]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/bce/if_bce.c
Merge mdocml v1.12.3 into head
[FreeBSD/FreeBSD.git] / sys / dev / bce / if_bce.c
1 /*-
2  * Copyright (c) 2006-2010 Broadcom Corporation
3  *      David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 /*
35  * The following controllers are supported by this driver:
36  *   BCM5706C A2, A3
37  *   BCM5706S A2, A3
38  *   BCM5708C B1, B2
39  *   BCM5708S B1, B2
40  *   BCM5709C A1, C0
41  *   BCM5709S A1, C0
42  *   BCM5716C C0
43  *   BCM5716S C0
44  *
45  * The following controllers are not supported by this driver:
46  *   BCM5706C A0, A1 (pre-production)
47  *   BCM5706S A0, A1 (pre-production)
48  *   BCM5708C A0, B0 (pre-production)
49  *   BCM5708S A0, B0 (pre-production)
50  *   BCM5709C A0  B0, B1, B2 (pre-production)
51  *   BCM5709S A0, B0, B1, B2 (pre-production)
52  */
53
54 #include "opt_bce.h"
55
56 #include <sys/param.h>
57 #include <sys/endian.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/lock.h>
61 #include <sys/mbuf.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/kernel.h>
65 #include <sys/module.h>
66 #include <sys/socket.h>
67 #include <sys/sysctl.h>
68 #include <sys/queue.h>
69
70 #include <net/bpf.h>
71 #include <net/ethernet.h>
72 #include <net/if.h>
73 #include <net/if_var.h>
74 #include <net/if_arp.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77
78 #include <net/if_types.h>
79 #include <net/if_vlan_var.h>
80
81 #include <netinet/in_systm.h>
82 #include <netinet/in.h>
83 #include <netinet/if_ether.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip6.h>
86 #include <netinet/tcp.h>
87 #include <netinet/udp.h>
88
89 #include <machine/bus.h>
90 #include <machine/resource.h>
91 #include <sys/bus.h>
92 #include <sys/rman.h>
93
94 #include <dev/mii/mii.h>
95 #include <dev/mii/miivar.h>
96 #include "miidevs.h"
97 #include <dev/mii/brgphyreg.h>
98
99 #include <dev/pci/pcireg.h>
100 #include <dev/pci/pcivar.h>
101
102 #include "miibus_if.h"
103
104 #include <dev/bce/if_bcereg.h>
105 #include <dev/bce/if_bcefw.h>
106
107 /****************************************************************************/
108 /* BCE Debug Options                                                        */
109 /****************************************************************************/
110 #ifdef BCE_DEBUG
111         u32 bce_debug = BCE_WARN;
112
113         /*          0 = Never              */
114         /*          1 = 1 in 2,147,483,648 */
115         /*        256 = 1 in     8,388,608 */
116         /*       2048 = 1 in     1,048,576 */
117         /*      65536 = 1 in        32,768 */
118         /*    1048576 = 1 in         2,048 */
119         /*  268435456 = 1 in             8 */
120         /*  536870912 = 1 in             4 */
121         /* 1073741824 = 1 in             2 */
122
123         /* Controls how often the l2_fhdr frame error check will fail. */
124         int l2fhdr_error_sim_control = 0;
125
126         /* Controls how often the unexpected attention check will fail. */
127         int unexpected_attention_sim_control = 0;
128
129         /* Controls how often to simulate an mbuf allocation failure. */
130         int mbuf_alloc_failed_sim_control = 0;
131
132         /* Controls how often to simulate a DMA mapping failure. */
133         int dma_map_addr_failed_sim_control = 0;
134
135         /* Controls how often to simulate a bootcode failure. */
136         int bootcode_running_failure_sim_control = 0;
137 #endif
138
139 /****************************************************************************/
140 /* PCI Device ID Table                                                      */
141 /*                                                                          */
142 /* Used by bce_probe() to identify the devices supported by this driver.    */
143 /****************************************************************************/
144 #define BCE_DEVDESC_MAX         64
145
146 static const struct bce_type bce_devs[] = {
147         /* BCM5706C Controllers and OEM boards. */
148         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
149                 "HP NC370T Multifunction Gigabit Server Adapter" },
150         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
151                 "HP NC370i Multifunction Gigabit Server Adapter" },
152         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
153                 "HP NC380T PCIe DP Multifunc Gig Server Adapter" },
154         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
155                 "HP NC371i Multifunction Gigabit Server Adapter" },
156         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
157                 "Broadcom NetXtreme II BCM5706 1000Base-T" },
158
159         /* BCM5706S controllers and OEM boards. */
160         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
161                 "HP NC370F Multifunction Gigabit Server Adapter" },
162         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
163                 "Broadcom NetXtreme II BCM5706 1000Base-SX" },
164
165         /* BCM5708C controllers and OEM boards. */
166         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
167                 "HP NC373T PCIe Multifunction Gig Server Adapter" },
168         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
169                 "HP NC373i Multifunction Gigabit Server Adapter" },
170         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
171                 "HP NC374m PCIe Multifunction Adapter" },
172         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
173                 "Broadcom NetXtreme II BCM5708 1000Base-T" },
174
175         /* BCM5708S controllers and OEM boards. */
176         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
177                 "HP NC373m Multifunction Gigabit Server Adapter" },
178         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
179                 "HP NC373i Multifunction Gigabit Server Adapter" },
180         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
181                 "HP NC373F PCIe Multifunc Giga Server Adapter" },
182         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
183                 "Broadcom NetXtreme II BCM5708 1000Base-SX" },
184
185         /* BCM5709C controllers and OEM boards. */
186         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
187                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
188         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
189                 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
190         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
191                 "Broadcom NetXtreme II BCM5709 1000Base-T" },
192
193         /* BCM5709S controllers and OEM boards. */
194         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
195                 "HP NC382m DP 1GbE Multifunction BL-c Adapter" },
196         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
197                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
198         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
199                 "Broadcom NetXtreme II BCM5709 1000Base-SX" },
200
201         /* BCM5716 controllers and OEM boards. */
202         { BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
203                 "Broadcom NetXtreme II BCM5716 1000Base-T" },
204
205         { 0, 0, 0, 0, NULL }
206 };
207
208
209 /****************************************************************************/
210 /* Supported Flash NVRAM device data.                                       */
211 /****************************************************************************/
212 static const struct flash_spec flash_table[] =
213 {
214 #define BUFFERED_FLAGS          (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
215 #define NONBUFFERED_FLAGS       (BCE_NV_WREN)
216
217         /* Slow EEPROM */
218         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
219          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
220          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
221          "EEPROM - slow"},
222         /* Expansion entry 0001 */
223         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
224          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226          "Entry 0001"},
227         /* Saifun SA25F010 (non-buffered flash) */
228         /* strap, cfg1, & write1 need updates */
229         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
230          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
231          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
232          "Non-buffered flash (128kB)"},
233         /* Saifun SA25F020 (non-buffered flash) */
234         /* strap, cfg1, & write1 need updates */
235         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
236          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
238          "Non-buffered flash (256kB)"},
239         /* Expansion entry 0100 */
240         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
241          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243          "Entry 0100"},
244         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
245         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
246          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
247          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
248          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
249         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
250         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
251          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
252          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
253          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
254         /* Saifun SA25F005 (non-buffered flash) */
255         /* strap, cfg1, & write1 need updates */
256         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
257          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
258          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
259          "Non-buffered flash (64kB)"},
260         /* Fast EEPROM */
261         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
262          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
263          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
264          "EEPROM - fast"},
265         /* Expansion entry 1001 */
266         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
267          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
268          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
269          "Entry 1001"},
270         /* Expansion entry 1010 */
271         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
272          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
273          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
274          "Entry 1010"},
275         /* ATMEL AT45DB011B (buffered flash) */
276         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
277          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
278          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
279          "Buffered flash (128kB)"},
280         /* Expansion entry 1100 */
281         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
282          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
283          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
284          "Entry 1100"},
285         /* Expansion entry 1101 */
286         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
287          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
288          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
289          "Entry 1101"},
290         /* Ateml Expansion entry 1110 */
291         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
292          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
293          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
294          "Entry 1110 (Atmel)"},
295         /* ATMEL AT45DB021B (buffered flash) */
296         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
297          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
298          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
299          "Buffered flash (256kB)"},
300 };
301
302 /*
303  * The BCM5709 controllers transparently handle the
304  * differences between Atmel 264 byte pages and all
305  * flash devices which use 256 byte pages, so no
306  * logical-to-physical mapping is required in the
307  * driver.
308  */
309 static const struct flash_spec flash_5709 = {
310         .flags          = BCE_NV_BUFFERED,
311         .page_bits      = BCM5709_FLASH_PAGE_BITS,
312         .page_size      = BCM5709_FLASH_PAGE_SIZE,
313         .addr_mask      = BCM5709_FLASH_BYTE_ADDR_MASK,
314         .total_size     = BUFFERED_FLASH_TOTAL_SIZE * 2,
315         .name           = "5709/5716 buffered flash (256kB)",
316 };
317
318
319 /****************************************************************************/
320 /* FreeBSD device entry points.                                             */
321 /****************************************************************************/
322 static int  bce_probe                   (device_t);
323 static int  bce_attach                  (device_t);
324 static int  bce_detach                  (device_t);
325 static int  bce_shutdown                (device_t);
326
327
328 /****************************************************************************/
329 /* BCE Debug Data Structure Dump Routines                                   */
330 /****************************************************************************/
331 #ifdef BCE_DEBUG
332 static u32  bce_reg_rd                          (struct bce_softc *, u32);
333 static void bce_reg_wr                          (struct bce_softc *, u32, u32);
334 static void bce_reg_wr16                        (struct bce_softc *, u32, u16);
335 static u32  bce_ctx_rd                          (struct bce_softc *, u32, u32);
336 static void bce_dump_enet                       (struct bce_softc *, struct mbuf *);
337 static void bce_dump_mbuf                       (struct bce_softc *, struct mbuf *);
338 static void bce_dump_tx_mbuf_chain      (struct bce_softc *, u16, int);
339 static void bce_dump_rx_mbuf_chain      (struct bce_softc *, u16, int);
340 static void bce_dump_pg_mbuf_chain      (struct bce_softc *, u16, int);
341 static void bce_dump_txbd                       (struct bce_softc *,
342     int, struct tx_bd *);
343 static void bce_dump_rxbd                       (struct bce_softc *,
344     int, struct rx_bd *);
345 static void bce_dump_pgbd                       (struct bce_softc *,
346     int, struct rx_bd *);
347 static void bce_dump_l2fhdr             (struct bce_softc *,
348     int, struct l2_fhdr *);
349 static void bce_dump_ctx                        (struct bce_softc *, u16);
350 static void bce_dump_ftqs                       (struct bce_softc *);
351 static void bce_dump_tx_chain           (struct bce_softc *, u16, int);
352 static void bce_dump_rx_bd_chain        (struct bce_softc *, u16, int);
353 static void bce_dump_pg_chain           (struct bce_softc *, u16, int);
354 static void bce_dump_status_block       (struct bce_softc *);
355 static void bce_dump_stats_block        (struct bce_softc *);
356 static void bce_dump_driver_state       (struct bce_softc *);
357 static void bce_dump_hw_state           (struct bce_softc *);
358 static void bce_dump_shmem_state        (struct bce_softc *);
359 static void bce_dump_mq_regs            (struct bce_softc *);
360 static void bce_dump_bc_state           (struct bce_softc *);
361 static void bce_dump_txp_state          (struct bce_softc *, int);
362 static void bce_dump_rxp_state          (struct bce_softc *, int);
363 static void bce_dump_tpat_state (struct bce_softc *, int);
364 static void bce_dump_cp_state           (struct bce_softc *, int);
365 static void bce_dump_com_state          (struct bce_softc *, int);
366 static void bce_dump_rv2p_state (struct bce_softc *);
367 static void bce_breakpoint                      (struct bce_softc *);
368 #endif /*BCE_DEBUG */
369
370
371 /****************************************************************************/
372 /* BCE Register/Memory Access Routines                                      */
373 /****************************************************************************/
374 static u32  bce_reg_rd_ind              (struct bce_softc *, u32);
375 static void bce_reg_wr_ind              (struct bce_softc *, u32, u32);
376 static void bce_shmem_wr                (struct bce_softc *, u32, u32);
377 static u32  bce_shmem_rd                (struct bce_softc *, u32);
378 static void bce_ctx_wr                  (struct bce_softc *, u32, u32, u32);
379 static int  bce_miibus_read_reg         (device_t, int, int);
380 static int  bce_miibus_write_reg        (device_t, int, int, int);
381 static void bce_miibus_statchg          (device_t);
382
383 #ifdef BCE_DEBUG
384 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
385 #ifdef BCE_NVRAM_WRITE_SUPPORT
386 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
387 #endif
388 #endif
389
390 /****************************************************************************/
391 /* BCE NVRAM Access Routines                                                */
392 /****************************************************************************/
393 static int  bce_acquire_nvram_lock      (struct bce_softc *);
394 static int  bce_release_nvram_lock      (struct bce_softc *);
395 static void bce_enable_nvram_access(struct bce_softc *);
396 static void bce_disable_nvram_access(struct bce_softc *);
397 static int  bce_nvram_read_dword        (struct bce_softc *, u32, u8 *, u32);
398 static int  bce_init_nvram                      (struct bce_softc *);
399 static int  bce_nvram_read                      (struct bce_softc *, u32, u8 *, int);
400 static int  bce_nvram_test                      (struct bce_softc *);
401 #ifdef BCE_NVRAM_WRITE_SUPPORT
402 static int  bce_enable_nvram_write      (struct bce_softc *);
403 static void bce_disable_nvram_write(struct bce_softc *);
404 static int  bce_nvram_erase_page        (struct bce_softc *, u32);
405 static int  bce_nvram_write_dword       (struct bce_softc *, u32, u8 *, u32);
406 static int  bce_nvram_write             (struct bce_softc *, u32, u8 *, int);
407 #endif
408
409 /****************************************************************************/
410 /*                                                                          */
411 /****************************************************************************/
412 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
413 static void bce_get_media                       (struct bce_softc *);
414 static void bce_init_media                      (struct bce_softc *);
415 static u32 bce_get_rphy_link            (struct bce_softc *);
416 static void bce_dma_map_addr            (void *, bus_dma_segment_t *, int, int);
417 static int  bce_dma_alloc                       (device_t);
418 static void bce_dma_free                        (struct bce_softc *);
419 static void bce_release_resources       (struct bce_softc *);
420
421 /****************************************************************************/
422 /* BCE Firmware Synchronization and Load                                    */
423 /****************************************************************************/
424 static void bce_fw_cap_init                     (struct bce_softc *);
425 static int  bce_fw_sync                 (struct bce_softc *, u32);
426 static void bce_load_rv2p_fw            (struct bce_softc *, const u32 *, u32,
427     u32);
428 static void bce_load_cpu_fw             (struct bce_softc *,
429     struct cpu_reg *, struct fw_info *);
430 static void bce_start_cpu                       (struct bce_softc *, struct cpu_reg *);
431 static void bce_halt_cpu                        (struct bce_softc *, struct cpu_reg *);
432 static void bce_start_rxp_cpu           (struct bce_softc *);
433 static void bce_init_rxp_cpu            (struct bce_softc *);
434 static void bce_init_txp_cpu            (struct bce_softc *);
435 static void bce_init_tpat_cpu           (struct bce_softc *);
436 static void bce_init_cp_cpu             (struct bce_softc *);
437 static void bce_init_com_cpu            (struct bce_softc *);
438 static void bce_init_cpus                       (struct bce_softc *);
439
440 static void bce_print_adapter_info      (struct bce_softc *);
441 static void bce_probe_pci_caps          (device_t, struct bce_softc *);
442 static void bce_stop                            (struct bce_softc *);
443 static int  bce_reset                           (struct bce_softc *, u32);
444 static int  bce_chipinit                        (struct bce_softc *);
445 static int  bce_blockinit                       (struct bce_softc *);
446
447 static int  bce_init_tx_chain           (struct bce_softc *);
448 static void bce_free_tx_chain           (struct bce_softc *);
449
450 static int  bce_get_rx_buf              (struct bce_softc *, u16, u16, u32 *);
451 static int  bce_init_rx_chain           (struct bce_softc *);
452 static void bce_fill_rx_chain           (struct bce_softc *);
453 static void bce_free_rx_chain           (struct bce_softc *);
454
455 static int  bce_get_pg_buf              (struct bce_softc *, u16, u16);
456 static int  bce_init_pg_chain           (struct bce_softc *);
457 static void bce_fill_pg_chain           (struct bce_softc *);
458 static void bce_free_pg_chain           (struct bce_softc *);
459
460 static struct mbuf *bce_tso_setup       (struct bce_softc *,
461     struct mbuf **, u16 *);
462 static int  bce_tx_encap                        (struct bce_softc *, struct mbuf **);
463 static void bce_start_locked            (struct ifnet *);
464 static void bce_start                           (struct ifnet *);
465 static int  bce_ioctl                           (struct ifnet *, u_long, caddr_t);
466 static void bce_watchdog                        (struct bce_softc *);
467 static int  bce_ifmedia_upd             (struct ifnet *);
468 static int  bce_ifmedia_upd_locked      (struct ifnet *);
469 static void bce_ifmedia_sts             (struct ifnet *, struct ifmediareq *);
470 static void bce_ifmedia_sts_rphy        (struct bce_softc *, struct ifmediareq *);
471 static void bce_init_locked             (struct bce_softc *);
472 static void bce_init                            (void *);
473 static void bce_mgmt_init_locked        (struct bce_softc *sc);
474
475 static int  bce_init_ctx                        (struct bce_softc *);
476 static void bce_get_mac_addr            (struct bce_softc *);
477 static void bce_set_mac_addr            (struct bce_softc *);
478 static void bce_phy_intr                        (struct bce_softc *);
479 static inline u16 bce_get_hw_rx_cons    (struct bce_softc *);
480 static void bce_rx_intr                 (struct bce_softc *);
481 static void bce_tx_intr                 (struct bce_softc *);
482 static void bce_disable_intr            (struct bce_softc *);
483 static void bce_enable_intr             (struct bce_softc *, int);
484
485 static void bce_intr                            (void *);
486 static void bce_set_rx_mode             (struct bce_softc *);
487 static void bce_stats_update            (struct bce_softc *);
488 static void bce_tick                            (void *);
489 static void bce_pulse                           (void *);
490 static void bce_add_sysctls             (struct bce_softc *);
491
492
493 /****************************************************************************/
494 /* FreeBSD device dispatch table.                                           */
495 /****************************************************************************/
496 static device_method_t bce_methods[] = {
497         /* Device interface (device_if.h) */
498         DEVMETHOD(device_probe,         bce_probe),
499         DEVMETHOD(device_attach,        bce_attach),
500         DEVMETHOD(device_detach,        bce_detach),
501         DEVMETHOD(device_shutdown,      bce_shutdown),
502 /* Supported by device interface but not used here. */
503 /*      DEVMETHOD(device_identify,      bce_identify),      */
504 /*      DEVMETHOD(device_suspend,       bce_suspend),       */
505 /*      DEVMETHOD(device_resume,        bce_resume),        */
506 /*      DEVMETHOD(device_quiesce,       bce_quiesce),       */
507
508         /* MII interface (miibus_if.h) */
509         DEVMETHOD(miibus_readreg,       bce_miibus_read_reg),
510         DEVMETHOD(miibus_writereg,      bce_miibus_write_reg),
511         DEVMETHOD(miibus_statchg,       bce_miibus_statchg),
512 /* Supported by MII interface but not used here.       */
513 /*      DEVMETHOD(miibus_linkchg,       bce_miibus_linkchg),   */
514 /*      DEVMETHOD(miibus_mediainit,     bce_miibus_mediainit), */
515
516         DEVMETHOD_END
517 };
518
519 static driver_t bce_driver = {
520         "bce",
521         bce_methods,
522         sizeof(struct bce_softc)
523 };
524
525 static devclass_t bce_devclass;
526
527 MODULE_DEPEND(bce, pci, 1, 1, 1);
528 MODULE_DEPEND(bce, ether, 1, 1, 1);
529 MODULE_DEPEND(bce, miibus, 1, 1, 1);
530
531 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
532 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
533
534
535 /****************************************************************************/
536 /* Tunable device values                                                    */
537 /****************************************************************************/
538 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
539
540 /* Allowable values are TRUE or FALSE */
541 static int bce_verbose = TRUE;
542 TUNABLE_INT("hw.bce.verbose", &bce_verbose);
543 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
544     "Verbose output enable/disable");
545
546 /* Allowable values are TRUE or FALSE */
547 static int bce_tso_enable = TRUE;
548 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
549 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
550     "TSO Enable/Disable");
551
552 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
553 /* ToDo: Add MSI-X support. */
554 static int bce_msi_enable = 1;
555 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
556 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
557     "MSI-X|MSI|INTx selector");
558
559 /* Allowable values are 1, 2, 4, 8. */
560 static int bce_rx_pages = DEFAULT_RX_PAGES;
561 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
562 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
563     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
564
565 /* Allowable values are 1, 2, 4, 8. */
566 static int bce_tx_pages = DEFAULT_TX_PAGES;
567 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
568 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
569     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
570
571 /* Allowable values are TRUE or FALSE. */
572 static int bce_hdr_split = TRUE;
573 TUNABLE_INT("hw.bce.hdr_split", &bce_hdr_split);
574 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
575     "Frame header/payload splitting Enable/Disable");
576
577 /* Allowable values are TRUE or FALSE. */
578 static int bce_strict_rx_mtu = FALSE;
579 TUNABLE_INT("hw.bce.strict_rx_mtu", &bce_strict_rx_mtu);
580 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
581     &bce_strict_rx_mtu, 0,
582     "Enable/Disable strict RX frame size checking");
583
584 /* Allowable values are 0 ... 100 */
585 #ifdef BCE_DEBUG
586 /* Generate 1 interrupt for every transmit completion. */
587 static int bce_tx_quick_cons_trip_int = 1;
588 #else
589 /* Generate 1 interrupt for every 20 transmit completions. */
590 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
591 #endif
592 TUNABLE_INT("hw.bce.tx_quick_cons_trip_int", &bce_tx_quick_cons_trip_int);
593 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
594     &bce_tx_quick_cons_trip_int, 0,
595     "Transmit BD trip point during interrupts");
596
597 /* Allowable values are 0 ... 100 */
598 /* Generate 1 interrupt for every transmit completion. */
599 #ifdef BCE_DEBUG
600 static int bce_tx_quick_cons_trip = 1;
601 #else
602 /* Generate 1 interrupt for every 20 transmit completions. */
603 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
604 #endif
605 TUNABLE_INT("hw.bce.tx_quick_cons_trip", &bce_tx_quick_cons_trip);
606 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
607     &bce_tx_quick_cons_trip, 0,
608     "Transmit BD trip point");
609
610 /* Allowable values are 0 ... 100 */
611 #ifdef BCE_DEBUG
612 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
613 static int bce_tx_ticks_int = 0;
614 #else
615 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
616 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
617 #endif
618 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
619 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
620     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
621
622 /* Allowable values are 0 ... 100 */
623 #ifdef BCE_DEBUG
624 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
625 static int bce_tx_ticks = 0;
626 #else
627 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
628 static int bce_tx_ticks = DEFAULT_TX_TICKS;
629 #endif
630 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
631 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
632     &bce_tx_ticks, 0, "Transmit ticks count");
633
634 /* Allowable values are 1 ... 100 */
635 #ifdef BCE_DEBUG
636 /* Generate 1 interrupt for every received frame. */
637 static int bce_rx_quick_cons_trip_int = 1;
638 #else
639 /* Generate 1 interrupt for every 6 received frames. */
640 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
641 #endif
642 TUNABLE_INT("hw.bce.rx_quick_cons_trip_int", &bce_rx_quick_cons_trip_int);
643 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
644     &bce_rx_quick_cons_trip_int, 0,
645     "Receive BD trip point duirng interrupts");
646
647 /* Allowable values are 1 ... 100 */
648 #ifdef BCE_DEBUG
649 /* Generate 1 interrupt for every received frame. */
650 static int bce_rx_quick_cons_trip = 1;
651 #else
652 /* Generate 1 interrupt for every 6 received frames. */
653 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
654 #endif
655 TUNABLE_INT("hw.bce.rx_quick_cons_trip", &bce_rx_quick_cons_trip);
656 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
657     &bce_rx_quick_cons_trip, 0,
658     "Receive BD trip point");
659
660 /* Allowable values are 0 ... 100 */
661 #ifdef BCE_DEBUG
662 /* Generate an int. if 0us have elapsed since the last received frame. */
663 static int bce_rx_ticks_int = 0;
664 #else
665 /* Generate an int. if 18us have elapsed since the last received frame. */
666 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
667 #endif
668 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
669 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
670     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
671
672 /* Allowable values are 0 ... 100 */
673 #ifdef BCE_DEBUG
674 /* Generate an int. if 0us have elapsed since the last received frame. */
675 static int bce_rx_ticks = 0;
676 #else
677 /* Generate an int. if 18us have elapsed since the last received frame. */
678 static int bce_rx_ticks = DEFAULT_RX_TICKS;
679 #endif
680 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
681 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
682     &bce_rx_ticks, 0, "Receive ticks count");
683
684
685 /****************************************************************************/
686 /* Device probe function.                                                   */
687 /*                                                                          */
688 /* Compares the device to the driver's list of supported devices and        */
689 /* reports back to the OS whether this is the right driver for the device.  */
690 /*                                                                          */
691 /* Returns:                                                                 */
692 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
693 /****************************************************************************/
694 static int
695 bce_probe(device_t dev)
696 {
697         const struct bce_type *t;
698         struct bce_softc *sc;
699         char *descbuf;
700         u16 vid = 0, did = 0, svid = 0, sdid = 0;
701
702         t = bce_devs;
703
704         sc = device_get_softc(dev);
705         sc->bce_unit = device_get_unit(dev);
706         sc->bce_dev = dev;
707
708         /* Get the data for the device to be probed. */
709         vid  = pci_get_vendor(dev);
710         did  = pci_get_device(dev);
711         svid = pci_get_subvendor(dev);
712         sdid = pci_get_subdevice(dev);
713
714         DBPRINT(sc, BCE_EXTREME_LOAD,
715             "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
716             "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
717
718         /* Look through the list of known devices for a match. */
719         while(t->bce_name != NULL) {
720
721                 if ((vid == t->bce_vid) && (did == t->bce_did) &&
722                     ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
723                     ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
724
725                         descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
726
727                         if (descbuf == NULL)
728                                 return(ENOMEM);
729
730                         /* Print out the device identity. */
731                         snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
732                             t->bce_name, (((pci_read_config(dev,
733                             PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
734                             (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
735
736                         device_set_desc_copy(dev, descbuf);
737                         free(descbuf, M_TEMP);
738                         return(BUS_PROBE_DEFAULT);
739                 }
740                 t++;
741         }
742
743         return(ENXIO);
744 }
745
746
747 /****************************************************************************/
748 /* PCI Capabilities Probe Function.                                         */
749 /*                                                                          */
750 /* Walks the PCI capabiites list for the device to find what features are   */
751 /* supported.                                                               */
752 /*                                                                          */
753 /* Returns:                                                                 */
754 /*   None.                                                                  */
755 /****************************************************************************/
756 static void
757 bce_print_adapter_info(struct bce_softc *sc)
758 {
759         int i = 0;
760
761         DBENTER(BCE_VERBOSE_LOAD);
762
763         if (bce_verbose || bootverbose) {
764                 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
765                 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
766                     12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
767
768
769                 /* Bus info. */
770                 if (sc->bce_flags & BCE_PCIE_FLAG) {
771                         printf("Bus (PCIe x%d, ", sc->link_width);
772                         switch (sc->link_speed) {
773                         case 1: printf("2.5Gbps); "); break;
774                         case 2: printf("5Gbps); "); break;
775                         default: printf("Unknown link speed); ");
776                         }
777                 } else {
778                         printf("Bus (PCI%s, %s, %dMHz); ",
779                             ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
780                             ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
781                             "32-bit" : "64-bit"), sc->bus_speed_mhz);
782                 }
783
784                 /* Firmware version and device features. */
785                 printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
786                     sc->bce_bc_ver,     sc->rx_pages, sc->tx_pages,
787                     (bce_hdr_split == TRUE ? sc->pg_pages: 0));
788
789                 if (bce_hdr_split == TRUE) {
790                         printf("SPLT");
791                         i++;
792                 }
793
794                 if (sc->bce_flags & BCE_USING_MSI_FLAG) {
795                         if (i > 0) printf("|");
796                         printf("MSI"); i++;
797                 }
798
799                 if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
800                         if (i > 0) printf("|");
801                         printf("MSI-X"); i++;
802                 }
803
804                 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
805                         if (i > 0) printf("|");
806                         printf("2.5G"); i++;
807                 }
808
809                 if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
810                         if (i > 0) printf("|");
811                         printf("Remote PHY(%s)",
812                             sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
813                             "FIBER" : "TP"); i++;
814                 }
815
816                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
817                         if (i > 0) printf("|");
818                         printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
819                 } else {
820                         printf(")\n");
821                 }
822
823                 printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
824                     sc->bce_rx_quick_cons_trip_int,
825                     sc->bce_rx_quick_cons_trip,
826                     sc->bce_rx_ticks_int,
827                     sc->bce_rx_ticks,
828                     sc->bce_tx_quick_cons_trip_int,
829                     sc->bce_tx_quick_cons_trip,
830                     sc->bce_tx_ticks_int,
831                     sc->bce_tx_ticks);
832
833         }
834
835         DBEXIT(BCE_VERBOSE_LOAD);
836 }
837
838
839 /****************************************************************************/
840 /* PCI Capabilities Probe Function.                                         */
841 /*                                                                          */
842 /* Walks the PCI capabiites list for the device to find what features are   */
843 /* supported.                                                               */
844 /*                                                                          */
845 /* Returns:                                                                 */
846 /*   None.                                                                  */
847 /****************************************************************************/
848 static void
849 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
850 {
851         u32 reg;
852
853         DBENTER(BCE_VERBOSE_LOAD);
854
855         /* Check if PCI-X capability is enabled. */
856         if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
857                 if (reg != 0)
858                         sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
859         }
860
861         /* Check if PCIe capability is enabled. */
862         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
863                 if (reg != 0) {
864                         u16 link_status = pci_read_config(dev, reg + 0x12, 2);
865                         DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
866                             "0x%08X\n", link_status);
867                         sc->link_speed = link_status & 0xf;
868                         sc->link_width = (link_status >> 4) & 0x3f;
869                         sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
870                         sc->bce_flags |= BCE_PCIE_FLAG;
871                 }
872         }
873
874         /* Check if MSI capability is enabled. */
875         if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
876                 if (reg != 0)
877                         sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
878         }
879
880         /* Check if MSI-X capability is enabled. */
881         if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
882                 if (reg != 0)
883                         sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
884         }
885
886         DBEXIT(BCE_VERBOSE_LOAD);
887 }
888
889
890 /****************************************************************************/
891 /* Load and validate user tunable settings.                                 */
892 /*                                                                          */
893 /* Returns:                                                                 */
894 /*   Nothing.                                                               */
895 /****************************************************************************/
896 static void
897 bce_set_tunables(struct bce_softc *sc)
898 {
899         /* Set sysctl values for RX page count. */
900         switch (bce_rx_pages) {
901         case 1:
902                 /* fall-through */
903         case 2:
904                 /* fall-through */
905         case 4:
906                 /* fall-through */
907         case 8:
908                 sc->rx_pages = bce_rx_pages;
909                 break;
910         default:
911                 sc->rx_pages = DEFAULT_RX_PAGES;
912                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
913                     "hw.bce.rx_pages!  Setting default of %d.\n",
914                     __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
915         }
916
917         /* ToDo: Consider allowing user setting for pg_pages. */
918         sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
919
920         /* Set sysctl values for TX page count. */
921         switch (bce_tx_pages) {
922         case 1:
923                 /* fall-through */
924         case 2:
925                 /* fall-through */
926         case 4:
927                 /* fall-through */
928         case 8:
929                 sc->tx_pages = bce_tx_pages;
930                 break;
931         default:
932                 sc->tx_pages = DEFAULT_TX_PAGES;
933                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
934                     "hw.bce.tx_pages!  Setting default of %d.\n",
935                     __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
936         }
937
938         /*
939          * Validate the TX trip point (i.e. the number of
940          * TX completions before a status block update is
941          * generated and an interrupt is asserted.
942          */
943         if (bce_tx_quick_cons_trip_int <= 100) {
944                 sc->bce_tx_quick_cons_trip_int =
945                     bce_tx_quick_cons_trip_int;
946         } else {
947                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
948                     "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
949                     __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
950                     DEFAULT_TX_QUICK_CONS_TRIP_INT);
951                 sc->bce_tx_quick_cons_trip_int =
952                     DEFAULT_TX_QUICK_CONS_TRIP_INT;
953         }
954
955         if (bce_tx_quick_cons_trip <= 100) {
956                 sc->bce_tx_quick_cons_trip =
957                     bce_tx_quick_cons_trip;
958         } else {
959                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
960                     "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
961                     __FILE__, __LINE__, bce_tx_quick_cons_trip,
962                     DEFAULT_TX_QUICK_CONS_TRIP);
963                 sc->bce_tx_quick_cons_trip =
964                     DEFAULT_TX_QUICK_CONS_TRIP;
965         }
966
967         /*
968          * Validate the TX ticks count (i.e. the maximum amount
969          * of time to wait after the last TX completion has
970          * occurred before a status block update is generated
971          * and an interrupt is asserted.
972          */
973         if (bce_tx_ticks_int <= 100) {
974                 sc->bce_tx_ticks_int =
975                     bce_tx_ticks_int;
976         } else {
977                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
978                     "hw.bce.tx_ticks_int!  Setting default of %d.\n",
979                     __FILE__, __LINE__, bce_tx_ticks_int,
980                     DEFAULT_TX_TICKS_INT);
981                 sc->bce_tx_ticks_int =
982                     DEFAULT_TX_TICKS_INT;
983            }
984
985         if (bce_tx_ticks <= 100) {
986                 sc->bce_tx_ticks =
987                     bce_tx_ticks;
988         } else {
989                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
990                     "hw.bce.tx_ticks!  Setting default of %d.\n",
991                     __FILE__, __LINE__, bce_tx_ticks,
992                     DEFAULT_TX_TICKS);
993                 sc->bce_tx_ticks =
994                     DEFAULT_TX_TICKS;
995         }
996
997         /*
998          * Validate the RX trip point (i.e. the number of
999          * RX frames received before a status block update is
1000          * generated and an interrupt is asserted.
1001          */
1002         if (bce_rx_quick_cons_trip_int <= 100) {
1003                 sc->bce_rx_quick_cons_trip_int =
1004                     bce_rx_quick_cons_trip_int;
1005         } else {
1006                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1007                     "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
1008                     __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
1009                     DEFAULT_RX_QUICK_CONS_TRIP_INT);
1010                 sc->bce_rx_quick_cons_trip_int =
1011                     DEFAULT_RX_QUICK_CONS_TRIP_INT;
1012         }
1013
1014         if (bce_rx_quick_cons_trip <= 100) {
1015                 sc->bce_rx_quick_cons_trip =
1016                     bce_rx_quick_cons_trip;
1017         } else {
1018                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1019                     "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
1020                     __FILE__, __LINE__, bce_rx_quick_cons_trip,
1021                     DEFAULT_RX_QUICK_CONS_TRIP);
1022                 sc->bce_rx_quick_cons_trip =
1023                     DEFAULT_RX_QUICK_CONS_TRIP;
1024         }
1025
1026         /*
1027          * Validate the RX ticks count (i.e. the maximum amount
1028          * of time to wait after the last RX frame has been
1029          * received before a status block update is generated
1030          * and an interrupt is asserted.
1031          */
1032         if (bce_rx_ticks_int <= 100) {
1033                 sc->bce_rx_ticks_int = bce_rx_ticks_int;
1034         } else {
1035                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1036                     "hw.bce.rx_ticks_int!  Setting default of %d.\n",
1037                     __FILE__, __LINE__, bce_rx_ticks_int,
1038                     DEFAULT_RX_TICKS_INT);
1039                 sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
1040         }
1041
1042         if (bce_rx_ticks <= 100) {
1043                 sc->bce_rx_ticks = bce_rx_ticks;
1044         } else {
1045                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1046                     "hw.bce.rx_ticks!  Setting default of %d.\n",
1047                     __FILE__, __LINE__, bce_rx_ticks,
1048                     DEFAULT_RX_TICKS);
1049                 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1050         }
1051
1052         /* Disabling both RX ticks and RX trips will prevent interrupts. */
1053         if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1054                 BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1055                     "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1056                    __FILE__, __LINE__);
1057                 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1058                 sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1059         }
1060
1061         /* Disabling both TX ticks and TX trips will prevent interrupts. */
1062         if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1063                 BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1064                     "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1065                    __FILE__, __LINE__);
1066                 sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1067                 sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1068         }
1069 }
1070
1071
1072 /****************************************************************************/
1073 /* Device attach function.                                                  */
1074 /*                                                                          */
1075 /* Allocates device resources, performs secondary chip identification,      */
1076 /* resets and initializes the hardware, and initializes driver instance     */
1077 /* variables.                                                               */
1078 /*                                                                          */
1079 /* Returns:                                                                 */
1080 /*   0 on success, positive value on failure.                               */
1081 /****************************************************************************/
1082 static int
1083 bce_attach(device_t dev)
1084 {
1085         struct bce_softc *sc;
1086         struct ifnet *ifp;
1087         u32 val;
1088         int count, error, rc = 0, rid;
1089
1090         sc = device_get_softc(dev);
1091         sc->bce_dev = dev;
1092
1093         DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1094
1095         sc->bce_unit = device_get_unit(dev);
1096
1097         /* Set initial device and PHY flags */
1098         sc->bce_flags = 0;
1099         sc->bce_phy_flags = 0;
1100
1101         bce_set_tunables(sc);
1102
1103         pci_enable_busmaster(dev);
1104
1105         /* Allocate PCI memory resources. */
1106         rid = PCIR_BAR(0);
1107         sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1108                 &rid, RF_ACTIVE);
1109
1110         if (sc->bce_res_mem == NULL) {
1111                 BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1112                     __FILE__, __LINE__);
1113                 rc = ENXIO;
1114                 goto bce_attach_fail;
1115         }
1116
1117         /* Get various resource handles. */
1118         sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1119         sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1120         sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1121
1122         bce_probe_pci_caps(dev, sc);
1123
1124         rid = 1;
1125         count = 0;
1126 #if 0
1127         /* Try allocating MSI-X interrupts. */
1128         if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1129                 (bce_msi_enable >= 2) &&
1130                 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1131                 &rid, RF_ACTIVE)) != NULL)) {
1132
1133                 msi_needed = count = 1;
1134
1135                 if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1136                         (count != msi_needed)) {
1137                         BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1138                                 "Received = %d, error = %d\n", __FILE__, __LINE__,
1139                                 msi_needed, count, error);
1140                         count = 0;
1141                         pci_release_msi(dev);
1142                         bus_release_resource(dev, SYS_RES_MEMORY, rid,
1143                                 sc->bce_res_irq);
1144                         sc->bce_res_irq = NULL;
1145                 } else {
1146                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1147                                 __FUNCTION__);
1148                         sc->bce_flags |= BCE_USING_MSIX_FLAG;
1149                 }
1150         }
1151 #endif
1152
1153         /* Try allocating a MSI interrupt. */
1154         if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1155                 (bce_msi_enable >= 1) && (count == 0)) {
1156                 count = 1;
1157                 if ((error = pci_alloc_msi(dev, &count)) != 0) {
1158                         BCE_PRINTF("%s(%d): MSI allocation failed! "
1159                             "error = %d\n", __FILE__, __LINE__, error);
1160                         count = 0;
1161                         pci_release_msi(dev);
1162                 } else {
1163                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1164                             "interrupt.\n", __FUNCTION__);
1165                         sc->bce_flags |= BCE_USING_MSI_FLAG;
1166                         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1167                                 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1168                         rid = 1;
1169                 }
1170         }
1171
1172         /* Try allocating a legacy interrupt. */
1173         if (count == 0) {
1174                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1175                         __FUNCTION__);
1176                 rid = 0;
1177         }
1178
1179         sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1180             &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1181
1182         /* Report any IRQ allocation errors. */
1183         if (sc->bce_res_irq == NULL) {
1184                 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1185                     __FILE__, __LINE__);
1186                 rc = ENXIO;
1187                 goto bce_attach_fail;
1188         }
1189
1190         /* Initialize mutex for the current device instance. */
1191         BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1192
1193         /*
1194          * Configure byte swap and enable indirect register access.
1195          * Rely on CPU to do target byte swapping on big endian systems.
1196          * Access to registers outside of PCI configurtion space are not
1197          * valid until this is done.
1198          */
1199         pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1200             BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1201             BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1202
1203         /* Save ASIC revsion info. */
1204         sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1205
1206         /* Weed out any non-production controller revisions. */
1207         switch(BCE_CHIP_ID(sc)) {
1208         case BCE_CHIP_ID_5706_A0:
1209         case BCE_CHIP_ID_5706_A1:
1210         case BCE_CHIP_ID_5708_A0:
1211         case BCE_CHIP_ID_5708_B0:
1212         case BCE_CHIP_ID_5709_A0:
1213         case BCE_CHIP_ID_5709_B0:
1214         case BCE_CHIP_ID_5709_B1:
1215         case BCE_CHIP_ID_5709_B2:
1216                 BCE_PRINTF("%s(%d): Unsupported controller "
1217                     "revision (%c%d)!\n", __FILE__, __LINE__,
1218                     (((pci_read_config(dev, PCIR_REVID, 4) &
1219                     0xf0) >> 4) + 'A'), (pci_read_config(dev,
1220                     PCIR_REVID, 4) & 0xf));
1221                 rc = ENODEV;
1222                 goto bce_attach_fail;
1223         }
1224
1225         /*
1226          * The embedded PCIe to PCI-X bridge (EPB)
1227          * in the 5708 cannot address memory above
1228          * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1229          */
1230         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1231                 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1232         else
1233                 sc->max_bus_addr = BUS_SPACE_MAXADDR;
1234
1235         /*
1236          * Find the base address for shared memory access.
1237          * Newer versions of bootcode use a signature and offset
1238          * while older versions use a fixed address.
1239          */
1240         val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1241         if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1242                 /* Multi-port devices use different offsets in shared memory. */
1243                 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1244                     (pci_get_function(sc->bce_dev) << 2));
1245         else
1246                 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1247
1248         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1249             __FUNCTION__, sc->bce_shmem_base);
1250
1251         /* Fetch the bootcode revision. */
1252         val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1253         for (int i = 0, j = 0; i < 3; i++) {
1254                 u8 num;
1255
1256                 num = (u8) (val >> (24 - (i * 8)));
1257                 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1258                         if (num >= k || !skip0 || k == 1) {
1259                                 sc->bce_bc_ver[j++] = (num / k) + '0';
1260                                 skip0 = 0;
1261                         }
1262                 }
1263
1264                 if (i != 2)
1265                         sc->bce_bc_ver[j++] = '.';
1266         }
1267
1268         /* Check if any management firwmare is enabled. */
1269         val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1270         if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1271                 sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1272
1273                 /* Allow time for firmware to enter the running state. */
1274                 for (int i = 0; i < 30; i++) {
1275                         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1276                         if (val & BCE_CONDITION_MFW_RUN_MASK)
1277                                 break;
1278                         DELAY(10000);
1279                 }
1280
1281                 /* Check if management firmware is running. */
1282                 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1283                 val &= BCE_CONDITION_MFW_RUN_MASK;
1284                 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1285                     (val != BCE_CONDITION_MFW_RUN_NONE)) {
1286                         u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1287                         int i = 0;
1288
1289                         /* Read the management firmware version string. */
1290                         for (int j = 0; j < 3; j++) {
1291                                 val = bce_reg_rd_ind(sc, addr + j * 4);
1292                                 val = bswap32(val);
1293                                 memcpy(&sc->bce_mfw_ver[i], &val, 4);
1294                                 i += 4;
1295                         }
1296                 } else {
1297                         /* May cause firmware synchronization timeouts. */
1298                         BCE_PRINTF("%s(%d): Management firmware enabled "
1299                             "but not running!\n", __FILE__, __LINE__);
1300                         strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1301
1302                         /* ToDo: Any action the driver should take? */
1303                 }
1304         }
1305
1306         /* Get PCI bus information (speed and type). */
1307         val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1308         if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1309                 u32 clkreg;
1310
1311                 sc->bce_flags |= BCE_PCIX_FLAG;
1312
1313                 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1314
1315                 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1316                 switch (clkreg) {
1317                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1318                         sc->bus_speed_mhz = 133;
1319                         break;
1320
1321                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1322                         sc->bus_speed_mhz = 100;
1323                         break;
1324
1325                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1326                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1327                         sc->bus_speed_mhz = 66;
1328                         break;
1329
1330                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1331                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1332                         sc->bus_speed_mhz = 50;
1333                         break;
1334
1335                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1336                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1337                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1338                         sc->bus_speed_mhz = 33;
1339                         break;
1340                 }
1341         } else {
1342                 if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1343                         sc->bus_speed_mhz = 66;
1344                 else
1345                         sc->bus_speed_mhz = 33;
1346         }
1347
1348         if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1349                 sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1350
1351         /* Find the media type for the adapter. */
1352         bce_get_media(sc);
1353
1354         /* Reset controller and announce to bootcode that driver is present. */
1355         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1356                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
1357                     __FILE__, __LINE__);
1358                 rc = ENXIO;
1359                 goto bce_attach_fail;
1360         }
1361
1362         /* Initialize the controller. */
1363         if (bce_chipinit(sc)) {
1364                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1365                     __FILE__, __LINE__);
1366                 rc = ENXIO;
1367                 goto bce_attach_fail;
1368         }
1369
1370         /* Perform NVRAM test. */
1371         if (bce_nvram_test(sc)) {
1372                 BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1373                     __FILE__, __LINE__);
1374                 rc = ENXIO;
1375                 goto bce_attach_fail;
1376         }
1377
1378         /* Fetch the permanent Ethernet MAC address. */
1379         bce_get_mac_addr(sc);
1380
1381         /* Update statistics once every second. */
1382         sc->bce_stats_ticks = 1000000 & 0xffff00;
1383
1384         /* Store data needed by PHY driver for backplane applications */
1385         sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1386         sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1387
1388         /* Allocate DMA memory resources. */
1389         if (bce_dma_alloc(dev)) {
1390                 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1391                     __FILE__, __LINE__);
1392                 rc = ENXIO;
1393                 goto bce_attach_fail;
1394         }
1395
1396         /* Allocate an ifnet structure. */
1397         ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1398         if (ifp == NULL) {
1399                 BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1400                     __FILE__, __LINE__);
1401                 rc = ENXIO;
1402                 goto bce_attach_fail;
1403         }
1404
1405         /* Initialize the ifnet interface. */
1406         ifp->if_softc   = sc;
1407         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1408         ifp->if_flags   = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1409         ifp->if_ioctl   = bce_ioctl;
1410         ifp->if_start   = bce_start;
1411         ifp->if_init    = bce_init;
1412         ifp->if_mtu     = ETHERMTU;
1413
1414         if (bce_tso_enable) {
1415                 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1416                 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1417                     IFCAP_VLAN_HWTSO;
1418         } else {
1419                 ifp->if_hwassist = BCE_IF_HWASSIST;
1420                 ifp->if_capabilities = BCE_IF_CAPABILITIES;
1421         }
1422
1423 #if __FreeBSD_version >= 800505
1424         /*
1425          * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
1426          * so it's approximate value.
1427          */
1428         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1429                 ifp->if_capabilities |= IFCAP_LINKSTATE;
1430 #endif
1431
1432         ifp->if_capenable = ifp->if_capabilities;
1433
1434         /*
1435          * Assume standard mbuf sizes for buffer allocation.
1436          * This may change later if the MTU size is set to
1437          * something other than 1500.
1438          */
1439         bce_get_rx_buffer_sizes(sc,
1440             (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1441
1442         /* Recalculate our buffer allocation sizes. */
1443         ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1444         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1445         IFQ_SET_READY(&ifp->if_snd);
1446
1447         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1448                 ifp->if_baudrate = IF_Mbps(2500ULL);
1449         else
1450                 ifp->if_baudrate = IF_Mbps(1000);
1451
1452         /* Handle any special PHY initialization for SerDes PHYs. */
1453         bce_init_media(sc);
1454
1455         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1456                 ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1457                     bce_ifmedia_sts);
1458                 /*
1459                  * We can't manually override remote PHY's link and assume
1460                  * PHY port configuration(Fiber or TP) is not changed after
1461                  * device attach.  This may not be correct though.
1462                  */
1463                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1464                         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1465                                 ifmedia_add(&sc->bce_ifmedia,
1466                                     IFM_ETHER | IFM_2500_SX, 0, NULL);
1467                                 ifmedia_add(&sc->bce_ifmedia,
1468                                     IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1469                         }
1470                         ifmedia_add(&sc->bce_ifmedia,
1471                             IFM_ETHER | IFM_1000_SX, 0, NULL);
1472                         ifmedia_add(&sc->bce_ifmedia,
1473                             IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1474                 } else {
1475                         ifmedia_add(&sc->bce_ifmedia,
1476                             IFM_ETHER | IFM_10_T, 0, NULL);
1477                         ifmedia_add(&sc->bce_ifmedia,
1478                             IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1479                         ifmedia_add(&sc->bce_ifmedia,
1480                             IFM_ETHER | IFM_100_TX, 0, NULL);
1481                         ifmedia_add(&sc->bce_ifmedia,
1482                             IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1483                         ifmedia_add(&sc->bce_ifmedia,
1484                             IFM_ETHER | IFM_1000_T, 0, NULL);
1485                         ifmedia_add(&sc->bce_ifmedia,
1486                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1487                 }
1488                 ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1489                 ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1490                 sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1491         } else {
1492                 /* MII child bus by attaching the PHY. */
1493                 rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1494                     bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1495                     MII_OFFSET_ANY, MIIF_DOPAUSE);
1496                 if (rc != 0) {
1497                         BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1498                             __LINE__);
1499                         goto bce_attach_fail;
1500                 }
1501         }
1502
1503         /* Attach to the Ethernet interface list. */
1504         ether_ifattach(ifp, sc->eaddr);
1505
1506 #if __FreeBSD_version < 500000
1507         callout_init(&sc->bce_tick_callout);
1508         callout_init(&sc->bce_pulse_callout);
1509 #else
1510         callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1511         callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1512 #endif
1513
1514         /* Hookup IRQ last. */
1515         rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1516                 NULL, bce_intr, sc, &sc->bce_intrhand);
1517
1518         if (rc) {
1519                 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1520                     __FILE__, __LINE__);
1521                 bce_detach(dev);
1522                 goto bce_attach_exit;
1523         }
1524
1525         /*
1526          * At this point we've acquired all the resources
1527          * we need to run so there's no turning back, we're
1528          * cleared for launch.
1529          */
1530
1531         /* Print some important debugging info. */
1532         DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1533
1534         /* Add the supported sysctls to the kernel. */
1535         bce_add_sysctls(sc);
1536
1537         BCE_LOCK(sc);
1538
1539         /*
1540          * The chip reset earlier notified the bootcode that
1541          * a driver is present.  We now need to start our pulse
1542          * routine so that the bootcode is reminded that we're
1543          * still running.
1544          */
1545         bce_pulse(sc);
1546
1547         bce_mgmt_init_locked(sc);
1548         BCE_UNLOCK(sc);
1549
1550         /* Finally, print some useful adapter info */
1551         bce_print_adapter_info(sc);
1552         DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1553                 __FUNCTION__, sc);
1554
1555         goto bce_attach_exit;
1556
1557 bce_attach_fail:
1558         bce_release_resources(sc);
1559
1560 bce_attach_exit:
1561
1562         DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1563
1564         return(rc);
1565 }
1566
1567
1568 /****************************************************************************/
1569 /* Device detach function.                                                  */
1570 /*                                                                          */
1571 /* Stops the controller, resets the controller, and releases resources.     */
1572 /*                                                                          */
1573 /* Returns:                                                                 */
1574 /*   0 on success, positive value on failure.                               */
1575 /****************************************************************************/
1576 static int
1577 bce_detach(device_t dev)
1578 {
1579         struct bce_softc *sc = device_get_softc(dev);
1580         struct ifnet *ifp;
1581         u32 msg;
1582
1583         DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1584
1585         ifp = sc->bce_ifp;
1586
1587         /* Stop and reset the controller. */
1588         BCE_LOCK(sc);
1589
1590         /* Stop the pulse so the bootcode can go to driver absent state. */
1591         callout_stop(&sc->bce_pulse_callout);
1592
1593         bce_stop(sc);
1594         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1595                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1596         else
1597                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1598         bce_reset(sc, msg);
1599
1600         BCE_UNLOCK(sc);
1601
1602         ether_ifdetach(ifp);
1603
1604         /* If we have a child device on the MII bus remove it too. */
1605         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1606                 ifmedia_removeall(&sc->bce_ifmedia);
1607         else {
1608                 bus_generic_detach(dev);
1609                 device_delete_child(dev, sc->bce_miibus);
1610         }
1611
1612         /* Release all remaining resources. */
1613         bce_release_resources(sc);
1614
1615         DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1616
1617         return(0);
1618 }
1619
1620
1621 /****************************************************************************/
1622 /* Device shutdown function.                                                */
1623 /*                                                                          */
1624 /* Stops and resets the controller.                                         */
1625 /*                                                                          */
1626 /* Returns:                                                                 */
1627 /*   0 on success, positive value on failure.                               */
1628 /****************************************************************************/
1629 static int
1630 bce_shutdown(device_t dev)
1631 {
1632         struct bce_softc *sc = device_get_softc(dev);
1633         u32 msg;
1634
1635         DBENTER(BCE_VERBOSE);
1636
1637         BCE_LOCK(sc);
1638         bce_stop(sc);
1639         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1640                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1641         else
1642                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1643         bce_reset(sc, msg);
1644         BCE_UNLOCK(sc);
1645
1646         DBEXIT(BCE_VERBOSE);
1647
1648         return (0);
1649 }
1650
1651
1652 #ifdef BCE_DEBUG
1653 /****************************************************************************/
1654 /* Register read.                                                           */
1655 /*                                                                          */
1656 /* Returns:                                                                 */
1657 /*   The value of the register.                                             */
1658 /****************************************************************************/
1659 static u32
1660 bce_reg_rd(struct bce_softc *sc, u32 offset)
1661 {
1662         u32 val = REG_RD(sc, offset);
1663         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1664                 __FUNCTION__, offset, val);
1665         return val;
1666 }
1667
1668
1669 /****************************************************************************/
1670 /* Register write (16 bit).                                                 */
1671 /*                                                                          */
1672 /* Returns:                                                                 */
1673 /*   Nothing.                                                               */
1674 /****************************************************************************/
1675 static void
1676 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1677 {
1678         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1679                 __FUNCTION__, offset, val);
1680         REG_WR16(sc, offset, val);
1681 }
1682
1683
1684 /****************************************************************************/
1685 /* Register write.                                                          */
1686 /*                                                                          */
1687 /* Returns:                                                                 */
1688 /*   Nothing.                                                               */
1689 /****************************************************************************/
1690 static void
1691 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1692 {
1693         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1694                 __FUNCTION__, offset, val);
1695         REG_WR(sc, offset, val);
1696 }
1697 #endif
1698
1699 /****************************************************************************/
1700 /* Indirect register read.                                                  */
1701 /*                                                                          */
1702 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1703 /* configuration space.  Using this mechanism avoids issues with posted     */
1704 /* reads but is much slower than memory-mapped I/O.                         */
1705 /*                                                                          */
1706 /* Returns:                                                                 */
1707 /*   The value of the register.                                             */
1708 /****************************************************************************/
1709 static u32
1710 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1711 {
1712         device_t dev;
1713         dev = sc->bce_dev;
1714
1715         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1716 #ifdef BCE_DEBUG
1717         {
1718                 u32 val;
1719                 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1720                 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1721                         __FUNCTION__, offset, val);
1722                 return val;
1723         }
1724 #else
1725         return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1726 #endif
1727 }
1728
1729
1730 /****************************************************************************/
1731 /* Indirect register write.                                                 */
1732 /*                                                                          */
1733 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1734 /* configuration space.  Using this mechanism avoids issues with posted     */
1735 /* writes but is muchh slower than memory-mapped I/O.                       */
1736 /*                                                                          */
1737 /* Returns:                                                                 */
1738 /*   Nothing.                                                               */
1739 /****************************************************************************/
1740 static void
1741 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1742 {
1743         device_t dev;
1744         dev = sc->bce_dev;
1745
1746         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1747                 __FUNCTION__, offset, val);
1748
1749         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1750         pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1751 }
1752
1753
1754 /****************************************************************************/
1755 /* Shared memory write.                                                     */
1756 /*                                                                          */
1757 /* Writes NetXtreme II shared memory region.                                */
1758 /*                                                                          */
1759 /* Returns:                                                                 */
1760 /*   Nothing.                                                               */
1761 /****************************************************************************/
1762 static void
1763 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1764 {
1765         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1766             "0x%08X\n", __FUNCTION__, val, offset);
1767
1768         bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1769 }
1770
1771
1772 /****************************************************************************/
1773 /* Shared memory read.                                                      */
1774 /*                                                                          */
1775 /* Reads NetXtreme II shared memory region.                                 */
1776 /*                                                                          */
1777 /* Returns:                                                                 */
1778 /*   The 32 bit value read.                                                 */
1779 /****************************************************************************/
1780 static u32
1781 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1782 {
1783         u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1784
1785         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1786             "0x%08X\n", __FUNCTION__, val, offset);
1787
1788         return val;
1789 }
1790
1791
1792 #ifdef BCE_DEBUG
1793 /****************************************************************************/
1794 /* Context memory read.                                                     */
1795 /*                                                                          */
1796 /* The NetXtreme II controller uses context memory to track connection      */
1797 /* information for L2 and higher network protocols.                         */
1798 /*                                                                          */
1799 /* Returns:                                                                 */
1800 /*   The requested 32 bit value of context memory.                          */
1801 /****************************************************************************/
1802 static u32
1803 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1804 {
1805         u32 idx, offset, retry_cnt = 5, val;
1806
1807         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1808             cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1809             "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1810
1811         offset = ctx_offset + cid_addr;
1812
1813         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1814
1815                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1816
1817                 for (idx = 0; idx < retry_cnt; idx++) {
1818                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1819                         if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1820                                 break;
1821                         DELAY(5);
1822                 }
1823
1824                 if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1825                         BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1826                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1827                             __FILE__, __LINE__, cid_addr, ctx_offset);
1828
1829                 val = REG_RD(sc, BCE_CTX_CTX_DATA);
1830         } else {
1831                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1832                 val = REG_RD(sc, BCE_CTX_DATA);
1833         }
1834
1835         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1836                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1837
1838         return(val);
1839 }
1840 #endif
1841
1842
1843 /****************************************************************************/
1844 /* Context memory write.                                                    */
1845 /*                                                                          */
1846 /* The NetXtreme II controller uses context memory to track connection      */
1847 /* information for L2 and higher network protocols.                         */
1848 /*                                                                          */
1849 /* Returns:                                                                 */
1850 /*   Nothing.                                                               */
1851 /****************************************************************************/
1852 static void
1853 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1854 {
1855         u32 idx, offset = ctx_offset + cid_addr;
1856         u32 val, retry_cnt = 5;
1857
1858         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1859                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1860
1861         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1862                 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1863                     __FUNCTION__, cid_addr));
1864
1865         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1866
1867                 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1868                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1869
1870                 for (idx = 0; idx < retry_cnt; idx++) {
1871                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1872                         if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1873                                 break;
1874                         DELAY(5);
1875                 }
1876
1877                 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1878                         BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1879                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1880                             __FILE__, __LINE__, cid_addr, ctx_offset);
1881
1882         } else {
1883                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1884                 REG_WR(sc, BCE_CTX_DATA, ctx_val);
1885         }
1886 }
1887
1888
1889 /****************************************************************************/
1890 /* PHY register read.                                                       */
1891 /*                                                                          */
1892 /* Implements register reads on the MII bus.                                */
1893 /*                                                                          */
1894 /* Returns:                                                                 */
1895 /*   The value of the register.                                             */
1896 /****************************************************************************/
1897 static int
1898 bce_miibus_read_reg(device_t dev, int phy, int reg)
1899 {
1900         struct bce_softc *sc;
1901         u32 val;
1902         int i;
1903
1904         sc = device_get_softc(dev);
1905
1906     /*
1907      * The 5709S PHY is an IEEE Clause 45 PHY
1908      * with special mappings to work with IEEE
1909      * Clause 22 register accesses.
1910      */
1911         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1912                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1913                         reg += 0x10;
1914         }
1915
1916     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1917                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1918                 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1919
1920                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1921                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1922
1923                 DELAY(40);
1924         }
1925
1926
1927         val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1928             BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1929             BCE_EMAC_MDIO_COMM_START_BUSY;
1930         REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1931
1932         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1933                 DELAY(10);
1934
1935                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1936                 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1937                         DELAY(5);
1938
1939                         val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1940                         val &= BCE_EMAC_MDIO_COMM_DATA;
1941
1942                         break;
1943                 }
1944         }
1945
1946         if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1947                 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1948                     "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1949                 val = 0x0;
1950         } else {
1951                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1952         }
1953
1954
1955         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1956                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1957                 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1958
1959                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1960                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1961
1962                 DELAY(40);
1963         }
1964
1965         DB_PRINT_PHY_REG(reg, val);
1966         return (val & 0xffff);
1967 }
1968
1969
1970 /****************************************************************************/
1971 /* PHY register write.                                                      */
1972 /*                                                                          */
1973 /* Implements register writes on the MII bus.                               */
1974 /*                                                                          */
1975 /* Returns:                                                                 */
1976 /*   The value of the register.                                             */
1977 /****************************************************************************/
1978 static int
1979 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1980 {
1981         struct bce_softc *sc;
1982         u32 val1;
1983         int i;
1984
1985         sc = device_get_softc(dev);
1986
1987         DB_PRINT_PHY_REG(reg, val);
1988
1989         /*
1990          * The 5709S PHY is an IEEE Clause 45 PHY
1991          * with special mappings to work with IEEE
1992          * Clause 22 register accesses.
1993          */
1994         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1995                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1996                         reg += 0x10;
1997         }
1998
1999         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
2000                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
2001                 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
2002
2003                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
2004                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
2005
2006                 DELAY(40);
2007         }
2008
2009         val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
2010             BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
2011             BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
2012         REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
2013
2014         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
2015                 DELAY(10);
2016
2017                 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
2018                 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
2019                         DELAY(5);
2020                         break;
2021                 }
2022         }
2023
2024         if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
2025                 BCE_PRINTF("%s(%d): PHY write timeout!\n",
2026                     __FILE__, __LINE__);
2027
2028         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
2029                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
2030                 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
2031
2032                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
2033                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
2034
2035                 DELAY(40);
2036         }
2037
2038         return 0;
2039 }
2040
2041
2042 /****************************************************************************/
2043 /* MII bus status change.                                                   */
2044 /*                                                                          */
2045 /* Called by the MII bus driver when the PHY establishes link to set the    */
2046 /* MAC interface registers.                                                 */
2047 /*                                                                          */
2048 /* Returns:                                                                 */
2049 /*   Nothing.                                                               */
2050 /****************************************************************************/
2051 static void
2052 bce_miibus_statchg(device_t dev)
2053 {
2054         struct bce_softc *sc;
2055         struct mii_data *mii;
2056         struct ifmediareq ifmr;
2057         int media_active, media_status, val;
2058
2059         sc = device_get_softc(dev);
2060
2061         DBENTER(BCE_VERBOSE_PHY);
2062
2063         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2064                 bzero(&ifmr, sizeof(ifmr));
2065                 bce_ifmedia_sts_rphy(sc, &ifmr);
2066                 media_active = ifmr.ifm_active;
2067                 media_status = ifmr.ifm_status;
2068         } else {
2069                 mii = device_get_softc(sc->bce_miibus);
2070                 media_active = mii->mii_media_active;
2071                 media_status = mii->mii_media_status;
2072         }
2073
2074         /* Ignore invalid media status. */
2075         if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2076             (IFM_ACTIVE | IFM_AVALID))
2077                 goto bce_miibus_statchg_exit;
2078
2079         val = REG_RD(sc, BCE_EMAC_MODE);
2080         val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2081             BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2082             BCE_EMAC_MODE_25G);
2083
2084         /* Set MII or GMII interface based on the PHY speed. */
2085         switch (IFM_SUBTYPE(media_active)) {
2086         case IFM_10_T:
2087                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2088                         DBPRINT(sc, BCE_INFO_PHY,
2089                             "Enabling 10Mb interface.\n");
2090                         val |= BCE_EMAC_MODE_PORT_MII_10;
2091                         break;
2092                 }
2093                 /* fall-through */
2094         case IFM_100_TX:
2095                 DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2096                 val |= BCE_EMAC_MODE_PORT_MII;
2097                 break;
2098         case IFM_2500_SX:
2099                 DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2100                 val |= BCE_EMAC_MODE_25G;
2101                 /* fall-through */
2102         case IFM_1000_T:
2103         case IFM_1000_SX:
2104                 DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2105                 val |= BCE_EMAC_MODE_PORT_GMII;
2106                 break;
2107         default:
2108                 DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2109                     "default GMII interface.\n");
2110                 val |= BCE_EMAC_MODE_PORT_GMII;
2111         }
2112
2113         /* Set half or full duplex based on PHY settings. */
2114         if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2115                 DBPRINT(sc, BCE_INFO_PHY,
2116                     "Setting Half-Duplex interface.\n");
2117                 val |= BCE_EMAC_MODE_HALF_DUPLEX;
2118         } else
2119                 DBPRINT(sc, BCE_INFO_PHY,
2120                     "Setting Full-Duplex interface.\n");
2121
2122         REG_WR(sc, BCE_EMAC_MODE, val);
2123
2124         if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2125                 DBPRINT(sc, BCE_INFO_PHY,
2126                     "%s(): Enabling RX flow control.\n", __FUNCTION__);
2127                 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2128                 sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2129         } else {
2130                 DBPRINT(sc, BCE_INFO_PHY,
2131                     "%s(): Disabling RX flow control.\n", __FUNCTION__);
2132                 BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2133                 sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2134         }
2135
2136         if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2137                 DBPRINT(sc, BCE_INFO_PHY,
2138                     "%s(): Enabling TX flow control.\n", __FUNCTION__);
2139                 BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2140                 sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2141         } else {
2142                 DBPRINT(sc, BCE_INFO_PHY,
2143                     "%s(): Disabling TX flow control.\n", __FUNCTION__);
2144                 BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2145                 sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2146         }
2147
2148         /* ToDo: Update watermarks in bce_init_rx_context(). */
2149
2150 bce_miibus_statchg_exit:
2151         DBEXIT(BCE_VERBOSE_PHY);
2152 }
2153
2154
2155 /****************************************************************************/
2156 /* Acquire NVRAM lock.                                                      */
2157 /*                                                                          */
2158 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2159 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2160 /* for use by the driver.                                                   */
2161 /*                                                                          */
2162 /* Returns:                                                                 */
2163 /*   0 on success, positive value on failure.                               */
2164 /****************************************************************************/
2165 static int
2166 bce_acquire_nvram_lock(struct bce_softc *sc)
2167 {
2168         u32 val;
2169         int j, rc = 0;
2170
2171         DBENTER(BCE_VERBOSE_NVRAM);
2172
2173         /* Request access to the flash interface. */
2174         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2175         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2176                 val = REG_RD(sc, BCE_NVM_SW_ARB);
2177                 if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2178                         break;
2179
2180                 DELAY(5);
2181         }
2182
2183         if (j >= NVRAM_TIMEOUT_COUNT) {
2184                 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2185                 rc = EBUSY;
2186         }
2187
2188         DBEXIT(BCE_VERBOSE_NVRAM);
2189         return (rc);
2190 }
2191
2192
2193 /****************************************************************************/
2194 /* Release NVRAM lock.                                                      */
2195 /*                                                                          */
2196 /* When the caller is finished accessing NVRAM the lock must be released.   */
2197 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2198 /* for use by the driver.                                                   */
2199 /*                                                                          */
2200 /* Returns:                                                                 */
2201 /*   0 on success, positive value on failure.                               */
2202 /****************************************************************************/
2203 static int
2204 bce_release_nvram_lock(struct bce_softc *sc)
2205 {
2206         u32 val;
2207         int j, rc = 0;
2208
2209         DBENTER(BCE_VERBOSE_NVRAM);
2210
2211         /*
2212          * Relinquish nvram interface.
2213          */
2214         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2215
2216         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2217                 val = REG_RD(sc, BCE_NVM_SW_ARB);
2218                 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2219                         break;
2220
2221                 DELAY(5);
2222         }
2223
2224         if (j >= NVRAM_TIMEOUT_COUNT) {
2225                 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2226                 rc = EBUSY;
2227         }
2228
2229         DBEXIT(BCE_VERBOSE_NVRAM);
2230         return (rc);
2231 }
2232
2233
2234 #ifdef BCE_NVRAM_WRITE_SUPPORT
2235 /****************************************************************************/
2236 /* Enable NVRAM write access.                                               */
2237 /*                                                                          */
2238 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2239 /*                                                                          */
2240 /* Returns:                                                                 */
2241 /*   0 on success, positive value on failure.                               */
2242 /****************************************************************************/
2243 static int
2244 bce_enable_nvram_write(struct bce_softc *sc)
2245 {
2246         u32 val;
2247         int rc = 0;
2248
2249         DBENTER(BCE_VERBOSE_NVRAM);
2250
2251         val = REG_RD(sc, BCE_MISC_CFG);
2252         REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2253
2254         if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2255                 int j;
2256
2257                 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2258                 REG_WR(sc, BCE_NVM_COMMAND,     BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2259
2260                 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2261                         DELAY(5);
2262
2263                         val = REG_RD(sc, BCE_NVM_COMMAND);
2264                         if (val & BCE_NVM_COMMAND_DONE)
2265                                 break;
2266                 }
2267
2268                 if (j >= NVRAM_TIMEOUT_COUNT) {
2269                         DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2270                         rc = EBUSY;
2271                 }
2272         }
2273
2274         DBENTER(BCE_VERBOSE_NVRAM);
2275         return (rc);
2276 }
2277
2278
2279 /****************************************************************************/
2280 /* Disable NVRAM write access.                                              */
2281 /*                                                                          */
2282 /* When the caller is finished writing to NVRAM write access must be        */
2283 /* disabled.                                                                */
2284 /*                                                                          */
2285 /* Returns:                                                                 */
2286 /*   Nothing.                                                               */
2287 /****************************************************************************/
2288 static void
2289 bce_disable_nvram_write(struct bce_softc *sc)
2290 {
2291         u32 val;
2292
2293         DBENTER(BCE_VERBOSE_NVRAM);
2294
2295         val = REG_RD(sc, BCE_MISC_CFG);
2296         REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2297
2298         DBEXIT(BCE_VERBOSE_NVRAM);
2299
2300 }
2301 #endif
2302
2303
2304 /****************************************************************************/
2305 /* Enable NVRAM access.                                                     */
2306 /*                                                                          */
2307 /* Before accessing NVRAM for read or write operations the caller must      */
2308 /* enabled NVRAM access.                                                    */
2309 /*                                                                          */
2310 /* Returns:                                                                 */
2311 /*   Nothing.                                                               */
2312 /****************************************************************************/
2313 static void
2314 bce_enable_nvram_access(struct bce_softc *sc)
2315 {
2316         u32 val;
2317
2318         DBENTER(BCE_VERBOSE_NVRAM);
2319
2320         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2321         /* Enable both bits, even on read. */
2322         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2323             BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2324
2325         DBEXIT(BCE_VERBOSE_NVRAM);
2326 }
2327
2328
2329 /****************************************************************************/
2330 /* Disable NVRAM access.                                                    */
2331 /*                                                                          */
2332 /* When the caller is finished accessing NVRAM access must be disabled.     */
2333 /*                                                                          */
2334 /* Returns:                                                                 */
2335 /*   Nothing.                                                               */
2336 /****************************************************************************/
2337 static void
2338 bce_disable_nvram_access(struct bce_softc *sc)
2339 {
2340         u32 val;
2341
2342         DBENTER(BCE_VERBOSE_NVRAM);
2343
2344         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2345
2346         /* Disable both bits, even after read. */
2347         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2348             ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2349
2350         DBEXIT(BCE_VERBOSE_NVRAM);
2351 }
2352
2353
2354 #ifdef BCE_NVRAM_WRITE_SUPPORT
2355 /****************************************************************************/
2356 /* Erase NVRAM page before writing.                                         */
2357 /*                                                                          */
2358 /* Non-buffered flash parts require that a page be erased before it is      */
2359 /* written.                                                                 */
2360 /*                                                                          */
2361 /* Returns:                                                                 */
2362 /*   0 on success, positive value on failure.                               */
2363 /****************************************************************************/
2364 static int
2365 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2366 {
2367         u32 cmd;
2368         int j, rc = 0;
2369
2370         DBENTER(BCE_VERBOSE_NVRAM);
2371
2372         /* Buffered flash doesn't require an erase. */
2373         if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2374                 goto bce_nvram_erase_page_exit;
2375
2376         /* Build an erase command. */
2377         cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2378             BCE_NVM_COMMAND_DOIT;
2379
2380         /*
2381          * Clear the DONE bit separately, set the NVRAM adress to erase,
2382          * and issue the erase command.
2383          */
2384         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2385         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2386         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2387
2388         /* Wait for completion. */
2389         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2390                 u32 val;
2391
2392                 DELAY(5);
2393
2394                 val = REG_RD(sc, BCE_NVM_COMMAND);
2395                 if (val & BCE_NVM_COMMAND_DONE)
2396                         break;
2397         }
2398
2399         if (j >= NVRAM_TIMEOUT_COUNT) {
2400                 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2401                 rc = EBUSY;
2402         }
2403
2404 bce_nvram_erase_page_exit:
2405         DBEXIT(BCE_VERBOSE_NVRAM);
2406         return (rc);
2407 }
2408 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2409
2410
2411 /****************************************************************************/
2412 /* Read a dword (32 bits) from NVRAM.                                       */
2413 /*                                                                          */
2414 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2415 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2416 /*                                                                          */
2417 /* Returns:                                                                 */
2418 /*   0 on success and the 32 bit value read, positive value on failure.     */
2419 /****************************************************************************/
2420 static int
2421 bce_nvram_read_dword(struct bce_softc *sc,
2422     u32 offset, u8 *ret_val, u32 cmd_flags)
2423 {
2424         u32 cmd;
2425         int i, rc = 0;
2426
2427         DBENTER(BCE_EXTREME_NVRAM);
2428
2429         /* Build the command word. */
2430         cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2431
2432         /* Calculate the offset for buffered flash if translation is used. */
2433         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2434                 offset = ((offset / sc->bce_flash_info->page_size) <<
2435                     sc->bce_flash_info->page_bits) +
2436                     (offset % sc->bce_flash_info->page_size);
2437         }
2438
2439         /*
2440          * Clear the DONE bit separately, set the address to read,
2441          * and issue the read.
2442          */
2443         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2444         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2445         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2446
2447         /* Wait for completion. */
2448         for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2449                 u32 val;
2450
2451                 DELAY(5);
2452
2453                 val = REG_RD(sc, BCE_NVM_COMMAND);
2454                 if (val & BCE_NVM_COMMAND_DONE) {
2455                         val = REG_RD(sc, BCE_NVM_READ);
2456
2457                         val = bce_be32toh(val);
2458                         memcpy(ret_val, &val, 4);
2459                         break;
2460                 }
2461         }
2462
2463         /* Check for errors. */
2464         if (i >= NVRAM_TIMEOUT_COUNT) {
2465                 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2466                     "offset 0x%08X!\n", __FILE__, __LINE__, offset);
2467                 rc = EBUSY;
2468         }
2469
2470         DBEXIT(BCE_EXTREME_NVRAM);
2471         return(rc);
2472 }
2473
2474
2475 #ifdef BCE_NVRAM_WRITE_SUPPORT
2476 /****************************************************************************/
2477 /* Write a dword (32 bits) to NVRAM.                                        */
2478 /*                                                                          */
2479 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2480 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2481 /* enabled NVRAM write access.                                              */
2482 /*                                                                          */
2483 /* Returns:                                                                 */
2484 /*   0 on success, positive value on failure.                               */
2485 /****************************************************************************/
2486 static int
2487 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2488         u32 cmd_flags)
2489 {
2490         u32 cmd, val32;
2491         int j, rc = 0;
2492
2493         DBENTER(BCE_VERBOSE_NVRAM);
2494
2495         /* Build the command word. */
2496         cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2497
2498         /* Calculate the offset for buffered flash if translation is used. */
2499         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2500                 offset = ((offset / sc->bce_flash_info->page_size) <<
2501                     sc->bce_flash_info->page_bits) +
2502                     (offset % sc->bce_flash_info->page_size);
2503         }
2504
2505         /*
2506          * Clear the DONE bit separately, convert NVRAM data to big-endian,
2507          * set the NVRAM address to write, and issue the write command
2508          */
2509         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2510         memcpy(&val32, val, 4);
2511         val32 = htobe32(val32);
2512         REG_WR(sc, BCE_NVM_WRITE, val32);
2513         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2514         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2515
2516         /* Wait for completion. */
2517         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2518                 DELAY(5);
2519
2520                 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2521                         break;
2522         }
2523         if (j >= NVRAM_TIMEOUT_COUNT) {
2524                 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2525                     "offset 0x%08X\n", __FILE__, __LINE__, offset);
2526                 rc = EBUSY;
2527         }
2528
2529         DBEXIT(BCE_VERBOSE_NVRAM);
2530         return (rc);
2531 }
2532 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2533
2534
2535 /****************************************************************************/
2536 /* Initialize NVRAM access.                                                 */
2537 /*                                                                          */
2538 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2539 /* access that device.                                                      */
2540 /*                                                                          */
2541 /* Returns:                                                                 */
2542 /*   0 on success, positive value on failure.                               */
2543 /****************************************************************************/
2544 static int
2545 bce_init_nvram(struct bce_softc *sc)
2546 {
2547         u32 val;
2548         int j, entry_count, rc = 0;
2549         const struct flash_spec *flash;
2550
2551         DBENTER(BCE_VERBOSE_NVRAM);
2552
2553         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2554                 sc->bce_flash_info = &flash_5709;
2555                 goto bce_init_nvram_get_flash_size;
2556         }
2557
2558         /* Determine the selected interface. */
2559         val = REG_RD(sc, BCE_NVM_CFG1);
2560
2561         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2562
2563         /*
2564          * Flash reconfiguration is required to support additional
2565          * NVRAM devices not directly supported in hardware.
2566          * Check if the flash interface was reconfigured
2567          * by the bootcode.
2568          */
2569
2570         if (val & 0x40000000) {
2571                 /* Flash interface reconfigured by bootcode. */
2572
2573                 DBPRINT(sc,BCE_INFO_LOAD,
2574                         "bce_init_nvram(): Flash WAS reconfigured.\n");
2575
2576                 for (j = 0, flash = &flash_table[0]; j < entry_count;
2577                      j++, flash++) {
2578                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
2579                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2580                                 sc->bce_flash_info = flash;
2581                                 break;
2582                         }
2583                 }
2584         } else {
2585                 /* Flash interface not yet reconfigured. */
2586                 u32 mask;
2587
2588                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2589                         __FUNCTION__);
2590
2591                 if (val & (1 << 23))
2592                         mask = FLASH_BACKUP_STRAP_MASK;
2593                 else
2594                         mask = FLASH_STRAP_MASK;
2595
2596                 /* Look for the matching NVRAM device configuration data. */
2597                 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2598
2599                         /* Check if the device matches any of the known devices. */
2600                         if ((val & mask) == (flash->strapping & mask)) {
2601                                 /* Found a device match. */
2602                                 sc->bce_flash_info = flash;
2603
2604                                 /* Request access to the flash interface. */
2605                                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2606                                         return rc;
2607
2608                                 /* Reconfigure the flash interface. */
2609                                 bce_enable_nvram_access(sc);
2610                                 REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2611                                 REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2612                                 REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2613                                 REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2614                                 bce_disable_nvram_access(sc);
2615                                 bce_release_nvram_lock(sc);
2616
2617                                 break;
2618                         }
2619                 }
2620         }
2621
2622         /* Check if a matching device was found. */
2623         if (j == entry_count) {
2624                 sc->bce_flash_info = NULL;
2625                 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2626                     __FILE__, __LINE__);
2627                 DBEXIT(BCE_VERBOSE_NVRAM);
2628                 return (ENODEV);
2629         }
2630
2631 bce_init_nvram_get_flash_size:
2632         /* Write the flash config data to the shared memory interface. */
2633         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2634         val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2635         if (val)
2636                 sc->bce_flash_size = val;
2637         else
2638                 sc->bce_flash_size = sc->bce_flash_info->total_size;
2639
2640         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2641             __FUNCTION__, sc->bce_flash_info->name,
2642             sc->bce_flash_info->total_size);
2643
2644         DBEXIT(BCE_VERBOSE_NVRAM);
2645         return rc;
2646 }
2647
2648
2649 /****************************************************************************/
2650 /* Read an arbitrary range of data from NVRAM.                              */
2651 /*                                                                          */
2652 /* Prepares the NVRAM interface for access and reads the requested data     */
2653 /* into the supplied buffer.                                                */
2654 /*                                                                          */
2655 /* Returns:                                                                 */
2656 /*   0 on success and the data read, positive value on failure.             */
2657 /****************************************************************************/
2658 static int
2659 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2660         int buf_size)
2661 {
2662         int rc = 0;
2663         u32 cmd_flags, offset32, len32, extra;
2664
2665         DBENTER(BCE_VERBOSE_NVRAM);
2666
2667         if (buf_size == 0)
2668                 goto bce_nvram_read_exit;
2669
2670         /* Request access to the flash interface. */
2671         if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2672                 goto bce_nvram_read_exit;
2673
2674         /* Enable access to flash interface */
2675         bce_enable_nvram_access(sc);
2676
2677         len32 = buf_size;
2678         offset32 = offset;
2679         extra = 0;
2680
2681         cmd_flags = 0;
2682
2683         if (offset32 & 3) {
2684                 u8 buf[4];
2685                 u32 pre_len;
2686
2687                 offset32 &= ~3;
2688                 pre_len = 4 - (offset & 3);
2689
2690                 if (pre_len >= len32) {
2691                         pre_len = len32;
2692                         cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2693                 }
2694                 else {
2695                         cmd_flags = BCE_NVM_COMMAND_FIRST;
2696                 }
2697
2698                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2699
2700                 if (rc)
2701                         return rc;
2702
2703                 memcpy(ret_buf, buf + (offset & 3), pre_len);
2704
2705                 offset32 += 4;
2706                 ret_buf += pre_len;
2707                 len32 -= pre_len;
2708         }
2709
2710         if (len32 & 3) {
2711                 extra = 4 - (len32 & 3);
2712                 len32 = (len32 + 4) & ~3;
2713         }
2714
2715         if (len32 == 4) {
2716                 u8 buf[4];
2717
2718                 if (cmd_flags)
2719                         cmd_flags = BCE_NVM_COMMAND_LAST;
2720                 else
2721                         cmd_flags = BCE_NVM_COMMAND_FIRST |
2722                                     BCE_NVM_COMMAND_LAST;
2723
2724                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2725
2726                 memcpy(ret_buf, buf, 4 - extra);
2727         }
2728         else if (len32 > 0) {
2729                 u8 buf[4];
2730
2731                 /* Read the first word. */
2732                 if (cmd_flags)
2733                         cmd_flags = 0;
2734                 else
2735                         cmd_flags = BCE_NVM_COMMAND_FIRST;
2736
2737                 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2738
2739                 /* Advance to the next dword. */
2740                 offset32 += 4;
2741                 ret_buf += 4;
2742                 len32 -= 4;
2743
2744                 while (len32 > 4 && rc == 0) {
2745                         rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2746
2747                         /* Advance to the next dword. */
2748                         offset32 += 4;
2749                         ret_buf += 4;
2750                         len32 -= 4;
2751                 }
2752
2753                 if (rc)
2754                         goto bce_nvram_read_locked_exit;
2755
2756                 cmd_flags = BCE_NVM_COMMAND_LAST;
2757                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2758
2759                 memcpy(ret_buf, buf, 4 - extra);
2760         }
2761
2762 bce_nvram_read_locked_exit:
2763         /* Disable access to flash interface and release the lock. */
2764         bce_disable_nvram_access(sc);
2765         bce_release_nvram_lock(sc);
2766
2767 bce_nvram_read_exit:
2768         DBEXIT(BCE_VERBOSE_NVRAM);
2769         return rc;
2770 }
2771
2772
2773 #ifdef BCE_NVRAM_WRITE_SUPPORT
2774 /****************************************************************************/
2775 /* Write an arbitrary range of data from NVRAM.                             */
2776 /*                                                                          */
2777 /* Prepares the NVRAM interface for write access and writes the requested   */
2778 /* data from the supplied buffer.  The caller is responsible for            */
2779 /* calculating any appropriate CRCs.                                        */
2780 /*                                                                          */
2781 /* Returns:                                                                 */
2782 /*   0 on success, positive value on failure.                               */
2783 /****************************************************************************/
2784 static int
2785 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2786         int buf_size)
2787 {
2788         u32 written, offset32, len32;
2789         u8 *buf, start[4], end[4];
2790         int rc = 0;
2791         int align_start, align_end;
2792
2793         DBENTER(BCE_VERBOSE_NVRAM);
2794
2795         buf = data_buf;
2796         offset32 = offset;
2797         len32 = buf_size;
2798         align_start = align_end = 0;
2799
2800         if ((align_start = (offset32 & 3))) {
2801                 offset32 &= ~3;
2802                 len32 += align_start;
2803                 if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2804                         goto bce_nvram_write_exit;
2805         }
2806
2807         if (len32 & 3) {
2808                 if ((len32 > 4) || !align_start) {
2809                         align_end = 4 - (len32 & 3);
2810                         len32 += align_end;
2811                         if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2812                                 end, 4))) {
2813                                 goto bce_nvram_write_exit;
2814                         }
2815                 }
2816         }
2817
2818         if (align_start || align_end) {
2819                 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2820                 if (buf == 0) {
2821                         rc = ENOMEM;
2822                         goto bce_nvram_write_exit;
2823                 }
2824
2825                 if (align_start) {
2826                         memcpy(buf, start, 4);
2827                 }
2828
2829                 if (align_end) {
2830                         memcpy(buf + len32 - 4, end, 4);
2831                 }
2832                 memcpy(buf + align_start, data_buf, buf_size);
2833         }
2834
2835         written = 0;
2836         while ((written < len32) && (rc == 0)) {
2837                 u32 page_start, page_end, data_start, data_end;
2838                 u32 addr, cmd_flags;
2839                 int i;
2840                 u8 flash_buffer[264];
2841
2842             /* Find the page_start addr */
2843                 page_start = offset32 + written;
2844                 page_start -= (page_start % sc->bce_flash_info->page_size);
2845                 /* Find the page_end addr */
2846                 page_end = page_start + sc->bce_flash_info->page_size;
2847                 /* Find the data_start addr */
2848                 data_start = (written == 0) ? offset32 : page_start;
2849                 /* Find the data_end addr */
2850                 data_end = (page_end > offset32 + len32) ?
2851                         (offset32 + len32) : page_end;
2852
2853                 /* Request access to the flash interface. */
2854                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2855                         goto bce_nvram_write_exit;
2856
2857                 /* Enable access to flash interface */
2858                 bce_enable_nvram_access(sc);
2859
2860                 cmd_flags = BCE_NVM_COMMAND_FIRST;
2861                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2862                         int j;
2863
2864                         /* Read the whole page into the buffer
2865                          * (non-buffer flash only) */
2866                         for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2867                                 if (j == (sc->bce_flash_info->page_size - 4)) {
2868                                         cmd_flags |= BCE_NVM_COMMAND_LAST;
2869                                 }
2870                                 rc = bce_nvram_read_dword(sc,
2871                                         page_start + j,
2872                                         &flash_buffer[j],
2873                                         cmd_flags);
2874
2875                                 if (rc)
2876                                         goto bce_nvram_write_locked_exit;
2877
2878                                 cmd_flags = 0;
2879                         }
2880                 }
2881
2882                 /* Enable writes to flash interface (unlock write-protect) */
2883                 if ((rc = bce_enable_nvram_write(sc)) != 0)
2884                         goto bce_nvram_write_locked_exit;
2885
2886                 /* Erase the page */
2887                 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2888                         goto bce_nvram_write_locked_exit;
2889
2890                 /* Re-enable the write again for the actual write */
2891                 bce_enable_nvram_write(sc);
2892
2893                 /* Loop to write back the buffer data from page_start to
2894                  * data_start */
2895                 i = 0;
2896                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2897                         for (addr = page_start; addr < data_start;
2898                                 addr += 4, i += 4) {
2899
2900                                 rc = bce_nvram_write_dword(sc, addr,
2901                                         &flash_buffer[i], cmd_flags);
2902
2903                                 if (rc != 0)
2904                                         goto bce_nvram_write_locked_exit;
2905
2906                                 cmd_flags = 0;
2907                         }
2908                 }
2909
2910                 /* Loop to write the new data from data_start to data_end */
2911                 for (addr = data_start; addr < data_end; addr += 4, i++) {
2912                         if ((addr == page_end - 4) ||
2913                                 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2914                                 (addr == data_end - 4))) {
2915
2916                                 cmd_flags |= BCE_NVM_COMMAND_LAST;
2917                         }
2918                         rc = bce_nvram_write_dword(sc, addr, buf,
2919                                 cmd_flags);
2920
2921                         if (rc != 0)
2922                                 goto bce_nvram_write_locked_exit;
2923
2924                         cmd_flags = 0;
2925                         buf += 4;
2926                 }
2927
2928                 /* Loop to write back the buffer data from data_end
2929                  * to page_end */
2930                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2931                         for (addr = data_end; addr < page_end;
2932                                 addr += 4, i += 4) {
2933
2934                                 if (addr == page_end-4) {
2935                                         cmd_flags = BCE_NVM_COMMAND_LAST;
2936                                 }
2937                                 rc = bce_nvram_write_dword(sc, addr,
2938                                         &flash_buffer[i], cmd_flags);
2939
2940                                 if (rc != 0)
2941                                         goto bce_nvram_write_locked_exit;
2942
2943                                 cmd_flags = 0;
2944                         }
2945                 }
2946
2947                 /* Disable writes to flash interface (lock write-protect) */
2948                 bce_disable_nvram_write(sc);
2949
2950                 /* Disable access to flash interface */
2951                 bce_disable_nvram_access(sc);
2952                 bce_release_nvram_lock(sc);
2953
2954                 /* Increment written */
2955                 written += data_end - data_start;
2956         }
2957
2958         goto bce_nvram_write_exit;
2959
2960 bce_nvram_write_locked_exit:
2961         bce_disable_nvram_write(sc);
2962         bce_disable_nvram_access(sc);
2963         bce_release_nvram_lock(sc);
2964
2965 bce_nvram_write_exit:
2966         if (align_start || align_end)
2967                 free(buf, M_DEVBUF);
2968
2969         DBEXIT(BCE_VERBOSE_NVRAM);
2970         return (rc);
2971 }
2972 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2973
2974
2975 /****************************************************************************/
2976 /* Verifies that NVRAM is accessible and contains valid data.               */
2977 /*                                                                          */
2978 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2979 /* correct.                                                                 */
2980 /*                                                                          */
2981 /* Returns:                                                                 */
2982 /*   0 on success, positive value on failure.                               */
2983 /****************************************************************************/
2984 static int
2985 bce_nvram_test(struct bce_softc *sc)
2986 {
2987         u32 buf[BCE_NVRAM_SIZE / 4];
2988         u8 *data = (u8 *) buf;
2989         int rc = 0;
2990         u32 magic, csum;
2991
2992         DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2993
2994         /*
2995          * Check that the device NVRAM is valid by reading
2996          * the magic value at offset 0.
2997          */
2998         if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2999                 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
3000                     __FILE__, __LINE__);
3001                 goto bce_nvram_test_exit;
3002         }
3003
3004         /*
3005          * Verify that offset 0 of the NVRAM contains
3006          * a valid magic number.
3007          */
3008         magic = bce_be32toh(buf[0]);
3009         if (magic != BCE_NVRAM_MAGIC) {
3010                 rc = ENODEV;
3011                 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
3012                     "Expected: 0x%08X, Found: 0x%08X\n",
3013                     __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
3014                 goto bce_nvram_test_exit;
3015         }
3016
3017         /*
3018          * Verify that the device NVRAM includes valid
3019          * configuration data.
3020          */
3021         if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
3022                 BCE_PRINTF("%s(%d): Unable to read manufacturing "
3023                     "Information from  NVRAM!\n", __FILE__, __LINE__);
3024                 goto bce_nvram_test_exit;
3025         }
3026
3027         csum = ether_crc32_le(data, 0x100);
3028         if (csum != BCE_CRC32_RESIDUAL) {
3029                 rc = ENODEV;
3030                 BCE_PRINTF("%s(%d): Invalid manufacturing information "
3031                     "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
3032                     __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
3033                 goto bce_nvram_test_exit;
3034         }
3035
3036         csum = ether_crc32_le(data + 0x100, 0x100);
3037         if (csum != BCE_CRC32_RESIDUAL) {
3038                 rc = ENODEV;
3039                 BCE_PRINTF("%s(%d): Invalid feature configuration "
3040                     "information NVRAM CRC! Expected: 0x%08X, "
3041                     "Found: 08%08X\n", __FILE__, __LINE__,
3042                     BCE_CRC32_RESIDUAL, csum);
3043         }
3044
3045 bce_nvram_test_exit:
3046         DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
3047         return rc;
3048 }
3049
3050
3051 /****************************************************************************/
3052 /* Calculates the size of the buffers to allocate based on the MTU.         */
3053 /*                                                                          */
3054 /* Returns:                                                                 */
3055 /*   Nothing.                                                               */
3056 /****************************************************************************/
3057 static void
3058 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
3059 {
3060         DBENTER(BCE_VERBOSE_LOAD);
3061
3062         /* Use a single allocation type when header splitting enabled. */
3063         if (bce_hdr_split == TRUE) {
3064                 sc->rx_bd_mbuf_alloc_size = MHLEN;
3065                 /* Make sure offset is 16 byte aligned for hardware. */
3066                 sc->rx_bd_mbuf_align_pad =
3067                         roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
3068                 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
3069                         sc->rx_bd_mbuf_align_pad;
3070         } else {
3071                 if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3072                     ETHER_CRC_LEN) > MCLBYTES) {
3073                         /* Setup for jumbo RX buffer allocations. */
3074                         sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3075                         sc->rx_bd_mbuf_align_pad  =
3076                                 roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3077                         sc->rx_bd_mbuf_data_len =
3078                             sc->rx_bd_mbuf_alloc_size -
3079                             sc->rx_bd_mbuf_align_pad;
3080                 } else {
3081                         /* Setup for standard RX buffer allocations. */
3082                         sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3083                         sc->rx_bd_mbuf_align_pad  =
3084                             roundup2(MCLBYTES, 16) - MCLBYTES;
3085                         sc->rx_bd_mbuf_data_len =
3086                             sc->rx_bd_mbuf_alloc_size -
3087                             sc->rx_bd_mbuf_align_pad;
3088                 }
3089         }
3090
3091 //      DBPRINT(sc, BCE_INFO_LOAD,
3092         DBPRINT(sc, BCE_WARN,
3093            "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3094            "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3095            sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3096            sc->rx_bd_mbuf_align_pad);
3097
3098         DBEXIT(BCE_VERBOSE_LOAD);
3099 }
3100
3101 /****************************************************************************/
3102 /* Identifies the current media type of the controller and sets the PHY     */
3103 /* address.                                                                 */
3104 /*                                                                          */
3105 /* Returns:                                                                 */
3106 /*   Nothing.                                                               */
3107 /****************************************************************************/
3108 static void
3109 bce_get_media(struct bce_softc *sc)
3110 {
3111         u32 val;
3112
3113         DBENTER(BCE_VERBOSE_PHY);
3114
3115         /* Assume PHY address for copper controllers. */
3116         sc->bce_phy_addr = 1;
3117
3118         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3119                 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3120                 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3121                 u32 strap;
3122
3123                 /*
3124                  * The BCM5709S is software configurable
3125                  * for Copper or SerDes operation.
3126                  */
3127                 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3128                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3129                             "for copper.\n");
3130                         goto bce_get_media_exit;
3131                 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3132                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3133                             "for dual media.\n");
3134                         sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3135                         goto bce_get_media_exit;
3136                 }
3137
3138                 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3139                         strap = (val &
3140                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3141                 else
3142                         strap = (val &
3143                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3144
3145                 if (pci_get_function(sc->bce_dev) == 0) {
3146                         switch (strap) {
3147                         case 0x4:
3148                         case 0x5:
3149                         case 0x6:
3150                                 DBPRINT(sc, BCE_INFO_LOAD,
3151                                     "BCM5709 s/w configured for SerDes.\n");
3152                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3153                                 break;
3154                         default:
3155                                 DBPRINT(sc, BCE_INFO_LOAD,
3156                                     "BCM5709 s/w configured for Copper.\n");
3157                                 break;
3158                         }
3159                 } else {
3160                         switch (strap) {
3161                         case 0x1:
3162                         case 0x2:
3163                         case 0x4:
3164                                 DBPRINT(sc, BCE_INFO_LOAD,
3165                                     "BCM5709 s/w configured for SerDes.\n");
3166                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3167                                 break;
3168                         default:
3169                                 DBPRINT(sc, BCE_INFO_LOAD,
3170                                     "BCM5709 s/w configured for Copper.\n");
3171                                 break;
3172                         }
3173                 }
3174
3175         } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3176                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3177
3178         if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3179
3180                 sc->bce_flags |= BCE_NO_WOL_FLAG;
3181
3182                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3183                         sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3184
3185                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3186                         /* 5708S/09S/16S use a separate PHY for SerDes. */
3187                         sc->bce_phy_addr = 2;
3188
3189                         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3190                         if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3191                                 sc->bce_phy_flags |=
3192                                     BCE_PHY_2_5G_CAPABLE_FLAG;
3193                                 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3194                                     "capable adapter\n");
3195                         }
3196                 }
3197         } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3198             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3199                 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3200
3201 bce_get_media_exit:
3202         DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3203                 "Using PHY address %d.\n", sc->bce_phy_addr);
3204
3205         DBEXIT(BCE_VERBOSE_PHY);
3206 }
3207
3208
3209 /****************************************************************************/
3210 /* Performs PHY initialization required before MII drivers access the       */
3211 /* device.                                                                  */
3212 /*                                                                          */
3213 /* Returns:                                                                 */
3214 /*   Nothing.                                                               */
3215 /****************************************************************************/
3216 static void
3217 bce_init_media(struct bce_softc *sc)
3218 {
3219         if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3220             BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3221                 /*
3222                  * Configure 5709S/5716S PHYs to use traditional IEEE
3223                  * Clause 22 method. Otherwise we have no way to attach
3224                  * the PHY in mii(4) layer. PHY specific configuration
3225                  * is done in mii layer.
3226                  */
3227
3228                 /* Select auto-negotiation MMD of the PHY. */
3229                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3230                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3231                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3232                     BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3233
3234                 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3235                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3236                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3237         }
3238 }
3239
3240
3241 /****************************************************************************/
3242 /* Free any DMA memory owned by the driver.                                 */
3243 /*                                                                          */
3244 /* Scans through each data structre that requires DMA memory and frees      */
3245 /* the memory if allocated.                                                 */
3246 /*                                                                          */
3247 /* Returns:                                                                 */
3248 /*   Nothing.                                                               */
3249 /****************************************************************************/
3250 static void
3251 bce_dma_free(struct bce_softc *sc)
3252 {
3253         int i;
3254
3255         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3256
3257         /* Free, unmap, and destroy the status block. */
3258         if (sc->status_block != NULL) {
3259                 bus_dmamem_free(
3260                    sc->status_tag,
3261                     sc->status_block,
3262                     sc->status_map);
3263                 sc->status_block = NULL;
3264         }
3265
3266         if (sc->status_map != NULL) {
3267                 bus_dmamap_unload(
3268                     sc->status_tag,
3269                     sc->status_map);
3270                 bus_dmamap_destroy(sc->status_tag,
3271                     sc->status_map);
3272                 sc->status_map = NULL;
3273         }
3274
3275         if (sc->status_tag != NULL) {
3276                 bus_dma_tag_destroy(sc->status_tag);
3277                 sc->status_tag = NULL;
3278         }
3279
3280
3281         /* Free, unmap, and destroy the statistics block. */
3282         if (sc->stats_block != NULL) {
3283                 bus_dmamem_free(
3284                     sc->stats_tag,
3285                     sc->stats_block,
3286                     sc->stats_map);
3287                 sc->stats_block = NULL;
3288         }
3289
3290         if (sc->stats_map != NULL) {
3291                 bus_dmamap_unload(
3292                     sc->stats_tag,
3293                     sc->stats_map);
3294                 bus_dmamap_destroy(sc->stats_tag,
3295                     sc->stats_map);
3296                 sc->stats_map = NULL;
3297         }
3298
3299         if (sc->stats_tag != NULL) {
3300                 bus_dma_tag_destroy(sc->stats_tag);
3301                 sc->stats_tag = NULL;
3302         }
3303
3304
3305         /* Free, unmap and destroy all context memory pages. */
3306         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3307                 for (i = 0; i < sc->ctx_pages; i++ ) {
3308                         if (sc->ctx_block[i] != NULL) {
3309                                 bus_dmamem_free(
3310                                     sc->ctx_tag,
3311                                     sc->ctx_block[i],
3312                                     sc->ctx_map[i]);
3313                                 sc->ctx_block[i] = NULL;
3314                         }
3315
3316                         if (sc->ctx_map[i] != NULL) {
3317                                 bus_dmamap_unload(
3318                                     sc->ctx_tag,
3319                                     sc->ctx_map[i]);
3320                                 bus_dmamap_destroy(
3321                                     sc->ctx_tag,
3322                                     sc->ctx_map[i]);
3323                                 sc->ctx_map[i] = NULL;
3324                         }
3325                 }
3326
3327                 /* Destroy the context memory tag. */
3328                 if (sc->ctx_tag != NULL) {
3329                         bus_dma_tag_destroy(sc->ctx_tag);
3330                         sc->ctx_tag = NULL;
3331                 }
3332         }
3333
3334
3335         /* Free, unmap and destroy all TX buffer descriptor chain pages. */
3336         for (i = 0; i < sc->tx_pages; i++ ) {
3337                 if (sc->tx_bd_chain[i] != NULL) {
3338                         bus_dmamem_free(
3339                             sc->tx_bd_chain_tag,
3340                             sc->tx_bd_chain[i],
3341                             sc->tx_bd_chain_map[i]);
3342                         sc->tx_bd_chain[i] = NULL;
3343                 }
3344
3345                 if (sc->tx_bd_chain_map[i] != NULL) {
3346                         bus_dmamap_unload(
3347                             sc->tx_bd_chain_tag,
3348                             sc->tx_bd_chain_map[i]);
3349                         bus_dmamap_destroy(
3350                             sc->tx_bd_chain_tag,
3351                             sc->tx_bd_chain_map[i]);
3352                         sc->tx_bd_chain_map[i] = NULL;
3353                 }
3354         }
3355
3356         /* Destroy the TX buffer descriptor tag. */
3357         if (sc->tx_bd_chain_tag != NULL) {
3358                 bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3359                 sc->tx_bd_chain_tag = NULL;
3360         }
3361
3362
3363         /* Free, unmap and destroy all RX buffer descriptor chain pages. */
3364         for (i = 0; i < sc->rx_pages; i++ ) {
3365                 if (sc->rx_bd_chain[i] != NULL) {
3366                         bus_dmamem_free(
3367                             sc->rx_bd_chain_tag,
3368                             sc->rx_bd_chain[i],
3369                             sc->rx_bd_chain_map[i]);
3370                         sc->rx_bd_chain[i] = NULL;
3371                 }
3372
3373                 if (sc->rx_bd_chain_map[i] != NULL) {
3374                         bus_dmamap_unload(
3375                             sc->rx_bd_chain_tag,
3376                             sc->rx_bd_chain_map[i]);
3377                         bus_dmamap_destroy(
3378                             sc->rx_bd_chain_tag,
3379                             sc->rx_bd_chain_map[i]);
3380                         sc->rx_bd_chain_map[i] = NULL;
3381                 }
3382         }
3383
3384         /* Destroy the RX buffer descriptor tag. */
3385         if (sc->rx_bd_chain_tag != NULL) {
3386                 bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3387                 sc->rx_bd_chain_tag = NULL;
3388         }
3389
3390
3391         /* Free, unmap and destroy all page buffer descriptor chain pages. */
3392         if (bce_hdr_split == TRUE) {
3393                 for (i = 0; i < sc->pg_pages; i++ ) {
3394                         if (sc->pg_bd_chain[i] != NULL) {
3395                                 bus_dmamem_free(
3396                                     sc->pg_bd_chain_tag,
3397                                     sc->pg_bd_chain[i],
3398                                     sc->pg_bd_chain_map[i]);
3399                                 sc->pg_bd_chain[i] = NULL;
3400                         }
3401
3402                         if (sc->pg_bd_chain_map[i] != NULL) {
3403                                 bus_dmamap_unload(
3404                                     sc->pg_bd_chain_tag,
3405                                     sc->pg_bd_chain_map[i]);
3406                                 bus_dmamap_destroy(
3407                                     sc->pg_bd_chain_tag,
3408                                     sc->pg_bd_chain_map[i]);
3409                                 sc->pg_bd_chain_map[i] = NULL;
3410                         }
3411                 }
3412
3413                 /* Destroy the page buffer descriptor tag. */
3414                 if (sc->pg_bd_chain_tag != NULL) {
3415                         bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3416                         sc->pg_bd_chain_tag = NULL;
3417                 }
3418         }
3419
3420
3421         /* Unload and destroy the TX mbuf maps. */
3422         for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3423                 if (sc->tx_mbuf_map[i] != NULL) {
3424                         bus_dmamap_unload(sc->tx_mbuf_tag,
3425                             sc->tx_mbuf_map[i]);
3426                         bus_dmamap_destroy(sc->tx_mbuf_tag,
3427                             sc->tx_mbuf_map[i]);
3428                         sc->tx_mbuf_map[i] = NULL;
3429                 }
3430         }
3431
3432         /* Destroy the TX mbuf tag. */
3433         if (sc->tx_mbuf_tag != NULL) {
3434                 bus_dma_tag_destroy(sc->tx_mbuf_tag);
3435                 sc->tx_mbuf_tag = NULL;
3436         }
3437
3438         /* Unload and destroy the RX mbuf maps. */
3439         for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3440                 if (sc->rx_mbuf_map[i] != NULL) {
3441                         bus_dmamap_unload(sc->rx_mbuf_tag,
3442                             sc->rx_mbuf_map[i]);
3443                         bus_dmamap_destroy(sc->rx_mbuf_tag,
3444                             sc->rx_mbuf_map[i]);
3445                         sc->rx_mbuf_map[i] = NULL;
3446                 }
3447         }
3448
3449         /* Destroy the RX mbuf tag. */
3450         if (sc->rx_mbuf_tag != NULL) {
3451                 bus_dma_tag_destroy(sc->rx_mbuf_tag);
3452                 sc->rx_mbuf_tag = NULL;
3453         }
3454
3455         /* Unload and destroy the page mbuf maps. */
3456         if (bce_hdr_split == TRUE) {
3457                 for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3458                         if (sc->pg_mbuf_map[i] != NULL) {
3459                                 bus_dmamap_unload(sc->pg_mbuf_tag,
3460                                     sc->pg_mbuf_map[i]);
3461                                 bus_dmamap_destroy(sc->pg_mbuf_tag,
3462                                     sc->pg_mbuf_map[i]);
3463                                 sc->pg_mbuf_map[i] = NULL;
3464                         }
3465                 }
3466
3467                 /* Destroy the page mbuf tag. */
3468                 if (sc->pg_mbuf_tag != NULL) {
3469                         bus_dma_tag_destroy(sc->pg_mbuf_tag);
3470                         sc->pg_mbuf_tag = NULL;
3471                 }
3472         }
3473
3474         /* Destroy the parent tag */
3475         if (sc->parent_tag != NULL) {
3476                 bus_dma_tag_destroy(sc->parent_tag);
3477                 sc->parent_tag = NULL;
3478         }
3479
3480         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3481 }
3482
3483
3484 /****************************************************************************/
3485 /* Get DMA memory from the OS.                                              */
3486 /*                                                                          */
3487 /* Validates that the OS has provided DMA buffers in response to a          */
3488 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3489 /* When the callback is used the OS will return 0 for the mapping function  */
3490 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3491 /* failures back to the caller.                                             */
3492 /*                                                                          */
3493 /* Returns:                                                                 */
3494 /*   Nothing.                                                               */
3495 /****************************************************************************/
3496 static void
3497 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3498 {
3499         bus_addr_t *busaddr = arg;
3500
3501         KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3502             __FUNCTION__, nseg));
3503         /* Simulate a mapping failure. */
3504         DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3505             error = ENOMEM);
3506
3507         /* ToDo: How to increment debug sim_count variable here? */
3508
3509         /* Check for an error and signal the caller that an error occurred. */
3510         if (error) {
3511                 *busaddr = 0;
3512         } else {
3513                 *busaddr = segs->ds_addr;
3514         }
3515 }
3516
3517
3518 /****************************************************************************/
3519 /* Allocate any DMA memory needed by the driver.                            */
3520 /*                                                                          */
3521 /* Allocates DMA memory needed for the various global structures needed by  */
3522 /* hardware.                                                                */
3523 /*                                                                          */
3524 /* Memory alignment requirements:                                           */
3525 /* +-----------------+----------+----------+----------+----------+          */
3526 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3527 /* +-----------------+----------+----------+----------+----------+          */
3528 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3529 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3530 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3531 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3532 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3533 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3534 /* |Context Memory   |          |          |          |          |          */
3535 /* +-----------------+----------+----------+----------+----------+          */
3536 /*                                                                          */
3537 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3538 /*                                                                          */
3539 /* Returns:                                                                 */
3540 /*   0 for success, positive value for failure.                             */
3541 /****************************************************************************/
3542 static int
3543 bce_dma_alloc(device_t dev)
3544 {
3545         struct bce_softc *sc;
3546         int i, error, rc = 0;
3547         bus_size_t max_size, max_seg_size;
3548         int max_segments;
3549
3550         sc = device_get_softc(dev);
3551
3552         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3553
3554         /*
3555          * Allocate the parent bus DMA tag appropriate for PCI.
3556          */
3557         if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3558             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3559             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3560             &sc->parent_tag)) {
3561                 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3562                     __FILE__, __LINE__);
3563                 rc = ENOMEM;
3564                 goto bce_dma_alloc_exit;
3565         }
3566
3567         /*
3568          * Create a DMA tag for the status block, allocate and clear the
3569          * memory, map the memory into DMA space, and fetch the physical
3570          * address of the block.
3571          */
3572         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3573             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3574             NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3575             0, NULL, NULL, &sc->status_tag)) {
3576                 BCE_PRINTF("%s(%d): Could not allocate status block "
3577                     "DMA tag!\n", __FILE__, __LINE__);
3578                 rc = ENOMEM;
3579                 goto bce_dma_alloc_exit;
3580         }
3581
3582         if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3583             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3584             &sc->status_map)) {
3585                 BCE_PRINTF("%s(%d): Could not allocate status block "
3586                     "DMA memory!\n", __FILE__, __LINE__);
3587                 rc = ENOMEM;
3588                 goto bce_dma_alloc_exit;
3589         }
3590
3591         error = bus_dmamap_load(sc->status_tag, sc->status_map,
3592             sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3593             &sc->status_block_paddr, BUS_DMA_NOWAIT);
3594
3595         if (error || sc->status_block_paddr == 0) {
3596                 BCE_PRINTF("%s(%d): Could not map status block "
3597                     "DMA memory!\n", __FILE__, __LINE__);
3598                 rc = ENOMEM;
3599                 goto bce_dma_alloc_exit;
3600         }
3601
3602         DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3603             __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3604
3605         /*
3606          * Create a DMA tag for the statistics block, allocate and clear the
3607          * memory, map the memory into DMA space, and fetch the physical
3608          * address of the block.
3609          */
3610         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3611             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3612             NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3613             0, NULL, NULL, &sc->stats_tag)) {
3614                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
3615                     "DMA tag!\n", __FILE__, __LINE__);
3616                 rc = ENOMEM;
3617                 goto bce_dma_alloc_exit;
3618         }
3619
3620         if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3621             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3622                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
3623                     "DMA memory!\n", __FILE__, __LINE__);
3624                 rc = ENOMEM;
3625                 goto bce_dma_alloc_exit;
3626         }
3627
3628         error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3629             sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3630             &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3631
3632         if (error || sc->stats_block_paddr == 0) {
3633                 BCE_PRINTF("%s(%d): Could not map statistics block "
3634                     "DMA memory!\n", __FILE__, __LINE__);
3635                 rc = ENOMEM;
3636                 goto bce_dma_alloc_exit;
3637         }
3638
3639         DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3640             __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3641
3642         /* BCM5709 uses host memory as cache for context memory. */
3643         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3644                 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3645                 if (sc->ctx_pages == 0)
3646                         sc->ctx_pages = 1;
3647
3648                 DBRUNIF((sc->ctx_pages > 512),
3649                     BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3650                     __FILE__, __LINE__, sc->ctx_pages));
3651
3652                 /*
3653                  * Create a DMA tag for the context pages,
3654                  * allocate and clear the memory, map the
3655                  * memory into DMA space, and fetch the
3656                  * physical address of the block.
3657                  */
3658                 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3659                     BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3660                     NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3661                     0, NULL, NULL, &sc->ctx_tag)) {
3662                         BCE_PRINTF("%s(%d): Could not allocate CTX "
3663                             "DMA tag!\n", __FILE__, __LINE__);
3664                         rc = ENOMEM;
3665                         goto bce_dma_alloc_exit;
3666                 }
3667
3668                 for (i = 0; i < sc->ctx_pages; i++) {
3669
3670                         if(bus_dmamem_alloc(sc->ctx_tag,
3671                             (void **)&sc->ctx_block[i],
3672                             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3673                             &sc->ctx_map[i])) {
3674                                 BCE_PRINTF("%s(%d): Could not allocate CTX "
3675                                     "DMA memory!\n", __FILE__, __LINE__);
3676                                 rc = ENOMEM;
3677                                 goto bce_dma_alloc_exit;
3678                         }
3679
3680                         error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3681                             sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3682                             &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3683
3684                         if (error || sc->ctx_paddr[i] == 0) {
3685                                 BCE_PRINTF("%s(%d): Could not map CTX "
3686                                     "DMA memory!\n", __FILE__, __LINE__);
3687                                 rc = ENOMEM;
3688                                 goto bce_dma_alloc_exit;
3689                         }
3690
3691                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3692                             "= 0x%jX\n", __FUNCTION__, i,
3693                             (uintmax_t) sc->ctx_paddr[i]);
3694                 }
3695         }
3696
3697         /*
3698          * Create a DMA tag for the TX buffer descriptor chain,
3699          * allocate and clear the  memory, and fetch the
3700          * physical address of the block.
3701          */
3702         if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3703             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3704             BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3705             NULL, NULL, &sc->tx_bd_chain_tag)) {
3706                 BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3707                     "chain DMA tag!\n", __FILE__, __LINE__);
3708                 rc = ENOMEM;
3709                 goto bce_dma_alloc_exit;
3710         }
3711
3712         for (i = 0; i < sc->tx_pages; i++) {
3713
3714                 if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3715                     (void **)&sc->tx_bd_chain[i],
3716                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3717                     &sc->tx_bd_chain_map[i])) {
3718                         BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3719                             "chain DMA memory!\n", __FILE__, __LINE__);
3720                         rc = ENOMEM;
3721                         goto bce_dma_alloc_exit;
3722                 }
3723
3724                 error = bus_dmamap_load(sc->tx_bd_chain_tag,
3725                     sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3726                     BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3727                     &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3728
3729                 if (error || sc->tx_bd_chain_paddr[i] == 0) {
3730                         BCE_PRINTF("%s(%d): Could not map TX descriptor "
3731                             "chain DMA memory!\n", __FILE__, __LINE__);
3732                         rc = ENOMEM;
3733                         goto bce_dma_alloc_exit;
3734                 }
3735
3736                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3737                     "0x%jX\n", __FUNCTION__, i,
3738                     (uintmax_t) sc->tx_bd_chain_paddr[i]);
3739         }
3740
3741         /* Check the required size before mapping to conserve resources. */
3742         if (bce_tso_enable) {
3743                 max_size     = BCE_TSO_MAX_SIZE;
3744                 max_segments = BCE_MAX_SEGMENTS;
3745                 max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3746         } else {
3747                 max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3748                 max_segments = BCE_MAX_SEGMENTS;
3749                 max_seg_size = MCLBYTES;
3750         }
3751
3752         /* Create a DMA tag for TX mbufs. */
3753         if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3754             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3755             max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) {
3756                 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3757                     __FILE__, __LINE__);
3758                 rc = ENOMEM;
3759                 goto bce_dma_alloc_exit;
3760         }
3761
3762         /* Create DMA maps for the TX mbufs clusters. */
3763         for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3764                 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3765                         &sc->tx_mbuf_map[i])) {
3766                         BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3767                             "map!\n", __FILE__, __LINE__);
3768                         rc = ENOMEM;
3769                         goto bce_dma_alloc_exit;
3770                 }
3771         }
3772
3773         /*
3774          * Create a DMA tag for the RX buffer descriptor chain,
3775          * allocate and clear the memory, and fetch the physical
3776          * address of the blocks.
3777          */
3778         if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3779                         BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3780                         sc->max_bus_addr, NULL, NULL,
3781                         BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3782                         0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3783                 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3784                     "DMA tag!\n", __FILE__, __LINE__);
3785                 rc = ENOMEM;
3786                 goto bce_dma_alloc_exit;
3787         }
3788
3789         for (i = 0; i < sc->rx_pages; i++) {
3790
3791                 if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3792                     (void **)&sc->rx_bd_chain[i],
3793                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3794                     &sc->rx_bd_chain_map[i])) {
3795                         BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3796                             "chain DMA memory!\n", __FILE__, __LINE__);
3797                         rc = ENOMEM;
3798                         goto bce_dma_alloc_exit;
3799                 }
3800
3801                 error = bus_dmamap_load(sc->rx_bd_chain_tag,
3802                     sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3803                     BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3804                     &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3805
3806                 if (error || sc->rx_bd_chain_paddr[i] == 0) {
3807                         BCE_PRINTF("%s(%d): Could not map RX descriptor "
3808                             "chain DMA memory!\n", __FILE__, __LINE__);
3809                         rc = ENOMEM;
3810                         goto bce_dma_alloc_exit;
3811                 }
3812
3813                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3814                     "0x%jX\n", __FUNCTION__, i,
3815                     (uintmax_t) sc->rx_bd_chain_paddr[i]);
3816         }
3817
3818         /*
3819          * Create a DMA tag for RX mbufs.
3820          */
3821         if (bce_hdr_split == TRUE)
3822                 max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3823                     MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3824         else
3825                 max_size = MJUM9BYTES;
3826
3827         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3828             "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3829
3830         if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3831             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3832             max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3833                 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3834                     __FILE__, __LINE__);
3835                 rc = ENOMEM;
3836                 goto bce_dma_alloc_exit;
3837         }
3838
3839         /* Create DMA maps for the RX mbuf clusters. */
3840         for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3841                 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3842                     &sc->rx_mbuf_map[i])) {
3843                         BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3844                             "DMA map!\n", __FILE__, __LINE__);
3845                         rc = ENOMEM;
3846                         goto bce_dma_alloc_exit;
3847                 }
3848         }
3849
3850         if (bce_hdr_split == TRUE) {
3851                 /*
3852                  * Create a DMA tag for the page buffer descriptor chain,
3853                  * allocate and clear the memory, and fetch the physical
3854                  * address of the blocks.
3855                  */
3856                 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3857                             BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3858                             NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3859                             0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3860                         BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3861                             "chain DMA tag!\n", __FILE__, __LINE__);
3862                         rc = ENOMEM;
3863                         goto bce_dma_alloc_exit;
3864                 }
3865
3866                 for (i = 0; i < sc->pg_pages; i++) {
3867                         if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3868                             (void **)&sc->pg_bd_chain[i],
3869                             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3870                             &sc->pg_bd_chain_map[i])) {
3871                                 BCE_PRINTF("%s(%d): Could not allocate page "
3872                                     "descriptor chain DMA memory!\n",
3873                                     __FILE__, __LINE__);
3874                                 rc = ENOMEM;
3875                                 goto bce_dma_alloc_exit;
3876                         }
3877
3878                         error = bus_dmamap_load(sc->pg_bd_chain_tag,
3879                             sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3880                             BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3881                             &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3882
3883                         if (error || sc->pg_bd_chain_paddr[i] == 0) {
3884                                 BCE_PRINTF("%s(%d): Could not map page descriptor "
3885                                         "chain DMA memory!\n", __FILE__, __LINE__);
3886                                 rc = ENOMEM;
3887                                 goto bce_dma_alloc_exit;
3888                         }
3889
3890                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3891                                 "0x%jX\n", __FUNCTION__, i,
3892                                 (uintmax_t) sc->pg_bd_chain_paddr[i]);
3893                 }
3894
3895                 /*
3896                  * Create a DMA tag for page mbufs.
3897                  */
3898                 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3899                     sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3900                     1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3901                         BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3902                                 "DMA tag!\n", __FILE__, __LINE__);
3903                         rc = ENOMEM;
3904                         goto bce_dma_alloc_exit;
3905                 }
3906
3907                 /* Create DMA maps for the page mbuf clusters. */
3908                 for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3909                         if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3910                                 &sc->pg_mbuf_map[i])) {
3911                                 BCE_PRINTF("%s(%d): Unable to create page mbuf "
3912                                         "DMA map!\n", __FILE__, __LINE__);
3913                                 rc = ENOMEM;
3914                                 goto bce_dma_alloc_exit;
3915                         }
3916                 }
3917         }
3918
3919 bce_dma_alloc_exit:
3920         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3921         return(rc);
3922 }
3923
3924
3925 /****************************************************************************/
3926 /* Release all resources used by the driver.                                */
3927 /*                                                                          */
3928 /* Releases all resources acquired by the driver including interrupts,      */
3929 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3930 /*                                                                          */
3931 /* Returns:                                                                 */
3932 /*   Nothing.                                                               */
3933 /****************************************************************************/
3934 static void
3935 bce_release_resources(struct bce_softc *sc)
3936 {
3937         device_t dev;
3938
3939         DBENTER(BCE_VERBOSE_RESET);
3940
3941         dev = sc->bce_dev;
3942
3943         bce_dma_free(sc);
3944
3945         if (sc->bce_intrhand != NULL) {
3946                 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3947                 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3948         }
3949
3950         if (sc->bce_res_irq != NULL) {
3951                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3952                 bus_release_resource(dev, SYS_RES_IRQ,
3953                     rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3954         }
3955
3956         if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3957                 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3958                 pci_release_msi(dev);
3959         }
3960
3961         if (sc->bce_res_mem != NULL) {
3962                 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3963                     bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3964                     sc->bce_res_mem);
3965         }
3966
3967         if (sc->bce_ifp != NULL) {
3968                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3969                 if_free(sc->bce_ifp);
3970         }
3971
3972         if (mtx_initialized(&sc->bce_mtx))
3973                 BCE_LOCK_DESTROY(sc);
3974
3975         DBEXIT(BCE_VERBOSE_RESET);
3976 }
3977
3978
3979 /****************************************************************************/
3980 /* Firmware synchronization.                                                */
3981 /*                                                                          */
3982 /* Before performing certain events such as a chip reset, synchronize with  */
3983 /* the firmware first.                                                      */
3984 /*                                                                          */
3985 /* Returns:                                                                 */
3986 /*   0 for success, positive value for failure.                             */
3987 /****************************************************************************/
3988 static int
3989 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3990 {
3991         int i, rc = 0;
3992         u32 val;
3993
3994         DBENTER(BCE_VERBOSE_RESET);
3995
3996         /* Don't waste any time if we've timed out before. */
3997         if (sc->bce_fw_timed_out == TRUE) {
3998                 rc = EBUSY;
3999                 goto bce_fw_sync_exit;
4000         }
4001
4002         /* Increment the message sequence number. */
4003         sc->bce_fw_wr_seq++;
4004         msg_data |= sc->bce_fw_wr_seq;
4005
4006         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
4007             "0x%08X\n", msg_data);
4008
4009         /* Send the message to the bootcode driver mailbox. */
4010         bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
4011
4012         /* Wait for the bootcode to acknowledge the message. */
4013         for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
4014                 /* Check for a response in the bootcode firmware mailbox. */
4015                 val = bce_shmem_rd(sc, BCE_FW_MB);
4016                 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
4017                         break;
4018                 DELAY(1000);
4019         }
4020
4021         /* If we've timed out, tell bootcode that we've stopped waiting. */
4022         if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
4023             ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
4024
4025                 BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
4026                     "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
4027
4028                 msg_data &= ~BCE_DRV_MSG_CODE;
4029                 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
4030
4031                 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
4032
4033                 sc->bce_fw_timed_out = TRUE;
4034                 rc = EBUSY;
4035         }
4036
4037 bce_fw_sync_exit:
4038         DBEXIT(BCE_VERBOSE_RESET);
4039         return (rc);
4040 }
4041
4042
4043 /****************************************************************************/
4044 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
4045 /*                                                                          */
4046 /* Returns:                                                                 */
4047 /*   Nothing.                                                               */
4048 /****************************************************************************/
4049 static void
4050 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
4051         u32 rv2p_code_len, u32 rv2p_proc)
4052 {
4053         int i;
4054         u32 val;
4055
4056         DBENTER(BCE_VERBOSE_RESET);
4057
4058         /* Set the page size used by RV2P. */
4059         if (rv2p_proc == RV2P_PROC2) {
4060                 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
4061         }
4062
4063         for (i = 0; i < rv2p_code_len; i += 8) {
4064                 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4065                 rv2p_code++;
4066                 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4067                 rv2p_code++;
4068
4069                 if (rv2p_proc == RV2P_PROC1) {
4070                         val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4071                         REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4072                 }
4073                 else {
4074                         val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4075                         REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4076                 }
4077         }
4078
4079         /* Reset the processor, un-stall is done later. */
4080         if (rv2p_proc == RV2P_PROC1) {
4081                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4082         }
4083         else {
4084                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4085         }
4086
4087         DBEXIT(BCE_VERBOSE_RESET);
4088 }
4089
4090
4091 /****************************************************************************/
4092 /* Load RISC processor firmware.                                            */
4093 /*                                                                          */
4094 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4095 /* associated with a particular processor.                                  */
4096 /*                                                                          */
4097 /* Returns:                                                                 */
4098 /*   Nothing.                                                               */
4099 /****************************************************************************/
4100 static void
4101 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4102         struct fw_info *fw)
4103 {
4104         u32 offset;
4105
4106         DBENTER(BCE_VERBOSE_RESET);
4107
4108     bce_halt_cpu(sc, cpu_reg);
4109
4110         /* Load the Text area. */
4111         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4112         if (fw->text) {
4113                 int j;
4114
4115                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4116                         REG_WR_IND(sc, offset, fw->text[j]);
4117                 }
4118         }
4119
4120         /* Load the Data area. */
4121         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4122         if (fw->data) {
4123                 int j;
4124
4125                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4126                         REG_WR_IND(sc, offset, fw->data[j]);
4127                 }
4128         }
4129
4130         /* Load the SBSS area. */
4131         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4132         if (fw->sbss) {
4133                 int j;
4134
4135                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4136                         REG_WR_IND(sc, offset, fw->sbss[j]);
4137                 }
4138         }
4139
4140         /* Load the BSS area. */
4141         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4142         if (fw->bss) {
4143                 int j;
4144
4145                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4146                         REG_WR_IND(sc, offset, fw->bss[j]);
4147                 }
4148         }
4149
4150         /* Load the Read-Only area. */
4151         offset = cpu_reg->spad_base +
4152                 (fw->rodata_addr - cpu_reg->mips_view_base);
4153         if (fw->rodata) {
4154                 int j;
4155
4156                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4157                         REG_WR_IND(sc, offset, fw->rodata[j]);
4158                 }
4159         }
4160
4161         /* Clear the pre-fetch instruction and set the FW start address. */
4162         REG_WR_IND(sc, cpu_reg->inst, 0);
4163         REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4164
4165         DBEXIT(BCE_VERBOSE_RESET);
4166 }
4167
4168
4169 /****************************************************************************/
4170 /* Starts the RISC processor.                                               */
4171 /*                                                                          */
4172 /* Assumes the CPU starting address has already been set.                   */
4173 /*                                                                          */
4174 /* Returns:                                                                 */
4175 /*   Nothing.                                                               */
4176 /****************************************************************************/
4177 static void
4178 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4179 {
4180         u32 val;
4181
4182         DBENTER(BCE_VERBOSE_RESET);
4183
4184         /* Start the CPU. */
4185         val = REG_RD_IND(sc, cpu_reg->mode);
4186         val &= ~cpu_reg->mode_value_halt;
4187         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4188         REG_WR_IND(sc, cpu_reg->mode, val);
4189
4190         DBEXIT(BCE_VERBOSE_RESET);
4191 }
4192
4193
4194 /****************************************************************************/
4195 /* Halts the RISC processor.                                                */
4196 /*                                                                          */
4197 /* Returns:                                                                 */
4198 /*   Nothing.                                                               */
4199 /****************************************************************************/
4200 static void
4201 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4202 {
4203         u32 val;
4204
4205         DBENTER(BCE_VERBOSE_RESET);
4206
4207         /* Halt the CPU. */
4208         val = REG_RD_IND(sc, cpu_reg->mode);
4209         val |= cpu_reg->mode_value_halt;
4210         REG_WR_IND(sc, cpu_reg->mode, val);
4211         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4212
4213         DBEXIT(BCE_VERBOSE_RESET);
4214 }
4215
4216
4217 /****************************************************************************/
4218 /* Initialize the RX CPU.                                                   */
4219 /*                                                                          */
4220 /* Returns:                                                                 */
4221 /*   Nothing.                                                               */
4222 /****************************************************************************/
4223 static void
4224 bce_start_rxp_cpu(struct bce_softc *sc)
4225 {
4226         struct cpu_reg cpu_reg;
4227
4228         DBENTER(BCE_VERBOSE_RESET);
4229
4230         cpu_reg.mode = BCE_RXP_CPU_MODE;
4231         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4232         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4233         cpu_reg.state = BCE_RXP_CPU_STATE;
4234         cpu_reg.state_value_clear = 0xffffff;
4235         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4236         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4237         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4238         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4239         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4240         cpu_reg.spad_base = BCE_RXP_SCRATCH;
4241         cpu_reg.mips_view_base = 0x8000000;
4242
4243         DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4244         bce_start_cpu(sc, &cpu_reg);
4245
4246         DBEXIT(BCE_VERBOSE_RESET);
4247 }
4248
4249
4250 /****************************************************************************/
4251 /* Initialize the RX CPU.                                                   */
4252 /*                                                                          */
4253 /* Returns:                                                                 */
4254 /*   Nothing.                                                               */
4255 /****************************************************************************/
4256 static void
4257 bce_init_rxp_cpu(struct bce_softc *sc)
4258 {
4259         struct cpu_reg cpu_reg;
4260         struct fw_info fw;
4261
4262         DBENTER(BCE_VERBOSE_RESET);
4263
4264         cpu_reg.mode = BCE_RXP_CPU_MODE;
4265         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4266         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4267         cpu_reg.state = BCE_RXP_CPU_STATE;
4268         cpu_reg.state_value_clear = 0xffffff;
4269         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4270         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4271         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4272         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4273         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4274         cpu_reg.spad_base = BCE_RXP_SCRATCH;
4275         cpu_reg.mips_view_base = 0x8000000;
4276
4277         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4278                 fw.ver_major = bce_RXP_b09FwReleaseMajor;
4279                 fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4280                 fw.ver_fix = bce_RXP_b09FwReleaseFix;
4281                 fw.start_addr = bce_RXP_b09FwStartAddr;
4282
4283                 fw.text_addr = bce_RXP_b09FwTextAddr;
4284                 fw.text_len = bce_RXP_b09FwTextLen;
4285                 fw.text_index = 0;
4286                 fw.text = bce_RXP_b09FwText;
4287
4288                 fw.data_addr = bce_RXP_b09FwDataAddr;
4289                 fw.data_len = bce_RXP_b09FwDataLen;
4290                 fw.data_index = 0;
4291                 fw.data = bce_RXP_b09FwData;
4292
4293                 fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4294                 fw.sbss_len = bce_RXP_b09FwSbssLen;
4295                 fw.sbss_index = 0;
4296                 fw.sbss = bce_RXP_b09FwSbss;
4297
4298                 fw.bss_addr = bce_RXP_b09FwBssAddr;
4299                 fw.bss_len = bce_RXP_b09FwBssLen;
4300                 fw.bss_index = 0;
4301                 fw.bss = bce_RXP_b09FwBss;
4302
4303                 fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4304                 fw.rodata_len = bce_RXP_b09FwRodataLen;
4305                 fw.rodata_index = 0;
4306                 fw.rodata = bce_RXP_b09FwRodata;
4307         } else {
4308                 fw.ver_major = bce_RXP_b06FwReleaseMajor;
4309                 fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4310                 fw.ver_fix = bce_RXP_b06FwReleaseFix;
4311                 fw.start_addr = bce_RXP_b06FwStartAddr;
4312
4313                 fw.text_addr = bce_RXP_b06FwTextAddr;
4314                 fw.text_len = bce_RXP_b06FwTextLen;
4315                 fw.text_index = 0;
4316                 fw.text = bce_RXP_b06FwText;
4317
4318                 fw.data_addr = bce_RXP_b06FwDataAddr;
4319                 fw.data_len = bce_RXP_b06FwDataLen;
4320                 fw.data_index = 0;
4321                 fw.data = bce_RXP_b06FwData;
4322
4323                 fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4324                 fw.sbss_len = bce_RXP_b06FwSbssLen;
4325                 fw.sbss_index = 0;
4326                 fw.sbss = bce_RXP_b06FwSbss;
4327
4328                 fw.bss_addr = bce_RXP_b06FwBssAddr;
4329                 fw.bss_len = bce_RXP_b06FwBssLen;
4330                 fw.bss_index = 0;
4331                 fw.bss = bce_RXP_b06FwBss;
4332
4333                 fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4334                 fw.rodata_len = bce_RXP_b06FwRodataLen;
4335                 fw.rodata_index = 0;
4336                 fw.rodata = bce_RXP_b06FwRodata;
4337         }
4338
4339         DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4340         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4341
4342     /* Delay RXP start until initialization is complete. */
4343
4344         DBEXIT(BCE_VERBOSE_RESET);
4345 }
4346
4347
4348 /****************************************************************************/
4349 /* Initialize the TX CPU.                                                   */
4350 /*                                                                          */
4351 /* Returns:                                                                 */
4352 /*   Nothing.                                                               */
4353 /****************************************************************************/
4354 static void
4355 bce_init_txp_cpu(struct bce_softc *sc)
4356 {
4357         struct cpu_reg cpu_reg;
4358         struct fw_info fw;
4359
4360         DBENTER(BCE_VERBOSE_RESET);
4361
4362         cpu_reg.mode = BCE_TXP_CPU_MODE;
4363         cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4364         cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4365         cpu_reg.state = BCE_TXP_CPU_STATE;
4366         cpu_reg.state_value_clear = 0xffffff;
4367         cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4368         cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4369         cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4370         cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4371         cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4372         cpu_reg.spad_base = BCE_TXP_SCRATCH;
4373         cpu_reg.mips_view_base = 0x8000000;
4374
4375         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4376                 fw.ver_major = bce_TXP_b09FwReleaseMajor;
4377                 fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4378                 fw.ver_fix = bce_TXP_b09FwReleaseFix;
4379                 fw.start_addr = bce_TXP_b09FwStartAddr;
4380
4381                 fw.text_addr = bce_TXP_b09FwTextAddr;
4382                 fw.text_len = bce_TXP_b09FwTextLen;
4383                 fw.text_index = 0;
4384                 fw.text = bce_TXP_b09FwText;
4385
4386                 fw.data_addr = bce_TXP_b09FwDataAddr;
4387                 fw.data_len = bce_TXP_b09FwDataLen;
4388                 fw.data_index = 0;
4389                 fw.data = bce_TXP_b09FwData;
4390
4391                 fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4392                 fw.sbss_len = bce_TXP_b09FwSbssLen;
4393                 fw.sbss_index = 0;
4394                 fw.sbss = bce_TXP_b09FwSbss;
4395
4396                 fw.bss_addr = bce_TXP_b09FwBssAddr;
4397                 fw.bss_len = bce_TXP_b09FwBssLen;
4398                 fw.bss_index = 0;
4399                 fw.bss = bce_TXP_b09FwBss;
4400
4401                 fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4402                 fw.rodata_len = bce_TXP_b09FwRodataLen;
4403                 fw.rodata_index = 0;
4404                 fw.rodata = bce_TXP_b09FwRodata;
4405         } else {
4406                 fw.ver_major = bce_TXP_b06FwReleaseMajor;
4407                 fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4408                 fw.ver_fix = bce_TXP_b06FwReleaseFix;
4409                 fw.start_addr = bce_TXP_b06FwStartAddr;
4410
4411                 fw.text_addr = bce_TXP_b06FwTextAddr;
4412                 fw.text_len = bce_TXP_b06FwTextLen;
4413                 fw.text_index = 0;
4414                 fw.text = bce_TXP_b06FwText;
4415
4416                 fw.data_addr = bce_TXP_b06FwDataAddr;
4417                 fw.data_len = bce_TXP_b06FwDataLen;
4418                 fw.data_index = 0;
4419                 fw.data = bce_TXP_b06FwData;
4420
4421                 fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4422                 fw.sbss_len = bce_TXP_b06FwSbssLen;
4423                 fw.sbss_index = 0;
4424                 fw.sbss = bce_TXP_b06FwSbss;
4425
4426                 fw.bss_addr = bce_TXP_b06FwBssAddr;
4427                 fw.bss_len = bce_TXP_b06FwBssLen;
4428                 fw.bss_index = 0;
4429                 fw.bss = bce_TXP_b06FwBss;
4430
4431                 fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4432                 fw.rodata_len = bce_TXP_b06FwRodataLen;
4433                 fw.rodata_index = 0;
4434                 fw.rodata = bce_TXP_b06FwRodata;
4435         }
4436
4437         DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4438         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4439     bce_start_cpu(sc, &cpu_reg);
4440
4441         DBEXIT(BCE_VERBOSE_RESET);
4442 }
4443
4444
4445 /****************************************************************************/
4446 /* Initialize the TPAT CPU.                                                 */
4447 /*                                                                          */
4448 /* Returns:                                                                 */
4449 /*   Nothing.                                                               */
4450 /****************************************************************************/
4451 static void
4452 bce_init_tpat_cpu(struct bce_softc *sc)
4453 {
4454         struct cpu_reg cpu_reg;
4455         struct fw_info fw;
4456
4457         DBENTER(BCE_VERBOSE_RESET);
4458
4459         cpu_reg.mode = BCE_TPAT_CPU_MODE;
4460         cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4461         cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4462         cpu_reg.state = BCE_TPAT_CPU_STATE;
4463         cpu_reg.state_value_clear = 0xffffff;
4464         cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4465         cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4466         cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4467         cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4468         cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4469         cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4470         cpu_reg.mips_view_base = 0x8000000;
4471
4472         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4473                 fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4474                 fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4475                 fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4476                 fw.start_addr = bce_TPAT_b09FwStartAddr;
4477
4478                 fw.text_addr = bce_TPAT_b09FwTextAddr;
4479                 fw.text_len = bce_TPAT_b09FwTextLen;
4480                 fw.text_index = 0;
4481                 fw.text = bce_TPAT_b09FwText;
4482
4483                 fw.data_addr = bce_TPAT_b09FwDataAddr;
4484                 fw.data_len = bce_TPAT_b09FwDataLen;
4485                 fw.data_index = 0;
4486                 fw.data = bce_TPAT_b09FwData;
4487
4488                 fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4489                 fw.sbss_len = bce_TPAT_b09FwSbssLen;
4490                 fw.sbss_index = 0;
4491                 fw.sbss = bce_TPAT_b09FwSbss;
4492
4493                 fw.bss_addr = bce_TPAT_b09FwBssAddr;
4494                 fw.bss_len = bce_TPAT_b09FwBssLen;
4495                 fw.bss_index = 0;
4496                 fw.bss = bce_TPAT_b09FwBss;
4497
4498                 fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4499                 fw.rodata_len = bce_TPAT_b09FwRodataLen;
4500                 fw.rodata_index = 0;
4501                 fw.rodata = bce_TPAT_b09FwRodata;
4502         } else {
4503                 fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4504                 fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4505                 fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4506                 fw.start_addr = bce_TPAT_b06FwStartAddr;
4507
4508                 fw.text_addr = bce_TPAT_b06FwTextAddr;
4509                 fw.text_len = bce_TPAT_b06FwTextLen;
4510                 fw.text_index = 0;
4511                 fw.text = bce_TPAT_b06FwText;
4512
4513                 fw.data_addr = bce_TPAT_b06FwDataAddr;
4514                 fw.data_len = bce_TPAT_b06FwDataLen;
4515                 fw.data_index = 0;
4516                 fw.data = bce_TPAT_b06FwData;
4517
4518                 fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4519                 fw.sbss_len = bce_TPAT_b06FwSbssLen;
4520                 fw.sbss_index = 0;
4521                 fw.sbss = bce_TPAT_b06FwSbss;
4522
4523                 fw.bss_addr = bce_TPAT_b06FwBssAddr;
4524                 fw.bss_len = bce_TPAT_b06FwBssLen;
4525                 fw.bss_index = 0;
4526                 fw.bss = bce_TPAT_b06FwBss;
4527
4528                 fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4529                 fw.rodata_len = bce_TPAT_b06FwRodataLen;
4530                 fw.rodata_index = 0;
4531                 fw.rodata = bce_TPAT_b06FwRodata;
4532         }
4533
4534         DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4535         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4536         bce_start_cpu(sc, &cpu_reg);
4537
4538         DBEXIT(BCE_VERBOSE_RESET);
4539 }
4540
4541
4542 /****************************************************************************/
4543 /* Initialize the CP CPU.                                                   */
4544 /*                                                                          */
4545 /* Returns:                                                                 */
4546 /*   Nothing.                                                               */
4547 /****************************************************************************/
4548 static void
4549 bce_init_cp_cpu(struct bce_softc *sc)
4550 {
4551         struct cpu_reg cpu_reg;
4552         struct fw_info fw;
4553
4554         DBENTER(BCE_VERBOSE_RESET);
4555
4556         cpu_reg.mode = BCE_CP_CPU_MODE;
4557         cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4558         cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4559         cpu_reg.state = BCE_CP_CPU_STATE;
4560         cpu_reg.state_value_clear = 0xffffff;
4561         cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4562         cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4563         cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4564         cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4565         cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4566         cpu_reg.spad_base = BCE_CP_SCRATCH;
4567         cpu_reg.mips_view_base = 0x8000000;
4568
4569         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4570                 fw.ver_major = bce_CP_b09FwReleaseMajor;
4571                 fw.ver_minor = bce_CP_b09FwReleaseMinor;
4572                 fw.ver_fix = bce_CP_b09FwReleaseFix;
4573                 fw.start_addr = bce_CP_b09FwStartAddr;
4574
4575                 fw.text_addr = bce_CP_b09FwTextAddr;
4576                 fw.text_len = bce_CP_b09FwTextLen;
4577                 fw.text_index = 0;
4578                 fw.text = bce_CP_b09FwText;
4579
4580                 fw.data_addr = bce_CP_b09FwDataAddr;
4581                 fw.data_len = bce_CP_b09FwDataLen;
4582                 fw.data_index = 0;
4583                 fw.data = bce_CP_b09FwData;
4584
4585                 fw.sbss_addr = bce_CP_b09FwSbssAddr;
4586                 fw.sbss_len = bce_CP_b09FwSbssLen;
4587                 fw.sbss_index = 0;
4588                 fw.sbss = bce_CP_b09FwSbss;
4589
4590                 fw.bss_addr = bce_CP_b09FwBssAddr;
4591                 fw.bss_len = bce_CP_b09FwBssLen;
4592                 fw.bss_index = 0;
4593                 fw.bss = bce_CP_b09FwBss;
4594
4595                 fw.rodata_addr = bce_CP_b09FwRodataAddr;
4596                 fw.rodata_len = bce_CP_b09FwRodataLen;
4597                 fw.rodata_index = 0;
4598                 fw.rodata = bce_CP_b09FwRodata;
4599         } else {
4600                 fw.ver_major = bce_CP_b06FwReleaseMajor;
4601                 fw.ver_minor = bce_CP_b06FwReleaseMinor;
4602                 fw.ver_fix = bce_CP_b06FwReleaseFix;
4603                 fw.start_addr = bce_CP_b06FwStartAddr;
4604
4605                 fw.text_addr = bce_CP_b06FwTextAddr;
4606                 fw.text_len = bce_CP_b06FwTextLen;
4607                 fw.text_index = 0;
4608                 fw.text = bce_CP_b06FwText;
4609
4610                 fw.data_addr = bce_CP_b06FwDataAddr;
4611                 fw.data_len = bce_CP_b06FwDataLen;
4612                 fw.data_index = 0;
4613                 fw.data = bce_CP_b06FwData;
4614
4615                 fw.sbss_addr = bce_CP_b06FwSbssAddr;
4616                 fw.sbss_len = bce_CP_b06FwSbssLen;
4617                 fw.sbss_index = 0;
4618                 fw.sbss = bce_CP_b06FwSbss;
4619
4620                 fw.bss_addr = bce_CP_b06FwBssAddr;
4621                 fw.bss_len = bce_CP_b06FwBssLen;
4622                 fw.bss_index = 0;
4623                 fw.bss = bce_CP_b06FwBss;
4624
4625                 fw.rodata_addr = bce_CP_b06FwRodataAddr;
4626                 fw.rodata_len = bce_CP_b06FwRodataLen;
4627                 fw.rodata_index = 0;
4628                 fw.rodata = bce_CP_b06FwRodata;
4629         }
4630
4631         DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4632         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4633         bce_start_cpu(sc, &cpu_reg);
4634
4635         DBEXIT(BCE_VERBOSE_RESET);
4636 }
4637
4638
4639 /****************************************************************************/
4640 /* Initialize the COM CPU.                                                 */
4641 /*                                                                          */
4642 /* Returns:                                                                 */
4643 /*   Nothing.                                                               */
4644 /****************************************************************************/
4645 static void
4646 bce_init_com_cpu(struct bce_softc *sc)
4647 {
4648         struct cpu_reg cpu_reg;
4649         struct fw_info fw;
4650
4651         DBENTER(BCE_VERBOSE_RESET);
4652
4653         cpu_reg.mode = BCE_COM_CPU_MODE;
4654         cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4655         cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4656         cpu_reg.state = BCE_COM_CPU_STATE;
4657         cpu_reg.state_value_clear = 0xffffff;
4658         cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4659         cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4660         cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4661         cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4662         cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4663         cpu_reg.spad_base = BCE_COM_SCRATCH;
4664         cpu_reg.mips_view_base = 0x8000000;
4665
4666         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4667                 fw.ver_major = bce_COM_b09FwReleaseMajor;
4668                 fw.ver_minor = bce_COM_b09FwReleaseMinor;
4669                 fw.ver_fix = bce_COM_b09FwReleaseFix;
4670                 fw.start_addr = bce_COM_b09FwStartAddr;
4671
4672                 fw.text_addr = bce_COM_b09FwTextAddr;
4673                 fw.text_len = bce_COM_b09FwTextLen;
4674                 fw.text_index = 0;
4675                 fw.text = bce_COM_b09FwText;
4676
4677                 fw.data_addr = bce_COM_b09FwDataAddr;
4678                 fw.data_len = bce_COM_b09FwDataLen;
4679                 fw.data_index = 0;
4680                 fw.data = bce_COM_b09FwData;
4681
4682                 fw.sbss_addr = bce_COM_b09FwSbssAddr;
4683                 fw.sbss_len = bce_COM_b09FwSbssLen;
4684                 fw.sbss_index = 0;
4685                 fw.sbss = bce_COM_b09FwSbss;
4686
4687                 fw.bss_addr = bce_COM_b09FwBssAddr;
4688                 fw.bss_len = bce_COM_b09FwBssLen;
4689                 fw.bss_index = 0;
4690                 fw.bss = bce_COM_b09FwBss;
4691
4692                 fw.rodata_addr = bce_COM_b09FwRodataAddr;
4693                 fw.rodata_len = bce_COM_b09FwRodataLen;
4694                 fw.rodata_index = 0;
4695                 fw.rodata = bce_COM_b09FwRodata;
4696         } else {
4697                 fw.ver_major = bce_COM_b06FwReleaseMajor;
4698                 fw.ver_minor = bce_COM_b06FwReleaseMinor;
4699                 fw.ver_fix = bce_COM_b06FwReleaseFix;
4700                 fw.start_addr = bce_COM_b06FwStartAddr;
4701
4702                 fw.text_addr = bce_COM_b06FwTextAddr;
4703                 fw.text_len = bce_COM_b06FwTextLen;
4704                 fw.text_index = 0;
4705                 fw.text = bce_COM_b06FwText;
4706
4707                 fw.data_addr = bce_COM_b06FwDataAddr;
4708                 fw.data_len = bce_COM_b06FwDataLen;
4709                 fw.data_index = 0;
4710                 fw.data = bce_COM_b06FwData;
4711
4712                 fw.sbss_addr = bce_COM_b06FwSbssAddr;
4713                 fw.sbss_len = bce_COM_b06FwSbssLen;
4714                 fw.sbss_index = 0;
4715                 fw.sbss = bce_COM_b06FwSbss;
4716
4717                 fw.bss_addr = bce_COM_b06FwBssAddr;
4718                 fw.bss_len = bce_COM_b06FwBssLen;
4719                 fw.bss_index = 0;
4720                 fw.bss = bce_COM_b06FwBss;
4721
4722                 fw.rodata_addr = bce_COM_b06FwRodataAddr;
4723                 fw.rodata_len = bce_COM_b06FwRodataLen;
4724                 fw.rodata_index = 0;
4725                 fw.rodata = bce_COM_b06FwRodata;
4726         }
4727
4728         DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4729         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4730         bce_start_cpu(sc, &cpu_reg);
4731
4732         DBEXIT(BCE_VERBOSE_RESET);
4733 }
4734
4735
4736 /****************************************************************************/
4737 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4738 /*                                                                          */
4739 /* Loads the firmware for each CPU and starts the CPU.                      */
4740 /*                                                                          */
4741 /* Returns:                                                                 */
4742 /*   Nothing.                                                               */
4743 /****************************************************************************/
4744 static void
4745 bce_init_cpus(struct bce_softc *sc)
4746 {
4747         DBENTER(BCE_VERBOSE_RESET);
4748
4749         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4750
4751                 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4752                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4753                             sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4754                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4755                             sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4756                 } else {
4757                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4758                             sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4759                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4760                             sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4761                 }
4762
4763         } else {
4764                 bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4765                     sizeof(bce_rv2p_proc1), RV2P_PROC1);
4766                 bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4767                     sizeof(bce_rv2p_proc2), RV2P_PROC2);
4768         }
4769
4770         bce_init_rxp_cpu(sc);
4771         bce_init_txp_cpu(sc);
4772         bce_init_tpat_cpu(sc);
4773         bce_init_com_cpu(sc);
4774         bce_init_cp_cpu(sc);
4775
4776         DBEXIT(BCE_VERBOSE_RESET);
4777 }
4778
4779
4780 /****************************************************************************/
4781 /* Initialize context memory.                                               */
4782 /*                                                                          */
4783 /* Clears the memory associated with each Context ID (CID).                 */
4784 /*                                                                          */
4785 /* Returns:                                                                 */
4786 /*   Nothing.                                                               */
4787 /****************************************************************************/
4788 static int
4789 bce_init_ctx(struct bce_softc *sc)
4790 {
4791         u32 offset, val, vcid_addr;
4792         int i, j, rc, retry_cnt;
4793
4794         rc = 0;
4795         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4796
4797         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4798                 retry_cnt = CTX_INIT_RETRY_COUNT;
4799
4800                 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4801
4802                 /*
4803                  * BCM5709 context memory may be cached
4804                  * in host memory so prepare the host memory
4805                  * for access.
4806                  */
4807                 val = BCE_CTX_COMMAND_ENABLED |
4808                     BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4809                 val |= (BCM_PAGE_BITS - 8) << 16;
4810                 REG_WR(sc, BCE_CTX_COMMAND, val);
4811
4812                 /* Wait for mem init command to complete. */
4813                 for (i = 0; i < retry_cnt; i++) {
4814                         val = REG_RD(sc, BCE_CTX_COMMAND);
4815                         if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4816                                 break;
4817                         DELAY(2);
4818                 }
4819                 if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4820                         BCE_PRINTF("%s(): Context memory initialization failed!\n",
4821                             __FUNCTION__);
4822                         rc = EBUSY;
4823                         goto init_ctx_fail;
4824                 }
4825
4826                 for (i = 0; i < sc->ctx_pages; i++) {
4827                         /* Set the physical address of the context memory. */
4828                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4829                             BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4830                             BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4831                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4832                             BCE_ADDR_HI(sc->ctx_paddr[i]));
4833                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4834                             BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4835
4836                         /* Verify the context memory write was successful. */
4837                         for (j = 0; j < retry_cnt; j++) {
4838                                 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4839                                 if ((val &
4840                                     BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4841                                         break;
4842                                 DELAY(5);
4843                         }
4844                         if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4845                                 BCE_PRINTF("%s(): Failed to initialize "
4846                                     "context page %d!\n", __FUNCTION__, i);
4847                                 rc = EBUSY;
4848                                 goto init_ctx_fail;
4849                         }
4850                 }
4851         } else {
4852
4853                 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4854
4855                 /*
4856                  * For the 5706/5708, context memory is local to
4857                  * the controller, so initialize the controller
4858                  * context memory.
4859                  */
4860
4861                 vcid_addr = GET_CID_ADDR(96);
4862                 while (vcid_addr) {
4863
4864                         vcid_addr -= PHY_CTX_SIZE;
4865
4866                         REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4867                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4868
4869                         for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4870                                 CTX_WR(sc, 0x00, offset, 0);
4871                         }
4872
4873                         REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4874                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4875                 }
4876
4877         }
4878 init_ctx_fail:
4879         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4880         return (rc);
4881 }
4882
4883
4884 /****************************************************************************/
4885 /* Fetch the permanent MAC address of the controller.                       */
4886 /*                                                                          */
4887 /* Returns:                                                                 */
4888 /*   Nothing.                                                               */
4889 /****************************************************************************/
4890 static void
4891 bce_get_mac_addr(struct bce_softc *sc)
4892 {
4893         u32 mac_lo = 0, mac_hi = 0;
4894
4895         DBENTER(BCE_VERBOSE_RESET);
4896
4897         /*
4898          * The NetXtreme II bootcode populates various NIC
4899          * power-on and runtime configuration items in a
4900          * shared memory area.  The factory configured MAC
4901          * address is available from both NVRAM and the
4902          * shared memory area so we'll read the value from
4903          * shared memory for speed.
4904          */
4905
4906         mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4907         mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4908
4909         if ((mac_lo == 0) && (mac_hi == 0)) {
4910                 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4911                     __FILE__, __LINE__);
4912         } else {
4913                 sc->eaddr[0] = (u_char)(mac_hi >> 8);
4914                 sc->eaddr[1] = (u_char)(mac_hi >> 0);
4915                 sc->eaddr[2] = (u_char)(mac_lo >> 24);
4916                 sc->eaddr[3] = (u_char)(mac_lo >> 16);
4917                 sc->eaddr[4] = (u_char)(mac_lo >> 8);
4918                 sc->eaddr[5] = (u_char)(mac_lo >> 0);
4919         }
4920
4921         DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4922             "address = %6D\n", sc->eaddr, ":");
4923         DBEXIT(BCE_VERBOSE_RESET);
4924 }
4925
4926
4927 /****************************************************************************/
4928 /* Program the MAC address.                                                 */
4929 /*                                                                          */
4930 /* Returns:                                                                 */
4931 /*   Nothing.                                                               */
4932 /****************************************************************************/
4933 static void
4934 bce_set_mac_addr(struct bce_softc *sc)
4935 {
4936         u32 val;
4937         u8 *mac_addr = sc->eaddr;
4938
4939         /* ToDo: Add support for setting multiple MAC addresses. */
4940
4941         DBENTER(BCE_VERBOSE_RESET);
4942         DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4943             "%6D\n", sc->eaddr, ":");
4944
4945         val = (mac_addr[0] << 8) | mac_addr[1];
4946
4947         REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4948
4949         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4950             (mac_addr[4] << 8) | mac_addr[5];
4951
4952         REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4953
4954         DBEXIT(BCE_VERBOSE_RESET);
4955 }
4956
4957
4958 /****************************************************************************/
4959 /* Stop the controller.                                                     */
4960 /*                                                                          */
4961 /* Returns:                                                                 */
4962 /*   Nothing.                                                               */
4963 /****************************************************************************/
4964 static void
4965 bce_stop(struct bce_softc *sc)
4966 {
4967         struct ifnet *ifp;
4968
4969         DBENTER(BCE_VERBOSE_RESET);
4970
4971         BCE_LOCK_ASSERT(sc);
4972
4973         ifp = sc->bce_ifp;
4974
4975         callout_stop(&sc->bce_tick_callout);
4976
4977         /* Disable the transmit/receive blocks. */
4978         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4979         REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4980         DELAY(20);
4981
4982         bce_disable_intr(sc);
4983
4984         /* Free RX buffers. */
4985         if (bce_hdr_split == TRUE) {
4986                 bce_free_pg_chain(sc);
4987         }
4988         bce_free_rx_chain(sc);
4989
4990         /* Free TX buffers. */
4991         bce_free_tx_chain(sc);
4992
4993         sc->watchdog_timer = 0;
4994
4995         sc->bce_link_up = FALSE;
4996
4997         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4998
4999         DBEXIT(BCE_VERBOSE_RESET);
5000 }
5001
5002
5003 static int
5004 bce_reset(struct bce_softc *sc, u32 reset_code)
5005 {
5006         u32 emac_mode_save, val;
5007         int i, rc = 0;
5008         static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
5009             BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
5010
5011         DBENTER(BCE_VERBOSE_RESET);
5012
5013         DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
5014             __FUNCTION__, reset_code);
5015
5016         /*
5017          * If ASF/IPMI is operational, then the EMAC Mode register already
5018          * contains appropriate values for the link settings that have
5019          * been auto-negotiated.  Resetting the chip will clobber those
5020          * values.  Save the important bits so we can restore them after
5021          * the reset.
5022          */
5023         emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
5024
5025         /* Wait for pending PCI transactions to complete. */
5026         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
5027             BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
5028             BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
5029             BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
5030             BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
5031         val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
5032         DELAY(5);
5033
5034         /* Disable DMA */
5035         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5036                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5037                 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5038                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5039         }
5040
5041         /* Assume bootcode is running. */
5042         sc->bce_fw_timed_out = FALSE;
5043         sc->bce_drv_cardiac_arrest = FALSE;
5044
5045         /* Give the firmware a chance to prepare for the reset. */
5046         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
5047         if (rc)
5048                 goto bce_reset_exit;
5049
5050         /* Set a firmware reminder that this is a soft reset. */
5051         bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
5052
5053         /* Dummy read to force the chip to complete all current transactions. */
5054         val = REG_RD(sc, BCE_MISC_ID);
5055
5056         /* Chip reset. */
5057         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5058                 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
5059                 REG_RD(sc, BCE_MISC_COMMAND);
5060                 DELAY(5);
5061
5062                 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5063                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5064
5065                 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
5066         } else {
5067                 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5068                     BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5069                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5070                 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5071
5072                 /* Allow up to 30us for reset to complete. */
5073                 for (i = 0; i < 10; i++) {
5074                         val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5075                         if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5076                             BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5077                                 break;
5078                         }
5079                         DELAY(10);
5080                 }
5081
5082                 /* Check that reset completed successfully. */
5083                 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5084                     BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5085                         BCE_PRINTF("%s(%d): Reset failed!\n",
5086                             __FILE__, __LINE__);
5087                         rc = EBUSY;
5088                         goto bce_reset_exit;
5089                 }
5090         }
5091
5092         /* Make sure byte swapping is properly configured. */
5093         val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5094         if (val != 0x01020304) {
5095                 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5096                     __FILE__, __LINE__);
5097                 rc = ENODEV;
5098                 goto bce_reset_exit;
5099         }
5100
5101         /* Just completed a reset, assume that firmware is running again. */
5102         sc->bce_fw_timed_out = FALSE;
5103         sc->bce_drv_cardiac_arrest = FALSE;
5104
5105         /* Wait for the firmware to finish its initialization. */
5106         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5107         if (rc)
5108                 BCE_PRINTF("%s(%d): Firmware did not complete "
5109                     "initialization!\n", __FILE__, __LINE__);
5110         /* Get firmware capabilities. */
5111         bce_fw_cap_init(sc);
5112
5113 bce_reset_exit:
5114         /* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
5115         if (reset_code == BCE_DRV_MSG_CODE_RESET) {
5116                 val = REG_RD(sc, BCE_EMAC_MODE);
5117                 val = (val & ~emac_mode_mask) | emac_mode_save;
5118                 REG_WR(sc, BCE_EMAC_MODE, val);
5119         }
5120
5121         DBEXIT(BCE_VERBOSE_RESET);
5122         return (rc);
5123 }
5124
5125
5126 static int
5127 bce_chipinit(struct bce_softc *sc)
5128 {
5129         u32 val;
5130         int rc = 0;
5131
5132         DBENTER(BCE_VERBOSE_RESET);
5133
5134         bce_disable_intr(sc);
5135
5136         /*
5137          * Initialize DMA byte/word swapping, configure the number of DMA
5138          * channels and PCI clock compensation delay.
5139          */
5140         val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5141             BCE_DMA_CONFIG_DATA_WORD_SWAP |
5142 #if BYTE_ORDER == BIG_ENDIAN
5143             BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5144 #endif
5145             BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5146             DMA_READ_CHANS << 12 |
5147             DMA_WRITE_CHANS << 16;
5148
5149         val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5150
5151         if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5152                 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5153
5154         /*
5155          * This setting resolves a problem observed on certain Intel PCI
5156          * chipsets that cannot handle multiple outstanding DMA operations.
5157          * See errata E9_5706A1_65.
5158          */
5159         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5160             (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5161             !(sc->bce_flags & BCE_PCIX_FLAG))
5162                 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5163
5164         REG_WR(sc, BCE_DMA_CONFIG, val);
5165
5166         /* Enable the RX_V2P and Context state machines before access. */
5167         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5168             BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5169             BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5170             BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5171
5172         /* Initialize context mapping and zero out the quick contexts. */
5173         if ((rc = bce_init_ctx(sc)) != 0)
5174                 goto bce_chipinit_exit;
5175
5176         /* Initialize the on-boards CPUs */
5177         bce_init_cpus(sc);
5178
5179         /* Enable management frames (NC-SI) to flow to the MCP. */
5180         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5181                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5182                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5183         }
5184
5185         /* Prepare NVRAM for access. */
5186         if ((rc = bce_init_nvram(sc)) != 0)
5187                 goto bce_chipinit_exit;
5188
5189         /* Set the kernel bypass block size */
5190         val = REG_RD(sc, BCE_MQ_CONFIG);
5191         val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5192         val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5193
5194         /* Enable bins used on the 5709. */
5195         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5196                 val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5197                 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5198                         val |= BCE_MQ_CONFIG_HALT_DIS;
5199         }
5200
5201         REG_WR(sc, BCE_MQ_CONFIG, val);
5202
5203         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5204         REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5205         REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5206
5207         /* Set the page size and clear the RV2P processor stall bits. */
5208         val = (BCM_PAGE_BITS - 8) << 24;
5209         REG_WR(sc, BCE_RV2P_CONFIG, val);
5210
5211         /* Configure page size. */
5212         val = REG_RD(sc, BCE_TBDR_CONFIG);
5213         val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5214         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5215         REG_WR(sc, BCE_TBDR_CONFIG, val);
5216
5217         /* Set the perfect match control register to default. */
5218         REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5219
5220 bce_chipinit_exit:
5221         DBEXIT(BCE_VERBOSE_RESET);
5222
5223         return(rc);
5224 }
5225
5226
5227 /****************************************************************************/
5228 /* Initialize the controller in preparation to send/receive traffic.        */
5229 /*                                                                          */
5230 /* Returns:                                                                 */
5231 /*   0 for success, positive value for failure.                             */
5232 /****************************************************************************/
5233 static int
5234 bce_blockinit(struct bce_softc *sc)
5235 {
5236         u32 reg, val;
5237         int rc = 0;
5238
5239         DBENTER(BCE_VERBOSE_RESET);
5240
5241         /* Load the hardware default MAC address. */
5242         bce_set_mac_addr(sc);
5243
5244         /* Set the Ethernet backoff seed value */
5245         val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5246               (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5247               (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5248         REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5249
5250         sc->last_status_idx = 0;
5251         sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5252
5253         /* Set up link change interrupt generation. */
5254         REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5255
5256         /* Program the physical address of the status block. */
5257         REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5258             BCE_ADDR_LO(sc->status_block_paddr));
5259         REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5260             BCE_ADDR_HI(sc->status_block_paddr));
5261
5262         /* Program the physical address of the statistics block. */
5263         REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5264             BCE_ADDR_LO(sc->stats_block_paddr));
5265         REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5266             BCE_ADDR_HI(sc->stats_block_paddr));
5267
5268         /*
5269          * Program various host coalescing parameters.
5270          * Trip points control how many BDs should be ready before generating
5271          * an interrupt while ticks control how long a BD can sit in the chain
5272          * before generating an interrupt.
5273          */
5274         REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5275             (sc->bce_tx_quick_cons_trip_int << 16) |
5276             sc->bce_tx_quick_cons_trip);
5277         REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5278             (sc->bce_rx_quick_cons_trip_int << 16) |
5279             sc->bce_rx_quick_cons_trip);
5280         REG_WR(sc, BCE_HC_TX_TICKS,
5281             (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5282         REG_WR(sc, BCE_HC_RX_TICKS,
5283             (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5284         REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5285         REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5286         /* Not used for L2. */
5287         REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5288         REG_WR(sc, BCE_HC_COM_TICKS, 0);
5289         REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5290
5291         /* Configure the Host Coalescing block. */
5292         val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5293             BCE_HC_CONFIG_COLLECT_STATS;
5294
5295 #if 0
5296         /* ToDo: Add MSI-X support. */
5297         if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5298                 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5299                     BCE_HC_SB_CONFIG_1;
5300
5301                 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5302
5303                 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5304                     BCE_HC_SB_CONFIG_1_ONE_SHOT);
5305
5306                 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5307                     (sc->tx_quick_cons_trip_int << 16) |
5308                      sc->tx_quick_cons_trip);
5309
5310                 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5311                     (sc->tx_ticks_int << 16) | sc->tx_ticks);
5312
5313                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5314         }
5315
5316         /*
5317          * Tell the HC block to automatically set the
5318          * INT_MASK bit after an MSI/MSI-X interrupt
5319          * is generated so the driver doesn't have to.
5320          */
5321         if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5322                 val |= BCE_HC_CONFIG_ONE_SHOT;
5323
5324         /* Set the MSI-X status blocks to 128 byte boundaries. */
5325         if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5326                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5327 #endif
5328
5329         REG_WR(sc, BCE_HC_CONFIG, val);
5330
5331         /* Clear the internal statistics counters. */
5332         REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5333
5334         /* Verify that bootcode is running. */
5335         reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5336
5337         DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5338             BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5339             __FILE__, __LINE__);
5340             reg = 0);
5341
5342         if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5343             BCE_DEV_INFO_SIGNATURE_MAGIC) {
5344                 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5345                     "Expected: 08%08X\n", __FILE__, __LINE__,
5346                     (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5347                     BCE_DEV_INFO_SIGNATURE_MAGIC);
5348                 rc = ENODEV;
5349                 goto bce_blockinit_exit;
5350         }
5351
5352         /* Enable DMA */
5353         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5354                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5355                 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5356                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5357         }
5358
5359         /* Allow bootcode to apply additional fixes before enabling MAC. */
5360         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5361             BCE_DRV_MSG_CODE_RESET);
5362
5363         /* Enable link state change interrupt generation. */
5364         REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5365
5366         /* Enable the RXP. */
5367         bce_start_rxp_cpu(sc);
5368
5369         /* Disable management frames (NC-SI) from flowing to the MCP. */
5370         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5371                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5372                     ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5373                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5374         }
5375
5376         /* Enable all remaining blocks in the MAC. */
5377         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5378                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5379                     BCE_MISC_ENABLE_DEFAULT_XI);
5380         else
5381                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5382                     BCE_MISC_ENABLE_DEFAULT);
5383
5384         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5385         DELAY(20);
5386
5387         /* Save the current host coalescing block settings. */
5388         sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5389
5390 bce_blockinit_exit:
5391         DBEXIT(BCE_VERBOSE_RESET);
5392
5393         return (rc);
5394 }
5395
5396
5397 /****************************************************************************/
5398 /* Encapsulate an mbuf into the rx_bd chain.                                */
5399 /*                                                                          */
5400 /* Returns:                                                                 */
5401 /*   0 for success, positive value for failure.                             */
5402 /****************************************************************************/
5403 static int
5404 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5405 {
5406         bus_dma_segment_t segs[1];
5407         struct mbuf *m_new = NULL;
5408         struct rx_bd *rxbd;
5409         int nsegs, error, rc = 0;
5410 #ifdef BCE_DEBUG
5411         u16 debug_chain_prod = chain_prod;
5412 #endif
5413
5414         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5415
5416         /* Make sure the inputs are valid. */
5417         DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5418             BCE_PRINTF("%s(%d): RX producer out of range: "
5419             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5420             chain_prod, (u16)MAX_RX_BD_ALLOC));
5421
5422         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5423             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5424             prod, chain_prod, *prod_bseq);
5425
5426         /* Update some debug statistic counters */
5427         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5428             sc->rx_low_watermark = sc->free_rx_bd);
5429         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5430             sc->rx_empty_count++);
5431
5432         /* Simulate an mbuf allocation failure. */
5433         DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5434             sc->mbuf_alloc_failed_count++;
5435             sc->mbuf_alloc_failed_sim_count++;
5436             rc = ENOBUFS;
5437             goto bce_get_rx_buf_exit);
5438
5439         /* This is a new mbuf allocation. */
5440         if (bce_hdr_split == TRUE)
5441                 MGETHDR(m_new, M_NOWAIT, MT_DATA);
5442         else
5443                 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5444                     sc->rx_bd_mbuf_alloc_size);
5445
5446         if (m_new == NULL) {
5447                 sc->mbuf_alloc_failed_count++;
5448                 rc = ENOBUFS;
5449                 goto bce_get_rx_buf_exit;
5450         }
5451
5452         DBRUN(sc->debug_rx_mbuf_alloc++);
5453
5454         /* Make sure we have a valid packet header. */
5455         M_ASSERTPKTHDR(m_new);
5456
5457         /* Initialize the mbuf size and pad if necessary for alignment. */
5458         m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5459         m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5460
5461         /* ToDo: Consider calling m_fragment() to test error handling. */
5462
5463         /* Map the mbuf cluster into device memory. */
5464         error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5465             sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5466
5467         /* Handle any mapping errors. */
5468         if (error) {
5469                 BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5470                     "chain (%d)!\n", __FILE__, __LINE__, error);
5471
5472                 sc->dma_map_addr_rx_failed_count++;
5473                 m_freem(m_new);
5474
5475                 DBRUN(sc->debug_rx_mbuf_alloc--);
5476
5477                 rc = ENOBUFS;
5478                 goto bce_get_rx_buf_exit;
5479         }
5480
5481         /* All mbufs must map to a single segment. */
5482         KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5483             __FUNCTION__, nsegs));
5484
5485         /* Setup the rx_bd for the segment. */
5486         rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5487
5488         rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5489         rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5490         rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5491         rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5492         *prod_bseq += segs[0].ds_len;
5493
5494         /* Save the mbuf and update our counter. */
5495         sc->rx_mbuf_ptr[chain_prod] = m_new;
5496         sc->free_rx_bd -= nsegs;
5497
5498         DBRUNMSG(BCE_INSANE_RECV,
5499             bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5500
5501         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5502             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5503             chain_prod, *prod_bseq);
5504
5505 bce_get_rx_buf_exit:
5506         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5507
5508         return(rc);
5509 }
5510
5511
5512 /****************************************************************************/
5513 /* Encapsulate an mbuf cluster into the page chain.                         */
5514 /*                                                                          */
5515 /* Returns:                                                                 */
5516 /*   0 for success, positive value for failure.                             */
5517 /****************************************************************************/
5518 static int
5519 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5520 {
5521         bus_dma_segment_t segs[1];
5522         struct mbuf *m_new = NULL;
5523         struct rx_bd *pgbd;
5524         int error, nsegs, rc = 0;
5525 #ifdef BCE_DEBUG
5526         u16 debug_prod_idx = prod_idx;
5527 #endif
5528
5529         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5530
5531         /* Make sure the inputs are valid. */
5532         DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5533             BCE_PRINTF("%s(%d): page producer out of range: "
5534             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5535             prod_idx, (u16)MAX_PG_BD_ALLOC));
5536
5537         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5538             "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5539
5540         /* Update counters if we've hit a new low or run out of pages. */
5541         DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5542             sc->pg_low_watermark = sc->free_pg_bd);
5543         DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5544
5545         /* Simulate an mbuf allocation failure. */
5546         DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5547             sc->mbuf_alloc_failed_count++;
5548             sc->mbuf_alloc_failed_sim_count++;
5549             rc = ENOBUFS;
5550             goto bce_get_pg_buf_exit);
5551
5552         /* This is a new mbuf allocation. */
5553         m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5554         if (m_new == NULL) {
5555                 sc->mbuf_alloc_failed_count++;
5556                 rc = ENOBUFS;
5557                 goto bce_get_pg_buf_exit;
5558         }
5559
5560         DBRUN(sc->debug_pg_mbuf_alloc++);
5561
5562         m_new->m_len = MCLBYTES;
5563
5564         /* ToDo: Consider calling m_fragment() to test error handling. */
5565
5566         /* Map the mbuf cluster into device memory. */
5567         error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5568             sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5569
5570         /* Handle any mapping errors. */
5571         if (error) {
5572                 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5573                     __FILE__, __LINE__);
5574
5575                 m_freem(m_new);
5576                 DBRUN(sc->debug_pg_mbuf_alloc--);
5577
5578                 rc = ENOBUFS;
5579                 goto bce_get_pg_buf_exit;
5580         }
5581
5582         /* All mbufs must map to a single segment. */
5583         KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5584             __FUNCTION__, nsegs));
5585
5586         /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5587
5588         /*
5589          * The page chain uses the same rx_bd data structure
5590          * as the receive chain but doesn't require a byte sequence (bseq).
5591          */
5592         pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5593
5594         pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5595         pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5596         pgbd->rx_bd_len       = htole32(MCLBYTES);
5597         pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5598
5599         /* Save the mbuf and update our counter. */
5600         sc->pg_mbuf_ptr[prod_idx] = m_new;
5601         sc->free_pg_bd--;
5602
5603         DBRUNMSG(BCE_INSANE_RECV,
5604             bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5605
5606         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5607             "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5608
5609 bce_get_pg_buf_exit:
5610         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5611
5612         return(rc);
5613 }
5614
5615
5616 /****************************************************************************/
5617 /* Initialize the TX context memory.                                        */
5618 /*                                                                          */
5619 /* Returns:                                                                 */
5620 /*   Nothing                                                                */
5621 /****************************************************************************/
5622 static void
5623 bce_init_tx_context(struct bce_softc *sc)
5624 {
5625         u32 val;
5626
5627         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5628
5629         /* Initialize the context ID for an L2 TX chain. */
5630         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5631                 /* Set the CID type to support an L2 connection. */
5632                 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5633                     BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5634                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5635                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5636                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5637                     BCE_L2CTX_TX_CMD_TYPE_XI, val);
5638
5639                 /* Point the hardware to the first page in the chain. */
5640                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5641                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5642                     BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5643                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5644                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5645                     BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5646         } else {
5647                 /* Set the CID type to support an L2 connection. */
5648                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5649                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5650                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5651                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5652
5653                 /* Point the hardware to the first page in the chain. */
5654                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5655                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5656                     BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5657                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5658                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5659                     BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5660         }
5661
5662         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5663 }
5664
5665
5666 /****************************************************************************/
5667 /* Allocate memory and initialize the TX data structures.                   */
5668 /*                                                                          */
5669 /* Returns:                                                                 */
5670 /*   0 for success, positive value for failure.                             */
5671 /****************************************************************************/
5672 static int
5673 bce_init_tx_chain(struct bce_softc *sc)
5674 {
5675         struct tx_bd *txbd;
5676         int i, rc = 0;
5677
5678         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5679
5680         /* Set the initial TX producer/consumer indices. */
5681         sc->tx_prod        = 0;
5682         sc->tx_cons        = 0;
5683         sc->tx_prod_bseq   = 0;
5684         sc->used_tx_bd     = 0;
5685         sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5686         DBRUN(sc->tx_hi_watermark = 0);
5687         DBRUN(sc->tx_full_count = 0);
5688
5689         /*
5690          * The NetXtreme II supports a linked-list structre called
5691          * a Buffer Descriptor Chain (or BD chain).  A BD chain
5692          * consists of a series of 1 or more chain pages, each of which
5693          * consists of a fixed number of BD entries.
5694          * The last BD entry on each page is a pointer to the next page
5695          * in the chain, and the last pointer in the BD chain
5696          * points back to the beginning of the chain.
5697          */
5698
5699         /* Set the TX next pointer chain entries. */
5700         for (i = 0; i < sc->tx_pages; i++) {
5701                 int j;
5702
5703                 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5704
5705                 /* Check if we've reached the last page. */
5706                 if (i == (sc->tx_pages - 1))
5707                         j = 0;
5708                 else
5709                         j = i + 1;
5710
5711                 txbd->tx_bd_haddr_hi =
5712                     htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5713                 txbd->tx_bd_haddr_lo =
5714                     htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5715         }
5716
5717         bce_init_tx_context(sc);
5718
5719         DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5720         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5721
5722         return(rc);
5723 }
5724
5725
5726 /****************************************************************************/
5727 /* Free memory and clear the TX data structures.                            */
5728 /*                                                                          */
5729 /* Returns:                                                                 */
5730 /*   Nothing.                                                               */
5731 /****************************************************************************/
5732 static void
5733 bce_free_tx_chain(struct bce_softc *sc)
5734 {
5735         int i;
5736
5737         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5738
5739         /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5740         for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5741                 if (sc->tx_mbuf_ptr[i] != NULL) {
5742                         if (sc->tx_mbuf_map[i] != NULL)
5743                                 bus_dmamap_sync(sc->tx_mbuf_tag,
5744                                     sc->tx_mbuf_map[i],
5745                                     BUS_DMASYNC_POSTWRITE);
5746                         m_freem(sc->tx_mbuf_ptr[i]);
5747                         sc->tx_mbuf_ptr[i] = NULL;
5748                         DBRUN(sc->debug_tx_mbuf_alloc--);
5749                 }
5750         }
5751
5752         /* Clear each TX chain page. */
5753         for (i = 0; i < sc->tx_pages; i++)
5754                 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5755
5756         sc->used_tx_bd = 0;
5757
5758         /* Check if we lost any mbufs in the process. */
5759         DBRUNIF((sc->debug_tx_mbuf_alloc),
5760             BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5761             "from tx chain!\n", __FILE__, __LINE__,
5762             sc->debug_tx_mbuf_alloc));
5763
5764         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5765 }
5766
5767
5768 /****************************************************************************/
5769 /* Initialize the RX context memory.                                        */
5770 /*                                                                          */
5771 /* Returns:                                                                 */
5772 /*   Nothing                                                                */
5773 /****************************************************************************/
5774 static void
5775 bce_init_rx_context(struct bce_softc *sc)
5776 {
5777         u32 val;
5778
5779         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5780
5781         /* Init the type, size, and BD cache levels for the RX context. */
5782         val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5783             BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5784             (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5785
5786         /*
5787          * Set the level for generating pause frames
5788          * when the number of available rx_bd's gets
5789          * too low (the low watermark) and the level
5790          * when pause frames can be stopped (the high
5791          * watermark).
5792          */
5793         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5794                 u32 lo_water, hi_water;
5795
5796                 if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5797                         lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5798                 } else {
5799                         lo_water = 0;
5800                 }
5801
5802                 if (lo_water >= USABLE_RX_BD_ALLOC) {
5803                         lo_water = 0;
5804                 }
5805
5806                 hi_water = USABLE_RX_BD_ALLOC / 4;
5807
5808                 if (hi_water <= lo_water) {
5809                         lo_water = 0;
5810                 }
5811
5812                 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5813                 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5814
5815                 if (hi_water > 0xf)
5816                         hi_water = 0xf;
5817                 else if (hi_water == 0)
5818                         lo_water = 0;
5819
5820                 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5821                     (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5822         }
5823
5824         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5825
5826         /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5827         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5828                 val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5829                 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5830         }
5831
5832         /* Point the hardware to the first page in the chain. */
5833         val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5834         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5835         val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5836         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5837
5838         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5839 }
5840
5841
5842 /****************************************************************************/
5843 /* Allocate memory and initialize the RX data structures.                   */
5844 /*                                                                          */
5845 /* Returns:                                                                 */
5846 /*   0 for success, positive value for failure.                             */
5847 /****************************************************************************/
5848 static int
5849 bce_init_rx_chain(struct bce_softc *sc)
5850 {
5851         struct rx_bd *rxbd;
5852         int i, rc = 0;
5853
5854         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5855             BCE_VERBOSE_CTX);
5856
5857         /* Initialize the RX producer and consumer indices. */
5858         sc->rx_prod        = 0;
5859         sc->rx_cons        = 0;
5860         sc->rx_prod_bseq   = 0;
5861         sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5862         sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5863
5864         /* Initialize the RX next pointer chain entries. */
5865         for (i = 0; i < sc->rx_pages; i++) {
5866                 int j;
5867
5868                 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5869
5870                 /* Check if we've reached the last page. */
5871                 if (i == (sc->rx_pages - 1))
5872                         j = 0;
5873                 else
5874                         j = i + 1;
5875
5876                 /* Setup the chain page pointers. */
5877                 rxbd->rx_bd_haddr_hi =
5878                     htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5879                 rxbd->rx_bd_haddr_lo =
5880                     htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5881         }
5882
5883         /* Fill up the RX chain. */
5884         bce_fill_rx_chain(sc);
5885
5886         DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5887         DBRUN(sc->rx_empty_count = 0);
5888         for (i = 0; i < sc->rx_pages; i++) {
5889                 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5890                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5891         }
5892
5893         bce_init_rx_context(sc);
5894
5895         DBRUNMSG(BCE_EXTREME_RECV,
5896             bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5897         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5898             BCE_VERBOSE_CTX);
5899
5900         /* ToDo: Are there possible failure modes here? */
5901
5902         return(rc);
5903 }
5904
5905
5906 /****************************************************************************/
5907 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5908 /* occurs.                                                                  */
5909 /*                                                                          */
5910 /* Returns:                                                                 */
5911 /*   Nothing                                                                */
5912 /****************************************************************************/
5913 static void
5914 bce_fill_rx_chain(struct bce_softc *sc)
5915 {
5916         u16 prod, prod_idx;
5917         u32 prod_bseq;
5918
5919         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5920             BCE_VERBOSE_CTX);
5921
5922         /* Get the RX chain producer indices. */
5923         prod      = sc->rx_prod;
5924         prod_bseq = sc->rx_prod_bseq;
5925
5926         /* Keep filling the RX chain until it's full. */
5927         while (sc->free_rx_bd > 0) {
5928                 prod_idx = RX_CHAIN_IDX(prod);
5929                 if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5930                         /* Bail out if we can't add an mbuf to the chain. */
5931                         break;
5932                 }
5933                 prod = NEXT_RX_BD(prod);
5934         }
5935
5936         /* Save the RX chain producer indices. */
5937         sc->rx_prod      = prod;
5938         sc->rx_prod_bseq = prod_bseq;
5939
5940         /* We should never end up pointing to a next page pointer. */
5941         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5942             BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5943             __FUNCTION__, rx_prod));
5944
5945         /* Write the mailbox and tell the chip about the waiting rx_bd's. */
5946         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5947         REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5948
5949         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5950             BCE_VERBOSE_CTX);
5951 }
5952
5953
5954 /****************************************************************************/
5955 /* Free memory and clear the RX data structures.                            */
5956 /*                                                                          */
5957 /* Returns:                                                                 */
5958 /*   Nothing.                                                               */
5959 /****************************************************************************/
5960 static void
5961 bce_free_rx_chain(struct bce_softc *sc)
5962 {
5963         int i;
5964
5965         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5966
5967         /* Free any mbufs still in the RX mbuf chain. */
5968         for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5969                 if (sc->rx_mbuf_ptr[i] != NULL) {
5970                         if (sc->rx_mbuf_map[i] != NULL)
5971                                 bus_dmamap_sync(sc->rx_mbuf_tag,
5972                                     sc->rx_mbuf_map[i],
5973                                     BUS_DMASYNC_POSTREAD);
5974                         m_freem(sc->rx_mbuf_ptr[i]);
5975                         sc->rx_mbuf_ptr[i] = NULL;
5976                         DBRUN(sc->debug_rx_mbuf_alloc--);
5977                 }
5978         }
5979
5980         /* Clear each RX chain page. */
5981         for (i = 0; i < sc->rx_pages; i++)
5982                 if (sc->rx_bd_chain[i] != NULL)
5983                         bzero((char *)sc->rx_bd_chain[i],
5984                             BCE_RX_CHAIN_PAGE_SZ);
5985
5986         sc->free_rx_bd = sc->max_rx_bd;
5987
5988         /* Check if we lost any mbufs in the process. */
5989         DBRUNIF((sc->debug_rx_mbuf_alloc),
5990             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5991             __FUNCTION__, sc->debug_rx_mbuf_alloc));
5992
5993         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5994 }
5995
5996
5997 /****************************************************************************/
5998 /* Allocate memory and initialize the page data structures.                 */
5999 /* Assumes that bce_init_rx_chain() has not already been called.            */
6000 /*                                                                          */
6001 /* Returns:                                                                 */
6002 /*   0 for success, positive value for failure.                             */
6003 /****************************************************************************/
6004 static int
6005 bce_init_pg_chain(struct bce_softc *sc)
6006 {
6007         struct rx_bd *pgbd;
6008         int i, rc = 0;
6009         u32 val;
6010
6011         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6012                 BCE_VERBOSE_CTX);
6013
6014         /* Initialize the page producer and consumer indices. */
6015         sc->pg_prod        = 0;
6016         sc->pg_cons        = 0;
6017         sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
6018         sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
6019         DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
6020         DBRUN(sc->pg_empty_count = 0);
6021
6022         /* Initialize the page next pointer chain entries. */
6023         for (i = 0; i < sc->pg_pages; i++) {
6024                 int j;
6025
6026                 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
6027
6028                 /* Check if we've reached the last page. */
6029                 if (i == (sc->pg_pages - 1))
6030                         j = 0;
6031                 else
6032                         j = i + 1;
6033
6034                 /* Setup the chain page pointers. */
6035                 pgbd->rx_bd_haddr_hi =
6036                     htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
6037                 pgbd->rx_bd_haddr_lo =
6038                     htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
6039         }
6040
6041         /* Setup the MQ BIN mapping for host_pg_bidx. */
6042         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
6043                 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
6044
6045         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
6046
6047         /* Configure the rx_bd and page chain mbuf cluster size. */
6048         val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
6049         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
6050
6051         /* Configure the context reserved for jumbo support. */
6052         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
6053                 BCE_L2CTX_RX_RBDC_JUMBO_KEY);
6054
6055         /* Point the hardware to the first page in the page chain. */
6056         val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6057         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6058         val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6059         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6060
6061         /* Fill up the page chain. */
6062         bce_fill_pg_chain(sc);
6063
6064         for (i = 0; i < sc->pg_pages; i++) {
6065                 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6066                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6067         }
6068
6069         DBRUNMSG(BCE_EXTREME_RECV,
6070             bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6071         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6072                 BCE_VERBOSE_CTX);
6073         return(rc);
6074 }
6075
6076
6077 /****************************************************************************/
6078 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6079 /* occurs.                                                                  */
6080 /*                                                                          */
6081 /* Returns:                                                                 */
6082 /*   Nothing                                                                */
6083 /****************************************************************************/
6084 static void
6085 bce_fill_pg_chain(struct bce_softc *sc)
6086 {
6087         u16 prod, prod_idx;
6088
6089         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6090             BCE_VERBOSE_CTX);
6091
6092         /* Get the page chain prodcuer index. */
6093         prod = sc->pg_prod;
6094
6095         /* Keep filling the page chain until it's full. */
6096         while (sc->free_pg_bd > 0) {
6097                 prod_idx = PG_CHAIN_IDX(prod);
6098                 if (bce_get_pg_buf(sc, prod, prod_idx)) {
6099                         /* Bail out if we can't add an mbuf to the chain. */
6100                         break;
6101                 }
6102                 prod = NEXT_PG_BD(prod);
6103         }
6104
6105         /* Save the page chain producer index. */
6106         sc->pg_prod = prod;
6107
6108         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6109             BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6110             __FUNCTION__, pg_prod));
6111
6112         /*
6113          * Write the mailbox and tell the chip about
6114          * the new rx_bd's in the page chain.
6115          */
6116         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
6117             prod);
6118
6119         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6120             BCE_VERBOSE_CTX);
6121 }
6122
6123
6124 /****************************************************************************/
6125 /* Free memory and clear the RX data structures.                            */
6126 /*                                                                          */
6127 /* Returns:                                                                 */
6128 /*   Nothing.                                                               */
6129 /****************************************************************************/
6130 static void
6131 bce_free_pg_chain(struct bce_softc *sc)
6132 {
6133         int i;
6134
6135         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6136
6137         /* Free any mbufs still in the mbuf page chain. */
6138         for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6139                 if (sc->pg_mbuf_ptr[i] != NULL) {
6140                         if (sc->pg_mbuf_map[i] != NULL)
6141                                 bus_dmamap_sync(sc->pg_mbuf_tag,
6142                                     sc->pg_mbuf_map[i],
6143                                     BUS_DMASYNC_POSTREAD);
6144                         m_freem(sc->pg_mbuf_ptr[i]);
6145                         sc->pg_mbuf_ptr[i] = NULL;
6146                         DBRUN(sc->debug_pg_mbuf_alloc--);
6147                 }
6148         }
6149
6150         /* Clear each page chain pages. */
6151         for (i = 0; i < sc->pg_pages; i++)
6152                 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6153
6154         sc->free_pg_bd = sc->max_pg_bd;
6155
6156         /* Check if we lost any mbufs in the process. */
6157         DBRUNIF((sc->debug_pg_mbuf_alloc),
6158             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6159             __FUNCTION__, sc->debug_pg_mbuf_alloc));
6160
6161         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6162 }
6163
6164
6165 static u32
6166 bce_get_rphy_link(struct bce_softc *sc)
6167 {
6168         u32 advertise, link;
6169         int fdpx;
6170
6171         advertise = 0;
6172         fdpx = 0;
6173         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6174                 link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6175         else
6176                 link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6177         if (link & BCE_NETLINK_ANEG_ENB)
6178                 advertise |= BCE_NETLINK_ANEG_ENB;
6179         if (link & BCE_NETLINK_SPEED_10HALF)
6180                 advertise |= BCE_NETLINK_SPEED_10HALF;
6181         if (link & BCE_NETLINK_SPEED_10FULL) {
6182                 advertise |= BCE_NETLINK_SPEED_10FULL;
6183                 fdpx++;
6184         }
6185         if (link & BCE_NETLINK_SPEED_100HALF)
6186                 advertise |= BCE_NETLINK_SPEED_100HALF;
6187         if (link & BCE_NETLINK_SPEED_100FULL) {
6188                 advertise |= BCE_NETLINK_SPEED_100FULL;
6189                 fdpx++;
6190         }
6191         if (link & BCE_NETLINK_SPEED_1000HALF)
6192                 advertise |= BCE_NETLINK_SPEED_1000HALF;
6193         if (link & BCE_NETLINK_SPEED_1000FULL) {
6194                 advertise |= BCE_NETLINK_SPEED_1000FULL;
6195                 fdpx++;
6196         }
6197         if (link & BCE_NETLINK_SPEED_2500HALF)
6198                 advertise |= BCE_NETLINK_SPEED_2500HALF;
6199         if (link & BCE_NETLINK_SPEED_2500FULL) {
6200                 advertise |= BCE_NETLINK_SPEED_2500FULL;
6201                 fdpx++;
6202         }
6203         if (fdpx)
6204                 advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6205                     BCE_NETLINK_FC_PAUSE_ASYM;
6206         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6207                 advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6208                     BCE_NETLINK_ETH_AT_WIRESPEED;
6209
6210         return (advertise);
6211 }
6212
6213
6214 /****************************************************************************/
6215 /* Set media options.                                                       */
6216 /*                                                                          */
6217 /* Returns:                                                                 */
6218 /*   0 for success, positive value for failure.                             */
6219 /****************************************************************************/
6220 static int
6221 bce_ifmedia_upd(struct ifnet *ifp)
6222 {
6223         struct bce_softc *sc = ifp->if_softc;
6224         int error;
6225
6226         DBENTER(BCE_VERBOSE);
6227
6228         BCE_LOCK(sc);
6229         error = bce_ifmedia_upd_locked(ifp);
6230         BCE_UNLOCK(sc);
6231
6232         DBEXIT(BCE_VERBOSE);
6233         return (error);
6234 }
6235
6236
6237 /****************************************************************************/
6238 /* Set media options.                                                       */
6239 /*                                                                          */
6240 /* Returns:                                                                 */
6241 /*   Nothing.                                                               */
6242 /****************************************************************************/
6243 static int
6244 bce_ifmedia_upd_locked(struct ifnet *ifp)
6245 {
6246         struct bce_softc *sc = ifp->if_softc;
6247         struct mii_data *mii;
6248         struct mii_softc *miisc;
6249         struct ifmedia *ifm;
6250         u32 link;
6251         int error, fdx;
6252
6253         DBENTER(BCE_VERBOSE_PHY);
6254
6255         error = 0;
6256         BCE_LOCK_ASSERT(sc);
6257
6258         sc->bce_link_up = FALSE;
6259         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6260                 ifm = &sc->bce_ifmedia;
6261                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6262                         return (EINVAL);
6263                 link = 0;
6264                 fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6265                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
6266                 case IFM_AUTO:
6267                         /*
6268                          * Check advertised link of remote PHY by reading
6269                          * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6270                          * Always use the same link type of remote PHY.
6271                          */
6272                         link = bce_get_rphy_link(sc);
6273                         break;
6274                 case IFM_2500_SX:
6275                         if ((sc->bce_phy_flags &
6276                             (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6277                             BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6278                                 return (EINVAL);
6279                         /*
6280                          * XXX
6281                          * Have to enable forced 2.5Gbps configuration.
6282                          */
6283                         if (fdx != 0)
6284                                 link |= BCE_NETLINK_SPEED_2500FULL;
6285                         else
6286                                 link |= BCE_NETLINK_SPEED_2500HALF;
6287                         break;
6288                 case IFM_1000_SX:
6289                         if ((sc->bce_phy_flags &
6290                             BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6291                                 return (EINVAL);
6292                         /*
6293                          * XXX
6294                          * Have to disable 2.5Gbps configuration.
6295                          */
6296                         if (fdx != 0)
6297                                 link = BCE_NETLINK_SPEED_1000FULL;
6298                         else
6299                                 link = BCE_NETLINK_SPEED_1000HALF;
6300                         break;
6301                 case IFM_1000_T:
6302                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6303                                 return (EINVAL);
6304                         if (fdx != 0)
6305                                 link = BCE_NETLINK_SPEED_1000FULL;
6306                         else
6307                                 link = BCE_NETLINK_SPEED_1000HALF;
6308                         break;
6309                 case IFM_100_TX:
6310                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6311                                 return (EINVAL);
6312                         if (fdx != 0)
6313                                 link = BCE_NETLINK_SPEED_100FULL;
6314                         else
6315                                 link = BCE_NETLINK_SPEED_100HALF;
6316                         break;
6317                 case IFM_10_T:
6318                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6319                                 return (EINVAL);
6320                         if (fdx != 0)
6321                                 link = BCE_NETLINK_SPEED_10FULL;
6322                         else
6323                                 link = BCE_NETLINK_SPEED_10HALF;
6324                         break;
6325                 default:
6326                         return (EINVAL);
6327                 }
6328                 if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6329                         /*
6330                          * XXX
6331                          * Advertise pause capability for full-duplex media.
6332                          */
6333                         if (fdx != 0)
6334                                 link |= BCE_NETLINK_FC_PAUSE_SYM |
6335                                     BCE_NETLINK_FC_PAUSE_ASYM;
6336                         if ((sc->bce_phy_flags &
6337                             BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6338                                 link |= BCE_NETLINK_PHY_APP_REMOTE |
6339                                     BCE_NETLINK_ETH_AT_WIRESPEED;
6340                 }
6341
6342                 bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6343                 error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6344         } else {
6345                 mii = device_get_softc(sc->bce_miibus);
6346
6347                 /* Make sure the MII bus has been enumerated. */
6348                 if (mii) {
6349                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6350                                 PHY_RESET(miisc);
6351                         error = mii_mediachg(mii);
6352                 }
6353         }
6354
6355         DBEXIT(BCE_VERBOSE_PHY);
6356         return (error);
6357 }
6358
6359
6360 static void
6361 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6362 {
6363         struct ifnet *ifp;
6364         u32 link;
6365
6366         ifp = sc->bce_ifp;
6367         BCE_LOCK_ASSERT(sc);
6368
6369         ifmr->ifm_status = IFM_AVALID;
6370         ifmr->ifm_active = IFM_ETHER;
6371         link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6372         /* XXX Handle heart beat status? */
6373         if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6374                 ifmr->ifm_status |= IFM_ACTIVE;
6375         else {
6376                 ifmr->ifm_active |= IFM_NONE;
6377                 ifp->if_baudrate = 0;
6378                 return;
6379         }
6380         switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6381         case BCE_LINK_STATUS_10HALF:
6382                 ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6383                 ifp->if_baudrate = IF_Mbps(10UL);
6384                 break;
6385         case BCE_LINK_STATUS_10FULL:
6386                 ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6387                 ifp->if_baudrate = IF_Mbps(10UL);
6388                 break;
6389         case BCE_LINK_STATUS_100HALF:
6390                 ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6391                 ifp->if_baudrate = IF_Mbps(100UL);
6392                 break;
6393         case BCE_LINK_STATUS_100FULL:
6394                 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6395                 ifp->if_baudrate = IF_Mbps(100UL);
6396                 break;
6397         case BCE_LINK_STATUS_1000HALF:
6398                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6399                         ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6400                 else
6401                         ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6402                 ifp->if_baudrate = IF_Mbps(1000UL);
6403                 break;
6404         case BCE_LINK_STATUS_1000FULL:
6405                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6406                         ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6407                 else
6408                         ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6409                 ifp->if_baudrate = IF_Mbps(1000UL);
6410                 break;
6411         case BCE_LINK_STATUS_2500HALF:
6412                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6413                         ifmr->ifm_active |= IFM_NONE;
6414                         return;
6415                 } else
6416                         ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6417                 ifp->if_baudrate = IF_Mbps(2500UL);
6418                 break;
6419         case BCE_LINK_STATUS_2500FULL:
6420                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6421                         ifmr->ifm_active |= IFM_NONE;
6422                         return;
6423                 } else
6424                         ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6425                 ifp->if_baudrate = IF_Mbps(2500UL);
6426                 break;
6427         default:
6428                 ifmr->ifm_active |= IFM_NONE;
6429                 return;
6430         }
6431
6432         if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6433                 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6434         if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6435                 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6436 }
6437
6438
6439 /****************************************************************************/
6440 /* Reports current media status.                                            */
6441 /*                                                                          */
6442 /* Returns:                                                                 */
6443 /*   Nothing.                                                               */
6444 /****************************************************************************/
6445 static void
6446 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6447 {
6448         struct bce_softc *sc = ifp->if_softc;
6449         struct mii_data *mii;
6450
6451         DBENTER(BCE_VERBOSE_PHY);
6452
6453         BCE_LOCK(sc);
6454
6455         if ((ifp->if_flags & IFF_UP) == 0) {
6456                 BCE_UNLOCK(sc);
6457                 return;
6458         }
6459
6460         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6461                 bce_ifmedia_sts_rphy(sc, ifmr);
6462         else {
6463                 mii = device_get_softc(sc->bce_miibus);
6464                 mii_pollstat(mii);
6465                 ifmr->ifm_active = mii->mii_media_active;
6466                 ifmr->ifm_status = mii->mii_media_status;
6467         }
6468
6469         BCE_UNLOCK(sc);
6470
6471         DBEXIT(BCE_VERBOSE_PHY);
6472 }
6473
6474
6475 /****************************************************************************/
6476 /* Handles PHY generated interrupt events.                                  */
6477 /*                                                                          */
6478 /* Returns:                                                                 */
6479 /*   Nothing.                                                               */
6480 /****************************************************************************/
6481 static void
6482 bce_phy_intr(struct bce_softc *sc)
6483 {
6484         u32 new_link_state, old_link_state;
6485
6486         DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6487
6488         DBRUN(sc->phy_interrupts++);
6489
6490         new_link_state = sc->status_block->status_attn_bits &
6491             STATUS_ATTN_BITS_LINK_STATE;
6492         old_link_state = sc->status_block->status_attn_bits_ack &
6493             STATUS_ATTN_BITS_LINK_STATE;
6494
6495         /* Handle any changes if the link state has changed. */
6496         if (new_link_state != old_link_state) {
6497
6498                 /* Update the status_attn_bits_ack field. */
6499                 if (new_link_state) {
6500                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6501                             STATUS_ATTN_BITS_LINK_STATE);
6502                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6503                             __FUNCTION__);
6504                 } else {
6505                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6506                             STATUS_ATTN_BITS_LINK_STATE);
6507                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6508                             __FUNCTION__);
6509                 }
6510
6511                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6512                         if (new_link_state) {
6513                                 if (bootverbose)
6514                                         if_printf(sc->bce_ifp, "link UP\n");
6515                                 if_link_state_change(sc->bce_ifp,
6516                                     LINK_STATE_UP);
6517                         } else {
6518                                 if (bootverbose)
6519                                         if_printf(sc->bce_ifp, "link DOWN\n");
6520                                 if_link_state_change(sc->bce_ifp,
6521                                     LINK_STATE_DOWN);
6522                         }
6523                 }
6524                 /*
6525                  * Assume link is down and allow
6526                  * tick routine to update the state
6527                  * based on the actual media state.
6528                  */
6529                 sc->bce_link_up = FALSE;
6530                 callout_stop(&sc->bce_tick_callout);
6531                 bce_tick(sc);
6532         }
6533
6534         /* Acknowledge the link change interrupt. */
6535         REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6536
6537         DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6538 }
6539
6540
6541 /****************************************************************************/
6542 /* Reads the receive consumer value from the status block (skipping over    */
6543 /* chain page pointer if necessary).                                        */
6544 /*                                                                          */
6545 /* Returns:                                                                 */
6546 /*   hw_cons                                                                */
6547 /****************************************************************************/
6548 static inline u16
6549 bce_get_hw_rx_cons(struct bce_softc *sc)
6550 {
6551         u16 hw_cons;
6552
6553         rmb();
6554         hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6555         if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6556                 hw_cons++;
6557
6558         return hw_cons;
6559 }
6560
6561 /****************************************************************************/
6562 /* Handles received frame interrupt events.                                 */
6563 /*                                                                          */
6564 /* Returns:                                                                 */
6565 /*   Nothing.                                                               */
6566 /****************************************************************************/
6567 static void
6568 bce_rx_intr(struct bce_softc *sc)
6569 {
6570         struct ifnet *ifp = sc->bce_ifp;
6571         struct l2_fhdr *l2fhdr;
6572         struct ether_vlan_header *vh;
6573         unsigned int pkt_len;
6574         u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6575         u32 status;
6576         unsigned int rem_len;
6577         u16 sw_pg_cons, sw_pg_cons_idx;
6578
6579         DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6580         DBRUN(sc->interrupts_rx++);
6581         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6582             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6583             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6584
6585         /* Prepare the RX chain pages to be accessed by the host CPU. */
6586         for (int i = 0; i < sc->rx_pages; i++)
6587                 bus_dmamap_sync(sc->rx_bd_chain_tag,
6588                     sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6589
6590         /* Prepare the page chain pages to be accessed by the host CPU. */
6591         if (bce_hdr_split == TRUE) {
6592                 for (int i = 0; i < sc->pg_pages; i++)
6593                         bus_dmamap_sync(sc->pg_bd_chain_tag,
6594                             sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6595         }
6596
6597         /* Get the hardware's view of the RX consumer index. */
6598         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6599
6600         /* Get working copies of the driver's view of the consumer indices. */
6601         sw_rx_cons = sc->rx_cons;
6602         sw_pg_cons = sc->pg_cons;
6603
6604         /* Update some debug statistics counters */
6605         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6606             sc->rx_low_watermark = sc->free_rx_bd);
6607         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6608             sc->rx_empty_count++);
6609
6610         /* Scan through the receive chain as long as there is work to do */
6611         /* ToDo: Consider setting a limit on the number of packets processed. */
6612         rmb();
6613         while (sw_rx_cons != hw_rx_cons) {
6614                 struct mbuf *m0;
6615
6616                 /* Convert the producer/consumer indices to an actual rx_bd index. */
6617                 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6618
6619                 /* Unmap the mbuf from DMA space. */
6620                 bus_dmamap_sync(sc->rx_mbuf_tag,
6621                     sc->rx_mbuf_map[sw_rx_cons_idx],
6622                     BUS_DMASYNC_POSTREAD);
6623                 bus_dmamap_unload(sc->rx_mbuf_tag,
6624                     sc->rx_mbuf_map[sw_rx_cons_idx]);
6625
6626                 /* Remove the mbuf from the RX chain. */
6627                 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6628                 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6629                 DBRUN(sc->debug_rx_mbuf_alloc--);
6630                 sc->free_rx_bd++;
6631
6632                 /*
6633                  * Frames received on the NetXteme II are prepended
6634                  * with an l2_fhdr structure which provides status
6635                  * information about the received frame (including
6636                  * VLAN tags and checksum info).  The frames are
6637                  * also automatically adjusted to word align the IP
6638                  * header (i.e. two null bytes are inserted before
6639                  * the Ethernet header).  As a result the data
6640                  * DMA'd by the controller into the mbuf looks
6641                  * like this:
6642                  *
6643                  * +---------+-----+---------------------+-----+
6644                  * | l2_fhdr | pad | packet data         | FCS |
6645                  * +---------+-----+---------------------+-----+
6646                  *
6647                  * The l2_fhdr needs to be checked and skipped and
6648                  * the FCS needs to be stripped before sending the
6649                  * packet up the stack.
6650                  */
6651                 l2fhdr  = mtod(m0, struct l2_fhdr *);
6652
6653                 /* Get the packet data + FCS length and the status. */
6654                 pkt_len = l2fhdr->l2_fhdr_pkt_len;
6655                 status  = l2fhdr->l2_fhdr_status;
6656
6657                 /*
6658                  * Skip over the l2_fhdr and pad, resulting in the
6659                  * following data in the mbuf:
6660                  * +---------------------+-----+
6661                  * | packet data         | FCS |
6662                  * +---------------------+-----+
6663                  */
6664                 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6665
6666                 /*
6667                  * When split header mode is used, an ethernet frame
6668                  * may be split across the receive chain and the
6669                  * page chain. If that occurs an mbuf cluster must be
6670                  * reassembled from the individual mbuf pieces.
6671                  */
6672                 if (bce_hdr_split == TRUE) {
6673                         /*
6674                          * Check whether the received frame fits in a single
6675                          * mbuf or not (i.e. packet data + FCS <=
6676                          * sc->rx_bd_mbuf_data_len bytes).
6677                          */
6678                         if (pkt_len > m0->m_len) {
6679                                 /*
6680                                  * The received frame is larger than a single mbuf.
6681                                  * If the frame was a TCP frame then only the TCP
6682                                  * header is placed in the mbuf, the remaining
6683                                  * payload (including FCS) is placed in the page
6684                                  * chain, the SPLIT flag is set, and the header
6685                                  * length is placed in the IP checksum field.
6686                                  * If the frame is not a TCP frame then the mbuf
6687                                  * is filled and the remaining bytes are placed
6688                                  * in the page chain.
6689                                  */
6690
6691                                 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6692                                         "packet.\n", __FUNCTION__);
6693                                 DBRUN(sc->split_header_frames_rcvd++);
6694
6695                                 /*
6696                                  * When the page chain is enabled and the TCP
6697                                  * header has been split from the TCP payload,
6698                                  * the ip_xsum structure will reflect the length
6699                                  * of the TCP header, not the IP checksum.  Set
6700                                  * the packet length of the mbuf accordingly.
6701                                  */
6702                                 if (status & L2_FHDR_STATUS_SPLIT) {
6703                                         m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6704                                         DBRUN(sc->split_header_tcp_frames_rcvd++);
6705                                 }
6706
6707                                 rem_len = pkt_len - m0->m_len;
6708
6709                                 /* Pull mbufs off the page chain for any remaining data. */
6710                                 while (rem_len > 0) {
6711                                         struct mbuf *m_pg;
6712
6713                                         sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6714
6715                                         /* Remove the mbuf from the page chain. */
6716                                         m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6717                                         sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6718                                         DBRUN(sc->debug_pg_mbuf_alloc--);
6719                                         sc->free_pg_bd++;
6720
6721                                         /* Unmap the page chain mbuf from DMA space. */
6722                                         bus_dmamap_sync(sc->pg_mbuf_tag,
6723                                                 sc->pg_mbuf_map[sw_pg_cons_idx],
6724                                                 BUS_DMASYNC_POSTREAD);
6725                                         bus_dmamap_unload(sc->pg_mbuf_tag,
6726                                                 sc->pg_mbuf_map[sw_pg_cons_idx]);
6727
6728                                         /* Adjust the mbuf length. */
6729                                         if (rem_len < m_pg->m_len) {
6730                                                 /* The mbuf chain is complete. */
6731                                                 m_pg->m_len = rem_len;
6732                                                 rem_len = 0;
6733                                         } else {
6734                                                 /* More packet data is waiting. */
6735                                                 rem_len -= m_pg->m_len;
6736                                         }
6737
6738                                         /* Concatenate the mbuf cluster to the mbuf. */
6739                                         m_cat(m0, m_pg);
6740
6741                                         sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6742                                 }
6743
6744                                 /* Set the total packet length. */
6745                                 m0->m_pkthdr.len = pkt_len;
6746
6747                         } else {
6748                                 /*
6749                                  * The received packet is small and fits in a
6750                                  * single mbuf (i.e. the l2_fhdr + pad + packet +
6751                                  * FCS <= MHLEN).  In other words, the packet is
6752                                  * 154 bytes or less in size.
6753                                  */
6754
6755                                 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6756                                         "packet.\n", __FUNCTION__);
6757
6758                                 /* Set the total packet length. */
6759                                 m0->m_pkthdr.len = m0->m_len = pkt_len;
6760                         }
6761                 } else
6762                         /* Set the total packet length. */
6763                         m0->m_pkthdr.len = m0->m_len = pkt_len;
6764
6765                 /* Remove the trailing Ethernet FCS. */
6766                 m_adj(m0, -ETHER_CRC_LEN);
6767
6768                 /* Check that the resulting mbuf chain is valid. */
6769                 DBRUN(m_sanity(m0, FALSE));
6770                 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6771                     (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6772                     BCE_PRINTF("Invalid Ethernet frame size!\n");
6773                     m_print(m0, 128));
6774
6775                 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6776                     sc->l2fhdr_error_sim_count++;
6777                     status = status | L2_FHDR_ERRORS_PHY_DECODE);
6778
6779                 /* Check the received frame for errors. */
6780                 if (status & (L2_FHDR_ERRORS_BAD_CRC |
6781                     L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6782                     L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6783
6784                         /* Log the error and release the mbuf. */
6785                         ifp->if_ierrors++;
6786                         sc->l2fhdr_error_count++;
6787
6788                         m_freem(m0);
6789                         m0 = NULL;
6790                         goto bce_rx_intr_next_rx;
6791                 }
6792
6793                 /* Send the packet to the appropriate interface. */
6794                 m0->m_pkthdr.rcvif = ifp;
6795
6796                 /* Assume no hardware checksum. */
6797                 m0->m_pkthdr.csum_flags = 0;
6798
6799                 /* Validate the checksum if offload enabled. */
6800                 if (ifp->if_capenable & IFCAP_RXCSUM) {
6801                         /* Check for an IP datagram. */
6802                         if (!(status & L2_FHDR_STATUS_SPLIT) &&
6803                             (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6804                                 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6805                                 DBRUN(sc->csum_offload_ip++);
6806                                 /* Check if the IP checksum is valid. */
6807                                 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6808                                         m0->m_pkthdr.csum_flags |=
6809                                             CSUM_IP_VALID;
6810                         }
6811
6812                         /* Check for a valid TCP/UDP frame. */
6813                         if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6814                             L2_FHDR_STATUS_UDP_DATAGRAM)) {
6815
6816                                 /* Check for a good TCP/UDP checksum. */
6817                                 if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6818                                     L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6819                                         DBRUN(sc->csum_offload_tcp_udp++);
6820                                         m0->m_pkthdr.csum_data =
6821                                             l2fhdr->l2_fhdr_tcp_udp_xsum;
6822                                         m0->m_pkthdr.csum_flags |=
6823                                             (CSUM_DATA_VALID
6824                                             | CSUM_PSEUDO_HDR);
6825                                 }
6826                         }
6827                 }
6828
6829                 /* Attach the VLAN tag. */
6830                 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6831                     !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6832                         DBRUN(sc->vlan_tagged_frames_rcvd++);
6833                         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6834                                 DBRUN(sc->vlan_tagged_frames_stripped++);
6835 #if __FreeBSD_version < 700000
6836                                 VLAN_INPUT_TAG(ifp, m0,
6837                                     l2fhdr->l2_fhdr_vlan_tag, continue);
6838 #else
6839                                 m0->m_pkthdr.ether_vtag =
6840                                     l2fhdr->l2_fhdr_vlan_tag;
6841                                 m0->m_flags |= M_VLANTAG;
6842 #endif
6843                         } else {
6844                                 /*
6845                                  * bce(4) controllers can't disable VLAN
6846                                  * tag stripping if management firmware
6847                                  * (ASF/IPMI/UMP) is running. So we always
6848                                  * strip VLAN tag and manually reconstruct
6849                                  * the VLAN frame by appending stripped
6850                                  * VLAN tag in driver if VLAN tag stripping
6851                                  * was disabled.
6852                                  *
6853                                  * TODO: LLC SNAP handling.
6854                                  */
6855                                 bcopy(mtod(m0, uint8_t *),
6856                                     mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6857                                     ETHER_ADDR_LEN * 2);
6858                                 m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6859                                 vh = mtod(m0, struct ether_vlan_header *);
6860                                 vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6861                                 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6862                                 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6863                                 m0->m_len += ETHER_VLAN_ENCAP_LEN;
6864                         }
6865                 }
6866
6867                 /* Increment received packet statistics. */
6868                 ifp->if_ipackets++;
6869
6870 bce_rx_intr_next_rx:
6871                 sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6872
6873                 /* If we have a packet, pass it up the stack */
6874                 if (m0) {
6875                         /* Make sure we don't lose our place when we release the lock. */
6876                         sc->rx_cons = sw_rx_cons;
6877                         sc->pg_cons = sw_pg_cons;
6878
6879                         BCE_UNLOCK(sc);
6880                         (*ifp->if_input)(ifp, m0);
6881                         BCE_LOCK(sc);
6882
6883                         /* Recover our place. */
6884                         sw_rx_cons = sc->rx_cons;
6885                         sw_pg_cons = sc->pg_cons;
6886                 }
6887
6888                 /* Refresh hw_cons to see if there's new work */
6889                 if (sw_rx_cons == hw_rx_cons)
6890                         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6891         }
6892
6893         /* No new packets.  Refill the page chain. */
6894         if (bce_hdr_split == TRUE) {
6895                 sc->pg_cons = sw_pg_cons;
6896                 bce_fill_pg_chain(sc);
6897         }
6898
6899         /* No new packets.  Refill the RX chain. */
6900         sc->rx_cons = sw_rx_cons;
6901         bce_fill_rx_chain(sc);
6902
6903         /* Prepare the page chain pages to be accessed by the NIC. */
6904         for (int i = 0; i < sc->rx_pages; i++)
6905                 bus_dmamap_sync(sc->rx_bd_chain_tag,
6906                     sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6907
6908         if (bce_hdr_split == TRUE) {
6909                 for (int i = 0; i < sc->pg_pages; i++)
6910                         bus_dmamap_sync(sc->pg_bd_chain_tag,
6911                             sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6912         }
6913
6914         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6915             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6916             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6917         DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6918 }
6919
6920
6921 /****************************************************************************/
6922 /* Reads the transmit consumer value from the status block (skipping over   */
6923 /* chain page pointer if necessary).                                        */
6924 /*                                                                          */
6925 /* Returns:                                                                 */
6926 /*   hw_cons                                                                */
6927 /****************************************************************************/
6928 static inline u16
6929 bce_get_hw_tx_cons(struct bce_softc *sc)
6930 {
6931         u16 hw_cons;
6932
6933         mb();
6934         hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6935         if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6936                 hw_cons++;
6937
6938         return hw_cons;
6939 }
6940
6941
6942 /****************************************************************************/
6943 /* Handles transmit completion interrupt events.                            */
6944 /*                                                                          */
6945 /* Returns:                                                                 */
6946 /*   Nothing.                                                               */
6947 /****************************************************************************/
6948 static void
6949 bce_tx_intr(struct bce_softc *sc)
6950 {
6951         struct ifnet *ifp = sc->bce_ifp;
6952         u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6953
6954         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6955         DBRUN(sc->interrupts_tx++);
6956         DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6957             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6958             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6959
6960         BCE_LOCK_ASSERT(sc);
6961
6962         /* Get the hardware's view of the TX consumer index. */
6963         hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6964         sw_tx_cons = sc->tx_cons;
6965
6966         /* Prevent speculative reads of the status block. */
6967         bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6968             BUS_SPACE_BARRIER_READ);
6969
6970         /* Cycle through any completed TX chain page entries. */
6971         while (sw_tx_cons != hw_tx_cons) {
6972 #ifdef BCE_DEBUG
6973                 struct tx_bd *txbd = NULL;
6974 #endif
6975                 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6976
6977                 DBPRINT(sc, BCE_INFO_SEND,
6978                     "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6979                     "sw_tx_chain_cons = 0x%04X\n",
6980                     __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6981
6982                 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6983                     BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6984                     " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6985                     (int) MAX_TX_BD_ALLOC);
6986                     bce_breakpoint(sc));
6987
6988                 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6989                     [TX_IDX(sw_tx_chain_cons)]);
6990
6991                 DBRUNIF((txbd == NULL),
6992                     BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6993                     __FILE__, __LINE__, sw_tx_chain_cons);
6994                     bce_breakpoint(sc));
6995
6996                 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6997                     bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6998
6999                 /*
7000                  * Free the associated mbuf. Remember
7001                  * that only the last tx_bd of a packet
7002                  * has an mbuf pointer and DMA map.
7003                  */
7004                 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
7005
7006                         /* Validate that this is the last tx_bd. */
7007                         DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
7008                             BCE_PRINTF("%s(%d): tx_bd END flag not set but "
7009                             "txmbuf == NULL!\n", __FILE__, __LINE__);
7010                             bce_breakpoint(sc));
7011
7012                         DBRUNMSG(BCE_INFO_SEND,
7013                             BCE_PRINTF("%s(): Unloading map/freeing mbuf "
7014                             "from tx_bd[0x%04X]\n", __FUNCTION__,
7015                             sw_tx_chain_cons));
7016
7017                         /* Unmap the mbuf. */
7018                         bus_dmamap_unload(sc->tx_mbuf_tag,
7019                             sc->tx_mbuf_map[sw_tx_chain_cons]);
7020
7021                         /* Free the mbuf. */
7022                         m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
7023                         sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
7024                         DBRUN(sc->debug_tx_mbuf_alloc--);
7025
7026                         ifp->if_opackets++;
7027                 }
7028
7029                 sc->used_tx_bd--;
7030                 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
7031
7032                 /* Refresh hw_cons to see if there's new work. */
7033                 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
7034
7035                 /* Prevent speculative reads of the status block. */
7036                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7037                     BUS_SPACE_BARRIER_READ);
7038         }
7039
7040         /* Clear the TX timeout timer. */
7041         sc->watchdog_timer = 0;
7042
7043         /* Clear the tx hardware queue full flag. */
7044         if (sc->used_tx_bd < sc->max_tx_bd) {
7045                 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
7046                     DBPRINT(sc, BCE_INFO_SEND,
7047                     "%s(): Open TX chain! %d/%d (used/total)\n",
7048                     __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
7049                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7050         }
7051
7052         sc->tx_cons = sw_tx_cons;
7053
7054         DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
7055             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
7056             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
7057         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
7058 }
7059
7060
7061 /****************************************************************************/
7062 /* Disables interrupt generation.                                           */
7063 /*                                                                          */
7064 /* Returns:                                                                 */
7065 /*   Nothing.                                                               */
7066 /****************************************************************************/
7067 static void
7068 bce_disable_intr(struct bce_softc *sc)
7069 {
7070         DBENTER(BCE_VERBOSE_INTR);
7071
7072         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7073         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
7074
7075         DBEXIT(BCE_VERBOSE_INTR);
7076 }
7077
7078
7079 /****************************************************************************/
7080 /* Enables interrupt generation.                                            */
7081 /*                                                                          */
7082 /* Returns:                                                                 */
7083 /*   Nothing.                                                               */
7084 /****************************************************************************/
7085 static void
7086 bce_enable_intr(struct bce_softc *sc, int coal_now)
7087 {
7088         DBENTER(BCE_VERBOSE_INTR);
7089
7090         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7091             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
7092             BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
7093
7094         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7095             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
7096
7097         /* Force an immediate interrupt (whether there is new data or not). */
7098         if (coal_now)
7099                 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
7100
7101         DBEXIT(BCE_VERBOSE_INTR);
7102 }
7103
7104
7105 /****************************************************************************/
7106 /* Handles controller initialization.                                       */
7107 /*                                                                          */
7108 /* Returns:                                                                 */
7109 /*   Nothing.                                                               */
7110 /****************************************************************************/
7111 static void
7112 bce_init_locked(struct bce_softc *sc)
7113 {
7114         struct ifnet *ifp;
7115         u32 ether_mtu = 0;
7116
7117         DBENTER(BCE_VERBOSE_RESET);
7118
7119         BCE_LOCK_ASSERT(sc);
7120
7121         ifp = sc->bce_ifp;
7122
7123         /* Check if the driver is still running and bail out if it is. */
7124         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7125                 goto bce_init_locked_exit;
7126
7127         bce_stop(sc);
7128
7129         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
7130                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
7131                     __FILE__, __LINE__);
7132                 goto bce_init_locked_exit;
7133         }
7134
7135         if (bce_chipinit(sc)) {
7136                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
7137                     __FILE__, __LINE__);
7138                 goto bce_init_locked_exit;
7139         }
7140
7141         if (bce_blockinit(sc)) {
7142                 BCE_PRINTF("%s(%d): Block initialization failed!\n",
7143                     __FILE__, __LINE__);
7144                 goto bce_init_locked_exit;
7145         }
7146
7147         /* Load our MAC address. */
7148         bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
7149         bce_set_mac_addr(sc);
7150
7151         if (bce_hdr_split == FALSE)
7152                 bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7153         /*
7154          * Calculate and program the hardware Ethernet MTU
7155          * size. Be generous on the receive if we have room
7156          * and allowed by the user.
7157          */
7158         if (bce_strict_rx_mtu == TRUE)
7159                 ether_mtu = ifp->if_mtu;
7160         else {
7161                 if (bce_hdr_split == TRUE) {
7162                         if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
7163                                 ether_mtu = sc->rx_bd_mbuf_data_len +
7164                                     MCLBYTES;
7165                         else
7166                                 ether_mtu = ifp->if_mtu;
7167                 } else {
7168                         if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7169                                 ether_mtu = sc->rx_bd_mbuf_data_len;
7170                         else
7171                                 ether_mtu = ifp->if_mtu;
7172                 }
7173         }
7174
7175         ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7176
7177         DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7178             __FUNCTION__, ether_mtu);
7179
7180         /* Program the mtu, enabling jumbo frame support if necessary. */
7181         if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7182                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7183                     min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7184                     BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7185         else
7186                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7187
7188         /* Program appropriate promiscuous/multicast filtering. */
7189         bce_set_rx_mode(sc);
7190
7191         if (bce_hdr_split == TRUE) {
7192                 /* Init page buffer descriptor chain. */
7193                 bce_init_pg_chain(sc);
7194         }
7195
7196         /* Init RX buffer descriptor chain. */
7197         bce_init_rx_chain(sc);
7198
7199         /* Init TX buffer descriptor chain. */
7200         bce_init_tx_chain(sc);
7201
7202         /* Enable host interrupts. */
7203         bce_enable_intr(sc, 1);
7204
7205         bce_ifmedia_upd_locked(ifp);
7206
7207         /* Let the OS know the driver is up and running. */
7208         ifp->if_drv_flags |= IFF_DRV_RUNNING;
7209         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7210
7211         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7212
7213 bce_init_locked_exit:
7214         DBEXIT(BCE_VERBOSE_RESET);
7215 }
7216
7217
7218 /****************************************************************************/
7219 /* Initialize the controller just enough so that any management firmware    */
7220 /* running on the device will continue to operate correctly.                */
7221 /*                                                                          */
7222 /* Returns:                                                                 */
7223 /*   Nothing.                                                               */
7224 /****************************************************************************/
7225 static void
7226 bce_mgmt_init_locked(struct bce_softc *sc)
7227 {
7228         struct ifnet *ifp;
7229
7230         DBENTER(BCE_VERBOSE_RESET);
7231
7232         BCE_LOCK_ASSERT(sc);
7233
7234         /* Bail out if management firmware is not running. */
7235         if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7236                 DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7237                     "No management firmware running...\n");
7238                 goto bce_mgmt_init_locked_exit;
7239         }
7240
7241         ifp = sc->bce_ifp;
7242
7243         /* Enable all critical blocks in the MAC. */
7244         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7245         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7246         DELAY(20);
7247
7248         bce_ifmedia_upd_locked(ifp);
7249
7250 bce_mgmt_init_locked_exit:
7251         DBEXIT(BCE_VERBOSE_RESET);
7252 }
7253
7254
7255 /****************************************************************************/
7256 /* Handles controller initialization when called from an unlocked routine.  */
7257 /*                                                                          */
7258 /* Returns:                                                                 */
7259 /*   Nothing.                                                               */
7260 /****************************************************************************/
7261 static void
7262 bce_init(void *xsc)
7263 {
7264         struct bce_softc *sc = xsc;
7265
7266         DBENTER(BCE_VERBOSE_RESET);
7267
7268         BCE_LOCK(sc);
7269         bce_init_locked(sc);
7270         BCE_UNLOCK(sc);
7271
7272         DBEXIT(BCE_VERBOSE_RESET);
7273 }
7274
7275
7276 /****************************************************************************/
7277 /* Modifies an mbuf for TSO on the hardware.                                */
7278 /*                                                                          */
7279 /* Returns:                                                                 */
7280 /*   Pointer to a modified mbuf.                                            */
7281 /****************************************************************************/
7282 static struct mbuf *
7283 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7284 {
7285         struct mbuf *m;
7286         struct ether_header *eh;
7287         struct ip *ip;
7288         struct tcphdr *th;
7289         u16 etype;
7290         int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7291
7292         DBRUN(sc->tso_frames_requested++);
7293
7294         /* Controller may modify mbuf chains. */
7295         if (M_WRITABLE(*m_head) == 0) {
7296                 m = m_dup(*m_head, M_NOWAIT);
7297                 m_freem(*m_head);
7298                 if (m == NULL) {
7299                         sc->mbuf_alloc_failed_count++;
7300                         *m_head = NULL;
7301                         return (NULL);
7302                 }
7303                 *m_head = m;
7304         }
7305
7306         /*
7307          * For TSO the controller needs two pieces of info,
7308          * the MSS and the IP+TCP options length.
7309          */
7310         m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7311         if (m == NULL) {
7312                 *m_head = NULL;
7313                 return (NULL);
7314         }
7315         eh = mtod(m, struct ether_header *);
7316         etype = ntohs(eh->ether_type);
7317
7318         /* Check for supported TSO Ethernet types (only IPv4 for now) */
7319         switch (etype) {
7320         case ETHERTYPE_IP:
7321                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7322                 /* TSO only supported for TCP protocol. */
7323                 if (ip->ip_p != IPPROTO_TCP) {
7324                         BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7325                             __FILE__, __LINE__);
7326                         m_freem(*m_head);
7327                         *m_head = NULL;
7328                         return (NULL);
7329                 }
7330
7331                 /* Get IP header length in bytes (min 20) */
7332                 ip_hlen = ip->ip_hl << 2;
7333                 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7334                     sizeof(struct tcphdr));
7335                 if (m == NULL) {
7336                         *m_head = NULL;
7337                         return (NULL);
7338                 }
7339
7340                 /* Get the TCP header length in bytes (min 20) */
7341                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7342                 th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7343                 tcp_hlen = (th->th_off << 2);
7344
7345                 /* Make sure all IP/TCP options live in the same buffer. */
7346                 m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7347                     tcp_hlen);
7348                 if (m == NULL) {
7349                         *m_head = NULL;
7350                         return (NULL);
7351                 }
7352
7353                 /* Clear IP header length and checksum, will be calc'd by h/w. */
7354                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7355                 ip_len = ip->ip_len;
7356                 ip->ip_len = 0;
7357                 ip->ip_sum = 0;
7358                 break;
7359         case ETHERTYPE_IPV6:
7360                 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7361                     __FILE__, __LINE__);
7362                 m_freem(*m_head);
7363                 *m_head = NULL;
7364                 return (NULL);
7365                 /* NOT REACHED */
7366         default:
7367                 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7368                     __FILE__, __LINE__);
7369                 m_freem(*m_head);
7370                 *m_head = NULL;
7371                 return (NULL);
7372         }
7373
7374         hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7375
7376         DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7377             "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7378             __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7379             tcp_hlen, ip_len);
7380
7381         /* Set the LSO flag in the TX BD */
7382         *flags |= TX_BD_FLAGS_SW_LSO;
7383
7384         /* Set the length of IP + TCP options (in 32 bit words) */
7385         *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7386             sizeof(struct tcphdr)) >> 2) << 8);
7387
7388         DBRUN(sc->tso_frames_completed++);
7389         return (*m_head);
7390 }
7391
7392
7393 /****************************************************************************/
7394 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7395 /* memory visible to the controller.                                        */
7396 /*                                                                          */
7397 /* Returns:                                                                 */
7398 /*   0 for success, positive value for failure.                             */
7399 /* Modified:                                                                */
7400 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7401 /****************************************************************************/
7402 static int
7403 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7404 {
7405         bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7406         bus_dmamap_t map;
7407         struct tx_bd *txbd = NULL;
7408         struct mbuf *m0;
7409         u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7410         u32 prod_bseq;
7411
7412 #ifdef BCE_DEBUG
7413         u16 debug_prod;
7414 #endif
7415
7416         int i, error, nsegs, rc = 0;
7417
7418         DBENTER(BCE_VERBOSE_SEND);
7419
7420         /* Make sure we have room in the TX chain. */
7421         if (sc->used_tx_bd >= sc->max_tx_bd)
7422                 goto bce_tx_encap_exit;
7423
7424         /* Transfer any checksum offload flags to the bd. */
7425         m0 = *m_head;
7426         if (m0->m_pkthdr.csum_flags) {
7427                 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7428                         m0 = bce_tso_setup(sc, m_head, &flags);
7429                         if (m0 == NULL) {
7430                                 DBRUN(sc->tso_frames_failed++);
7431                                 goto bce_tx_encap_exit;
7432                         }
7433                         mss = htole16(m0->m_pkthdr.tso_segsz);
7434                 } else {
7435                         if (m0->m_pkthdr.csum_flags & CSUM_IP)
7436                                 flags |= TX_BD_FLAGS_IP_CKSUM;
7437                         if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7438                                 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7439                 }
7440         }
7441
7442         /* Transfer any VLAN tags to the bd. */
7443         if (m0->m_flags & M_VLANTAG) {
7444                 flags |= TX_BD_FLAGS_VLAN_TAG;
7445                 vlan_tag = m0->m_pkthdr.ether_vtag;
7446         }
7447
7448         /* Map the mbuf into DMAable memory. */
7449         prod = sc->tx_prod;
7450         chain_prod = TX_CHAIN_IDX(prod);
7451         map = sc->tx_mbuf_map[chain_prod];
7452
7453         /* Map the mbuf into our DMA address space. */
7454         error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7455             segs, &nsegs, BUS_DMA_NOWAIT);
7456
7457         /* Check if the DMA mapping was successful */
7458         if (error == EFBIG) {
7459                 sc->mbuf_frag_count++;
7460
7461                 /* Try to defrag the mbuf. */
7462                 m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7463                 if (m0 == NULL) {
7464                         /* Defrag was unsuccessful */
7465                         m_freem(*m_head);
7466                         *m_head = NULL;
7467                         sc->mbuf_alloc_failed_count++;
7468                         rc = ENOBUFS;
7469                         goto bce_tx_encap_exit;
7470                 }
7471
7472                 /* Defrag was successful, try mapping again */
7473                 *m_head = m0;
7474                 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7475                     map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7476
7477                 /* Still getting an error after a defrag. */
7478                 if (error == ENOMEM) {
7479                         /* Insufficient DMA buffers available. */
7480                         sc->dma_map_addr_tx_failed_count++;
7481                         rc = error;
7482                         goto bce_tx_encap_exit;
7483                 } else if (error != 0) {
7484                         /* Release it and return an error. */
7485                         BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7486                             "TX chain!\n", __FILE__, __LINE__);
7487                         m_freem(m0);
7488                         *m_head = NULL;
7489                         sc->dma_map_addr_tx_failed_count++;
7490                         rc = ENOBUFS;
7491                         goto bce_tx_encap_exit;
7492                 }
7493         } else if (error == ENOMEM) {
7494                 /* Insufficient DMA buffers available. */
7495                 sc->dma_map_addr_tx_failed_count++;
7496                 rc = error;
7497                 goto bce_tx_encap_exit;
7498         } else if (error != 0) {
7499                 m_freem(m0);
7500                 *m_head = NULL;
7501                 sc->dma_map_addr_tx_failed_count++;
7502                 rc = error;
7503                 goto bce_tx_encap_exit;
7504         }
7505
7506         /* Make sure there's room in the chain */
7507         if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7508                 bus_dmamap_unload(sc->tx_mbuf_tag, map);
7509                 rc = ENOBUFS;
7510                 goto bce_tx_encap_exit;
7511         }
7512
7513         /* prod points to an empty tx_bd at this point. */
7514         prod_bseq  = sc->tx_prod_bseq;
7515
7516 #ifdef BCE_DEBUG
7517         debug_prod = chain_prod;
7518 #endif
7519
7520         DBPRINT(sc, BCE_INFO_SEND,
7521             "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7522             "prod_bseq = 0x%08X\n",
7523             __FUNCTION__, prod, chain_prod, prod_bseq);
7524
7525         /*
7526          * Cycle through each mbuf segment that makes up
7527          * the outgoing frame, gathering the mapping info
7528          * for that segment and creating a tx_bd for
7529          * the mbuf.
7530          */
7531         for (i = 0; i < nsegs ; i++) {
7532
7533                 chain_prod = TX_CHAIN_IDX(prod);
7534                 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7535                     [TX_IDX(chain_prod)];
7536
7537                 txbd->tx_bd_haddr_lo =
7538                     htole32(BCE_ADDR_LO(segs[i].ds_addr));
7539                 txbd->tx_bd_haddr_hi =
7540                     htole32(BCE_ADDR_HI(segs[i].ds_addr));
7541                 txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7542                     htole16(segs[i].ds_len);
7543                 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7544                 txbd->tx_bd_flags = htole16(flags);
7545                 prod_bseq += segs[i].ds_len;
7546                 if (i == 0)
7547                         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7548                 prod = NEXT_TX_BD(prod);
7549         }
7550
7551         /* Set the END flag on the last TX buffer descriptor. */
7552         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7553
7554         DBRUNMSG(BCE_EXTREME_SEND,
7555             bce_dump_tx_chain(sc, debug_prod, nsegs));
7556
7557         /*
7558          * Ensure that the mbuf pointer for this transmission
7559          * is placed at the array index of the last
7560          * descriptor in this chain.  This is done
7561          * because a single map is used for all
7562          * segments of the mbuf and we don't want to
7563          * unload the map before all of the segments
7564          * have been freed.
7565          */
7566         sc->tx_mbuf_ptr[chain_prod] = m0;
7567         sc->used_tx_bd += nsegs;
7568
7569         /* Update some debug statistic counters */
7570         DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7571             sc->tx_hi_watermark = sc->used_tx_bd);
7572         DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7573         DBRUNIF(sc->debug_tx_mbuf_alloc++);
7574
7575         DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7576
7577         /* prod points to the next free tx_bd at this point. */
7578         sc->tx_prod = prod;
7579         sc->tx_prod_bseq = prod_bseq;
7580
7581         /* Tell the chip about the waiting TX frames. */
7582         REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7583             BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7584         REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7585             BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7586
7587 bce_tx_encap_exit:
7588         DBEXIT(BCE_VERBOSE_SEND);
7589         return(rc);
7590 }
7591
7592
7593 /****************************************************************************/
7594 /* Main transmit routine when called from another routine with a lock.      */
7595 /*                                                                          */
7596 /* Returns:                                                                 */
7597 /*   Nothing.                                                               */
7598 /****************************************************************************/
7599 static void
7600 bce_start_locked(struct ifnet *ifp)
7601 {
7602         struct bce_softc *sc = ifp->if_softc;
7603         struct mbuf *m_head = NULL;
7604         int count = 0;
7605         u16 tx_prod, tx_chain_prod;
7606
7607         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7608
7609         BCE_LOCK_ASSERT(sc);
7610
7611         /* prod points to the next free tx_bd. */
7612         tx_prod = sc->tx_prod;
7613         tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7614
7615         DBPRINT(sc, BCE_INFO_SEND,
7616             "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7617             "tx_prod_bseq = 0x%08X\n",
7618             __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7619
7620         /* If there's no link or the transmit queue is empty then just exit. */
7621         if (sc->bce_link_up == FALSE) {
7622                 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7623                     __FUNCTION__);
7624                 goto bce_start_locked_exit;
7625         }
7626
7627         if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7628                 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7629                     __FUNCTION__);
7630                 goto bce_start_locked_exit;
7631         }
7632
7633         /*
7634          * Keep adding entries while there is space in the ring.
7635          */
7636         while (sc->used_tx_bd < sc->max_tx_bd) {
7637
7638                 /* Check for any frames to send. */
7639                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7640
7641                 /* Stop when the transmit queue is empty. */
7642                 if (m_head == NULL)
7643                         break;
7644
7645                 /*
7646                  * Pack the data into the transmit ring. If we
7647                  * don't have room, place the mbuf back at the
7648                  * head of the queue and set the OACTIVE flag
7649                  * to wait for the NIC to drain the chain.
7650                  */
7651                 if (bce_tx_encap(sc, &m_head)) {
7652                         if (m_head != NULL)
7653                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7654                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7655                         DBPRINT(sc, BCE_INFO_SEND,
7656                             "TX chain is closed for business! Total "
7657                             "tx_bd used = %d\n", sc->used_tx_bd);
7658                         break;
7659                 }
7660
7661                 count++;
7662
7663                 /* Send a copy of the frame to any BPF listeners. */
7664                 ETHER_BPF_MTAP(ifp, m_head);
7665         }
7666
7667         /* Exit if no packets were dequeued. */
7668         if (count == 0) {
7669                 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7670                     "dequeued\n", __FUNCTION__);
7671                 goto bce_start_locked_exit;
7672         }
7673
7674         DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7675             "send queue.\n", __FUNCTION__, count);
7676
7677         /* Set the tx timeout. */
7678         sc->watchdog_timer = BCE_TX_TIMEOUT;
7679
7680         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7681         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7682
7683 bce_start_locked_exit:
7684         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7685 }
7686
7687
7688 /****************************************************************************/
7689 /* Main transmit routine when called from another routine without a lock.   */
7690 /*                                                                          */
7691 /* Returns:                                                                 */
7692 /*   Nothing.                                                               */
7693 /****************************************************************************/
7694 static void
7695 bce_start(struct ifnet *ifp)
7696 {
7697         struct bce_softc *sc = ifp->if_softc;
7698
7699         DBENTER(BCE_VERBOSE_SEND);
7700
7701         BCE_LOCK(sc);
7702         bce_start_locked(ifp);
7703         BCE_UNLOCK(sc);
7704
7705         DBEXIT(BCE_VERBOSE_SEND);
7706 }
7707
7708
7709 /****************************************************************************/
7710 /* Handles any IOCTL calls from the operating system.                       */
7711 /*                                                                          */
7712 /* Returns:                                                                 */
7713 /*   0 for success, positive value for failure.                             */
7714 /****************************************************************************/
7715 static int
7716 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7717 {
7718         struct bce_softc *sc = ifp->if_softc;
7719         struct ifreq *ifr = (struct ifreq *) data;
7720         struct mii_data *mii;
7721         int mask, error = 0;
7722
7723         DBENTER(BCE_VERBOSE_MISC);
7724
7725         switch(command) {
7726
7727         /* Set the interface MTU. */
7728         case SIOCSIFMTU:
7729                 /* Check that the MTU setting is supported. */
7730                 if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7731                         (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7732                         error = EINVAL;
7733                         break;
7734                 }
7735
7736                 DBPRINT(sc, BCE_INFO_MISC,
7737                     "SIOCSIFMTU: Changing MTU from %d to %d\n",
7738                     (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7739
7740                 BCE_LOCK(sc);
7741                 ifp->if_mtu = ifr->ifr_mtu;
7742                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7743                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7744                         bce_init_locked(sc);
7745                 }
7746                 BCE_UNLOCK(sc);
7747                 break;
7748
7749         /* Set interface flags. */
7750         case SIOCSIFFLAGS:
7751                 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7752
7753                 BCE_LOCK(sc);
7754
7755                 /* Check if the interface is up. */
7756                 if (ifp->if_flags & IFF_UP) {
7757                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7758                                 /* Change promiscuous/multicast flags as necessary. */
7759                                 bce_set_rx_mode(sc);
7760                         } else {
7761                                 /* Start the HW */
7762                                 bce_init_locked(sc);
7763                         }
7764                 } else {
7765                         /* The interface is down, check if driver is running. */
7766                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7767                                 bce_stop(sc);
7768
7769                                 /* If MFW is running, restart the controller a bit. */
7770                                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7771                                         bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7772                                         bce_chipinit(sc);
7773                                         bce_mgmt_init_locked(sc);
7774                                 }
7775                         }
7776                 }
7777
7778                 BCE_UNLOCK(sc);
7779                 break;
7780
7781         /* Add/Delete multicast address */
7782         case SIOCADDMULTI:
7783         case SIOCDELMULTI:
7784                 DBPRINT(sc, BCE_VERBOSE_MISC,
7785                     "Received SIOCADDMULTI/SIOCDELMULTI\n");
7786
7787                 BCE_LOCK(sc);
7788                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7789                         bce_set_rx_mode(sc);
7790                 BCE_UNLOCK(sc);
7791
7792                 break;
7793
7794         /* Set/Get Interface media */
7795         case SIOCSIFMEDIA:
7796         case SIOCGIFMEDIA:
7797                 DBPRINT(sc, BCE_VERBOSE_MISC,
7798                     "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7799                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7800                         error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7801                             command);
7802                 else {
7803                         mii = device_get_softc(sc->bce_miibus);
7804                         error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7805                             command);
7806                 }
7807                 break;
7808
7809         /* Set interface capability */
7810         case SIOCSIFCAP:
7811                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7812                 DBPRINT(sc, BCE_INFO_MISC,
7813                     "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7814
7815                 /* Toggle the TX checksum capabilities enable flag. */
7816                 if (mask & IFCAP_TXCSUM &&
7817                     ifp->if_capabilities & IFCAP_TXCSUM) {
7818                         ifp->if_capenable ^= IFCAP_TXCSUM;
7819                         if (IFCAP_TXCSUM & ifp->if_capenable)
7820                                 ifp->if_hwassist |= BCE_IF_HWASSIST;
7821                         else
7822                                 ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7823                 }
7824
7825                 /* Toggle the RX checksum capabilities enable flag. */
7826                 if (mask & IFCAP_RXCSUM &&
7827                     ifp->if_capabilities & IFCAP_RXCSUM)
7828                         ifp->if_capenable ^= IFCAP_RXCSUM;
7829
7830                 /* Toggle the TSO capabilities enable flag. */
7831                 if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7832                     ifp->if_capabilities & IFCAP_TSO4) {
7833                         ifp->if_capenable ^= IFCAP_TSO4;
7834                         if (IFCAP_TSO4 & ifp->if_capenable)
7835                                 ifp->if_hwassist |= CSUM_TSO;
7836                         else
7837                                 ifp->if_hwassist &= ~CSUM_TSO;
7838                 }
7839
7840                 if (mask & IFCAP_VLAN_HWCSUM &&
7841                     ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7842                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7843
7844                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7845                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7846                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7847                 /*
7848                  * Don't actually disable VLAN tag stripping as
7849                  * management firmware (ASF/IPMI/UMP) requires the
7850                  * feature. If VLAN tag stripping is disabled driver
7851                  * will manually reconstruct the VLAN frame by
7852                  * appending stripped VLAN tag.
7853                  */
7854                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7855                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7856                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7857                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7858                             == 0)
7859                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7860                 }
7861                 VLAN_CAPABILITIES(ifp);
7862                 break;
7863         default:
7864                 /* We don't know how to handle the IOCTL, pass it on. */
7865                 error = ether_ioctl(ifp, command, data);
7866                 break;
7867         }
7868
7869         DBEXIT(BCE_VERBOSE_MISC);
7870         return(error);
7871 }
7872
7873
7874 /****************************************************************************/
7875 /* Transmit timeout handler.                                                */
7876 /*                                                                          */
7877 /* Returns:                                                                 */
7878 /*   Nothing.                                                               */
7879 /****************************************************************************/
7880 static void
7881 bce_watchdog(struct bce_softc *sc)
7882 {
7883         uint32_t status;
7884
7885         DBENTER(BCE_EXTREME_SEND);
7886
7887         BCE_LOCK_ASSERT(sc);
7888
7889         status = 0;
7890         /* If the watchdog timer hasn't expired then just exit. */
7891         if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7892                 goto bce_watchdog_exit;
7893
7894         status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7895         /* If pause frames are active then don't reset the hardware. */
7896         if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7897                 if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7898                         /*
7899                          * If link partner has us in XOFF state then wait for
7900                          * the condition to clear.
7901                          */
7902                         sc->watchdog_timer = BCE_TX_TIMEOUT;
7903                         goto bce_watchdog_exit;
7904                 } else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7905                         (status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7906                         /*
7907                          * If we're not currently XOFF'ed but have recently
7908                          * been XOFF'd/XON'd then assume that's delaying TX
7909                          * this time around.
7910                          */
7911                         sc->watchdog_timer = BCE_TX_TIMEOUT;
7912                         goto bce_watchdog_exit;
7913                 }
7914                 /*
7915                  * Any other condition is unexpected and the controller
7916                  * should be reset.
7917                  */
7918         }
7919
7920         BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7921             __FILE__, __LINE__);
7922
7923         DBRUNMSG(BCE_INFO,
7924             bce_dump_driver_state(sc);
7925             bce_dump_status_block(sc);
7926             bce_dump_stats_block(sc);
7927             bce_dump_ftqs(sc);
7928             bce_dump_txp_state(sc, 0);
7929             bce_dump_rxp_state(sc, 0);
7930             bce_dump_tpat_state(sc, 0);
7931             bce_dump_cp_state(sc, 0);
7932             bce_dump_com_state(sc, 0));
7933
7934         DBRUN(bce_breakpoint(sc));
7935
7936         sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7937
7938         bce_init_locked(sc);
7939         sc->bce_ifp->if_oerrors++;
7940
7941 bce_watchdog_exit:
7942         REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7943         DBEXIT(BCE_EXTREME_SEND);
7944 }
7945
7946
7947 /*
7948  * Interrupt handler.
7949  */
7950 /****************************************************************************/
7951 /* Main interrupt entry point.  Verifies that the controller generated the  */
7952 /* interrupt and then calls a separate routine for handle the various       */
7953 /* interrupt causes (PHY, TX, RX).                                          */
7954 /*                                                                          */
7955 /* Returns:                                                                 */
7956 /*   Nothing.                                                               */
7957 /****************************************************************************/
7958 static void
7959 bce_intr(void *xsc)
7960 {
7961         struct bce_softc *sc;
7962         struct ifnet *ifp;
7963         u32 status_attn_bits;
7964         u16 hw_rx_cons, hw_tx_cons;
7965
7966         sc = xsc;
7967         ifp = sc->bce_ifp;
7968
7969         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7970         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7971         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7972
7973         BCE_LOCK(sc);
7974
7975         DBRUN(sc->interrupts_generated++);
7976
7977         /* Synchnorize before we read from interface's status block */
7978         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7979
7980         /*
7981          * If the hardware status block index matches the last value read
7982          * by the driver and we haven't asserted our interrupt then there's
7983          * nothing to do.  This may only happen in case of INTx due to the
7984          * interrupt arriving at the CPU before the status block is updated.
7985          */
7986         if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7987             sc->status_block->status_idx == sc->last_status_idx &&
7988             (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7989              BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7990                 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7991                     __FUNCTION__);
7992                 goto bce_intr_exit;
7993         }
7994
7995         /* Ack the interrupt and stop others from occuring. */
7996         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7997             BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7998             BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7999
8000         /* Check if the hardware has finished any work. */
8001         hw_rx_cons = bce_get_hw_rx_cons(sc);
8002         hw_tx_cons = bce_get_hw_tx_cons(sc);
8003
8004         /* Keep processing data as long as there is work to do. */
8005         for (;;) {
8006
8007                 status_attn_bits = sc->status_block->status_attn_bits;
8008
8009                 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
8010                     BCE_PRINTF("Simulating unexpected status attention "
8011                     "bit set.");
8012                     sc->unexpected_attention_sim_count++;
8013                     status_attn_bits = status_attn_bits |
8014                     STATUS_ATTN_BITS_PARITY_ERROR);
8015
8016                 /* Was it a link change interrupt? */
8017                 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
8018                     (sc->status_block->status_attn_bits_ack &
8019                      STATUS_ATTN_BITS_LINK_STATE)) {
8020                         bce_phy_intr(sc);
8021
8022                         /* Clear transient updates during link state change. */
8023                         REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
8024                             BCE_HC_COMMAND_COAL_NOW_WO_INT);
8025                         REG_RD(sc, BCE_HC_COMMAND);
8026                 }
8027
8028                 /* If any other attention is asserted, the chip is toast. */
8029                 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
8030                     (sc->status_block->status_attn_bits_ack &
8031                     ~STATUS_ATTN_BITS_LINK_STATE))) {
8032
8033                         sc->unexpected_attention_count++;
8034
8035                         BCE_PRINTF("%s(%d): Fatal attention detected: "
8036                             "0x%08X\n", __FILE__, __LINE__,
8037                             sc->status_block->status_attn_bits);
8038
8039                         DBRUNMSG(BCE_FATAL,
8040                             if (unexpected_attention_sim_control == 0)
8041                                 bce_breakpoint(sc));
8042
8043                         bce_init_locked(sc);
8044                         goto bce_intr_exit;
8045                 }
8046
8047                 /* Check for any completed RX frames. */
8048                 if (hw_rx_cons != sc->hw_rx_cons)
8049                         bce_rx_intr(sc);
8050
8051                 /* Check for any completed TX frames. */
8052                 if (hw_tx_cons != sc->hw_tx_cons)
8053                         bce_tx_intr(sc);
8054
8055                 /* Save status block index value for the next interrupt. */
8056                 sc->last_status_idx = sc->status_block->status_idx;
8057
8058                 /*
8059                  * Prevent speculative reads from getting
8060                  * ahead of the status block.
8061                  */
8062                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
8063                     BUS_SPACE_BARRIER_READ);
8064
8065                 /*
8066                  * If there's no work left then exit the
8067                  * interrupt service routine.
8068                  */
8069                 hw_rx_cons = bce_get_hw_rx_cons(sc);
8070                 hw_tx_cons = bce_get_hw_tx_cons(sc);
8071
8072                 if ((hw_rx_cons == sc->hw_rx_cons) &&
8073                     (hw_tx_cons == sc->hw_tx_cons))
8074                         break;
8075         }
8076
8077         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_PREREAD);
8078
8079         /* Re-enable interrupts. */
8080         bce_enable_intr(sc, 0);
8081
8082         /* Handle any frames that arrived while handling the interrupt. */
8083         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
8084             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
8085                 bce_start_locked(ifp);
8086
8087 bce_intr_exit:
8088         BCE_UNLOCK(sc);
8089
8090         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
8091 }
8092
8093
8094 /****************************************************************************/
8095 /* Programs the various packet receive modes (broadcast and multicast).     */
8096 /*                                                                          */
8097 /* Returns:                                                                 */
8098 /*   Nothing.                                                               */
8099 /****************************************************************************/
8100 static void
8101 bce_set_rx_mode(struct bce_softc *sc)
8102 {
8103         struct ifnet *ifp;
8104         struct ifmultiaddr *ifma;
8105         u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
8106         u32 rx_mode, sort_mode;
8107         int h, i;
8108
8109         DBENTER(BCE_VERBOSE_MISC);
8110
8111         BCE_LOCK_ASSERT(sc);
8112
8113         ifp = sc->bce_ifp;
8114
8115         /* Initialize receive mode default settings. */
8116         rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
8117             BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
8118         sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
8119
8120         /*
8121          * ASF/IPMI/UMP firmware requires that VLAN tag stripping
8122          * be enbled.
8123          */
8124         if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
8125             (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
8126                 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
8127
8128         /*
8129          * Check for promiscuous, all multicast, or selected
8130          * multicast address filtering.
8131          */
8132         if (ifp->if_flags & IFF_PROMISC) {
8133                 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
8134
8135                 /* Enable promiscuous mode. */
8136                 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
8137                 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
8138         } else if (ifp->if_flags & IFF_ALLMULTI) {
8139                 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
8140
8141                 /* Enable all multicast addresses. */
8142                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
8143                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
8144                             0xffffffff);
8145                 }
8146                 sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
8147         } else {
8148                 /* Accept one or more multicast(s). */
8149                 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
8150
8151                 if_maddr_rlock(ifp);
8152                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
8153                         if (ifma->ifma_addr->sa_family != AF_LINK)
8154                                 continue;
8155                         h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
8156                             ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
8157                             hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
8158                 }
8159                 if_maddr_runlock(ifp);
8160
8161                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
8162                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
8163
8164                 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
8165         }
8166
8167         /* Only make changes if the recive mode has actually changed. */
8168         if (rx_mode != sc->rx_mode) {
8169                 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
8170                     "0x%08X\n", rx_mode);
8171
8172                 sc->rx_mode = rx_mode;
8173                 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
8174         }
8175
8176         /* Disable and clear the exisitng sort before enabling a new sort. */
8177         REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8178         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8179         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8180
8181         DBEXIT(BCE_VERBOSE_MISC);
8182 }
8183
8184
8185 /****************************************************************************/
8186 /* Called periodically to updates statistics from the controllers           */
8187 /* statistics block.                                                        */
8188 /*                                                                          */
8189 /* Returns:                                                                 */
8190 /*   Nothing.                                                               */
8191 /****************************************************************************/
8192 static void
8193 bce_stats_update(struct bce_softc *sc)
8194 {
8195         struct ifnet *ifp;
8196         struct statistics_block *stats;
8197
8198         DBENTER(BCE_EXTREME_MISC);
8199
8200         ifp = sc->bce_ifp;
8201
8202         bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8203
8204         stats = (struct statistics_block *) sc->stats_block;
8205
8206         /*
8207          * Certain controllers don't report
8208          * carrier sense errors correctly.
8209          * See errata E11_5708CA0_1165.
8210          */
8211         if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8212             !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8213                 ifp->if_oerrors +=
8214                     (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
8215
8216         /*
8217          * Update the sysctl statistics from the
8218          * hardware statistics.
8219          */
8220         sc->stat_IfHCInOctets =
8221             ((u64) stats->stat_IfHCInOctets_hi << 32) +
8222              (u64) stats->stat_IfHCInOctets_lo;
8223
8224         sc->stat_IfHCInBadOctets =
8225             ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8226              (u64) stats->stat_IfHCInBadOctets_lo;
8227
8228         sc->stat_IfHCOutOctets =
8229             ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8230              (u64) stats->stat_IfHCOutOctets_lo;
8231
8232         sc->stat_IfHCOutBadOctets =
8233             ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8234              (u64) stats->stat_IfHCOutBadOctets_lo;
8235
8236         sc->stat_IfHCInUcastPkts =
8237             ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8238              (u64) stats->stat_IfHCInUcastPkts_lo;
8239
8240         sc->stat_IfHCInMulticastPkts =
8241             ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8242              (u64) stats->stat_IfHCInMulticastPkts_lo;
8243
8244         sc->stat_IfHCInBroadcastPkts =
8245             ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8246              (u64) stats->stat_IfHCInBroadcastPkts_lo;
8247
8248         sc->stat_IfHCOutUcastPkts =
8249             ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8250              (u64) stats->stat_IfHCOutUcastPkts_lo;
8251
8252         sc->stat_IfHCOutMulticastPkts =
8253             ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8254              (u64) stats->stat_IfHCOutMulticastPkts_lo;
8255
8256         sc->stat_IfHCOutBroadcastPkts =
8257             ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8258              (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8259
8260         /* ToDo: Preserve counters beyond 32 bits? */
8261         /* ToDo: Read the statistics from auto-clear regs? */
8262
8263         sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8264             stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8265
8266         sc->stat_Dot3StatsCarrierSenseErrors =
8267             stats->stat_Dot3StatsCarrierSenseErrors;
8268
8269         sc->stat_Dot3StatsFCSErrors =
8270             stats->stat_Dot3StatsFCSErrors;
8271
8272         sc->stat_Dot3StatsAlignmentErrors =
8273             stats->stat_Dot3StatsAlignmentErrors;
8274
8275         sc->stat_Dot3StatsSingleCollisionFrames =
8276             stats->stat_Dot3StatsSingleCollisionFrames;
8277
8278         sc->stat_Dot3StatsMultipleCollisionFrames =
8279             stats->stat_Dot3StatsMultipleCollisionFrames;
8280
8281         sc->stat_Dot3StatsDeferredTransmissions =
8282             stats->stat_Dot3StatsDeferredTransmissions;
8283
8284         sc->stat_Dot3StatsExcessiveCollisions =
8285             stats->stat_Dot3StatsExcessiveCollisions;
8286
8287         sc->stat_Dot3StatsLateCollisions =
8288             stats->stat_Dot3StatsLateCollisions;
8289
8290         sc->stat_EtherStatsCollisions =
8291             stats->stat_EtherStatsCollisions;
8292
8293         sc->stat_EtherStatsFragments =
8294             stats->stat_EtherStatsFragments;
8295
8296         sc->stat_EtherStatsJabbers =
8297             stats->stat_EtherStatsJabbers;
8298
8299         sc->stat_EtherStatsUndersizePkts =
8300             stats->stat_EtherStatsUndersizePkts;
8301
8302         sc->stat_EtherStatsOversizePkts =
8303              stats->stat_EtherStatsOversizePkts;
8304
8305         sc->stat_EtherStatsPktsRx64Octets =
8306             stats->stat_EtherStatsPktsRx64Octets;
8307
8308         sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8309             stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8310
8311         sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8312             stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8313
8314         sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8315             stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8316
8317         sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8318             stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8319
8320         sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8321             stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8322
8323         sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8324             stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8325
8326         sc->stat_EtherStatsPktsTx64Octets =
8327             stats->stat_EtherStatsPktsTx64Octets;
8328
8329         sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8330             stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8331
8332         sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8333             stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8334
8335         sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8336             stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8337
8338         sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8339             stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8340
8341         sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8342             stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8343
8344         sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8345             stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8346
8347         sc->stat_XonPauseFramesReceived =
8348             stats->stat_XonPauseFramesReceived;
8349
8350         sc->stat_XoffPauseFramesReceived =
8351             stats->stat_XoffPauseFramesReceived;
8352
8353         sc->stat_OutXonSent =
8354             stats->stat_OutXonSent;
8355
8356         sc->stat_OutXoffSent =
8357             stats->stat_OutXoffSent;
8358
8359         sc->stat_FlowControlDone =
8360             stats->stat_FlowControlDone;
8361
8362         sc->stat_MacControlFramesReceived =
8363             stats->stat_MacControlFramesReceived;
8364
8365         sc->stat_XoffStateEntered =
8366             stats->stat_XoffStateEntered;
8367
8368         sc->stat_IfInFramesL2FilterDiscards =
8369             stats->stat_IfInFramesL2FilterDiscards;
8370
8371         sc->stat_IfInRuleCheckerDiscards =
8372             stats->stat_IfInRuleCheckerDiscards;
8373
8374         sc->stat_IfInFTQDiscards =
8375             stats->stat_IfInFTQDiscards;
8376
8377         sc->stat_IfInMBUFDiscards =
8378             stats->stat_IfInMBUFDiscards;
8379
8380         sc->stat_IfInRuleCheckerP4Hit =
8381             stats->stat_IfInRuleCheckerP4Hit;
8382
8383         sc->stat_CatchupInRuleCheckerDiscards =
8384             stats->stat_CatchupInRuleCheckerDiscards;
8385
8386         sc->stat_CatchupInFTQDiscards =
8387             stats->stat_CatchupInFTQDiscards;
8388
8389         sc->stat_CatchupInMBUFDiscards =
8390             stats->stat_CatchupInMBUFDiscards;
8391
8392         sc->stat_CatchupInRuleCheckerP4Hit =
8393             stats->stat_CatchupInRuleCheckerP4Hit;
8394
8395         sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8396
8397         /*
8398          * Update the interface statistics from the
8399          * hardware statistics.
8400          */
8401         ifp->if_collisions =
8402             (u_long) sc->stat_EtherStatsCollisions;
8403
8404         /* ToDo: This method loses soft errors. */
8405         ifp->if_ierrors =
8406             (u_long) sc->stat_EtherStatsUndersizePkts +
8407             (u_long) sc->stat_EtherStatsOversizePkts +
8408             (u_long) sc->stat_IfInMBUFDiscards +
8409             (u_long) sc->stat_Dot3StatsAlignmentErrors +
8410             (u_long) sc->stat_Dot3StatsFCSErrors +
8411             (u_long) sc->stat_IfInRuleCheckerDiscards +
8412             (u_long) sc->stat_IfInFTQDiscards +
8413             (u_long) sc->com_no_buffers;
8414
8415         /* ToDo: This method loses soft errors. */
8416         ifp->if_oerrors =
8417             (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8418             (u_long) sc->stat_Dot3StatsExcessiveCollisions +
8419             (u_long) sc->stat_Dot3StatsLateCollisions;
8420
8421         /* ToDo: Add additional statistics? */
8422
8423         DBEXIT(BCE_EXTREME_MISC);
8424 }
8425
8426
8427 /****************************************************************************/
8428 /* Periodic function to notify the bootcode that the driver is still        */
8429 /* present.                                                                 */
8430 /*                                                                          */
8431 /* Returns:                                                                 */
8432 /*   Nothing.                                                               */
8433 /****************************************************************************/
8434 static void
8435 bce_pulse(void *xsc)
8436 {
8437         struct bce_softc *sc = xsc;
8438         u32 msg;
8439
8440         DBENTER(BCE_EXTREME_MISC);
8441
8442         BCE_LOCK_ASSERT(sc);
8443
8444         /* Tell the firmware that the driver is still running. */
8445         msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8446         bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8447
8448         /* Update the bootcode condition. */
8449         sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8450
8451         /* Report whether the bootcode still knows the driver is running. */
8452         if (bce_verbose || bootverbose) {
8453                 if (sc->bce_drv_cardiac_arrest == FALSE) {
8454                         if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8455                                 sc->bce_drv_cardiac_arrest = TRUE;
8456                                 BCE_PRINTF("%s(): Warning: bootcode "
8457                                     "thinks driver is absent! "
8458                                     "(bc_state = 0x%08X)\n",
8459                                     __FUNCTION__, sc->bc_state);
8460                         }
8461                 } else {
8462                         /*
8463                          * Not supported by all bootcode versions.
8464                          * (v5.0.11+ and v5.2.1+)  Older bootcode
8465                          * will require the driver to reset the
8466                          * controller to clear this condition.
8467                          */
8468                         if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8469                                 sc->bce_drv_cardiac_arrest = FALSE;
8470                                 BCE_PRINTF("%s(): Bootcode found the "
8471                                     "driver pulse! (bc_state = 0x%08X)\n",
8472                                     __FUNCTION__, sc->bc_state);
8473                         }
8474                 }
8475         }
8476
8477
8478         /* Schedule the next pulse. */
8479         callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8480
8481         DBEXIT(BCE_EXTREME_MISC);
8482 }
8483
8484
8485 /****************************************************************************/
8486 /* Periodic function to perform maintenance tasks.                          */
8487 /*                                                                          */
8488 /* Returns:                                                                 */
8489 /*   Nothing.                                                               */
8490 /****************************************************************************/
8491 static void
8492 bce_tick(void *xsc)
8493 {
8494         struct bce_softc *sc = xsc;
8495         struct mii_data *mii;
8496         struct ifnet *ifp;
8497         struct ifmediareq ifmr;
8498
8499         ifp = sc->bce_ifp;
8500
8501         DBENTER(BCE_EXTREME_MISC);
8502
8503         BCE_LOCK_ASSERT(sc);
8504
8505         /* Schedule the next tick. */
8506         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8507
8508         /* Update the statistics from the hardware statistics block. */
8509         bce_stats_update(sc);
8510
8511         /* Ensure page and RX chains get refilled in low-memory situations. */
8512         if (bce_hdr_split == TRUE)
8513                 bce_fill_pg_chain(sc);
8514         bce_fill_rx_chain(sc);
8515
8516         /* Check that chip hasn't hung. */
8517         bce_watchdog(sc);
8518
8519         /* If link is up already up then we're done. */
8520         if (sc->bce_link_up == TRUE)
8521                 goto bce_tick_exit;
8522
8523         /* Link is down.  Check what the PHY's doing. */
8524         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8525                 bzero(&ifmr, sizeof(ifmr));
8526                 bce_ifmedia_sts_rphy(sc, &ifmr);
8527                 if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8528                     (IFM_ACTIVE | IFM_AVALID)) {
8529                         sc->bce_link_up = TRUE;
8530                         bce_miibus_statchg(sc->bce_dev);
8531                 }
8532         } else {
8533                 mii = device_get_softc(sc->bce_miibus);
8534                 mii_tick(mii);
8535                 /* Check if the link has come up. */
8536                 if ((mii->mii_media_status & IFM_ACTIVE) &&
8537                     (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8538                         DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8539                             __FUNCTION__);
8540                         sc->bce_link_up = TRUE;
8541                         if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8542                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8543                             IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8544                             (bce_verbose || bootverbose))
8545                                 BCE_PRINTF("Gigabit link up!\n");
8546                 }
8547
8548         }
8549         if (sc->bce_link_up == TRUE) {
8550                 /* Now that link is up, handle any outstanding TX traffic. */
8551                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8552                         DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8553                             "pending TX traffic.\n", __FUNCTION__);
8554                         bce_start_locked(ifp);
8555                 }
8556         }
8557
8558 bce_tick_exit:
8559         DBEXIT(BCE_EXTREME_MISC);
8560 }
8561
8562 static void
8563 bce_fw_cap_init(struct bce_softc *sc)
8564 {
8565         u32 ack, cap, link;
8566
8567         ack = 0;
8568         cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8569         if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8570             BCE_FW_CAP_SIGNATURE_MAGIC)
8571                 return;
8572         if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8573             (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8574                 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8575                     BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8576         if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8577             (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8578                 sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8579                 sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8580                 link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8581                 if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8582                         sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8583                 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8584                     BCE_FW_CAP_REMOTE_PHY_CAP;
8585         }
8586
8587         if (ack != 0)
8588                 bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8589 }
8590
8591
8592 #ifdef BCE_DEBUG
8593 /****************************************************************************/
8594 /* Allows the driver state to be dumped through the sysctl interface.       */
8595 /*                                                                          */
8596 /* Returns:                                                                 */
8597 /*   0 for success, positive value for failure.                             */
8598 /****************************************************************************/
8599 static int
8600 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8601 {
8602         int error;
8603         int result;
8604         struct bce_softc *sc;
8605
8606         result = -1;
8607         error = sysctl_handle_int(oidp, &result, 0, req);
8608
8609         if (error || !req->newptr)
8610                 return (error);
8611
8612         if (result == 1) {
8613                 sc = (struct bce_softc *)arg1;
8614                 bce_dump_driver_state(sc);
8615         }
8616
8617         return error;
8618 }
8619
8620
8621 /****************************************************************************/
8622 /* Allows the hardware state to be dumped through the sysctl interface.     */
8623 /*                                                                          */
8624 /* Returns:                                                                 */
8625 /*   0 for success, positive value for failure.                             */
8626 /****************************************************************************/
8627 static int
8628 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8629 {
8630         int error;
8631         int result;
8632         struct bce_softc *sc;
8633
8634         result = -1;
8635         error = sysctl_handle_int(oidp, &result, 0, req);
8636
8637         if (error || !req->newptr)
8638                 return (error);
8639
8640         if (result == 1) {
8641                 sc = (struct bce_softc *)arg1;
8642                 bce_dump_hw_state(sc);
8643         }
8644
8645         return error;
8646 }
8647
8648
8649 /****************************************************************************/
8650 /* Allows the status block to be dumped through the sysctl interface.       */
8651 /*                                                                          */
8652 /* Returns:                                                                 */
8653 /*   0 for success, positive value for failure.                             */
8654 /****************************************************************************/
8655 static int
8656 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8657 {
8658         int error;
8659         int result;
8660         struct bce_softc *sc;
8661
8662         result = -1;
8663         error = sysctl_handle_int(oidp, &result, 0, req);
8664
8665         if (error || !req->newptr)
8666                 return (error);
8667
8668         if (result == 1) {
8669                 sc = (struct bce_softc *)arg1;
8670                 bce_dump_status_block(sc);
8671         }
8672
8673         return error;
8674 }
8675
8676
8677 /****************************************************************************/
8678 /* Allows the stats block to be dumped through the sysctl interface.        */
8679 /*                                                                          */
8680 /* Returns:                                                                 */
8681 /*   0 for success, positive value for failure.                             */
8682 /****************************************************************************/
8683 static int
8684 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8685 {
8686         int error;
8687         int result;
8688         struct bce_softc *sc;
8689
8690         result = -1;
8691         error = sysctl_handle_int(oidp, &result, 0, req);
8692
8693         if (error || !req->newptr)
8694                 return (error);
8695
8696         if (result == 1) {
8697                 sc = (struct bce_softc *)arg1;
8698                 bce_dump_stats_block(sc);
8699         }
8700
8701         return error;
8702 }
8703
8704
8705 /****************************************************************************/
8706 /* Allows the stat counters to be cleared without unloading/reloading the   */
8707 /* driver.                                                                  */
8708 /*                                                                          */
8709 /* Returns:                                                                 */
8710 /*   0 for success, positive value for failure.                             */
8711 /****************************************************************************/
8712 static int
8713 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8714 {
8715         int error;
8716         int result;
8717         struct bce_softc *sc;
8718
8719         result = -1;
8720         error = sysctl_handle_int(oidp, &result, 0, req);
8721
8722         if (error || !req->newptr)
8723                 return (error);
8724
8725         if (result == 1) {
8726                 sc = (struct bce_softc *)arg1;
8727                 struct statistics_block *stats;
8728
8729                 stats = (struct statistics_block *) sc->stats_block;
8730                 bzero(stats, sizeof(struct statistics_block));
8731                 bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8732                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8733
8734                 /* Clear the internal H/W statistics counters. */
8735                 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8736
8737                 /* Reset the driver maintained statistics. */
8738                 sc->interrupts_rx =
8739                     sc->interrupts_tx = 0;
8740                 sc->tso_frames_requested =
8741                     sc->tso_frames_completed =
8742                     sc->tso_frames_failed = 0;
8743                 sc->rx_empty_count =
8744                     sc->tx_full_count = 0;
8745                 sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8746                 sc->tx_hi_watermark = 0;
8747                 sc->l2fhdr_error_count =
8748                     sc->l2fhdr_error_sim_count = 0;
8749                 sc->mbuf_alloc_failed_count =
8750                     sc->mbuf_alloc_failed_sim_count = 0;
8751                 sc->dma_map_addr_rx_failed_count =
8752                     sc->dma_map_addr_tx_failed_count = 0;
8753                 sc->mbuf_frag_count = 0;
8754                 sc->csum_offload_tcp_udp =
8755                     sc->csum_offload_ip = 0;
8756                 sc->vlan_tagged_frames_rcvd =
8757                     sc->vlan_tagged_frames_stripped = 0;
8758                 sc->split_header_frames_rcvd =
8759                     sc->split_header_tcp_frames_rcvd = 0;
8760
8761                 /* Clear firmware maintained statistics. */
8762                 REG_WR_IND(sc, 0x120084, 0);
8763         }
8764
8765         return error;
8766 }
8767
8768
8769 /****************************************************************************/
8770 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8771 /* interface.                                                               */
8772 /*                                                                          */
8773 /* Returns:                                                                 */
8774 /*   0 for success, positive value for failure.                             */
8775 /****************************************************************************/
8776 static int
8777 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8778 {
8779         int error;
8780         int result;
8781         struct bce_softc *sc;
8782
8783         result = -1;
8784         error = sysctl_handle_int(oidp, &result, 0, req);
8785
8786         if (error || !req->newptr)
8787                 return (error);
8788
8789         if (result == 1) {
8790                 sc = (struct bce_softc *)arg1;
8791                 bce_dump_shmem_state(sc);
8792         }
8793
8794         return error;
8795 }
8796
8797
8798 /****************************************************************************/
8799 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8800 /*                                                                          */
8801 /* Returns:                                                                 */
8802 /*   0 for success, positive value for failure.                             */
8803 /****************************************************************************/
8804 static int
8805 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8806 {
8807         int error;
8808         int result;
8809         struct bce_softc *sc;
8810
8811         result = -1;
8812         error = sysctl_handle_int(oidp, &result, 0, req);
8813
8814         if (error || !req->newptr)
8815                 return (error);
8816
8817         if (result == 1) {
8818                 sc = (struct bce_softc *)arg1;
8819                 bce_dump_bc_state(sc);
8820         }
8821
8822         return error;
8823 }
8824
8825
8826 /****************************************************************************/
8827 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8828 /*                                                                          */
8829 /* Returns:                                                                 */
8830 /*   0 for success, positive value for failure.                             */
8831 /****************************************************************************/
8832 static int
8833 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8834 {
8835         int error;
8836         int result;
8837         struct bce_softc *sc;
8838
8839         result = -1;
8840         error = sysctl_handle_int(oidp, &result, 0, req);
8841
8842         if (error || !req->newptr)
8843                 return (error);
8844
8845         if (result == 1) {
8846                 sc = (struct bce_softc *)arg1;
8847                 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8848         }
8849
8850         return error;
8851 }
8852
8853
8854 /****************************************************************************/
8855 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8856 /*                                                                          */
8857 /* Returns:                                                                 */
8858 /*   0 for success, positive value for failure.                             */
8859 /****************************************************************************/
8860 static int
8861 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8862 {
8863         int error;
8864         int result;
8865         struct bce_softc *sc;
8866
8867         result = -1;
8868         error = sysctl_handle_int(oidp, &result, 0, req);
8869
8870         if (error || !req->newptr)
8871                 return (error);
8872
8873         if (result == 1) {
8874                 sc = (struct bce_softc *)arg1;
8875                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8876         }
8877
8878         return error;
8879 }
8880
8881
8882 /****************************************************************************/
8883 /* Provides a sysctl interface to allow dumping the TX chain.               */
8884 /*                                                                          */
8885 /* Returns:                                                                 */
8886 /*   0 for success, positive value for failure.                             */
8887 /****************************************************************************/
8888 static int
8889 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8890 {
8891         int error;
8892         int result;
8893         struct bce_softc *sc;
8894
8895         result = -1;
8896         error = sysctl_handle_int(oidp, &result, 0, req);
8897
8898         if (error || !req->newptr)
8899                 return (error);
8900
8901         if (result == 1) {
8902                 sc = (struct bce_softc *)arg1;
8903                 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8904         }
8905
8906         return error;
8907 }
8908
8909
8910 /****************************************************************************/
8911 /* Provides a sysctl interface to allow dumping the page chain.             */
8912 /*                                                                          */
8913 /* Returns:                                                                 */
8914 /*   0 for success, positive value for failure.                             */
8915 /****************************************************************************/
8916 static int
8917 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8918 {
8919         int error;
8920         int result;
8921         struct bce_softc *sc;
8922
8923         result = -1;
8924         error = sysctl_handle_int(oidp, &result, 0, req);
8925
8926         if (error || !req->newptr)
8927                 return (error);
8928
8929         if (result == 1) {
8930                 sc = (struct bce_softc *)arg1;
8931                 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8932         }
8933
8934         return error;
8935 }
8936
8937 /****************************************************************************/
8938 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8939 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8940 /*                                                                          */
8941 /* Returns:                                                                 */
8942 /*   0 for success, positive value for failure.                             */
8943 /****************************************************************************/
8944 static int
8945 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8946 {
8947         struct bce_softc *sc = (struct bce_softc *)arg1;
8948         int error;
8949         u32 result;
8950         u32 val[1];
8951         u8 *data = (u8 *) val;
8952
8953         result = -1;
8954         error = sysctl_handle_int(oidp, &result, 0, req);
8955         if (error || (req->newptr == NULL))
8956                 return (error);
8957
8958         error = bce_nvram_read(sc, result, data, 4);
8959
8960         BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8961
8962         return (error);
8963 }
8964
8965
8966 /****************************************************************************/
8967 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8968 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8969 /*                                                                          */
8970 /* Returns:                                                                 */
8971 /*   0 for success, positive value for failure.                             */
8972 /****************************************************************************/
8973 static int
8974 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8975 {
8976         struct bce_softc *sc = (struct bce_softc *)arg1;
8977         int error;
8978         u32 val, result;
8979
8980         result = -1;
8981         error = sysctl_handle_int(oidp, &result, 0, req);
8982         if (error || (req->newptr == NULL))
8983                 return (error);
8984
8985         /* Make sure the register is accessible. */
8986         if (result < 0x8000) {
8987                 val = REG_RD(sc, result);
8988                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8989         } else if (result < 0x0280000) {
8990                 val = REG_RD_IND(sc, result);
8991                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8992         }
8993
8994         return (error);
8995 }
8996
8997
8998 /****************************************************************************/
8999 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
9000 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
9001 /*                                                                          */
9002 /* Returns:                                                                 */
9003 /*   0 for success, positive value for failure.                             */
9004 /****************************************************************************/
9005 static int
9006 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
9007 {
9008         struct bce_softc *sc;
9009         device_t dev;
9010         int error, result;
9011         u16 val;
9012
9013         result = -1;
9014         error = sysctl_handle_int(oidp, &result, 0, req);
9015         if (error || (req->newptr == NULL))
9016                 return (error);
9017
9018         /* Make sure the register is accessible. */
9019         if (result < 0x20) {
9020                 sc = (struct bce_softc *)arg1;
9021                 dev = sc->bce_dev;
9022                 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
9023                 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
9024         }
9025         return (error);
9026 }
9027
9028
9029 /****************************************************************************/
9030 /* Provides a sysctl interface for dumping the nvram contents.              */
9031 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!                                     */
9032 /*                                                                          */
9033 /* Returns:                                                                 */
9034 /*   0 for success, positive errno for failure.                             */
9035 /****************************************************************************/
9036 static int
9037 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
9038 {
9039         struct bce_softc *sc = (struct bce_softc *)arg1;
9040         int error, i;
9041
9042         if (sc->nvram_buf == NULL)
9043                 sc->nvram_buf = malloc(sc->bce_flash_size,
9044                                     M_TEMP, M_ZERO | M_WAITOK);
9045
9046         error = 0;
9047         if (req->oldlen == sc->bce_flash_size) {
9048                 for (i = 0; i < sc->bce_flash_size && error == 0; i++)
9049                         error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
9050         }
9051
9052         if (error == 0)
9053                 error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
9054
9055         return error;
9056 }
9057
9058 #ifdef BCE_NVRAM_WRITE_SUPPORT
9059 /****************************************************************************/
9060 /* Provides a sysctl interface for writing to nvram.                        */
9061 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!                                     */
9062 /*                                                                          */
9063 /* Returns:                                                                 */
9064 /*   0 for success, positive errno for failure.                             */
9065 /****************************************************************************/
9066 static int
9067 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
9068 {
9069         struct bce_softc *sc = (struct bce_softc *)arg1;
9070         int error;
9071
9072         if (sc->nvram_buf == NULL)
9073                 sc->nvram_buf = malloc(sc->bce_flash_size,
9074                                     M_TEMP, M_ZERO | M_WAITOK);
9075         else
9076                 bzero(sc->nvram_buf, sc->bce_flash_size);
9077
9078         error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
9079         if (error == 0)
9080                 return (error);
9081
9082         if (req->newlen == sc->bce_flash_size)
9083                 error = bce_nvram_write(sc, 0, sc->nvram_buf,
9084                             sc->bce_flash_size);
9085
9086
9087         return error;
9088 }
9089 #endif
9090
9091
9092 /****************************************************************************/
9093 /* Provides a sysctl interface to allow reading a CID.                      */
9094 /*                                                                          */
9095 /* Returns:                                                                 */
9096 /*   0 for success, positive value for failure.                             */
9097 /****************************************************************************/
9098 static int
9099 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
9100 {
9101         struct bce_softc *sc;
9102         int error, result;
9103
9104         result = -1;
9105         error = sysctl_handle_int(oidp, &result, 0, req);
9106         if (error || (req->newptr == NULL))
9107                 return (error);
9108
9109         /* Make sure the register is accessible. */
9110         if (result <= TX_CID) {
9111                 sc = (struct bce_softc *)arg1;
9112                 bce_dump_ctx(sc, result);
9113         }
9114
9115         return (error);
9116 }
9117
9118
9119 /****************************************************************************/
9120 /* Provides a sysctl interface to forcing the driver to dump state and      */
9121 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
9122 /*                                                                          */
9123 /* Returns:                                                                 */
9124 /*   0 for success, positive value for failure.                             */
9125 /****************************************************************************/
9126 static int
9127 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
9128 {
9129         int error;
9130         int result;
9131         struct bce_softc *sc;
9132
9133         result = -1;
9134         error = sysctl_handle_int(oidp, &result, 0, req);
9135
9136         if (error || !req->newptr)
9137                 return (error);
9138
9139         if (result == 1) {
9140                 sc = (struct bce_softc *)arg1;
9141                 bce_breakpoint(sc);
9142         }
9143
9144         return error;
9145 }
9146 #endif
9147
9148 /****************************************************************************/
9149 /* Adds any sysctl parameters for tuning or debugging purposes.             */
9150 /*                                                                          */
9151 /* Returns:                                                                 */
9152 /*   0 for success, positive value for failure.                             */
9153 /****************************************************************************/
9154 static void
9155 bce_add_sysctls(struct bce_softc *sc)
9156 {
9157         struct sysctl_ctx_list *ctx;
9158         struct sysctl_oid_list *children;
9159
9160         DBENTER(BCE_VERBOSE_MISC);
9161
9162         ctx = device_get_sysctl_ctx(sc->bce_dev);
9163         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
9164
9165 #ifdef BCE_DEBUG
9166         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9167             "l2fhdr_error_sim_control",
9168             CTLFLAG_RW, &l2fhdr_error_sim_control,
9169             0, "Debug control to force l2fhdr errors");
9170
9171         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9172             "l2fhdr_error_sim_count",
9173             CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
9174             0, "Number of simulated l2_fhdr errors");
9175 #endif
9176
9177         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9178             "l2fhdr_error_count",
9179             CTLFLAG_RD, &sc->l2fhdr_error_count,
9180             0, "Number of l2_fhdr errors");
9181
9182 #ifdef BCE_DEBUG
9183         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9184             "mbuf_alloc_failed_sim_control",
9185             CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
9186             0, "Debug control to force mbuf allocation failures");
9187
9188         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9189             "mbuf_alloc_failed_sim_count",
9190             CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
9191             0, "Number of simulated mbuf cluster allocation failures");
9192 #endif
9193
9194         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9195             "mbuf_alloc_failed_count",
9196             CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9197             0, "Number of mbuf allocation failures");
9198
9199         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9200             "mbuf_frag_count",
9201             CTLFLAG_RD, &sc->mbuf_frag_count,
9202             0, "Number of fragmented mbufs");
9203
9204 #ifdef BCE_DEBUG
9205         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9206             "dma_map_addr_failed_sim_control",
9207             CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9208             0, "Debug control to force DMA mapping failures");
9209
9210         /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9211         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9212             "dma_map_addr_failed_sim_count",
9213             CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9214             0, "Number of simulated DMA mapping failures");
9215
9216 #endif
9217
9218         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9219             "dma_map_addr_rx_failed_count",
9220             CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9221             0, "Number of RX DMA mapping failures");
9222
9223         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9224             "dma_map_addr_tx_failed_count",
9225             CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9226             0, "Number of TX DMA mapping failures");
9227
9228 #ifdef BCE_DEBUG
9229         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9230             "unexpected_attention_sim_control",
9231             CTLFLAG_RW, &unexpected_attention_sim_control,
9232             0, "Debug control to simulate unexpected attentions");
9233
9234         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9235             "unexpected_attention_sim_count",
9236             CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9237             0, "Number of simulated unexpected attentions");
9238 #endif
9239
9240         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9241             "unexpected_attention_count",
9242             CTLFLAG_RW, &sc->unexpected_attention_count,
9243             0, "Number of unexpected attentions");
9244
9245 #ifdef BCE_DEBUG
9246         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9247             "debug_bootcode_running_failure",
9248             CTLFLAG_RW, &bootcode_running_failure_sim_control,
9249             0, "Debug control to force bootcode running failures");
9250
9251         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9252             "rx_low_watermark",
9253             CTLFLAG_RD, &sc->rx_low_watermark,
9254             0, "Lowest level of free rx_bd's");
9255
9256         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9257             "rx_empty_count",
9258             CTLFLAG_RD, &sc->rx_empty_count,
9259             "Number of times the RX chain was empty");
9260
9261         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9262             "tx_hi_watermark",
9263             CTLFLAG_RD, &sc->tx_hi_watermark,
9264             0, "Highest level of used tx_bd's");
9265
9266         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9267             "tx_full_count",
9268             CTLFLAG_RD, &sc->tx_full_count,
9269             "Number of times the TX chain was full");
9270
9271         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9272             "tso_frames_requested",
9273             CTLFLAG_RD, &sc->tso_frames_requested,
9274             "Number of TSO frames requested");
9275
9276         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9277             "tso_frames_completed",
9278             CTLFLAG_RD, &sc->tso_frames_completed,
9279             "Number of TSO frames completed");
9280
9281         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9282             "tso_frames_failed",
9283             CTLFLAG_RD, &sc->tso_frames_failed,
9284             "Number of TSO frames failed");
9285
9286         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9287             "csum_offload_ip",
9288             CTLFLAG_RD, &sc->csum_offload_ip,
9289             "Number of IP checksum offload frames");
9290
9291         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9292             "csum_offload_tcp_udp",
9293             CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9294             "Number of TCP/UDP checksum offload frames");
9295
9296         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9297             "vlan_tagged_frames_rcvd",
9298             CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9299             "Number of VLAN tagged frames received");
9300
9301         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9302             "vlan_tagged_frames_stripped",
9303             CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9304             "Number of VLAN tagged frames stripped");
9305
9306         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9307             "interrupts_rx",
9308             CTLFLAG_RD, &sc->interrupts_rx,
9309             "Number of RX interrupts");
9310
9311         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9312             "interrupts_tx",
9313             CTLFLAG_RD, &sc->interrupts_tx,
9314             "Number of TX interrupts");
9315
9316         if (bce_hdr_split == TRUE) {
9317                 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9318                     "split_header_frames_rcvd",
9319                     CTLFLAG_RD, &sc->split_header_frames_rcvd,
9320                     "Number of split header frames received");
9321
9322                 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9323                     "split_header_tcp_frames_rcvd",
9324                     CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9325                     "Number of split header TCP frames received");
9326         }
9327
9328         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9329             "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
9330             (void *)sc, 0,
9331             bce_sysctl_nvram_dump, "S", "");
9332
9333 #ifdef BCE_NVRAM_WRITE_SUPPORT
9334         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9335             "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9336             (void *)sc, 0,
9337             bce_sysctl_nvram_write, "S", "");
9338 #endif
9339 #endif /* BCE_DEBUG */
9340
9341         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9342             "stat_IfHcInOctets",
9343             CTLFLAG_RD, &sc->stat_IfHCInOctets,
9344             "Bytes received");
9345
9346         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9347             "stat_IfHCInBadOctets",
9348             CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9349             "Bad bytes received");
9350
9351         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9352             "stat_IfHCOutOctets",
9353             CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9354             "Bytes sent");
9355
9356         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9357             "stat_IfHCOutBadOctets",
9358             CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9359             "Bad bytes sent");
9360
9361         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9362             "stat_IfHCInUcastPkts",
9363             CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9364             "Unicast packets received");
9365
9366         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9367             "stat_IfHCInMulticastPkts",
9368             CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9369             "Multicast packets received");
9370
9371         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9372             "stat_IfHCInBroadcastPkts",
9373             CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9374             "Broadcast packets received");
9375
9376         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9377             "stat_IfHCOutUcastPkts",
9378             CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9379             "Unicast packets sent");
9380
9381         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9382             "stat_IfHCOutMulticastPkts",
9383             CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9384             "Multicast packets sent");
9385
9386         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9387             "stat_IfHCOutBroadcastPkts",
9388             CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9389             "Broadcast packets sent");
9390
9391         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9392             "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9393             CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9394             0, "Internal MAC transmit errors");
9395
9396         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9397             "stat_Dot3StatsCarrierSenseErrors",
9398             CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9399             0, "Carrier sense errors");
9400
9401         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9402             "stat_Dot3StatsFCSErrors",
9403             CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9404             0, "Frame check sequence errors");
9405
9406         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9407             "stat_Dot3StatsAlignmentErrors",
9408             CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9409             0, "Alignment errors");
9410
9411         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9412             "stat_Dot3StatsSingleCollisionFrames",
9413             CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9414             0, "Single Collision Frames");
9415
9416         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9417             "stat_Dot3StatsMultipleCollisionFrames",
9418             CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9419             0, "Multiple Collision Frames");
9420
9421         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9422             "stat_Dot3StatsDeferredTransmissions",
9423             CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9424             0, "Deferred Transmissions");
9425
9426         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9427             "stat_Dot3StatsExcessiveCollisions",
9428             CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9429             0, "Excessive Collisions");
9430
9431         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9432             "stat_Dot3StatsLateCollisions",
9433             CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9434             0, "Late Collisions");
9435
9436         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9437             "stat_EtherStatsCollisions",
9438             CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9439             0, "Collisions");
9440
9441         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9442             "stat_EtherStatsFragments",
9443             CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9444             0, "Fragments");
9445
9446         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9447             "stat_EtherStatsJabbers",
9448             CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9449             0, "Jabbers");
9450
9451         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9452             "stat_EtherStatsUndersizePkts",
9453             CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9454             0, "Undersize packets");
9455
9456         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9457             "stat_EtherStatsOversizePkts",
9458             CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9459             0, "stat_EtherStatsOversizePkts");
9460
9461         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9462             "stat_EtherStatsPktsRx64Octets",
9463             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9464             0, "Bytes received in 64 byte packets");
9465
9466         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9467             "stat_EtherStatsPktsRx65Octetsto127Octets",
9468             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9469             0, "Bytes received in 65 to 127 byte packets");
9470
9471         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9472             "stat_EtherStatsPktsRx128Octetsto255Octets",
9473             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9474             0, "Bytes received in 128 to 255 byte packets");
9475
9476         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9477             "stat_EtherStatsPktsRx256Octetsto511Octets",
9478             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9479             0, "Bytes received in 256 to 511 byte packets");
9480
9481         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9482             "stat_EtherStatsPktsRx512Octetsto1023Octets",
9483             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9484             0, "Bytes received in 512 to 1023 byte packets");
9485
9486         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9487             "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9488             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9489             0, "Bytes received in 1024 t0 1522 byte packets");
9490
9491         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9492             "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9493             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9494             0, "Bytes received in 1523 to 9022 byte packets");
9495
9496         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9497             "stat_EtherStatsPktsTx64Octets",
9498             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9499             0, "Bytes sent in 64 byte packets");
9500
9501         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9502             "stat_EtherStatsPktsTx65Octetsto127Octets",
9503             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9504             0, "Bytes sent in 65 to 127 byte packets");
9505
9506         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9507             "stat_EtherStatsPktsTx128Octetsto255Octets",
9508             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9509             0, "Bytes sent in 128 to 255 byte packets");
9510
9511         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9512             "stat_EtherStatsPktsTx256Octetsto511Octets",
9513             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9514             0, "Bytes sent in 256 to 511 byte packets");
9515
9516         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9517             "stat_EtherStatsPktsTx512Octetsto1023Octets",
9518             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9519             0, "Bytes sent in 512 to 1023 byte packets");
9520
9521         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9522             "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9523             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9524             0, "Bytes sent in 1024 to 1522 byte packets");
9525
9526         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9527             "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9528             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9529             0, "Bytes sent in 1523 to 9022 byte packets");
9530
9531         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9532             "stat_XonPauseFramesReceived",
9533             CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9534             0, "XON pause frames receved");
9535
9536         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9537             "stat_XoffPauseFramesReceived",
9538             CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9539             0, "XOFF pause frames received");
9540
9541         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9542             "stat_OutXonSent",
9543             CTLFLAG_RD, &sc->stat_OutXonSent,
9544             0, "XON pause frames sent");
9545
9546         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9547             "stat_OutXoffSent",
9548             CTLFLAG_RD, &sc->stat_OutXoffSent,
9549             0, "XOFF pause frames sent");
9550
9551         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9552             "stat_FlowControlDone",
9553             CTLFLAG_RD, &sc->stat_FlowControlDone,
9554             0, "Flow control done");
9555
9556         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9557             "stat_MacControlFramesReceived",
9558             CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9559             0, "MAC control frames received");
9560
9561         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9562             "stat_XoffStateEntered",
9563             CTLFLAG_RD, &sc->stat_XoffStateEntered,
9564             0, "XOFF state entered");
9565
9566         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9567             "stat_IfInFramesL2FilterDiscards",
9568             CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9569             0, "Received L2 packets discarded");
9570
9571         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9572             "stat_IfInRuleCheckerDiscards",
9573             CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9574             0, "Received packets discarded by rule");
9575
9576         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9577             "stat_IfInFTQDiscards",
9578             CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9579             0, "Received packet FTQ discards");
9580
9581         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9582             "stat_IfInMBUFDiscards",
9583             CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9584             0, "Received packets discarded due to lack "
9585             "of controller buffer memory");
9586
9587         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9588             "stat_IfInRuleCheckerP4Hit",
9589             CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9590             0, "Received packets rule checker hits");
9591
9592         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9593             "stat_CatchupInRuleCheckerDiscards",
9594             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9595             0, "Received packets discarded in Catchup path");
9596
9597         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9598             "stat_CatchupInFTQDiscards",
9599             CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9600             0, "Received packets discarded in FTQ in Catchup path");
9601
9602         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9603             "stat_CatchupInMBUFDiscards",
9604             CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9605             0, "Received packets discarded in controller "
9606             "buffer memory in Catchup path");
9607
9608         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9609             "stat_CatchupInRuleCheckerP4Hit",
9610             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9611             0, "Received packets rule checker hits in Catchup path");
9612
9613         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9614             "com_no_buffers",
9615             CTLFLAG_RD, &sc->com_no_buffers,
9616             0, "Valid packets received but no RX buffers available");
9617
9618 #ifdef BCE_DEBUG
9619         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9620             "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9621             (void *)sc, 0,
9622             bce_sysctl_driver_state, "I", "Drive state information");
9623
9624         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9625             "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9626             (void *)sc, 0,
9627             bce_sysctl_hw_state, "I", "Hardware state information");
9628
9629         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9630             "status_block", CTLTYPE_INT | CTLFLAG_RW,
9631             (void *)sc, 0,
9632             bce_sysctl_status_block, "I", "Dump status block");
9633
9634         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9635             "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9636             (void *)sc, 0,
9637             bce_sysctl_stats_block, "I", "Dump statistics block");
9638
9639         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9640             "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9641             (void *)sc, 0,
9642             bce_sysctl_stats_clear, "I", "Clear statistics block");
9643
9644         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9645             "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9646             (void *)sc, 0,
9647             bce_sysctl_shmem_state, "I", "Shared memory state information");
9648
9649         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9650             "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9651             (void *)sc, 0,
9652             bce_sysctl_bc_state, "I", "Bootcode state information");
9653
9654         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9655             "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9656             (void *)sc, 0,
9657             bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9658
9659         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9660             "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9661             (void *)sc, 0,
9662             bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9663
9664         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9665             "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9666             (void *)sc, 0,
9667             bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9668
9669         if (bce_hdr_split == TRUE) {
9670                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9671                     "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9672                     (void *)sc, 0,
9673                     bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9674         }
9675
9676         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9677             "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9678             (void *)sc, 0,
9679             bce_sysctl_dump_ctx, "I", "Dump context memory");
9680
9681         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9682             "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9683             (void *)sc, 0,
9684             bce_sysctl_breakpoint, "I", "Driver breakpoint");
9685
9686         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9687             "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9688             (void *)sc, 0,
9689             bce_sysctl_reg_read, "I", "Register read");
9690
9691         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9692             "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9693             (void *)sc, 0,
9694             bce_sysctl_nvram_read, "I", "NVRAM read");
9695
9696         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9697             "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9698             (void *)sc, 0,
9699             bce_sysctl_phy_read, "I", "PHY register read");
9700
9701 #endif
9702
9703         DBEXIT(BCE_VERBOSE_MISC);
9704 }
9705
9706
9707 /****************************************************************************/
9708 /* BCE Debug Routines                                                       */
9709 /****************************************************************************/
9710 #ifdef BCE_DEBUG
9711
9712 /****************************************************************************/
9713 /* Freezes the controller to allow for a cohesive state dump.               */
9714 /*                                                                          */
9715 /* Returns:                                                                 */
9716 /*   Nothing.                                                               */
9717 /****************************************************************************/
9718 static __attribute__ ((noinline)) void
9719 bce_freeze_controller(struct bce_softc *sc)
9720 {
9721         u32 val;
9722         val = REG_RD(sc, BCE_MISC_COMMAND);
9723         val |= BCE_MISC_COMMAND_DISABLE_ALL;
9724         REG_WR(sc, BCE_MISC_COMMAND, val);
9725 }
9726
9727
9728 /****************************************************************************/
9729 /* Unfreezes the controller after a freeze operation.  This may not always  */
9730 /* work and the controller will require a reset!                            */
9731 /*                                                                          */
9732 /* Returns:                                                                 */
9733 /*   Nothing.                                                               */
9734 /****************************************************************************/
9735 static __attribute__ ((noinline)) void
9736 bce_unfreeze_controller(struct bce_softc *sc)
9737 {
9738         u32 val;
9739         val = REG_RD(sc, BCE_MISC_COMMAND);
9740         val |= BCE_MISC_COMMAND_ENABLE_ALL;
9741         REG_WR(sc, BCE_MISC_COMMAND, val);
9742 }
9743
9744
9745 /****************************************************************************/
9746 /* Prints out Ethernet frame information from an mbuf.                      */
9747 /*                                                                          */
9748 /* Partially decode an Ethernet frame to look at some important headers.    */
9749 /*                                                                          */
9750 /* Returns:                                                                 */
9751 /*   Nothing.                                                               */
9752 /****************************************************************************/
9753 static __attribute__ ((noinline)) void
9754 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9755 {
9756         struct ether_vlan_header *eh;
9757         u16 etype;
9758         int ehlen;
9759         struct ip *ip;
9760         struct tcphdr *th;
9761         struct udphdr *uh;
9762         struct arphdr *ah;
9763
9764         BCE_PRINTF(
9765             "-----------------------------"
9766             " Frame Decode "
9767             "-----------------------------\n");
9768
9769         eh = mtod(m, struct ether_vlan_header *);
9770
9771         /* Handle VLAN encapsulation if present. */
9772         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9773                 etype = ntohs(eh->evl_proto);
9774                 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9775         } else {
9776                 etype = ntohs(eh->evl_encap_proto);
9777                 ehlen = ETHER_HDR_LEN;
9778         }
9779
9780         /* ToDo: Add VLAN output. */
9781         BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9782             eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9783
9784         switch (etype) {
9785         case ETHERTYPE_IP:
9786                 ip = (struct ip *)(m->m_data + ehlen);
9787                 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9788                     "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9789                     ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9790                     ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9791
9792                 switch (ip->ip_p) {
9793                 case IPPROTO_TCP:
9794                         th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9795                         BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9796                             "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9797                             ntohs(th->th_dport), ntohs(th->th_sport),
9798                             (th->th_off << 2), th->th_flags,
9799                             "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9800                             "\02SYN\01FIN", ntohs(th->th_sum));
9801                         break;
9802                 case IPPROTO_UDP:
9803                         uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9804                         BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9805                             "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9806                             ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9807                             ntohs(uh->uh_sum));
9808                         break;
9809                 case IPPROTO_ICMP:
9810                         BCE_PRINTF("icmp:\n");
9811                         break;
9812                 default:
9813                         BCE_PRINTF("----: Other IP protocol.\n");
9814                         }
9815                 break;
9816         case ETHERTYPE_IPV6:
9817                 BCE_PRINTF("ipv6: No decode supported.\n");
9818                 break;
9819         case ETHERTYPE_ARP:
9820                 BCE_PRINTF("-arp: ");
9821                 ah = (struct arphdr *) (m->m_data + ehlen);
9822                 switch (ntohs(ah->ar_op)) {
9823                 case ARPOP_REVREQUEST:
9824                         printf("reverse ARP request\n");
9825                         break;
9826                 case ARPOP_REVREPLY:
9827                         printf("reverse ARP reply\n");
9828                         break;
9829                 case ARPOP_REQUEST:
9830                         printf("ARP request\n");
9831                         break;
9832                 case ARPOP_REPLY:
9833                         printf("ARP reply\n");
9834                         break;
9835                 default:
9836                         printf("other ARP operation\n");
9837                 }
9838                 break;
9839         default:
9840                 BCE_PRINTF("----: Other protocol.\n");
9841         }
9842
9843         BCE_PRINTF(
9844                 "-----------------------------"
9845                 "--------------"
9846                 "-----------------------------\n");
9847 }
9848
9849
9850 /****************************************************************************/
9851 /* Prints out information about an mbuf.                                    */
9852 /*                                                                          */
9853 /* Returns:                                                                 */
9854 /*   Nothing.                                                               */
9855 /****************************************************************************/
9856 static __attribute__ ((noinline)) void
9857 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9858 {
9859         struct mbuf *mp = m;
9860
9861         if (m == NULL) {
9862                 BCE_PRINTF("mbuf: null pointer\n");
9863                 return;
9864         }
9865
9866         while (mp) {
9867                 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9868                     "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9869                     "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9870
9871                 if (mp->m_flags & M_PKTHDR) {
9872                         BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9873                             "csum_flags = %b\n", mp->m_pkthdr.len,
9874                             mp->m_flags, M_FLAG_PRINTF,
9875                             mp->m_pkthdr.csum_flags,
9876                             "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP"
9877                             "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9878                             "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9879                             "\14CSUM_PSEUDO_HDR");
9880                 }
9881
9882                 if (mp->m_flags & M_EXT) {
9883                         BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9884                             mp->m_ext.ext_buf, mp->m_ext.ext_size);
9885                         switch (mp->m_ext.ext_type) {
9886                         case EXT_CLUSTER:
9887                                 printf("EXT_CLUSTER\n"); break;
9888                         case EXT_SFBUF:
9889                                 printf("EXT_SFBUF\n"); break;
9890                         case EXT_JUMBO9:
9891                                 printf("EXT_JUMBO9\n"); break;
9892                         case EXT_JUMBO16:
9893                                 printf("EXT_JUMBO16\n"); break;
9894                         case EXT_PACKET:
9895                                 printf("EXT_PACKET\n"); break;
9896                         case EXT_MBUF:
9897                                 printf("EXT_MBUF\n"); break;
9898                         case EXT_NET_DRV:
9899                                 printf("EXT_NET_DRV\n"); break;
9900                         case EXT_MOD_TYPE:
9901                                 printf("EXT_MDD_TYPE\n"); break;
9902                         case EXT_DISPOSABLE:
9903                                 printf("EXT_DISPOSABLE\n"); break;
9904                         case EXT_EXTREF:
9905                                 printf("EXT_EXTREF\n"); break;
9906                         default:
9907                                 printf("UNKNOWN\n");
9908                         }
9909                 }
9910
9911                 mp = mp->m_next;
9912         }
9913 }
9914
9915
9916 /****************************************************************************/
9917 /* Prints out the mbufs in the TX mbuf chain.                               */
9918 /*                                                                          */
9919 /* Returns:                                                                 */
9920 /*   Nothing.                                                               */
9921 /****************************************************************************/
9922 static __attribute__ ((noinline)) void
9923 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9924 {
9925         struct mbuf *m;
9926
9927         BCE_PRINTF(
9928                 "----------------------------"
9929                 "  tx mbuf data  "
9930                 "----------------------------\n");
9931
9932         for (int i = 0; i < count; i++) {
9933                 m = sc->tx_mbuf_ptr[chain_prod];
9934                 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9935                 bce_dump_mbuf(sc, m);
9936                 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9937         }
9938
9939         BCE_PRINTF(
9940                 "----------------------------"
9941                 "----------------"
9942                 "----------------------------\n");
9943 }
9944
9945
9946 /****************************************************************************/
9947 /* Prints out the mbufs in the RX mbuf chain.                               */
9948 /*                                                                          */
9949 /* Returns:                                                                 */
9950 /*   Nothing.                                                               */
9951 /****************************************************************************/
9952 static __attribute__ ((noinline)) void
9953 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9954 {
9955         struct mbuf *m;
9956
9957         BCE_PRINTF(
9958                 "----------------------------"
9959                 "  rx mbuf data  "
9960                 "----------------------------\n");
9961
9962         for (int i = 0; i < count; i++) {
9963                 m = sc->rx_mbuf_ptr[chain_prod];
9964                 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9965                 bce_dump_mbuf(sc, m);
9966                 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9967         }
9968
9969
9970         BCE_PRINTF(
9971                 "----------------------------"
9972                 "----------------"
9973                 "----------------------------\n");
9974 }
9975
9976
9977 /****************************************************************************/
9978 /* Prints out the mbufs in the mbuf page chain.                             */
9979 /*                                                                          */
9980 /* Returns:                                                                 */
9981 /*   Nothing.                                                               */
9982 /****************************************************************************/
9983 static __attribute__ ((noinline)) void
9984 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9985 {
9986         struct mbuf *m;
9987
9988         BCE_PRINTF(
9989                 "----------------------------"
9990                 "  pg mbuf data  "
9991                 "----------------------------\n");
9992
9993         for (int i = 0; i < count; i++) {
9994                 m = sc->pg_mbuf_ptr[chain_prod];
9995                 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9996                 bce_dump_mbuf(sc, m);
9997                 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9998         }
9999
10000
10001         BCE_PRINTF(
10002                 "----------------------------"
10003                 "----------------"
10004                 "----------------------------\n");
10005 }
10006
10007
10008 /****************************************************************************/
10009 /* Prints out a tx_bd structure.                                            */
10010 /*                                                                          */
10011 /* Returns:                                                                 */
10012 /*   Nothing.                                                               */
10013 /****************************************************************************/
10014 static __attribute__ ((noinline)) void
10015 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
10016 {
10017         int i = 0;
10018
10019         if (idx > MAX_TX_BD_ALLOC)
10020                 /* Index out of range. */
10021                 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
10022         else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
10023                 /* TX Chain page pointer. */
10024                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10025                     "pointer\n", idx, txbd->tx_bd_haddr_hi,
10026                     txbd->tx_bd_haddr_lo);
10027         else {
10028                 /* Normal tx_bd entry. */
10029                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
10030                     "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
10031                     "0x%04X (", idx, txbd->tx_bd_haddr_hi,
10032                     txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
10033                     txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
10034
10035                 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
10036                         if (i>0)
10037                                 printf("|");
10038                         printf("CONN_FAULT");
10039                         i++;
10040                 }
10041
10042                 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
10043                         if (i>0)
10044                                 printf("|");
10045                         printf("TCP_UDP_CKSUM");
10046                         i++;
10047                 }
10048
10049                 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
10050                         if (i>0)
10051                                 printf("|");
10052                         printf("IP_CKSUM");
10053                         i++;
10054                 }
10055
10056                 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
10057                         if (i>0)
10058                                 printf("|");
10059                         printf("VLAN");
10060                         i++;
10061                 }
10062
10063                 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
10064                         if (i>0)
10065                                 printf("|");
10066                         printf("COAL_NOW");
10067                         i++;
10068                 }
10069
10070                 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
10071                         if (i>0)
10072                                 printf("|");
10073                         printf("DONT_GEN_CRC");
10074                         i++;
10075                 }
10076
10077                 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
10078                         if (i>0)
10079                                 printf("|");
10080                         printf("START");
10081                         i++;
10082                 }
10083
10084                 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
10085                         if (i>0)
10086                                 printf("|");
10087                         printf("END");
10088                         i++;
10089                 }
10090
10091                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
10092                         if (i>0)
10093                                 printf("|");
10094                         printf("LSO");
10095                         i++;
10096                 }
10097
10098                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
10099                         if (i>0)
10100                                 printf("|");
10101                         printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
10102                             TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
10103                 }
10104
10105                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
10106                         if (i>0)
10107                                 printf("|");
10108                         printf("SW_FLAGS");
10109                         i++;
10110                 }
10111
10112                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
10113                         if (i>0)
10114                                 printf("|");
10115                         printf("SNAP)");
10116                 } else {
10117                         printf(")\n");
10118                 }
10119         }
10120 }
10121
10122
10123 /****************************************************************************/
10124 /* Prints out a rx_bd structure.                                            */
10125 /*                                                                          */
10126 /* Returns:                                                                 */
10127 /*   Nothing.                                                               */
10128 /****************************************************************************/
10129 static __attribute__ ((noinline)) void
10130 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
10131 {
10132         if (idx > MAX_RX_BD_ALLOC)
10133                 /* Index out of range. */
10134                 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
10135         else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
10136                 /* RX Chain page pointer. */
10137                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10138                     "pointer\n", idx, rxbd->rx_bd_haddr_hi,
10139                     rxbd->rx_bd_haddr_lo);
10140         else
10141                 /* Normal rx_bd entry. */
10142                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
10143                     "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
10144                     rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
10145                     rxbd->rx_bd_flags);
10146 }
10147
10148
10149 /****************************************************************************/
10150 /* Prints out a rx_bd structure in the page chain.                          */
10151 /*                                                                          */
10152 /* Returns:                                                                 */
10153 /*   Nothing.                                                               */
10154 /****************************************************************************/
10155 static __attribute__ ((noinline)) void
10156 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
10157 {
10158         if (idx > MAX_PG_BD_ALLOC)
10159                 /* Index out of range. */
10160                 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
10161         else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
10162                 /* Page Chain page pointer. */
10163                 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
10164                         idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
10165         else
10166                 /* Normal rx_bd entry. */
10167                 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
10168                         "flags = 0x%08X\n", idx,
10169                         pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
10170                         pgbd->rx_bd_len, pgbd->rx_bd_flags);
10171 }
10172
10173
10174 /****************************************************************************/
10175 /* Prints out a l2_fhdr structure.                                          */
10176 /*                                                                          */
10177 /* Returns:                                                                 */
10178 /*   Nothing.                                                               */
10179 /****************************************************************************/
10180 static __attribute__ ((noinline)) void
10181 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
10182 {
10183         BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
10184                 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
10185                 "tcp_udp_xsum = 0x%04X\n", idx,
10186                 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
10187                 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
10188                 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
10189 }
10190
10191
10192 /****************************************************************************/
10193 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
10194 /*                                                                          */
10195 /* Returns:                                                                 */
10196 /*   Nothing.                                                               */
10197 /****************************************************************************/
10198 static __attribute__ ((noinline)) void
10199 bce_dump_ctx(struct bce_softc *sc, u16 cid)
10200 {
10201         if (cid > TX_CID) {
10202                 BCE_PRINTF(" Unknown CID\n");
10203                 return;
10204         }
10205
10206         BCE_PRINTF(
10207             "----------------------------"
10208             "    CTX Data    "
10209             "----------------------------\n");
10210
10211         BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
10212
10213         if (cid == RX_CID) {
10214                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10215                    "producer index\n",
10216                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10217                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10218                     "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10219                     BCE_L2CTX_RX_HOST_BSEQ));
10220                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10221                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10222                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10223                     "descriptor address\n",
10224                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10225                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10226                     "descriptor address\n",
10227                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10228                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10229                     "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10230                     BCE_L2CTX_RX_NX_BDIDX));
10231                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10232                     "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10233                     BCE_L2CTX_RX_HOST_PG_BDIDX));
10234                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10235                     "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10236                     BCE_L2CTX_RX_PG_BUF_SIZE));
10237                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10238                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10239                     BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10240                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10241                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10242                     BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10243                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10244                     "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10245                     BCE_L2CTX_RX_NX_PG_BDIDX));
10246         } else if (cid == TX_CID) {
10247                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10248                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10249                             CTX_RD(sc, GET_CID_ADDR(cid),
10250                             BCE_L2CTX_TX_TYPE_XI));
10251                         BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10252                             "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10253                             BCE_L2CTX_TX_CMD_TYPE_XI));
10254                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10255                             "h/w buffer descriptor address\n",
10256                             CTX_RD(sc, GET_CID_ADDR(cid),
10257                             BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10258                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10259                             "h/w buffer descriptor address\n",
10260                             CTX_RD(sc, GET_CID_ADDR(cid),
10261                             BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10262                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10263                             "host producer index\n",
10264                             CTX_RD(sc, GET_CID_ADDR(cid),
10265                             BCE_L2CTX_TX_HOST_BIDX_XI));
10266                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10267                             "host byte sequence\n",
10268                             CTX_RD(sc, GET_CID_ADDR(cid),
10269                             BCE_L2CTX_TX_HOST_BSEQ_XI));
10270                 } else {
10271                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10272                             CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10273                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10274                             CTX_RD(sc, GET_CID_ADDR(cid),
10275                             BCE_L2CTX_TX_CMD_TYPE));
10276                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10277                             "h/w buffer descriptor address\n",
10278                             CTX_RD(sc, GET_CID_ADDR(cid),
10279                             BCE_L2CTX_TX_TBDR_BHADDR_HI));
10280                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10281                             "h/w buffer descriptor address\n",
10282                             CTX_RD(sc, GET_CID_ADDR(cid),
10283                             BCE_L2CTX_TX_TBDR_BHADDR_LO));
10284                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10285                             "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10286                             BCE_L2CTX_TX_HOST_BIDX));
10287                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10288                             "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10289                             BCE_L2CTX_TX_HOST_BSEQ));
10290                 }
10291         }
10292
10293         BCE_PRINTF(
10294            "----------------------------"
10295            "    Raw CTX     "
10296            "----------------------------\n");
10297
10298         for (int i = 0x0; i < 0x300; i += 0x10) {
10299                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10300                    CTX_RD(sc, GET_CID_ADDR(cid), i),
10301                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10302                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10303                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10304         }
10305
10306
10307         BCE_PRINTF(
10308            "----------------------------"
10309            "----------------"
10310            "----------------------------\n");
10311 }
10312
10313
10314 /****************************************************************************/
10315 /* Prints out the FTQ data.                                                 */
10316 /*                                                                          */
10317 /* Returns:                                                                */
10318 /*   Nothing.                                                               */
10319 /****************************************************************************/
10320 static __attribute__ ((noinline)) void
10321 bce_dump_ftqs(struct bce_softc *sc)
10322 {
10323         u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10324
10325         BCE_PRINTF(
10326             "----------------------------"
10327             "    FTQ Data    "
10328             "----------------------------\n");
10329
10330         BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10331             "Max_Depth  Valid_Cnt \n");
10332         BCE_PRINTF(" ------- ---------- ---------- ---------- "
10333             "---------- ----------\n");
10334
10335         /* Setup the generic statistic counters for the FTQ valid count. */
10336         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10337             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10338             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10339             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10340         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10341
10342         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10343             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10344             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10345             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10346         REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10347
10348         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10349             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10350             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10351             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10352         REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10353
10354         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10355             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10356             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10357             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10358         REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10359
10360         /* Input queue to the Receive Lookup state machine */
10361         cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10362         ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10363         cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10364         max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10365         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10366         BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10367             cmd, ctl, cur_depth, max_depth, valid_cnt);
10368
10369         /* Input queue to the Receive Processor */
10370         cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10371         ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10372         cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10373         max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10374         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10375         BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10376             cmd, ctl, cur_depth, max_depth, valid_cnt);
10377
10378         /* Input queue to the Recevie Processor */
10379         cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10380         ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10381         cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10382         max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10383         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10384         BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10385             cmd, ctl, cur_depth, max_depth, valid_cnt);
10386
10387         /* Input queue to the Receive Virtual to Physical state machine */
10388         cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10389         ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10390         cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10391         max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10392         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10393         BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10394             cmd, ctl, cur_depth, max_depth, valid_cnt);
10395
10396         /* Input queue to the Recevie Virtual to Physical state machine */
10397         cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10398         ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10399         cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10400         max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10401         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10402         BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10403             cmd, ctl, cur_depth, max_depth, valid_cnt);
10404
10405         /* Input queue to the Receive Virtual to Physical state machine */
10406         cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10407         ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10408         cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10409         max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10410         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10411         BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10412             cmd, ctl, cur_depth, max_depth, valid_cnt);
10413
10414         /* Input queue to the Receive DMA state machine */
10415         cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10416         ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10417         cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10418         max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10419         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10420         BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10421             cmd, ctl, cur_depth, max_depth, valid_cnt);
10422
10423         /* Input queue to the Transmit Scheduler state machine */
10424         cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10425         ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10426         cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10427         max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10428         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10429         BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10430             cmd, ctl, cur_depth, max_depth, valid_cnt);
10431
10432         /* Input queue to the Transmit Buffer Descriptor state machine */
10433         cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10434         ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10435         cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10436         max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10437         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10438         BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10439             cmd, ctl, cur_depth, max_depth, valid_cnt);
10440
10441         /* Input queue to the Transmit Processor */
10442         cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10443         ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10444         cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10445         max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10446         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10447         BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10448             cmd, ctl, cur_depth, max_depth, valid_cnt);
10449
10450         /* Input queue to the Transmit DMA state machine */
10451         cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10452         ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10453         cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10454         max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10455         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10456         BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10457             cmd, ctl, cur_depth, max_depth, valid_cnt);
10458
10459         /* Input queue to the Transmit Patch-Up Processor */
10460         cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10461         ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10462         cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10463         max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10464         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10465         BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10466             cmd, ctl, cur_depth, max_depth, valid_cnt);
10467
10468         /* Input queue to the Transmit Assembler state machine */
10469         cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10470         ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10471         cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10472         max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10473         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10474         BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10475             cmd, ctl, cur_depth, max_depth, valid_cnt);
10476
10477         /* Input queue to the Completion Processor */
10478         cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10479         ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10480         cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10481         max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10482         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10483         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10484             cmd, ctl, cur_depth, max_depth, valid_cnt);
10485
10486         /* Input queue to the Completion Processor */
10487         cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10488         ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10489         cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10490         max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10491         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10492         BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10493             cmd, ctl, cur_depth, max_depth, valid_cnt);
10494
10495         /* Input queue to the Completion Processor */
10496         cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10497         ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10498         cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10499         max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10500         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10501         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10502             cmd, ctl, cur_depth, max_depth, valid_cnt);
10503
10504         /* Setup the generic statistic counters for the FTQ valid count. */
10505         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10506             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10507             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10508
10509         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10510                 val = val |
10511                     (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10512                      24);
10513         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10514
10515         /* Input queue to the Management Control Processor */
10516         cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10517         ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10518         cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10519         max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10520         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10521         BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10522             cmd, ctl, cur_depth, max_depth, valid_cnt);
10523
10524         /* Input queue to the Command Processor */
10525         cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10526         ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10527         cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10528         max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10529         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10530         BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10531             cmd, ctl, cur_depth, max_depth, valid_cnt);
10532
10533         /* Input queue to the Completion Scheduler state machine */
10534         cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10535         ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10536         cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10537         max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10538         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10539         BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10540             cmd, ctl, cur_depth, max_depth, valid_cnt);
10541
10542         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10543                 /* Input queue to the RV2P Command Scheduler */
10544                 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10545                 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10546                 cur_depth = (ctl & 0xFFC00000) >> 22;
10547                 max_depth = (ctl & 0x003FF000) >> 12;
10548                 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10549                 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10550                     cmd, ctl, cur_depth, max_depth, valid_cnt);
10551         }
10552
10553         BCE_PRINTF(
10554             "----------------------------"
10555             "----------------"
10556             "----------------------------\n");
10557 }
10558
10559
10560 /****************************************************************************/
10561 /* Prints out the TX chain.                                                 */
10562 /*                                                                          */
10563 /* Returns:                                                                 */
10564 /*   Nothing.                                                               */
10565 /****************************************************************************/
10566 static __attribute__ ((noinline)) void
10567 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10568 {
10569         struct tx_bd *txbd;
10570
10571         /* First some info about the tx_bd chain structure. */
10572         BCE_PRINTF(
10573             "----------------------------"
10574             "  tx_bd  chain  "
10575             "----------------------------\n");
10576
10577         BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10578             (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10579         BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10580             (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10581         BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10582
10583         BCE_PRINTF(
10584             "----------------------------"
10585             "   tx_bd data   "
10586             "----------------------------\n");
10587
10588         /* Now print out a decoded list of TX buffer descriptors. */
10589         for (int i = 0; i < count; i++) {
10590                 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10591                 bce_dump_txbd(sc, tx_prod, txbd);
10592                 tx_prod++;
10593         }
10594
10595         BCE_PRINTF(
10596             "----------------------------"
10597             "----------------"
10598             "----------------------------\n");
10599 }
10600
10601
10602 /****************************************************************************/
10603 /* Prints out the RX chain.                                                 */
10604 /*                                                                          */
10605 /* Returns:                                                                 */
10606 /*   Nothing.                                                               */
10607 /****************************************************************************/
10608 static __attribute__ ((noinline)) void
10609 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10610 {
10611         struct rx_bd *rxbd;
10612
10613         /* First some info about the rx_bd chain structure. */
10614         BCE_PRINTF(
10615             "----------------------------"
10616             "  rx_bd  chain  "
10617             "----------------------------\n");
10618
10619         BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10620             (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10621
10622         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10623             (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10624
10625         BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10626
10627         BCE_PRINTF(
10628             "----------------------------"
10629             "   rx_bd data   "
10630             "----------------------------\n");
10631
10632         /* Now print out the rx_bd's themselves. */
10633         for (int i = 0; i < count; i++) {
10634                 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10635                 bce_dump_rxbd(sc, rx_prod, rxbd);
10636                 rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10637         }
10638
10639         BCE_PRINTF(
10640             "----------------------------"
10641             "----------------"
10642             "----------------------------\n");
10643 }
10644
10645
10646 /****************************************************************************/
10647 /* Prints out the page chain.                                               */
10648 /*                                                                          */
10649 /* Returns:                                                                 */
10650 /*   Nothing.                                                               */
10651 /****************************************************************************/
10652 static __attribute__ ((noinline)) void
10653 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10654 {
10655         struct rx_bd *pgbd;
10656
10657         /* First some info about the page chain structure. */
10658         BCE_PRINTF(
10659             "----------------------------"
10660             "   page chain   "
10661             "----------------------------\n");
10662
10663         BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10664             (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10665
10666         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10667             (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10668
10669         BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10670
10671         BCE_PRINTF(
10672             "----------------------------"
10673             "   page data    "
10674             "----------------------------\n");
10675
10676         /* Now print out the rx_bd's themselves. */
10677         for (int i = 0; i < count; i++) {
10678                 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10679                 bce_dump_pgbd(sc, pg_prod, pgbd);
10680                 pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10681         }
10682
10683         BCE_PRINTF(
10684             "----------------------------"
10685             "----------------"
10686             "----------------------------\n");
10687 }
10688
10689
10690 #define BCE_PRINT_RX_CONS(arg)                                          \
10691 if (sblk->status_rx_quick_consumer_index##arg)                          \
10692         BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",      \
10693             sblk->status_rx_quick_consumer_index##arg, (u16)            \
10694             RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),    \
10695             arg);
10696
10697
10698 #define BCE_PRINT_TX_CONS(arg)                                          \
10699 if (sblk->status_tx_quick_consumer_index##arg)                          \
10700         BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",      \
10701             sblk->status_tx_quick_consumer_index##arg, (u16)            \
10702             TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),    \
10703             arg);
10704
10705 /****************************************************************************/
10706 /* Prints out the status block from host memory.                            */
10707 /*                                                                          */
10708 /* Returns:                                                                 */
10709 /*   Nothing.                                                               */
10710 /****************************************************************************/
10711 static __attribute__ ((noinline)) void
10712 bce_dump_status_block(struct bce_softc *sc)
10713 {
10714         struct status_block *sblk;
10715
10716         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10717
10718         sblk = sc->status_block;
10719
10720         BCE_PRINTF(
10721             "----------------------------"
10722             "  Status Block  "
10723             "----------------------------\n");
10724
10725         /* Theses indices are used for normal L2 drivers. */
10726         BCE_PRINTF("    0x%08X - attn_bits\n",
10727             sblk->status_attn_bits);
10728
10729         BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10730             sblk->status_attn_bits_ack);
10731
10732         BCE_PRINT_RX_CONS(0);
10733         BCE_PRINT_TX_CONS(0)
10734
10735         BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10736
10737         /* Theses indices are not used for normal L2 drivers. */
10738         BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10739         BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10740         BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10741         BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10742         BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10743
10744         BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10745
10746         if (sblk->status_completion_producer_index ||
10747             sblk->status_cmd_consumer_index)
10748                 BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10749                     sblk->status_completion_producer_index,
10750                     sblk->status_cmd_consumer_index);
10751
10752         BCE_PRINTF(
10753             "----------------------------"
10754             "----------------"
10755             "----------------------------\n");
10756 }
10757
10758
10759 #define BCE_PRINT_64BIT_STAT(arg)                               \
10760 if (sblk->arg##_lo || sblk->arg##_hi)                           \
10761         BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,        \
10762             sblk->arg##_lo, #arg);
10763
10764 #define BCE_PRINT_32BIT_STAT(arg)                               \
10765 if (sblk->arg)                                                  \
10766         BCE_PRINTF("         0x%08X : %s\n",                    \
10767             sblk->arg, #arg);
10768
10769 /****************************************************************************/
10770 /* Prints out the statistics block from host memory.                        */
10771 /*                                                                          */
10772 /* Returns:                                                                 */
10773 /*   Nothing.                                                               */
10774 /****************************************************************************/
10775 static __attribute__ ((noinline)) void
10776 bce_dump_stats_block(struct bce_softc *sc)
10777 {
10778         struct statistics_block *sblk;
10779
10780         bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10781
10782         sblk = sc->stats_block;
10783
10784         BCE_PRINTF(
10785             "---------------"
10786             " Stats Block  (All Stats Not Shown Are 0) "
10787             "---------------\n");
10788
10789         BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10790         BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10791         BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10792         BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10793         BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10794         BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10795         BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10796         BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10797         BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10798         BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10799         BCE_PRINT_32BIT_STAT(
10800             stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10801         BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10802         BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10803         BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10804         BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10805         BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10806         BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10807         BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10808         BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10809         BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10810         BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10811         BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10812         BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10813         BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10814         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10815         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10816         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10817         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10818         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10819         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10820         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10821         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10822         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10823         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10824         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10825         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10826         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10827         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10828         BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10829         BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10830         BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10831         BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10832         BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10833         BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10834         BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10835         BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10836         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10837         BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10838         BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10839         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10840         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10841         BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10842         BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10843         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10844
10845         BCE_PRINTF(
10846             "----------------------------"
10847             "----------------"
10848             "----------------------------\n");
10849 }
10850
10851
10852 /****************************************************************************/
10853 /* Prints out a summary of the driver state.                                */
10854 /*                                                                          */
10855 /* Returns:                                                                 */
10856 /*   Nothing.                                                               */
10857 /****************************************************************************/
10858 static __attribute__ ((noinline)) void
10859 bce_dump_driver_state(struct bce_softc *sc)
10860 {
10861         u32 val_hi, val_lo;
10862
10863         BCE_PRINTF(
10864             "-----------------------------"
10865             " Driver State "
10866             "-----------------------------\n");
10867
10868         val_hi = BCE_ADDR_HI(sc);
10869         val_lo = BCE_ADDR_LO(sc);
10870         BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10871             "address\n", val_hi, val_lo);
10872
10873         val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10874         val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10875         BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10876             "address\n", val_hi, val_lo);
10877
10878         val_hi = BCE_ADDR_HI(sc->status_block);
10879         val_lo = BCE_ADDR_LO(sc->status_block);
10880         BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10881             "virtual address\n",        val_hi, val_lo);
10882
10883         val_hi = BCE_ADDR_HI(sc->stats_block);
10884         val_lo = BCE_ADDR_LO(sc->stats_block);
10885         BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10886             "virtual address\n", val_hi, val_lo);
10887
10888         val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10889         val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10890         BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10891             "virtual adddress\n", val_hi, val_lo);
10892
10893         val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10894         val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10895         BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10896             "virtual address\n", val_hi, val_lo);
10897
10898         if (bce_hdr_split == TRUE) {
10899                 val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10900                 val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10901                 BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10902                     "virtual address\n", val_hi, val_lo);
10903         }
10904
10905         val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10906         val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10907         BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10908             "virtual address\n",        val_hi, val_lo);
10909
10910         val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10911         val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10912         BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10913             "virtual address\n", val_hi, val_lo);
10914
10915         if (bce_hdr_split == TRUE) {
10916                 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10917                 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10918                 BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10919                     "virtual address\n", val_hi, val_lo);
10920         }
10921
10922         BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10923             "h/w intrs\n",
10924             (long long unsigned int) sc->interrupts_generated);
10925
10926         BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10927             "rx interrupts handled\n",
10928             (long long unsigned int) sc->interrupts_rx);
10929
10930         BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10931             "tx interrupts handled\n",
10932             (long long unsigned int) sc->interrupts_tx);
10933
10934         BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10935             "phy interrupts handled\n",
10936             (long long unsigned int) sc->phy_interrupts);
10937
10938         BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10939             "status block index\n", sc->last_status_idx);
10940
10941         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10942             "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10943
10944         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10945             "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10946
10947         BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10948             "byte seq index\n", sc->tx_prod_bseq);
10949
10950         BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10951             "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10952
10953         BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10954             "tx_bd's\n", sc->used_tx_bd);
10955
10956         BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10957             "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10958
10959         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10960             "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10961
10962         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10963             "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10964
10965         BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10966             "byte seq index\n", sc->rx_prod_bseq);
10967
10968         BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10969                    "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10970
10971         BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10972             "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10973
10974         BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10975             "rx_bd's\n", sc->free_rx_bd);
10976
10977         if (bce_hdr_split == TRUE) {
10978                 BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10979                     "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10980
10981                 BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10982                     "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10983
10984                 BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10985                     "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10986         }
10987
10988         BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10989             "rx_bd's\n", sc->free_pg_bd);
10990
10991         BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10992             "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10993
10994         BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10995             "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10996
10997         BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10998             "bce mac flags\n", sc->bce_flags);
10999
11000         BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
11001             "bce phy flags\n", sc->bce_phy_flags);
11002
11003         BCE_PRINTF(
11004             "----------------------------"
11005             "----------------"
11006             "----------------------------\n");
11007 }
11008
11009
11010 /****************************************************************************/
11011 /* Prints out the hardware state through a summary of important register,   */
11012 /* followed by a complete register dump.                                    */
11013 /*                                                                          */
11014 /* Returns:                                                                 */
11015 /*   Nothing.                                                               */
11016 /****************************************************************************/
11017 static __attribute__ ((noinline)) void
11018 bce_dump_hw_state(struct bce_softc *sc)
11019 {
11020         u32 val;
11021
11022         BCE_PRINTF(
11023             "----------------------------"
11024             " Hardware State "
11025             "----------------------------\n");
11026
11027         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11028
11029         val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
11030         BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
11031             val, BCE_MISC_ENABLE_STATUS_BITS);
11032
11033         val = REG_RD(sc, BCE_DMA_STATUS);
11034         BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
11035             val, BCE_DMA_STATUS);
11036
11037         val = REG_RD(sc, BCE_CTX_STATUS);
11038         BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
11039             val, BCE_CTX_STATUS);
11040
11041         val = REG_RD(sc, BCE_EMAC_STATUS);
11042         BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
11043             val, BCE_EMAC_STATUS);
11044
11045         val = REG_RD(sc, BCE_RPM_STATUS);
11046         BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
11047             val, BCE_RPM_STATUS);
11048
11049         /* ToDo: Create a #define for this constant. */
11050         val = REG_RD(sc, 0x2004);
11051         BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
11052             val, 0x2004);
11053
11054         val = REG_RD(sc, BCE_RV2P_STATUS);
11055         BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
11056             val, BCE_RV2P_STATUS);
11057
11058         /* ToDo: Create a #define for this constant. */
11059         val = REG_RD(sc, 0x2c04);
11060         BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
11061             val, 0x2c04);
11062
11063         val = REG_RD(sc, BCE_TBDR_STATUS);
11064         BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
11065             val, BCE_TBDR_STATUS);
11066
11067         val = REG_RD(sc, BCE_TDMA_STATUS);
11068         BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
11069             val, BCE_TDMA_STATUS);
11070
11071         val = REG_RD(sc, BCE_HC_STATUS);
11072         BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
11073             val, BCE_HC_STATUS);
11074
11075         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11076         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11077             val, BCE_TXP_CPU_STATE);
11078
11079         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11080         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11081             val, BCE_TPAT_CPU_STATE);
11082
11083         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11084         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11085             val, BCE_RXP_CPU_STATE);
11086
11087         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11088         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11089             val, BCE_COM_CPU_STATE);
11090
11091         val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
11092         BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
11093             val, BCE_MCP_CPU_STATE);
11094
11095         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11096         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11097             val, BCE_CP_CPU_STATE);
11098
11099         BCE_PRINTF(
11100             "----------------------------"
11101             "----------------"
11102             "----------------------------\n");
11103
11104         BCE_PRINTF(
11105             "----------------------------"
11106             " Register  Dump "
11107             "----------------------------\n");
11108
11109         for (int i = 0x400; i < 0x8000; i += 0x10) {
11110                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11111                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11112                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11113         }
11114
11115         BCE_PRINTF(
11116             "----------------------------"
11117             "----------------"
11118             "----------------------------\n");
11119 }
11120
11121
11122 /****************************************************************************/
11123 /* Prints out the contentst of shared memory which is used for host driver  */
11124 /* to bootcode firmware communication.                                      */
11125 /*                                                                          */
11126 /* Returns:                                                                 */
11127 /*   Nothing.                                                               */
11128 /****************************************************************************/
11129 static __attribute__ ((noinline)) void
11130 bce_dump_shmem_state(struct bce_softc *sc)
11131 {
11132         BCE_PRINTF(
11133             "----------------------------"
11134             " Hardware State "
11135             "----------------------------\n");
11136
11137         BCE_PRINTF("0x%08X - Shared memory base address\n",
11138             sc->bce_shmem_base);
11139         BCE_PRINTF("%s - bootcode version\n",
11140             sc->bce_bc_ver);
11141
11142         BCE_PRINTF(
11143             "----------------------------"
11144             "   Shared Mem   "
11145             "----------------------------\n");
11146
11147         for (int i = 0x0; i < 0x200; i += 0x10) {
11148                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11149                     i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
11150                     bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
11151         }
11152
11153         BCE_PRINTF(
11154             "----------------------------"
11155             "----------------"
11156             "----------------------------\n");
11157 }
11158
11159
11160 /****************************************************************************/
11161 /* Prints out the mailbox queue registers.                                  */
11162 /*                                                                          */
11163 /* Returns:                                                                 */
11164 /*   Nothing.                                                               */
11165 /****************************************************************************/
11166 static __attribute__ ((noinline)) void
11167 bce_dump_mq_regs(struct bce_softc *sc)
11168 {
11169         BCE_PRINTF(
11170             "----------------------------"
11171             "    MQ Regs     "
11172             "----------------------------\n");
11173
11174         BCE_PRINTF(
11175             "----------------------------"
11176             "----------------"
11177             "----------------------------\n");
11178
11179         for (int i = 0x3c00; i < 0x4000; i += 0x10) {
11180                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11181                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11182                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11183         }
11184
11185         BCE_PRINTF(
11186             "----------------------------"
11187             "----------------"
11188             "----------------------------\n");
11189 }
11190
11191
11192 /****************************************************************************/
11193 /* Prints out the bootcode state.                                           */
11194 /*                                                                          */
11195 /* Returns:                                                                 */
11196 /*   Nothing.                                                               */
11197 /****************************************************************************/
11198 static __attribute__ ((noinline)) void
11199 bce_dump_bc_state(struct bce_softc *sc)
11200 {
11201         u32 val;
11202
11203         BCE_PRINTF(
11204             "----------------------------"
11205             " Bootcode State "
11206             "----------------------------\n");
11207
11208         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11209
11210         val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
11211         BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
11212             val, BCE_BC_RESET_TYPE);
11213
11214         val = bce_shmem_rd(sc, BCE_BC_STATE);
11215         BCE_PRINTF("0x%08X - (0x%06X) state\n",
11216             val, BCE_BC_STATE);
11217
11218         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
11219         BCE_PRINTF("0x%08X - (0x%06X) condition\n",
11220             val, BCE_BC_STATE_CONDITION);
11221
11222         val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
11223         BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
11224             val, BCE_BC_STATE_DEBUG_CMD);
11225
11226         BCE_PRINTF(
11227             "----------------------------"
11228             "----------------"
11229             "----------------------------\n");
11230 }
11231
11232
11233 /****************************************************************************/
11234 /* Prints out the TXP processor state.                                      */
11235 /*                                                                          */
11236 /* Returns:                                                                 */
11237 /*   Nothing.                                                               */
11238 /****************************************************************************/
11239 static __attribute__ ((noinline)) void
11240 bce_dump_txp_state(struct bce_softc *sc, int regs)
11241 {
11242         u32 val;
11243         u32 fw_version[3];
11244
11245         BCE_PRINTF(
11246             "----------------------------"
11247             "   TXP  State   "
11248             "----------------------------\n");
11249
11250         for (int i = 0; i < 3; i++)
11251                 fw_version[i] = htonl(REG_RD_IND(sc,
11252                     (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11253         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11254
11255         val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11256         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11257             val, BCE_TXP_CPU_MODE);
11258
11259         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11260         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11261             val, BCE_TXP_CPU_STATE);
11262
11263         val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11264         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11265             val, BCE_TXP_CPU_EVENT_MASK);
11266
11267         if (regs) {
11268                 BCE_PRINTF(
11269                     "----------------------------"
11270                     " Register  Dump "
11271                     "----------------------------\n");
11272
11273                 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11274                         /* Skip the big blank spaces */
11275                         if (i < 0x454000 && i > 0x5ffff)
11276                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11277                                     "0x%08X 0x%08X\n", i,
11278                                     REG_RD_IND(sc, i),
11279                                     REG_RD_IND(sc, i + 0x4),
11280                                     REG_RD_IND(sc, i + 0x8),
11281                                     REG_RD_IND(sc, i + 0xC));
11282                 }
11283         }
11284
11285         BCE_PRINTF(
11286             "----------------------------"
11287             "----------------"
11288             "----------------------------\n");
11289 }
11290
11291
11292 /****************************************************************************/
11293 /* Prints out the RXP processor state.                                      */
11294 /*                                                                          */
11295 /* Returns:                                                                 */
11296 /*   Nothing.                                                               */
11297 /****************************************************************************/
11298 static __attribute__ ((noinline)) void
11299 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11300 {
11301         u32 val;
11302         u32 fw_version[3];
11303
11304         BCE_PRINTF(
11305             "----------------------------"
11306             "   RXP  State   "
11307             "----------------------------\n");
11308
11309         for (int i = 0; i < 3; i++)
11310                 fw_version[i] = htonl(REG_RD_IND(sc,
11311                     (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11312
11313         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11314
11315         val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11316         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11317             val, BCE_RXP_CPU_MODE);
11318
11319         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11320         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11321             val, BCE_RXP_CPU_STATE);
11322
11323         val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11324         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11325             val, BCE_RXP_CPU_EVENT_MASK);
11326
11327         if (regs) {
11328                 BCE_PRINTF(
11329                     "----------------------------"
11330                     " Register  Dump "
11331                     "----------------------------\n");
11332
11333                 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11334                         /* Skip the big blank sapces */
11335                         if (i < 0xc5400 && i > 0xdffff)
11336                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11337                                     "0x%08X 0x%08X\n", i,
11338                                     REG_RD_IND(sc, i),
11339                                     REG_RD_IND(sc, i + 0x4),
11340                                     REG_RD_IND(sc, i + 0x8),
11341                                     REG_RD_IND(sc, i + 0xC));
11342                 }
11343         }
11344
11345         BCE_PRINTF(
11346             "----------------------------"
11347             "----------------"
11348             "----------------------------\n");
11349 }
11350
11351
11352 /****************************************************************************/
11353 /* Prints out the TPAT processor state.                                     */
11354 /*                                                                          */
11355 /* Returns:                                                                 */
11356 /*   Nothing.                                                               */
11357 /****************************************************************************/
11358 static __attribute__ ((noinline)) void
11359 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11360 {
11361         u32 val;
11362         u32 fw_version[3];
11363
11364         BCE_PRINTF(
11365             "----------------------------"
11366             "   TPAT State   "
11367             "----------------------------\n");
11368
11369         for (int i = 0; i < 3; i++)
11370                 fw_version[i] = htonl(REG_RD_IND(sc,
11371                     (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11372
11373         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11374
11375         val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11376         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11377             val, BCE_TPAT_CPU_MODE);
11378
11379         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11380         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11381             val, BCE_TPAT_CPU_STATE);
11382
11383         val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11384         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11385             val, BCE_TPAT_CPU_EVENT_MASK);
11386
11387         if (regs) {
11388                 BCE_PRINTF(
11389                     "----------------------------"
11390                     " Register  Dump "
11391                     "----------------------------\n");
11392
11393                 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11394                         /* Skip the big blank spaces */
11395                         if (i < 0x854000 && i > 0x9ffff)
11396                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11397                                     "0x%08X 0x%08X\n", i,
11398                                     REG_RD_IND(sc, i),
11399                                     REG_RD_IND(sc, i + 0x4),
11400                                     REG_RD_IND(sc, i + 0x8),
11401                                     REG_RD_IND(sc, i + 0xC));
11402                 }
11403         }
11404
11405         BCE_PRINTF(
11406                 "----------------------------"
11407                 "----------------"
11408                 "----------------------------\n");
11409 }
11410
11411
11412 /****************************************************************************/
11413 /* Prints out the Command Procesor (CP) state.                              */
11414 /*                                                                          */
11415 /* Returns:                                                                 */
11416 /*   Nothing.                                                               */
11417 /****************************************************************************/
11418 static __attribute__ ((noinline)) void
11419 bce_dump_cp_state(struct bce_softc *sc, int regs)
11420 {
11421         u32 val;
11422         u32 fw_version[3];
11423
11424         BCE_PRINTF(
11425             "----------------------------"
11426             "    CP State    "
11427             "----------------------------\n");
11428
11429         for (int i = 0; i < 3; i++)
11430                 fw_version[i] = htonl(REG_RD_IND(sc,
11431                     (BCE_CP_SCRATCH + 0x10 + i * 4)));
11432
11433         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11434
11435         val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11436         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11437             val, BCE_CP_CPU_MODE);
11438
11439         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11440         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11441             val, BCE_CP_CPU_STATE);
11442
11443         val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11444         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11445             BCE_CP_CPU_EVENT_MASK);
11446
11447         if (regs) {
11448                 BCE_PRINTF(
11449                     "----------------------------"
11450                     " Register  Dump "
11451                     "----------------------------\n");
11452
11453                 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11454                         /* Skip the big blank spaces */
11455                         if (i < 0x185400 && i > 0x19ffff)
11456                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11457                                     "0x%08X 0x%08X\n", i,
11458                                     REG_RD_IND(sc, i),
11459                                     REG_RD_IND(sc, i + 0x4),
11460                                     REG_RD_IND(sc, i + 0x8),
11461                                     REG_RD_IND(sc, i + 0xC));
11462                 }
11463         }
11464
11465         BCE_PRINTF(
11466             "----------------------------"
11467             "----------------"
11468             "----------------------------\n");
11469 }
11470
11471
11472 /****************************************************************************/
11473 /* Prints out the Completion Procesor (COM) state.                          */
11474 /*                                                                          */
11475 /* Returns:                                                                 */
11476 /*   Nothing.                                                               */
11477 /****************************************************************************/
11478 static __attribute__ ((noinline)) void
11479 bce_dump_com_state(struct bce_softc *sc, int regs)
11480 {
11481         u32 val;
11482         u32 fw_version[4];
11483
11484         BCE_PRINTF(
11485             "----------------------------"
11486             "   COM State    "
11487             "----------------------------\n");
11488
11489         for (int i = 0; i < 3; i++)
11490                 fw_version[i] = htonl(REG_RD_IND(sc,
11491                     (BCE_COM_SCRATCH + 0x10 + i * 4)));
11492
11493         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11494
11495         val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11496         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11497             val, BCE_COM_CPU_MODE);
11498
11499         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11500         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11501             val, BCE_COM_CPU_STATE);
11502
11503         val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11504         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11505             BCE_COM_CPU_EVENT_MASK);
11506
11507         if (regs) {
11508                 BCE_PRINTF(
11509                     "----------------------------"
11510                     " Register  Dump "
11511                     "----------------------------\n");
11512
11513                 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11514                         BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11515                             "0x%08X 0x%08X\n", i,
11516                             REG_RD_IND(sc, i),
11517                             REG_RD_IND(sc, i + 0x4),
11518                             REG_RD_IND(sc, i + 0x8),
11519                             REG_RD_IND(sc, i + 0xC));
11520                 }
11521         }
11522
11523         BCE_PRINTF(
11524                 "----------------------------"
11525                 "----------------"
11526                 "----------------------------\n");
11527 }
11528
11529
11530 /****************************************************************************/
11531 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11532 /*                                                                          */
11533 /* Returns:                                                                 */
11534 /*   Nothing.                                                               */
11535 /****************************************************************************/
11536 static __attribute__ ((noinline)) void
11537 bce_dump_rv2p_state(struct bce_softc *sc)
11538 {
11539         u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11540
11541         BCE_PRINTF(
11542             "----------------------------"
11543             "   RV2P State   "
11544             "----------------------------\n");
11545
11546         /* Stall the RV2P processors. */
11547         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11548         val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11549         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11550
11551         /* Read the firmware version. */
11552         val = 0x00000001;
11553         REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11554         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11555         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11556             BCE_RV2P_INSTR_HIGH_HIGH;
11557         BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11558             fw_ver_high, fw_ver_low);
11559
11560         val = 0x00000001;
11561         REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11562         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11563         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11564             BCE_RV2P_INSTR_HIGH_HIGH;
11565         BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11566             fw_ver_high, fw_ver_low);
11567
11568         /* Resume the RV2P processors. */
11569         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11570         val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11571         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11572
11573         /* Fetch the program counter value. */
11574         val = 0x68007800;
11575         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11576         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11577         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11578         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11579         BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11580         BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11581
11582         /* Fetch the program counter value again to see if it is advancing. */
11583         val = 0x68007800;
11584         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11585         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11586         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11587         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11588         BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11589         BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11590
11591         BCE_PRINTF(
11592             "----------------------------"
11593             "----------------"
11594             "----------------------------\n");
11595 }
11596
11597
11598 /****************************************************************************/
11599 /* Prints out the driver state and then enters the debugger.                */
11600 /*                                                                          */
11601 /* Returns:                                                                 */
11602 /*   Nothing.                                                               */
11603 /****************************************************************************/
11604 static __attribute__ ((noinline)) void
11605 bce_breakpoint(struct bce_softc *sc)
11606 {
11607
11608         /*
11609          * Unreachable code to silence compiler warnings
11610          * about unused functions.
11611          */
11612         if (0) {
11613                 bce_freeze_controller(sc);
11614                 bce_unfreeze_controller(sc);
11615                 bce_dump_enet(sc, NULL);
11616                 bce_dump_txbd(sc, 0, NULL);
11617                 bce_dump_rxbd(sc, 0, NULL);
11618                 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11619                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11620                 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11621                 bce_dump_l2fhdr(sc, 0, NULL);
11622                 bce_dump_ctx(sc, RX_CID);
11623                 bce_dump_ftqs(sc);
11624                 bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11625                 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11626                 bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11627                 bce_dump_status_block(sc);
11628                 bce_dump_stats_block(sc);
11629                 bce_dump_driver_state(sc);
11630                 bce_dump_hw_state(sc);
11631                 bce_dump_bc_state(sc);
11632                 bce_dump_txp_state(sc, 0);
11633                 bce_dump_rxp_state(sc, 0);
11634                 bce_dump_tpat_state(sc, 0);
11635                 bce_dump_cp_state(sc, 0);
11636                 bce_dump_com_state(sc, 0);
11637                 bce_dump_rv2p_state(sc);
11638                 bce_dump_pgbd(sc, 0, NULL);
11639         }
11640
11641         bce_dump_status_block(sc);
11642         bce_dump_driver_state(sc);
11643
11644         /* Call the debugger. */
11645         breakpoint();
11646 }
11647 #endif