]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/bce/if_bce.c
Merge bmake-20170510
[FreeBSD/FreeBSD.git] / sys / dev / bce / if_bce.c
1 /*-
2  * Copyright (c) 2006-2014 QLogic Corporation
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  * The following controllers are supported by this driver:
32  *   BCM5706C A2, A3
33  *   BCM5706S A2, A3
34  *   BCM5708C B1, B2
35  *   BCM5708S B1, B2
36  *   BCM5709C A1, C0
37  *   BCM5709S A1, C0
38  *   BCM5716C C0
39  *   BCM5716S C0
40  *
41  * The following controllers are not supported by this driver:
42  *   BCM5706C A0, A1 (pre-production)
43  *   BCM5706S A0, A1 (pre-production)
44  *   BCM5708C A0, B0 (pre-production)
45  *   BCM5708S A0, B0 (pre-production)
46  *   BCM5709C A0  B0, B1, B2 (pre-production)
47  *   BCM5709S A0, B0, B1, B2 (pre-production)
48  */
49
50 #include "opt_bce.h"
51
52 #include <sys/param.h>
53 #include <sys/endian.h>
54 #include <sys/systm.h>
55 #include <sys/sockio.h>
56 #include <sys/lock.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/kernel.h>
61 #include <sys/module.h>
62 #include <sys/socket.h>
63 #include <sys/sysctl.h>
64 #include <sys/queue.h>
65
66 #include <net/bpf.h>
67 #include <net/ethernet.h>
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_arp.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73
74 #include <net/if_types.h>
75 #include <net/if_vlan_var.h>
76
77 #include <netinet/in_systm.h>
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip6.h>
82 #include <netinet/tcp.h>
83 #include <netinet/udp.h>
84
85 #include <machine/bus.h>
86 #include <machine/resource.h>
87 #include <sys/bus.h>
88 #include <sys/rman.h>
89
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include "miidevs.h"
93 #include <dev/mii/brgphyreg.h>
94
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97
98 #include "miibus_if.h"
99
100 #include <dev/bce/if_bcereg.h>
101 #include <dev/bce/if_bcefw.h>
102
103 /****************************************************************************/
104 /* BCE Debug Options                                                        */
105 /****************************************************************************/
106 #ifdef BCE_DEBUG
107         u32 bce_debug = BCE_WARN;
108
109         /*          0 = Never              */
110         /*          1 = 1 in 2,147,483,648 */
111         /*        256 = 1 in     8,388,608 */
112         /*       2048 = 1 in     1,048,576 */
113         /*      65536 = 1 in        32,768 */
114         /*    1048576 = 1 in         2,048 */
115         /*  268435456 = 1 in             8 */
116         /*  536870912 = 1 in             4 */
117         /* 1073741824 = 1 in             2 */
118
119         /* Controls how often the l2_fhdr frame error check will fail. */
120         int l2fhdr_error_sim_control = 0;
121
122         /* Controls how often the unexpected attention check will fail. */
123         int unexpected_attention_sim_control = 0;
124
125         /* Controls how often to simulate an mbuf allocation failure. */
126         int mbuf_alloc_failed_sim_control = 0;
127
128         /* Controls how often to simulate a DMA mapping failure. */
129         int dma_map_addr_failed_sim_control = 0;
130
131         /* Controls how often to simulate a bootcode failure. */
132         int bootcode_running_failure_sim_control = 0;
133 #endif
134
135 /****************************************************************************/
136 /* PCI Device ID Table                                                      */
137 /*                                                                          */
138 /* Used by bce_probe() to identify the devices supported by this driver.    */
139 /****************************************************************************/
140 #define BCE_DEVDESC_MAX         64
141
142 static const struct bce_type bce_devs[] = {
143         /* BCM5706C Controllers and OEM boards. */
144         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
145                 "HP NC370T Multifunction Gigabit Server Adapter" },
146         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
147                 "HP NC370i Multifunction Gigabit Server Adapter" },
148         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
149                 "HP NC380T PCIe DP Multifunc Gig Server Adapter" },
150         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
151                 "HP NC371i Multifunction Gigabit Server Adapter" },
152         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
153                 "QLogic NetXtreme II BCM5706 1000Base-T" },
154
155         /* BCM5706S controllers and OEM boards. */
156         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
157                 "HP NC370F Multifunction Gigabit Server Adapter" },
158         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
159                 "QLogic NetXtreme II BCM5706 1000Base-SX" },
160
161         /* BCM5708C controllers and OEM boards. */
162         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
163                 "HP NC373T PCIe Multifunction Gig Server Adapter" },
164         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
165                 "HP NC373i Multifunction Gigabit Server Adapter" },
166         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
167                 "HP NC374m PCIe Multifunction Adapter" },
168         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
169                 "QLogic NetXtreme II BCM5708 1000Base-T" },
170
171         /* BCM5708S controllers and OEM boards. */
172         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
173                 "HP NC373m Multifunction Gigabit Server Adapter" },
174         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
175                 "HP NC373i Multifunction Gigabit Server Adapter" },
176         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
177                 "HP NC373F PCIe Multifunc Giga Server Adapter" },
178         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
179                 "QLogic NetXtreme II BCM5708 1000Base-SX" },
180
181         /* BCM5709C controllers and OEM boards. */
182         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
183                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
184         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
185                 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
186         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
187                 "QLogic NetXtreme II BCM5709 1000Base-T" },
188
189         /* BCM5709S controllers and OEM boards. */
190         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
191                 "HP NC382m DP 1GbE Multifunction BL-c Adapter" },
192         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
193                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
194         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
195                 "QLogic NetXtreme II BCM5709 1000Base-SX" },
196
197         /* BCM5716 controllers and OEM boards. */
198         { BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
199                 "QLogic NetXtreme II BCM5716 1000Base-T" },
200
201         { 0, 0, 0, 0, NULL }
202 };
203
204
205 /****************************************************************************/
206 /* Supported Flash NVRAM device data.                                       */
207 /****************************************************************************/
208 static const struct flash_spec flash_table[] =
209 {
210 #define BUFFERED_FLAGS          (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
211 #define NONBUFFERED_FLAGS       (BCE_NV_WREN)
212
213         /* Slow EEPROM */
214         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
215          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
216          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
217          "EEPROM - slow"},
218         /* Expansion entry 0001 */
219         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
220          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
221          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
222          "Entry 0001"},
223         /* Saifun SA25F010 (non-buffered flash) */
224         /* strap, cfg1, & write1 need updates */
225         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
226          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
228          "Non-buffered flash (128kB)"},
229         /* Saifun SA25F020 (non-buffered flash) */
230         /* strap, cfg1, & write1 need updates */
231         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
232          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
233          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
234          "Non-buffered flash (256kB)"},
235         /* Expansion entry 0100 */
236         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
237          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239          "Entry 0100"},
240         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
241         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
242          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
243          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
244          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
245         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
246         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
247          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
248          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
249          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
250         /* Saifun SA25F005 (non-buffered flash) */
251         /* strap, cfg1, & write1 need updates */
252         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
253          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
255          "Non-buffered flash (64kB)"},
256         /* Fast EEPROM */
257         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
258          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
259          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
260          "EEPROM - fast"},
261         /* Expansion entry 1001 */
262         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
263          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
264          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
265          "Entry 1001"},
266         /* Expansion entry 1010 */
267         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
268          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
269          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
270          "Entry 1010"},
271         /* ATMEL AT45DB011B (buffered flash) */
272         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
273          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
274          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
275          "Buffered flash (128kB)"},
276         /* Expansion entry 1100 */
277         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
278          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
279          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
280          "Entry 1100"},
281         /* Expansion entry 1101 */
282         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
283          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
284          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
285          "Entry 1101"},
286         /* Ateml Expansion entry 1110 */
287         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
288          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
289          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
290          "Entry 1110 (Atmel)"},
291         /* ATMEL AT45DB021B (buffered flash) */
292         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
293          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
294          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
295          "Buffered flash (256kB)"},
296 };
297
298 /*
299  * The BCM5709 controllers transparently handle the
300  * differences between Atmel 264 byte pages and all
301  * flash devices which use 256 byte pages, so no
302  * logical-to-physical mapping is required in the
303  * driver.
304  */
305 static const struct flash_spec flash_5709 = {
306         .flags          = BCE_NV_BUFFERED,
307         .page_bits      = BCM5709_FLASH_PAGE_BITS,
308         .page_size      = BCM5709_FLASH_PAGE_SIZE,
309         .addr_mask      = BCM5709_FLASH_BYTE_ADDR_MASK,
310         .total_size     = BUFFERED_FLASH_TOTAL_SIZE * 2,
311         .name           = "5709/5716 buffered flash (256kB)",
312 };
313
314
315 /****************************************************************************/
316 /* FreeBSD device entry points.                                             */
317 /****************************************************************************/
318 static int  bce_probe                   (device_t);
319 static int  bce_attach                  (device_t);
320 static int  bce_detach                  (device_t);
321 static int  bce_shutdown                (device_t);
322
323
324 /****************************************************************************/
325 /* BCE Debug Data Structure Dump Routines                                   */
326 /****************************************************************************/
327 #ifdef BCE_DEBUG
328 static u32  bce_reg_rd                          (struct bce_softc *, u32);
329 static void bce_reg_wr                          (struct bce_softc *, u32, u32);
330 static void bce_reg_wr16                        (struct bce_softc *, u32, u16);
331 static u32  bce_ctx_rd                          (struct bce_softc *, u32, u32);
332 static void bce_dump_enet                       (struct bce_softc *, struct mbuf *);
333 static void bce_dump_mbuf                       (struct bce_softc *, struct mbuf *);
334 static void bce_dump_tx_mbuf_chain      (struct bce_softc *, u16, int);
335 static void bce_dump_rx_mbuf_chain      (struct bce_softc *, u16, int);
336 static void bce_dump_pg_mbuf_chain      (struct bce_softc *, u16, int);
337 static void bce_dump_txbd                       (struct bce_softc *,
338     int, struct tx_bd *);
339 static void bce_dump_rxbd                       (struct bce_softc *,
340     int, struct rx_bd *);
341 static void bce_dump_pgbd                       (struct bce_softc *,
342     int, struct rx_bd *);
343 static void bce_dump_l2fhdr             (struct bce_softc *,
344     int, struct l2_fhdr *);
345 static void bce_dump_ctx                        (struct bce_softc *, u16);
346 static void bce_dump_ftqs                       (struct bce_softc *);
347 static void bce_dump_tx_chain           (struct bce_softc *, u16, int);
348 static void bce_dump_rx_bd_chain        (struct bce_softc *, u16, int);
349 static void bce_dump_pg_chain           (struct bce_softc *, u16, int);
350 static void bce_dump_status_block       (struct bce_softc *);
351 static void bce_dump_stats_block        (struct bce_softc *);
352 static void bce_dump_driver_state       (struct bce_softc *);
353 static void bce_dump_hw_state           (struct bce_softc *);
354 static void bce_dump_shmem_state        (struct bce_softc *);
355 static void bce_dump_mq_regs            (struct bce_softc *);
356 static void bce_dump_bc_state           (struct bce_softc *);
357 static void bce_dump_txp_state          (struct bce_softc *, int);
358 static void bce_dump_rxp_state          (struct bce_softc *, int);
359 static void bce_dump_tpat_state (struct bce_softc *, int);
360 static void bce_dump_cp_state           (struct bce_softc *, int);
361 static void bce_dump_com_state          (struct bce_softc *, int);
362 static void bce_dump_rv2p_state (struct bce_softc *);
363 static void bce_breakpoint                      (struct bce_softc *);
364 #endif /*BCE_DEBUG */
365
366
367 /****************************************************************************/
368 /* BCE Register/Memory Access Routines                                      */
369 /****************************************************************************/
370 static u32  bce_reg_rd_ind              (struct bce_softc *, u32);
371 static void bce_reg_wr_ind              (struct bce_softc *, u32, u32);
372 static void bce_shmem_wr                (struct bce_softc *, u32, u32);
373 static u32  bce_shmem_rd                (struct bce_softc *, u32);
374 static void bce_ctx_wr                  (struct bce_softc *, u32, u32, u32);
375 static int  bce_miibus_read_reg         (device_t, int, int);
376 static int  bce_miibus_write_reg        (device_t, int, int, int);
377 static void bce_miibus_statchg          (device_t);
378
379 #ifdef BCE_DEBUG
380 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
381 #ifdef BCE_NVRAM_WRITE_SUPPORT
382 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
383 #endif
384 #endif
385
386 /****************************************************************************/
387 /* BCE NVRAM Access Routines                                                */
388 /****************************************************************************/
389 static int  bce_acquire_nvram_lock      (struct bce_softc *);
390 static int  bce_release_nvram_lock      (struct bce_softc *);
391 static void bce_enable_nvram_access(struct bce_softc *);
392 static void bce_disable_nvram_access(struct bce_softc *);
393 static int  bce_nvram_read_dword        (struct bce_softc *, u32, u8 *, u32);
394 static int  bce_init_nvram                      (struct bce_softc *);
395 static int  bce_nvram_read                      (struct bce_softc *, u32, u8 *, int);
396 static int  bce_nvram_test                      (struct bce_softc *);
397 #ifdef BCE_NVRAM_WRITE_SUPPORT
398 static int  bce_enable_nvram_write      (struct bce_softc *);
399 static void bce_disable_nvram_write(struct bce_softc *);
400 static int  bce_nvram_erase_page        (struct bce_softc *, u32);
401 static int  bce_nvram_write_dword       (struct bce_softc *, u32, u8 *, u32);
402 static int  bce_nvram_write             (struct bce_softc *, u32, u8 *, int);
403 #endif
404
405 /****************************************************************************/
406 /*                                                                          */
407 /****************************************************************************/
408 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
409 static void bce_get_media                       (struct bce_softc *);
410 static void bce_init_media                      (struct bce_softc *);
411 static u32 bce_get_rphy_link            (struct bce_softc *);
412 static void bce_dma_map_addr            (void *, bus_dma_segment_t *, int, int);
413 static int  bce_dma_alloc                       (device_t);
414 static void bce_dma_free                        (struct bce_softc *);
415 static void bce_release_resources       (struct bce_softc *);
416
417 /****************************************************************************/
418 /* BCE Firmware Synchronization and Load                                    */
419 /****************************************************************************/
420 static void bce_fw_cap_init                     (struct bce_softc *);
421 static int  bce_fw_sync                 (struct bce_softc *, u32);
422 static void bce_load_rv2p_fw            (struct bce_softc *, const u32 *, u32,
423     u32);
424 static void bce_load_cpu_fw             (struct bce_softc *,
425     struct cpu_reg *, struct fw_info *);
426 static void bce_start_cpu                       (struct bce_softc *, struct cpu_reg *);
427 static void bce_halt_cpu                        (struct bce_softc *, struct cpu_reg *);
428 static void bce_start_rxp_cpu           (struct bce_softc *);
429 static void bce_init_rxp_cpu            (struct bce_softc *);
430 static void bce_init_txp_cpu            (struct bce_softc *);
431 static void bce_init_tpat_cpu           (struct bce_softc *);
432 static void bce_init_cp_cpu             (struct bce_softc *);
433 static void bce_init_com_cpu            (struct bce_softc *);
434 static void bce_init_cpus                       (struct bce_softc *);
435
436 static void bce_print_adapter_info      (struct bce_softc *);
437 static void bce_probe_pci_caps          (device_t, struct bce_softc *);
438 static void bce_stop                            (struct bce_softc *);
439 static int  bce_reset                           (struct bce_softc *, u32);
440 static int  bce_chipinit                        (struct bce_softc *);
441 static int  bce_blockinit                       (struct bce_softc *);
442
443 static int  bce_init_tx_chain           (struct bce_softc *);
444 static void bce_free_tx_chain           (struct bce_softc *);
445
446 static int  bce_get_rx_buf              (struct bce_softc *, u16, u16, u32 *);
447 static int  bce_init_rx_chain           (struct bce_softc *);
448 static void bce_fill_rx_chain           (struct bce_softc *);
449 static void bce_free_rx_chain           (struct bce_softc *);
450
451 static int  bce_get_pg_buf              (struct bce_softc *, u16, u16);
452 static int  bce_init_pg_chain           (struct bce_softc *);
453 static void bce_fill_pg_chain           (struct bce_softc *);
454 static void bce_free_pg_chain           (struct bce_softc *);
455
456 static struct mbuf *bce_tso_setup       (struct bce_softc *,
457     struct mbuf **, u16 *);
458 static int  bce_tx_encap                        (struct bce_softc *, struct mbuf **);
459 static void bce_start_locked            (struct ifnet *);
460 static void bce_start                   (struct ifnet *);
461 static int  bce_ioctl                   (struct ifnet *, u_long, caddr_t);
462 static uint64_t bce_get_counter         (struct ifnet *, ift_counter);
463 static void bce_watchdog                (struct bce_softc *);
464 static int  bce_ifmedia_upd             (struct ifnet *);
465 static int  bce_ifmedia_upd_locked      (struct ifnet *);
466 static void bce_ifmedia_sts             (struct ifnet *, struct ifmediareq *);
467 static void bce_ifmedia_sts_rphy        (struct bce_softc *, struct ifmediareq *);
468 static void bce_init_locked             (struct bce_softc *);
469 static void bce_init                            (void *);
470 static void bce_mgmt_init_locked        (struct bce_softc *sc);
471
472 static int  bce_init_ctx                        (struct bce_softc *);
473 static void bce_get_mac_addr            (struct bce_softc *);
474 static void bce_set_mac_addr            (struct bce_softc *);
475 static void bce_phy_intr                        (struct bce_softc *);
476 static inline u16 bce_get_hw_rx_cons    (struct bce_softc *);
477 static void bce_rx_intr                 (struct bce_softc *);
478 static void bce_tx_intr                 (struct bce_softc *);
479 static void bce_disable_intr            (struct bce_softc *);
480 static void bce_enable_intr             (struct bce_softc *, int);
481
482 static void bce_intr                            (void *);
483 static void bce_set_rx_mode             (struct bce_softc *);
484 static void bce_stats_update            (struct bce_softc *);
485 static void bce_tick                            (void *);
486 static void bce_pulse                           (void *);
487 static void bce_add_sysctls             (struct bce_softc *);
488
489
490 /****************************************************************************/
491 /* FreeBSD device dispatch table.                                           */
492 /****************************************************************************/
493 static device_method_t bce_methods[] = {
494         /* Device interface (device_if.h) */
495         DEVMETHOD(device_probe,         bce_probe),
496         DEVMETHOD(device_attach,        bce_attach),
497         DEVMETHOD(device_detach,        bce_detach),
498         DEVMETHOD(device_shutdown,      bce_shutdown),
499 /* Supported by device interface but not used here. */
500 /*      DEVMETHOD(device_identify,      bce_identify),      */
501 /*      DEVMETHOD(device_suspend,       bce_suspend),       */
502 /*      DEVMETHOD(device_resume,        bce_resume),        */
503 /*      DEVMETHOD(device_quiesce,       bce_quiesce),       */
504
505         /* MII interface (miibus_if.h) */
506         DEVMETHOD(miibus_readreg,       bce_miibus_read_reg),
507         DEVMETHOD(miibus_writereg,      bce_miibus_write_reg),
508         DEVMETHOD(miibus_statchg,       bce_miibus_statchg),
509 /* Supported by MII interface but not used here.       */
510 /*      DEVMETHOD(miibus_linkchg,       bce_miibus_linkchg),   */
511 /*      DEVMETHOD(miibus_mediainit,     bce_miibus_mediainit), */
512
513         DEVMETHOD_END
514 };
515
516 static driver_t bce_driver = {
517         "bce",
518         bce_methods,
519         sizeof(struct bce_softc)
520 };
521
522 static devclass_t bce_devclass;
523
524 MODULE_DEPEND(bce, pci, 1, 1, 1);
525 MODULE_DEPEND(bce, ether, 1, 1, 1);
526 MODULE_DEPEND(bce, miibus, 1, 1, 1);
527
528 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
529 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
530
531
532 /****************************************************************************/
533 /* Tunable device values                                                    */
534 /****************************************************************************/
535 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
536
537 /* Allowable values are TRUE or FALSE */
538 static int bce_verbose = TRUE;
539 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
540     "Verbose output enable/disable");
541
542 /* Allowable values are TRUE or FALSE */
543 static int bce_tso_enable = TRUE;
544 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
545     "TSO Enable/Disable");
546
547 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
548 /* ToDo: Add MSI-X support. */
549 static int bce_msi_enable = 1;
550 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
551     "MSI-X|MSI|INTx selector");
552
553 /* Allowable values are 1, 2, 4, 8. */
554 static int bce_rx_pages = DEFAULT_RX_PAGES;
555 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
556     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
557
558 /* Allowable values are 1, 2, 4, 8. */
559 static int bce_tx_pages = DEFAULT_TX_PAGES;
560 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
561     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
562
563 /* Allowable values are TRUE or FALSE. */
564 static int bce_hdr_split = TRUE;
565 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
566     "Frame header/payload splitting Enable/Disable");
567
568 /* Allowable values are TRUE or FALSE. */
569 static int bce_strict_rx_mtu = FALSE;
570 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
571     &bce_strict_rx_mtu, 0,
572     "Enable/Disable strict RX frame size checking");
573
574 /* Allowable values are 0 ... 100 */
575 #ifdef BCE_DEBUG
576 /* Generate 1 interrupt for every transmit completion. */
577 static int bce_tx_quick_cons_trip_int = 1;
578 #else
579 /* Generate 1 interrupt for every 20 transmit completions. */
580 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
581 #endif
582 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
583     &bce_tx_quick_cons_trip_int, 0,
584     "Transmit BD trip point during interrupts");
585
586 /* Allowable values are 0 ... 100 */
587 /* Generate 1 interrupt for every transmit completion. */
588 #ifdef BCE_DEBUG
589 static int bce_tx_quick_cons_trip = 1;
590 #else
591 /* Generate 1 interrupt for every 20 transmit completions. */
592 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
593 #endif
594 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
595     &bce_tx_quick_cons_trip, 0,
596     "Transmit BD trip point");
597
598 /* Allowable values are 0 ... 100 */
599 #ifdef BCE_DEBUG
600 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
601 static int bce_tx_ticks_int = 0;
602 #else
603 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
604 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
605 #endif
606 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
607     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
608
609 /* Allowable values are 0 ... 100 */
610 #ifdef BCE_DEBUG
611 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
612 static int bce_tx_ticks = 0;
613 #else
614 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
615 static int bce_tx_ticks = DEFAULT_TX_TICKS;
616 #endif
617 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
618     &bce_tx_ticks, 0, "Transmit ticks count");
619
620 /* Allowable values are 1 ... 100 */
621 #ifdef BCE_DEBUG
622 /* Generate 1 interrupt for every received frame. */
623 static int bce_rx_quick_cons_trip_int = 1;
624 #else
625 /* Generate 1 interrupt for every 6 received frames. */
626 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
627 #endif
628 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
629     &bce_rx_quick_cons_trip_int, 0,
630     "Receive BD trip point duirng interrupts");
631
632 /* Allowable values are 1 ... 100 */
633 #ifdef BCE_DEBUG
634 /* Generate 1 interrupt for every received frame. */
635 static int bce_rx_quick_cons_trip = 1;
636 #else
637 /* Generate 1 interrupt for every 6 received frames. */
638 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
639 #endif
640 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
641     &bce_rx_quick_cons_trip, 0,
642     "Receive BD trip point");
643
644 /* Allowable values are 0 ... 100 */
645 #ifdef BCE_DEBUG
646 /* Generate an int. if 0us have elapsed since the last received frame. */
647 static int bce_rx_ticks_int = 0;
648 #else
649 /* Generate an int. if 18us have elapsed since the last received frame. */
650 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
651 #endif
652 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
653     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
654
655 /* Allowable values are 0 ... 100 */
656 #ifdef BCE_DEBUG
657 /* Generate an int. if 0us have elapsed since the last received frame. */
658 static int bce_rx_ticks = 0;
659 #else
660 /* Generate an int. if 18us have elapsed since the last received frame. */
661 static int bce_rx_ticks = DEFAULT_RX_TICKS;
662 #endif
663 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
664     &bce_rx_ticks, 0, "Receive ticks count");
665
666
667 /****************************************************************************/
668 /* Device probe function.                                                   */
669 /*                                                                          */
670 /* Compares the device to the driver's list of supported devices and        */
671 /* reports back to the OS whether this is the right driver for the device.  */
672 /*                                                                          */
673 /* Returns:                                                                 */
674 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
675 /****************************************************************************/
676 static int
677 bce_probe(device_t dev)
678 {
679         const struct bce_type *t;
680         struct bce_softc *sc;
681         char *descbuf;
682         u16 vid = 0, did = 0, svid = 0, sdid = 0;
683
684         t = bce_devs;
685
686         sc = device_get_softc(dev);
687         sc->bce_unit = device_get_unit(dev);
688         sc->bce_dev = dev;
689
690         /* Get the data for the device to be probed. */
691         vid  = pci_get_vendor(dev);
692         did  = pci_get_device(dev);
693         svid = pci_get_subvendor(dev);
694         sdid = pci_get_subdevice(dev);
695
696         DBPRINT(sc, BCE_EXTREME_LOAD,
697             "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
698             "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
699
700         /* Look through the list of known devices for a match. */
701         while(t->bce_name != NULL) {
702
703                 if ((vid == t->bce_vid) && (did == t->bce_did) &&
704                     ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
705                     ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
706
707                         descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
708
709                         if (descbuf == NULL)
710                                 return(ENOMEM);
711
712                         /* Print out the device identity. */
713                         snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
714                             t->bce_name, (((pci_read_config(dev,
715                             PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
716                             (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
717
718                         device_set_desc_copy(dev, descbuf);
719                         free(descbuf, M_TEMP);
720                         return(BUS_PROBE_DEFAULT);
721                 }
722                 t++;
723         }
724
725         return(ENXIO);
726 }
727
728
729 /****************************************************************************/
730 /* PCI Capabilities Probe Function.                                         */
731 /*                                                                          */
732 /* Walks the PCI capabiites list for the device to find what features are   */
733 /* supported.                                                               */
734 /*                                                                          */
735 /* Returns:                                                                 */
736 /*   None.                                                                  */
737 /****************************************************************************/
738 static void
739 bce_print_adapter_info(struct bce_softc *sc)
740 {
741         int i = 0;
742
743         DBENTER(BCE_VERBOSE_LOAD);
744
745         if (bce_verbose || bootverbose) {
746                 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
747                 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
748                     12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
749
750
751                 /* Bus info. */
752                 if (sc->bce_flags & BCE_PCIE_FLAG) {
753                         printf("Bus (PCIe x%d, ", sc->link_width);
754                         switch (sc->link_speed) {
755                         case 1: printf("2.5Gbps); "); break;
756                         case 2: printf("5Gbps); "); break;
757                         default: printf("Unknown link speed); ");
758                         }
759                 } else {
760                         printf("Bus (PCI%s, %s, %dMHz); ",
761                             ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
762                             ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
763                             "32-bit" : "64-bit"), sc->bus_speed_mhz);
764                 }
765
766                 /* Firmware version and device features. */
767                 printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
768                     sc->bce_bc_ver,     sc->rx_pages, sc->tx_pages,
769                     (bce_hdr_split == TRUE ? sc->pg_pages: 0));
770
771                 if (bce_hdr_split == TRUE) {
772                         printf("SPLT");
773                         i++;
774                 }
775
776                 if (sc->bce_flags & BCE_USING_MSI_FLAG) {
777                         if (i > 0) printf("|");
778                         printf("MSI"); i++;
779                 }
780
781                 if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
782                         if (i > 0) printf("|");
783                         printf("MSI-X"); i++;
784                 }
785
786                 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
787                         if (i > 0) printf("|");
788                         printf("2.5G"); i++;
789                 }
790
791                 if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
792                         if (i > 0) printf("|");
793                         printf("Remote PHY(%s)",
794                             sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
795                             "FIBER" : "TP"); i++;
796                 }
797
798                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
799                         if (i > 0) printf("|");
800                         printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
801                 } else {
802                         printf(")\n");
803                 }
804
805                 printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
806                     sc->bce_rx_quick_cons_trip_int,
807                     sc->bce_rx_quick_cons_trip,
808                     sc->bce_rx_ticks_int,
809                     sc->bce_rx_ticks,
810                     sc->bce_tx_quick_cons_trip_int,
811                     sc->bce_tx_quick_cons_trip,
812                     sc->bce_tx_ticks_int,
813                     sc->bce_tx_ticks);
814
815         }
816
817         DBEXIT(BCE_VERBOSE_LOAD);
818 }
819
820
821 /****************************************************************************/
822 /* PCI Capabilities Probe Function.                                         */
823 /*                                                                          */
824 /* Walks the PCI capabiites list for the device to find what features are   */
825 /* supported.                                                               */
826 /*                                                                          */
827 /* Returns:                                                                 */
828 /*   None.                                                                  */
829 /****************************************************************************/
830 static void
831 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
832 {
833         u32 reg;
834
835         DBENTER(BCE_VERBOSE_LOAD);
836
837         /* Check if PCI-X capability is enabled. */
838         if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
839                 if (reg != 0)
840                         sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
841         }
842
843         /* Check if PCIe capability is enabled. */
844         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
845                 if (reg != 0) {
846                         u16 link_status = pci_read_config(dev, reg + 0x12, 2);
847                         DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
848                             "0x%08X\n", link_status);
849                         sc->link_speed = link_status & 0xf;
850                         sc->link_width = (link_status >> 4) & 0x3f;
851                         sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
852                         sc->bce_flags |= BCE_PCIE_FLAG;
853                 }
854         }
855
856         /* Check if MSI capability is enabled. */
857         if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
858                 if (reg != 0)
859                         sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
860         }
861
862         /* Check if MSI-X capability is enabled. */
863         if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
864                 if (reg != 0)
865                         sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
866         }
867
868         DBEXIT(BCE_VERBOSE_LOAD);
869 }
870
871
872 /****************************************************************************/
873 /* Load and validate user tunable settings.                                 */
874 /*                                                                          */
875 /* Returns:                                                                 */
876 /*   Nothing.                                                               */
877 /****************************************************************************/
878 static void
879 bce_set_tunables(struct bce_softc *sc)
880 {
881         /* Set sysctl values for RX page count. */
882         switch (bce_rx_pages) {
883         case 1:
884                 /* fall-through */
885         case 2:
886                 /* fall-through */
887         case 4:
888                 /* fall-through */
889         case 8:
890                 sc->rx_pages = bce_rx_pages;
891                 break;
892         default:
893                 sc->rx_pages = DEFAULT_RX_PAGES;
894                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
895                     "hw.bce.rx_pages!  Setting default of %d.\n",
896                     __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
897         }
898
899         /* ToDo: Consider allowing user setting for pg_pages. */
900         sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
901
902         /* Set sysctl values for TX page count. */
903         switch (bce_tx_pages) {
904         case 1:
905                 /* fall-through */
906         case 2:
907                 /* fall-through */
908         case 4:
909                 /* fall-through */
910         case 8:
911                 sc->tx_pages = bce_tx_pages;
912                 break;
913         default:
914                 sc->tx_pages = DEFAULT_TX_PAGES;
915                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
916                     "hw.bce.tx_pages!  Setting default of %d.\n",
917                     __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
918         }
919
920         /*
921          * Validate the TX trip point (i.e. the number of
922          * TX completions before a status block update is
923          * generated and an interrupt is asserted.
924          */
925         if (bce_tx_quick_cons_trip_int <= 100) {
926                 sc->bce_tx_quick_cons_trip_int =
927                     bce_tx_quick_cons_trip_int;
928         } else {
929                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
930                     "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
931                     __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
932                     DEFAULT_TX_QUICK_CONS_TRIP_INT);
933                 sc->bce_tx_quick_cons_trip_int =
934                     DEFAULT_TX_QUICK_CONS_TRIP_INT;
935         }
936
937         if (bce_tx_quick_cons_trip <= 100) {
938                 sc->bce_tx_quick_cons_trip =
939                     bce_tx_quick_cons_trip;
940         } else {
941                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
942                     "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
943                     __FILE__, __LINE__, bce_tx_quick_cons_trip,
944                     DEFAULT_TX_QUICK_CONS_TRIP);
945                 sc->bce_tx_quick_cons_trip =
946                     DEFAULT_TX_QUICK_CONS_TRIP;
947         }
948
949         /*
950          * Validate the TX ticks count (i.e. the maximum amount
951          * of time to wait after the last TX completion has
952          * occurred before a status block update is generated
953          * and an interrupt is asserted.
954          */
955         if (bce_tx_ticks_int <= 100) {
956                 sc->bce_tx_ticks_int =
957                     bce_tx_ticks_int;
958         } else {
959                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
960                     "hw.bce.tx_ticks_int!  Setting default of %d.\n",
961                     __FILE__, __LINE__, bce_tx_ticks_int,
962                     DEFAULT_TX_TICKS_INT);
963                 sc->bce_tx_ticks_int =
964                     DEFAULT_TX_TICKS_INT;
965            }
966
967         if (bce_tx_ticks <= 100) {
968                 sc->bce_tx_ticks =
969                     bce_tx_ticks;
970         } else {
971                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
972                     "hw.bce.tx_ticks!  Setting default of %d.\n",
973                     __FILE__, __LINE__, bce_tx_ticks,
974                     DEFAULT_TX_TICKS);
975                 sc->bce_tx_ticks =
976                     DEFAULT_TX_TICKS;
977         }
978
979         /*
980          * Validate the RX trip point (i.e. the number of
981          * RX frames received before a status block update is
982          * generated and an interrupt is asserted.
983          */
984         if (bce_rx_quick_cons_trip_int <= 100) {
985                 sc->bce_rx_quick_cons_trip_int =
986                     bce_rx_quick_cons_trip_int;
987         } else {
988                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
989                     "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
990                     __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
991                     DEFAULT_RX_QUICK_CONS_TRIP_INT);
992                 sc->bce_rx_quick_cons_trip_int =
993                     DEFAULT_RX_QUICK_CONS_TRIP_INT;
994         }
995
996         if (bce_rx_quick_cons_trip <= 100) {
997                 sc->bce_rx_quick_cons_trip =
998                     bce_rx_quick_cons_trip;
999         } else {
1000                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1001                     "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
1002                     __FILE__, __LINE__, bce_rx_quick_cons_trip,
1003                     DEFAULT_RX_QUICK_CONS_TRIP);
1004                 sc->bce_rx_quick_cons_trip =
1005                     DEFAULT_RX_QUICK_CONS_TRIP;
1006         }
1007
1008         /*
1009          * Validate the RX ticks count (i.e. the maximum amount
1010          * of time to wait after the last RX frame has been
1011          * received before a status block update is generated
1012          * and an interrupt is asserted.
1013          */
1014         if (bce_rx_ticks_int <= 100) {
1015                 sc->bce_rx_ticks_int = bce_rx_ticks_int;
1016         } else {
1017                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1018                     "hw.bce.rx_ticks_int!  Setting default of %d.\n",
1019                     __FILE__, __LINE__, bce_rx_ticks_int,
1020                     DEFAULT_RX_TICKS_INT);
1021                 sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
1022         }
1023
1024         if (bce_rx_ticks <= 100) {
1025                 sc->bce_rx_ticks = bce_rx_ticks;
1026         } else {
1027                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1028                     "hw.bce.rx_ticks!  Setting default of %d.\n",
1029                     __FILE__, __LINE__, bce_rx_ticks,
1030                     DEFAULT_RX_TICKS);
1031                 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1032         }
1033
1034         /* Disabling both RX ticks and RX trips will prevent interrupts. */
1035         if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1036                 BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1037                     "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1038                    __FILE__, __LINE__);
1039                 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1040                 sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1041         }
1042
1043         /* Disabling both TX ticks and TX trips will prevent interrupts. */
1044         if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1045                 BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1046                     "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1047                    __FILE__, __LINE__);
1048                 sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1049                 sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1050         }
1051 }
1052
1053
1054 /****************************************************************************/
1055 /* Device attach function.                                                  */
1056 /*                                                                          */
1057 /* Allocates device resources, performs secondary chip identification,      */
1058 /* resets and initializes the hardware, and initializes driver instance     */
1059 /* variables.                                                               */
1060 /*                                                                          */
1061 /* Returns:                                                                 */
1062 /*   0 on success, positive value on failure.                               */
1063 /****************************************************************************/
1064 static int
1065 bce_attach(device_t dev)
1066 {
1067         struct bce_softc *sc;
1068         struct ifnet *ifp;
1069         u32 val;
1070         int count, error, rc = 0, rid;
1071
1072         sc = device_get_softc(dev);
1073         sc->bce_dev = dev;
1074
1075         DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1076
1077         sc->bce_unit = device_get_unit(dev);
1078
1079         /* Set initial device and PHY flags */
1080         sc->bce_flags = 0;
1081         sc->bce_phy_flags = 0;
1082
1083         bce_set_tunables(sc);
1084
1085         pci_enable_busmaster(dev);
1086
1087         /* Allocate PCI memory resources. */
1088         rid = PCIR_BAR(0);
1089         sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1090                 &rid, RF_ACTIVE);
1091
1092         if (sc->bce_res_mem == NULL) {
1093                 BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1094                     __FILE__, __LINE__);
1095                 rc = ENXIO;
1096                 goto bce_attach_fail;
1097         }
1098
1099         /* Get various resource handles. */
1100         sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1101         sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1102         sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1103
1104         bce_probe_pci_caps(dev, sc);
1105
1106         rid = 1;
1107         count = 0;
1108 #if 0
1109         /* Try allocating MSI-X interrupts. */
1110         if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1111                 (bce_msi_enable >= 2) &&
1112                 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1113                 &rid, RF_ACTIVE)) != NULL)) {
1114
1115                 msi_needed = count = 1;
1116
1117                 if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1118                         (count != msi_needed)) {
1119                         BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1120                                 "Received = %d, error = %d\n", __FILE__, __LINE__,
1121                                 msi_needed, count, error);
1122                         count = 0;
1123                         pci_release_msi(dev);
1124                         bus_release_resource(dev, SYS_RES_MEMORY, rid,
1125                                 sc->bce_res_irq);
1126                         sc->bce_res_irq = NULL;
1127                 } else {
1128                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1129                                 __FUNCTION__);
1130                         sc->bce_flags |= BCE_USING_MSIX_FLAG;
1131                 }
1132         }
1133 #endif
1134
1135         /* Try allocating a MSI interrupt. */
1136         if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1137                 (bce_msi_enable >= 1) && (count == 0)) {
1138                 count = 1;
1139                 if ((error = pci_alloc_msi(dev, &count)) != 0) {
1140                         BCE_PRINTF("%s(%d): MSI allocation failed! "
1141                             "error = %d\n", __FILE__, __LINE__, error);
1142                         count = 0;
1143                         pci_release_msi(dev);
1144                 } else {
1145                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1146                             "interrupt.\n", __FUNCTION__);
1147                         sc->bce_flags |= BCE_USING_MSI_FLAG;
1148                         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1149                                 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1150                         rid = 1;
1151                 }
1152         }
1153
1154         /* Try allocating a legacy interrupt. */
1155         if (count == 0) {
1156                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1157                         __FUNCTION__);
1158                 rid = 0;
1159         }
1160
1161         sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1162             &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1163
1164         /* Report any IRQ allocation errors. */
1165         if (sc->bce_res_irq == NULL) {
1166                 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1167                     __FILE__, __LINE__);
1168                 rc = ENXIO;
1169                 goto bce_attach_fail;
1170         }
1171
1172         /* Initialize mutex for the current device instance. */
1173         BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1174
1175         /*
1176          * Configure byte swap and enable indirect register access.
1177          * Rely on CPU to do target byte swapping on big endian systems.
1178          * Access to registers outside of PCI configurtion space are not
1179          * valid until this is done.
1180          */
1181         pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1182             BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1183             BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1184
1185         /* Save ASIC revsion info. */
1186         sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1187
1188         /* Weed out any non-production controller revisions. */
1189         switch(BCE_CHIP_ID(sc)) {
1190         case BCE_CHIP_ID_5706_A0:
1191         case BCE_CHIP_ID_5706_A1:
1192         case BCE_CHIP_ID_5708_A0:
1193         case BCE_CHIP_ID_5708_B0:
1194         case BCE_CHIP_ID_5709_A0:
1195         case BCE_CHIP_ID_5709_B0:
1196         case BCE_CHIP_ID_5709_B1:
1197         case BCE_CHIP_ID_5709_B2:
1198                 BCE_PRINTF("%s(%d): Unsupported controller "
1199                     "revision (%c%d)!\n", __FILE__, __LINE__,
1200                     (((pci_read_config(dev, PCIR_REVID, 4) &
1201                     0xf0) >> 4) + 'A'), (pci_read_config(dev,
1202                     PCIR_REVID, 4) & 0xf));
1203                 rc = ENODEV;
1204                 goto bce_attach_fail;
1205         }
1206
1207         /*
1208          * The embedded PCIe to PCI-X bridge (EPB)
1209          * in the 5708 cannot address memory above
1210          * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1211          */
1212         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1213                 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1214         else
1215                 sc->max_bus_addr = BUS_SPACE_MAXADDR;
1216
1217         /*
1218          * Find the base address for shared memory access.
1219          * Newer versions of bootcode use a signature and offset
1220          * while older versions use a fixed address.
1221          */
1222         val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1223         if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1224                 /* Multi-port devices use different offsets in shared memory. */
1225                 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1226                     (pci_get_function(sc->bce_dev) << 2));
1227         else
1228                 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1229
1230         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1231             __FUNCTION__, sc->bce_shmem_base);
1232
1233         /* Fetch the bootcode revision. */
1234         val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1235         for (int i = 0, j = 0; i < 3; i++) {
1236                 u8 num;
1237
1238                 num = (u8) (val >> (24 - (i * 8)));
1239                 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1240                         if (num >= k || !skip0 || k == 1) {
1241                                 sc->bce_bc_ver[j++] = (num / k) + '0';
1242                                 skip0 = 0;
1243                         }
1244                 }
1245
1246                 if (i != 2)
1247                         sc->bce_bc_ver[j++] = '.';
1248         }
1249
1250         /* Check if any management firwmare is enabled. */
1251         val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1252         if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1253                 sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1254
1255                 /* Allow time for firmware to enter the running state. */
1256                 for (int i = 0; i < 30; i++) {
1257                         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1258                         if (val & BCE_CONDITION_MFW_RUN_MASK)
1259                                 break;
1260                         DELAY(10000);
1261                 }
1262
1263                 /* Check if management firmware is running. */
1264                 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1265                 val &= BCE_CONDITION_MFW_RUN_MASK;
1266                 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1267                     (val != BCE_CONDITION_MFW_RUN_NONE)) {
1268                         u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1269                         int i = 0;
1270
1271                         /* Read the management firmware version string. */
1272                         for (int j = 0; j < 3; j++) {
1273                                 val = bce_reg_rd_ind(sc, addr + j * 4);
1274                                 val = bswap32(val);
1275                                 memcpy(&sc->bce_mfw_ver[i], &val, 4);
1276                                 i += 4;
1277                         }
1278                 } else {
1279                         /* May cause firmware synchronization timeouts. */
1280                         BCE_PRINTF("%s(%d): Management firmware enabled "
1281                             "but not running!\n", __FILE__, __LINE__);
1282                         strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1283
1284                         /* ToDo: Any action the driver should take? */
1285                 }
1286         }
1287
1288         /* Get PCI bus information (speed and type). */
1289         val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1290         if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1291                 u32 clkreg;
1292
1293                 sc->bce_flags |= BCE_PCIX_FLAG;
1294
1295                 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1296
1297                 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1298                 switch (clkreg) {
1299                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1300                         sc->bus_speed_mhz = 133;
1301                         break;
1302
1303                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1304                         sc->bus_speed_mhz = 100;
1305                         break;
1306
1307                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1308                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1309                         sc->bus_speed_mhz = 66;
1310                         break;
1311
1312                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1313                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1314                         sc->bus_speed_mhz = 50;
1315                         break;
1316
1317                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1318                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1319                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1320                         sc->bus_speed_mhz = 33;
1321                         break;
1322                 }
1323         } else {
1324                 if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1325                         sc->bus_speed_mhz = 66;
1326                 else
1327                         sc->bus_speed_mhz = 33;
1328         }
1329
1330         if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1331                 sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1332
1333         /* Find the media type for the adapter. */
1334         bce_get_media(sc);
1335
1336         /* Reset controller and announce to bootcode that driver is present. */
1337         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1338                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
1339                     __FILE__, __LINE__);
1340                 rc = ENXIO;
1341                 goto bce_attach_fail;
1342         }
1343
1344         /* Initialize the controller. */
1345         if (bce_chipinit(sc)) {
1346                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1347                     __FILE__, __LINE__);
1348                 rc = ENXIO;
1349                 goto bce_attach_fail;
1350         }
1351
1352         /* Perform NVRAM test. */
1353         if (bce_nvram_test(sc)) {
1354                 BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1355                     __FILE__, __LINE__);
1356                 rc = ENXIO;
1357                 goto bce_attach_fail;
1358         }
1359
1360         /* Fetch the permanent Ethernet MAC address. */
1361         bce_get_mac_addr(sc);
1362
1363         /* Update statistics once every second. */
1364         sc->bce_stats_ticks = 1000000 & 0xffff00;
1365
1366         /* Store data needed by PHY driver for backplane applications */
1367         sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1368         sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1369
1370         /* Allocate DMA memory resources. */
1371         if (bce_dma_alloc(dev)) {
1372                 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1373                     __FILE__, __LINE__);
1374                 rc = ENXIO;
1375                 goto bce_attach_fail;
1376         }
1377
1378         /* Allocate an ifnet structure. */
1379         ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1380         if (ifp == NULL) {
1381                 BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1382                     __FILE__, __LINE__);
1383                 rc = ENXIO;
1384                 goto bce_attach_fail;
1385         }
1386
1387         /* Initialize the ifnet interface. */
1388         ifp->if_softc   = sc;
1389         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1390         ifp->if_flags   = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1391         ifp->if_ioctl   = bce_ioctl;
1392         ifp->if_start   = bce_start;
1393         ifp->if_get_counter = bce_get_counter;
1394         ifp->if_init    = bce_init;
1395         ifp->if_mtu     = ETHERMTU;
1396
1397         if (bce_tso_enable) {
1398                 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1399                 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1400                     IFCAP_VLAN_HWTSO;
1401         } else {
1402                 ifp->if_hwassist = BCE_IF_HWASSIST;
1403                 ifp->if_capabilities = BCE_IF_CAPABILITIES;
1404         }
1405
1406 #if __FreeBSD_version >= 800505
1407         /*
1408          * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
1409          * so it's approximate value.
1410          */
1411         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1412                 ifp->if_capabilities |= IFCAP_LINKSTATE;
1413 #endif
1414
1415         ifp->if_capenable = ifp->if_capabilities;
1416
1417         /*
1418          * Assume standard mbuf sizes for buffer allocation.
1419          * This may change later if the MTU size is set to
1420          * something other than 1500.
1421          */
1422         bce_get_rx_buffer_sizes(sc,
1423             (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1424
1425         /* Recalculate our buffer allocation sizes. */
1426         ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1427         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1428         IFQ_SET_READY(&ifp->if_snd);
1429
1430         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1431                 ifp->if_baudrate = IF_Mbps(2500ULL);
1432         else
1433                 ifp->if_baudrate = IF_Mbps(1000);
1434
1435         /* Handle any special PHY initialization for SerDes PHYs. */
1436         bce_init_media(sc);
1437
1438         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1439                 ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1440                     bce_ifmedia_sts);
1441                 /*
1442                  * We can't manually override remote PHY's link and assume
1443                  * PHY port configuration(Fiber or TP) is not changed after
1444                  * device attach.  This may not be correct though.
1445                  */
1446                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1447                         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1448                                 ifmedia_add(&sc->bce_ifmedia,
1449                                     IFM_ETHER | IFM_2500_SX, 0, NULL);
1450                                 ifmedia_add(&sc->bce_ifmedia,
1451                                     IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1452                         }
1453                         ifmedia_add(&sc->bce_ifmedia,
1454                             IFM_ETHER | IFM_1000_SX, 0, NULL);
1455                         ifmedia_add(&sc->bce_ifmedia,
1456                             IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1457                 } else {
1458                         ifmedia_add(&sc->bce_ifmedia,
1459                             IFM_ETHER | IFM_10_T, 0, NULL);
1460                         ifmedia_add(&sc->bce_ifmedia,
1461                             IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1462                         ifmedia_add(&sc->bce_ifmedia,
1463                             IFM_ETHER | IFM_100_TX, 0, NULL);
1464                         ifmedia_add(&sc->bce_ifmedia,
1465                             IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1466                         ifmedia_add(&sc->bce_ifmedia,
1467                             IFM_ETHER | IFM_1000_T, 0, NULL);
1468                         ifmedia_add(&sc->bce_ifmedia,
1469                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1470                 }
1471                 ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1472                 ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1473                 sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1474         } else {
1475                 /* MII child bus by attaching the PHY. */
1476                 rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1477                     bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1478                     MII_OFFSET_ANY, MIIF_DOPAUSE);
1479                 if (rc != 0) {
1480                         BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1481                             __LINE__);
1482                         goto bce_attach_fail;
1483                 }
1484         }
1485
1486         /* Attach to the Ethernet interface list. */
1487         ether_ifattach(ifp, sc->eaddr);
1488
1489 #if __FreeBSD_version < 500000
1490         callout_init(&sc->bce_tick_callout);
1491         callout_init(&sc->bce_pulse_callout);
1492 #else
1493         callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1494         callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1495 #endif
1496
1497         /* Hookup IRQ last. */
1498         rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1499                 NULL, bce_intr, sc, &sc->bce_intrhand);
1500
1501         if (rc) {
1502                 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1503                     __FILE__, __LINE__);
1504                 bce_detach(dev);
1505                 goto bce_attach_exit;
1506         }
1507
1508         /*
1509          * At this point we've acquired all the resources
1510          * we need to run so there's no turning back, we're
1511          * cleared for launch.
1512          */
1513
1514         /* Print some important debugging info. */
1515         DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1516
1517         /* Add the supported sysctls to the kernel. */
1518         bce_add_sysctls(sc);
1519
1520         BCE_LOCK(sc);
1521
1522         /*
1523          * The chip reset earlier notified the bootcode that
1524          * a driver is present.  We now need to start our pulse
1525          * routine so that the bootcode is reminded that we're
1526          * still running.
1527          */
1528         bce_pulse(sc);
1529
1530         bce_mgmt_init_locked(sc);
1531         BCE_UNLOCK(sc);
1532
1533         /* Finally, print some useful adapter info */
1534         bce_print_adapter_info(sc);
1535         DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1536                 __FUNCTION__, sc);
1537
1538         goto bce_attach_exit;
1539
1540 bce_attach_fail:
1541         bce_release_resources(sc);
1542
1543 bce_attach_exit:
1544
1545         DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1546
1547         return(rc);
1548 }
1549
1550
1551 /****************************************************************************/
1552 /* Device detach function.                                                  */
1553 /*                                                                          */
1554 /* Stops the controller, resets the controller, and releases resources.     */
1555 /*                                                                          */
1556 /* Returns:                                                                 */
1557 /*   0 on success, positive value on failure.                               */
1558 /****************************************************************************/
1559 static int
1560 bce_detach(device_t dev)
1561 {
1562         struct bce_softc *sc = device_get_softc(dev);
1563         struct ifnet *ifp;
1564         u32 msg;
1565
1566         DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1567
1568         ifp = sc->bce_ifp;
1569
1570         /* Stop and reset the controller. */
1571         BCE_LOCK(sc);
1572
1573         /* Stop the pulse so the bootcode can go to driver absent state. */
1574         callout_stop(&sc->bce_pulse_callout);
1575
1576         bce_stop(sc);
1577         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1578                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1579         else
1580                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1581         bce_reset(sc, msg);
1582
1583         BCE_UNLOCK(sc);
1584
1585         ether_ifdetach(ifp);
1586
1587         /* If we have a child device on the MII bus remove it too. */
1588         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1589                 ifmedia_removeall(&sc->bce_ifmedia);
1590         else {
1591                 bus_generic_detach(dev);
1592                 device_delete_child(dev, sc->bce_miibus);
1593         }
1594
1595         /* Release all remaining resources. */
1596         bce_release_resources(sc);
1597
1598         DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1599
1600         return(0);
1601 }
1602
1603
1604 /****************************************************************************/
1605 /* Device shutdown function.                                                */
1606 /*                                                                          */
1607 /* Stops and resets the controller.                                         */
1608 /*                                                                          */
1609 /* Returns:                                                                 */
1610 /*   0 on success, positive value on failure.                               */
1611 /****************************************************************************/
1612 static int
1613 bce_shutdown(device_t dev)
1614 {
1615         struct bce_softc *sc = device_get_softc(dev);
1616         u32 msg;
1617
1618         DBENTER(BCE_VERBOSE);
1619
1620         BCE_LOCK(sc);
1621         bce_stop(sc);
1622         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1623                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1624         else
1625                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1626         bce_reset(sc, msg);
1627         BCE_UNLOCK(sc);
1628
1629         DBEXIT(BCE_VERBOSE);
1630
1631         return (0);
1632 }
1633
1634
1635 #ifdef BCE_DEBUG
1636 /****************************************************************************/
1637 /* Register read.                                                           */
1638 /*                                                                          */
1639 /* Returns:                                                                 */
1640 /*   The value of the register.                                             */
1641 /****************************************************************************/
1642 static u32
1643 bce_reg_rd(struct bce_softc *sc, u32 offset)
1644 {
1645         u32 val = REG_RD(sc, offset);
1646         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1647                 __FUNCTION__, offset, val);
1648         return val;
1649 }
1650
1651
1652 /****************************************************************************/
1653 /* Register write (16 bit).                                                 */
1654 /*                                                                          */
1655 /* Returns:                                                                 */
1656 /*   Nothing.                                                               */
1657 /****************************************************************************/
1658 static void
1659 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1660 {
1661         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1662                 __FUNCTION__, offset, val);
1663         REG_WR16(sc, offset, val);
1664 }
1665
1666
1667 /****************************************************************************/
1668 /* Register write.                                                          */
1669 /*                                                                          */
1670 /* Returns:                                                                 */
1671 /*   Nothing.                                                               */
1672 /****************************************************************************/
1673 static void
1674 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1675 {
1676         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1677                 __FUNCTION__, offset, val);
1678         REG_WR(sc, offset, val);
1679 }
1680 #endif
1681
1682 /****************************************************************************/
1683 /* Indirect register read.                                                  */
1684 /*                                                                          */
1685 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1686 /* configuration space.  Using this mechanism avoids issues with posted     */
1687 /* reads but is much slower than memory-mapped I/O.                         */
1688 /*                                                                          */
1689 /* Returns:                                                                 */
1690 /*   The value of the register.                                             */
1691 /****************************************************************************/
1692 static u32
1693 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1694 {
1695         device_t dev;
1696         dev = sc->bce_dev;
1697
1698         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1699 #ifdef BCE_DEBUG
1700         {
1701                 u32 val;
1702                 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1703                 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1704                         __FUNCTION__, offset, val);
1705                 return val;
1706         }
1707 #else
1708         return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1709 #endif
1710 }
1711
1712
1713 /****************************************************************************/
1714 /* Indirect register write.                                                 */
1715 /*                                                                          */
1716 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1717 /* configuration space.  Using this mechanism avoids issues with posted     */
1718 /* writes but is muchh slower than memory-mapped I/O.                       */
1719 /*                                                                          */
1720 /* Returns:                                                                 */
1721 /*   Nothing.                                                               */
1722 /****************************************************************************/
1723 static void
1724 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1725 {
1726         device_t dev;
1727         dev = sc->bce_dev;
1728
1729         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1730                 __FUNCTION__, offset, val);
1731
1732         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1733         pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1734 }
1735
1736
1737 /****************************************************************************/
1738 /* Shared memory write.                                                     */
1739 /*                                                                          */
1740 /* Writes NetXtreme II shared memory region.                                */
1741 /*                                                                          */
1742 /* Returns:                                                                 */
1743 /*   Nothing.                                                               */
1744 /****************************************************************************/
1745 static void
1746 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1747 {
1748         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1749             "0x%08X\n", __FUNCTION__, val, offset);
1750
1751         bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1752 }
1753
1754
1755 /****************************************************************************/
1756 /* Shared memory read.                                                      */
1757 /*                                                                          */
1758 /* Reads NetXtreme II shared memory region.                                 */
1759 /*                                                                          */
1760 /* Returns:                                                                 */
1761 /*   The 32 bit value read.                                                 */
1762 /****************************************************************************/
1763 static u32
1764 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1765 {
1766         u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1767
1768         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1769             "0x%08X\n", __FUNCTION__, val, offset);
1770
1771         return val;
1772 }
1773
1774
1775 #ifdef BCE_DEBUG
1776 /****************************************************************************/
1777 /* Context memory read.                                                     */
1778 /*                                                                          */
1779 /* The NetXtreme II controller uses context memory to track connection      */
1780 /* information for L2 and higher network protocols.                         */
1781 /*                                                                          */
1782 /* Returns:                                                                 */
1783 /*   The requested 32 bit value of context memory.                          */
1784 /****************************************************************************/
1785 static u32
1786 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1787 {
1788         u32 idx, offset, retry_cnt = 5, val;
1789
1790         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1791             cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1792             "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1793
1794         offset = ctx_offset + cid_addr;
1795
1796         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1797
1798                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1799
1800                 for (idx = 0; idx < retry_cnt; idx++) {
1801                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1802                         if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1803                                 break;
1804                         DELAY(5);
1805                 }
1806
1807                 if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1808                         BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1809                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1810                             __FILE__, __LINE__, cid_addr, ctx_offset);
1811
1812                 val = REG_RD(sc, BCE_CTX_CTX_DATA);
1813         } else {
1814                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1815                 val = REG_RD(sc, BCE_CTX_DATA);
1816         }
1817
1818         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1819                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1820
1821         return(val);
1822 }
1823 #endif
1824
1825
1826 /****************************************************************************/
1827 /* Context memory write.                                                    */
1828 /*                                                                          */
1829 /* The NetXtreme II controller uses context memory to track connection      */
1830 /* information for L2 and higher network protocols.                         */
1831 /*                                                                          */
1832 /* Returns:                                                                 */
1833 /*   Nothing.                                                               */
1834 /****************************************************************************/
1835 static void
1836 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1837 {
1838         u32 idx, offset = ctx_offset + cid_addr;
1839         u32 val, retry_cnt = 5;
1840
1841         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1842                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1843
1844         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1845                 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1846                     __FUNCTION__, cid_addr));
1847
1848         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1849
1850                 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1851                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1852
1853                 for (idx = 0; idx < retry_cnt; idx++) {
1854                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1855                         if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1856                                 break;
1857                         DELAY(5);
1858                 }
1859
1860                 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1861                         BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1862                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1863                             __FILE__, __LINE__, cid_addr, ctx_offset);
1864
1865         } else {
1866                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1867                 REG_WR(sc, BCE_CTX_DATA, ctx_val);
1868         }
1869 }
1870
1871
1872 /****************************************************************************/
1873 /* PHY register read.                                                       */
1874 /*                                                                          */
1875 /* Implements register reads on the MII bus.                                */
1876 /*                                                                          */
1877 /* Returns:                                                                 */
1878 /*   The value of the register.                                             */
1879 /****************************************************************************/
1880 static int
1881 bce_miibus_read_reg(device_t dev, int phy, int reg)
1882 {
1883         struct bce_softc *sc;
1884         u32 val;
1885         int i;
1886
1887         sc = device_get_softc(dev);
1888
1889     /*
1890      * The 5709S PHY is an IEEE Clause 45 PHY
1891      * with special mappings to work with IEEE
1892      * Clause 22 register accesses.
1893      */
1894         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1895                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1896                         reg += 0x10;
1897         }
1898
1899     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1900                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1901                 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1902
1903                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1904                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1905
1906                 DELAY(40);
1907         }
1908
1909
1910         val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1911             BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1912             BCE_EMAC_MDIO_COMM_START_BUSY;
1913         REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1914
1915         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1916                 DELAY(10);
1917
1918                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1919                 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1920                         DELAY(5);
1921
1922                         val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1923                         val &= BCE_EMAC_MDIO_COMM_DATA;
1924
1925                         break;
1926                 }
1927         }
1928
1929         if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1930                 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1931                     "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1932                 val = 0x0;
1933         } else {
1934                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1935         }
1936
1937
1938         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1939                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1940                 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1941
1942                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1943                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1944
1945                 DELAY(40);
1946         }
1947
1948         DB_PRINT_PHY_REG(reg, val);
1949         return (val & 0xffff);
1950 }
1951
1952
1953 /****************************************************************************/
1954 /* PHY register write.                                                      */
1955 /*                                                                          */
1956 /* Implements register writes on the MII bus.                               */
1957 /*                                                                          */
1958 /* Returns:                                                                 */
1959 /*   The value of the register.                                             */
1960 /****************************************************************************/
1961 static int
1962 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1963 {
1964         struct bce_softc *sc;
1965         u32 val1;
1966         int i;
1967
1968         sc = device_get_softc(dev);
1969
1970         DB_PRINT_PHY_REG(reg, val);
1971
1972         /*
1973          * The 5709S PHY is an IEEE Clause 45 PHY
1974          * with special mappings to work with IEEE
1975          * Clause 22 register accesses.
1976          */
1977         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1978                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1979                         reg += 0x10;
1980         }
1981
1982         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1983                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1984                 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1985
1986                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1987                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1988
1989                 DELAY(40);
1990         }
1991
1992         val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1993             BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1994             BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1995         REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1996
1997         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1998                 DELAY(10);
1999
2000                 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
2001                 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
2002                         DELAY(5);
2003                         break;
2004                 }
2005         }
2006
2007         if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
2008                 BCE_PRINTF("%s(%d): PHY write timeout!\n",
2009                     __FILE__, __LINE__);
2010
2011         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
2012                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
2013                 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
2014
2015                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
2016                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
2017
2018                 DELAY(40);
2019         }
2020
2021         return 0;
2022 }
2023
2024
2025 /****************************************************************************/
2026 /* MII bus status change.                                                   */
2027 /*                                                                          */
2028 /* Called by the MII bus driver when the PHY establishes link to set the    */
2029 /* MAC interface registers.                                                 */
2030 /*                                                                          */
2031 /* Returns:                                                                 */
2032 /*   Nothing.                                                               */
2033 /****************************************************************************/
2034 static void
2035 bce_miibus_statchg(device_t dev)
2036 {
2037         struct bce_softc *sc;
2038         struct mii_data *mii;
2039         struct ifmediareq ifmr;
2040         int media_active, media_status, val;
2041
2042         sc = device_get_softc(dev);
2043
2044         DBENTER(BCE_VERBOSE_PHY);
2045
2046         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2047                 bzero(&ifmr, sizeof(ifmr));
2048                 bce_ifmedia_sts_rphy(sc, &ifmr);
2049                 media_active = ifmr.ifm_active;
2050                 media_status = ifmr.ifm_status;
2051         } else {
2052                 mii = device_get_softc(sc->bce_miibus);
2053                 media_active = mii->mii_media_active;
2054                 media_status = mii->mii_media_status;
2055         }
2056
2057         /* Ignore invalid media status. */
2058         if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2059             (IFM_ACTIVE | IFM_AVALID))
2060                 goto bce_miibus_statchg_exit;
2061
2062         val = REG_RD(sc, BCE_EMAC_MODE);
2063         val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2064             BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2065             BCE_EMAC_MODE_25G);
2066
2067         /* Set MII or GMII interface based on the PHY speed. */
2068         switch (IFM_SUBTYPE(media_active)) {
2069         case IFM_10_T:
2070                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2071                         DBPRINT(sc, BCE_INFO_PHY,
2072                             "Enabling 10Mb interface.\n");
2073                         val |= BCE_EMAC_MODE_PORT_MII_10;
2074                         break;
2075                 }
2076                 /* fall-through */
2077         case IFM_100_TX:
2078                 DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2079                 val |= BCE_EMAC_MODE_PORT_MII;
2080                 break;
2081         case IFM_2500_SX:
2082                 DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2083                 val |= BCE_EMAC_MODE_25G;
2084                 /* fall-through */
2085         case IFM_1000_T:
2086         case IFM_1000_SX:
2087                 DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2088                 val |= BCE_EMAC_MODE_PORT_GMII;
2089                 break;
2090         default:
2091                 DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2092                     "default GMII interface.\n");
2093                 val |= BCE_EMAC_MODE_PORT_GMII;
2094         }
2095
2096         /* Set half or full duplex based on PHY settings. */
2097         if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2098                 DBPRINT(sc, BCE_INFO_PHY,
2099                     "Setting Half-Duplex interface.\n");
2100                 val |= BCE_EMAC_MODE_HALF_DUPLEX;
2101         } else
2102                 DBPRINT(sc, BCE_INFO_PHY,
2103                     "Setting Full-Duplex interface.\n");
2104
2105         REG_WR(sc, BCE_EMAC_MODE, val);
2106
2107         if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2108                 DBPRINT(sc, BCE_INFO_PHY,
2109                     "%s(): Enabling RX flow control.\n", __FUNCTION__);
2110                 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2111                 sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2112         } else {
2113                 DBPRINT(sc, BCE_INFO_PHY,
2114                     "%s(): Disabling RX flow control.\n", __FUNCTION__);
2115                 BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2116                 sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2117         }
2118
2119         if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2120                 DBPRINT(sc, BCE_INFO_PHY,
2121                     "%s(): Enabling TX flow control.\n", __FUNCTION__);
2122                 BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2123                 sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2124         } else {
2125                 DBPRINT(sc, BCE_INFO_PHY,
2126                     "%s(): Disabling TX flow control.\n", __FUNCTION__);
2127                 BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2128                 sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2129         }
2130
2131         /* ToDo: Update watermarks in bce_init_rx_context(). */
2132
2133 bce_miibus_statchg_exit:
2134         DBEXIT(BCE_VERBOSE_PHY);
2135 }
2136
2137
2138 /****************************************************************************/
2139 /* Acquire NVRAM lock.                                                      */
2140 /*                                                                          */
2141 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2142 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2143 /* for use by the driver.                                                   */
2144 /*                                                                          */
2145 /* Returns:                                                                 */
2146 /*   0 on success, positive value on failure.                               */
2147 /****************************************************************************/
2148 static int
2149 bce_acquire_nvram_lock(struct bce_softc *sc)
2150 {
2151         u32 val;
2152         int j, rc = 0;
2153
2154         DBENTER(BCE_VERBOSE_NVRAM);
2155
2156         /* Request access to the flash interface. */
2157         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2158         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2159                 val = REG_RD(sc, BCE_NVM_SW_ARB);
2160                 if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2161                         break;
2162
2163                 DELAY(5);
2164         }
2165
2166         if (j >= NVRAM_TIMEOUT_COUNT) {
2167                 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2168                 rc = EBUSY;
2169         }
2170
2171         DBEXIT(BCE_VERBOSE_NVRAM);
2172         return (rc);
2173 }
2174
2175
2176 /****************************************************************************/
2177 /* Release NVRAM lock.                                                      */
2178 /*                                                                          */
2179 /* When the caller is finished accessing NVRAM the lock must be released.   */
2180 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2181 /* for use by the driver.                                                   */
2182 /*                                                                          */
2183 /* Returns:                                                                 */
2184 /*   0 on success, positive value on failure.                               */
2185 /****************************************************************************/
2186 static int
2187 bce_release_nvram_lock(struct bce_softc *sc)
2188 {
2189         u32 val;
2190         int j, rc = 0;
2191
2192         DBENTER(BCE_VERBOSE_NVRAM);
2193
2194         /*
2195          * Relinquish nvram interface.
2196          */
2197         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2198
2199         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2200                 val = REG_RD(sc, BCE_NVM_SW_ARB);
2201                 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2202                         break;
2203
2204                 DELAY(5);
2205         }
2206
2207         if (j >= NVRAM_TIMEOUT_COUNT) {
2208                 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2209                 rc = EBUSY;
2210         }
2211
2212         DBEXIT(BCE_VERBOSE_NVRAM);
2213         return (rc);
2214 }
2215
2216
2217 #ifdef BCE_NVRAM_WRITE_SUPPORT
2218 /****************************************************************************/
2219 /* Enable NVRAM write access.                                               */
2220 /*                                                                          */
2221 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2222 /*                                                                          */
2223 /* Returns:                                                                 */
2224 /*   0 on success, positive value on failure.                               */
2225 /****************************************************************************/
2226 static int
2227 bce_enable_nvram_write(struct bce_softc *sc)
2228 {
2229         u32 val;
2230         int rc = 0;
2231
2232         DBENTER(BCE_VERBOSE_NVRAM);
2233
2234         val = REG_RD(sc, BCE_MISC_CFG);
2235         REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2236
2237         if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2238                 int j;
2239
2240                 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2241                 REG_WR(sc, BCE_NVM_COMMAND,     BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2242
2243                 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2244                         DELAY(5);
2245
2246                         val = REG_RD(sc, BCE_NVM_COMMAND);
2247                         if (val & BCE_NVM_COMMAND_DONE)
2248                                 break;
2249                 }
2250
2251                 if (j >= NVRAM_TIMEOUT_COUNT) {
2252                         DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2253                         rc = EBUSY;
2254                 }
2255         }
2256
2257         DBENTER(BCE_VERBOSE_NVRAM);
2258         return (rc);
2259 }
2260
2261
2262 /****************************************************************************/
2263 /* Disable NVRAM write access.                                              */
2264 /*                                                                          */
2265 /* When the caller is finished writing to NVRAM write access must be        */
2266 /* disabled.                                                                */
2267 /*                                                                          */
2268 /* Returns:                                                                 */
2269 /*   Nothing.                                                               */
2270 /****************************************************************************/
2271 static void
2272 bce_disable_nvram_write(struct bce_softc *sc)
2273 {
2274         u32 val;
2275
2276         DBENTER(BCE_VERBOSE_NVRAM);
2277
2278         val = REG_RD(sc, BCE_MISC_CFG);
2279         REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2280
2281         DBEXIT(BCE_VERBOSE_NVRAM);
2282
2283 }
2284 #endif
2285
2286
2287 /****************************************************************************/
2288 /* Enable NVRAM access.                                                     */
2289 /*                                                                          */
2290 /* Before accessing NVRAM for read or write operations the caller must      */
2291 /* enabled NVRAM access.                                                    */
2292 /*                                                                          */
2293 /* Returns:                                                                 */
2294 /*   Nothing.                                                               */
2295 /****************************************************************************/
2296 static void
2297 bce_enable_nvram_access(struct bce_softc *sc)
2298 {
2299         u32 val;
2300
2301         DBENTER(BCE_VERBOSE_NVRAM);
2302
2303         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2304         /* Enable both bits, even on read. */
2305         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2306             BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2307
2308         DBEXIT(BCE_VERBOSE_NVRAM);
2309 }
2310
2311
2312 /****************************************************************************/
2313 /* Disable NVRAM access.                                                    */
2314 /*                                                                          */
2315 /* When the caller is finished accessing NVRAM access must be disabled.     */
2316 /*                                                                          */
2317 /* Returns:                                                                 */
2318 /*   Nothing.                                                               */
2319 /****************************************************************************/
2320 static void
2321 bce_disable_nvram_access(struct bce_softc *sc)
2322 {
2323         u32 val;
2324
2325         DBENTER(BCE_VERBOSE_NVRAM);
2326
2327         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2328
2329         /* Disable both bits, even after read. */
2330         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2331             ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2332
2333         DBEXIT(BCE_VERBOSE_NVRAM);
2334 }
2335
2336
2337 #ifdef BCE_NVRAM_WRITE_SUPPORT
2338 /****************************************************************************/
2339 /* Erase NVRAM page before writing.                                         */
2340 /*                                                                          */
2341 /* Non-buffered flash parts require that a page be erased before it is      */
2342 /* written.                                                                 */
2343 /*                                                                          */
2344 /* Returns:                                                                 */
2345 /*   0 on success, positive value on failure.                               */
2346 /****************************************************************************/
2347 static int
2348 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2349 {
2350         u32 cmd;
2351         int j, rc = 0;
2352
2353         DBENTER(BCE_VERBOSE_NVRAM);
2354
2355         /* Buffered flash doesn't require an erase. */
2356         if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2357                 goto bce_nvram_erase_page_exit;
2358
2359         /* Build an erase command. */
2360         cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2361             BCE_NVM_COMMAND_DOIT;
2362
2363         /*
2364          * Clear the DONE bit separately, set the NVRAM address to erase,
2365          * and issue the erase command.
2366          */
2367         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2368         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2369         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2370
2371         /* Wait for completion. */
2372         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2373                 u32 val;
2374
2375                 DELAY(5);
2376
2377                 val = REG_RD(sc, BCE_NVM_COMMAND);
2378                 if (val & BCE_NVM_COMMAND_DONE)
2379                         break;
2380         }
2381
2382         if (j >= NVRAM_TIMEOUT_COUNT) {
2383                 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2384                 rc = EBUSY;
2385         }
2386
2387 bce_nvram_erase_page_exit:
2388         DBEXIT(BCE_VERBOSE_NVRAM);
2389         return (rc);
2390 }
2391 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2392
2393
2394 /****************************************************************************/
2395 /* Read a dword (32 bits) from NVRAM.                                       */
2396 /*                                                                          */
2397 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2398 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2399 /*                                                                          */
2400 /* Returns:                                                                 */
2401 /*   0 on success and the 32 bit value read, positive value on failure.     */
2402 /****************************************************************************/
2403 static int
2404 bce_nvram_read_dword(struct bce_softc *sc,
2405     u32 offset, u8 *ret_val, u32 cmd_flags)
2406 {
2407         u32 cmd;
2408         int i, rc = 0;
2409
2410         DBENTER(BCE_EXTREME_NVRAM);
2411
2412         /* Build the command word. */
2413         cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2414
2415         /* Calculate the offset for buffered flash if translation is used. */
2416         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2417                 offset = ((offset / sc->bce_flash_info->page_size) <<
2418                     sc->bce_flash_info->page_bits) +
2419                     (offset % sc->bce_flash_info->page_size);
2420         }
2421
2422         /*
2423          * Clear the DONE bit separately, set the address to read,
2424          * and issue the read.
2425          */
2426         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2427         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2428         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2429
2430         /* Wait for completion. */
2431         for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2432                 u32 val;
2433
2434                 DELAY(5);
2435
2436                 val = REG_RD(sc, BCE_NVM_COMMAND);
2437                 if (val & BCE_NVM_COMMAND_DONE) {
2438                         val = REG_RD(sc, BCE_NVM_READ);
2439
2440                         val = bce_be32toh(val);
2441                         memcpy(ret_val, &val, 4);
2442                         break;
2443                 }
2444         }
2445
2446         /* Check for errors. */
2447         if (i >= NVRAM_TIMEOUT_COUNT) {
2448                 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2449                     "offset 0x%08X!\n", __FILE__, __LINE__, offset);
2450                 rc = EBUSY;
2451         }
2452
2453         DBEXIT(BCE_EXTREME_NVRAM);
2454         return(rc);
2455 }
2456
2457
2458 #ifdef BCE_NVRAM_WRITE_SUPPORT
2459 /****************************************************************************/
2460 /* Write a dword (32 bits) to NVRAM.                                        */
2461 /*                                                                          */
2462 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2463 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2464 /* enabled NVRAM write access.                                              */
2465 /*                                                                          */
2466 /* Returns:                                                                 */
2467 /*   0 on success, positive value on failure.                               */
2468 /****************************************************************************/
2469 static int
2470 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2471         u32 cmd_flags)
2472 {
2473         u32 cmd, val32;
2474         int j, rc = 0;
2475
2476         DBENTER(BCE_VERBOSE_NVRAM);
2477
2478         /* Build the command word. */
2479         cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2480
2481         /* Calculate the offset for buffered flash if translation is used. */
2482         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2483                 offset = ((offset / sc->bce_flash_info->page_size) <<
2484                     sc->bce_flash_info->page_bits) +
2485                     (offset % sc->bce_flash_info->page_size);
2486         }
2487
2488         /*
2489          * Clear the DONE bit separately, convert NVRAM data to big-endian,
2490          * set the NVRAM address to write, and issue the write command
2491          */
2492         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2493         memcpy(&val32, val, 4);
2494         val32 = htobe32(val32);
2495         REG_WR(sc, BCE_NVM_WRITE, val32);
2496         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2497         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2498
2499         /* Wait for completion. */
2500         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2501                 DELAY(5);
2502
2503                 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2504                         break;
2505         }
2506         if (j >= NVRAM_TIMEOUT_COUNT) {
2507                 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2508                     "offset 0x%08X\n", __FILE__, __LINE__, offset);
2509                 rc = EBUSY;
2510         }
2511
2512         DBEXIT(BCE_VERBOSE_NVRAM);
2513         return (rc);
2514 }
2515 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2516
2517
2518 /****************************************************************************/
2519 /* Initialize NVRAM access.                                                 */
2520 /*                                                                          */
2521 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2522 /* access that device.                                                      */
2523 /*                                                                          */
2524 /* Returns:                                                                 */
2525 /*   0 on success, positive value on failure.                               */
2526 /****************************************************************************/
2527 static int
2528 bce_init_nvram(struct bce_softc *sc)
2529 {
2530         u32 val;
2531         int j, entry_count, rc = 0;
2532         const struct flash_spec *flash;
2533
2534         DBENTER(BCE_VERBOSE_NVRAM);
2535
2536         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2537                 sc->bce_flash_info = &flash_5709;
2538                 goto bce_init_nvram_get_flash_size;
2539         }
2540
2541         /* Determine the selected interface. */
2542         val = REG_RD(sc, BCE_NVM_CFG1);
2543
2544         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2545
2546         /*
2547          * Flash reconfiguration is required to support additional
2548          * NVRAM devices not directly supported in hardware.
2549          * Check if the flash interface was reconfigured
2550          * by the bootcode.
2551          */
2552
2553         if (val & 0x40000000) {
2554                 /* Flash interface reconfigured by bootcode. */
2555
2556                 DBPRINT(sc,BCE_INFO_LOAD,
2557                         "bce_init_nvram(): Flash WAS reconfigured.\n");
2558
2559                 for (j = 0, flash = &flash_table[0]; j < entry_count;
2560                      j++, flash++) {
2561                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
2562                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2563                                 sc->bce_flash_info = flash;
2564                                 break;
2565                         }
2566                 }
2567         } else {
2568                 /* Flash interface not yet reconfigured. */
2569                 u32 mask;
2570
2571                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2572                         __FUNCTION__);
2573
2574                 if (val & (1 << 23))
2575                         mask = FLASH_BACKUP_STRAP_MASK;
2576                 else
2577                         mask = FLASH_STRAP_MASK;
2578
2579                 /* Look for the matching NVRAM device configuration data. */
2580                 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2581
2582                         /* Check if the device matches any of the known devices. */
2583                         if ((val & mask) == (flash->strapping & mask)) {
2584                                 /* Found a device match. */
2585                                 sc->bce_flash_info = flash;
2586
2587                                 /* Request access to the flash interface. */
2588                                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2589                                         return rc;
2590
2591                                 /* Reconfigure the flash interface. */
2592                                 bce_enable_nvram_access(sc);
2593                                 REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2594                                 REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2595                                 REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2596                                 REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2597                                 bce_disable_nvram_access(sc);
2598                                 bce_release_nvram_lock(sc);
2599
2600                                 break;
2601                         }
2602                 }
2603         }
2604
2605         /* Check if a matching device was found. */
2606         if (j == entry_count) {
2607                 sc->bce_flash_info = NULL;
2608                 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2609                     __FILE__, __LINE__);
2610                 DBEXIT(BCE_VERBOSE_NVRAM);
2611                 return (ENODEV);
2612         }
2613
2614 bce_init_nvram_get_flash_size:
2615         /* Write the flash config data to the shared memory interface. */
2616         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2617         val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2618         if (val)
2619                 sc->bce_flash_size = val;
2620         else
2621                 sc->bce_flash_size = sc->bce_flash_info->total_size;
2622
2623         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2624             __FUNCTION__, sc->bce_flash_info->name,
2625             sc->bce_flash_info->total_size);
2626
2627         DBEXIT(BCE_VERBOSE_NVRAM);
2628         return rc;
2629 }
2630
2631
2632 /****************************************************************************/
2633 /* Read an arbitrary range of data from NVRAM.                              */
2634 /*                                                                          */
2635 /* Prepares the NVRAM interface for access and reads the requested data     */
2636 /* into the supplied buffer.                                                */
2637 /*                                                                          */
2638 /* Returns:                                                                 */
2639 /*   0 on success and the data read, positive value on failure.             */
2640 /****************************************************************************/
2641 static int
2642 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2643         int buf_size)
2644 {
2645         int rc = 0;
2646         u32 cmd_flags, offset32, len32, extra;
2647
2648         DBENTER(BCE_VERBOSE_NVRAM);
2649
2650         if (buf_size == 0)
2651                 goto bce_nvram_read_exit;
2652
2653         /* Request access to the flash interface. */
2654         if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2655                 goto bce_nvram_read_exit;
2656
2657         /* Enable access to flash interface */
2658         bce_enable_nvram_access(sc);
2659
2660         len32 = buf_size;
2661         offset32 = offset;
2662         extra = 0;
2663
2664         cmd_flags = 0;
2665
2666         if (offset32 & 3) {
2667                 u8 buf[4];
2668                 u32 pre_len;
2669
2670                 offset32 &= ~3;
2671                 pre_len = 4 - (offset & 3);
2672
2673                 if (pre_len >= len32) {
2674                         pre_len = len32;
2675                         cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2676                 }
2677                 else {
2678                         cmd_flags = BCE_NVM_COMMAND_FIRST;
2679                 }
2680
2681                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2682
2683                 if (rc)
2684                         return rc;
2685
2686                 memcpy(ret_buf, buf + (offset & 3), pre_len);
2687
2688                 offset32 += 4;
2689                 ret_buf += pre_len;
2690                 len32 -= pre_len;
2691         }
2692
2693         if (len32 & 3) {
2694                 extra = 4 - (len32 & 3);
2695                 len32 = (len32 + 4) & ~3;
2696         }
2697
2698         if (len32 == 4) {
2699                 u8 buf[4];
2700
2701                 if (cmd_flags)
2702                         cmd_flags = BCE_NVM_COMMAND_LAST;
2703                 else
2704                         cmd_flags = BCE_NVM_COMMAND_FIRST |
2705                                     BCE_NVM_COMMAND_LAST;
2706
2707                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2708
2709                 memcpy(ret_buf, buf, 4 - extra);
2710         }
2711         else if (len32 > 0) {
2712                 u8 buf[4];
2713
2714                 /* Read the first word. */
2715                 if (cmd_flags)
2716                         cmd_flags = 0;
2717                 else
2718                         cmd_flags = BCE_NVM_COMMAND_FIRST;
2719
2720                 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2721
2722                 /* Advance to the next dword. */
2723                 offset32 += 4;
2724                 ret_buf += 4;
2725                 len32 -= 4;
2726
2727                 while (len32 > 4 && rc == 0) {
2728                         rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2729
2730                         /* Advance to the next dword. */
2731                         offset32 += 4;
2732                         ret_buf += 4;
2733                         len32 -= 4;
2734                 }
2735
2736                 if (rc)
2737                         goto bce_nvram_read_locked_exit;
2738
2739                 cmd_flags = BCE_NVM_COMMAND_LAST;
2740                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2741
2742                 memcpy(ret_buf, buf, 4 - extra);
2743         }
2744
2745 bce_nvram_read_locked_exit:
2746         /* Disable access to flash interface and release the lock. */
2747         bce_disable_nvram_access(sc);
2748         bce_release_nvram_lock(sc);
2749
2750 bce_nvram_read_exit:
2751         DBEXIT(BCE_VERBOSE_NVRAM);
2752         return rc;
2753 }
2754
2755
2756 #ifdef BCE_NVRAM_WRITE_SUPPORT
2757 /****************************************************************************/
2758 /* Write an arbitrary range of data from NVRAM.                             */
2759 /*                                                                          */
2760 /* Prepares the NVRAM interface for write access and writes the requested   */
2761 /* data from the supplied buffer.  The caller is responsible for            */
2762 /* calculating any appropriate CRCs.                                        */
2763 /*                                                                          */
2764 /* Returns:                                                                 */
2765 /*   0 on success, positive value on failure.                               */
2766 /****************************************************************************/
2767 static int
2768 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2769         int buf_size)
2770 {
2771         u32 written, offset32, len32;
2772         u8 *buf, start[4], end[4];
2773         int rc = 0;
2774         int align_start, align_end;
2775
2776         DBENTER(BCE_VERBOSE_NVRAM);
2777
2778         buf = data_buf;
2779         offset32 = offset;
2780         len32 = buf_size;
2781         align_start = align_end = 0;
2782
2783         if ((align_start = (offset32 & 3))) {
2784                 offset32 &= ~3;
2785                 len32 += align_start;
2786                 if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2787                         goto bce_nvram_write_exit;
2788         }
2789
2790         if (len32 & 3) {
2791                 if ((len32 > 4) || !align_start) {
2792                         align_end = 4 - (len32 & 3);
2793                         len32 += align_end;
2794                         if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2795                                 end, 4))) {
2796                                 goto bce_nvram_write_exit;
2797                         }
2798                 }
2799         }
2800
2801         if (align_start || align_end) {
2802                 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2803                 if (buf == NULL) {
2804                         rc = ENOMEM;
2805                         goto bce_nvram_write_exit;
2806                 }
2807
2808                 if (align_start) {
2809                         memcpy(buf, start, 4);
2810                 }
2811
2812                 if (align_end) {
2813                         memcpy(buf + len32 - 4, end, 4);
2814                 }
2815                 memcpy(buf + align_start, data_buf, buf_size);
2816         }
2817
2818         written = 0;
2819         while ((written < len32) && (rc == 0)) {
2820                 u32 page_start, page_end, data_start, data_end;
2821                 u32 addr, cmd_flags;
2822                 int i;
2823                 u8 flash_buffer[264];
2824
2825             /* Find the page_start addr */
2826                 page_start = offset32 + written;
2827                 page_start -= (page_start % sc->bce_flash_info->page_size);
2828                 /* Find the page_end addr */
2829                 page_end = page_start + sc->bce_flash_info->page_size;
2830                 /* Find the data_start addr */
2831                 data_start = (written == 0) ? offset32 : page_start;
2832                 /* Find the data_end addr */
2833                 data_end = (page_end > offset32 + len32) ?
2834                         (offset32 + len32) : page_end;
2835
2836                 /* Request access to the flash interface. */
2837                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2838                         goto bce_nvram_write_exit;
2839
2840                 /* Enable access to flash interface */
2841                 bce_enable_nvram_access(sc);
2842
2843                 cmd_flags = BCE_NVM_COMMAND_FIRST;
2844                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2845                         int j;
2846
2847                         /* Read the whole page into the buffer
2848                          * (non-buffer flash only) */
2849                         for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2850                                 if (j == (sc->bce_flash_info->page_size - 4)) {
2851                                         cmd_flags |= BCE_NVM_COMMAND_LAST;
2852                                 }
2853                                 rc = bce_nvram_read_dword(sc,
2854                                         page_start + j,
2855                                         &flash_buffer[j],
2856                                         cmd_flags);
2857
2858                                 if (rc)
2859                                         goto bce_nvram_write_locked_exit;
2860
2861                                 cmd_flags = 0;
2862                         }
2863                 }
2864
2865                 /* Enable writes to flash interface (unlock write-protect) */
2866                 if ((rc = bce_enable_nvram_write(sc)) != 0)
2867                         goto bce_nvram_write_locked_exit;
2868
2869                 /* Erase the page */
2870                 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2871                         goto bce_nvram_write_locked_exit;
2872
2873                 /* Re-enable the write again for the actual write */
2874                 bce_enable_nvram_write(sc);
2875
2876                 /* Loop to write back the buffer data from page_start to
2877                  * data_start */
2878                 i = 0;
2879                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2880                         for (addr = page_start; addr < data_start;
2881                                 addr += 4, i += 4) {
2882
2883                                 rc = bce_nvram_write_dword(sc, addr,
2884                                         &flash_buffer[i], cmd_flags);
2885
2886                                 if (rc != 0)
2887                                         goto bce_nvram_write_locked_exit;
2888
2889                                 cmd_flags = 0;
2890                         }
2891                 }
2892
2893                 /* Loop to write the new data from data_start to data_end */
2894                 for (addr = data_start; addr < data_end; addr += 4, i++) {
2895                         if ((addr == page_end - 4) ||
2896                                 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2897                                 (addr == data_end - 4))) {
2898
2899                                 cmd_flags |= BCE_NVM_COMMAND_LAST;
2900                         }
2901                         rc = bce_nvram_write_dword(sc, addr, buf,
2902                                 cmd_flags);
2903
2904                         if (rc != 0)
2905                                 goto bce_nvram_write_locked_exit;
2906
2907                         cmd_flags = 0;
2908                         buf += 4;
2909                 }
2910
2911                 /* Loop to write back the buffer data from data_end
2912                  * to page_end */
2913                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2914                         for (addr = data_end; addr < page_end;
2915                                 addr += 4, i += 4) {
2916
2917                                 if (addr == page_end-4) {
2918                                         cmd_flags = BCE_NVM_COMMAND_LAST;
2919                                 }
2920                                 rc = bce_nvram_write_dword(sc, addr,
2921                                         &flash_buffer[i], cmd_flags);
2922
2923                                 if (rc != 0)
2924                                         goto bce_nvram_write_locked_exit;
2925
2926                                 cmd_flags = 0;
2927                         }
2928                 }
2929
2930                 /* Disable writes to flash interface (lock write-protect) */
2931                 bce_disable_nvram_write(sc);
2932
2933                 /* Disable access to flash interface */
2934                 bce_disable_nvram_access(sc);
2935                 bce_release_nvram_lock(sc);
2936
2937                 /* Increment written */
2938                 written += data_end - data_start;
2939         }
2940
2941         goto bce_nvram_write_exit;
2942
2943 bce_nvram_write_locked_exit:
2944         bce_disable_nvram_write(sc);
2945         bce_disable_nvram_access(sc);
2946         bce_release_nvram_lock(sc);
2947
2948 bce_nvram_write_exit:
2949         if (align_start || align_end)
2950                 free(buf, M_DEVBUF);
2951
2952         DBEXIT(BCE_VERBOSE_NVRAM);
2953         return (rc);
2954 }
2955 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2956
2957
2958 /****************************************************************************/
2959 /* Verifies that NVRAM is accessible and contains valid data.               */
2960 /*                                                                          */
2961 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2962 /* correct.                                                                 */
2963 /*                                                                          */
2964 /* Returns:                                                                 */
2965 /*   0 on success, positive value on failure.                               */
2966 /****************************************************************************/
2967 static int
2968 bce_nvram_test(struct bce_softc *sc)
2969 {
2970         u32 buf[BCE_NVRAM_SIZE / 4];
2971         u8 *data = (u8 *) buf;
2972         int rc = 0;
2973         u32 magic, csum;
2974
2975         DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2976
2977         /*
2978          * Check that the device NVRAM is valid by reading
2979          * the magic value at offset 0.
2980          */
2981         if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2982                 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2983                     __FILE__, __LINE__);
2984                 goto bce_nvram_test_exit;
2985         }
2986
2987         /*
2988          * Verify that offset 0 of the NVRAM contains
2989          * a valid magic number.
2990          */
2991         magic = bce_be32toh(buf[0]);
2992         if (magic != BCE_NVRAM_MAGIC) {
2993                 rc = ENODEV;
2994                 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2995                     "Expected: 0x%08X, Found: 0x%08X\n",
2996                     __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2997                 goto bce_nvram_test_exit;
2998         }
2999
3000         /*
3001          * Verify that the device NVRAM includes valid
3002          * configuration data.
3003          */
3004         if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
3005                 BCE_PRINTF("%s(%d): Unable to read manufacturing "
3006                     "Information from  NVRAM!\n", __FILE__, __LINE__);
3007                 goto bce_nvram_test_exit;
3008         }
3009
3010         csum = ether_crc32_le(data, 0x100);
3011         if (csum != BCE_CRC32_RESIDUAL) {
3012                 rc = ENODEV;
3013                 BCE_PRINTF("%s(%d): Invalid manufacturing information "
3014                     "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
3015                     __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
3016                 goto bce_nvram_test_exit;
3017         }
3018
3019         csum = ether_crc32_le(data + 0x100, 0x100);
3020         if (csum != BCE_CRC32_RESIDUAL) {
3021                 rc = ENODEV;
3022                 BCE_PRINTF("%s(%d): Invalid feature configuration "
3023                     "information NVRAM CRC! Expected: 0x%08X, "
3024                     "Found: 08%08X\n", __FILE__, __LINE__,
3025                     BCE_CRC32_RESIDUAL, csum);
3026         }
3027
3028 bce_nvram_test_exit:
3029         DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
3030         return rc;
3031 }
3032
3033
3034 /****************************************************************************/
3035 /* Calculates the size of the buffers to allocate based on the MTU.         */
3036 /*                                                                          */
3037 /* Returns:                                                                 */
3038 /*   Nothing.                                                               */
3039 /****************************************************************************/
3040 static void
3041 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
3042 {
3043         DBENTER(BCE_VERBOSE_LOAD);
3044
3045         /* Use a single allocation type when header splitting enabled. */
3046         if (bce_hdr_split == TRUE) {
3047                 sc->rx_bd_mbuf_alloc_size = MHLEN;
3048                 /* Make sure offset is 16 byte aligned for hardware. */
3049                 sc->rx_bd_mbuf_align_pad =
3050                         roundup2(MSIZE - MHLEN, 16) - (MSIZE - MHLEN);
3051                 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
3052                         sc->rx_bd_mbuf_align_pad;
3053         } else {
3054                 if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3055                     ETHER_CRC_LEN) > MCLBYTES) {
3056                         /* Setup for jumbo RX buffer allocations. */
3057                         sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3058                         sc->rx_bd_mbuf_align_pad  =
3059                                 roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3060                         sc->rx_bd_mbuf_data_len =
3061                             sc->rx_bd_mbuf_alloc_size -
3062                             sc->rx_bd_mbuf_align_pad;
3063                 } else {
3064                         /* Setup for standard RX buffer allocations. */
3065                         sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3066                         sc->rx_bd_mbuf_align_pad  =
3067                             roundup2(MCLBYTES, 16) - MCLBYTES;
3068                         sc->rx_bd_mbuf_data_len =
3069                             sc->rx_bd_mbuf_alloc_size -
3070                             sc->rx_bd_mbuf_align_pad;
3071                 }
3072         }
3073
3074 //      DBPRINT(sc, BCE_INFO_LOAD,
3075         DBPRINT(sc, BCE_WARN,
3076            "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3077            "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3078            sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3079            sc->rx_bd_mbuf_align_pad);
3080
3081         DBEXIT(BCE_VERBOSE_LOAD);
3082 }
3083
3084 /****************************************************************************/
3085 /* Identifies the current media type of the controller and sets the PHY     */
3086 /* address.                                                                 */
3087 /*                                                                          */
3088 /* Returns:                                                                 */
3089 /*   Nothing.                                                               */
3090 /****************************************************************************/
3091 static void
3092 bce_get_media(struct bce_softc *sc)
3093 {
3094         u32 val;
3095
3096         DBENTER(BCE_VERBOSE_PHY);
3097
3098         /* Assume PHY address for copper controllers. */
3099         sc->bce_phy_addr = 1;
3100
3101         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3102                 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3103                 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3104                 u32 strap;
3105
3106                 /*
3107                  * The BCM5709S is software configurable
3108                  * for Copper or SerDes operation.
3109                  */
3110                 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3111                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3112                             "for copper.\n");
3113                         goto bce_get_media_exit;
3114                 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3115                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3116                             "for dual media.\n");
3117                         sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3118                         goto bce_get_media_exit;
3119                 }
3120
3121                 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3122                         strap = (val &
3123                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3124                 else
3125                         strap = (val &
3126                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3127
3128                 if (pci_get_function(sc->bce_dev) == 0) {
3129                         switch (strap) {
3130                         case 0x4:
3131                         case 0x5:
3132                         case 0x6:
3133                                 DBPRINT(sc, BCE_INFO_LOAD,
3134                                     "BCM5709 s/w configured for SerDes.\n");
3135                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3136                                 break;
3137                         default:
3138                                 DBPRINT(sc, BCE_INFO_LOAD,
3139                                     "BCM5709 s/w configured for Copper.\n");
3140                                 break;
3141                         }
3142                 } else {
3143                         switch (strap) {
3144                         case 0x1:
3145                         case 0x2:
3146                         case 0x4:
3147                                 DBPRINT(sc, BCE_INFO_LOAD,
3148                                     "BCM5709 s/w configured for SerDes.\n");
3149                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3150                                 break;
3151                         default:
3152                                 DBPRINT(sc, BCE_INFO_LOAD,
3153                                     "BCM5709 s/w configured for Copper.\n");
3154                                 break;
3155                         }
3156                 }
3157
3158         } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3159                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3160
3161         if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3162
3163                 sc->bce_flags |= BCE_NO_WOL_FLAG;
3164
3165                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3166                         sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3167
3168                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3169                         /* 5708S/09S/16S use a separate PHY for SerDes. */
3170                         sc->bce_phy_addr = 2;
3171
3172                         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3173                         if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3174                                 sc->bce_phy_flags |=
3175                                     BCE_PHY_2_5G_CAPABLE_FLAG;
3176                                 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3177                                     "capable adapter\n");
3178                         }
3179                 }
3180         } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3181             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3182                 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3183
3184 bce_get_media_exit:
3185         DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3186                 "Using PHY address %d.\n", sc->bce_phy_addr);
3187
3188         DBEXIT(BCE_VERBOSE_PHY);
3189 }
3190
3191
3192 /****************************************************************************/
3193 /* Performs PHY initialization required before MII drivers access the       */
3194 /* device.                                                                  */
3195 /*                                                                          */
3196 /* Returns:                                                                 */
3197 /*   Nothing.                                                               */
3198 /****************************************************************************/
3199 static void
3200 bce_init_media(struct bce_softc *sc)
3201 {
3202         if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3203             BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3204                 /*
3205                  * Configure 5709S/5716S PHYs to use traditional IEEE
3206                  * Clause 22 method. Otherwise we have no way to attach
3207                  * the PHY in mii(4) layer. PHY specific configuration
3208                  * is done in mii layer.
3209                  */
3210
3211                 /* Select auto-negotiation MMD of the PHY. */
3212                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3213                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3214                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3215                     BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3216
3217                 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3218                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3219                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3220         }
3221 }
3222
3223
3224 /****************************************************************************/
3225 /* Free any DMA memory owned by the driver.                                 */
3226 /*                                                                          */
3227 /* Scans through each data structre that requires DMA memory and frees      */
3228 /* the memory if allocated.                                                 */
3229 /*                                                                          */
3230 /* Returns:                                                                 */
3231 /*   Nothing.                                                               */
3232 /****************************************************************************/
3233 static void
3234 bce_dma_free(struct bce_softc *sc)
3235 {
3236         int i;
3237
3238         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3239
3240         /* Free, unmap, and destroy the status block. */
3241         if (sc->status_block_paddr != 0) {
3242                 bus_dmamap_unload(
3243                     sc->status_tag,
3244                     sc->status_map);
3245                 sc->status_block_paddr = 0;
3246         }
3247
3248         if (sc->status_block != NULL) {
3249                 bus_dmamem_free(
3250                    sc->status_tag,
3251                     sc->status_block,
3252                     sc->status_map);
3253                 sc->status_block = NULL;
3254         }
3255
3256         if (sc->status_tag != NULL) {
3257                 bus_dma_tag_destroy(sc->status_tag);
3258                 sc->status_tag = NULL;
3259         }
3260
3261
3262         /* Free, unmap, and destroy the statistics block. */
3263         if (sc->stats_block_paddr != 0) {
3264                 bus_dmamap_unload(
3265                     sc->stats_tag,
3266                     sc->stats_map);
3267                 sc->stats_block_paddr = 0;
3268         }
3269
3270         if (sc->stats_block != NULL) {
3271                 bus_dmamem_free(
3272                     sc->stats_tag,
3273                     sc->stats_block,
3274                     sc->stats_map);
3275                 sc->stats_block = NULL;
3276         }
3277
3278         if (sc->stats_tag != NULL) {
3279                 bus_dma_tag_destroy(sc->stats_tag);
3280                 sc->stats_tag = NULL;
3281         }
3282
3283
3284         /* Free, unmap and destroy all context memory pages. */
3285         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3286                 for (i = 0; i < sc->ctx_pages; i++ ) {
3287                         if (sc->ctx_paddr[i] != 0) {
3288                                 bus_dmamap_unload(
3289                                     sc->ctx_tag,
3290                                     sc->ctx_map[i]);
3291                                 sc->ctx_paddr[i] = 0;
3292                         }
3293
3294                         if (sc->ctx_block[i] != NULL) {
3295                                 bus_dmamem_free(
3296                                     sc->ctx_tag,
3297                                     sc->ctx_block[i],
3298                                     sc->ctx_map[i]);
3299                                 sc->ctx_block[i] = NULL;
3300                         }
3301                 }
3302
3303                 /* Destroy the context memory tag. */
3304                 if (sc->ctx_tag != NULL) {
3305                         bus_dma_tag_destroy(sc->ctx_tag);
3306                         sc->ctx_tag = NULL;
3307                 }
3308         }
3309
3310
3311         /* Free, unmap and destroy all TX buffer descriptor chain pages. */
3312         for (i = 0; i < sc->tx_pages; i++ ) {
3313                 if (sc->tx_bd_chain_paddr[i] != 0) {
3314                         bus_dmamap_unload(
3315                             sc->tx_bd_chain_tag,
3316                             sc->tx_bd_chain_map[i]);
3317                         sc->tx_bd_chain_paddr[i] = 0;
3318                 }
3319
3320                 if (sc->tx_bd_chain[i] != NULL) {
3321                         bus_dmamem_free(
3322                             sc->tx_bd_chain_tag,
3323                             sc->tx_bd_chain[i],
3324                             sc->tx_bd_chain_map[i]);
3325                         sc->tx_bd_chain[i] = NULL;
3326                 }
3327         }
3328
3329         /* Destroy the TX buffer descriptor tag. */
3330         if (sc->tx_bd_chain_tag != NULL) {
3331                 bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3332                 sc->tx_bd_chain_tag = NULL;
3333         }
3334
3335
3336         /* Free, unmap and destroy all RX buffer descriptor chain pages. */
3337         for (i = 0; i < sc->rx_pages; i++ ) {
3338                 if (sc->rx_bd_chain_paddr[i] != 0) {
3339                         bus_dmamap_unload(
3340                             sc->rx_bd_chain_tag,
3341                             sc->rx_bd_chain_map[i]);
3342                         sc->rx_bd_chain_paddr[i] = 0;
3343                 }
3344
3345                 if (sc->rx_bd_chain[i] != NULL) {
3346                         bus_dmamem_free(
3347                             sc->rx_bd_chain_tag,
3348                             sc->rx_bd_chain[i],
3349                             sc->rx_bd_chain_map[i]);
3350                         sc->rx_bd_chain[i] = NULL;
3351                 }
3352         }
3353
3354         /* Destroy the RX buffer descriptor tag. */
3355         if (sc->rx_bd_chain_tag != NULL) {
3356                 bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3357                 sc->rx_bd_chain_tag = NULL;
3358         }
3359
3360
3361         /* Free, unmap and destroy all page buffer descriptor chain pages. */
3362         if (bce_hdr_split == TRUE) {
3363                 for (i = 0; i < sc->pg_pages; i++ ) {
3364                         if (sc->pg_bd_chain_paddr[i] != 0) {
3365                                 bus_dmamap_unload(
3366                                     sc->pg_bd_chain_tag,
3367                                     sc->pg_bd_chain_map[i]);
3368                                 sc->pg_bd_chain_paddr[i] = 0;
3369                         }
3370
3371                         if (sc->pg_bd_chain[i] != NULL) {
3372                                 bus_dmamem_free(
3373                                     sc->pg_bd_chain_tag,
3374                                     sc->pg_bd_chain[i],
3375                                     sc->pg_bd_chain_map[i]);
3376                                 sc->pg_bd_chain[i] = NULL;
3377                         }
3378                 }
3379
3380                 /* Destroy the page buffer descriptor tag. */
3381                 if (sc->pg_bd_chain_tag != NULL) {
3382                         bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3383                         sc->pg_bd_chain_tag = NULL;
3384                 }
3385         }
3386
3387
3388         /* Unload and destroy the TX mbuf maps. */
3389         for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3390                 if (sc->tx_mbuf_map[i] != NULL) {
3391                         bus_dmamap_unload(sc->tx_mbuf_tag,
3392                             sc->tx_mbuf_map[i]);
3393                         bus_dmamap_destroy(sc->tx_mbuf_tag,
3394                             sc->tx_mbuf_map[i]);
3395                         sc->tx_mbuf_map[i] = NULL;
3396                 }
3397         }
3398
3399         /* Destroy the TX mbuf tag. */
3400         if (sc->tx_mbuf_tag != NULL) {
3401                 bus_dma_tag_destroy(sc->tx_mbuf_tag);
3402                 sc->tx_mbuf_tag = NULL;
3403         }
3404
3405         /* Unload and destroy the RX mbuf maps. */
3406         for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3407                 if (sc->rx_mbuf_map[i] != NULL) {
3408                         bus_dmamap_unload(sc->rx_mbuf_tag,
3409                             sc->rx_mbuf_map[i]);
3410                         bus_dmamap_destroy(sc->rx_mbuf_tag,
3411                             sc->rx_mbuf_map[i]);
3412                         sc->rx_mbuf_map[i] = NULL;
3413                 }
3414         }
3415
3416         /* Destroy the RX mbuf tag. */
3417         if (sc->rx_mbuf_tag != NULL) {
3418                 bus_dma_tag_destroy(sc->rx_mbuf_tag);
3419                 sc->rx_mbuf_tag = NULL;
3420         }
3421
3422         /* Unload and destroy the page mbuf maps. */
3423         if (bce_hdr_split == TRUE) {
3424                 for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3425                         if (sc->pg_mbuf_map[i] != NULL) {
3426                                 bus_dmamap_unload(sc->pg_mbuf_tag,
3427                                     sc->pg_mbuf_map[i]);
3428                                 bus_dmamap_destroy(sc->pg_mbuf_tag,
3429                                     sc->pg_mbuf_map[i]);
3430                                 sc->pg_mbuf_map[i] = NULL;
3431                         }
3432                 }
3433
3434                 /* Destroy the page mbuf tag. */
3435                 if (sc->pg_mbuf_tag != NULL) {
3436                         bus_dma_tag_destroy(sc->pg_mbuf_tag);
3437                         sc->pg_mbuf_tag = NULL;
3438                 }
3439         }
3440
3441         /* Destroy the parent tag */
3442         if (sc->parent_tag != NULL) {
3443                 bus_dma_tag_destroy(sc->parent_tag);
3444                 sc->parent_tag = NULL;
3445         }
3446
3447         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3448 }
3449
3450
3451 /****************************************************************************/
3452 /* Get DMA memory from the OS.                                              */
3453 /*                                                                          */
3454 /* Validates that the OS has provided DMA buffers in response to a          */
3455 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3456 /* When the callback is used the OS will return 0 for the mapping function  */
3457 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3458 /* failures back to the caller.                                             */
3459 /*                                                                          */
3460 /* Returns:                                                                 */
3461 /*   Nothing.                                                               */
3462 /****************************************************************************/
3463 static void
3464 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3465 {
3466         bus_addr_t *busaddr = arg;
3467
3468         KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3469             __FUNCTION__, nseg));
3470         /* Simulate a mapping failure. */
3471         DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3472             error = ENOMEM);
3473
3474         /* ToDo: How to increment debug sim_count variable here? */
3475
3476         /* Check for an error and signal the caller that an error occurred. */
3477         if (error) {
3478                 *busaddr = 0;
3479         } else {
3480                 *busaddr = segs->ds_addr;
3481         }
3482 }
3483
3484
3485 /****************************************************************************/
3486 /* Allocate any DMA memory needed by the driver.                            */
3487 /*                                                                          */
3488 /* Allocates DMA memory needed for the various global structures needed by  */
3489 /* hardware.                                                                */
3490 /*                                                                          */
3491 /* Memory alignment requirements:                                           */
3492 /* +-----------------+----------+----------+----------+----------+          */
3493 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3494 /* +-----------------+----------+----------+----------+----------+          */
3495 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3496 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3497 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3498 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3499 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3500 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3501 /* |Context Memory   |          |          |          |          |          */
3502 /* +-----------------+----------+----------+----------+----------+          */
3503 /*                                                                          */
3504 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3505 /*                                                                          */
3506 /* Returns:                                                                 */
3507 /*   0 for success, positive value for failure.                             */
3508 /****************************************************************************/
3509 static int
3510 bce_dma_alloc(device_t dev)
3511 {
3512         struct bce_softc *sc;
3513         int i, error, rc = 0;
3514         bus_size_t max_size, max_seg_size;
3515         int max_segments;
3516
3517         sc = device_get_softc(dev);
3518
3519         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3520
3521         /*
3522          * Allocate the parent bus DMA tag appropriate for PCI.
3523          */
3524         if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3525             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3526             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3527             &sc->parent_tag)) {
3528                 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3529                     __FILE__, __LINE__);
3530                 rc = ENOMEM;
3531                 goto bce_dma_alloc_exit;
3532         }
3533
3534         /*
3535          * Create a DMA tag for the status block, allocate and clear the
3536          * memory, map the memory into DMA space, and fetch the physical
3537          * address of the block.
3538          */
3539         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3540             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3541             NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3542             0, NULL, NULL, &sc->status_tag)) {
3543                 BCE_PRINTF("%s(%d): Could not allocate status block "
3544                     "DMA tag!\n", __FILE__, __LINE__);
3545                 rc = ENOMEM;
3546                 goto bce_dma_alloc_exit;
3547         }
3548
3549         if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3550             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3551             &sc->status_map)) {
3552                 BCE_PRINTF("%s(%d): Could not allocate status block "
3553                     "DMA memory!\n", __FILE__, __LINE__);
3554                 rc = ENOMEM;
3555                 goto bce_dma_alloc_exit;
3556         }
3557
3558         error = bus_dmamap_load(sc->status_tag, sc->status_map,
3559             sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3560             &sc->status_block_paddr, BUS_DMA_NOWAIT);
3561
3562         if (error || sc->status_block_paddr == 0) {
3563                 BCE_PRINTF("%s(%d): Could not map status block "
3564                     "DMA memory!\n", __FILE__, __LINE__);
3565                 rc = ENOMEM;
3566                 goto bce_dma_alloc_exit;
3567         }
3568
3569         DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3570             __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3571
3572         /*
3573          * Create a DMA tag for the statistics block, allocate and clear the
3574          * memory, map the memory into DMA space, and fetch the physical
3575          * address of the block.
3576          */
3577         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3578             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3579             NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3580             0, NULL, NULL, &sc->stats_tag)) {
3581                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
3582                     "DMA tag!\n", __FILE__, __LINE__);
3583                 rc = ENOMEM;
3584                 goto bce_dma_alloc_exit;
3585         }
3586
3587         if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3588             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3589                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
3590                     "DMA memory!\n", __FILE__, __LINE__);
3591                 rc = ENOMEM;
3592                 goto bce_dma_alloc_exit;
3593         }
3594
3595         error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3596             sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3597             &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3598
3599         if (error || sc->stats_block_paddr == 0) {
3600                 BCE_PRINTF("%s(%d): Could not map statistics block "
3601                     "DMA memory!\n", __FILE__, __LINE__);
3602                 rc = ENOMEM;
3603                 goto bce_dma_alloc_exit;
3604         }
3605
3606         DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3607             __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3608
3609         /* BCM5709 uses host memory as cache for context memory. */
3610         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3611                 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3612                 if (sc->ctx_pages == 0)
3613                         sc->ctx_pages = 1;
3614
3615                 DBRUNIF((sc->ctx_pages > 512),
3616                     BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3617                     __FILE__, __LINE__, sc->ctx_pages));
3618
3619                 /*
3620                  * Create a DMA tag for the context pages,
3621                  * allocate and clear the memory, map the
3622                  * memory into DMA space, and fetch the
3623                  * physical address of the block.
3624                  */
3625                 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3626                     BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3627                     NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3628                     0, NULL, NULL, &sc->ctx_tag)) {
3629                         BCE_PRINTF("%s(%d): Could not allocate CTX "
3630                             "DMA tag!\n", __FILE__, __LINE__);
3631                         rc = ENOMEM;
3632                         goto bce_dma_alloc_exit;
3633                 }
3634
3635                 for (i = 0; i < sc->ctx_pages; i++) {
3636
3637                         if(bus_dmamem_alloc(sc->ctx_tag,
3638                             (void **)&sc->ctx_block[i],
3639                             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3640                             &sc->ctx_map[i])) {
3641                                 BCE_PRINTF("%s(%d): Could not allocate CTX "
3642                                     "DMA memory!\n", __FILE__, __LINE__);
3643                                 rc = ENOMEM;
3644                                 goto bce_dma_alloc_exit;
3645                         }
3646
3647                         error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3648                             sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3649                             &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3650
3651                         if (error || sc->ctx_paddr[i] == 0) {
3652                                 BCE_PRINTF("%s(%d): Could not map CTX "
3653                                     "DMA memory!\n", __FILE__, __LINE__);
3654                                 rc = ENOMEM;
3655                                 goto bce_dma_alloc_exit;
3656                         }
3657
3658                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3659                             "= 0x%jX\n", __FUNCTION__, i,
3660                             (uintmax_t) sc->ctx_paddr[i]);
3661                 }
3662         }
3663
3664         /*
3665          * Create a DMA tag for the TX buffer descriptor chain,
3666          * allocate and clear the  memory, and fetch the
3667          * physical address of the block.
3668          */
3669         if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3670             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3671             BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3672             NULL, NULL, &sc->tx_bd_chain_tag)) {
3673                 BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3674                     "chain DMA tag!\n", __FILE__, __LINE__);
3675                 rc = ENOMEM;
3676                 goto bce_dma_alloc_exit;
3677         }
3678
3679         for (i = 0; i < sc->tx_pages; i++) {
3680
3681                 if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3682                     (void **)&sc->tx_bd_chain[i],
3683                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3684                     &sc->tx_bd_chain_map[i])) {
3685                         BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3686                             "chain DMA memory!\n", __FILE__, __LINE__);
3687                         rc = ENOMEM;
3688                         goto bce_dma_alloc_exit;
3689                 }
3690
3691                 error = bus_dmamap_load(sc->tx_bd_chain_tag,
3692                     sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3693                     BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3694                     &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3695
3696                 if (error || sc->tx_bd_chain_paddr[i] == 0) {
3697                         BCE_PRINTF("%s(%d): Could not map TX descriptor "
3698                             "chain DMA memory!\n", __FILE__, __LINE__);
3699                         rc = ENOMEM;
3700                         goto bce_dma_alloc_exit;
3701                 }
3702
3703                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3704                     "0x%jX\n", __FUNCTION__, i,
3705                     (uintmax_t) sc->tx_bd_chain_paddr[i]);
3706         }
3707
3708         /* Check the required size before mapping to conserve resources. */
3709         if (bce_tso_enable) {
3710                 max_size     = BCE_TSO_MAX_SIZE;
3711                 max_segments = BCE_MAX_SEGMENTS;
3712                 max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3713         } else {
3714                 max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3715                 max_segments = BCE_MAX_SEGMENTS;
3716                 max_seg_size = MCLBYTES;
3717         }
3718
3719         /* Create a DMA tag for TX mbufs. */
3720         if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3721             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3722             max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) {
3723                 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3724                     __FILE__, __LINE__);
3725                 rc = ENOMEM;
3726                 goto bce_dma_alloc_exit;
3727         }
3728
3729         /* Create DMA maps for the TX mbufs clusters. */
3730         for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3731                 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3732                         &sc->tx_mbuf_map[i])) {
3733                         BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3734                             "map!\n", __FILE__, __LINE__);
3735                         rc = ENOMEM;
3736                         goto bce_dma_alloc_exit;
3737                 }
3738         }
3739
3740         /*
3741          * Create a DMA tag for the RX buffer descriptor chain,
3742          * allocate and clear the memory, and fetch the physical
3743          * address of the blocks.
3744          */
3745         if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3746                         BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3747                         sc->max_bus_addr, NULL, NULL,
3748                         BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3749                         0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3750                 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3751                     "DMA tag!\n", __FILE__, __LINE__);
3752                 rc = ENOMEM;
3753                 goto bce_dma_alloc_exit;
3754         }
3755
3756         for (i = 0; i < sc->rx_pages; i++) {
3757
3758                 if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3759                     (void **)&sc->rx_bd_chain[i],
3760                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3761                     &sc->rx_bd_chain_map[i])) {
3762                         BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3763                             "chain DMA memory!\n", __FILE__, __LINE__);
3764                         rc = ENOMEM;
3765                         goto bce_dma_alloc_exit;
3766                 }
3767
3768                 error = bus_dmamap_load(sc->rx_bd_chain_tag,
3769                     sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3770                     BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3771                     &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3772
3773                 if (error || sc->rx_bd_chain_paddr[i] == 0) {
3774                         BCE_PRINTF("%s(%d): Could not map RX descriptor "
3775                             "chain DMA memory!\n", __FILE__, __LINE__);
3776                         rc = ENOMEM;
3777                         goto bce_dma_alloc_exit;
3778                 }
3779
3780                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3781                     "0x%jX\n", __FUNCTION__, i,
3782                     (uintmax_t) sc->rx_bd_chain_paddr[i]);
3783         }
3784
3785         /*
3786          * Create a DMA tag for RX mbufs.
3787          */
3788         if (bce_hdr_split == TRUE)
3789                 max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3790                     MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3791         else
3792                 max_size = MJUM9BYTES;
3793
3794         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3795             "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3796
3797         if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3798             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3799             max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3800                 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3801                     __FILE__, __LINE__);
3802                 rc = ENOMEM;
3803                 goto bce_dma_alloc_exit;
3804         }
3805
3806         /* Create DMA maps for the RX mbuf clusters. */
3807         for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3808                 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3809                     &sc->rx_mbuf_map[i])) {
3810                         BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3811                             "DMA map!\n", __FILE__, __LINE__);
3812                         rc = ENOMEM;
3813                         goto bce_dma_alloc_exit;
3814                 }
3815         }
3816
3817         if (bce_hdr_split == TRUE) {
3818                 /*
3819                  * Create a DMA tag for the page buffer descriptor chain,
3820                  * allocate and clear the memory, and fetch the physical
3821                  * address of the blocks.
3822                  */
3823                 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3824                             BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3825                             NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3826                             0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3827                         BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3828                             "chain DMA tag!\n", __FILE__, __LINE__);
3829                         rc = ENOMEM;
3830                         goto bce_dma_alloc_exit;
3831                 }
3832
3833                 for (i = 0; i < sc->pg_pages; i++) {
3834                         if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3835                             (void **)&sc->pg_bd_chain[i],
3836                             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3837                             &sc->pg_bd_chain_map[i])) {
3838                                 BCE_PRINTF("%s(%d): Could not allocate page "
3839                                     "descriptor chain DMA memory!\n",
3840                                     __FILE__, __LINE__);
3841                                 rc = ENOMEM;
3842                                 goto bce_dma_alloc_exit;
3843                         }
3844
3845                         error = bus_dmamap_load(sc->pg_bd_chain_tag,
3846                             sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3847                             BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3848                             &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3849
3850                         if (error || sc->pg_bd_chain_paddr[i] == 0) {
3851                                 BCE_PRINTF("%s(%d): Could not map page descriptor "
3852                                         "chain DMA memory!\n", __FILE__, __LINE__);
3853                                 rc = ENOMEM;
3854                                 goto bce_dma_alloc_exit;
3855                         }
3856
3857                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3858                                 "0x%jX\n", __FUNCTION__, i,
3859                                 (uintmax_t) sc->pg_bd_chain_paddr[i]);
3860                 }
3861
3862                 /*
3863                  * Create a DMA tag for page mbufs.
3864                  */
3865                 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3866                     sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3867                     1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3868                         BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3869                                 "DMA tag!\n", __FILE__, __LINE__);
3870                         rc = ENOMEM;
3871                         goto bce_dma_alloc_exit;
3872                 }
3873
3874                 /* Create DMA maps for the page mbuf clusters. */
3875                 for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3876                         if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3877                                 &sc->pg_mbuf_map[i])) {
3878                                 BCE_PRINTF("%s(%d): Unable to create page mbuf "
3879                                         "DMA map!\n", __FILE__, __LINE__);
3880                                 rc = ENOMEM;
3881                                 goto bce_dma_alloc_exit;
3882                         }
3883                 }
3884         }
3885
3886 bce_dma_alloc_exit:
3887         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3888         return(rc);
3889 }
3890
3891
3892 /****************************************************************************/
3893 /* Release all resources used by the driver.                                */
3894 /*                                                                          */
3895 /* Releases all resources acquired by the driver including interrupts,      */
3896 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3897 /*                                                                          */
3898 /* Returns:                                                                 */
3899 /*   Nothing.                                                               */
3900 /****************************************************************************/
3901 static void
3902 bce_release_resources(struct bce_softc *sc)
3903 {
3904         device_t dev;
3905
3906         DBENTER(BCE_VERBOSE_RESET);
3907
3908         dev = sc->bce_dev;
3909
3910         bce_dma_free(sc);
3911
3912         if (sc->bce_intrhand != NULL) {
3913                 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3914                 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3915         }
3916
3917         if (sc->bce_res_irq != NULL) {
3918                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3919                 bus_release_resource(dev, SYS_RES_IRQ,
3920                     rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3921         }
3922
3923         if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3924                 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3925                 pci_release_msi(dev);
3926         }
3927
3928         if (sc->bce_res_mem != NULL) {
3929                 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3930                     bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3931                     sc->bce_res_mem);
3932         }
3933
3934         if (sc->bce_ifp != NULL) {
3935                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3936                 if_free(sc->bce_ifp);
3937         }
3938
3939         if (mtx_initialized(&sc->bce_mtx))
3940                 BCE_LOCK_DESTROY(sc);
3941
3942         DBEXIT(BCE_VERBOSE_RESET);
3943 }
3944
3945
3946 /****************************************************************************/
3947 /* Firmware synchronization.                                                */
3948 /*                                                                          */
3949 /* Before performing certain events such as a chip reset, synchronize with  */
3950 /* the firmware first.                                                      */
3951 /*                                                                          */
3952 /* Returns:                                                                 */
3953 /*   0 for success, positive value for failure.                             */
3954 /****************************************************************************/
3955 static int
3956 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3957 {
3958         int i, rc = 0;
3959         u32 val;
3960
3961         DBENTER(BCE_VERBOSE_RESET);
3962
3963         /* Don't waste any time if we've timed out before. */
3964         if (sc->bce_fw_timed_out == TRUE) {
3965                 rc = EBUSY;
3966                 goto bce_fw_sync_exit;
3967         }
3968
3969         /* Increment the message sequence number. */
3970         sc->bce_fw_wr_seq++;
3971         msg_data |= sc->bce_fw_wr_seq;
3972
3973         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3974             "0x%08X\n", msg_data);
3975
3976         /* Send the message to the bootcode driver mailbox. */
3977         bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3978
3979         /* Wait for the bootcode to acknowledge the message. */
3980         for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3981                 /* Check for a response in the bootcode firmware mailbox. */
3982                 val = bce_shmem_rd(sc, BCE_FW_MB);
3983                 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3984                         break;
3985                 DELAY(1000);
3986         }
3987
3988         /* If we've timed out, tell bootcode that we've stopped waiting. */
3989         if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3990             ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3991
3992                 BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3993                     "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3994
3995                 msg_data &= ~BCE_DRV_MSG_CODE;
3996                 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3997
3998                 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3999
4000                 sc->bce_fw_timed_out = TRUE;
4001                 rc = EBUSY;
4002         }
4003
4004 bce_fw_sync_exit:
4005         DBEXIT(BCE_VERBOSE_RESET);
4006         return (rc);
4007 }
4008
4009
4010 /****************************************************************************/
4011 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
4012 /*                                                                          */
4013 /* Returns:                                                                 */
4014 /*   Nothing.                                                               */
4015 /****************************************************************************/
4016 static void
4017 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
4018         u32 rv2p_code_len, u32 rv2p_proc)
4019 {
4020         int i;
4021         u32 val;
4022
4023         DBENTER(BCE_VERBOSE_RESET);
4024
4025         /* Set the page size used by RV2P. */
4026         if (rv2p_proc == RV2P_PROC2) {
4027                 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
4028         }
4029
4030         for (i = 0; i < rv2p_code_len; i += 8) {
4031                 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4032                 rv2p_code++;
4033                 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4034                 rv2p_code++;
4035
4036                 if (rv2p_proc == RV2P_PROC1) {
4037                         val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4038                         REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4039                 }
4040                 else {
4041                         val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4042                         REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4043                 }
4044         }
4045
4046         /* Reset the processor, un-stall is done later. */
4047         if (rv2p_proc == RV2P_PROC1) {
4048                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4049         }
4050         else {
4051                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4052         }
4053
4054         DBEXIT(BCE_VERBOSE_RESET);
4055 }
4056
4057
4058 /****************************************************************************/
4059 /* Load RISC processor firmware.                                            */
4060 /*                                                                          */
4061 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4062 /* associated with a particular processor.                                  */
4063 /*                                                                          */
4064 /* Returns:                                                                 */
4065 /*   Nothing.                                                               */
4066 /****************************************************************************/
4067 static void
4068 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4069         struct fw_info *fw)
4070 {
4071         u32 offset;
4072
4073         DBENTER(BCE_VERBOSE_RESET);
4074
4075     bce_halt_cpu(sc, cpu_reg);
4076
4077         /* Load the Text area. */
4078         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4079         if (fw->text) {
4080                 int j;
4081
4082                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4083                         REG_WR_IND(sc, offset, fw->text[j]);
4084                 }
4085         }
4086
4087         /* Load the Data area. */
4088         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4089         if (fw->data) {
4090                 int j;
4091
4092                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4093                         REG_WR_IND(sc, offset, fw->data[j]);
4094                 }
4095         }
4096
4097         /* Load the SBSS area. */
4098         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4099         if (fw->sbss) {
4100                 int j;
4101
4102                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4103                         REG_WR_IND(sc, offset, fw->sbss[j]);
4104                 }
4105         }
4106
4107         /* Load the BSS area. */
4108         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4109         if (fw->bss) {
4110                 int j;
4111
4112                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4113                         REG_WR_IND(sc, offset, fw->bss[j]);
4114                 }
4115         }
4116
4117         /* Load the Read-Only area. */
4118         offset = cpu_reg->spad_base +
4119                 (fw->rodata_addr - cpu_reg->mips_view_base);
4120         if (fw->rodata) {
4121                 int j;
4122
4123                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4124                         REG_WR_IND(sc, offset, fw->rodata[j]);
4125                 }
4126         }
4127
4128         /* Clear the pre-fetch instruction and set the FW start address. */
4129         REG_WR_IND(sc, cpu_reg->inst, 0);
4130         REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4131
4132         DBEXIT(BCE_VERBOSE_RESET);
4133 }
4134
4135
4136 /****************************************************************************/
4137 /* Starts the RISC processor.                                               */
4138 /*                                                                          */
4139 /* Assumes the CPU starting address has already been set.                   */
4140 /*                                                                          */
4141 /* Returns:                                                                 */
4142 /*   Nothing.                                                               */
4143 /****************************************************************************/
4144 static void
4145 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4146 {
4147         u32 val;
4148
4149         DBENTER(BCE_VERBOSE_RESET);
4150
4151         /* Start the CPU. */
4152         val = REG_RD_IND(sc, cpu_reg->mode);
4153         val &= ~cpu_reg->mode_value_halt;
4154         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4155         REG_WR_IND(sc, cpu_reg->mode, val);
4156
4157         DBEXIT(BCE_VERBOSE_RESET);
4158 }
4159
4160
4161 /****************************************************************************/
4162 /* Halts the RISC processor.                                                */
4163 /*                                                                          */
4164 /* Returns:                                                                 */
4165 /*   Nothing.                                                               */
4166 /****************************************************************************/
4167 static void
4168 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4169 {
4170         u32 val;
4171
4172         DBENTER(BCE_VERBOSE_RESET);
4173
4174         /* Halt the CPU. */
4175         val = REG_RD_IND(sc, cpu_reg->mode);
4176         val |= cpu_reg->mode_value_halt;
4177         REG_WR_IND(sc, cpu_reg->mode, val);
4178         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4179
4180         DBEXIT(BCE_VERBOSE_RESET);
4181 }
4182
4183
4184 /****************************************************************************/
4185 /* Initialize the RX CPU.                                                   */
4186 /*                                                                          */
4187 /* Returns:                                                                 */
4188 /*   Nothing.                                                               */
4189 /****************************************************************************/
4190 static void
4191 bce_start_rxp_cpu(struct bce_softc *sc)
4192 {
4193         struct cpu_reg cpu_reg;
4194
4195         DBENTER(BCE_VERBOSE_RESET);
4196
4197         cpu_reg.mode = BCE_RXP_CPU_MODE;
4198         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4199         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4200         cpu_reg.state = BCE_RXP_CPU_STATE;
4201         cpu_reg.state_value_clear = 0xffffff;
4202         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4203         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4204         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4205         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4206         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4207         cpu_reg.spad_base = BCE_RXP_SCRATCH;
4208         cpu_reg.mips_view_base = 0x8000000;
4209
4210         DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4211         bce_start_cpu(sc, &cpu_reg);
4212
4213         DBEXIT(BCE_VERBOSE_RESET);
4214 }
4215
4216
4217 /****************************************************************************/
4218 /* Initialize the RX CPU.                                                   */
4219 /*                                                                          */
4220 /* Returns:                                                                 */
4221 /*   Nothing.                                                               */
4222 /****************************************************************************/
4223 static void
4224 bce_init_rxp_cpu(struct bce_softc *sc)
4225 {
4226         struct cpu_reg cpu_reg;
4227         struct fw_info fw;
4228
4229         DBENTER(BCE_VERBOSE_RESET);
4230
4231         cpu_reg.mode = BCE_RXP_CPU_MODE;
4232         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4233         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4234         cpu_reg.state = BCE_RXP_CPU_STATE;
4235         cpu_reg.state_value_clear = 0xffffff;
4236         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4237         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4238         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4239         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4240         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4241         cpu_reg.spad_base = BCE_RXP_SCRATCH;
4242         cpu_reg.mips_view_base = 0x8000000;
4243
4244         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4245                 fw.ver_major = bce_RXP_b09FwReleaseMajor;
4246                 fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4247                 fw.ver_fix = bce_RXP_b09FwReleaseFix;
4248                 fw.start_addr = bce_RXP_b09FwStartAddr;
4249
4250                 fw.text_addr = bce_RXP_b09FwTextAddr;
4251                 fw.text_len = bce_RXP_b09FwTextLen;
4252                 fw.text_index = 0;
4253                 fw.text = bce_RXP_b09FwText;
4254
4255                 fw.data_addr = bce_RXP_b09FwDataAddr;
4256                 fw.data_len = bce_RXP_b09FwDataLen;
4257                 fw.data_index = 0;
4258                 fw.data = bce_RXP_b09FwData;
4259
4260                 fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4261                 fw.sbss_len = bce_RXP_b09FwSbssLen;
4262                 fw.sbss_index = 0;
4263                 fw.sbss = bce_RXP_b09FwSbss;
4264
4265                 fw.bss_addr = bce_RXP_b09FwBssAddr;
4266                 fw.bss_len = bce_RXP_b09FwBssLen;
4267                 fw.bss_index = 0;
4268                 fw.bss = bce_RXP_b09FwBss;
4269
4270                 fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4271                 fw.rodata_len = bce_RXP_b09FwRodataLen;
4272                 fw.rodata_index = 0;
4273                 fw.rodata = bce_RXP_b09FwRodata;
4274         } else {
4275                 fw.ver_major = bce_RXP_b06FwReleaseMajor;
4276                 fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4277                 fw.ver_fix = bce_RXP_b06FwReleaseFix;
4278                 fw.start_addr = bce_RXP_b06FwStartAddr;
4279
4280                 fw.text_addr = bce_RXP_b06FwTextAddr;
4281                 fw.text_len = bce_RXP_b06FwTextLen;
4282                 fw.text_index = 0;
4283                 fw.text = bce_RXP_b06FwText;
4284
4285                 fw.data_addr = bce_RXP_b06FwDataAddr;
4286                 fw.data_len = bce_RXP_b06FwDataLen;
4287                 fw.data_index = 0;
4288                 fw.data = bce_RXP_b06FwData;
4289
4290                 fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4291                 fw.sbss_len = bce_RXP_b06FwSbssLen;
4292                 fw.sbss_index = 0;
4293                 fw.sbss = bce_RXP_b06FwSbss;
4294
4295                 fw.bss_addr = bce_RXP_b06FwBssAddr;
4296                 fw.bss_len = bce_RXP_b06FwBssLen;
4297                 fw.bss_index = 0;
4298                 fw.bss = bce_RXP_b06FwBss;
4299
4300                 fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4301                 fw.rodata_len = bce_RXP_b06FwRodataLen;
4302                 fw.rodata_index = 0;
4303                 fw.rodata = bce_RXP_b06FwRodata;
4304         }
4305
4306         DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4307         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4308
4309     /* Delay RXP start until initialization is complete. */
4310
4311         DBEXIT(BCE_VERBOSE_RESET);
4312 }
4313
4314
4315 /****************************************************************************/
4316 /* Initialize the TX CPU.                                                   */
4317 /*                                                                          */
4318 /* Returns:                                                                 */
4319 /*   Nothing.                                                               */
4320 /****************************************************************************/
4321 static void
4322 bce_init_txp_cpu(struct bce_softc *sc)
4323 {
4324         struct cpu_reg cpu_reg;
4325         struct fw_info fw;
4326
4327         DBENTER(BCE_VERBOSE_RESET);
4328
4329         cpu_reg.mode = BCE_TXP_CPU_MODE;
4330         cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4331         cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4332         cpu_reg.state = BCE_TXP_CPU_STATE;
4333         cpu_reg.state_value_clear = 0xffffff;
4334         cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4335         cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4336         cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4337         cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4338         cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4339         cpu_reg.spad_base = BCE_TXP_SCRATCH;
4340         cpu_reg.mips_view_base = 0x8000000;
4341
4342         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4343                 fw.ver_major = bce_TXP_b09FwReleaseMajor;
4344                 fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4345                 fw.ver_fix = bce_TXP_b09FwReleaseFix;
4346                 fw.start_addr = bce_TXP_b09FwStartAddr;
4347
4348                 fw.text_addr = bce_TXP_b09FwTextAddr;
4349                 fw.text_len = bce_TXP_b09FwTextLen;
4350                 fw.text_index = 0;
4351                 fw.text = bce_TXP_b09FwText;
4352
4353                 fw.data_addr = bce_TXP_b09FwDataAddr;
4354                 fw.data_len = bce_TXP_b09FwDataLen;
4355                 fw.data_index = 0;
4356                 fw.data = bce_TXP_b09FwData;
4357
4358                 fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4359                 fw.sbss_len = bce_TXP_b09FwSbssLen;
4360                 fw.sbss_index = 0;
4361                 fw.sbss = bce_TXP_b09FwSbss;
4362
4363                 fw.bss_addr = bce_TXP_b09FwBssAddr;
4364                 fw.bss_len = bce_TXP_b09FwBssLen;
4365                 fw.bss_index = 0;
4366                 fw.bss = bce_TXP_b09FwBss;
4367
4368                 fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4369                 fw.rodata_len = bce_TXP_b09FwRodataLen;
4370                 fw.rodata_index = 0;
4371                 fw.rodata = bce_TXP_b09FwRodata;
4372         } else {
4373                 fw.ver_major = bce_TXP_b06FwReleaseMajor;
4374                 fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4375                 fw.ver_fix = bce_TXP_b06FwReleaseFix;
4376                 fw.start_addr = bce_TXP_b06FwStartAddr;
4377
4378                 fw.text_addr = bce_TXP_b06FwTextAddr;
4379                 fw.text_len = bce_TXP_b06FwTextLen;
4380                 fw.text_index = 0;
4381                 fw.text = bce_TXP_b06FwText;
4382
4383                 fw.data_addr = bce_TXP_b06FwDataAddr;
4384                 fw.data_len = bce_TXP_b06FwDataLen;
4385                 fw.data_index = 0;
4386                 fw.data = bce_TXP_b06FwData;
4387
4388                 fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4389                 fw.sbss_len = bce_TXP_b06FwSbssLen;
4390                 fw.sbss_index = 0;
4391                 fw.sbss = bce_TXP_b06FwSbss;
4392
4393                 fw.bss_addr = bce_TXP_b06FwBssAddr;
4394                 fw.bss_len = bce_TXP_b06FwBssLen;
4395                 fw.bss_index = 0;
4396                 fw.bss = bce_TXP_b06FwBss;
4397
4398                 fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4399                 fw.rodata_len = bce_TXP_b06FwRodataLen;
4400                 fw.rodata_index = 0;
4401                 fw.rodata = bce_TXP_b06FwRodata;
4402         }
4403
4404         DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4405         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4406     bce_start_cpu(sc, &cpu_reg);
4407
4408         DBEXIT(BCE_VERBOSE_RESET);
4409 }
4410
4411
4412 /****************************************************************************/
4413 /* Initialize the TPAT CPU.                                                 */
4414 /*                                                                          */
4415 /* Returns:                                                                 */
4416 /*   Nothing.                                                               */
4417 /****************************************************************************/
4418 static void
4419 bce_init_tpat_cpu(struct bce_softc *sc)
4420 {
4421         struct cpu_reg cpu_reg;
4422         struct fw_info fw;
4423
4424         DBENTER(BCE_VERBOSE_RESET);
4425
4426         cpu_reg.mode = BCE_TPAT_CPU_MODE;
4427         cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4428         cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4429         cpu_reg.state = BCE_TPAT_CPU_STATE;
4430         cpu_reg.state_value_clear = 0xffffff;
4431         cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4432         cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4433         cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4434         cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4435         cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4436         cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4437         cpu_reg.mips_view_base = 0x8000000;
4438
4439         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4440                 fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4441                 fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4442                 fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4443                 fw.start_addr = bce_TPAT_b09FwStartAddr;
4444
4445                 fw.text_addr = bce_TPAT_b09FwTextAddr;
4446                 fw.text_len = bce_TPAT_b09FwTextLen;
4447                 fw.text_index = 0;
4448                 fw.text = bce_TPAT_b09FwText;
4449
4450                 fw.data_addr = bce_TPAT_b09FwDataAddr;
4451                 fw.data_len = bce_TPAT_b09FwDataLen;
4452                 fw.data_index = 0;
4453                 fw.data = bce_TPAT_b09FwData;
4454
4455                 fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4456                 fw.sbss_len = bce_TPAT_b09FwSbssLen;
4457                 fw.sbss_index = 0;
4458                 fw.sbss = bce_TPAT_b09FwSbss;
4459
4460                 fw.bss_addr = bce_TPAT_b09FwBssAddr;
4461                 fw.bss_len = bce_TPAT_b09FwBssLen;
4462                 fw.bss_index = 0;
4463                 fw.bss = bce_TPAT_b09FwBss;
4464
4465                 fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4466                 fw.rodata_len = bce_TPAT_b09FwRodataLen;
4467                 fw.rodata_index = 0;
4468                 fw.rodata = bce_TPAT_b09FwRodata;
4469         } else {
4470                 fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4471                 fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4472                 fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4473                 fw.start_addr = bce_TPAT_b06FwStartAddr;
4474
4475                 fw.text_addr = bce_TPAT_b06FwTextAddr;
4476                 fw.text_len = bce_TPAT_b06FwTextLen;
4477                 fw.text_index = 0;
4478                 fw.text = bce_TPAT_b06FwText;
4479
4480                 fw.data_addr = bce_TPAT_b06FwDataAddr;
4481                 fw.data_len = bce_TPAT_b06FwDataLen;
4482                 fw.data_index = 0;
4483                 fw.data = bce_TPAT_b06FwData;
4484
4485                 fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4486                 fw.sbss_len = bce_TPAT_b06FwSbssLen;
4487                 fw.sbss_index = 0;
4488                 fw.sbss = bce_TPAT_b06FwSbss;
4489
4490                 fw.bss_addr = bce_TPAT_b06FwBssAddr;
4491                 fw.bss_len = bce_TPAT_b06FwBssLen;
4492                 fw.bss_index = 0;
4493                 fw.bss = bce_TPAT_b06FwBss;
4494
4495                 fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4496                 fw.rodata_len = bce_TPAT_b06FwRodataLen;
4497                 fw.rodata_index = 0;
4498                 fw.rodata = bce_TPAT_b06FwRodata;
4499         }
4500
4501         DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4502         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4503         bce_start_cpu(sc, &cpu_reg);
4504
4505         DBEXIT(BCE_VERBOSE_RESET);
4506 }
4507
4508
4509 /****************************************************************************/
4510 /* Initialize the CP CPU.                                                   */
4511 /*                                                                          */
4512 /* Returns:                                                                 */
4513 /*   Nothing.                                                               */
4514 /****************************************************************************/
4515 static void
4516 bce_init_cp_cpu(struct bce_softc *sc)
4517 {
4518         struct cpu_reg cpu_reg;
4519         struct fw_info fw;
4520
4521         DBENTER(BCE_VERBOSE_RESET);
4522
4523         cpu_reg.mode = BCE_CP_CPU_MODE;
4524         cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4525         cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4526         cpu_reg.state = BCE_CP_CPU_STATE;
4527         cpu_reg.state_value_clear = 0xffffff;
4528         cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4529         cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4530         cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4531         cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4532         cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4533         cpu_reg.spad_base = BCE_CP_SCRATCH;
4534         cpu_reg.mips_view_base = 0x8000000;
4535
4536         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4537                 fw.ver_major = bce_CP_b09FwReleaseMajor;
4538                 fw.ver_minor = bce_CP_b09FwReleaseMinor;
4539                 fw.ver_fix = bce_CP_b09FwReleaseFix;
4540                 fw.start_addr = bce_CP_b09FwStartAddr;
4541
4542                 fw.text_addr = bce_CP_b09FwTextAddr;
4543                 fw.text_len = bce_CP_b09FwTextLen;
4544                 fw.text_index = 0;
4545                 fw.text = bce_CP_b09FwText;
4546
4547                 fw.data_addr = bce_CP_b09FwDataAddr;
4548                 fw.data_len = bce_CP_b09FwDataLen;
4549                 fw.data_index = 0;
4550                 fw.data = bce_CP_b09FwData;
4551
4552                 fw.sbss_addr = bce_CP_b09FwSbssAddr;
4553                 fw.sbss_len = bce_CP_b09FwSbssLen;
4554                 fw.sbss_index = 0;
4555                 fw.sbss = bce_CP_b09FwSbss;
4556
4557                 fw.bss_addr = bce_CP_b09FwBssAddr;
4558                 fw.bss_len = bce_CP_b09FwBssLen;
4559                 fw.bss_index = 0;
4560                 fw.bss = bce_CP_b09FwBss;
4561
4562                 fw.rodata_addr = bce_CP_b09FwRodataAddr;
4563                 fw.rodata_len = bce_CP_b09FwRodataLen;
4564                 fw.rodata_index = 0;
4565                 fw.rodata = bce_CP_b09FwRodata;
4566         } else {
4567                 fw.ver_major = bce_CP_b06FwReleaseMajor;
4568                 fw.ver_minor = bce_CP_b06FwReleaseMinor;
4569                 fw.ver_fix = bce_CP_b06FwReleaseFix;
4570                 fw.start_addr = bce_CP_b06FwStartAddr;
4571
4572                 fw.text_addr = bce_CP_b06FwTextAddr;
4573                 fw.text_len = bce_CP_b06FwTextLen;
4574                 fw.text_index = 0;
4575                 fw.text = bce_CP_b06FwText;
4576
4577                 fw.data_addr = bce_CP_b06FwDataAddr;
4578                 fw.data_len = bce_CP_b06FwDataLen;
4579                 fw.data_index = 0;
4580                 fw.data = bce_CP_b06FwData;
4581
4582                 fw.sbss_addr = bce_CP_b06FwSbssAddr;
4583                 fw.sbss_len = bce_CP_b06FwSbssLen;
4584                 fw.sbss_index = 0;
4585                 fw.sbss = bce_CP_b06FwSbss;
4586
4587                 fw.bss_addr = bce_CP_b06FwBssAddr;
4588                 fw.bss_len = bce_CP_b06FwBssLen;
4589                 fw.bss_index = 0;
4590                 fw.bss = bce_CP_b06FwBss;
4591
4592                 fw.rodata_addr = bce_CP_b06FwRodataAddr;
4593                 fw.rodata_len = bce_CP_b06FwRodataLen;
4594                 fw.rodata_index = 0;
4595                 fw.rodata = bce_CP_b06FwRodata;
4596         }
4597
4598         DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4599         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4600         bce_start_cpu(sc, &cpu_reg);
4601
4602         DBEXIT(BCE_VERBOSE_RESET);
4603 }
4604
4605
4606 /****************************************************************************/
4607 /* Initialize the COM CPU.                                                 */
4608 /*                                                                          */
4609 /* Returns:                                                                 */
4610 /*   Nothing.                                                               */
4611 /****************************************************************************/
4612 static void
4613 bce_init_com_cpu(struct bce_softc *sc)
4614 {
4615         struct cpu_reg cpu_reg;
4616         struct fw_info fw;
4617
4618         DBENTER(BCE_VERBOSE_RESET);
4619
4620         cpu_reg.mode = BCE_COM_CPU_MODE;
4621         cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4622         cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4623         cpu_reg.state = BCE_COM_CPU_STATE;
4624         cpu_reg.state_value_clear = 0xffffff;
4625         cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4626         cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4627         cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4628         cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4629         cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4630         cpu_reg.spad_base = BCE_COM_SCRATCH;
4631         cpu_reg.mips_view_base = 0x8000000;
4632
4633         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4634                 fw.ver_major = bce_COM_b09FwReleaseMajor;
4635                 fw.ver_minor = bce_COM_b09FwReleaseMinor;
4636                 fw.ver_fix = bce_COM_b09FwReleaseFix;
4637                 fw.start_addr = bce_COM_b09FwStartAddr;
4638
4639                 fw.text_addr = bce_COM_b09FwTextAddr;
4640                 fw.text_len = bce_COM_b09FwTextLen;
4641                 fw.text_index = 0;
4642                 fw.text = bce_COM_b09FwText;
4643
4644                 fw.data_addr = bce_COM_b09FwDataAddr;
4645                 fw.data_len = bce_COM_b09FwDataLen;
4646                 fw.data_index = 0;
4647                 fw.data = bce_COM_b09FwData;
4648
4649                 fw.sbss_addr = bce_COM_b09FwSbssAddr;
4650                 fw.sbss_len = bce_COM_b09FwSbssLen;
4651                 fw.sbss_index = 0;
4652                 fw.sbss = bce_COM_b09FwSbss;
4653
4654                 fw.bss_addr = bce_COM_b09FwBssAddr;
4655                 fw.bss_len = bce_COM_b09FwBssLen;
4656                 fw.bss_index = 0;
4657                 fw.bss = bce_COM_b09FwBss;
4658
4659                 fw.rodata_addr = bce_COM_b09FwRodataAddr;
4660                 fw.rodata_len = bce_COM_b09FwRodataLen;
4661                 fw.rodata_index = 0;
4662                 fw.rodata = bce_COM_b09FwRodata;
4663         } else {
4664                 fw.ver_major = bce_COM_b06FwReleaseMajor;
4665                 fw.ver_minor = bce_COM_b06FwReleaseMinor;
4666                 fw.ver_fix = bce_COM_b06FwReleaseFix;
4667                 fw.start_addr = bce_COM_b06FwStartAddr;
4668
4669                 fw.text_addr = bce_COM_b06FwTextAddr;
4670                 fw.text_len = bce_COM_b06FwTextLen;
4671                 fw.text_index = 0;
4672                 fw.text = bce_COM_b06FwText;
4673
4674                 fw.data_addr = bce_COM_b06FwDataAddr;
4675                 fw.data_len = bce_COM_b06FwDataLen;
4676                 fw.data_index = 0;
4677                 fw.data = bce_COM_b06FwData;
4678
4679                 fw.sbss_addr = bce_COM_b06FwSbssAddr;
4680                 fw.sbss_len = bce_COM_b06FwSbssLen;
4681                 fw.sbss_index = 0;
4682                 fw.sbss = bce_COM_b06FwSbss;
4683
4684                 fw.bss_addr = bce_COM_b06FwBssAddr;
4685                 fw.bss_len = bce_COM_b06FwBssLen;
4686                 fw.bss_index = 0;
4687                 fw.bss = bce_COM_b06FwBss;
4688
4689                 fw.rodata_addr = bce_COM_b06FwRodataAddr;
4690                 fw.rodata_len = bce_COM_b06FwRodataLen;
4691                 fw.rodata_index = 0;
4692                 fw.rodata = bce_COM_b06FwRodata;
4693         }
4694
4695         DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4696         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4697         bce_start_cpu(sc, &cpu_reg);
4698
4699         DBEXIT(BCE_VERBOSE_RESET);
4700 }
4701
4702
4703 /****************************************************************************/
4704 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4705 /*                                                                          */
4706 /* Loads the firmware for each CPU and starts the CPU.                      */
4707 /*                                                                          */
4708 /* Returns:                                                                 */
4709 /*   Nothing.                                                               */
4710 /****************************************************************************/
4711 static void
4712 bce_init_cpus(struct bce_softc *sc)
4713 {
4714         DBENTER(BCE_VERBOSE_RESET);
4715
4716         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4717
4718                 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4719                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4720                             sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4721                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4722                             sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4723                 } else {
4724                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4725                             sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4726                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4727                             sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4728                 }
4729
4730         } else {
4731                 bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4732                     sizeof(bce_rv2p_proc1), RV2P_PROC1);
4733                 bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4734                     sizeof(bce_rv2p_proc2), RV2P_PROC2);
4735         }
4736
4737         bce_init_rxp_cpu(sc);
4738         bce_init_txp_cpu(sc);
4739         bce_init_tpat_cpu(sc);
4740         bce_init_com_cpu(sc);
4741         bce_init_cp_cpu(sc);
4742
4743         DBEXIT(BCE_VERBOSE_RESET);
4744 }
4745
4746
4747 /****************************************************************************/
4748 /* Initialize context memory.                                               */
4749 /*                                                                          */
4750 /* Clears the memory associated with each Context ID (CID).                 */
4751 /*                                                                          */
4752 /* Returns:                                                                 */
4753 /*   Nothing.                                                               */
4754 /****************************************************************************/
4755 static int
4756 bce_init_ctx(struct bce_softc *sc)
4757 {
4758         u32 offset, val, vcid_addr;
4759         int i, j, rc, retry_cnt;
4760
4761         rc = 0;
4762         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4763
4764         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4765                 retry_cnt = CTX_INIT_RETRY_COUNT;
4766
4767                 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4768
4769                 /*
4770                  * BCM5709 context memory may be cached
4771                  * in host memory so prepare the host memory
4772                  * for access.
4773                  */
4774                 val = BCE_CTX_COMMAND_ENABLED |
4775                     BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4776                 val |= (BCM_PAGE_BITS - 8) << 16;
4777                 REG_WR(sc, BCE_CTX_COMMAND, val);
4778
4779                 /* Wait for mem init command to complete. */
4780                 for (i = 0; i < retry_cnt; i++) {
4781                         val = REG_RD(sc, BCE_CTX_COMMAND);
4782                         if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4783                                 break;
4784                         DELAY(2);
4785                 }
4786                 if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4787                         BCE_PRINTF("%s(): Context memory initialization failed!\n",
4788                             __FUNCTION__);
4789                         rc = EBUSY;
4790                         goto init_ctx_fail;
4791                 }
4792
4793                 for (i = 0; i < sc->ctx_pages; i++) {
4794                         /* Set the physical address of the context memory. */
4795                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4796                             BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4797                             BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4798                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4799                             BCE_ADDR_HI(sc->ctx_paddr[i]));
4800                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4801                             BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4802
4803                         /* Verify the context memory write was successful. */
4804                         for (j = 0; j < retry_cnt; j++) {
4805                                 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4806                                 if ((val &
4807                                     BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4808                                         break;
4809                                 DELAY(5);
4810                         }
4811                         if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4812                                 BCE_PRINTF("%s(): Failed to initialize "
4813                                     "context page %d!\n", __FUNCTION__, i);
4814                                 rc = EBUSY;
4815                                 goto init_ctx_fail;
4816                         }
4817                 }
4818         } else {
4819
4820                 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4821
4822                 /*
4823                  * For the 5706/5708, context memory is local to
4824                  * the controller, so initialize the controller
4825                  * context memory.
4826                  */
4827
4828                 vcid_addr = GET_CID_ADDR(96);
4829                 while (vcid_addr) {
4830
4831                         vcid_addr -= PHY_CTX_SIZE;
4832
4833                         REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4834                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4835
4836                         for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4837                                 CTX_WR(sc, 0x00, offset, 0);
4838                         }
4839
4840                         REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4841                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4842                 }
4843
4844         }
4845 init_ctx_fail:
4846         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4847         return (rc);
4848 }
4849
4850
4851 /****************************************************************************/
4852 /* Fetch the permanent MAC address of the controller.                       */
4853 /*                                                                          */
4854 /* Returns:                                                                 */
4855 /*   Nothing.                                                               */
4856 /****************************************************************************/
4857 static void
4858 bce_get_mac_addr(struct bce_softc *sc)
4859 {
4860         u32 mac_lo = 0, mac_hi = 0;
4861
4862         DBENTER(BCE_VERBOSE_RESET);
4863
4864         /*
4865          * The NetXtreme II bootcode populates various NIC
4866          * power-on and runtime configuration items in a
4867          * shared memory area.  The factory configured MAC
4868          * address is available from both NVRAM and the
4869          * shared memory area so we'll read the value from
4870          * shared memory for speed.
4871          */
4872
4873         mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4874         mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4875
4876         if ((mac_lo == 0) && (mac_hi == 0)) {
4877                 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4878                     __FILE__, __LINE__);
4879         } else {
4880                 sc->eaddr[0] = (u_char)(mac_hi >> 8);
4881                 sc->eaddr[1] = (u_char)(mac_hi >> 0);
4882                 sc->eaddr[2] = (u_char)(mac_lo >> 24);
4883                 sc->eaddr[3] = (u_char)(mac_lo >> 16);
4884                 sc->eaddr[4] = (u_char)(mac_lo >> 8);
4885                 sc->eaddr[5] = (u_char)(mac_lo >> 0);
4886         }
4887
4888         DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4889             "address = %6D\n", sc->eaddr, ":");
4890         DBEXIT(BCE_VERBOSE_RESET);
4891 }
4892
4893
4894 /****************************************************************************/
4895 /* Program the MAC address.                                                 */
4896 /*                                                                          */
4897 /* Returns:                                                                 */
4898 /*   Nothing.                                                               */
4899 /****************************************************************************/
4900 static void
4901 bce_set_mac_addr(struct bce_softc *sc)
4902 {
4903         u32 val;
4904         u8 *mac_addr = sc->eaddr;
4905
4906         /* ToDo: Add support for setting multiple MAC addresses. */
4907
4908         DBENTER(BCE_VERBOSE_RESET);
4909         DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4910             "%6D\n", sc->eaddr, ":");
4911
4912         val = (mac_addr[0] << 8) | mac_addr[1];
4913
4914         REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4915
4916         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4917             (mac_addr[4] << 8) | mac_addr[5];
4918
4919         REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4920
4921         DBEXIT(BCE_VERBOSE_RESET);
4922 }
4923
4924
4925 /****************************************************************************/
4926 /* Stop the controller.                                                     */
4927 /*                                                                          */
4928 /* Returns:                                                                 */
4929 /*   Nothing.                                                               */
4930 /****************************************************************************/
4931 static void
4932 bce_stop(struct bce_softc *sc)
4933 {
4934         struct ifnet *ifp;
4935
4936         DBENTER(BCE_VERBOSE_RESET);
4937
4938         BCE_LOCK_ASSERT(sc);
4939
4940         ifp = sc->bce_ifp;
4941
4942         callout_stop(&sc->bce_tick_callout);
4943
4944         /* Disable the transmit/receive blocks. */
4945         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4946         REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4947         DELAY(20);
4948
4949         bce_disable_intr(sc);
4950
4951         /* Free RX buffers. */
4952         if (bce_hdr_split == TRUE) {
4953                 bce_free_pg_chain(sc);
4954         }
4955         bce_free_rx_chain(sc);
4956
4957         /* Free TX buffers. */
4958         bce_free_tx_chain(sc);
4959
4960         sc->watchdog_timer = 0;
4961
4962         sc->bce_link_up = FALSE;
4963
4964         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4965
4966         DBEXIT(BCE_VERBOSE_RESET);
4967 }
4968
4969
4970 static int
4971 bce_reset(struct bce_softc *sc, u32 reset_code)
4972 {
4973         u32 emac_mode_save, val;
4974         int i, rc = 0;
4975         static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4976             BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4977
4978         DBENTER(BCE_VERBOSE_RESET);
4979
4980         DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4981             __FUNCTION__, reset_code);
4982
4983         /*
4984          * If ASF/IPMI is operational, then the EMAC Mode register already
4985          * contains appropriate values for the link settings that have
4986          * been auto-negotiated.  Resetting the chip will clobber those
4987          * values.  Save the important bits so we can restore them after
4988          * the reset.
4989          */
4990         emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
4991
4992         /* Wait for pending PCI transactions to complete. */
4993         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4994             BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4995             BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4996             BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4997             BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4998         val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4999         DELAY(5);
5000
5001         /* Disable DMA */
5002         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5003                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5004                 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5005                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5006         }
5007
5008         /* Assume bootcode is running. */
5009         sc->bce_fw_timed_out = FALSE;
5010         sc->bce_drv_cardiac_arrest = FALSE;
5011
5012         /* Give the firmware a chance to prepare for the reset. */
5013         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
5014         if (rc)
5015                 goto bce_reset_exit;
5016
5017         /* Set a firmware reminder that this is a soft reset. */
5018         bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
5019
5020         /* Dummy read to force the chip to complete all current transactions. */
5021         val = REG_RD(sc, BCE_MISC_ID);
5022
5023         /* Chip reset. */
5024         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5025                 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
5026                 REG_RD(sc, BCE_MISC_COMMAND);
5027                 DELAY(5);
5028
5029                 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5030                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5031
5032                 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
5033         } else {
5034                 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5035                     BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5036                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5037                 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5038
5039                 /* Allow up to 30us for reset to complete. */
5040                 for (i = 0; i < 10; i++) {
5041                         val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5042                         if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5043                             BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5044                                 break;
5045                         }
5046                         DELAY(10);
5047                 }
5048
5049                 /* Check that reset completed successfully. */
5050                 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5051                     BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5052                         BCE_PRINTF("%s(%d): Reset failed!\n",
5053                             __FILE__, __LINE__);
5054                         rc = EBUSY;
5055                         goto bce_reset_exit;
5056                 }
5057         }
5058
5059         /* Make sure byte swapping is properly configured. */
5060         val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5061         if (val != 0x01020304) {
5062                 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5063                     __FILE__, __LINE__);
5064                 rc = ENODEV;
5065                 goto bce_reset_exit;
5066         }
5067
5068         /* Just completed a reset, assume that firmware is running again. */
5069         sc->bce_fw_timed_out = FALSE;
5070         sc->bce_drv_cardiac_arrest = FALSE;
5071
5072         /* Wait for the firmware to finish its initialization. */
5073         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5074         if (rc)
5075                 BCE_PRINTF("%s(%d): Firmware did not complete "
5076                     "initialization!\n", __FILE__, __LINE__);
5077         /* Get firmware capabilities. */
5078         bce_fw_cap_init(sc);
5079
5080 bce_reset_exit:
5081         /* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
5082         if (reset_code == BCE_DRV_MSG_CODE_RESET) {
5083                 val = REG_RD(sc, BCE_EMAC_MODE);
5084                 val = (val & ~emac_mode_mask) | emac_mode_save;
5085                 REG_WR(sc, BCE_EMAC_MODE, val);
5086         }
5087
5088         DBEXIT(BCE_VERBOSE_RESET);
5089         return (rc);
5090 }
5091
5092
5093 static int
5094 bce_chipinit(struct bce_softc *sc)
5095 {
5096         u32 val;
5097         int rc = 0;
5098
5099         DBENTER(BCE_VERBOSE_RESET);
5100
5101         bce_disable_intr(sc);
5102
5103         /*
5104          * Initialize DMA byte/word swapping, configure the number of DMA
5105          * channels and PCI clock compensation delay.
5106          */
5107         val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5108             BCE_DMA_CONFIG_DATA_WORD_SWAP |
5109 #if BYTE_ORDER == BIG_ENDIAN
5110             BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5111 #endif
5112             BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5113             DMA_READ_CHANS << 12 |
5114             DMA_WRITE_CHANS << 16;
5115
5116         val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5117
5118         if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5119                 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5120
5121         /*
5122          * This setting resolves a problem observed on certain Intel PCI
5123          * chipsets that cannot handle multiple outstanding DMA operations.
5124          * See errata E9_5706A1_65.
5125          */
5126         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5127             (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5128             !(sc->bce_flags & BCE_PCIX_FLAG))
5129                 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5130
5131         REG_WR(sc, BCE_DMA_CONFIG, val);
5132
5133         /* Enable the RX_V2P and Context state machines before access. */
5134         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5135             BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5136             BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5137             BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5138
5139         /* Initialize context mapping and zero out the quick contexts. */
5140         if ((rc = bce_init_ctx(sc)) != 0)
5141                 goto bce_chipinit_exit;
5142
5143         /* Initialize the on-boards CPUs */
5144         bce_init_cpus(sc);
5145
5146         /* Enable management frames (NC-SI) to flow to the MCP. */
5147         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5148                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5149                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5150         }
5151
5152         /* Prepare NVRAM for access. */
5153         if ((rc = bce_init_nvram(sc)) != 0)
5154                 goto bce_chipinit_exit;
5155
5156         /* Set the kernel bypass block size */
5157         val = REG_RD(sc, BCE_MQ_CONFIG);
5158         val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5159         val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5160
5161         /* Enable bins used on the 5709. */
5162         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5163                 val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5164                 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5165                         val |= BCE_MQ_CONFIG_HALT_DIS;
5166         }
5167
5168         REG_WR(sc, BCE_MQ_CONFIG, val);
5169
5170         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5171         REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5172         REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5173
5174         /* Set the page size and clear the RV2P processor stall bits. */
5175         val = (BCM_PAGE_BITS - 8) << 24;
5176         REG_WR(sc, BCE_RV2P_CONFIG, val);
5177
5178         /* Configure page size. */
5179         val = REG_RD(sc, BCE_TBDR_CONFIG);
5180         val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5181         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5182         REG_WR(sc, BCE_TBDR_CONFIG, val);
5183
5184         /* Set the perfect match control register to default. */
5185         REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5186
5187 bce_chipinit_exit:
5188         DBEXIT(BCE_VERBOSE_RESET);
5189
5190         return(rc);
5191 }
5192
5193
5194 /****************************************************************************/
5195 /* Initialize the controller in preparation to send/receive traffic.        */
5196 /*                                                                          */
5197 /* Returns:                                                                 */
5198 /*   0 for success, positive value for failure.                             */
5199 /****************************************************************************/
5200 static int
5201 bce_blockinit(struct bce_softc *sc)
5202 {
5203         u32 reg, val;
5204         int rc = 0;
5205
5206         DBENTER(BCE_VERBOSE_RESET);
5207
5208         /* Load the hardware default MAC address. */
5209         bce_set_mac_addr(sc);
5210
5211         /* Set the Ethernet backoff seed value */
5212         val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5213               (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5214               (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5215         REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5216
5217         sc->last_status_idx = 0;
5218         sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5219
5220         /* Set up link change interrupt generation. */
5221         REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5222
5223         /* Program the physical address of the status block. */
5224         REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5225             BCE_ADDR_LO(sc->status_block_paddr));
5226         REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5227             BCE_ADDR_HI(sc->status_block_paddr));
5228
5229         /* Program the physical address of the statistics block. */
5230         REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5231             BCE_ADDR_LO(sc->stats_block_paddr));
5232         REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5233             BCE_ADDR_HI(sc->stats_block_paddr));
5234
5235         /*
5236          * Program various host coalescing parameters.
5237          * Trip points control how many BDs should be ready before generating
5238          * an interrupt while ticks control how long a BD can sit in the chain
5239          * before generating an interrupt.
5240          */
5241         REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5242             (sc->bce_tx_quick_cons_trip_int << 16) |
5243             sc->bce_tx_quick_cons_trip);
5244         REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5245             (sc->bce_rx_quick_cons_trip_int << 16) |
5246             sc->bce_rx_quick_cons_trip);
5247         REG_WR(sc, BCE_HC_TX_TICKS,
5248             (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5249         REG_WR(sc, BCE_HC_RX_TICKS,
5250             (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5251         REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5252         REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5253         /* Not used for L2. */
5254         REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5255         REG_WR(sc, BCE_HC_COM_TICKS, 0);
5256         REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5257
5258         /* Configure the Host Coalescing block. */
5259         val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5260             BCE_HC_CONFIG_COLLECT_STATS;
5261
5262 #if 0
5263         /* ToDo: Add MSI-X support. */
5264         if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5265                 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5266                     BCE_HC_SB_CONFIG_1;
5267
5268                 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5269
5270                 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5271                     BCE_HC_SB_CONFIG_1_ONE_SHOT);
5272
5273                 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5274                     (sc->tx_quick_cons_trip_int << 16) |
5275                      sc->tx_quick_cons_trip);
5276
5277                 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5278                     (sc->tx_ticks_int << 16) | sc->tx_ticks);
5279
5280                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5281         }
5282
5283         /*
5284          * Tell the HC block to automatically set the
5285          * INT_MASK bit after an MSI/MSI-X interrupt
5286          * is generated so the driver doesn't have to.
5287          */
5288         if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5289                 val |= BCE_HC_CONFIG_ONE_SHOT;
5290
5291         /* Set the MSI-X status blocks to 128 byte boundaries. */
5292         if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5293                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5294 #endif
5295
5296         REG_WR(sc, BCE_HC_CONFIG, val);
5297
5298         /* Clear the internal statistics counters. */
5299         REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5300
5301         /* Verify that bootcode is running. */
5302         reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5303
5304         DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5305             BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5306             __FILE__, __LINE__);
5307             reg = 0);
5308
5309         if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5310             BCE_DEV_INFO_SIGNATURE_MAGIC) {
5311                 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5312                     "Expected: 08%08X\n", __FILE__, __LINE__,
5313                     (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5314                     BCE_DEV_INFO_SIGNATURE_MAGIC);
5315                 rc = ENODEV;
5316                 goto bce_blockinit_exit;
5317         }
5318
5319         /* Enable DMA */
5320         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5321                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5322                 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5323                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5324         }
5325
5326         /* Allow bootcode to apply additional fixes before enabling MAC. */
5327         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5328             BCE_DRV_MSG_CODE_RESET);
5329
5330         /* Enable link state change interrupt generation. */
5331         REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5332
5333         /* Enable the RXP. */
5334         bce_start_rxp_cpu(sc);
5335
5336         /* Disable management frames (NC-SI) from flowing to the MCP. */
5337         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5338                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5339                     ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5340                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5341         }
5342
5343         /* Enable all remaining blocks in the MAC. */
5344         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5345                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5346                     BCE_MISC_ENABLE_DEFAULT_XI);
5347         else
5348                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5349                     BCE_MISC_ENABLE_DEFAULT);
5350
5351         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5352         DELAY(20);
5353
5354         /* Save the current host coalescing block settings. */
5355         sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5356
5357 bce_blockinit_exit:
5358         DBEXIT(BCE_VERBOSE_RESET);
5359
5360         return (rc);
5361 }
5362
5363
5364 /****************************************************************************/
5365 /* Encapsulate an mbuf into the rx_bd chain.                                */
5366 /*                                                                          */
5367 /* Returns:                                                                 */
5368 /*   0 for success, positive value for failure.                             */
5369 /****************************************************************************/
5370 static int
5371 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5372 {
5373         bus_dma_segment_t segs[1];
5374         struct mbuf *m_new = NULL;
5375         struct rx_bd *rxbd;
5376         int nsegs, error, rc = 0;
5377 #ifdef BCE_DEBUG
5378         u16 debug_chain_prod = chain_prod;
5379 #endif
5380
5381         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5382
5383         /* Make sure the inputs are valid. */
5384         DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5385             BCE_PRINTF("%s(%d): RX producer out of range: "
5386             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5387             chain_prod, (u16)MAX_RX_BD_ALLOC));
5388
5389         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5390             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5391             prod, chain_prod, *prod_bseq);
5392
5393         /* Update some debug statistic counters */
5394         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5395             sc->rx_low_watermark = sc->free_rx_bd);
5396         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5397             sc->rx_empty_count++);
5398
5399         /* Simulate an mbuf allocation failure. */
5400         DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5401             sc->mbuf_alloc_failed_count++;
5402             sc->mbuf_alloc_failed_sim_count++;
5403             rc = ENOBUFS;
5404             goto bce_get_rx_buf_exit);
5405
5406         /* This is a new mbuf allocation. */
5407         if (bce_hdr_split == TRUE)
5408                 MGETHDR(m_new, M_NOWAIT, MT_DATA);
5409         else
5410                 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5411                     sc->rx_bd_mbuf_alloc_size);
5412
5413         if (m_new == NULL) {
5414                 sc->mbuf_alloc_failed_count++;
5415                 rc = ENOBUFS;
5416                 goto bce_get_rx_buf_exit;
5417         }
5418
5419         DBRUN(sc->debug_rx_mbuf_alloc++);
5420
5421         /* Make sure we have a valid packet header. */
5422         M_ASSERTPKTHDR(m_new);
5423
5424         /* Initialize the mbuf size and pad if necessary for alignment. */
5425         m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5426         m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5427
5428         /* ToDo: Consider calling m_fragment() to test error handling. */
5429
5430         /* Map the mbuf cluster into device memory. */
5431         error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5432             sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5433
5434         /* Handle any mapping errors. */
5435         if (error) {
5436                 BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5437                     "chain (%d)!\n", __FILE__, __LINE__, error);
5438
5439                 sc->dma_map_addr_rx_failed_count++;
5440                 m_freem(m_new);
5441
5442                 DBRUN(sc->debug_rx_mbuf_alloc--);
5443
5444                 rc = ENOBUFS;
5445                 goto bce_get_rx_buf_exit;
5446         }
5447
5448         /* All mbufs must map to a single segment. */
5449         KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5450             __FUNCTION__, nsegs));
5451
5452         /* Setup the rx_bd for the segment. */
5453         rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5454
5455         rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5456         rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5457         rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5458         rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5459         *prod_bseq += segs[0].ds_len;
5460
5461         /* Save the mbuf and update our counter. */
5462         sc->rx_mbuf_ptr[chain_prod] = m_new;
5463         sc->free_rx_bd -= nsegs;
5464
5465         DBRUNMSG(BCE_INSANE_RECV,
5466             bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5467
5468         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5469             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5470             chain_prod, *prod_bseq);
5471
5472 bce_get_rx_buf_exit:
5473         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5474
5475         return(rc);
5476 }
5477
5478
5479 /****************************************************************************/
5480 /* Encapsulate an mbuf cluster into the page chain.                         */
5481 /*                                                                          */
5482 /* Returns:                                                                 */
5483 /*   0 for success, positive value for failure.                             */
5484 /****************************************************************************/
5485 static int
5486 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5487 {
5488         bus_dma_segment_t segs[1];
5489         struct mbuf *m_new = NULL;
5490         struct rx_bd *pgbd;
5491         int error, nsegs, rc = 0;
5492 #ifdef BCE_DEBUG
5493         u16 debug_prod_idx = prod_idx;
5494 #endif
5495
5496         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5497
5498         /* Make sure the inputs are valid. */
5499         DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5500             BCE_PRINTF("%s(%d): page producer out of range: "
5501             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5502             prod_idx, (u16)MAX_PG_BD_ALLOC));
5503
5504         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5505             "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5506
5507         /* Update counters if we've hit a new low or run out of pages. */
5508         DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5509             sc->pg_low_watermark = sc->free_pg_bd);
5510         DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5511
5512         /* Simulate an mbuf allocation failure. */
5513         DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5514             sc->mbuf_alloc_failed_count++;
5515             sc->mbuf_alloc_failed_sim_count++;
5516             rc = ENOBUFS;
5517             goto bce_get_pg_buf_exit);
5518
5519         /* This is a new mbuf allocation. */
5520         m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5521         if (m_new == NULL) {
5522                 sc->mbuf_alloc_failed_count++;
5523                 rc = ENOBUFS;
5524                 goto bce_get_pg_buf_exit;
5525         }
5526
5527         DBRUN(sc->debug_pg_mbuf_alloc++);
5528
5529         m_new->m_len = MCLBYTES;
5530
5531         /* ToDo: Consider calling m_fragment() to test error handling. */
5532
5533         /* Map the mbuf cluster into device memory. */
5534         error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5535             sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5536
5537         /* Handle any mapping errors. */
5538         if (error) {
5539                 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5540                     __FILE__, __LINE__);
5541
5542                 m_freem(m_new);
5543                 DBRUN(sc->debug_pg_mbuf_alloc--);
5544
5545                 rc = ENOBUFS;
5546                 goto bce_get_pg_buf_exit;
5547         }
5548
5549         /* All mbufs must map to a single segment. */
5550         KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5551             __FUNCTION__, nsegs));
5552
5553         /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5554
5555         /*
5556          * The page chain uses the same rx_bd data structure
5557          * as the receive chain but doesn't require a byte sequence (bseq).
5558          */
5559         pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5560
5561         pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5562         pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5563         pgbd->rx_bd_len       = htole32(MCLBYTES);
5564         pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5565
5566         /* Save the mbuf and update our counter. */
5567         sc->pg_mbuf_ptr[prod_idx] = m_new;
5568         sc->free_pg_bd--;
5569
5570         DBRUNMSG(BCE_INSANE_RECV,
5571             bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5572
5573         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5574             "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5575
5576 bce_get_pg_buf_exit:
5577         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5578
5579         return(rc);
5580 }
5581
5582
5583 /****************************************************************************/
5584 /* Initialize the TX context memory.                                        */
5585 /*                                                                          */
5586 /* Returns:                                                                 */
5587 /*   Nothing                                                                */
5588 /****************************************************************************/
5589 static void
5590 bce_init_tx_context(struct bce_softc *sc)
5591 {
5592         u32 val;
5593
5594         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5595
5596         /* Initialize the context ID for an L2 TX chain. */
5597         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5598                 /* Set the CID type to support an L2 connection. */
5599                 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5600                     BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5601                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5602                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5603                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5604                     BCE_L2CTX_TX_CMD_TYPE_XI, val);
5605
5606                 /* Point the hardware to the first page in the chain. */
5607                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5608                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5609                     BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5610                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5611                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5612                     BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5613         } else {
5614                 /* Set the CID type to support an L2 connection. */
5615                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5616                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5617                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5618                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5619
5620                 /* Point the hardware to the first page in the chain. */
5621                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5622                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5623                     BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5624                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5625                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5626                     BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5627         }
5628
5629         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5630 }
5631
5632
5633 /****************************************************************************/
5634 /* Allocate memory and initialize the TX data structures.                   */
5635 /*                                                                          */
5636 /* Returns:                                                                 */
5637 /*   0 for success, positive value for failure.                             */
5638 /****************************************************************************/
5639 static int
5640 bce_init_tx_chain(struct bce_softc *sc)
5641 {
5642         struct tx_bd *txbd;
5643         int i, rc = 0;
5644
5645         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5646
5647         /* Set the initial TX producer/consumer indices. */
5648         sc->tx_prod        = 0;
5649         sc->tx_cons        = 0;
5650         sc->tx_prod_bseq   = 0;
5651         sc->used_tx_bd     = 0;
5652         sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5653         DBRUN(sc->tx_hi_watermark = 0);
5654         DBRUN(sc->tx_full_count = 0);
5655
5656         /*
5657          * The NetXtreme II supports a linked-list structre called
5658          * a Buffer Descriptor Chain (or BD chain).  A BD chain
5659          * consists of a series of 1 or more chain pages, each of which
5660          * consists of a fixed number of BD entries.
5661          * The last BD entry on each page is a pointer to the next page
5662          * in the chain, and the last pointer in the BD chain
5663          * points back to the beginning of the chain.
5664          */
5665
5666         /* Set the TX next pointer chain entries. */
5667         for (i = 0; i < sc->tx_pages; i++) {
5668                 int j;
5669
5670                 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5671
5672                 /* Check if we've reached the last page. */
5673                 if (i == (sc->tx_pages - 1))
5674                         j = 0;
5675                 else
5676                         j = i + 1;
5677
5678                 txbd->tx_bd_haddr_hi =
5679                     htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5680                 txbd->tx_bd_haddr_lo =
5681                     htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5682         }
5683
5684         bce_init_tx_context(sc);
5685
5686         DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5687         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5688
5689         return(rc);
5690 }
5691
5692
5693 /****************************************************************************/
5694 /* Free memory and clear the TX data structures.                            */
5695 /*                                                                          */
5696 /* Returns:                                                                 */
5697 /*   Nothing.                                                               */
5698 /****************************************************************************/
5699 static void
5700 bce_free_tx_chain(struct bce_softc *sc)
5701 {
5702         int i;
5703
5704         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5705
5706         /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5707         for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5708                 if (sc->tx_mbuf_ptr[i] != NULL) {
5709                         if (sc->tx_mbuf_map[i] != NULL)
5710                                 bus_dmamap_sync(sc->tx_mbuf_tag,
5711                                     sc->tx_mbuf_map[i],
5712                                     BUS_DMASYNC_POSTWRITE);
5713                         m_freem(sc->tx_mbuf_ptr[i]);
5714                         sc->tx_mbuf_ptr[i] = NULL;
5715                         DBRUN(sc->debug_tx_mbuf_alloc--);
5716                 }
5717         }
5718
5719         /* Clear each TX chain page. */
5720         for (i = 0; i < sc->tx_pages; i++)
5721                 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5722
5723         sc->used_tx_bd = 0;
5724
5725         /* Check if we lost any mbufs in the process. */
5726         DBRUNIF((sc->debug_tx_mbuf_alloc),
5727             BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5728             "from tx chain!\n", __FILE__, __LINE__,
5729             sc->debug_tx_mbuf_alloc));
5730
5731         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5732 }
5733
5734
5735 /****************************************************************************/
5736 /* Initialize the RX context memory.                                        */
5737 /*                                                                          */
5738 /* Returns:                                                                 */
5739 /*   Nothing                                                                */
5740 /****************************************************************************/
5741 static void
5742 bce_init_rx_context(struct bce_softc *sc)
5743 {
5744         u32 val;
5745
5746         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5747
5748         /* Init the type, size, and BD cache levels for the RX context. */
5749         val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5750             BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5751             (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5752
5753         /*
5754          * Set the level for generating pause frames
5755          * when the number of available rx_bd's gets
5756          * too low (the low watermark) and the level
5757          * when pause frames can be stopped (the high
5758          * watermark).
5759          */
5760         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5761                 u32 lo_water, hi_water;
5762
5763                 if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5764                         lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5765                 } else {
5766                         lo_water = 0;
5767                 }
5768
5769                 if (lo_water >= USABLE_RX_BD_ALLOC) {
5770                         lo_water = 0;
5771                 }
5772
5773                 hi_water = USABLE_RX_BD_ALLOC / 4;
5774
5775                 if (hi_water <= lo_water) {
5776                         lo_water = 0;
5777                 }
5778
5779                 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5780                 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5781
5782                 if (hi_water > 0xf)
5783                         hi_water = 0xf;
5784                 else if (hi_water == 0)
5785                         lo_water = 0;
5786
5787                 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5788                     (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5789         }
5790
5791         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5792
5793         /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5794         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5795                 val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5796                 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5797         }
5798
5799         /* Point the hardware to the first page in the chain. */
5800         val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5801         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5802         val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5803         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5804
5805         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5806 }
5807
5808
5809 /****************************************************************************/
5810 /* Allocate memory and initialize the RX data structures.                   */
5811 /*                                                                          */
5812 /* Returns:                                                                 */
5813 /*   0 for success, positive value for failure.                             */
5814 /****************************************************************************/
5815 static int
5816 bce_init_rx_chain(struct bce_softc *sc)
5817 {
5818         struct rx_bd *rxbd;
5819         int i, rc = 0;
5820
5821         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5822             BCE_VERBOSE_CTX);
5823
5824         /* Initialize the RX producer and consumer indices. */
5825         sc->rx_prod        = 0;
5826         sc->rx_cons        = 0;
5827         sc->rx_prod_bseq   = 0;
5828         sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5829         sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5830
5831         /* Initialize the RX next pointer chain entries. */
5832         for (i = 0; i < sc->rx_pages; i++) {
5833                 int j;
5834
5835                 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5836
5837                 /* Check if we've reached the last page. */
5838                 if (i == (sc->rx_pages - 1))
5839                         j = 0;
5840                 else
5841                         j = i + 1;
5842
5843                 /* Setup the chain page pointers. */
5844                 rxbd->rx_bd_haddr_hi =
5845                     htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5846                 rxbd->rx_bd_haddr_lo =
5847                     htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5848         }
5849
5850         /* Fill up the RX chain. */
5851         bce_fill_rx_chain(sc);
5852
5853         DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5854         DBRUN(sc->rx_empty_count = 0);
5855         for (i = 0; i < sc->rx_pages; i++) {
5856                 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5857                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5858         }
5859
5860         bce_init_rx_context(sc);
5861
5862         DBRUNMSG(BCE_EXTREME_RECV,
5863             bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5864         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5865             BCE_VERBOSE_CTX);
5866
5867         /* ToDo: Are there possible failure modes here? */
5868
5869         return(rc);
5870 }
5871
5872
5873 /****************************************************************************/
5874 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5875 /* occurs.                                                                  */
5876 /*                                                                          */
5877 /* Returns:                                                                 */
5878 /*   Nothing                                                                */
5879 /****************************************************************************/
5880 static void
5881 bce_fill_rx_chain(struct bce_softc *sc)
5882 {
5883         u16 prod, prod_idx;
5884         u32 prod_bseq;
5885
5886         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5887             BCE_VERBOSE_CTX);
5888
5889         /* Get the RX chain producer indices. */
5890         prod      = sc->rx_prod;
5891         prod_bseq = sc->rx_prod_bseq;
5892
5893         /* Keep filling the RX chain until it's full. */
5894         while (sc->free_rx_bd > 0) {
5895                 prod_idx = RX_CHAIN_IDX(prod);
5896                 if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5897                         /* Bail out if we can't add an mbuf to the chain. */
5898                         break;
5899                 }
5900                 prod = NEXT_RX_BD(prod);
5901         }
5902
5903         /* Save the RX chain producer indices. */
5904         sc->rx_prod      = prod;
5905         sc->rx_prod_bseq = prod_bseq;
5906
5907         /* We should never end up pointing to a next page pointer. */
5908         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5909             BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5910             __FUNCTION__, rx_prod));
5911
5912         /* Write the mailbox and tell the chip about the waiting rx_bd's. */
5913         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5914         REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5915
5916         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5917             BCE_VERBOSE_CTX);
5918 }
5919
5920
5921 /****************************************************************************/
5922 /* Free memory and clear the RX data structures.                            */
5923 /*                                                                          */
5924 /* Returns:                                                                 */
5925 /*   Nothing.                                                               */
5926 /****************************************************************************/
5927 static void
5928 bce_free_rx_chain(struct bce_softc *sc)
5929 {
5930         int i;
5931
5932         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5933
5934         /* Free any mbufs still in the RX mbuf chain. */
5935         for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5936                 if (sc->rx_mbuf_ptr[i] != NULL) {
5937                         if (sc->rx_mbuf_map[i] != NULL)
5938                                 bus_dmamap_sync(sc->rx_mbuf_tag,
5939                                     sc->rx_mbuf_map[i],
5940                                     BUS_DMASYNC_POSTREAD);
5941                         m_freem(sc->rx_mbuf_ptr[i]);
5942                         sc->rx_mbuf_ptr[i] = NULL;
5943                         DBRUN(sc->debug_rx_mbuf_alloc--);
5944                 }
5945         }
5946
5947         /* Clear each RX chain page. */
5948         for (i = 0; i < sc->rx_pages; i++)
5949                 if (sc->rx_bd_chain[i] != NULL)
5950                         bzero((char *)sc->rx_bd_chain[i],
5951                             BCE_RX_CHAIN_PAGE_SZ);
5952
5953         sc->free_rx_bd = sc->max_rx_bd;
5954
5955         /* Check if we lost any mbufs in the process. */
5956         DBRUNIF((sc->debug_rx_mbuf_alloc),
5957             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5958             __FUNCTION__, sc->debug_rx_mbuf_alloc));
5959
5960         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5961 }
5962
5963
5964 /****************************************************************************/
5965 /* Allocate memory and initialize the page data structures.                 */
5966 /* Assumes that bce_init_rx_chain() has not already been called.            */
5967 /*                                                                          */
5968 /* Returns:                                                                 */
5969 /*   0 for success, positive value for failure.                             */
5970 /****************************************************************************/
5971 static int
5972 bce_init_pg_chain(struct bce_softc *sc)
5973 {
5974         struct rx_bd *pgbd;
5975         int i, rc = 0;
5976         u32 val;
5977
5978         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5979                 BCE_VERBOSE_CTX);
5980
5981         /* Initialize the page producer and consumer indices. */
5982         sc->pg_prod        = 0;
5983         sc->pg_cons        = 0;
5984         sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5985         sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5986         DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5987         DBRUN(sc->pg_empty_count = 0);
5988
5989         /* Initialize the page next pointer chain entries. */
5990         for (i = 0; i < sc->pg_pages; i++) {
5991                 int j;
5992
5993                 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5994
5995                 /* Check if we've reached the last page. */
5996                 if (i == (sc->pg_pages - 1))
5997                         j = 0;
5998                 else
5999                         j = i + 1;
6000
6001                 /* Setup the chain page pointers. */
6002                 pgbd->rx_bd_haddr_hi =
6003                     htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
6004                 pgbd->rx_bd_haddr_lo =
6005                     htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
6006         }
6007
6008         /* Setup the MQ BIN mapping for host_pg_bidx. */
6009         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
6010                 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
6011
6012         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
6013
6014         /* Configure the rx_bd and page chain mbuf cluster size. */
6015         val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
6016         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
6017
6018         /* Configure the context reserved for jumbo support. */
6019         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
6020                 BCE_L2CTX_RX_RBDC_JUMBO_KEY);
6021
6022         /* Point the hardware to the first page in the page chain. */
6023         val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6024         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6025         val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6026         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6027
6028         /* Fill up the page chain. */
6029         bce_fill_pg_chain(sc);
6030
6031         for (i = 0; i < sc->pg_pages; i++) {
6032                 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6033                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6034         }
6035
6036         DBRUNMSG(BCE_EXTREME_RECV,
6037             bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6038         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6039                 BCE_VERBOSE_CTX);
6040         return(rc);
6041 }
6042
6043
6044 /****************************************************************************/
6045 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6046 /* occurs.                                                                  */
6047 /*                                                                          */
6048 /* Returns:                                                                 */
6049 /*   Nothing                                                                */
6050 /****************************************************************************/
6051 static void
6052 bce_fill_pg_chain(struct bce_softc *sc)
6053 {
6054         u16 prod, prod_idx;
6055
6056         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6057             BCE_VERBOSE_CTX);
6058
6059         /* Get the page chain prodcuer index. */
6060         prod = sc->pg_prod;
6061
6062         /* Keep filling the page chain until it's full. */
6063         while (sc->free_pg_bd > 0) {
6064                 prod_idx = PG_CHAIN_IDX(prod);
6065                 if (bce_get_pg_buf(sc, prod, prod_idx)) {
6066                         /* Bail out if we can't add an mbuf to the chain. */
6067                         break;
6068                 }
6069                 prod = NEXT_PG_BD(prod);
6070         }
6071
6072         /* Save the page chain producer index. */
6073         sc->pg_prod = prod;
6074
6075         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6076             BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6077             __FUNCTION__, pg_prod));
6078
6079         /*
6080          * Write the mailbox and tell the chip about
6081          * the new rx_bd's in the page chain.
6082          */
6083         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
6084             prod);
6085
6086         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6087             BCE_VERBOSE_CTX);
6088 }
6089
6090
6091 /****************************************************************************/
6092 /* Free memory and clear the RX data structures.                            */
6093 /*                                                                          */
6094 /* Returns:                                                                 */
6095 /*   Nothing.                                                               */
6096 /****************************************************************************/
6097 static void
6098 bce_free_pg_chain(struct bce_softc *sc)
6099 {
6100         int i;
6101
6102         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6103
6104         /* Free any mbufs still in the mbuf page chain. */
6105         for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6106                 if (sc->pg_mbuf_ptr[i] != NULL) {
6107                         if (sc->pg_mbuf_map[i] != NULL)
6108                                 bus_dmamap_sync(sc->pg_mbuf_tag,
6109                                     sc->pg_mbuf_map[i],
6110                                     BUS_DMASYNC_POSTREAD);
6111                         m_freem(sc->pg_mbuf_ptr[i]);
6112                         sc->pg_mbuf_ptr[i] = NULL;
6113                         DBRUN(sc->debug_pg_mbuf_alloc--);
6114                 }
6115         }
6116
6117         /* Clear each page chain pages. */
6118         for (i = 0; i < sc->pg_pages; i++)
6119                 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6120
6121         sc->free_pg_bd = sc->max_pg_bd;
6122
6123         /* Check if we lost any mbufs in the process. */
6124         DBRUNIF((sc->debug_pg_mbuf_alloc),
6125             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6126             __FUNCTION__, sc->debug_pg_mbuf_alloc));
6127
6128         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6129 }
6130
6131
6132 static u32
6133 bce_get_rphy_link(struct bce_softc *sc)
6134 {
6135         u32 advertise, link;
6136         int fdpx;
6137
6138         advertise = 0;
6139         fdpx = 0;
6140         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6141                 link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6142         else
6143                 link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6144         if (link & BCE_NETLINK_ANEG_ENB)
6145                 advertise |= BCE_NETLINK_ANEG_ENB;
6146         if (link & BCE_NETLINK_SPEED_10HALF)
6147                 advertise |= BCE_NETLINK_SPEED_10HALF;
6148         if (link & BCE_NETLINK_SPEED_10FULL) {
6149                 advertise |= BCE_NETLINK_SPEED_10FULL;
6150                 fdpx++;
6151         }
6152         if (link & BCE_NETLINK_SPEED_100HALF)
6153                 advertise |= BCE_NETLINK_SPEED_100HALF;
6154         if (link & BCE_NETLINK_SPEED_100FULL) {
6155                 advertise |= BCE_NETLINK_SPEED_100FULL;
6156                 fdpx++;
6157         }
6158         if (link & BCE_NETLINK_SPEED_1000HALF)
6159                 advertise |= BCE_NETLINK_SPEED_1000HALF;
6160         if (link & BCE_NETLINK_SPEED_1000FULL) {
6161                 advertise |= BCE_NETLINK_SPEED_1000FULL;
6162                 fdpx++;
6163         }
6164         if (link & BCE_NETLINK_SPEED_2500HALF)
6165                 advertise |= BCE_NETLINK_SPEED_2500HALF;
6166         if (link & BCE_NETLINK_SPEED_2500FULL) {
6167                 advertise |= BCE_NETLINK_SPEED_2500FULL;
6168                 fdpx++;
6169         }
6170         if (fdpx)
6171                 advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6172                     BCE_NETLINK_FC_PAUSE_ASYM;
6173         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6174                 advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6175                     BCE_NETLINK_ETH_AT_WIRESPEED;
6176
6177         return (advertise);
6178 }
6179
6180
6181 /****************************************************************************/
6182 /* Set media options.                                                       */
6183 /*                                                                          */
6184 /* Returns:                                                                 */
6185 /*   0 for success, positive value for failure.                             */
6186 /****************************************************************************/
6187 static int
6188 bce_ifmedia_upd(struct ifnet *ifp)
6189 {
6190         struct bce_softc *sc = ifp->if_softc;
6191         int error;
6192
6193         DBENTER(BCE_VERBOSE);
6194
6195         BCE_LOCK(sc);
6196         error = bce_ifmedia_upd_locked(ifp);
6197         BCE_UNLOCK(sc);
6198
6199         DBEXIT(BCE_VERBOSE);
6200         return (error);
6201 }
6202
6203
6204 /****************************************************************************/
6205 /* Set media options.                                                       */
6206 /*                                                                          */
6207 /* Returns:                                                                 */
6208 /*   Nothing.                                                               */
6209 /****************************************************************************/
6210 static int
6211 bce_ifmedia_upd_locked(struct ifnet *ifp)
6212 {
6213         struct bce_softc *sc = ifp->if_softc;
6214         struct mii_data *mii;
6215         struct mii_softc *miisc;
6216         struct ifmedia *ifm;
6217         u32 link;
6218         int error, fdx;
6219
6220         DBENTER(BCE_VERBOSE_PHY);
6221
6222         error = 0;
6223         BCE_LOCK_ASSERT(sc);
6224
6225         sc->bce_link_up = FALSE;
6226         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6227                 ifm = &sc->bce_ifmedia;
6228                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6229                         return (EINVAL);
6230                 link = 0;
6231                 fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6232                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
6233                 case IFM_AUTO:
6234                         /*
6235                          * Check advertised link of remote PHY by reading
6236                          * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6237                          * Always use the same link type of remote PHY.
6238                          */
6239                         link = bce_get_rphy_link(sc);
6240                         break;
6241                 case IFM_2500_SX:
6242                         if ((sc->bce_phy_flags &
6243                             (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6244                             BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6245                                 return (EINVAL);
6246                         /*
6247                          * XXX
6248                          * Have to enable forced 2.5Gbps configuration.
6249                          */
6250                         if (fdx != 0)
6251                                 link |= BCE_NETLINK_SPEED_2500FULL;
6252                         else
6253                                 link |= BCE_NETLINK_SPEED_2500HALF;
6254                         break;
6255                 case IFM_1000_SX:
6256                         if ((sc->bce_phy_flags &
6257                             BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6258                                 return (EINVAL);
6259                         /*
6260                          * XXX
6261                          * Have to disable 2.5Gbps configuration.
6262                          */
6263                         if (fdx != 0)
6264                                 link = BCE_NETLINK_SPEED_1000FULL;
6265                         else
6266                                 link = BCE_NETLINK_SPEED_1000HALF;
6267                         break;
6268                 case IFM_1000_T:
6269                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6270                                 return (EINVAL);
6271                         if (fdx != 0)
6272                                 link = BCE_NETLINK_SPEED_1000FULL;
6273                         else
6274                                 link = BCE_NETLINK_SPEED_1000HALF;
6275                         break;
6276                 case IFM_100_TX:
6277                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6278                                 return (EINVAL);
6279                         if (fdx != 0)
6280                                 link = BCE_NETLINK_SPEED_100FULL;
6281                         else
6282                                 link = BCE_NETLINK_SPEED_100HALF;
6283                         break;
6284                 case IFM_10_T:
6285                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6286                                 return (EINVAL);
6287                         if (fdx != 0)
6288                                 link = BCE_NETLINK_SPEED_10FULL;
6289                         else
6290                                 link = BCE_NETLINK_SPEED_10HALF;
6291                         break;
6292                 default:
6293                         return (EINVAL);
6294                 }
6295                 if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6296                         /*
6297                          * XXX
6298                          * Advertise pause capability for full-duplex media.
6299                          */
6300                         if (fdx != 0)
6301                                 link |= BCE_NETLINK_FC_PAUSE_SYM |
6302                                     BCE_NETLINK_FC_PAUSE_ASYM;
6303                         if ((sc->bce_phy_flags &
6304                             BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6305                                 link |= BCE_NETLINK_PHY_APP_REMOTE |
6306                                     BCE_NETLINK_ETH_AT_WIRESPEED;
6307                 }
6308
6309                 bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6310                 error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6311         } else {
6312                 mii = device_get_softc(sc->bce_miibus);
6313
6314                 /* Make sure the MII bus has been enumerated. */
6315                 if (mii) {
6316                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6317                                 PHY_RESET(miisc);
6318                         error = mii_mediachg(mii);
6319                 }
6320         }
6321
6322         DBEXIT(BCE_VERBOSE_PHY);
6323         return (error);
6324 }
6325
6326
6327 static void
6328 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6329 {
6330         struct ifnet *ifp;
6331         u32 link;
6332
6333         ifp = sc->bce_ifp;
6334         BCE_LOCK_ASSERT(sc);
6335
6336         ifmr->ifm_status = IFM_AVALID;
6337         ifmr->ifm_active = IFM_ETHER;
6338         link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6339         /* XXX Handle heart beat status? */
6340         if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6341                 ifmr->ifm_status |= IFM_ACTIVE;
6342         else {
6343                 ifmr->ifm_active |= IFM_NONE;
6344                 ifp->if_baudrate = 0;
6345                 return;
6346         }
6347         switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6348         case BCE_LINK_STATUS_10HALF:
6349                 ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6350                 ifp->if_baudrate = IF_Mbps(10UL);
6351                 break;
6352         case BCE_LINK_STATUS_10FULL:
6353                 ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6354                 ifp->if_baudrate = IF_Mbps(10UL);
6355                 break;
6356         case BCE_LINK_STATUS_100HALF:
6357                 ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6358                 ifp->if_baudrate = IF_Mbps(100UL);
6359                 break;
6360         case BCE_LINK_STATUS_100FULL:
6361                 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6362                 ifp->if_baudrate = IF_Mbps(100UL);
6363                 break;
6364         case BCE_LINK_STATUS_1000HALF:
6365                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6366                         ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6367                 else
6368                         ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6369                 ifp->if_baudrate = IF_Mbps(1000UL);
6370                 break;
6371         case BCE_LINK_STATUS_1000FULL:
6372                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6373                         ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6374                 else
6375                         ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6376                 ifp->if_baudrate = IF_Mbps(1000UL);
6377                 break;
6378         case BCE_LINK_STATUS_2500HALF:
6379                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6380                         ifmr->ifm_active |= IFM_NONE;
6381                         return;
6382                 } else
6383                         ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6384                 ifp->if_baudrate = IF_Mbps(2500UL);
6385                 break;
6386         case BCE_LINK_STATUS_2500FULL:
6387                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6388                         ifmr->ifm_active |= IFM_NONE;
6389                         return;
6390                 } else
6391                         ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6392                 ifp->if_baudrate = IF_Mbps(2500UL);
6393                 break;
6394         default:
6395                 ifmr->ifm_active |= IFM_NONE;
6396                 return;
6397         }
6398
6399         if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6400                 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6401         if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6402                 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6403 }
6404
6405
6406 /****************************************************************************/
6407 /* Reports current media status.                                            */
6408 /*                                                                          */
6409 /* Returns:                                                                 */
6410 /*   Nothing.                                                               */
6411 /****************************************************************************/
6412 static void
6413 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6414 {
6415         struct bce_softc *sc = ifp->if_softc;
6416         struct mii_data *mii;
6417
6418         DBENTER(BCE_VERBOSE_PHY);
6419
6420         BCE_LOCK(sc);
6421
6422         if ((ifp->if_flags & IFF_UP) == 0) {
6423                 BCE_UNLOCK(sc);
6424                 return;
6425         }
6426
6427         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6428                 bce_ifmedia_sts_rphy(sc, ifmr);
6429         else {
6430                 mii = device_get_softc(sc->bce_miibus);
6431                 mii_pollstat(mii);
6432                 ifmr->ifm_active = mii->mii_media_active;
6433                 ifmr->ifm_status = mii->mii_media_status;
6434         }
6435
6436         BCE_UNLOCK(sc);
6437
6438         DBEXIT(BCE_VERBOSE_PHY);
6439 }
6440
6441
6442 /****************************************************************************/
6443 /* Handles PHY generated interrupt events.                                  */
6444 /*                                                                          */
6445 /* Returns:                                                                 */
6446 /*   Nothing.                                                               */
6447 /****************************************************************************/
6448 static void
6449 bce_phy_intr(struct bce_softc *sc)
6450 {
6451         u32 new_link_state, old_link_state;
6452
6453         DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6454
6455         DBRUN(sc->phy_interrupts++);
6456
6457         new_link_state = sc->status_block->status_attn_bits &
6458             STATUS_ATTN_BITS_LINK_STATE;
6459         old_link_state = sc->status_block->status_attn_bits_ack &
6460             STATUS_ATTN_BITS_LINK_STATE;
6461
6462         /* Handle any changes if the link state has changed. */
6463         if (new_link_state != old_link_state) {
6464
6465                 /* Update the status_attn_bits_ack field. */
6466                 if (new_link_state) {
6467                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6468                             STATUS_ATTN_BITS_LINK_STATE);
6469                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6470                             __FUNCTION__);
6471                 } else {
6472                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6473                             STATUS_ATTN_BITS_LINK_STATE);
6474                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6475                             __FUNCTION__);
6476                 }
6477
6478                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6479                         if (new_link_state) {
6480                                 if (bootverbose)
6481                                         if_printf(sc->bce_ifp, "link UP\n");
6482                                 if_link_state_change(sc->bce_ifp,
6483                                     LINK_STATE_UP);
6484                         } else {
6485                                 if (bootverbose)
6486                                         if_printf(sc->bce_ifp, "link DOWN\n");
6487                                 if_link_state_change(sc->bce_ifp,
6488                                     LINK_STATE_DOWN);
6489                         }
6490                 }
6491                 /*
6492                  * Assume link is down and allow
6493                  * tick routine to update the state
6494                  * based on the actual media state.
6495                  */
6496                 sc->bce_link_up = FALSE;
6497                 callout_stop(&sc->bce_tick_callout);
6498                 bce_tick(sc);
6499         }
6500
6501         /* Acknowledge the link change interrupt. */
6502         REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6503
6504         DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6505 }
6506
6507
6508 /****************************************************************************/
6509 /* Reads the receive consumer value from the status block (skipping over    */
6510 /* chain page pointer if necessary).                                        */
6511 /*                                                                          */
6512 /* Returns:                                                                 */
6513 /*   hw_cons                                                                */
6514 /****************************************************************************/
6515 static inline u16
6516 bce_get_hw_rx_cons(struct bce_softc *sc)
6517 {
6518         u16 hw_cons;
6519
6520         rmb();
6521         hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6522         if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6523                 hw_cons++;
6524
6525         return hw_cons;
6526 }
6527
6528 /****************************************************************************/
6529 /* Handles received frame interrupt events.                                 */
6530 /*                                                                          */
6531 /* Returns:                                                                 */
6532 /*   Nothing.                                                               */
6533 /****************************************************************************/
6534 static void
6535 bce_rx_intr(struct bce_softc *sc)
6536 {
6537         struct ifnet *ifp = sc->bce_ifp;
6538         struct l2_fhdr *l2fhdr;
6539         struct ether_vlan_header *vh;
6540         unsigned int pkt_len;
6541         u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6542         u32 status;
6543         unsigned int rem_len;
6544         u16 sw_pg_cons, sw_pg_cons_idx;
6545
6546         DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6547         DBRUN(sc->interrupts_rx++);
6548         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6549             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6550             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6551
6552         /* Prepare the RX chain pages to be accessed by the host CPU. */
6553         for (int i = 0; i < sc->rx_pages; i++)
6554                 bus_dmamap_sync(sc->rx_bd_chain_tag,
6555                     sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6556
6557         /* Prepare the page chain pages to be accessed by the host CPU. */
6558         if (bce_hdr_split == TRUE) {
6559                 for (int i = 0; i < sc->pg_pages; i++)
6560                         bus_dmamap_sync(sc->pg_bd_chain_tag,
6561                             sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6562         }
6563
6564         /* Get the hardware's view of the RX consumer index. */
6565         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6566
6567         /* Get working copies of the driver's view of the consumer indices. */
6568         sw_rx_cons = sc->rx_cons;
6569         sw_pg_cons = sc->pg_cons;
6570
6571         /* Update some debug statistics counters */
6572         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6573             sc->rx_low_watermark = sc->free_rx_bd);
6574         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6575             sc->rx_empty_count++);
6576
6577         /* Scan through the receive chain as long as there is work to do */
6578         /* ToDo: Consider setting a limit on the number of packets processed. */
6579         rmb();
6580         while (sw_rx_cons != hw_rx_cons) {
6581                 struct mbuf *m0;
6582
6583                 /* Convert the producer/consumer indices to an actual rx_bd index. */
6584                 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6585
6586                 /* Unmap the mbuf from DMA space. */
6587                 bus_dmamap_sync(sc->rx_mbuf_tag,
6588                     sc->rx_mbuf_map[sw_rx_cons_idx],
6589                     BUS_DMASYNC_POSTREAD);
6590                 bus_dmamap_unload(sc->rx_mbuf_tag,
6591                     sc->rx_mbuf_map[sw_rx_cons_idx]);
6592
6593                 /* Remove the mbuf from the RX chain. */
6594                 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6595                 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6596                 DBRUN(sc->debug_rx_mbuf_alloc--);
6597                 sc->free_rx_bd++;
6598
6599                 /*
6600                  * Frames received on the NetXteme II are prepended
6601                  * with an l2_fhdr structure which provides status
6602                  * information about the received frame (including
6603                  * VLAN tags and checksum info).  The frames are
6604                  * also automatically adjusted to word align the IP
6605                  * header (i.e. two null bytes are inserted before
6606                  * the Ethernet header).  As a result the data
6607                  * DMA'd by the controller into the mbuf looks
6608                  * like this:
6609                  *
6610                  * +---------+-----+---------------------+-----+
6611                  * | l2_fhdr | pad | packet data         | FCS |
6612                  * +---------+-----+---------------------+-----+
6613                  *
6614                  * The l2_fhdr needs to be checked and skipped and
6615                  * the FCS needs to be stripped before sending the
6616                  * packet up the stack.
6617                  */
6618                 l2fhdr  = mtod(m0, struct l2_fhdr *);
6619
6620                 /* Get the packet data + FCS length and the status. */
6621                 pkt_len = l2fhdr->l2_fhdr_pkt_len;
6622                 status  = l2fhdr->l2_fhdr_status;
6623
6624                 /*
6625                  * Skip over the l2_fhdr and pad, resulting in the
6626                  * following data in the mbuf:
6627                  * +---------------------+-----+
6628                  * | packet data         | FCS |
6629                  * +---------------------+-----+
6630                  */
6631                 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6632
6633                 /*
6634                  * When split header mode is used, an ethernet frame
6635                  * may be split across the receive chain and the
6636                  * page chain. If that occurs an mbuf cluster must be
6637                  * reassembled from the individual mbuf pieces.
6638                  */
6639                 if (bce_hdr_split == TRUE) {
6640                         /*
6641                          * Check whether the received frame fits in a single
6642                          * mbuf or not (i.e. packet data + FCS <=
6643                          * sc->rx_bd_mbuf_data_len bytes).
6644                          */
6645                         if (pkt_len > m0->m_len) {
6646                                 /*
6647                                  * The received frame is larger than a single mbuf.
6648                                  * If the frame was a TCP frame then only the TCP
6649                                  * header is placed in the mbuf, the remaining
6650                                  * payload (including FCS) is placed in the page
6651                                  * chain, the SPLIT flag is set, and the header
6652                                  * length is placed in the IP checksum field.
6653                                  * If the frame is not a TCP frame then the mbuf
6654                                  * is filled and the remaining bytes are placed
6655                                  * in the page chain.
6656                                  */
6657
6658                                 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6659                                         "packet.\n", __FUNCTION__);
6660                                 DBRUN(sc->split_header_frames_rcvd++);
6661
6662                                 /*
6663                                  * When the page chain is enabled and the TCP
6664                                  * header has been split from the TCP payload,
6665                                  * the ip_xsum structure will reflect the length
6666                                  * of the TCP header, not the IP checksum.  Set
6667                                  * the packet length of the mbuf accordingly.
6668                                  */
6669                                 if (status & L2_FHDR_STATUS_SPLIT) {
6670                                         m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6671                                         DBRUN(sc->split_header_tcp_frames_rcvd++);
6672                                 }
6673
6674                                 rem_len = pkt_len - m0->m_len;
6675
6676                                 /* Pull mbufs off the page chain for any remaining data. */
6677                                 while (rem_len > 0) {
6678                                         struct mbuf *m_pg;
6679
6680                                         sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6681
6682                                         /* Remove the mbuf from the page chain. */
6683                                         m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6684                                         sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6685                                         DBRUN(sc->debug_pg_mbuf_alloc--);
6686                                         sc->free_pg_bd++;
6687
6688                                         /* Unmap the page chain mbuf from DMA space. */
6689                                         bus_dmamap_sync(sc->pg_mbuf_tag,
6690                                                 sc->pg_mbuf_map[sw_pg_cons_idx],
6691                                                 BUS_DMASYNC_POSTREAD);
6692                                         bus_dmamap_unload(sc->pg_mbuf_tag,
6693                                                 sc->pg_mbuf_map[sw_pg_cons_idx]);
6694
6695                                         /* Adjust the mbuf length. */
6696                                         if (rem_len < m_pg->m_len) {
6697                                                 /* The mbuf chain is complete. */
6698                                                 m_pg->m_len = rem_len;
6699                                                 rem_len = 0;
6700                                         } else {
6701                                                 /* More packet data is waiting. */
6702                                                 rem_len -= m_pg->m_len;
6703                                         }
6704
6705                                         /* Concatenate the mbuf cluster to the mbuf. */
6706                                         m_cat(m0, m_pg);
6707
6708                                         sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6709                                 }
6710
6711                                 /* Set the total packet length. */
6712                                 m0->m_pkthdr.len = pkt_len;
6713
6714                         } else {
6715                                 /*
6716                                  * The received packet is small and fits in a
6717                                  * single mbuf (i.e. the l2_fhdr + pad + packet +
6718                                  * FCS <= MHLEN).  In other words, the packet is
6719                                  * 154 bytes or less in size.
6720                                  */
6721
6722                                 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6723                                         "packet.\n", __FUNCTION__);
6724
6725                                 /* Set the total packet length. */
6726                                 m0->m_pkthdr.len = m0->m_len = pkt_len;
6727                         }
6728                 } else
6729                         /* Set the total packet length. */
6730                         m0->m_pkthdr.len = m0->m_len = pkt_len;
6731
6732                 /* Remove the trailing Ethernet FCS. */
6733                 m_adj(m0, -ETHER_CRC_LEN);
6734
6735                 /* Check that the resulting mbuf chain is valid. */
6736                 DBRUN(m_sanity(m0, FALSE));
6737                 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6738                     (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6739                     BCE_PRINTF("Invalid Ethernet frame size!\n");
6740                     m_print(m0, 128));
6741
6742                 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6743                     sc->l2fhdr_error_sim_count++;
6744                     status = status | L2_FHDR_ERRORS_PHY_DECODE);
6745
6746                 /* Check the received frame for errors. */
6747                 if (status & (L2_FHDR_ERRORS_BAD_CRC |
6748                     L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6749                     L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6750
6751                         /* Log the error and release the mbuf. */
6752                         sc->l2fhdr_error_count++;
6753                         m_freem(m0);
6754                         m0 = NULL;
6755                         goto bce_rx_intr_next_rx;
6756                 }
6757
6758                 /* Send the packet to the appropriate interface. */
6759                 m0->m_pkthdr.rcvif = ifp;
6760
6761                 /* Assume no hardware checksum. */
6762                 m0->m_pkthdr.csum_flags = 0;
6763
6764                 /* Validate the checksum if offload enabled. */
6765                 if (ifp->if_capenable & IFCAP_RXCSUM) {
6766                         /* Check for an IP datagram. */
6767                         if (!(status & L2_FHDR_STATUS_SPLIT) &&
6768                             (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6769                                 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6770                                 DBRUN(sc->csum_offload_ip++);
6771                                 /* Check if the IP checksum is valid. */
6772                                 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6773                                         m0->m_pkthdr.csum_flags |=
6774                                             CSUM_IP_VALID;
6775                         }
6776
6777                         /* Check for a valid TCP/UDP frame. */
6778                         if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6779                             L2_FHDR_STATUS_UDP_DATAGRAM)) {
6780
6781                                 /* Check for a good TCP/UDP checksum. */
6782                                 if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6783                                     L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6784                                         DBRUN(sc->csum_offload_tcp_udp++);
6785                                         m0->m_pkthdr.csum_data =
6786                                             l2fhdr->l2_fhdr_tcp_udp_xsum;
6787                                         m0->m_pkthdr.csum_flags |=
6788                                             (CSUM_DATA_VALID
6789                                             | CSUM_PSEUDO_HDR);
6790                                 }
6791                         }
6792                 }
6793
6794                 /* Attach the VLAN tag. */
6795                 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6796                     !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6797                         DBRUN(sc->vlan_tagged_frames_rcvd++);
6798                         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6799                                 DBRUN(sc->vlan_tagged_frames_stripped++);
6800 #if __FreeBSD_version < 700000
6801                                 VLAN_INPUT_TAG(ifp, m0,
6802                                     l2fhdr->l2_fhdr_vlan_tag, continue);
6803 #else
6804                                 m0->m_pkthdr.ether_vtag =
6805                                     l2fhdr->l2_fhdr_vlan_tag;
6806                                 m0->m_flags |= M_VLANTAG;
6807 #endif
6808                         } else {
6809                                 /*
6810                                  * bce(4) controllers can't disable VLAN
6811                                  * tag stripping if management firmware
6812                                  * (ASF/IPMI/UMP) is running. So we always
6813                                  * strip VLAN tag and manually reconstruct
6814                                  * the VLAN frame by appending stripped
6815                                  * VLAN tag in driver if VLAN tag stripping
6816                                  * was disabled.
6817                                  *
6818                                  * TODO: LLC SNAP handling.
6819                                  */
6820                                 bcopy(mtod(m0, uint8_t *),
6821                                     mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6822                                     ETHER_ADDR_LEN * 2);
6823                                 m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6824                                 vh = mtod(m0, struct ether_vlan_header *);
6825                                 vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6826                                 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6827                                 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6828                                 m0->m_len += ETHER_VLAN_ENCAP_LEN;
6829                         }
6830                 }
6831
6832                 /* Increment received packet statistics. */
6833                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
6834
6835 bce_rx_intr_next_rx:
6836                 sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6837
6838                 /* If we have a packet, pass it up the stack */
6839                 if (m0) {
6840                         /* Make sure we don't lose our place when we release the lock. */
6841                         sc->rx_cons = sw_rx_cons;
6842                         sc->pg_cons = sw_pg_cons;
6843
6844                         BCE_UNLOCK(sc);
6845                         (*ifp->if_input)(ifp, m0);
6846                         BCE_LOCK(sc);
6847
6848                         /* Recover our place. */
6849                         sw_rx_cons = sc->rx_cons;
6850                         sw_pg_cons = sc->pg_cons;
6851                 }
6852
6853                 /* Refresh hw_cons to see if there's new work */
6854                 if (sw_rx_cons == hw_rx_cons)
6855                         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6856         }
6857
6858         /* No new packets.  Refill the page chain. */
6859         if (bce_hdr_split == TRUE) {
6860                 sc->pg_cons = sw_pg_cons;
6861                 bce_fill_pg_chain(sc);
6862         }
6863
6864         /* No new packets.  Refill the RX chain. */
6865         sc->rx_cons = sw_rx_cons;
6866         bce_fill_rx_chain(sc);
6867
6868         /* Prepare the page chain pages to be accessed by the NIC. */
6869         for (int i = 0; i < sc->rx_pages; i++)
6870                 bus_dmamap_sync(sc->rx_bd_chain_tag,
6871                     sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6872
6873         if (bce_hdr_split == TRUE) {
6874                 for (int i = 0; i < sc->pg_pages; i++)
6875                         bus_dmamap_sync(sc->pg_bd_chain_tag,
6876                             sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6877         }
6878
6879         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6880             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6881             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6882         DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6883 }
6884
6885
6886 /****************************************************************************/
6887 /* Reads the transmit consumer value from the status block (skipping over   */
6888 /* chain page pointer if necessary).                                        */
6889 /*                                                                          */
6890 /* Returns:                                                                 */
6891 /*   hw_cons                                                                */
6892 /****************************************************************************/
6893 static inline u16
6894 bce_get_hw_tx_cons(struct bce_softc *sc)
6895 {
6896         u16 hw_cons;
6897
6898         mb();
6899         hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6900         if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6901                 hw_cons++;
6902
6903         return hw_cons;
6904 }
6905
6906
6907 /****************************************************************************/
6908 /* Handles transmit completion interrupt events.                            */
6909 /*                                                                          */
6910 /* Returns:                                                                 */
6911 /*   Nothing.                                                               */
6912 /****************************************************************************/
6913 static void
6914 bce_tx_intr(struct bce_softc *sc)
6915 {
6916         struct ifnet *ifp = sc->bce_ifp;
6917         u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6918
6919         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6920         DBRUN(sc->interrupts_tx++);
6921         DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6922             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6923             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6924
6925         BCE_LOCK_ASSERT(sc);
6926
6927         /* Get the hardware's view of the TX consumer index. */
6928         hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6929         sw_tx_cons = sc->tx_cons;
6930
6931         /* Prevent speculative reads of the status block. */
6932         bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6933             BUS_SPACE_BARRIER_READ);
6934
6935         /* Cycle through any completed TX chain page entries. */
6936         while (sw_tx_cons != hw_tx_cons) {
6937 #ifdef BCE_DEBUG
6938                 struct tx_bd *txbd = NULL;
6939 #endif
6940                 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6941
6942                 DBPRINT(sc, BCE_INFO_SEND,
6943                     "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6944                     "sw_tx_chain_cons = 0x%04X\n",
6945                     __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6946
6947                 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6948                     BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6949                     " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6950                     (int) MAX_TX_BD_ALLOC);
6951                     bce_breakpoint(sc));
6952
6953                 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6954                     [TX_IDX(sw_tx_chain_cons)]);
6955
6956                 DBRUNIF((txbd == NULL),
6957                     BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6958                     __FILE__, __LINE__, sw_tx_chain_cons);
6959                     bce_breakpoint(sc));
6960
6961                 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6962                     bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6963
6964                 /*
6965                  * Free the associated mbuf. Remember
6966                  * that only the last tx_bd of a packet
6967                  * has an mbuf pointer and DMA map.
6968                  */
6969                 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6970
6971                         /* Validate that this is the last tx_bd. */
6972                         DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6973                             BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6974                             "txmbuf == NULL!\n", __FILE__, __LINE__);
6975                             bce_breakpoint(sc));
6976
6977                         DBRUNMSG(BCE_INFO_SEND,
6978                             BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6979                             "from tx_bd[0x%04X]\n", __FUNCTION__,
6980                             sw_tx_chain_cons));
6981
6982                         /* Unmap the mbuf. */
6983                         bus_dmamap_unload(sc->tx_mbuf_tag,
6984                             sc->tx_mbuf_map[sw_tx_chain_cons]);
6985
6986                         /* Free the mbuf. */
6987                         m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6988                         sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6989                         DBRUN(sc->debug_tx_mbuf_alloc--);
6990
6991                         if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
6992                 }
6993
6994                 sc->used_tx_bd--;
6995                 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6996
6997                 /* Refresh hw_cons to see if there's new work. */
6998                 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6999
7000                 /* Prevent speculative reads of the status block. */
7001                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7002                     BUS_SPACE_BARRIER_READ);
7003         }
7004
7005         /* Clear the TX timeout timer. */
7006         sc->watchdog_timer = 0;
7007
7008         /* Clear the tx hardware queue full flag. */
7009         if (sc->used_tx_bd < sc->max_tx_bd) {
7010                 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
7011                     DBPRINT(sc, BCE_INFO_SEND,
7012                     "%s(): Open TX chain! %d/%d (used/total)\n",
7013                     __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
7014                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7015         }
7016
7017         sc->tx_cons = sw_tx_cons;
7018
7019         DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
7020             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
7021             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
7022         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
7023 }
7024
7025
7026 /****************************************************************************/
7027 /* Disables interrupt generation.                                           */
7028 /*                                                                          */
7029 /* Returns:                                                                 */
7030 /*   Nothing.                                                               */
7031 /****************************************************************************/
7032 static void
7033 bce_disable_intr(struct bce_softc *sc)
7034 {
7035         DBENTER(BCE_VERBOSE_INTR);
7036
7037         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7038         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
7039
7040         DBEXIT(BCE_VERBOSE_INTR);
7041 }
7042
7043
7044 /****************************************************************************/
7045 /* Enables interrupt generation.                                            */
7046 /*                                                                          */
7047 /* Returns:                                                                 */
7048 /*   Nothing.                                                               */
7049 /****************************************************************************/
7050 static void
7051 bce_enable_intr(struct bce_softc *sc, int coal_now)
7052 {
7053         DBENTER(BCE_VERBOSE_INTR);
7054
7055         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7056             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
7057             BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
7058
7059         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7060             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
7061
7062         /* Force an immediate interrupt (whether there is new data or not). */
7063         if (coal_now)
7064                 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
7065
7066         DBEXIT(BCE_VERBOSE_INTR);
7067 }
7068
7069
7070 /****************************************************************************/
7071 /* Handles controller initialization.                                       */
7072 /*                                                                          */
7073 /* Returns:                                                                 */
7074 /*   Nothing.                                                               */
7075 /****************************************************************************/
7076 static void
7077 bce_init_locked(struct bce_softc *sc)
7078 {
7079         struct ifnet *ifp;
7080         u32 ether_mtu = 0;
7081
7082         DBENTER(BCE_VERBOSE_RESET);
7083
7084         BCE_LOCK_ASSERT(sc);
7085
7086         ifp = sc->bce_ifp;
7087
7088         /* Check if the driver is still running and bail out if it is. */
7089         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7090                 goto bce_init_locked_exit;
7091
7092         bce_stop(sc);
7093
7094         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
7095                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
7096                     __FILE__, __LINE__);
7097                 goto bce_init_locked_exit;
7098         }
7099
7100         if (bce_chipinit(sc)) {
7101                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
7102                     __FILE__, __LINE__);
7103                 goto bce_init_locked_exit;
7104         }
7105
7106         if (bce_blockinit(sc)) {
7107                 BCE_PRINTF("%s(%d): Block initialization failed!\n",
7108                     __FILE__, __LINE__);
7109                 goto bce_init_locked_exit;
7110         }
7111
7112         /* Load our MAC address. */
7113         bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
7114         bce_set_mac_addr(sc);
7115
7116         if (bce_hdr_split == FALSE)
7117                 bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7118         /*
7119          * Calculate and program the hardware Ethernet MTU
7120          * size. Be generous on the receive if we have room
7121          * and allowed by the user.
7122          */
7123         if (bce_strict_rx_mtu == TRUE)
7124                 ether_mtu = ifp->if_mtu;
7125         else {
7126                 if (bce_hdr_split == TRUE) {
7127                         if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
7128                                 ether_mtu = sc->rx_bd_mbuf_data_len +
7129                                     MCLBYTES;
7130                         else
7131                                 ether_mtu = ifp->if_mtu;
7132                 } else {
7133                         if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7134                                 ether_mtu = sc->rx_bd_mbuf_data_len;
7135                         else
7136                                 ether_mtu = ifp->if_mtu;
7137                 }
7138         }
7139
7140         ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7141
7142         DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7143             __FUNCTION__, ether_mtu);
7144
7145         /* Program the mtu, enabling jumbo frame support if necessary. */
7146         if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7147                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7148                     min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7149                     BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7150         else
7151                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7152
7153         /* Program appropriate promiscuous/multicast filtering. */
7154         bce_set_rx_mode(sc);
7155
7156         if (bce_hdr_split == TRUE) {
7157                 /* Init page buffer descriptor chain. */
7158                 bce_init_pg_chain(sc);
7159         }
7160
7161         /* Init RX buffer descriptor chain. */
7162         bce_init_rx_chain(sc);
7163
7164         /* Init TX buffer descriptor chain. */
7165         bce_init_tx_chain(sc);
7166
7167         /* Enable host interrupts. */
7168         bce_enable_intr(sc, 1);
7169
7170         bce_ifmedia_upd_locked(ifp);
7171
7172         /* Let the OS know the driver is up and running. */
7173         ifp->if_drv_flags |= IFF_DRV_RUNNING;
7174         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7175
7176         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7177
7178 bce_init_locked_exit:
7179         DBEXIT(BCE_VERBOSE_RESET);
7180 }
7181
7182
7183 /****************************************************************************/
7184 /* Initialize the controller just enough so that any management firmware    */
7185 /* running on the device will continue to operate correctly.                */
7186 /*                                                                          */
7187 /* Returns:                                                                 */
7188 /*   Nothing.                                                               */
7189 /****************************************************************************/
7190 static void
7191 bce_mgmt_init_locked(struct bce_softc *sc)
7192 {
7193         struct ifnet *ifp;
7194
7195         DBENTER(BCE_VERBOSE_RESET);
7196
7197         BCE_LOCK_ASSERT(sc);
7198
7199         /* Bail out if management firmware is not running. */
7200         if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7201                 DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7202                     "No management firmware running...\n");
7203                 goto bce_mgmt_init_locked_exit;
7204         }
7205
7206         ifp = sc->bce_ifp;
7207
7208         /* Enable all critical blocks in the MAC. */
7209         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7210         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7211         DELAY(20);
7212
7213         bce_ifmedia_upd_locked(ifp);
7214
7215 bce_mgmt_init_locked_exit:
7216         DBEXIT(BCE_VERBOSE_RESET);
7217 }
7218
7219
7220 /****************************************************************************/
7221 /* Handles controller initialization when called from an unlocked routine.  */
7222 /*                                                                          */
7223 /* Returns:                                                                 */
7224 /*   Nothing.                                                               */
7225 /****************************************************************************/
7226 static void
7227 bce_init(void *xsc)
7228 {
7229         struct bce_softc *sc = xsc;
7230
7231         DBENTER(BCE_VERBOSE_RESET);
7232
7233         BCE_LOCK(sc);
7234         bce_init_locked(sc);
7235         BCE_UNLOCK(sc);
7236
7237         DBEXIT(BCE_VERBOSE_RESET);
7238 }
7239
7240
7241 /****************************************************************************/
7242 /* Modifies an mbuf for TSO on the hardware.                                */
7243 /*                                                                          */
7244 /* Returns:                                                                 */
7245 /*   Pointer to a modified mbuf.                                            */
7246 /****************************************************************************/
7247 static struct mbuf *
7248 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7249 {
7250         struct mbuf *m;
7251         struct ether_header *eh;
7252         struct ip *ip;
7253         struct tcphdr *th;
7254         u16 etype;
7255         int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7256
7257         DBRUN(sc->tso_frames_requested++);
7258
7259         /* Controller may modify mbuf chains. */
7260         if (M_WRITABLE(*m_head) == 0) {
7261                 m = m_dup(*m_head, M_NOWAIT);
7262                 m_freem(*m_head);
7263                 if (m == NULL) {
7264                         sc->mbuf_alloc_failed_count++;
7265                         *m_head = NULL;
7266                         return (NULL);
7267                 }
7268                 *m_head = m;
7269         }
7270
7271         /*
7272          * For TSO the controller needs two pieces of info,
7273          * the MSS and the IP+TCP options length.
7274          */
7275         m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7276         if (m == NULL) {
7277                 *m_head = NULL;
7278                 return (NULL);
7279         }
7280         eh = mtod(m, struct ether_header *);
7281         etype = ntohs(eh->ether_type);
7282
7283         /* Check for supported TSO Ethernet types (only IPv4 for now) */
7284         switch (etype) {
7285         case ETHERTYPE_IP:
7286                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7287                 /* TSO only supported for TCP protocol. */
7288                 if (ip->ip_p != IPPROTO_TCP) {
7289                         BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7290                             __FILE__, __LINE__);
7291                         m_freem(*m_head);
7292                         *m_head = NULL;
7293                         return (NULL);
7294                 }
7295
7296                 /* Get IP header length in bytes (min 20) */
7297                 ip_hlen = ip->ip_hl << 2;
7298                 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7299                     sizeof(struct tcphdr));
7300                 if (m == NULL) {
7301                         *m_head = NULL;
7302                         return (NULL);
7303                 }
7304
7305                 /* Get the TCP header length in bytes (min 20) */
7306                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7307                 th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7308                 tcp_hlen = (th->th_off << 2);
7309
7310                 /* Make sure all IP/TCP options live in the same buffer. */
7311                 m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7312                     tcp_hlen);
7313                 if (m == NULL) {
7314                         *m_head = NULL;
7315                         return (NULL);
7316                 }
7317
7318                 /* Clear IP header length and checksum, will be calc'd by h/w. */
7319                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7320                 ip_len = ip->ip_len;
7321                 ip->ip_len = 0;
7322                 ip->ip_sum = 0;
7323                 break;
7324         case ETHERTYPE_IPV6:
7325                 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7326                     __FILE__, __LINE__);
7327                 m_freem(*m_head);
7328                 *m_head = NULL;
7329                 return (NULL);
7330                 /* NOT REACHED */
7331         default:
7332                 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7333                     __FILE__, __LINE__);
7334                 m_freem(*m_head);
7335                 *m_head = NULL;
7336                 return (NULL);
7337         }
7338
7339         hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7340
7341         DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7342             "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7343             __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7344             tcp_hlen, ip_len);
7345
7346         /* Set the LSO flag in the TX BD */
7347         *flags |= TX_BD_FLAGS_SW_LSO;
7348
7349         /* Set the length of IP + TCP options (in 32 bit words) */
7350         *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7351             sizeof(struct tcphdr)) >> 2) << 8);
7352
7353         DBRUN(sc->tso_frames_completed++);
7354         return (*m_head);
7355 }
7356
7357
7358 /****************************************************************************/
7359 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7360 /* memory visible to the controller.                                        */
7361 /*                                                                          */
7362 /* Returns:                                                                 */
7363 /*   0 for success, positive value for failure.                             */
7364 /* Modified:                                                                */
7365 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7366 /****************************************************************************/
7367 static int
7368 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7369 {
7370         bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7371         bus_dmamap_t map;
7372         struct tx_bd *txbd = NULL;
7373         struct mbuf *m0;
7374         u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7375         u32 prod_bseq;
7376
7377 #ifdef BCE_DEBUG
7378         u16 debug_prod;
7379 #endif
7380
7381         int i, error, nsegs, rc = 0;
7382
7383         DBENTER(BCE_VERBOSE_SEND);
7384
7385         /* Make sure we have room in the TX chain. */
7386         if (sc->used_tx_bd >= sc->max_tx_bd)
7387                 goto bce_tx_encap_exit;
7388
7389         /* Transfer any checksum offload flags to the bd. */
7390         m0 = *m_head;
7391         if (m0->m_pkthdr.csum_flags) {
7392                 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7393                         m0 = bce_tso_setup(sc, m_head, &flags);
7394                         if (m0 == NULL) {
7395                                 DBRUN(sc->tso_frames_failed++);
7396                                 goto bce_tx_encap_exit;
7397                         }
7398                         mss = htole16(m0->m_pkthdr.tso_segsz);
7399                 } else {
7400                         if (m0->m_pkthdr.csum_flags & CSUM_IP)
7401                                 flags |= TX_BD_FLAGS_IP_CKSUM;
7402                         if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7403                                 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7404                 }
7405         }
7406
7407         /* Transfer any VLAN tags to the bd. */
7408         if (m0->m_flags & M_VLANTAG) {
7409                 flags |= TX_BD_FLAGS_VLAN_TAG;
7410                 vlan_tag = m0->m_pkthdr.ether_vtag;
7411         }
7412
7413         /* Map the mbuf into DMAable memory. */
7414         prod = sc->tx_prod;
7415         chain_prod = TX_CHAIN_IDX(prod);
7416         map = sc->tx_mbuf_map[chain_prod];
7417
7418         /* Map the mbuf into our DMA address space. */
7419         error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7420             segs, &nsegs, BUS_DMA_NOWAIT);
7421
7422         /* Check if the DMA mapping was successful */
7423         if (error == EFBIG) {
7424                 sc->mbuf_frag_count++;
7425
7426                 /* Try to defrag the mbuf. */
7427                 m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7428                 if (m0 == NULL) {
7429                         /* Defrag was unsuccessful */
7430                         m_freem(*m_head);
7431                         *m_head = NULL;
7432                         sc->mbuf_alloc_failed_count++;
7433                         rc = ENOBUFS;
7434                         goto bce_tx_encap_exit;
7435                 }
7436
7437                 /* Defrag was successful, try mapping again */
7438                 *m_head = m0;
7439                 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7440                     map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7441
7442                 /* Still getting an error after a defrag. */
7443                 if (error == ENOMEM) {
7444                         /* Insufficient DMA buffers available. */
7445                         sc->dma_map_addr_tx_failed_count++;
7446                         rc = error;
7447                         goto bce_tx_encap_exit;
7448                 } else if (error != 0) {
7449                         /* Release it and return an error. */
7450                         BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7451                             "TX chain!\n", __FILE__, __LINE__);
7452                         m_freem(m0);
7453                         *m_head = NULL;
7454                         sc->dma_map_addr_tx_failed_count++;
7455                         rc = ENOBUFS;
7456                         goto bce_tx_encap_exit;
7457                 }
7458         } else if (error == ENOMEM) {
7459                 /* Insufficient DMA buffers available. */
7460                 sc->dma_map_addr_tx_failed_count++;
7461                 rc = error;
7462                 goto bce_tx_encap_exit;
7463         } else if (error != 0) {
7464                 m_freem(m0);
7465                 *m_head = NULL;
7466                 sc->dma_map_addr_tx_failed_count++;
7467                 rc = error;
7468                 goto bce_tx_encap_exit;
7469         }
7470
7471         /* Make sure there's room in the chain */
7472         if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7473                 bus_dmamap_unload(sc->tx_mbuf_tag, map);
7474                 rc = ENOBUFS;
7475                 goto bce_tx_encap_exit;
7476         }
7477
7478         /* prod points to an empty tx_bd at this point. */
7479         prod_bseq  = sc->tx_prod_bseq;
7480
7481 #ifdef BCE_DEBUG
7482         debug_prod = chain_prod;
7483 #endif
7484
7485         DBPRINT(sc, BCE_INFO_SEND,
7486             "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7487             "prod_bseq = 0x%08X\n",
7488             __FUNCTION__, prod, chain_prod, prod_bseq);
7489
7490         /*
7491          * Cycle through each mbuf segment that makes up
7492          * the outgoing frame, gathering the mapping info
7493          * for that segment and creating a tx_bd for
7494          * the mbuf.
7495          */
7496         for (i = 0; i < nsegs ; i++) {
7497
7498                 chain_prod = TX_CHAIN_IDX(prod);
7499                 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7500                     [TX_IDX(chain_prod)];
7501
7502                 txbd->tx_bd_haddr_lo =
7503                     htole32(BCE_ADDR_LO(segs[i].ds_addr));
7504                 txbd->tx_bd_haddr_hi =
7505                     htole32(BCE_ADDR_HI(segs[i].ds_addr));
7506                 txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7507                     htole16(segs[i].ds_len);
7508                 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7509                 txbd->tx_bd_flags = htole16(flags);
7510                 prod_bseq += segs[i].ds_len;
7511                 if (i == 0)
7512                         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7513                 prod = NEXT_TX_BD(prod);
7514         }
7515
7516         /* Set the END flag on the last TX buffer descriptor. */
7517         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7518
7519         DBRUNMSG(BCE_EXTREME_SEND,
7520             bce_dump_tx_chain(sc, debug_prod, nsegs));
7521
7522         /*
7523          * Ensure that the mbuf pointer for this transmission
7524          * is placed at the array index of the last
7525          * descriptor in this chain.  This is done
7526          * because a single map is used for all
7527          * segments of the mbuf and we don't want to
7528          * unload the map before all of the segments
7529          * have been freed.
7530          */
7531         sc->tx_mbuf_ptr[chain_prod] = m0;
7532         sc->used_tx_bd += nsegs;
7533
7534         /* Update some debug statistic counters */
7535         DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7536             sc->tx_hi_watermark = sc->used_tx_bd);
7537         DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7538         DBRUNIF(sc->debug_tx_mbuf_alloc++);
7539
7540         DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7541
7542         /* prod points to the next free tx_bd at this point. */
7543         sc->tx_prod = prod;
7544         sc->tx_prod_bseq = prod_bseq;
7545
7546         /* Tell the chip about the waiting TX frames. */
7547         REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7548             BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7549         REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7550             BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7551
7552 bce_tx_encap_exit:
7553         DBEXIT(BCE_VERBOSE_SEND);
7554         return(rc);
7555 }
7556
7557
7558 /****************************************************************************/
7559 /* Main transmit routine when called from another routine with a lock.      */
7560 /*                                                                          */
7561 /* Returns:                                                                 */
7562 /*   Nothing.                                                               */
7563 /****************************************************************************/
7564 static void
7565 bce_start_locked(struct ifnet *ifp)
7566 {
7567         struct bce_softc *sc = ifp->if_softc;
7568         struct mbuf *m_head = NULL;
7569         int count = 0;
7570         u16 tx_prod, tx_chain_prod;
7571
7572         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7573
7574         BCE_LOCK_ASSERT(sc);
7575
7576         /* prod points to the next free tx_bd. */
7577         tx_prod = sc->tx_prod;
7578         tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7579
7580         DBPRINT(sc, BCE_INFO_SEND,
7581             "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7582             "tx_prod_bseq = 0x%08X\n",
7583             __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7584
7585         /* If there's no link or the transmit queue is empty then just exit. */
7586         if (sc->bce_link_up == FALSE) {
7587                 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7588                     __FUNCTION__);
7589                 goto bce_start_locked_exit;
7590         }
7591
7592         if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7593                 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7594                     __FUNCTION__);
7595                 goto bce_start_locked_exit;
7596         }
7597
7598         /*
7599          * Keep adding entries while there is space in the ring.
7600          */
7601         while (sc->used_tx_bd < sc->max_tx_bd) {
7602
7603                 /* Check for any frames to send. */
7604                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7605
7606                 /* Stop when the transmit queue is empty. */
7607                 if (m_head == NULL)
7608                         break;
7609
7610                 /*
7611                  * Pack the data into the transmit ring. If we
7612                  * don't have room, place the mbuf back at the
7613                  * head of the queue and set the OACTIVE flag
7614                  * to wait for the NIC to drain the chain.
7615                  */
7616                 if (bce_tx_encap(sc, &m_head)) {
7617                         if (m_head != NULL)
7618                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7619                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7620                         DBPRINT(sc, BCE_INFO_SEND,
7621                             "TX chain is closed for business! Total "
7622                             "tx_bd used = %d\n", sc->used_tx_bd);
7623                         break;
7624                 }
7625
7626                 count++;
7627
7628                 /* Send a copy of the frame to any BPF listeners. */
7629                 ETHER_BPF_MTAP(ifp, m_head);
7630         }
7631
7632         /* Exit if no packets were dequeued. */
7633         if (count == 0) {
7634                 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7635                     "dequeued\n", __FUNCTION__);
7636                 goto bce_start_locked_exit;
7637         }
7638
7639         DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7640             "send queue.\n", __FUNCTION__, count);
7641
7642         /* Set the tx timeout. */
7643         sc->watchdog_timer = BCE_TX_TIMEOUT;
7644
7645         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7646         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7647
7648 bce_start_locked_exit:
7649         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7650 }
7651
7652
7653 /****************************************************************************/
7654 /* Main transmit routine when called from another routine without a lock.   */
7655 /*                                                                          */
7656 /* Returns:                                                                 */
7657 /*   Nothing.                                                               */
7658 /****************************************************************************/
7659 static void
7660 bce_start(struct ifnet *ifp)
7661 {
7662         struct bce_softc *sc = ifp->if_softc;
7663
7664         DBENTER(BCE_VERBOSE_SEND);
7665
7666         BCE_LOCK(sc);
7667         bce_start_locked(ifp);
7668         BCE_UNLOCK(sc);
7669
7670         DBEXIT(BCE_VERBOSE_SEND);
7671 }
7672
7673
7674 /****************************************************************************/
7675 /* Handles any IOCTL calls from the operating system.                       */
7676 /*                                                                          */
7677 /* Returns:                                                                 */
7678 /*   0 for success, positive value for failure.                             */
7679 /****************************************************************************/
7680 static int
7681 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7682 {
7683         struct bce_softc *sc = ifp->if_softc;
7684         struct ifreq *ifr = (struct ifreq *) data;
7685         struct mii_data *mii;
7686         int mask, error = 0;
7687
7688         DBENTER(BCE_VERBOSE_MISC);
7689
7690         switch(command) {
7691
7692         /* Set the interface MTU. */
7693         case SIOCSIFMTU:
7694                 /* Check that the MTU setting is supported. */
7695                 if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7696                         (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7697                         error = EINVAL;
7698                         break;
7699                 }
7700
7701                 DBPRINT(sc, BCE_INFO_MISC,
7702                     "SIOCSIFMTU: Changing MTU from %d to %d\n",
7703                     (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7704
7705                 BCE_LOCK(sc);
7706                 ifp->if_mtu = ifr->ifr_mtu;
7707                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7708                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7709                         bce_init_locked(sc);
7710                 }
7711                 BCE_UNLOCK(sc);
7712                 break;
7713
7714         /* Set interface flags. */
7715         case SIOCSIFFLAGS:
7716                 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7717
7718                 BCE_LOCK(sc);
7719
7720                 /* Check if the interface is up. */
7721                 if (ifp->if_flags & IFF_UP) {
7722                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7723                                 /* Change promiscuous/multicast flags as necessary. */
7724                                 bce_set_rx_mode(sc);
7725                         } else {
7726                                 /* Start the HW */
7727                                 bce_init_locked(sc);
7728                         }
7729                 } else {
7730                         /* The interface is down, check if driver is running. */
7731                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7732                                 bce_stop(sc);
7733
7734                                 /* If MFW is running, restart the controller a bit. */
7735                                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7736                                         bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7737                                         bce_chipinit(sc);
7738                                         bce_mgmt_init_locked(sc);
7739                                 }
7740                         }
7741                 }
7742
7743                 BCE_UNLOCK(sc);
7744                 break;
7745
7746         /* Add/Delete multicast address */
7747         case SIOCADDMULTI:
7748         case SIOCDELMULTI:
7749                 DBPRINT(sc, BCE_VERBOSE_MISC,
7750                     "Received SIOCADDMULTI/SIOCDELMULTI\n");
7751
7752                 BCE_LOCK(sc);
7753                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7754                         bce_set_rx_mode(sc);
7755                 BCE_UNLOCK(sc);
7756
7757                 break;
7758
7759         /* Set/Get Interface media */
7760         case SIOCSIFMEDIA:
7761         case SIOCGIFMEDIA:
7762                 DBPRINT(sc, BCE_VERBOSE_MISC,
7763                     "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7764                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7765                         error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7766                             command);
7767                 else {
7768                         mii = device_get_softc(sc->bce_miibus);
7769                         error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7770                             command);
7771                 }
7772                 break;
7773
7774         /* Set interface capability */
7775         case SIOCSIFCAP:
7776                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7777                 DBPRINT(sc, BCE_INFO_MISC,
7778                     "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7779
7780                 /* Toggle the TX checksum capabilities enable flag. */
7781                 if (mask & IFCAP_TXCSUM &&
7782                     ifp->if_capabilities & IFCAP_TXCSUM) {
7783                         ifp->if_capenable ^= IFCAP_TXCSUM;
7784                         if (IFCAP_TXCSUM & ifp->if_capenable)
7785                                 ifp->if_hwassist |= BCE_IF_HWASSIST;
7786                         else
7787                                 ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7788                 }
7789
7790                 /* Toggle the RX checksum capabilities enable flag. */
7791                 if (mask & IFCAP_RXCSUM &&
7792                     ifp->if_capabilities & IFCAP_RXCSUM)
7793                         ifp->if_capenable ^= IFCAP_RXCSUM;
7794
7795                 /* Toggle the TSO capabilities enable flag. */
7796                 if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7797                     ifp->if_capabilities & IFCAP_TSO4) {
7798                         ifp->if_capenable ^= IFCAP_TSO4;
7799                         if (IFCAP_TSO4 & ifp->if_capenable)
7800                                 ifp->if_hwassist |= CSUM_TSO;
7801                         else
7802                                 ifp->if_hwassist &= ~CSUM_TSO;
7803                 }
7804
7805                 if (mask & IFCAP_VLAN_HWCSUM &&
7806                     ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7807                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7808
7809                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7810                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7811                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7812                 /*
7813                  * Don't actually disable VLAN tag stripping as
7814                  * management firmware (ASF/IPMI/UMP) requires the
7815                  * feature. If VLAN tag stripping is disabled driver
7816                  * will manually reconstruct the VLAN frame by
7817                  * appending stripped VLAN tag.
7818                  */
7819                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7820                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7821                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7822                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7823                             == 0)
7824                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7825                 }
7826                 VLAN_CAPABILITIES(ifp);
7827                 break;
7828         default:
7829                 /* We don't know how to handle the IOCTL, pass it on. */
7830                 error = ether_ioctl(ifp, command, data);
7831                 break;
7832         }
7833
7834         DBEXIT(BCE_VERBOSE_MISC);
7835         return(error);
7836 }
7837
7838
7839 /****************************************************************************/
7840 /* Transmit timeout handler.                                                */
7841 /*                                                                          */
7842 /* Returns:                                                                 */
7843 /*   Nothing.                                                               */
7844 /****************************************************************************/
7845 static void
7846 bce_watchdog(struct bce_softc *sc)
7847 {
7848         uint32_t status;
7849
7850         DBENTER(BCE_EXTREME_SEND);
7851
7852         BCE_LOCK_ASSERT(sc);
7853
7854         status = 0;
7855         /* If the watchdog timer hasn't expired then just exit. */
7856         if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7857                 goto bce_watchdog_exit;
7858
7859         status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7860         /* If pause frames are active then don't reset the hardware. */
7861         if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7862                 if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7863                         /*
7864                          * If link partner has us in XOFF state then wait for
7865                          * the condition to clear.
7866                          */
7867                         sc->watchdog_timer = BCE_TX_TIMEOUT;
7868                         goto bce_watchdog_exit;
7869                 } else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7870                         (status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7871                         /*
7872                          * If we're not currently XOFF'ed but have recently
7873                          * been XOFF'd/XON'd then assume that's delaying TX
7874                          * this time around.
7875                          */
7876                         sc->watchdog_timer = BCE_TX_TIMEOUT;
7877                         goto bce_watchdog_exit;
7878                 }
7879                 /*
7880                  * Any other condition is unexpected and the controller
7881                  * should be reset.
7882                  */
7883         }
7884
7885         BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7886             __FILE__, __LINE__);
7887
7888         DBRUNMSG(BCE_INFO,
7889             bce_dump_driver_state(sc);
7890             bce_dump_status_block(sc);
7891             bce_dump_stats_block(sc);
7892             bce_dump_ftqs(sc);
7893             bce_dump_txp_state(sc, 0);
7894             bce_dump_rxp_state(sc, 0);
7895             bce_dump_tpat_state(sc, 0);
7896             bce_dump_cp_state(sc, 0);
7897             bce_dump_com_state(sc, 0));
7898
7899         DBRUN(bce_breakpoint(sc));
7900
7901         sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7902
7903         bce_init_locked(sc);
7904         sc->watchdog_timeouts++;
7905
7906 bce_watchdog_exit:
7907         REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7908         DBEXIT(BCE_EXTREME_SEND);
7909 }
7910
7911
7912 /*
7913  * Interrupt handler.
7914  */
7915 /****************************************************************************/
7916 /* Main interrupt entry point.  Verifies that the controller generated the  */
7917 /* interrupt and then calls a separate routine for handle the various       */
7918 /* interrupt causes (PHY, TX, RX).                                          */
7919 /*                                                                          */
7920 /* Returns:                                                                 */
7921 /*   Nothing.                                                               */
7922 /****************************************************************************/
7923 static void
7924 bce_intr(void *xsc)
7925 {
7926         struct bce_softc *sc;
7927         struct ifnet *ifp;
7928         u32 status_attn_bits;
7929         u16 hw_rx_cons, hw_tx_cons;
7930
7931         sc = xsc;
7932         ifp = sc->bce_ifp;
7933
7934         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7935         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7936         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7937
7938         BCE_LOCK(sc);
7939
7940         DBRUN(sc->interrupts_generated++);
7941
7942         /* Synchnorize before we read from interface's status block */
7943         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7944
7945         /*
7946          * If the hardware status block index matches the last value read
7947          * by the driver and we haven't asserted our interrupt then there's
7948          * nothing to do.  This may only happen in case of INTx due to the
7949          * interrupt arriving at the CPU before the status block is updated.
7950          */
7951         if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7952             sc->status_block->status_idx == sc->last_status_idx &&
7953             (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7954              BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7955                 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7956                     __FUNCTION__);
7957                 goto bce_intr_exit;
7958         }
7959
7960         /* Ack the interrupt and stop others from occurring. */
7961         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7962             BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7963             BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7964
7965         /* Check if the hardware has finished any work. */
7966         hw_rx_cons = bce_get_hw_rx_cons(sc);
7967         hw_tx_cons = bce_get_hw_tx_cons(sc);
7968
7969         /* Keep processing data as long as there is work to do. */
7970         for (;;) {
7971
7972                 status_attn_bits = sc->status_block->status_attn_bits;
7973
7974                 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7975                     BCE_PRINTF("Simulating unexpected status attention "
7976                     "bit set.");
7977                     sc->unexpected_attention_sim_count++;
7978                     status_attn_bits = status_attn_bits |
7979                     STATUS_ATTN_BITS_PARITY_ERROR);
7980
7981                 /* Was it a link change interrupt? */
7982                 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7983                     (sc->status_block->status_attn_bits_ack &
7984                      STATUS_ATTN_BITS_LINK_STATE)) {
7985                         bce_phy_intr(sc);
7986
7987                         /* Clear transient updates during link state change. */
7988                         REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7989                             BCE_HC_COMMAND_COAL_NOW_WO_INT);
7990                         REG_RD(sc, BCE_HC_COMMAND);
7991                 }
7992
7993                 /* If any other attention is asserted, the chip is toast. */
7994                 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7995                     (sc->status_block->status_attn_bits_ack &
7996                     ~STATUS_ATTN_BITS_LINK_STATE))) {
7997
7998                         sc->unexpected_attention_count++;
7999
8000                         BCE_PRINTF("%s(%d): Fatal attention detected: "
8001                             "0x%08X\n", __FILE__, __LINE__,
8002                             sc->status_block->status_attn_bits);
8003
8004                         DBRUNMSG(BCE_FATAL,
8005                             if (unexpected_attention_sim_control == 0)
8006                                 bce_breakpoint(sc));
8007
8008                         bce_init_locked(sc);
8009                         goto bce_intr_exit;
8010                 }
8011
8012                 /* Check for any completed RX frames. */
8013                 if (hw_rx_cons != sc->hw_rx_cons)
8014                         bce_rx_intr(sc);
8015
8016                 /* Check for any completed TX frames. */
8017                 if (hw_tx_cons != sc->hw_tx_cons)
8018                         bce_tx_intr(sc);
8019
8020                 /* Save status block index value for the next interrupt. */
8021                 sc->last_status_idx = sc->status_block->status_idx;
8022
8023                 /*
8024                  * Prevent speculative reads from getting
8025                  * ahead of the status block.
8026                  */
8027                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
8028                     BUS_SPACE_BARRIER_READ);
8029
8030                 /*
8031                  * If there's no work left then exit the
8032                  * interrupt service routine.
8033                  */
8034                 hw_rx_cons = bce_get_hw_rx_cons(sc);
8035                 hw_tx_cons = bce_get_hw_tx_cons(sc);
8036
8037                 if ((hw_rx_cons == sc->hw_rx_cons) &&
8038                     (hw_tx_cons == sc->hw_tx_cons))
8039                         break;
8040         }
8041
8042         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_PREREAD);
8043
8044         /* Re-enable interrupts. */
8045         bce_enable_intr(sc, 0);
8046
8047         /* Handle any frames that arrived while handling the interrupt. */
8048         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
8049             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
8050                 bce_start_locked(ifp);
8051
8052 bce_intr_exit:
8053         BCE_UNLOCK(sc);
8054
8055         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
8056 }
8057
8058
8059 /****************************************************************************/
8060 /* Programs the various packet receive modes (broadcast and multicast).     */
8061 /*                                                                          */
8062 /* Returns:                                                                 */
8063 /*   Nothing.                                                               */
8064 /****************************************************************************/
8065 static void
8066 bce_set_rx_mode(struct bce_softc *sc)
8067 {
8068         struct ifnet *ifp;
8069         struct ifmultiaddr *ifma;
8070         u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
8071         u32 rx_mode, sort_mode;
8072         int h, i;
8073
8074         DBENTER(BCE_VERBOSE_MISC);
8075
8076         BCE_LOCK_ASSERT(sc);
8077
8078         ifp = sc->bce_ifp;
8079
8080         /* Initialize receive mode default settings. */
8081         rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
8082             BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
8083         sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
8084
8085         /*
8086          * ASF/IPMI/UMP firmware requires that VLAN tag stripping
8087          * be enbled.
8088          */
8089         if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
8090             (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
8091                 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
8092
8093         /*
8094          * Check for promiscuous, all multicast, or selected
8095          * multicast address filtering.
8096          */
8097         if (ifp->if_flags & IFF_PROMISC) {
8098                 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
8099
8100                 /* Enable promiscuous mode. */
8101                 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
8102                 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
8103         } else if (ifp->if_flags & IFF_ALLMULTI) {
8104                 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
8105
8106                 /* Enable all multicast addresses. */
8107                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
8108                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
8109                             0xffffffff);
8110                 }
8111                 sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
8112         } else {
8113                 /* Accept one or more multicast(s). */
8114                 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
8115
8116                 if_maddr_rlock(ifp);
8117                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
8118                         if (ifma->ifma_addr->sa_family != AF_LINK)
8119                                 continue;
8120                         h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
8121                             ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
8122                             hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
8123                 }
8124                 if_maddr_runlock(ifp);
8125
8126                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
8127                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
8128
8129                 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
8130         }
8131
8132         /* Only make changes if the recive mode has actually changed. */
8133         if (rx_mode != sc->rx_mode) {
8134                 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
8135                     "0x%08X\n", rx_mode);
8136
8137                 sc->rx_mode = rx_mode;
8138                 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
8139         }
8140
8141         /* Disable and clear the exisitng sort before enabling a new sort. */
8142         REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8143         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8144         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8145
8146         DBEXIT(BCE_VERBOSE_MISC);
8147 }
8148
8149
8150 /****************************************************************************/
8151 /* Called periodically to updates statistics from the controllers           */
8152 /* statistics block.                                                        */
8153 /*                                                                          */
8154 /* Returns:                                                                 */
8155 /*   Nothing.                                                               */
8156 /****************************************************************************/
8157 static void
8158 bce_stats_update(struct bce_softc *sc)
8159 {
8160         struct statistics_block *stats;
8161
8162         DBENTER(BCE_EXTREME_MISC);
8163
8164         bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8165
8166         stats = (struct statistics_block *) sc->stats_block;
8167
8168         /*
8169          * Update the sysctl statistics from the
8170          * hardware statistics.
8171          */
8172         sc->stat_IfHCInOctets =
8173             ((u64) stats->stat_IfHCInOctets_hi << 32) +
8174              (u64) stats->stat_IfHCInOctets_lo;
8175
8176         sc->stat_IfHCInBadOctets =
8177             ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8178              (u64) stats->stat_IfHCInBadOctets_lo;
8179
8180         sc->stat_IfHCOutOctets =
8181             ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8182              (u64) stats->stat_IfHCOutOctets_lo;
8183
8184         sc->stat_IfHCOutBadOctets =
8185             ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8186              (u64) stats->stat_IfHCOutBadOctets_lo;
8187
8188         sc->stat_IfHCInUcastPkts =
8189             ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8190              (u64) stats->stat_IfHCInUcastPkts_lo;
8191
8192         sc->stat_IfHCInMulticastPkts =
8193             ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8194              (u64) stats->stat_IfHCInMulticastPkts_lo;
8195
8196         sc->stat_IfHCInBroadcastPkts =
8197             ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8198              (u64) stats->stat_IfHCInBroadcastPkts_lo;
8199
8200         sc->stat_IfHCOutUcastPkts =
8201             ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8202              (u64) stats->stat_IfHCOutUcastPkts_lo;
8203
8204         sc->stat_IfHCOutMulticastPkts =
8205             ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8206              (u64) stats->stat_IfHCOutMulticastPkts_lo;
8207
8208         sc->stat_IfHCOutBroadcastPkts =
8209             ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8210              (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8211
8212         /* ToDo: Preserve counters beyond 32 bits? */
8213         /* ToDo: Read the statistics from auto-clear regs? */
8214
8215         sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8216             stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8217
8218         sc->stat_Dot3StatsCarrierSenseErrors =
8219             stats->stat_Dot3StatsCarrierSenseErrors;
8220
8221         sc->stat_Dot3StatsFCSErrors =
8222             stats->stat_Dot3StatsFCSErrors;
8223
8224         sc->stat_Dot3StatsAlignmentErrors =
8225             stats->stat_Dot3StatsAlignmentErrors;
8226
8227         sc->stat_Dot3StatsSingleCollisionFrames =
8228             stats->stat_Dot3StatsSingleCollisionFrames;
8229
8230         sc->stat_Dot3StatsMultipleCollisionFrames =
8231             stats->stat_Dot3StatsMultipleCollisionFrames;
8232
8233         sc->stat_Dot3StatsDeferredTransmissions =
8234             stats->stat_Dot3StatsDeferredTransmissions;
8235
8236         sc->stat_Dot3StatsExcessiveCollisions =
8237             stats->stat_Dot3StatsExcessiveCollisions;
8238
8239         sc->stat_Dot3StatsLateCollisions =
8240             stats->stat_Dot3StatsLateCollisions;
8241
8242         sc->stat_EtherStatsCollisions =
8243             stats->stat_EtherStatsCollisions;
8244
8245         sc->stat_EtherStatsFragments =
8246             stats->stat_EtherStatsFragments;
8247
8248         sc->stat_EtherStatsJabbers =
8249             stats->stat_EtherStatsJabbers;
8250
8251         sc->stat_EtherStatsUndersizePkts =
8252             stats->stat_EtherStatsUndersizePkts;
8253
8254         sc->stat_EtherStatsOversizePkts =
8255              stats->stat_EtherStatsOversizePkts;
8256
8257         sc->stat_EtherStatsPktsRx64Octets =
8258             stats->stat_EtherStatsPktsRx64Octets;
8259
8260         sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8261             stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8262
8263         sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8264             stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8265
8266         sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8267             stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8268
8269         sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8270             stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8271
8272         sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8273             stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8274
8275         sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8276             stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8277
8278         sc->stat_EtherStatsPktsTx64Octets =
8279             stats->stat_EtherStatsPktsTx64Octets;
8280
8281         sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8282             stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8283
8284         sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8285             stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8286
8287         sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8288             stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8289
8290         sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8291             stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8292
8293         sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8294             stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8295
8296         sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8297             stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8298
8299         sc->stat_XonPauseFramesReceived =
8300             stats->stat_XonPauseFramesReceived;
8301
8302         sc->stat_XoffPauseFramesReceived =
8303             stats->stat_XoffPauseFramesReceived;
8304
8305         sc->stat_OutXonSent =
8306             stats->stat_OutXonSent;
8307
8308         sc->stat_OutXoffSent =
8309             stats->stat_OutXoffSent;
8310
8311         sc->stat_FlowControlDone =
8312             stats->stat_FlowControlDone;
8313
8314         sc->stat_MacControlFramesReceived =
8315             stats->stat_MacControlFramesReceived;
8316
8317         sc->stat_XoffStateEntered =
8318             stats->stat_XoffStateEntered;
8319
8320         sc->stat_IfInFramesL2FilterDiscards =
8321             stats->stat_IfInFramesL2FilterDiscards;
8322
8323         sc->stat_IfInRuleCheckerDiscards =
8324             stats->stat_IfInRuleCheckerDiscards;
8325
8326         sc->stat_IfInFTQDiscards =
8327             stats->stat_IfInFTQDiscards;
8328
8329         sc->stat_IfInMBUFDiscards =
8330             stats->stat_IfInMBUFDiscards;
8331
8332         sc->stat_IfInRuleCheckerP4Hit =
8333             stats->stat_IfInRuleCheckerP4Hit;
8334
8335         sc->stat_CatchupInRuleCheckerDiscards =
8336             stats->stat_CatchupInRuleCheckerDiscards;
8337
8338         sc->stat_CatchupInFTQDiscards =
8339             stats->stat_CatchupInFTQDiscards;
8340
8341         sc->stat_CatchupInMBUFDiscards =
8342             stats->stat_CatchupInMBUFDiscards;
8343
8344         sc->stat_CatchupInRuleCheckerP4Hit =
8345             stats->stat_CatchupInRuleCheckerP4Hit;
8346
8347         sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8348
8349         /* ToDo: Add additional statistics? */
8350
8351         DBEXIT(BCE_EXTREME_MISC);
8352 }
8353
8354 static uint64_t
8355 bce_get_counter(struct ifnet *ifp, ift_counter cnt)
8356 {
8357         struct bce_softc *sc;
8358         uint64_t rv;
8359
8360         sc = if_getsoftc(ifp);
8361
8362         switch (cnt) {
8363         case IFCOUNTER_COLLISIONS:
8364                 return (sc->stat_EtherStatsCollisions);
8365         case IFCOUNTER_IERRORS:
8366                 return (sc->stat_EtherStatsUndersizePkts +
8367                     sc->stat_EtherStatsOversizePkts +
8368                     sc->stat_IfInMBUFDiscards +
8369                     sc->stat_Dot3StatsAlignmentErrors +
8370                     sc->stat_Dot3StatsFCSErrors +
8371                     sc->stat_IfInRuleCheckerDiscards +
8372                     sc->stat_IfInFTQDiscards +
8373                     sc->l2fhdr_error_count +
8374                     sc->com_no_buffers);
8375         case IFCOUNTER_OERRORS:
8376                 rv = sc->stat_Dot3StatsExcessiveCollisions +
8377                     sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8378                     sc->stat_Dot3StatsLateCollisions +
8379                     sc->watchdog_timeouts;
8380                 /*
8381                  * Certain controllers don't report
8382                  * carrier sense errors correctly.
8383                  * See errata E11_5708CA0_1165.
8384                  */
8385                 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8386                     !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8387                         rv += sc->stat_Dot3StatsCarrierSenseErrors;
8388                 return (rv);
8389         default:
8390                 return (if_get_counter_default(ifp, cnt));
8391         }
8392 }
8393
8394
8395 /****************************************************************************/
8396 /* Periodic function to notify the bootcode that the driver is still        */
8397 /* present.                                                                 */
8398 /*                                                                          */
8399 /* Returns:                                                                 */
8400 /*   Nothing.                                                               */
8401 /****************************************************************************/
8402 static void
8403 bce_pulse(void *xsc)
8404 {
8405         struct bce_softc *sc = xsc;
8406         u32 msg;
8407
8408         DBENTER(BCE_EXTREME_MISC);
8409
8410         BCE_LOCK_ASSERT(sc);
8411
8412         /* Tell the firmware that the driver is still running. */
8413         msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8414         bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8415
8416         /* Update the bootcode condition. */
8417         sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8418
8419         /* Report whether the bootcode still knows the driver is running. */
8420         if (bce_verbose || bootverbose) {
8421                 if (sc->bce_drv_cardiac_arrest == FALSE) {
8422                         if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8423                                 sc->bce_drv_cardiac_arrest = TRUE;
8424                                 BCE_PRINTF("%s(): Warning: bootcode "
8425                                     "thinks driver is absent! "
8426                                     "(bc_state = 0x%08X)\n",
8427                                     __FUNCTION__, sc->bc_state);
8428                         }
8429                 } else {
8430                         /*
8431                          * Not supported by all bootcode versions.
8432                          * (v5.0.11+ and v5.2.1+)  Older bootcode
8433                          * will require the driver to reset the
8434                          * controller to clear this condition.
8435                          */
8436                         if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8437                                 sc->bce_drv_cardiac_arrest = FALSE;
8438                                 BCE_PRINTF("%s(): Bootcode found the "
8439                                     "driver pulse! (bc_state = 0x%08X)\n",
8440                                     __FUNCTION__, sc->bc_state);
8441                         }
8442                 }
8443         }
8444
8445
8446         /* Schedule the next pulse. */
8447         callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8448
8449         DBEXIT(BCE_EXTREME_MISC);
8450 }
8451
8452
8453 /****************************************************************************/
8454 /* Periodic function to perform maintenance tasks.                          */
8455 /*                                                                          */
8456 /* Returns:                                                                 */
8457 /*   Nothing.                                                               */
8458 /****************************************************************************/
8459 static void
8460 bce_tick(void *xsc)
8461 {
8462         struct bce_softc *sc = xsc;
8463         struct mii_data *mii;
8464         struct ifnet *ifp;
8465         struct ifmediareq ifmr;
8466
8467         ifp = sc->bce_ifp;
8468
8469         DBENTER(BCE_EXTREME_MISC);
8470
8471         BCE_LOCK_ASSERT(sc);
8472
8473         /* Schedule the next tick. */
8474         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8475
8476         /* Update the statistics from the hardware statistics block. */
8477         bce_stats_update(sc);
8478
8479         /* Ensure page and RX chains get refilled in low-memory situations. */
8480         if (bce_hdr_split == TRUE)
8481                 bce_fill_pg_chain(sc);
8482         bce_fill_rx_chain(sc);
8483
8484         /* Check that chip hasn't hung. */
8485         bce_watchdog(sc);
8486
8487         /* If link is up already up then we're done. */
8488         if (sc->bce_link_up == TRUE)
8489                 goto bce_tick_exit;
8490
8491         /* Link is down.  Check what the PHY's doing. */
8492         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8493                 bzero(&ifmr, sizeof(ifmr));
8494                 bce_ifmedia_sts_rphy(sc, &ifmr);
8495                 if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8496                     (IFM_ACTIVE | IFM_AVALID)) {
8497                         sc->bce_link_up = TRUE;
8498                         bce_miibus_statchg(sc->bce_dev);
8499                 }
8500         } else {
8501                 mii = device_get_softc(sc->bce_miibus);
8502                 mii_tick(mii);
8503                 /* Check if the link has come up. */
8504                 if ((mii->mii_media_status & IFM_ACTIVE) &&
8505                     (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8506                         DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8507                             __FUNCTION__);
8508                         sc->bce_link_up = TRUE;
8509                         if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8510                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8511                             IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8512                             (bce_verbose || bootverbose))
8513                                 BCE_PRINTF("Gigabit link up!\n");
8514                 }
8515
8516         }
8517         if (sc->bce_link_up == TRUE) {
8518                 /* Now that link is up, handle any outstanding TX traffic. */
8519                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8520                         DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8521                             "pending TX traffic.\n", __FUNCTION__);
8522                         bce_start_locked(ifp);
8523                 }
8524         }
8525
8526 bce_tick_exit:
8527         DBEXIT(BCE_EXTREME_MISC);
8528 }
8529
8530 static void
8531 bce_fw_cap_init(struct bce_softc *sc)
8532 {
8533         u32 ack, cap, link;
8534
8535         ack = 0;
8536         cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8537         if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8538             BCE_FW_CAP_SIGNATURE_MAGIC)
8539                 return;
8540         if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8541             (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8542                 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8543                     BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8544         if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8545             (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8546                 sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8547                 sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8548                 link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8549                 if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8550                         sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8551                 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8552                     BCE_FW_CAP_REMOTE_PHY_CAP;
8553         }
8554
8555         if (ack != 0)
8556                 bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8557 }
8558
8559
8560 #ifdef BCE_DEBUG
8561 /****************************************************************************/
8562 /* Allows the driver state to be dumped through the sysctl interface.       */
8563 /*                                                                          */
8564 /* Returns:                                                                 */
8565 /*   0 for success, positive value for failure.                             */
8566 /****************************************************************************/
8567 static int
8568 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8569 {
8570         int error;
8571         int result;
8572         struct bce_softc *sc;
8573
8574         result = -1;
8575         error = sysctl_handle_int(oidp, &result, 0, req);
8576
8577         if (error || !req->newptr)
8578                 return (error);
8579
8580         if (result == 1) {
8581                 sc = (struct bce_softc *)arg1;
8582                 bce_dump_driver_state(sc);
8583         }
8584
8585         return error;
8586 }
8587
8588
8589 /****************************************************************************/
8590 /* Allows the hardware state to be dumped through the sysctl interface.     */
8591 /*                                                                          */
8592 /* Returns:                                                                 */
8593 /*   0 for success, positive value for failure.                             */
8594 /****************************************************************************/
8595 static int
8596 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8597 {
8598         int error;
8599         int result;
8600         struct bce_softc *sc;
8601
8602         result = -1;
8603         error = sysctl_handle_int(oidp, &result, 0, req);
8604
8605         if (error || !req->newptr)
8606                 return (error);
8607
8608         if (result == 1) {
8609                 sc = (struct bce_softc *)arg1;
8610                 bce_dump_hw_state(sc);
8611         }
8612
8613         return error;
8614 }
8615
8616
8617 /****************************************************************************/
8618 /* Allows the status block to be dumped through the sysctl interface.       */
8619 /*                                                                          */
8620 /* Returns:                                                                 */
8621 /*   0 for success, positive value for failure.                             */
8622 /****************************************************************************/
8623 static int
8624 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8625 {
8626         int error;
8627         int result;
8628         struct bce_softc *sc;
8629
8630         result = -1;
8631         error = sysctl_handle_int(oidp, &result, 0, req);
8632
8633         if (error || !req->newptr)
8634                 return (error);
8635
8636         if (result == 1) {
8637                 sc = (struct bce_softc *)arg1;
8638                 bce_dump_status_block(sc);
8639         }
8640
8641         return error;
8642 }
8643
8644
8645 /****************************************************************************/
8646 /* Allows the stats block to be dumped through the sysctl interface.        */
8647 /*                                                                          */
8648 /* Returns:                                                                 */
8649 /*   0 for success, positive value for failure.                             */
8650 /****************************************************************************/
8651 static int
8652 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8653 {
8654         int error;
8655         int result;
8656         struct bce_softc *sc;
8657
8658         result = -1;
8659         error = sysctl_handle_int(oidp, &result, 0, req);
8660
8661         if (error || !req->newptr)
8662                 return (error);
8663
8664         if (result == 1) {
8665                 sc = (struct bce_softc *)arg1;
8666                 bce_dump_stats_block(sc);
8667         }
8668
8669         return error;
8670 }
8671
8672
8673 /****************************************************************************/
8674 /* Allows the stat counters to be cleared without unloading/reloading the   */
8675 /* driver.                                                                  */
8676 /*                                                                          */
8677 /* Returns:                                                                 */
8678 /*   0 for success, positive value for failure.                             */
8679 /****************************************************************************/
8680 static int
8681 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8682 {
8683         int error;
8684         int result;
8685         struct bce_softc *sc;
8686
8687         result = -1;
8688         error = sysctl_handle_int(oidp, &result, 0, req);
8689
8690         if (error || !req->newptr)
8691                 return (error);
8692
8693         if (result == 1) {
8694                 sc = (struct bce_softc *)arg1;
8695                 struct statistics_block *stats;
8696
8697                 stats = (struct statistics_block *) sc->stats_block;
8698                 bzero(stats, sizeof(struct statistics_block));
8699                 bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8700                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8701
8702                 /* Clear the internal H/W statistics counters. */
8703                 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8704
8705                 /* Reset the driver maintained statistics. */
8706                 sc->interrupts_rx =
8707                     sc->interrupts_tx = 0;
8708                 sc->tso_frames_requested =
8709                     sc->tso_frames_completed =
8710                     sc->tso_frames_failed = 0;
8711                 sc->rx_empty_count =
8712                     sc->tx_full_count = 0;
8713                 sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8714                 sc->tx_hi_watermark = 0;
8715                 sc->l2fhdr_error_count =
8716                     sc->l2fhdr_error_sim_count = 0;
8717                 sc->mbuf_alloc_failed_count =
8718                     sc->mbuf_alloc_failed_sim_count = 0;
8719                 sc->dma_map_addr_rx_failed_count =
8720                     sc->dma_map_addr_tx_failed_count = 0;
8721                 sc->mbuf_frag_count = 0;
8722                 sc->csum_offload_tcp_udp =
8723                     sc->csum_offload_ip = 0;
8724                 sc->vlan_tagged_frames_rcvd =
8725                     sc->vlan_tagged_frames_stripped = 0;
8726                 sc->split_header_frames_rcvd =
8727                     sc->split_header_tcp_frames_rcvd = 0;
8728
8729                 /* Clear firmware maintained statistics. */
8730                 REG_WR_IND(sc, 0x120084, 0);
8731         }
8732
8733         return error;
8734 }
8735
8736
8737 /****************************************************************************/
8738 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8739 /* interface.                                                               */
8740 /*                                                                          */
8741 /* Returns:                                                                 */
8742 /*   0 for success, positive value for failure.                             */
8743 /****************************************************************************/
8744 static int
8745 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8746 {
8747         int error;
8748         int result;
8749         struct bce_softc *sc;
8750
8751         result = -1;
8752         error = sysctl_handle_int(oidp, &result, 0, req);
8753
8754         if (error || !req->newptr)
8755                 return (error);
8756
8757         if (result == 1) {
8758                 sc = (struct bce_softc *)arg1;
8759                 bce_dump_shmem_state(sc);
8760         }
8761
8762         return error;
8763 }
8764
8765
8766 /****************************************************************************/
8767 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8768 /*                                                                          */
8769 /* Returns:                                                                 */
8770 /*   0 for success, positive value for failure.                             */
8771 /****************************************************************************/
8772 static int
8773 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8774 {
8775         int error;
8776         int result;
8777         struct bce_softc *sc;
8778
8779         result = -1;
8780         error = sysctl_handle_int(oidp, &result, 0, req);
8781
8782         if (error || !req->newptr)
8783                 return (error);
8784
8785         if (result == 1) {
8786                 sc = (struct bce_softc *)arg1;
8787                 bce_dump_bc_state(sc);
8788         }
8789
8790         return error;
8791 }
8792
8793
8794 /****************************************************************************/
8795 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8796 /*                                                                          */
8797 /* Returns:                                                                 */
8798 /*   0 for success, positive value for failure.                             */
8799 /****************************************************************************/
8800 static int
8801 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8802 {
8803         int error;
8804         int result;
8805         struct bce_softc *sc;
8806
8807         result = -1;
8808         error = sysctl_handle_int(oidp, &result, 0, req);
8809
8810         if (error || !req->newptr)
8811                 return (error);
8812
8813         if (result == 1) {
8814                 sc = (struct bce_softc *)arg1;
8815                 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8816         }
8817
8818         return error;
8819 }
8820
8821
8822 /****************************************************************************/
8823 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8824 /*                                                                          */
8825 /* Returns:                                                                 */
8826 /*   0 for success, positive value for failure.                             */
8827 /****************************************************************************/
8828 static int
8829 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8830 {
8831         int error;
8832         int result;
8833         struct bce_softc *sc;
8834
8835         result = -1;
8836         error = sysctl_handle_int(oidp, &result, 0, req);
8837
8838         if (error || !req->newptr)
8839                 return (error);
8840
8841         if (result == 1) {
8842                 sc = (struct bce_softc *)arg1;
8843                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8844         }
8845
8846         return error;
8847 }
8848
8849
8850 /****************************************************************************/
8851 /* Provides a sysctl interface to allow dumping the TX chain.               */
8852 /*                                                                          */
8853 /* Returns:                                                                 */
8854 /*   0 for success, positive value for failure.                             */
8855 /****************************************************************************/
8856 static int
8857 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8858 {
8859         int error;
8860         int result;
8861         struct bce_softc *sc;
8862
8863         result = -1;
8864         error = sysctl_handle_int(oidp, &result, 0, req);
8865
8866         if (error || !req->newptr)
8867                 return (error);
8868
8869         if (result == 1) {
8870                 sc = (struct bce_softc *)arg1;
8871                 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8872         }
8873
8874         return error;
8875 }
8876
8877
8878 /****************************************************************************/
8879 /* Provides a sysctl interface to allow dumping the page chain.             */
8880 /*                                                                          */
8881 /* Returns:                                                                 */
8882 /*   0 for success, positive value for failure.                             */
8883 /****************************************************************************/
8884 static int
8885 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8886 {
8887         int error;
8888         int result;
8889         struct bce_softc *sc;
8890
8891         result = -1;
8892         error = sysctl_handle_int(oidp, &result, 0, req);
8893
8894         if (error || !req->newptr)
8895                 return (error);
8896
8897         if (result == 1) {
8898                 sc = (struct bce_softc *)arg1;
8899                 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8900         }
8901
8902         return error;
8903 }
8904
8905 /****************************************************************************/
8906 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8907 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8908 /*                                                                          */
8909 /* Returns:                                                                 */
8910 /*   0 for success, positive value for failure.                             */
8911 /****************************************************************************/
8912 static int
8913 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8914 {
8915         struct bce_softc *sc = (struct bce_softc *)arg1;
8916         int error;
8917         u32 result;
8918         u32 val[1];
8919         u8 *data = (u8 *) val;
8920
8921         result = -1;
8922         error = sysctl_handle_int(oidp, &result, 0, req);
8923         if (error || (req->newptr == NULL))
8924                 return (error);
8925
8926         error = bce_nvram_read(sc, result, data, 4);
8927
8928         BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8929
8930         return (error);
8931 }
8932
8933
8934 /****************************************************************************/
8935 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8936 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8937 /*                                                                          */
8938 /* Returns:                                                                 */
8939 /*   0 for success, positive value for failure.                             */
8940 /****************************************************************************/
8941 static int
8942 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8943 {
8944         struct bce_softc *sc = (struct bce_softc *)arg1;
8945         int error;
8946         u32 val, result;
8947
8948         result = -1;
8949         error = sysctl_handle_int(oidp, &result, 0, req);
8950         if (error || (req->newptr == NULL))
8951                 return (error);
8952
8953         /* Make sure the register is accessible. */
8954         if (result < 0x8000) {
8955                 val = REG_RD(sc, result);
8956                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8957         } else if (result < 0x0280000) {
8958                 val = REG_RD_IND(sc, result);
8959                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8960         }
8961
8962         return (error);
8963 }
8964
8965
8966 /****************************************************************************/
8967 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8968 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8969 /*                                                                          */
8970 /* Returns:                                                                 */
8971 /*   0 for success, positive value for failure.                             */
8972 /****************************************************************************/
8973 static int
8974 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8975 {
8976         struct bce_softc *sc;
8977         device_t dev;
8978         int error, result;
8979         u16 val;
8980
8981         result = -1;
8982         error = sysctl_handle_int(oidp, &result, 0, req);
8983         if (error || (req->newptr == NULL))
8984                 return (error);
8985
8986         /* Make sure the register is accessible. */
8987         if (result < 0x20) {
8988                 sc = (struct bce_softc *)arg1;
8989                 dev = sc->bce_dev;
8990                 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8991                 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8992         }
8993         return (error);
8994 }
8995
8996
8997 /****************************************************************************/
8998 /* Provides a sysctl interface for dumping the nvram contents.              */
8999 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!                                     */
9000 /*                                                                          */
9001 /* Returns:                                                                 */
9002 /*   0 for success, positive errno for failure.                             */
9003 /****************************************************************************/
9004 static int
9005 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
9006 {
9007         struct bce_softc *sc = (struct bce_softc *)arg1;
9008         int error, i;
9009
9010         if (sc->nvram_buf == NULL)
9011                 sc->nvram_buf = malloc(sc->bce_flash_size,
9012                                     M_TEMP, M_ZERO | M_WAITOK);
9013
9014         error = 0;
9015         if (req->oldlen == sc->bce_flash_size) {
9016                 for (i = 0; i < sc->bce_flash_size && error == 0; i++)
9017                         error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
9018         }
9019
9020         if (error == 0)
9021                 error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
9022
9023         return error;
9024 }
9025
9026 #ifdef BCE_NVRAM_WRITE_SUPPORT
9027 /****************************************************************************/
9028 /* Provides a sysctl interface for writing to nvram.                        */
9029 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!                                     */
9030 /*                                                                          */
9031 /* Returns:                                                                 */
9032 /*   0 for success, positive errno for failure.                             */
9033 /****************************************************************************/
9034 static int
9035 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
9036 {
9037         struct bce_softc *sc = (struct bce_softc *)arg1;
9038         int error;
9039
9040         if (sc->nvram_buf == NULL)
9041                 sc->nvram_buf = malloc(sc->bce_flash_size,
9042                                     M_TEMP, M_ZERO | M_WAITOK);
9043         else
9044                 bzero(sc->nvram_buf, sc->bce_flash_size);
9045
9046         error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
9047         if (error == 0)
9048                 return (error);
9049
9050         if (req->newlen == sc->bce_flash_size)
9051                 error = bce_nvram_write(sc, 0, sc->nvram_buf,
9052                             sc->bce_flash_size);
9053
9054
9055         return error;
9056 }
9057 #endif
9058
9059
9060 /****************************************************************************/
9061 /* Provides a sysctl interface to allow reading a CID.                      */
9062 /*                                                                          */
9063 /* Returns:                                                                 */
9064 /*   0 for success, positive value for failure.                             */
9065 /****************************************************************************/
9066 static int
9067 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
9068 {
9069         struct bce_softc *sc;
9070         int error, result;
9071
9072         result = -1;
9073         error = sysctl_handle_int(oidp, &result, 0, req);
9074         if (error || (req->newptr == NULL))
9075                 return (error);
9076
9077         /* Make sure the register is accessible. */
9078         if (result <= TX_CID) {
9079                 sc = (struct bce_softc *)arg1;
9080                 bce_dump_ctx(sc, result);
9081         }
9082
9083         return (error);
9084 }
9085
9086
9087 /****************************************************************************/
9088 /* Provides a sysctl interface to forcing the driver to dump state and      */
9089 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
9090 /*                                                                          */
9091 /* Returns:                                                                 */
9092 /*   0 for success, positive value for failure.                             */
9093 /****************************************************************************/
9094 static int
9095 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
9096 {
9097         int error;
9098         int result;
9099         struct bce_softc *sc;
9100
9101         result = -1;
9102         error = sysctl_handle_int(oidp, &result, 0, req);
9103
9104         if (error || !req->newptr)
9105                 return (error);
9106
9107         if (result == 1) {
9108                 sc = (struct bce_softc *)arg1;
9109                 bce_breakpoint(sc);
9110         }
9111
9112         return error;
9113 }
9114 #endif
9115
9116 /****************************************************************************/
9117 /* Adds any sysctl parameters for tuning or debugging purposes.             */
9118 /*                                                                          */
9119 /* Returns:                                                                 */
9120 /*   0 for success, positive value for failure.                             */
9121 /****************************************************************************/
9122 static void
9123 bce_add_sysctls(struct bce_softc *sc)
9124 {
9125         struct sysctl_ctx_list *ctx;
9126         struct sysctl_oid_list *children;
9127
9128         DBENTER(BCE_VERBOSE_MISC);
9129
9130         ctx = device_get_sysctl_ctx(sc->bce_dev);
9131         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
9132
9133 #ifdef BCE_DEBUG
9134         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9135             "l2fhdr_error_sim_control",
9136             CTLFLAG_RW, &l2fhdr_error_sim_control,
9137             0, "Debug control to force l2fhdr errors");
9138
9139         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9140             "l2fhdr_error_sim_count",
9141             CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
9142             0, "Number of simulated l2_fhdr errors");
9143 #endif
9144
9145         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9146             "l2fhdr_error_count",
9147             CTLFLAG_RD, &sc->l2fhdr_error_count,
9148             0, "Number of l2_fhdr errors");
9149
9150 #ifdef BCE_DEBUG
9151         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9152             "mbuf_alloc_failed_sim_control",
9153             CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
9154             0, "Debug control to force mbuf allocation failures");
9155
9156         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9157             "mbuf_alloc_failed_sim_count",
9158             CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
9159             0, "Number of simulated mbuf cluster allocation failures");
9160 #endif
9161
9162         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9163             "mbuf_alloc_failed_count",
9164             CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9165             0, "Number of mbuf allocation failures");
9166
9167         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9168             "mbuf_frag_count",
9169             CTLFLAG_RD, &sc->mbuf_frag_count,
9170             0, "Number of fragmented mbufs");
9171
9172 #ifdef BCE_DEBUG
9173         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9174             "dma_map_addr_failed_sim_control",
9175             CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9176             0, "Debug control to force DMA mapping failures");
9177
9178         /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9179         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9180             "dma_map_addr_failed_sim_count",
9181             CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9182             0, "Number of simulated DMA mapping failures");
9183
9184 #endif
9185
9186         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9187             "dma_map_addr_rx_failed_count",
9188             CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9189             0, "Number of RX DMA mapping failures");
9190
9191         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9192             "dma_map_addr_tx_failed_count",
9193             CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9194             0, "Number of TX DMA mapping failures");
9195
9196 #ifdef BCE_DEBUG
9197         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9198             "unexpected_attention_sim_control",
9199             CTLFLAG_RW, &unexpected_attention_sim_control,
9200             0, "Debug control to simulate unexpected attentions");
9201
9202         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9203             "unexpected_attention_sim_count",
9204             CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9205             0, "Number of simulated unexpected attentions");
9206 #endif
9207
9208         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9209             "unexpected_attention_count",
9210             CTLFLAG_RW, &sc->unexpected_attention_count,
9211             0, "Number of unexpected attentions");
9212
9213 #ifdef BCE_DEBUG
9214         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9215             "debug_bootcode_running_failure",
9216             CTLFLAG_RW, &bootcode_running_failure_sim_control,
9217             0, "Debug control to force bootcode running failures");
9218
9219         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9220             "rx_low_watermark",
9221             CTLFLAG_RD, &sc->rx_low_watermark,
9222             0, "Lowest level of free rx_bd's");
9223
9224         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9225             "rx_empty_count",
9226             CTLFLAG_RD, &sc->rx_empty_count,
9227             "Number of times the RX chain was empty");
9228
9229         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9230             "tx_hi_watermark",
9231             CTLFLAG_RD, &sc->tx_hi_watermark,
9232             0, "Highest level of used tx_bd's");
9233
9234         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9235             "tx_full_count",
9236             CTLFLAG_RD, &sc->tx_full_count,
9237             "Number of times the TX chain was full");
9238
9239         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9240             "tso_frames_requested",
9241             CTLFLAG_RD, &sc->tso_frames_requested,
9242             "Number of TSO frames requested");
9243
9244         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9245             "tso_frames_completed",
9246             CTLFLAG_RD, &sc->tso_frames_completed,
9247             "Number of TSO frames completed");
9248
9249         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9250             "tso_frames_failed",
9251             CTLFLAG_RD, &sc->tso_frames_failed,
9252             "Number of TSO frames failed");
9253
9254         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9255             "csum_offload_ip",
9256             CTLFLAG_RD, &sc->csum_offload_ip,
9257             "Number of IP checksum offload frames");
9258
9259         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9260             "csum_offload_tcp_udp",
9261             CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9262             "Number of TCP/UDP checksum offload frames");
9263
9264         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9265             "vlan_tagged_frames_rcvd",
9266             CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9267             "Number of VLAN tagged frames received");
9268
9269         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9270             "vlan_tagged_frames_stripped",
9271             CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9272             "Number of VLAN tagged frames stripped");
9273
9274         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9275             "interrupts_rx",
9276             CTLFLAG_RD, &sc->interrupts_rx,
9277             "Number of RX interrupts");
9278
9279         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9280             "interrupts_tx",
9281             CTLFLAG_RD, &sc->interrupts_tx,
9282             "Number of TX interrupts");
9283
9284         if (bce_hdr_split == TRUE) {
9285                 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9286                     "split_header_frames_rcvd",
9287                     CTLFLAG_RD, &sc->split_header_frames_rcvd,
9288                     "Number of split header frames received");
9289
9290                 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9291                     "split_header_tcp_frames_rcvd",
9292                     CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9293                     "Number of split header TCP frames received");
9294         }
9295
9296         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9297             "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
9298             (void *)sc, 0,
9299             bce_sysctl_nvram_dump, "S", "");
9300
9301 #ifdef BCE_NVRAM_WRITE_SUPPORT
9302         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9303             "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9304             (void *)sc, 0,
9305             bce_sysctl_nvram_write, "S", "");
9306 #endif
9307 #endif /* BCE_DEBUG */
9308
9309         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9310             "stat_IfHcInOctets",
9311             CTLFLAG_RD, &sc->stat_IfHCInOctets,
9312             "Bytes received");
9313
9314         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9315             "stat_IfHCInBadOctets",
9316             CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9317             "Bad bytes received");
9318
9319         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9320             "stat_IfHCOutOctets",
9321             CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9322             "Bytes sent");
9323
9324         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9325             "stat_IfHCOutBadOctets",
9326             CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9327             "Bad bytes sent");
9328
9329         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9330             "stat_IfHCInUcastPkts",
9331             CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9332             "Unicast packets received");
9333
9334         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9335             "stat_IfHCInMulticastPkts",
9336             CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9337             "Multicast packets received");
9338
9339         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9340             "stat_IfHCInBroadcastPkts",
9341             CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9342             "Broadcast packets received");
9343
9344         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9345             "stat_IfHCOutUcastPkts",
9346             CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9347             "Unicast packets sent");
9348
9349         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9350             "stat_IfHCOutMulticastPkts",
9351             CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9352             "Multicast packets sent");
9353
9354         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9355             "stat_IfHCOutBroadcastPkts",
9356             CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9357             "Broadcast packets sent");
9358
9359         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9360             "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9361             CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9362             0, "Internal MAC transmit errors");
9363
9364         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9365             "stat_Dot3StatsCarrierSenseErrors",
9366             CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9367             0, "Carrier sense errors");
9368
9369         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9370             "stat_Dot3StatsFCSErrors",
9371             CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9372             0, "Frame check sequence errors");
9373
9374         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9375             "stat_Dot3StatsAlignmentErrors",
9376             CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9377             0, "Alignment errors");
9378
9379         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9380             "stat_Dot3StatsSingleCollisionFrames",
9381             CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9382             0, "Single Collision Frames");
9383
9384         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9385             "stat_Dot3StatsMultipleCollisionFrames",
9386             CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9387             0, "Multiple Collision Frames");
9388
9389         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9390             "stat_Dot3StatsDeferredTransmissions",
9391             CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9392             0, "Deferred Transmissions");
9393
9394         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9395             "stat_Dot3StatsExcessiveCollisions",
9396             CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9397             0, "Excessive Collisions");
9398
9399         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9400             "stat_Dot3StatsLateCollisions",
9401             CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9402             0, "Late Collisions");
9403
9404         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9405             "stat_EtherStatsCollisions",
9406             CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9407             0, "Collisions");
9408
9409         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9410             "stat_EtherStatsFragments",
9411             CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9412             0, "Fragments");
9413
9414         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9415             "stat_EtherStatsJabbers",
9416             CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9417             0, "Jabbers");
9418
9419         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9420             "stat_EtherStatsUndersizePkts",
9421             CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9422             0, "Undersize packets");
9423
9424         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9425             "stat_EtherStatsOversizePkts",
9426             CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9427             0, "stat_EtherStatsOversizePkts");
9428
9429         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9430             "stat_EtherStatsPktsRx64Octets",
9431             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9432             0, "Bytes received in 64 byte packets");
9433
9434         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9435             "stat_EtherStatsPktsRx65Octetsto127Octets",
9436             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9437             0, "Bytes received in 65 to 127 byte packets");
9438
9439         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9440             "stat_EtherStatsPktsRx128Octetsto255Octets",
9441             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9442             0, "Bytes received in 128 to 255 byte packets");
9443
9444         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9445             "stat_EtherStatsPktsRx256Octetsto511Octets",
9446             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9447             0, "Bytes received in 256 to 511 byte packets");
9448
9449         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9450             "stat_EtherStatsPktsRx512Octetsto1023Octets",
9451             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9452             0, "Bytes received in 512 to 1023 byte packets");
9453
9454         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9455             "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9456             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9457             0, "Bytes received in 1024 t0 1522 byte packets");
9458
9459         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9460             "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9461             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9462             0, "Bytes received in 1523 to 9022 byte packets");
9463
9464         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9465             "stat_EtherStatsPktsTx64Octets",
9466             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9467             0, "Bytes sent in 64 byte packets");
9468
9469         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9470             "stat_EtherStatsPktsTx65Octetsto127Octets",
9471             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9472             0, "Bytes sent in 65 to 127 byte packets");
9473
9474         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9475             "stat_EtherStatsPktsTx128Octetsto255Octets",
9476             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9477             0, "Bytes sent in 128 to 255 byte packets");
9478
9479         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9480             "stat_EtherStatsPktsTx256Octetsto511Octets",
9481             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9482             0, "Bytes sent in 256 to 511 byte packets");
9483
9484         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9485             "stat_EtherStatsPktsTx512Octetsto1023Octets",
9486             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9487             0, "Bytes sent in 512 to 1023 byte packets");
9488
9489         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9490             "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9491             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9492             0, "Bytes sent in 1024 to 1522 byte packets");
9493
9494         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9495             "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9496             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9497             0, "Bytes sent in 1523 to 9022 byte packets");
9498
9499         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9500             "stat_XonPauseFramesReceived",
9501             CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9502             0, "XON pause frames receved");
9503
9504         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9505             "stat_XoffPauseFramesReceived",
9506             CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9507             0, "XOFF pause frames received");
9508
9509         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9510             "stat_OutXonSent",
9511             CTLFLAG_RD, &sc->stat_OutXonSent,
9512             0, "XON pause frames sent");
9513
9514         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9515             "stat_OutXoffSent",
9516             CTLFLAG_RD, &sc->stat_OutXoffSent,
9517             0, "XOFF pause frames sent");
9518
9519         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9520             "stat_FlowControlDone",
9521             CTLFLAG_RD, &sc->stat_FlowControlDone,
9522             0, "Flow control done");
9523
9524         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9525             "stat_MacControlFramesReceived",
9526             CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9527             0, "MAC control frames received");
9528
9529         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9530             "stat_XoffStateEntered",
9531             CTLFLAG_RD, &sc->stat_XoffStateEntered,
9532             0, "XOFF state entered");
9533
9534         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9535             "stat_IfInFramesL2FilterDiscards",
9536             CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9537             0, "Received L2 packets discarded");
9538
9539         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9540             "stat_IfInRuleCheckerDiscards",
9541             CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9542             0, "Received packets discarded by rule");
9543
9544         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9545             "stat_IfInFTQDiscards",
9546             CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9547             0, "Received packet FTQ discards");
9548
9549         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9550             "stat_IfInMBUFDiscards",
9551             CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9552             0, "Received packets discarded due to lack "
9553             "of controller buffer memory");
9554
9555         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9556             "stat_IfInRuleCheckerP4Hit",
9557             CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9558             0, "Received packets rule checker hits");
9559
9560         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9561             "stat_CatchupInRuleCheckerDiscards",
9562             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9563             0, "Received packets discarded in Catchup path");
9564
9565         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9566             "stat_CatchupInFTQDiscards",
9567             CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9568             0, "Received packets discarded in FTQ in Catchup path");
9569
9570         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9571             "stat_CatchupInMBUFDiscards",
9572             CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9573             0, "Received packets discarded in controller "
9574             "buffer memory in Catchup path");
9575
9576         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9577             "stat_CatchupInRuleCheckerP4Hit",
9578             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9579             0, "Received packets rule checker hits in Catchup path");
9580
9581         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9582             "com_no_buffers",
9583             CTLFLAG_RD, &sc->com_no_buffers,
9584             0, "Valid packets received but no RX buffers available");
9585
9586 #ifdef BCE_DEBUG
9587         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9588             "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9589             (void *)sc, 0,
9590             bce_sysctl_driver_state, "I", "Drive state information");
9591
9592         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9593             "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9594             (void *)sc, 0,
9595             bce_sysctl_hw_state, "I", "Hardware state information");
9596
9597         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9598             "status_block", CTLTYPE_INT | CTLFLAG_RW,
9599             (void *)sc, 0,
9600             bce_sysctl_status_block, "I", "Dump status block");
9601
9602         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9603             "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9604             (void *)sc, 0,
9605             bce_sysctl_stats_block, "I", "Dump statistics block");
9606
9607         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9608             "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9609             (void *)sc, 0,
9610             bce_sysctl_stats_clear, "I", "Clear statistics block");
9611
9612         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9613             "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9614             (void *)sc, 0,
9615             bce_sysctl_shmem_state, "I", "Shared memory state information");
9616
9617         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9618             "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9619             (void *)sc, 0,
9620             bce_sysctl_bc_state, "I", "Bootcode state information");
9621
9622         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9623             "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9624             (void *)sc, 0,
9625             bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9626
9627         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9628             "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9629             (void *)sc, 0,
9630             bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9631
9632         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9633             "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9634             (void *)sc, 0,
9635             bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9636
9637         if (bce_hdr_split == TRUE) {
9638                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9639                     "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9640                     (void *)sc, 0,
9641                     bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9642         }
9643
9644         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9645             "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9646             (void *)sc, 0,
9647             bce_sysctl_dump_ctx, "I", "Dump context memory");
9648
9649         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9650             "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9651             (void *)sc, 0,
9652             bce_sysctl_breakpoint, "I", "Driver breakpoint");
9653
9654         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9655             "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9656             (void *)sc, 0,
9657             bce_sysctl_reg_read, "I", "Register read");
9658
9659         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9660             "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9661             (void *)sc, 0,
9662             bce_sysctl_nvram_read, "I", "NVRAM read");
9663
9664         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9665             "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9666             (void *)sc, 0,
9667             bce_sysctl_phy_read, "I", "PHY register read");
9668
9669 #endif
9670
9671         DBEXIT(BCE_VERBOSE_MISC);
9672 }
9673
9674
9675 /****************************************************************************/
9676 /* BCE Debug Routines                                                       */
9677 /****************************************************************************/
9678 #ifdef BCE_DEBUG
9679
9680 /****************************************************************************/
9681 /* Freezes the controller to allow for a cohesive state dump.               */
9682 /*                                                                          */
9683 /* Returns:                                                                 */
9684 /*   Nothing.                                                               */
9685 /****************************************************************************/
9686 static __attribute__ ((noinline)) void
9687 bce_freeze_controller(struct bce_softc *sc)
9688 {
9689         u32 val;
9690         val = REG_RD(sc, BCE_MISC_COMMAND);
9691         val |= BCE_MISC_COMMAND_DISABLE_ALL;
9692         REG_WR(sc, BCE_MISC_COMMAND, val);
9693 }
9694
9695
9696 /****************************************************************************/
9697 /* Unfreezes the controller after a freeze operation.  This may not always  */
9698 /* work and the controller will require a reset!                            */
9699 /*                                                                          */
9700 /* Returns:                                                                 */
9701 /*   Nothing.                                                               */
9702 /****************************************************************************/
9703 static __attribute__ ((noinline)) void
9704 bce_unfreeze_controller(struct bce_softc *sc)
9705 {
9706         u32 val;
9707         val = REG_RD(sc, BCE_MISC_COMMAND);
9708         val |= BCE_MISC_COMMAND_ENABLE_ALL;
9709         REG_WR(sc, BCE_MISC_COMMAND, val);
9710 }
9711
9712
9713 /****************************************************************************/
9714 /* Prints out Ethernet frame information from an mbuf.                      */
9715 /*                                                                          */
9716 /* Partially decode an Ethernet frame to look at some important headers.    */
9717 /*                                                                          */
9718 /* Returns:                                                                 */
9719 /*   Nothing.                                                               */
9720 /****************************************************************************/
9721 static __attribute__ ((noinline)) void
9722 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9723 {
9724         struct ether_vlan_header *eh;
9725         u16 etype;
9726         int ehlen;
9727         struct ip *ip;
9728         struct tcphdr *th;
9729         struct udphdr *uh;
9730         struct arphdr *ah;
9731
9732         BCE_PRINTF(
9733             "-----------------------------"
9734             " Frame Decode "
9735             "-----------------------------\n");
9736
9737         eh = mtod(m, struct ether_vlan_header *);
9738
9739         /* Handle VLAN encapsulation if present. */
9740         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9741                 etype = ntohs(eh->evl_proto);
9742                 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9743         } else {
9744                 etype = ntohs(eh->evl_encap_proto);
9745                 ehlen = ETHER_HDR_LEN;
9746         }
9747
9748         /* ToDo: Add VLAN output. */
9749         BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9750             eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9751
9752         switch (etype) {
9753         case ETHERTYPE_IP:
9754                 ip = (struct ip *)(m->m_data + ehlen);
9755                 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9756                     "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9757                     ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9758                     ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9759
9760                 switch (ip->ip_p) {
9761                 case IPPROTO_TCP:
9762                         th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9763                         BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9764                             "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9765                             ntohs(th->th_dport), ntohs(th->th_sport),
9766                             (th->th_off << 2), th->th_flags,
9767                             "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9768                             "\02SYN\01FIN", ntohs(th->th_sum));
9769                         break;
9770                 case IPPROTO_UDP:
9771                         uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9772                         BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9773                             "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9774                             ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9775                             ntohs(uh->uh_sum));
9776                         break;
9777                 case IPPROTO_ICMP:
9778                         BCE_PRINTF("icmp:\n");
9779                         break;
9780                 default:
9781                         BCE_PRINTF("----: Other IP protocol.\n");
9782                         }
9783                 break;
9784         case ETHERTYPE_IPV6:
9785                 BCE_PRINTF("ipv6: No decode supported.\n");
9786                 break;
9787         case ETHERTYPE_ARP:
9788                 BCE_PRINTF("-arp: ");
9789                 ah = (struct arphdr *) (m->m_data + ehlen);
9790                 switch (ntohs(ah->ar_op)) {
9791                 case ARPOP_REVREQUEST:
9792                         printf("reverse ARP request\n");
9793                         break;
9794                 case ARPOP_REVREPLY:
9795                         printf("reverse ARP reply\n");
9796                         break;
9797                 case ARPOP_REQUEST:
9798                         printf("ARP request\n");
9799                         break;
9800                 case ARPOP_REPLY:
9801                         printf("ARP reply\n");
9802                         break;
9803                 default:
9804                         printf("other ARP operation\n");
9805                 }
9806                 break;
9807         default:
9808                 BCE_PRINTF("----: Other protocol.\n");
9809         }
9810
9811         BCE_PRINTF(
9812                 "-----------------------------"
9813                 "--------------"
9814                 "-----------------------------\n");
9815 }
9816
9817
9818 /****************************************************************************/
9819 /* Prints out information about an mbuf.                                    */
9820 /*                                                                          */
9821 /* Returns:                                                                 */
9822 /*   Nothing.                                                               */
9823 /****************************************************************************/
9824 static __attribute__ ((noinline)) void
9825 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9826 {
9827         struct mbuf *mp = m;
9828
9829         if (m == NULL) {
9830                 BCE_PRINTF("mbuf: null pointer\n");
9831                 return;
9832         }
9833
9834         while (mp) {
9835                 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9836                     "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9837                     "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9838
9839                 if (mp->m_flags & M_PKTHDR) {
9840                         BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9841                             "csum_flags = %b\n", mp->m_pkthdr.len,
9842                             mp->m_flags, M_FLAG_PRINTF,
9843                             mp->m_pkthdr.csum_flags, CSUM_BITS);
9844                 }
9845
9846                 if (mp->m_flags & M_EXT) {
9847                         BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9848                             mp->m_ext.ext_buf, mp->m_ext.ext_size);
9849                         switch (mp->m_ext.ext_type) {
9850                         case EXT_CLUSTER:
9851                                 printf("EXT_CLUSTER\n"); break;
9852                         case EXT_SFBUF:
9853                                 printf("EXT_SFBUF\n"); break;
9854                         case EXT_JUMBO9:
9855                                 printf("EXT_JUMBO9\n"); break;
9856                         case EXT_JUMBO16:
9857                                 printf("EXT_JUMBO16\n"); break;
9858                         case EXT_PACKET:
9859                                 printf("EXT_PACKET\n"); break;
9860                         case EXT_MBUF:
9861                                 printf("EXT_MBUF\n"); break;
9862                         case EXT_NET_DRV:
9863                                 printf("EXT_NET_DRV\n"); break;
9864                         case EXT_MOD_TYPE:
9865                                 printf("EXT_MDD_TYPE\n"); break;
9866                         case EXT_DISPOSABLE:
9867                                 printf("EXT_DISPOSABLE\n"); break;
9868                         case EXT_EXTREF:
9869                                 printf("EXT_EXTREF\n"); break;
9870                         default:
9871                                 printf("UNKNOWN\n");
9872                         }
9873                 }
9874
9875                 mp = mp->m_next;
9876         }
9877 }
9878
9879
9880 /****************************************************************************/
9881 /* Prints out the mbufs in the TX mbuf chain.                               */
9882 /*                                                                          */
9883 /* Returns:                                                                 */
9884 /*   Nothing.                                                               */
9885 /****************************************************************************/
9886 static __attribute__ ((noinline)) void
9887 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9888 {
9889         struct mbuf *m;
9890
9891         BCE_PRINTF(
9892                 "----------------------------"
9893                 "  tx mbuf data  "
9894                 "----------------------------\n");
9895
9896         for (int i = 0; i < count; i++) {
9897                 m = sc->tx_mbuf_ptr[chain_prod];
9898                 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9899                 bce_dump_mbuf(sc, m);
9900                 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9901         }
9902
9903         BCE_PRINTF(
9904                 "----------------------------"
9905                 "----------------"
9906                 "----------------------------\n");
9907 }
9908
9909
9910 /****************************************************************************/
9911 /* Prints out the mbufs in the RX mbuf chain.                               */
9912 /*                                                                          */
9913 /* Returns:                                                                 */
9914 /*   Nothing.                                                               */
9915 /****************************************************************************/
9916 static __attribute__ ((noinline)) void
9917 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9918 {
9919         struct mbuf *m;
9920
9921         BCE_PRINTF(
9922                 "----------------------------"
9923                 "  rx mbuf data  "
9924                 "----------------------------\n");
9925
9926         for (int i = 0; i < count; i++) {
9927                 m = sc->rx_mbuf_ptr[chain_prod];
9928                 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9929                 bce_dump_mbuf(sc, m);
9930                 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9931         }
9932
9933
9934         BCE_PRINTF(
9935                 "----------------------------"
9936                 "----------------"
9937                 "----------------------------\n");
9938 }
9939
9940
9941 /****************************************************************************/
9942 /* Prints out the mbufs in the mbuf page chain.                             */
9943 /*                                                                          */
9944 /* Returns:                                                                 */
9945 /*   Nothing.                                                               */
9946 /****************************************************************************/
9947 static __attribute__ ((noinline)) void
9948 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9949 {
9950         struct mbuf *m;
9951
9952         BCE_PRINTF(
9953                 "----------------------------"
9954                 "  pg mbuf data  "
9955                 "----------------------------\n");
9956
9957         for (int i = 0; i < count; i++) {
9958                 m = sc->pg_mbuf_ptr[chain_prod];
9959                 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9960                 bce_dump_mbuf(sc, m);
9961                 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9962         }
9963
9964
9965         BCE_PRINTF(
9966                 "----------------------------"
9967                 "----------------"
9968                 "----------------------------\n");
9969 }
9970
9971
9972 /****************************************************************************/
9973 /* Prints out a tx_bd structure.                                            */
9974 /*                                                                          */
9975 /* Returns:                                                                 */
9976 /*   Nothing.                                                               */
9977 /****************************************************************************/
9978 static __attribute__ ((noinline)) void
9979 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9980 {
9981         int i = 0;
9982
9983         if (idx > MAX_TX_BD_ALLOC)
9984                 /* Index out of range. */
9985                 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9986         else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9987                 /* TX Chain page pointer. */
9988                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9989                     "pointer\n", idx, txbd->tx_bd_haddr_hi,
9990                     txbd->tx_bd_haddr_lo);
9991         else {
9992                 /* Normal tx_bd entry. */
9993                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9994                     "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9995                     "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9996                     txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9997                     txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9998
9999                 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
10000                         if (i>0)
10001                                 printf("|");
10002                         printf("CONN_FAULT");
10003                         i++;
10004                 }
10005
10006                 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
10007                         if (i>0)
10008                                 printf("|");
10009                         printf("TCP_UDP_CKSUM");
10010                         i++;
10011                 }
10012
10013                 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
10014                         if (i>0)
10015                                 printf("|");
10016                         printf("IP_CKSUM");
10017                         i++;
10018                 }
10019
10020                 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
10021                         if (i>0)
10022                                 printf("|");
10023                         printf("VLAN");
10024                         i++;
10025                 }
10026
10027                 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
10028                         if (i>0)
10029                                 printf("|");
10030                         printf("COAL_NOW");
10031                         i++;
10032                 }
10033
10034                 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
10035                         if (i>0)
10036                                 printf("|");
10037                         printf("DONT_GEN_CRC");
10038                         i++;
10039                 }
10040
10041                 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
10042                         if (i>0)
10043                                 printf("|");
10044                         printf("START");
10045                         i++;
10046                 }
10047
10048                 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
10049                         if (i>0)
10050                                 printf("|");
10051                         printf("END");
10052                         i++;
10053                 }
10054
10055                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
10056                         if (i>0)
10057                                 printf("|");
10058                         printf("LSO");
10059                         i++;
10060                 }
10061
10062                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
10063                         if (i>0)
10064                                 printf("|");
10065                         printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
10066                             TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
10067                 }
10068
10069                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
10070                         if (i>0)
10071                                 printf("|");
10072                         printf("SW_FLAGS");
10073                         i++;
10074                 }
10075
10076                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
10077                         if (i>0)
10078                                 printf("|");
10079                         printf("SNAP)");
10080                 } else {
10081                         printf(")\n");
10082                 }
10083         }
10084 }
10085
10086
10087 /****************************************************************************/
10088 /* Prints out a rx_bd structure.                                            */
10089 /*                                                                          */
10090 /* Returns:                                                                 */
10091 /*   Nothing.                                                               */
10092 /****************************************************************************/
10093 static __attribute__ ((noinline)) void
10094 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
10095 {
10096         if (idx > MAX_RX_BD_ALLOC)
10097                 /* Index out of range. */
10098                 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
10099         else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
10100                 /* RX Chain page pointer. */
10101                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10102                     "pointer\n", idx, rxbd->rx_bd_haddr_hi,
10103                     rxbd->rx_bd_haddr_lo);
10104         else
10105                 /* Normal rx_bd entry. */
10106                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
10107                     "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
10108                     rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
10109                     rxbd->rx_bd_flags);
10110 }
10111
10112
10113 /****************************************************************************/
10114 /* Prints out a rx_bd structure in the page chain.                          */
10115 /*                                                                          */
10116 /* Returns:                                                                 */
10117 /*   Nothing.                                                               */
10118 /****************************************************************************/
10119 static __attribute__ ((noinline)) void
10120 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
10121 {
10122         if (idx > MAX_PG_BD_ALLOC)
10123                 /* Index out of range. */
10124                 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
10125         else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
10126                 /* Page Chain page pointer. */
10127                 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
10128                         idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
10129         else
10130                 /* Normal rx_bd entry. */
10131                 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
10132                         "flags = 0x%08X\n", idx,
10133                         pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
10134                         pgbd->rx_bd_len, pgbd->rx_bd_flags);
10135 }
10136
10137
10138 /****************************************************************************/
10139 /* Prints out a l2_fhdr structure.                                          */
10140 /*                                                                          */
10141 /* Returns:                                                                 */
10142 /*   Nothing.                                                               */
10143 /****************************************************************************/
10144 static __attribute__ ((noinline)) void
10145 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
10146 {
10147         BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
10148                 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
10149                 "tcp_udp_xsum = 0x%04X\n", idx,
10150                 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
10151                 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
10152                 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
10153 }
10154
10155
10156 /****************************************************************************/
10157 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
10158 /*                                                                          */
10159 /* Returns:                                                                 */
10160 /*   Nothing.                                                               */
10161 /****************************************************************************/
10162 static __attribute__ ((noinline)) void
10163 bce_dump_ctx(struct bce_softc *sc, u16 cid)
10164 {
10165         if (cid > TX_CID) {
10166                 BCE_PRINTF(" Unknown CID\n");
10167                 return;
10168         }
10169
10170         BCE_PRINTF(
10171             "----------------------------"
10172             "    CTX Data    "
10173             "----------------------------\n");
10174
10175         BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
10176
10177         if (cid == RX_CID) {
10178                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10179                    "producer index\n",
10180                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10181                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10182                     "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10183                     BCE_L2CTX_RX_HOST_BSEQ));
10184                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10185                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10186                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10187                     "descriptor address\n",
10188                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10189                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10190                     "descriptor address\n",
10191                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10192                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10193                     "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10194                     BCE_L2CTX_RX_NX_BDIDX));
10195                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10196                     "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10197                     BCE_L2CTX_RX_HOST_PG_BDIDX));
10198                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10199                     "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10200                     BCE_L2CTX_RX_PG_BUF_SIZE));
10201                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10202                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10203                     BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10204                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10205                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10206                     BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10207                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10208                     "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10209                     BCE_L2CTX_RX_NX_PG_BDIDX));
10210         } else if (cid == TX_CID) {
10211                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10212                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10213                             CTX_RD(sc, GET_CID_ADDR(cid),
10214                             BCE_L2CTX_TX_TYPE_XI));
10215                         BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10216                             "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10217                             BCE_L2CTX_TX_CMD_TYPE_XI));
10218                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10219                             "h/w buffer descriptor address\n",
10220                             CTX_RD(sc, GET_CID_ADDR(cid),
10221                             BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10222                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10223                             "h/w buffer descriptor address\n",
10224                             CTX_RD(sc, GET_CID_ADDR(cid),
10225                             BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10226                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10227                             "host producer index\n",
10228                             CTX_RD(sc, GET_CID_ADDR(cid),
10229                             BCE_L2CTX_TX_HOST_BIDX_XI));
10230                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10231                             "host byte sequence\n",
10232                             CTX_RD(sc, GET_CID_ADDR(cid),
10233                             BCE_L2CTX_TX_HOST_BSEQ_XI));
10234                 } else {
10235                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10236                             CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10237                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10238                             CTX_RD(sc, GET_CID_ADDR(cid),
10239                             BCE_L2CTX_TX_CMD_TYPE));
10240                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10241                             "h/w buffer descriptor address\n",
10242                             CTX_RD(sc, GET_CID_ADDR(cid),
10243                             BCE_L2CTX_TX_TBDR_BHADDR_HI));
10244                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10245                             "h/w buffer descriptor address\n",
10246                             CTX_RD(sc, GET_CID_ADDR(cid),
10247                             BCE_L2CTX_TX_TBDR_BHADDR_LO));
10248                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10249                             "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10250                             BCE_L2CTX_TX_HOST_BIDX));
10251                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10252                             "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10253                             BCE_L2CTX_TX_HOST_BSEQ));
10254                 }
10255         }
10256
10257         BCE_PRINTF(
10258            "----------------------------"
10259            "    Raw CTX     "
10260            "----------------------------\n");
10261
10262         for (int i = 0x0; i < 0x300; i += 0x10) {
10263                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10264                    CTX_RD(sc, GET_CID_ADDR(cid), i),
10265                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10266                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10267                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10268         }
10269
10270
10271         BCE_PRINTF(
10272            "----------------------------"
10273            "----------------"
10274            "----------------------------\n");
10275 }
10276
10277
10278 /****************************************************************************/
10279 /* Prints out the FTQ data.                                                 */
10280 /*                                                                          */
10281 /* Returns:                                                                */
10282 /*   Nothing.                                                               */
10283 /****************************************************************************/
10284 static __attribute__ ((noinline)) void
10285 bce_dump_ftqs(struct bce_softc *sc)
10286 {
10287         u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10288
10289         BCE_PRINTF(
10290             "----------------------------"
10291             "    FTQ Data    "
10292             "----------------------------\n");
10293
10294         BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10295             "Max_Depth  Valid_Cnt \n");
10296         BCE_PRINTF(" ------- ---------- ---------- ---------- "
10297             "---------- ----------\n");
10298
10299         /* Setup the generic statistic counters for the FTQ valid count. */
10300         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10301             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10302             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10303             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10304         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10305
10306         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10307             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10308             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10309             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10310         REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10311
10312         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10313             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10314             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10315             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10316         REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10317
10318         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10319             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10320             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10321             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10322         REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10323
10324         /* Input queue to the Receive Lookup state machine */
10325         cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10326         ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10327         cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10328         max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10329         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10330         BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10331             cmd, ctl, cur_depth, max_depth, valid_cnt);
10332
10333         /* Input queue to the Receive Processor */
10334         cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10335         ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10336         cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10337         max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10338         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10339         BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10340             cmd, ctl, cur_depth, max_depth, valid_cnt);
10341
10342         /* Input queue to the Recevie Processor */
10343         cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10344         ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10345         cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10346         max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10347         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10348         BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10349             cmd, ctl, cur_depth, max_depth, valid_cnt);
10350
10351         /* Input queue to the Receive Virtual to Physical state machine */
10352         cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10353         ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10354         cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10355         max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10356         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10357         BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10358             cmd, ctl, cur_depth, max_depth, valid_cnt);
10359
10360         /* Input queue to the Recevie Virtual to Physical state machine */
10361         cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10362         ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10363         cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10364         max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10365         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10366         BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10367             cmd, ctl, cur_depth, max_depth, valid_cnt);
10368
10369         /* Input queue to the Receive Virtual to Physical state machine */
10370         cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10371         ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10372         cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10373         max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10374         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10375         BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10376             cmd, ctl, cur_depth, max_depth, valid_cnt);
10377
10378         /* Input queue to the Receive DMA state machine */
10379         cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10380         ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10381         cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10382         max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10383         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10384         BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10385             cmd, ctl, cur_depth, max_depth, valid_cnt);
10386
10387         /* Input queue to the Transmit Scheduler state machine */
10388         cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10389         ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10390         cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10391         max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10392         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10393         BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10394             cmd, ctl, cur_depth, max_depth, valid_cnt);
10395
10396         /* Input queue to the Transmit Buffer Descriptor state machine */
10397         cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10398         ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10399         cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10400         max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10401         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10402         BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10403             cmd, ctl, cur_depth, max_depth, valid_cnt);
10404
10405         /* Input queue to the Transmit Processor */
10406         cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10407         ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10408         cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10409         max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10410         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10411         BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10412             cmd, ctl, cur_depth, max_depth, valid_cnt);
10413
10414         /* Input queue to the Transmit DMA state machine */
10415         cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10416         ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10417         cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10418         max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10419         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10420         BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10421             cmd, ctl, cur_depth, max_depth, valid_cnt);
10422
10423         /* Input queue to the Transmit Patch-Up Processor */
10424         cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10425         ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10426         cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10427         max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10428         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10429         BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10430             cmd, ctl, cur_depth, max_depth, valid_cnt);
10431
10432         /* Input queue to the Transmit Assembler state machine */
10433         cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10434         ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10435         cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10436         max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10437         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10438         BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10439             cmd, ctl, cur_depth, max_depth, valid_cnt);
10440
10441         /* Input queue to the Completion Processor */
10442         cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10443         ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10444         cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10445         max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10446         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10447         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10448             cmd, ctl, cur_depth, max_depth, valid_cnt);
10449
10450         /* Input queue to the Completion Processor */
10451         cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10452         ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10453         cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10454         max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10455         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10456         BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10457             cmd, ctl, cur_depth, max_depth, valid_cnt);
10458
10459         /* Input queue to the Completion Processor */
10460         cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10461         ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10462         cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10463         max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10464         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10465         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10466             cmd, ctl, cur_depth, max_depth, valid_cnt);
10467
10468         /* Setup the generic statistic counters for the FTQ valid count. */
10469         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10470             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10471             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10472
10473         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10474                 val = val |
10475                     (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10476                      24);
10477         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10478
10479         /* Input queue to the Management Control Processor */
10480         cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10481         ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10482         cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10483         max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10484         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10485         BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10486             cmd, ctl, cur_depth, max_depth, valid_cnt);
10487
10488         /* Input queue to the Command Processor */
10489         cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10490         ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10491         cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10492         max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10493         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10494         BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10495             cmd, ctl, cur_depth, max_depth, valid_cnt);
10496
10497         /* Input queue to the Completion Scheduler state machine */
10498         cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10499         ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10500         cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10501         max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10502         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10503         BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10504             cmd, ctl, cur_depth, max_depth, valid_cnt);
10505
10506         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10507                 /* Input queue to the RV2P Command Scheduler */
10508                 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10509                 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10510                 cur_depth = (ctl & 0xFFC00000) >> 22;
10511                 max_depth = (ctl & 0x003FF000) >> 12;
10512                 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10513                 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10514                     cmd, ctl, cur_depth, max_depth, valid_cnt);
10515         }
10516
10517         BCE_PRINTF(
10518             "----------------------------"
10519             "----------------"
10520             "----------------------------\n");
10521 }
10522
10523
10524 /****************************************************************************/
10525 /* Prints out the TX chain.                                                 */
10526 /*                                                                          */
10527 /* Returns:                                                                 */
10528 /*   Nothing.                                                               */
10529 /****************************************************************************/
10530 static __attribute__ ((noinline)) void
10531 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10532 {
10533         struct tx_bd *txbd;
10534
10535         /* First some info about the tx_bd chain structure. */
10536         BCE_PRINTF(
10537             "----------------------------"
10538             "  tx_bd  chain  "
10539             "----------------------------\n");
10540
10541         BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10542             (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10543         BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10544             (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10545         BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10546
10547         BCE_PRINTF(
10548             "----------------------------"
10549             "   tx_bd data   "
10550             "----------------------------\n");
10551
10552         /* Now print out a decoded list of TX buffer descriptors. */
10553         for (int i = 0; i < count; i++) {
10554                 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10555                 bce_dump_txbd(sc, tx_prod, txbd);
10556                 tx_prod++;
10557         }
10558
10559         BCE_PRINTF(
10560             "----------------------------"
10561             "----------------"
10562             "----------------------------\n");
10563 }
10564
10565
10566 /****************************************************************************/
10567 /* Prints out the RX chain.                                                 */
10568 /*                                                                          */
10569 /* Returns:                                                                 */
10570 /*   Nothing.                                                               */
10571 /****************************************************************************/
10572 static __attribute__ ((noinline)) void
10573 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10574 {
10575         struct rx_bd *rxbd;
10576
10577         /* First some info about the rx_bd chain structure. */
10578         BCE_PRINTF(
10579             "----------------------------"
10580             "  rx_bd  chain  "
10581             "----------------------------\n");
10582
10583         BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10584             (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10585
10586         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10587             (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10588
10589         BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10590
10591         BCE_PRINTF(
10592             "----------------------------"
10593             "   rx_bd data   "
10594             "----------------------------\n");
10595
10596         /* Now print out the rx_bd's themselves. */
10597         for (int i = 0; i < count; i++) {
10598                 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10599                 bce_dump_rxbd(sc, rx_prod, rxbd);
10600                 rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10601         }
10602
10603         BCE_PRINTF(
10604             "----------------------------"
10605             "----------------"
10606             "----------------------------\n");
10607 }
10608
10609
10610 /****************************************************************************/
10611 /* Prints out the page chain.                                               */
10612 /*                                                                          */
10613 /* Returns:                                                                 */
10614 /*   Nothing.                                                               */
10615 /****************************************************************************/
10616 static __attribute__ ((noinline)) void
10617 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10618 {
10619         struct rx_bd *pgbd;
10620
10621         /* First some info about the page chain structure. */
10622         BCE_PRINTF(
10623             "----------------------------"
10624             "   page chain   "
10625             "----------------------------\n");
10626
10627         BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10628             (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10629
10630         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10631             (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10632
10633         BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10634
10635         BCE_PRINTF(
10636             "----------------------------"
10637             "   page data    "
10638             "----------------------------\n");
10639
10640         /* Now print out the rx_bd's themselves. */
10641         for (int i = 0; i < count; i++) {
10642                 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10643                 bce_dump_pgbd(sc, pg_prod, pgbd);
10644                 pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10645         }
10646
10647         BCE_PRINTF(
10648             "----------------------------"
10649             "----------------"
10650             "----------------------------\n");
10651 }
10652
10653
10654 #define BCE_PRINT_RX_CONS(arg)                                          \
10655 if (sblk->status_rx_quick_consumer_index##arg)                          \
10656         BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",      \
10657             sblk->status_rx_quick_consumer_index##arg, (u16)            \
10658             RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),    \
10659             arg);
10660
10661
10662 #define BCE_PRINT_TX_CONS(arg)                                          \
10663 if (sblk->status_tx_quick_consumer_index##arg)                          \
10664         BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",      \
10665             sblk->status_tx_quick_consumer_index##arg, (u16)            \
10666             TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),    \
10667             arg);
10668
10669 /****************************************************************************/
10670 /* Prints out the status block from host memory.                            */
10671 /*                                                                          */
10672 /* Returns:                                                                 */
10673 /*   Nothing.                                                               */
10674 /****************************************************************************/
10675 static __attribute__ ((noinline)) void
10676 bce_dump_status_block(struct bce_softc *sc)
10677 {
10678         struct status_block *sblk;
10679
10680         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10681
10682         sblk = sc->status_block;
10683
10684         BCE_PRINTF(
10685             "----------------------------"
10686             "  Status Block  "
10687             "----------------------------\n");
10688
10689         /* Theses indices are used for normal L2 drivers. */
10690         BCE_PRINTF("    0x%08X - attn_bits\n",
10691             sblk->status_attn_bits);
10692
10693         BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10694             sblk->status_attn_bits_ack);
10695
10696         BCE_PRINT_RX_CONS(0);
10697         BCE_PRINT_TX_CONS(0)
10698
10699         BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10700
10701         /* Theses indices are not used for normal L2 drivers. */
10702         BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10703         BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10704         BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10705         BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10706         BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10707
10708         BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10709
10710         if (sblk->status_completion_producer_index ||
10711             sblk->status_cmd_consumer_index)
10712                 BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10713                     sblk->status_completion_producer_index,
10714                     sblk->status_cmd_consumer_index);
10715
10716         BCE_PRINTF(
10717             "----------------------------"
10718             "----------------"
10719             "----------------------------\n");
10720 }
10721
10722
10723 #define BCE_PRINT_64BIT_STAT(arg)                               \
10724 if (sblk->arg##_lo || sblk->arg##_hi)                           \
10725         BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,        \
10726             sblk->arg##_lo, #arg);
10727
10728 #define BCE_PRINT_32BIT_STAT(arg)                               \
10729 if (sblk->arg)                                                  \
10730         BCE_PRINTF("         0x%08X : %s\n",                    \
10731             sblk->arg, #arg);
10732
10733 /****************************************************************************/
10734 /* Prints out the statistics block from host memory.                        */
10735 /*                                                                          */
10736 /* Returns:                                                                 */
10737 /*   Nothing.                                                               */
10738 /****************************************************************************/
10739 static __attribute__ ((noinline)) void
10740 bce_dump_stats_block(struct bce_softc *sc)
10741 {
10742         struct statistics_block *sblk;
10743
10744         bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10745
10746         sblk = sc->stats_block;
10747
10748         BCE_PRINTF(
10749             "---------------"
10750             " Stats Block  (All Stats Not Shown Are 0) "
10751             "---------------\n");
10752
10753         BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10754         BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10755         BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10756         BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10757         BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10758         BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10759         BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10760         BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10761         BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10762         BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10763         BCE_PRINT_32BIT_STAT(
10764             stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10765         BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10766         BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10767         BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10768         BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10769         BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10770         BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10771         BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10772         BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10773         BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10774         BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10775         BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10776         BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10777         BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10778         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10779         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10780         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10781         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10782         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10783         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10784         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10785         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10786         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10787         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10788         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10789         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10790         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10791         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10792         BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10793         BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10794         BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10795         BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10796         BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10797         BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10798         BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10799         BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10800         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10801         BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10802         BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10803         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10804         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10805         BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10806         BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10807         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10808
10809         BCE_PRINTF(
10810             "----------------------------"
10811             "----------------"
10812             "----------------------------\n");
10813 }
10814
10815
10816 /****************************************************************************/
10817 /* Prints out a summary of the driver state.                                */
10818 /*                                                                          */
10819 /* Returns:                                                                 */
10820 /*   Nothing.                                                               */
10821 /****************************************************************************/
10822 static __attribute__ ((noinline)) void
10823 bce_dump_driver_state(struct bce_softc *sc)
10824 {
10825         u32 val_hi, val_lo;
10826
10827         BCE_PRINTF(
10828             "-----------------------------"
10829             " Driver State "
10830             "-----------------------------\n");
10831
10832         val_hi = BCE_ADDR_HI(sc);
10833         val_lo = BCE_ADDR_LO(sc);
10834         BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10835             "address\n", val_hi, val_lo);
10836
10837         val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10838         val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10839         BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10840             "address\n", val_hi, val_lo);
10841
10842         val_hi = BCE_ADDR_HI(sc->status_block);
10843         val_lo = BCE_ADDR_LO(sc->status_block);
10844         BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10845             "virtual address\n",        val_hi, val_lo);
10846
10847         val_hi = BCE_ADDR_HI(sc->stats_block);
10848         val_lo = BCE_ADDR_LO(sc->stats_block);
10849         BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10850             "virtual address\n", val_hi, val_lo);
10851
10852         val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10853         val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10854         BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10855             "virtual adddress\n", val_hi, val_lo);
10856
10857         val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10858         val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10859         BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10860             "virtual address\n", val_hi, val_lo);
10861
10862         if (bce_hdr_split == TRUE) {
10863                 val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10864                 val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10865                 BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10866                     "virtual address\n", val_hi, val_lo);
10867         }
10868
10869         val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10870         val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10871         BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10872             "virtual address\n",        val_hi, val_lo);
10873
10874         val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10875         val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10876         BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10877             "virtual address\n", val_hi, val_lo);
10878
10879         if (bce_hdr_split == TRUE) {
10880                 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10881                 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10882                 BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10883                     "virtual address\n", val_hi, val_lo);
10884         }
10885
10886         BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10887             "h/w intrs\n",
10888             (long long unsigned int) sc->interrupts_generated);
10889
10890         BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10891             "rx interrupts handled\n",
10892             (long long unsigned int) sc->interrupts_rx);
10893
10894         BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10895             "tx interrupts handled\n",
10896             (long long unsigned int) sc->interrupts_tx);
10897
10898         BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10899             "phy interrupts handled\n",
10900             (long long unsigned int) sc->phy_interrupts);
10901
10902         BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10903             "status block index\n", sc->last_status_idx);
10904
10905         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10906             "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10907
10908         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10909             "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10910
10911         BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10912             "byte seq index\n", sc->tx_prod_bseq);
10913
10914         BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10915             "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10916
10917         BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10918             "tx_bd's\n", sc->used_tx_bd);
10919
10920         BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10921             "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10922
10923         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10924             "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10925
10926         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10927             "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10928
10929         BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10930             "byte seq index\n", sc->rx_prod_bseq);
10931
10932         BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10933                    "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10934
10935         BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10936             "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10937
10938         BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10939             "rx_bd's\n", sc->free_rx_bd);
10940
10941         if (bce_hdr_split == TRUE) {
10942                 BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10943                     "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10944
10945                 BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10946                     "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10947
10948                 BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10949                     "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10950         }
10951
10952         BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10953             "rx_bd's\n", sc->free_pg_bd);
10954
10955         BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10956             "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10957
10958         BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10959             "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10960
10961         BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10962             "bce mac flags\n", sc->bce_flags);
10963
10964         BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10965             "bce phy flags\n", sc->bce_phy_flags);
10966
10967         BCE_PRINTF(
10968             "----------------------------"
10969             "----------------"
10970             "----------------------------\n");
10971 }
10972
10973
10974 /****************************************************************************/
10975 /* Prints out the hardware state through a summary of important register,   */
10976 /* followed by a complete register dump.                                    */
10977 /*                                                                          */
10978 /* Returns:                                                                 */
10979 /*   Nothing.                                                               */
10980 /****************************************************************************/
10981 static __attribute__ ((noinline)) void
10982 bce_dump_hw_state(struct bce_softc *sc)
10983 {
10984         u32 val;
10985
10986         BCE_PRINTF(
10987             "----------------------------"
10988             " Hardware State "
10989             "----------------------------\n");
10990
10991         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10992
10993         val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10994         BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10995             val, BCE_MISC_ENABLE_STATUS_BITS);
10996
10997         val = REG_RD(sc, BCE_DMA_STATUS);
10998         BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10999             val, BCE_DMA_STATUS);
11000
11001         val = REG_RD(sc, BCE_CTX_STATUS);
11002         BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
11003             val, BCE_CTX_STATUS);
11004
11005         val = REG_RD(sc, BCE_EMAC_STATUS);
11006         BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
11007             val, BCE_EMAC_STATUS);
11008
11009         val = REG_RD(sc, BCE_RPM_STATUS);
11010         BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
11011             val, BCE_RPM_STATUS);
11012
11013         /* ToDo: Create a #define for this constant. */
11014         val = REG_RD(sc, 0x2004);
11015         BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
11016             val, 0x2004);
11017
11018         val = REG_RD(sc, BCE_RV2P_STATUS);
11019         BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
11020             val, BCE_RV2P_STATUS);
11021
11022         /* ToDo: Create a #define for this constant. */
11023         val = REG_RD(sc, 0x2c04);
11024         BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
11025             val, 0x2c04);
11026
11027         val = REG_RD(sc, BCE_TBDR_STATUS);
11028         BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
11029             val, BCE_TBDR_STATUS);
11030
11031         val = REG_RD(sc, BCE_TDMA_STATUS);
11032         BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
11033             val, BCE_TDMA_STATUS);
11034
11035         val = REG_RD(sc, BCE_HC_STATUS);
11036         BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
11037             val, BCE_HC_STATUS);
11038
11039         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11040         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11041             val, BCE_TXP_CPU_STATE);
11042
11043         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11044         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11045             val, BCE_TPAT_CPU_STATE);
11046
11047         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11048         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11049             val, BCE_RXP_CPU_STATE);
11050
11051         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11052         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11053             val, BCE_COM_CPU_STATE);
11054
11055         val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
11056         BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
11057             val, BCE_MCP_CPU_STATE);
11058
11059         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11060         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11061             val, BCE_CP_CPU_STATE);
11062
11063         BCE_PRINTF(
11064             "----------------------------"
11065             "----------------"
11066             "----------------------------\n");
11067
11068         BCE_PRINTF(
11069             "----------------------------"
11070             " Register  Dump "
11071             "----------------------------\n");
11072
11073         for (int i = 0x400; i < 0x8000; i += 0x10) {
11074                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11075                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11076                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11077         }
11078
11079         BCE_PRINTF(
11080             "----------------------------"
11081             "----------------"
11082             "----------------------------\n");
11083 }
11084
11085
11086 /****************************************************************************/
11087 /* Prints out the contentst of shared memory which is used for host driver  */
11088 /* to bootcode firmware communication.                                      */
11089 /*                                                                          */
11090 /* Returns:                                                                 */
11091 /*   Nothing.                                                               */
11092 /****************************************************************************/
11093 static __attribute__ ((noinline)) void
11094 bce_dump_shmem_state(struct bce_softc *sc)
11095 {
11096         BCE_PRINTF(
11097             "----------------------------"
11098             " Hardware State "
11099             "----------------------------\n");
11100
11101         BCE_PRINTF("0x%08X - Shared memory base address\n",
11102             sc->bce_shmem_base);
11103         BCE_PRINTF("%s - bootcode version\n",
11104             sc->bce_bc_ver);
11105
11106         BCE_PRINTF(
11107             "----------------------------"
11108             "   Shared Mem   "
11109             "----------------------------\n");
11110
11111         for (int i = 0x0; i < 0x200; i += 0x10) {
11112                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11113                     i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
11114                     bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
11115         }
11116
11117         BCE_PRINTF(
11118             "----------------------------"
11119             "----------------"
11120             "----------------------------\n");
11121 }
11122
11123
11124 /****************************************************************************/
11125 /* Prints out the mailbox queue registers.                                  */
11126 /*                                                                          */
11127 /* Returns:                                                                 */
11128 /*   Nothing.                                                               */
11129 /****************************************************************************/
11130 static __attribute__ ((noinline)) void
11131 bce_dump_mq_regs(struct bce_softc *sc)
11132 {
11133         BCE_PRINTF(
11134             "----------------------------"
11135             "    MQ Regs     "
11136             "----------------------------\n");
11137
11138         BCE_PRINTF(
11139             "----------------------------"
11140             "----------------"
11141             "----------------------------\n");
11142
11143         for (int i = 0x3c00; i < 0x4000; i += 0x10) {
11144                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11145                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11146                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11147         }
11148
11149         BCE_PRINTF(
11150             "----------------------------"
11151             "----------------"
11152             "----------------------------\n");
11153 }
11154
11155
11156 /****************************************************************************/
11157 /* Prints out the bootcode state.                                           */
11158 /*                                                                          */
11159 /* Returns:                                                                 */
11160 /*   Nothing.                                                               */
11161 /****************************************************************************/
11162 static __attribute__ ((noinline)) void
11163 bce_dump_bc_state(struct bce_softc *sc)
11164 {
11165         u32 val;
11166
11167         BCE_PRINTF(
11168             "----------------------------"
11169             " Bootcode State "
11170             "----------------------------\n");
11171
11172         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11173
11174         val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
11175         BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
11176             val, BCE_BC_RESET_TYPE);
11177
11178         val = bce_shmem_rd(sc, BCE_BC_STATE);
11179         BCE_PRINTF("0x%08X - (0x%06X) state\n",
11180             val, BCE_BC_STATE);
11181
11182         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
11183         BCE_PRINTF("0x%08X - (0x%06X) condition\n",
11184             val, BCE_BC_STATE_CONDITION);
11185
11186         val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
11187         BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
11188             val, BCE_BC_STATE_DEBUG_CMD);
11189
11190         BCE_PRINTF(
11191             "----------------------------"
11192             "----------------"
11193             "----------------------------\n");
11194 }
11195
11196
11197 /****************************************************************************/
11198 /* Prints out the TXP processor state.                                      */
11199 /*                                                                          */
11200 /* Returns:                                                                 */
11201 /*   Nothing.                                                               */
11202 /****************************************************************************/
11203 static __attribute__ ((noinline)) void
11204 bce_dump_txp_state(struct bce_softc *sc, int regs)
11205 {
11206         u32 val;
11207         u32 fw_version[3];
11208
11209         BCE_PRINTF(
11210             "----------------------------"
11211             "   TXP  State   "
11212             "----------------------------\n");
11213
11214         for (int i = 0; i < 3; i++)
11215                 fw_version[i] = htonl(REG_RD_IND(sc,
11216                     (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11217         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11218
11219         val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11220         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11221             val, BCE_TXP_CPU_MODE);
11222
11223         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11224         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11225             val, BCE_TXP_CPU_STATE);
11226
11227         val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11228         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11229             val, BCE_TXP_CPU_EVENT_MASK);
11230
11231         if (regs) {
11232                 BCE_PRINTF(
11233                     "----------------------------"
11234                     " Register  Dump "
11235                     "----------------------------\n");
11236
11237                 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11238                         /* Skip the big blank spaces */
11239                         if (i < 0x454000 && i > 0x5ffff)
11240                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11241                                     "0x%08X 0x%08X\n", i,
11242                                     REG_RD_IND(sc, i),
11243                                     REG_RD_IND(sc, i + 0x4),
11244                                     REG_RD_IND(sc, i + 0x8),
11245                                     REG_RD_IND(sc, i + 0xC));
11246                 }
11247         }
11248
11249         BCE_PRINTF(
11250             "----------------------------"
11251             "----------------"
11252             "----------------------------\n");
11253 }
11254
11255
11256 /****************************************************************************/
11257 /* Prints out the RXP processor state.                                      */
11258 /*                                                                          */
11259 /* Returns:                                                                 */
11260 /*   Nothing.                                                               */
11261 /****************************************************************************/
11262 static __attribute__ ((noinline)) void
11263 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11264 {
11265         u32 val;
11266         u32 fw_version[3];
11267
11268         BCE_PRINTF(
11269             "----------------------------"
11270             "   RXP  State   "
11271             "----------------------------\n");
11272
11273         for (int i = 0; i < 3; i++)
11274                 fw_version[i] = htonl(REG_RD_IND(sc,
11275                     (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11276
11277         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11278
11279         val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11280         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11281             val, BCE_RXP_CPU_MODE);
11282
11283         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11284         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11285             val, BCE_RXP_CPU_STATE);
11286
11287         val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11288         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11289             val, BCE_RXP_CPU_EVENT_MASK);
11290
11291         if (regs) {
11292                 BCE_PRINTF(
11293                     "----------------------------"
11294                     " Register  Dump "
11295                     "----------------------------\n");
11296
11297                 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11298                         /* Skip the big blank sapces */
11299                         if (i < 0xc5400 && i > 0xdffff)
11300                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11301                                     "0x%08X 0x%08X\n", i,
11302                                     REG_RD_IND(sc, i),
11303                                     REG_RD_IND(sc, i + 0x4),
11304                                     REG_RD_IND(sc, i + 0x8),
11305                                     REG_RD_IND(sc, i + 0xC));
11306                 }
11307         }
11308
11309         BCE_PRINTF(
11310             "----------------------------"
11311             "----------------"
11312             "----------------------------\n");
11313 }
11314
11315
11316 /****************************************************************************/
11317 /* Prints out the TPAT processor state.                                     */
11318 /*                                                                          */
11319 /* Returns:                                                                 */
11320 /*   Nothing.                                                               */
11321 /****************************************************************************/
11322 static __attribute__ ((noinline)) void
11323 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11324 {
11325         u32 val;
11326         u32 fw_version[3];
11327
11328         BCE_PRINTF(
11329             "----------------------------"
11330             "   TPAT State   "
11331             "----------------------------\n");
11332
11333         for (int i = 0; i < 3; i++)
11334                 fw_version[i] = htonl(REG_RD_IND(sc,
11335                     (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11336
11337         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11338
11339         val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11340         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11341             val, BCE_TPAT_CPU_MODE);
11342
11343         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11344         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11345             val, BCE_TPAT_CPU_STATE);
11346
11347         val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11348         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11349             val, BCE_TPAT_CPU_EVENT_MASK);
11350
11351         if (regs) {
11352                 BCE_PRINTF(
11353                     "----------------------------"
11354                     " Register  Dump "
11355                     "----------------------------\n");
11356
11357                 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11358                         /* Skip the big blank spaces */
11359                         if (i < 0x854000 && i > 0x9ffff)
11360                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11361                                     "0x%08X 0x%08X\n", i,
11362                                     REG_RD_IND(sc, i),
11363                                     REG_RD_IND(sc, i + 0x4),
11364                                     REG_RD_IND(sc, i + 0x8),
11365                                     REG_RD_IND(sc, i + 0xC));
11366                 }
11367         }
11368
11369         BCE_PRINTF(
11370                 "----------------------------"
11371                 "----------------"
11372                 "----------------------------\n");
11373 }
11374
11375
11376 /****************************************************************************/
11377 /* Prints out the Command Procesor (CP) state.                              */
11378 /*                                                                          */
11379 /* Returns:                                                                 */
11380 /*   Nothing.                                                               */
11381 /****************************************************************************/
11382 static __attribute__ ((noinline)) void
11383 bce_dump_cp_state(struct bce_softc *sc, int regs)
11384 {
11385         u32 val;
11386         u32 fw_version[3];
11387
11388         BCE_PRINTF(
11389             "----------------------------"
11390             "    CP State    "
11391             "----------------------------\n");
11392
11393         for (int i = 0; i < 3; i++)
11394                 fw_version[i] = htonl(REG_RD_IND(sc,
11395                     (BCE_CP_SCRATCH + 0x10 + i * 4)));
11396
11397         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11398
11399         val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11400         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11401             val, BCE_CP_CPU_MODE);
11402
11403         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11404         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11405             val, BCE_CP_CPU_STATE);
11406
11407         val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11408         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11409             BCE_CP_CPU_EVENT_MASK);
11410
11411         if (regs) {
11412                 BCE_PRINTF(
11413                     "----------------------------"
11414                     " Register  Dump "
11415                     "----------------------------\n");
11416
11417                 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11418                         /* Skip the big blank spaces */
11419                         if (i < 0x185400 && i > 0x19ffff)
11420                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11421                                     "0x%08X 0x%08X\n", i,
11422                                     REG_RD_IND(sc, i),
11423                                     REG_RD_IND(sc, i + 0x4),
11424                                     REG_RD_IND(sc, i + 0x8),
11425                                     REG_RD_IND(sc, i + 0xC));
11426                 }
11427         }
11428
11429         BCE_PRINTF(
11430             "----------------------------"
11431             "----------------"
11432             "----------------------------\n");
11433 }
11434
11435
11436 /****************************************************************************/
11437 /* Prints out the Completion Procesor (COM) state.                          */
11438 /*                                                                          */
11439 /* Returns:                                                                 */
11440 /*   Nothing.                                                               */
11441 /****************************************************************************/
11442 static __attribute__ ((noinline)) void
11443 bce_dump_com_state(struct bce_softc *sc, int regs)
11444 {
11445         u32 val;
11446         u32 fw_version[4];
11447
11448         BCE_PRINTF(
11449             "----------------------------"
11450             "   COM State    "
11451             "----------------------------\n");
11452
11453         for (int i = 0; i < 3; i++)
11454                 fw_version[i] = htonl(REG_RD_IND(sc,
11455                     (BCE_COM_SCRATCH + 0x10 + i * 4)));
11456
11457         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11458
11459         val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11460         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11461             val, BCE_COM_CPU_MODE);
11462
11463         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11464         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11465             val, BCE_COM_CPU_STATE);
11466
11467         val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11468         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11469             BCE_COM_CPU_EVENT_MASK);
11470
11471         if (regs) {
11472                 BCE_PRINTF(
11473                     "----------------------------"
11474                     " Register  Dump "
11475                     "----------------------------\n");
11476
11477                 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11478                         BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11479                             "0x%08X 0x%08X\n", i,
11480                             REG_RD_IND(sc, i),
11481                             REG_RD_IND(sc, i + 0x4),
11482                             REG_RD_IND(sc, i + 0x8),
11483                             REG_RD_IND(sc, i + 0xC));
11484                 }
11485         }
11486
11487         BCE_PRINTF(
11488                 "----------------------------"
11489                 "----------------"
11490                 "----------------------------\n");
11491 }
11492
11493
11494 /****************************************************************************/
11495 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11496 /*                                                                          */
11497 /* Returns:                                                                 */
11498 /*   Nothing.                                                               */
11499 /****************************************************************************/
11500 static __attribute__ ((noinline)) void
11501 bce_dump_rv2p_state(struct bce_softc *sc)
11502 {
11503         u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11504
11505         BCE_PRINTF(
11506             "----------------------------"
11507             "   RV2P State   "
11508             "----------------------------\n");
11509
11510         /* Stall the RV2P processors. */
11511         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11512         val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11513         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11514
11515         /* Read the firmware version. */
11516         val = 0x00000001;
11517         REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11518         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11519         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11520             BCE_RV2P_INSTR_HIGH_HIGH;
11521         BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11522             fw_ver_high, fw_ver_low);
11523
11524         val = 0x00000001;
11525         REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11526         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11527         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11528             BCE_RV2P_INSTR_HIGH_HIGH;
11529         BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11530             fw_ver_high, fw_ver_low);
11531
11532         /* Resume the RV2P processors. */
11533         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11534         val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11535         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11536
11537         /* Fetch the program counter value. */
11538         val = 0x68007800;
11539         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11540         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11541         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11542         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11543         BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11544         BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11545
11546         /* Fetch the program counter value again to see if it is advancing. */
11547         val = 0x68007800;
11548         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11549         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11550         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11551         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11552         BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11553         BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11554
11555         BCE_PRINTF(
11556             "----------------------------"
11557             "----------------"
11558             "----------------------------\n");
11559 }
11560
11561
11562 /****************************************************************************/
11563 /* Prints out the driver state and then enters the debugger.                */
11564 /*                                                                          */
11565 /* Returns:                                                                 */
11566 /*   Nothing.                                                               */
11567 /****************************************************************************/
11568 static __attribute__ ((noinline)) void
11569 bce_breakpoint(struct bce_softc *sc)
11570 {
11571
11572         /*
11573          * Unreachable code to silence compiler warnings
11574          * about unused functions.
11575          */
11576         if (0) {
11577                 bce_freeze_controller(sc);
11578                 bce_unfreeze_controller(sc);
11579                 bce_dump_enet(sc, NULL);
11580                 bce_dump_txbd(sc, 0, NULL);
11581                 bce_dump_rxbd(sc, 0, NULL);
11582                 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11583                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11584                 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11585                 bce_dump_l2fhdr(sc, 0, NULL);
11586                 bce_dump_ctx(sc, RX_CID);
11587                 bce_dump_ftqs(sc);
11588                 bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11589                 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11590                 bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11591                 bce_dump_status_block(sc);
11592                 bce_dump_stats_block(sc);
11593                 bce_dump_driver_state(sc);
11594                 bce_dump_hw_state(sc);
11595                 bce_dump_bc_state(sc);
11596                 bce_dump_txp_state(sc, 0);
11597                 bce_dump_rxp_state(sc, 0);
11598                 bce_dump_tpat_state(sc, 0);
11599                 bce_dump_cp_state(sc, 0);
11600                 bce_dump_com_state(sc, 0);
11601                 bce_dump_rv2p_state(sc);
11602                 bce_dump_pgbd(sc, 0, NULL);
11603         }
11604
11605         bce_dump_status_block(sc);
11606         bce_dump_driver_state(sc);
11607
11608         /* Call the debugger. */
11609         breakpoint();
11610 }
11611 #endif