah_ratesArray[i]);
402                 /* -5 dBm offset for Merlin and later; this includes Kiwi */
403                 AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
404                 if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
405                         AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
406                 if (AH5416(ah)->ah_ratesArray[i] < 0)
407                         AH5416(ah)->ah_ratesArray[i] = 0;
408         }
409
410 #ifdef AH_EEPROM_DUMP
411         ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
412 #endif
413
414         /*
415          * Adjust the HT40 power to meet the correct target TX power
416          * for 40MHz mode, based on TX power curves that are established
417          * for 20MHz mode.
418          *
419          * XXX handle overflow/too high power level?
420          */
421         if (IEEE80211_IS_CHAN_HT40(chan)) {
422                 AH5416(ah)->ah_ratesArray[rateHt40_0] +=
423                   AH5416(ah)->ah_ht40PowerIncForPdadc;
424                 AH5416(ah)->ah_ratesArray[rateHt40_1] +=
425                   AH5416(ah)->ah_ht40PowerIncForPdadc;
426                 AH5416(ah)->ah_ratesArray[rateHt40_2] +=
427                   AH5416(ah)->ah_ht40PowerIncForPdadc;
428                 AH5416(ah)->ah_ratesArray[rateHt40_3] +=
429                   AH5416(ah)->ah_ht40PowerIncForPdadc;
430                 AH5416(ah)->ah_ratesArray[rateHt40_4] +=
431                   AH5416(ah)->ah_ht40PowerIncForPdadc;
432                 AH5416(ah)->ah_ratesArray[rateHt40_5] +=
433                   AH5416(ah)->ah_ht40PowerIncForPdadc;
434                 AH5416(ah)->ah_ratesArray[rateHt40_6] +=
435                   AH5416(ah)->ah_ht40PowerIncForPdadc;
436                 AH5416(ah)->ah_ratesArray[rateHt40_7] +=
437                   AH5416(ah)->ah_ht40PowerIncForPdadc;
438         }
439
440         /* Write the TX power rate registers */
441         ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
442
443         return AH_TRUE;
444 #undef POW_SM
445 #undef N
446 }
447
448 /*
449  * Read EEPROM header info and program the device for correct operation
450  * given the channel value.
451  */
452 HAL_BOOL
453 ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
454 {
455         const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
456         const struct ar9287_eeprom *eep = &ee->ee_base;
457         const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
458         uint16_t antWrites[AR9287_ANT_16S];
459         uint32_t regChainOffset, regval;
460         uint8_t txRxAttenLocal;
461         int i, j, offset_num;
462
463         pModal = &eep->modalHeader;
464
465         antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
466         antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
467         antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
468         antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
469         antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
470         antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
471         antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4)  & 0xF);
472         antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);
473
474         offset_num = 8;
475
476         for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
477                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
478                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
479                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
480                 antWrites[j++] = 0;
481                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
482                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
483                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
484                 antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
485         }
486
487         OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
488
489         for (i = 0; i < AR9287_MAX_CHAINS; i++) {
490                 regChainOffset = i * 0x1000;
491
492                 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
493                           pModal->antCtrlChain[i]);
494
495                 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
496                           (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)
497                               + regChainOffset)
498                            & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
499                                AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
500                           SM(pModal->iqCalICh[i],
501                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
502                           SM(pModal->iqCalQCh[i],
503                              AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
504
505                 txRxAttenLocal = pModal->txRxAttenCh[i];
506
507                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
508                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
509                               pModal->bswMargin[i]);
510                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
511                               AR_PHY_GAIN_2GHZ_XATTEN1_DB,
512                               pModal->bswAtten[i]);
513                 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
514                               AR9280_PHY_RXGAIN_TXRX_ATTEN,
515                               txRxAttenLocal);
516                 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
517                               AR9280_PHY_RXGAIN_TXRX_MARGIN,
518                               pModal->rxTxMarginCh[i]);
519         }
520
521         if (IEEE80211_IS_CHAN_HT40(chan))
522                 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
523                               AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
524         else
525                 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
526                               AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
527
528         OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
529                       AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
530
531         OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
532                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
533                   | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
534                   | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
535                   | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
536
537         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
538                       AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
539
540         OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
541                       AR9280_PHY_CCA_THRESH62, pModal->thresh62);
542         OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
543                       AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
544
545         regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
546         regval &= ~(AR9287_AN_RF2G3_DB1 |
547                     AR9287_AN_RF2G3_DB2 |
548                     AR9287_AN_RF2G3_OB_CCK |
549                     AR9287_AN_RF2G3_OB_PSK |
550                     AR9287_AN_RF2G3_OB_QAM |
551                     AR9287_AN_RF2G3_OB_PAL_OFF);
552         regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
553                    SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
554                    SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
555                    SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
556                    SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
557                    SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
558
559         /* Analog write - requires a 100usec delay */
560         OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
561
562         regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
563         regval &= ~(AR9287_AN_RF2G3_DB1 |
564                     AR9287_AN_RF2G3_DB2 |
565                     AR9287_AN_RF2G3_OB_CCK |
566                     AR9287_AN_RF2G3_OB_PSK |
567                     AR9287_AN_RF2G3_OB_QAM |
568                     AR9287_AN_RF2G3_OB_PAL_OFF);
569         regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
570                    SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
571                    SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
572                    SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
573                    SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
574                    SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
575
576         OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
577
578         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
579             AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
580         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
581             AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
582
583         OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
584             AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
585
586         return AH_TRUE;
587 }