]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/bce/if_bce.c
Update serf-1.3.6 -> 1.3.7
[FreeBSD/FreeBSD.git] / sys / dev / bce / if_bce.c
1 /*-
2  * Copyright (c) 2006-2014 QLogic Corporation
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  * The following controllers are supported by this driver:
32  *   BCM5706C A2, A3
33  *   BCM5706S A2, A3
34  *   BCM5708C B1, B2
35  *   BCM5708S B1, B2
36  *   BCM5709C A1, C0
37  *   BCM5709S A1, C0
38  *   BCM5716C C0
39  *   BCM5716S C0
40  *
41  * The following controllers are not supported by this driver:
42  *   BCM5706C A0, A1 (pre-production)
43  *   BCM5706S A0, A1 (pre-production)
44  *   BCM5708C A0, B0 (pre-production)
45  *   BCM5708S A0, B0 (pre-production)
46  *   BCM5709C A0  B0, B1, B2 (pre-production)
47  *   BCM5709S A0, B0, B1, B2 (pre-production)
48  */
49
50 #include "opt_bce.h"
51
52 #include <sys/param.h>
53 #include <sys/endian.h>
54 #include <sys/systm.h>
55 #include <sys/sockio.h>
56 #include <sys/lock.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/kernel.h>
61 #include <sys/module.h>
62 #include <sys/socket.h>
63 #include <sys/sysctl.h>
64 #include <sys/queue.h>
65
66 #include <net/bpf.h>
67 #include <net/ethernet.h>
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_arp.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73
74 #include <net/if_types.h>
75 #include <net/if_vlan_var.h>
76
77 #include <netinet/in_systm.h>
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip6.h>
82 #include <netinet/tcp.h>
83 #include <netinet/udp.h>
84
85 #include <machine/bus.h>
86 #include <machine/resource.h>
87 #include <sys/bus.h>
88 #include <sys/rman.h>
89
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include "miidevs.h"
93 #include <dev/mii/brgphyreg.h>
94
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97
98 #include "miibus_if.h"
99
100 #include <dev/bce/if_bcereg.h>
101 #include <dev/bce/if_bcefw.h>
102
103 /****************************************************************************/
104 /* BCE Debug Options                                                        */
105 /****************************************************************************/
106 #ifdef BCE_DEBUG
107         u32 bce_debug = BCE_WARN;
108
109         /*          0 = Never              */
110         /*          1 = 1 in 2,147,483,648 */
111         /*        256 = 1 in     8,388,608 */
112         /*       2048 = 1 in     1,048,576 */
113         /*      65536 = 1 in        32,768 */
114         /*    1048576 = 1 in         2,048 */
115         /*  268435456 = 1 in             8 */
116         /*  536870912 = 1 in             4 */
117         /* 1073741824 = 1 in             2 */
118
119         /* Controls how often the l2_fhdr frame error check will fail. */
120         int l2fhdr_error_sim_control = 0;
121
122         /* Controls how often the unexpected attention check will fail. */
123         int unexpected_attention_sim_control = 0;
124
125         /* Controls how often to simulate an mbuf allocation failure. */
126         int mbuf_alloc_failed_sim_control = 0;
127
128         /* Controls how often to simulate a DMA mapping failure. */
129         int dma_map_addr_failed_sim_control = 0;
130
131         /* Controls how often to simulate a bootcode failure. */
132         int bootcode_running_failure_sim_control = 0;
133 #endif
134
135 /****************************************************************************/
136 /* PCI Device ID Table                                                      */
137 /*                                                                          */
138 /* Used by bce_probe() to identify the devices supported by this driver.    */
139 /****************************************************************************/
140 #define BCE_DEVDESC_MAX         64
141
142 static const struct bce_type bce_devs[] = {
143         /* BCM5706C Controllers and OEM boards. */
144         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
145                 "HP NC370T Multifunction Gigabit Server Adapter" },
146         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
147                 "HP NC370i Multifunction Gigabit Server Adapter" },
148         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
149                 "HP NC380T PCIe DP Multifunc Gig Server Adapter" },
150         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
151                 "HP NC371i Multifunction Gigabit Server Adapter" },
152         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
153                 "QLogic NetXtreme II BCM5706 1000Base-T" },
154
155         /* BCM5706S controllers and OEM boards. */
156         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
157                 "HP NC370F Multifunction Gigabit Server Adapter" },
158         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
159                 "QLogic NetXtreme II BCM5706 1000Base-SX" },
160
161         /* BCM5708C controllers and OEM boards. */
162         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
163                 "HP NC373T PCIe Multifunction Gig Server Adapter" },
164         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
165                 "HP NC373i Multifunction Gigabit Server Adapter" },
166         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
167                 "HP NC374m PCIe Multifunction Adapter" },
168         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
169                 "QLogic NetXtreme II BCM5708 1000Base-T" },
170
171         /* BCM5708S controllers and OEM boards. */
172         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
173                 "HP NC373m Multifunction Gigabit Server Adapter" },
174         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
175                 "HP NC373i Multifunction Gigabit Server Adapter" },
176         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
177                 "HP NC373F PCIe Multifunc Giga Server Adapter" },
178         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
179                 "QLogic NetXtreme II BCM5708 1000Base-SX" },
180
181         /* BCM5709C controllers and OEM boards. */
182         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
183                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
184         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
185                 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
186         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
187                 "QLogic NetXtreme II BCM5709 1000Base-T" },
188
189         /* BCM5709S controllers and OEM boards. */
190         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
191                 "HP NC382m DP 1GbE Multifunction BL-c Adapter" },
192         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
193                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
194         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
195                 "QLogic NetXtreme II BCM5709 1000Base-SX" },
196
197         /* BCM5716 controllers and OEM boards. */
198         { BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
199                 "QLogic NetXtreme II BCM5716 1000Base-T" },
200
201         { 0, 0, 0, 0, NULL }
202 };
203
204
205 /****************************************************************************/
206 /* Supported Flash NVRAM device data.                                       */
207 /****************************************************************************/
208 static const struct flash_spec flash_table[] =
209 {
210 #define BUFFERED_FLAGS          (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
211 #define NONBUFFERED_FLAGS       (BCE_NV_WREN)
212
213         /* Slow EEPROM */
214         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
215          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
216          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
217          "EEPROM - slow"},
218         /* Expansion entry 0001 */
219         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
220          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
221          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
222          "Entry 0001"},
223         /* Saifun SA25F010 (non-buffered flash) */
224         /* strap, cfg1, & write1 need updates */
225         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
226          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
228          "Non-buffered flash (128kB)"},
229         /* Saifun SA25F020 (non-buffered flash) */
230         /* strap, cfg1, & write1 need updates */
231         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
232          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
233          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
234          "Non-buffered flash (256kB)"},
235         /* Expansion entry 0100 */
236         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
237          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239          "Entry 0100"},
240         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
241         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
242          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
243          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
244          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
245         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
246         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
247          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
248          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
249          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
250         /* Saifun SA25F005 (non-buffered flash) */
251         /* strap, cfg1, & write1 need updates */
252         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
253          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
255          "Non-buffered flash (64kB)"},
256         /* Fast EEPROM */
257         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
258          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
259          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
260          "EEPROM - fast"},
261         /* Expansion entry 1001 */
262         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
263          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
264          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
265          "Entry 1001"},
266         /* Expansion entry 1010 */
267         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
268          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
269          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
270          "Entry 1010"},
271         /* ATMEL AT45DB011B (buffered flash) */
272         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
273          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
274          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
275          "Buffered flash (128kB)"},
276         /* Expansion entry 1100 */
277         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
278          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
279          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
280          "Entry 1100"},
281         /* Expansion entry 1101 */
282         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
283          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
284          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
285          "Entry 1101"},
286         /* Ateml Expansion entry 1110 */
287         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
288          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
289          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
290          "Entry 1110 (Atmel)"},
291         /* ATMEL AT45DB021B (buffered flash) */
292         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
293          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
294          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
295          "Buffered flash (256kB)"},
296 };
297
298 /*
299  * The BCM5709 controllers transparently handle the
300  * differences between Atmel 264 byte pages and all
301  * flash devices which use 256 byte pages, so no
302  * logical-to-physical mapping is required in the
303  * driver.
304  */
305 static const struct flash_spec flash_5709 = {
306         .flags          = BCE_NV_BUFFERED,
307         .page_bits      = BCM5709_FLASH_PAGE_BITS,
308         .page_size      = BCM5709_FLASH_PAGE_SIZE,
309         .addr_mask      = BCM5709_FLASH_BYTE_ADDR_MASK,
310         .total_size     = BUFFERED_FLASH_TOTAL_SIZE * 2,
311         .name           = "5709/5716 buffered flash (256kB)",
312 };
313
314
315 /****************************************************************************/
316 /* FreeBSD device entry points.                                             */
317 /****************************************************************************/
318 static int  bce_probe                   (device_t);
319 static int  bce_attach                  (device_t);
320 static int  bce_detach                  (device_t);
321 static int  bce_shutdown                (device_t);
322
323
324 /****************************************************************************/
325 /* BCE Debug Data Structure Dump Routines                                   */
326 /****************************************************************************/
327 #ifdef BCE_DEBUG
328 static u32  bce_reg_rd                          (struct bce_softc *, u32);
329 static void bce_reg_wr                          (struct bce_softc *, u32, u32);
330 static void bce_reg_wr16                        (struct bce_softc *, u32, u16);
331 static u32  bce_ctx_rd                          (struct bce_softc *, u32, u32);
332 static void bce_dump_enet                       (struct bce_softc *, struct mbuf *);
333 static void bce_dump_mbuf                       (struct bce_softc *, struct mbuf *);
334 static void bce_dump_tx_mbuf_chain      (struct bce_softc *, u16, int);
335 static void bce_dump_rx_mbuf_chain      (struct bce_softc *, u16, int);
336 static void bce_dump_pg_mbuf_chain      (struct bce_softc *, u16, int);
337 static void bce_dump_txbd                       (struct bce_softc *,
338     int, struct tx_bd *);
339 static void bce_dump_rxbd                       (struct bce_softc *,
340     int, struct rx_bd *);
341 static void bce_dump_pgbd                       (struct bce_softc *,
342     int, struct rx_bd *);
343 static void bce_dump_l2fhdr             (struct bce_softc *,
344     int, struct l2_fhdr *);
345 static void bce_dump_ctx                        (struct bce_softc *, u16);
346 static void bce_dump_ftqs                       (struct bce_softc *);
347 static void bce_dump_tx_chain           (struct bce_softc *, u16, int);
348 static void bce_dump_rx_bd_chain        (struct bce_softc *, u16, int);
349 static void bce_dump_pg_chain           (struct bce_softc *, u16, int);
350 static void bce_dump_status_block       (struct bce_softc *);
351 static void bce_dump_stats_block        (struct bce_softc *);
352 static void bce_dump_driver_state       (struct bce_softc *);
353 static void bce_dump_hw_state           (struct bce_softc *);
354 static void bce_dump_shmem_state        (struct bce_softc *);
355 static void bce_dump_mq_regs            (struct bce_softc *);
356 static void bce_dump_bc_state           (struct bce_softc *);
357 static void bce_dump_txp_state          (struct bce_softc *, int);
358 static void bce_dump_rxp_state          (struct bce_softc *, int);
359 static void bce_dump_tpat_state (struct bce_softc *, int);
360 static void bce_dump_cp_state           (struct bce_softc *, int);
361 static void bce_dump_com_state          (struct bce_softc *, int);
362 static void bce_dump_rv2p_state (struct bce_softc *);
363 static void bce_breakpoint                      (struct bce_softc *);
364 #endif /*BCE_DEBUG */
365
366
367 /****************************************************************************/
368 /* BCE Register/Memory Access Routines                                      */
369 /****************************************************************************/
370 static u32  bce_reg_rd_ind              (struct bce_softc *, u32);
371 static void bce_reg_wr_ind              (struct bce_softc *, u32, u32);
372 static void bce_shmem_wr                (struct bce_softc *, u32, u32);
373 static u32  bce_shmem_rd                (struct bce_softc *, u32);
374 static void bce_ctx_wr                  (struct bce_softc *, u32, u32, u32);
375 static int  bce_miibus_read_reg         (device_t, int, int);
376 static int  bce_miibus_write_reg        (device_t, int, int, int);
377 static void bce_miibus_statchg          (device_t);
378
379 #ifdef BCE_DEBUG
380 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
381 #ifdef BCE_NVRAM_WRITE_SUPPORT
382 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
383 #endif
384 #endif
385
386 /****************************************************************************/
387 /* BCE NVRAM Access Routines                                                */
388 /****************************************************************************/
389 static int  bce_acquire_nvram_lock      (struct bce_softc *);
390 static int  bce_release_nvram_lock      (struct bce_softc *);
391 static void bce_enable_nvram_access(struct bce_softc *);
392 static void bce_disable_nvram_access(struct bce_softc *);
393 static int  bce_nvram_read_dword        (struct bce_softc *, u32, u8 *, u32);
394 static int  bce_init_nvram                      (struct bce_softc *);
395 static int  bce_nvram_read                      (struct bce_softc *, u32, u8 *, int);
396 static int  bce_nvram_test                      (struct bce_softc *);
397 #ifdef BCE_NVRAM_WRITE_SUPPORT
398 static int  bce_enable_nvram_write      (struct bce_softc *);
399 static void bce_disable_nvram_write(struct bce_softc *);
400 static int  bce_nvram_erase_page        (struct bce_softc *, u32);
401 static int  bce_nvram_write_dword       (struct bce_softc *, u32, u8 *, u32);
402 static int  bce_nvram_write             (struct bce_softc *, u32, u8 *, int);
403 #endif
404
405 /****************************************************************************/
406 /*                                                                          */
407 /****************************************************************************/
408 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
409 static void bce_get_media                       (struct bce_softc *);
410 static void bce_init_media                      (struct bce_softc *);
411 static u32 bce_get_rphy_link            (struct bce_softc *);
412 static void bce_dma_map_addr            (void *, bus_dma_segment_t *, int, int);
413 static int  bce_dma_alloc                       (device_t);
414 static void bce_dma_free                        (struct bce_softc *);
415 static void bce_release_resources       (struct bce_softc *);
416
417 /****************************************************************************/
418 /* BCE Firmware Synchronization and Load                                    */
419 /****************************************************************************/
420 static void bce_fw_cap_init                     (struct bce_softc *);
421 static int  bce_fw_sync                 (struct bce_softc *, u32);
422 static void bce_load_rv2p_fw            (struct bce_softc *, const u32 *, u32,
423     u32);
424 static void bce_load_cpu_fw             (struct bce_softc *,
425     struct cpu_reg *, struct fw_info *);
426 static void bce_start_cpu                       (struct bce_softc *, struct cpu_reg *);
427 static void bce_halt_cpu                        (struct bce_softc *, struct cpu_reg *);
428 static void bce_start_rxp_cpu           (struct bce_softc *);
429 static void bce_init_rxp_cpu            (struct bce_softc *);
430 static void bce_init_txp_cpu            (struct bce_softc *);
431 static void bce_init_tpat_cpu           (struct bce_softc *);
432 static void bce_init_cp_cpu             (struct bce_softc *);
433 static void bce_init_com_cpu            (struct bce_softc *);
434 static void bce_init_cpus                       (struct bce_softc *);
435
436 static void bce_print_adapter_info      (struct bce_softc *);
437 static void bce_probe_pci_caps          (device_t, struct bce_softc *);
438 static void bce_stop                            (struct bce_softc *);
439 static int  bce_reset                           (struct bce_softc *, u32);
440 static int  bce_chipinit                        (struct bce_softc *);
441 static int  bce_blockinit                       (struct bce_softc *);
442
443 static int  bce_init_tx_chain           (struct bce_softc *);
444 static void bce_free_tx_chain           (struct bce_softc *);
445
446 static int  bce_get_rx_buf              (struct bce_softc *, u16, u16, u32 *);
447 static int  bce_init_rx_chain           (struct bce_softc *);
448 static void bce_fill_rx_chain           (struct bce_softc *);
449 static void bce_free_rx_chain           (struct bce_softc *);
450
451 static int  bce_get_pg_buf              (struct bce_softc *, u16, u16);
452 static int  bce_init_pg_chain           (struct bce_softc *);
453 static void bce_fill_pg_chain           (struct bce_softc *);
454 static void bce_free_pg_chain           (struct bce_softc *);
455
456 static struct mbuf *bce_tso_setup       (struct bce_softc *,
457     struct mbuf **, u16 *);
458 static int  bce_tx_encap                        (struct bce_softc *, struct mbuf **);
459 static void bce_start_locked            (struct ifnet *);
460 static void bce_start                           (struct ifnet *);
461 static int  bce_ioctl                           (struct ifnet *, u_long, caddr_t);
462 static void bce_watchdog                        (struct bce_softc *);
463 static int  bce_ifmedia_upd             (struct ifnet *);
464 static int  bce_ifmedia_upd_locked      (struct ifnet *);
465 static void bce_ifmedia_sts             (struct ifnet *, struct ifmediareq *);
466 static void bce_ifmedia_sts_rphy        (struct bce_softc *, struct ifmediareq *);
467 static void bce_init_locked             (struct bce_softc *);
468 static void bce_init                            (void *);
469 static void bce_mgmt_init_locked        (struct bce_softc *sc);
470
471 static int  bce_init_ctx                        (struct bce_softc *);
472 static void bce_get_mac_addr            (struct bce_softc *);
473 static void bce_set_mac_addr            (struct bce_softc *);
474 static void bce_phy_intr                        (struct bce_softc *);
475 static inline u16 bce_get_hw_rx_cons    (struct bce_softc *);
476 static void bce_rx_intr                 (struct bce_softc *);
477 static void bce_tx_intr                 (struct bce_softc *);
478 static void bce_disable_intr            (struct bce_softc *);
479 static void bce_enable_intr             (struct bce_softc *, int);
480
481 static void bce_intr                            (void *);
482 static void bce_set_rx_mode             (struct bce_softc *);
483 static void bce_stats_update            (struct bce_softc *);
484 static void bce_tick                            (void *);
485 static void bce_pulse                           (void *);
486 static void bce_add_sysctls             (struct bce_softc *);
487
488
489 /****************************************************************************/
490 /* FreeBSD device dispatch table.                                           */
491 /****************************************************************************/
492 static device_method_t bce_methods[] = {
493         /* Device interface (device_if.h) */
494         DEVMETHOD(device_probe,         bce_probe),
495         DEVMETHOD(device_attach,        bce_attach),
496         DEVMETHOD(device_detach,        bce_detach),
497         DEVMETHOD(device_shutdown,      bce_shutdown),
498 /* Supported by device interface but not used here. */
499 /*      DEVMETHOD(device_identify,      bce_identify),      */
500 /*      DEVMETHOD(device_suspend,       bce_suspend),       */
501 /*      DEVMETHOD(device_resume,        bce_resume),        */
502 /*      DEVMETHOD(device_quiesce,       bce_quiesce),       */
503
504         /* MII interface (miibus_if.h) */
505         DEVMETHOD(miibus_readreg,       bce_miibus_read_reg),
506         DEVMETHOD(miibus_writereg,      bce_miibus_write_reg),
507         DEVMETHOD(miibus_statchg,       bce_miibus_statchg),
508 /* Supported by MII interface but not used here.       */
509 /*      DEVMETHOD(miibus_linkchg,       bce_miibus_linkchg),   */
510 /*      DEVMETHOD(miibus_mediainit,     bce_miibus_mediainit), */
511
512         DEVMETHOD_END
513 };
514
515 static driver_t bce_driver = {
516         "bce",
517         bce_methods,
518         sizeof(struct bce_softc)
519 };
520
521 static devclass_t bce_devclass;
522
523 MODULE_DEPEND(bce, pci, 1, 1, 1);
524 MODULE_DEPEND(bce, ether, 1, 1, 1);
525 MODULE_DEPEND(bce, miibus, 1, 1, 1);
526
527 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, NULL, NULL);
528 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
529
530
531 /****************************************************************************/
532 /* Tunable device values                                                    */
533 /****************************************************************************/
534 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
535
536 /* Allowable values are TRUE or FALSE */
537 static int bce_verbose = TRUE;
538 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
539     "Verbose output enable/disable");
540
541 /* Allowable values are TRUE or FALSE */
542 static int bce_tso_enable = TRUE;
543 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
544     "TSO Enable/Disable");
545
546 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
547 /* ToDo: Add MSI-X support. */
548 static int bce_msi_enable = 1;
549 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
550     "MSI-X|MSI|INTx selector");
551
552 /* Allowable values are 1, 2, 4, 8. */
553 static int bce_rx_pages = DEFAULT_RX_PAGES;
554 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
555     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
556
557 /* Allowable values are 1, 2, 4, 8. */
558 static int bce_tx_pages = DEFAULT_TX_PAGES;
559 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
560     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
561
562 /* Allowable values are TRUE or FALSE. */
563 static int bce_hdr_split = TRUE;
564 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
565     "Frame header/payload splitting Enable/Disable");
566
567 /* Allowable values are TRUE or FALSE. */
568 static int bce_strict_rx_mtu = FALSE;
569 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
570     &bce_strict_rx_mtu, 0,
571     "Enable/Disable strict RX frame size checking");
572
573 /* Allowable values are 0 ... 100 */
574 #ifdef BCE_DEBUG
575 /* Generate 1 interrupt for every transmit completion. */
576 static int bce_tx_quick_cons_trip_int = 1;
577 #else
578 /* Generate 1 interrupt for every 20 transmit completions. */
579 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
580 #endif
581 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
582     &bce_tx_quick_cons_trip_int, 0,
583     "Transmit BD trip point during interrupts");
584
585 /* Allowable values are 0 ... 100 */
586 /* Generate 1 interrupt for every transmit completion. */
587 #ifdef BCE_DEBUG
588 static int bce_tx_quick_cons_trip = 1;
589 #else
590 /* Generate 1 interrupt for every 20 transmit completions. */
591 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
592 #endif
593 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
594     &bce_tx_quick_cons_trip, 0,
595     "Transmit BD trip point");
596
597 /* Allowable values are 0 ... 100 */
598 #ifdef BCE_DEBUG
599 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
600 static int bce_tx_ticks_int = 0;
601 #else
602 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
603 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
604 #endif
605 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
606     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
607
608 /* Allowable values are 0 ... 100 */
609 #ifdef BCE_DEBUG
610 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
611 static int bce_tx_ticks = 0;
612 #else
613 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
614 static int bce_tx_ticks = DEFAULT_TX_TICKS;
615 #endif
616 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
617     &bce_tx_ticks, 0, "Transmit ticks count");
618
619 /* Allowable values are 1 ... 100 */
620 #ifdef BCE_DEBUG
621 /* Generate 1 interrupt for every received frame. */
622 static int bce_rx_quick_cons_trip_int = 1;
623 #else
624 /* Generate 1 interrupt for every 6 received frames. */
625 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
626 #endif
627 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
628     &bce_rx_quick_cons_trip_int, 0,
629     "Receive BD trip point duirng interrupts");
630
631 /* Allowable values are 1 ... 100 */
632 #ifdef BCE_DEBUG
633 /* Generate 1 interrupt for every received frame. */
634 static int bce_rx_quick_cons_trip = 1;
635 #else
636 /* Generate 1 interrupt for every 6 received frames. */
637 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
638 #endif
639 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
640     &bce_rx_quick_cons_trip, 0,
641     "Receive BD trip point");
642
643 /* Allowable values are 0 ... 100 */
644 #ifdef BCE_DEBUG
645 /* Generate an int. if 0us have elapsed since the last received frame. */
646 static int bce_rx_ticks_int = 0;
647 #else
648 /* Generate an int. if 18us have elapsed since the last received frame. */
649 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
650 #endif
651 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
652     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
653
654 /* Allowable values are 0 ... 100 */
655 #ifdef BCE_DEBUG
656 /* Generate an int. if 0us have elapsed since the last received frame. */
657 static int bce_rx_ticks = 0;
658 #else
659 /* Generate an int. if 18us have elapsed since the last received frame. */
660 static int bce_rx_ticks = DEFAULT_RX_TICKS;
661 #endif
662 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
663     &bce_rx_ticks, 0, "Receive ticks count");
664
665
666 /****************************************************************************/
667 /* Device probe function.                                                   */
668 /*                                                                          */
669 /* Compares the device to the driver's list of supported devices and        */
670 /* reports back to the OS whether this is the right driver for the device.  */
671 /*                                                                          */
672 /* Returns:                                                                 */
673 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
674 /****************************************************************************/
675 static int
676 bce_probe(device_t dev)
677 {
678         const struct bce_type *t;
679         struct bce_softc *sc;
680         char *descbuf;
681         u16 vid = 0, did = 0, svid = 0, sdid = 0;
682
683         t = bce_devs;
684
685         sc = device_get_softc(dev);
686         sc->bce_unit = device_get_unit(dev);
687         sc->bce_dev = dev;
688
689         /* Get the data for the device to be probed. */
690         vid  = pci_get_vendor(dev);
691         did  = pci_get_device(dev);
692         svid = pci_get_subvendor(dev);
693         sdid = pci_get_subdevice(dev);
694
695         DBPRINT(sc, BCE_EXTREME_LOAD,
696             "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
697             "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
698
699         /* Look through the list of known devices for a match. */
700         while(t->bce_name != NULL) {
701
702                 if ((vid == t->bce_vid) && (did == t->bce_did) &&
703                     ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
704                     ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
705
706                         descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
707
708                         if (descbuf == NULL)
709                                 return(ENOMEM);
710
711                         /* Print out the device identity. */
712                         snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
713                             t->bce_name, (((pci_read_config(dev,
714                             PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
715                             (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
716
717                         device_set_desc_copy(dev, descbuf);
718                         free(descbuf, M_TEMP);
719                         return(BUS_PROBE_DEFAULT);
720                 }
721                 t++;
722         }
723
724         return(ENXIO);
725 }
726
727
728 /****************************************************************************/
729 /* PCI Capabilities Probe Function.                                         */
730 /*                                                                          */
731 /* Walks the PCI capabiites list for the device to find what features are   */
732 /* supported.                                                               */
733 /*                                                                          */
734 /* Returns:                                                                 */
735 /*   None.                                                                  */
736 /****************************************************************************/
737 static void
738 bce_print_adapter_info(struct bce_softc *sc)
739 {
740         int i = 0;
741
742         DBENTER(BCE_VERBOSE_LOAD);
743
744         if (bce_verbose || bootverbose) {
745                 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
746                 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
747                     12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
748
749
750                 /* Bus info. */
751                 if (sc->bce_flags & BCE_PCIE_FLAG) {
752                         printf("Bus (PCIe x%d, ", sc->link_width);
753                         switch (sc->link_speed) {
754                         case 1: printf("2.5Gbps); "); break;
755                         case 2: printf("5Gbps); "); break;
756                         default: printf("Unknown link speed); ");
757                         }
758                 } else {
759                         printf("Bus (PCI%s, %s, %dMHz); ",
760                             ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
761                             ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
762                             "32-bit" : "64-bit"), sc->bus_speed_mhz);
763                 }
764
765                 /* Firmware version and device features. */
766                 printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
767                     sc->bce_bc_ver,     sc->rx_pages, sc->tx_pages,
768                     (bce_hdr_split == TRUE ? sc->pg_pages: 0));
769
770                 if (bce_hdr_split == TRUE) {
771                         printf("SPLT");
772                         i++;
773                 }
774
775                 if (sc->bce_flags & BCE_USING_MSI_FLAG) {
776                         if (i > 0) printf("|");
777                         printf("MSI"); i++;
778                 }
779
780                 if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
781                         if (i > 0) printf("|");
782                         printf("MSI-X"); i++;
783                 }
784
785                 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
786                         if (i > 0) printf("|");
787                         printf("2.5G"); i++;
788                 }
789
790                 if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
791                         if (i > 0) printf("|");
792                         printf("Remote PHY(%s)",
793                             sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
794                             "FIBER" : "TP"); i++;
795                 }
796
797                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
798                         if (i > 0) printf("|");
799                         printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
800                 } else {
801                         printf(")\n");
802                 }
803
804                 printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
805                     sc->bce_rx_quick_cons_trip_int,
806                     sc->bce_rx_quick_cons_trip,
807                     sc->bce_rx_ticks_int,
808                     sc->bce_rx_ticks,
809                     sc->bce_tx_quick_cons_trip_int,
810                     sc->bce_tx_quick_cons_trip,
811                     sc->bce_tx_ticks_int,
812                     sc->bce_tx_ticks);
813
814         }
815
816         DBEXIT(BCE_VERBOSE_LOAD);
817 }
818
819
820 /****************************************************************************/
821 /* PCI Capabilities Probe Function.                                         */
822 /*                                                                          */
823 /* Walks the PCI capabiites list for the device to find what features are   */
824 /* supported.                                                               */
825 /*                                                                          */
826 /* Returns:                                                                 */
827 /*   None.                                                                  */
828 /****************************************************************************/
829 static void
830 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
831 {
832         u32 reg;
833
834         DBENTER(BCE_VERBOSE_LOAD);
835
836         /* Check if PCI-X capability is enabled. */
837         if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
838                 if (reg != 0)
839                         sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
840         }
841
842         /* Check if PCIe capability is enabled. */
843         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
844                 if (reg != 0) {
845                         u16 link_status = pci_read_config(dev, reg + 0x12, 2);
846                         DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
847                             "0x%08X\n", link_status);
848                         sc->link_speed = link_status & 0xf;
849                         sc->link_width = (link_status >> 4) & 0x3f;
850                         sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
851                         sc->bce_flags |= BCE_PCIE_FLAG;
852                 }
853         }
854
855         /* Check if MSI capability is enabled. */
856         if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
857                 if (reg != 0)
858                         sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
859         }
860
861         /* Check if MSI-X capability is enabled. */
862         if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
863                 if (reg != 0)
864                         sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
865         }
866
867         DBEXIT(BCE_VERBOSE_LOAD);
868 }
869
870
871 /****************************************************************************/
872 /* Load and validate user tunable settings.                                 */
873 /*                                                                          */
874 /* Returns:                                                                 */
875 /*   Nothing.                                                               */
876 /****************************************************************************/
877 static void
878 bce_set_tunables(struct bce_softc *sc)
879 {
880         /* Set sysctl values for RX page count. */
881         switch (bce_rx_pages) {
882         case 1:
883                 /* fall-through */
884         case 2:
885                 /* fall-through */
886         case 4:
887                 /* fall-through */
888         case 8:
889                 sc->rx_pages = bce_rx_pages;
890                 break;
891         default:
892                 sc->rx_pages = DEFAULT_RX_PAGES;
893                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
894                     "hw.bce.rx_pages!  Setting default of %d.\n",
895                     __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
896         }
897
898         /* ToDo: Consider allowing user setting for pg_pages. */
899         sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
900
901         /* Set sysctl values for TX page count. */
902         switch (bce_tx_pages) {
903         case 1:
904                 /* fall-through */
905         case 2:
906                 /* fall-through */
907         case 4:
908                 /* fall-through */
909         case 8:
910                 sc->tx_pages = bce_tx_pages;
911                 break;
912         default:
913                 sc->tx_pages = DEFAULT_TX_PAGES;
914                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
915                     "hw.bce.tx_pages!  Setting default of %d.\n",
916                     __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
917         }
918
919         /*
920          * Validate the TX trip point (i.e. the number of
921          * TX completions before a status block update is
922          * generated and an interrupt is asserted.
923          */
924         if (bce_tx_quick_cons_trip_int <= 100) {
925                 sc->bce_tx_quick_cons_trip_int =
926                     bce_tx_quick_cons_trip_int;
927         } else {
928                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
929                     "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
930                     __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
931                     DEFAULT_TX_QUICK_CONS_TRIP_INT);
932                 sc->bce_tx_quick_cons_trip_int =
933                     DEFAULT_TX_QUICK_CONS_TRIP_INT;
934         }
935
936         if (bce_tx_quick_cons_trip <= 100) {
937                 sc->bce_tx_quick_cons_trip =
938                     bce_tx_quick_cons_trip;
939         } else {
940                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
941                     "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
942                     __FILE__, __LINE__, bce_tx_quick_cons_trip,
943                     DEFAULT_TX_QUICK_CONS_TRIP);
944                 sc->bce_tx_quick_cons_trip =
945                     DEFAULT_TX_QUICK_CONS_TRIP;
946         }
947
948         /*
949          * Validate the TX ticks count (i.e. the maximum amount
950          * of time to wait after the last TX completion has
951          * occurred before a status block update is generated
952          * and an interrupt is asserted.
953          */
954         if (bce_tx_ticks_int <= 100) {
955                 sc->bce_tx_ticks_int =
956                     bce_tx_ticks_int;
957         } else {
958                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
959                     "hw.bce.tx_ticks_int!  Setting default of %d.\n",
960                     __FILE__, __LINE__, bce_tx_ticks_int,
961                     DEFAULT_TX_TICKS_INT);
962                 sc->bce_tx_ticks_int =
963                     DEFAULT_TX_TICKS_INT;
964            }
965
966         if (bce_tx_ticks <= 100) {
967                 sc->bce_tx_ticks =
968                     bce_tx_ticks;
969         } else {
970                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
971                     "hw.bce.tx_ticks!  Setting default of %d.\n",
972                     __FILE__, __LINE__, bce_tx_ticks,
973                     DEFAULT_TX_TICKS);
974                 sc->bce_tx_ticks =
975                     DEFAULT_TX_TICKS;
976         }
977
978         /*
979          * Validate the RX trip point (i.e. the number of
980          * RX frames received before a status block update is
981          * generated and an interrupt is asserted.
982          */
983         if (bce_rx_quick_cons_trip_int <= 100) {
984                 sc->bce_rx_quick_cons_trip_int =
985                     bce_rx_quick_cons_trip_int;
986         } else {
987                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
988                     "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
989                     __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
990                     DEFAULT_RX_QUICK_CONS_TRIP_INT);
991                 sc->bce_rx_quick_cons_trip_int =
992                     DEFAULT_RX_QUICK_CONS_TRIP_INT;
993         }
994
995         if (bce_rx_quick_cons_trip <= 100) {
996                 sc->bce_rx_quick_cons_trip =
997                     bce_rx_quick_cons_trip;
998         } else {
999                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1000                     "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
1001                     __FILE__, __LINE__, bce_rx_quick_cons_trip,
1002                     DEFAULT_RX_QUICK_CONS_TRIP);
1003                 sc->bce_rx_quick_cons_trip =
1004                     DEFAULT_RX_QUICK_CONS_TRIP;
1005         }
1006
1007         /*
1008          * Validate the RX ticks count (i.e. the maximum amount
1009          * of time to wait after the last RX frame has been
1010          * received before a status block update is generated
1011          * and an interrupt is asserted.
1012          */
1013         if (bce_rx_ticks_int <= 100) {
1014                 sc->bce_rx_ticks_int = bce_rx_ticks_int;
1015         } else {
1016                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1017                     "hw.bce.rx_ticks_int!  Setting default of %d.\n",
1018                     __FILE__, __LINE__, bce_rx_ticks_int,
1019                     DEFAULT_RX_TICKS_INT);
1020                 sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
1021         }
1022
1023         if (bce_rx_ticks <= 100) {
1024                 sc->bce_rx_ticks = bce_rx_ticks;
1025         } else {
1026                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1027                     "hw.bce.rx_ticks!  Setting default of %d.\n",
1028                     __FILE__, __LINE__, bce_rx_ticks,
1029                     DEFAULT_RX_TICKS);
1030                 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1031         }
1032
1033         /* Disabling both RX ticks and RX trips will prevent interrupts. */
1034         if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1035                 BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1036                     "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1037                    __FILE__, __LINE__);
1038                 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1039                 sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1040         }
1041
1042         /* Disabling both TX ticks and TX trips will prevent interrupts. */
1043         if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1044                 BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1045                     "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1046                    __FILE__, __LINE__);
1047                 sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1048                 sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1049         }
1050 }
1051
1052
1053 /****************************************************************************/
1054 /* Device attach function.                                                  */
1055 /*                                                                          */
1056 /* Allocates device resources, performs secondary chip identification,      */
1057 /* resets and initializes the hardware, and initializes driver instance     */
1058 /* variables.                                                               */
1059 /*                                                                          */
1060 /* Returns:                                                                 */
1061 /*   0 on success, positive value on failure.                               */
1062 /****************************************************************************/
1063 static int
1064 bce_attach(device_t dev)
1065 {
1066         struct bce_softc *sc;
1067         struct ifnet *ifp;
1068         u32 val;
1069         int count, error, rc = 0, rid;
1070
1071         sc = device_get_softc(dev);
1072         sc->bce_dev = dev;
1073
1074         DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1075
1076         sc->bce_unit = device_get_unit(dev);
1077
1078         /* Set initial device and PHY flags */
1079         sc->bce_flags = 0;
1080         sc->bce_phy_flags = 0;
1081
1082         bce_set_tunables(sc);
1083
1084         pci_enable_busmaster(dev);
1085
1086         /* Allocate PCI memory resources. */
1087         rid = PCIR_BAR(0);
1088         sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1089                 &rid, RF_ACTIVE);
1090
1091         if (sc->bce_res_mem == NULL) {
1092                 BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1093                     __FILE__, __LINE__);
1094                 rc = ENXIO;
1095                 goto bce_attach_fail;
1096         }
1097
1098         /* Get various resource handles. */
1099         sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1100         sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1101         sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1102
1103         bce_probe_pci_caps(dev, sc);
1104
1105         rid = 1;
1106         count = 0;
1107 #if 0
1108         /* Try allocating MSI-X interrupts. */
1109         if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1110                 (bce_msi_enable >= 2) &&
1111                 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1112                 &rid, RF_ACTIVE)) != NULL)) {
1113
1114                 msi_needed = count = 1;
1115
1116                 if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1117                         (count != msi_needed)) {
1118                         BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1119                                 "Received = %d, error = %d\n", __FILE__, __LINE__,
1120                                 msi_needed, count, error);
1121                         count = 0;
1122                         pci_release_msi(dev);
1123                         bus_release_resource(dev, SYS_RES_MEMORY, rid,
1124                                 sc->bce_res_irq);
1125                         sc->bce_res_irq = NULL;
1126                 } else {
1127                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1128                                 __FUNCTION__);
1129                         sc->bce_flags |= BCE_USING_MSIX_FLAG;
1130                 }
1131         }
1132 #endif
1133
1134         /* Try allocating a MSI interrupt. */
1135         if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1136                 (bce_msi_enable >= 1) && (count == 0)) {
1137                 count = 1;
1138                 if ((error = pci_alloc_msi(dev, &count)) != 0) {
1139                         BCE_PRINTF("%s(%d): MSI allocation failed! "
1140                             "error = %d\n", __FILE__, __LINE__, error);
1141                         count = 0;
1142                         pci_release_msi(dev);
1143                 } else {
1144                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1145                             "interrupt.\n", __FUNCTION__);
1146                         sc->bce_flags |= BCE_USING_MSI_FLAG;
1147                         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1148                                 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1149                         rid = 1;
1150                 }
1151         }
1152
1153         /* Try allocating a legacy interrupt. */
1154         if (count == 0) {
1155                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1156                         __FUNCTION__);
1157                 rid = 0;
1158         }
1159
1160         sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1161             &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1162
1163         /* Report any IRQ allocation errors. */
1164         if (sc->bce_res_irq == NULL) {
1165                 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1166                     __FILE__, __LINE__);
1167                 rc = ENXIO;
1168                 goto bce_attach_fail;
1169         }
1170
1171         /* Initialize mutex for the current device instance. */
1172         BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1173
1174         /*
1175          * Configure byte swap and enable indirect register access.
1176          * Rely on CPU to do target byte swapping on big endian systems.
1177          * Access to registers outside of PCI configurtion space are not
1178          * valid until this is done.
1179          */
1180         pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1181             BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1182             BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1183
1184         /* Save ASIC revsion info. */
1185         sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1186
1187         /* Weed out any non-production controller revisions. */
1188         switch(BCE_CHIP_ID(sc)) {
1189         case BCE_CHIP_ID_5706_A0:
1190         case BCE_CHIP_ID_5706_A1:
1191         case BCE_CHIP_ID_5708_A0:
1192         case BCE_CHIP_ID_5708_B0:
1193         case BCE_CHIP_ID_5709_A0:
1194         case BCE_CHIP_ID_5709_B0:
1195         case BCE_CHIP_ID_5709_B1:
1196         case BCE_CHIP_ID_5709_B2:
1197                 BCE_PRINTF("%s(%d): Unsupported controller "
1198                     "revision (%c%d)!\n", __FILE__, __LINE__,
1199                     (((pci_read_config(dev, PCIR_REVID, 4) &
1200                     0xf0) >> 4) + 'A'), (pci_read_config(dev,
1201                     PCIR_REVID, 4) & 0xf));
1202                 rc = ENODEV;
1203                 goto bce_attach_fail;
1204         }
1205
1206         /*
1207          * The embedded PCIe to PCI-X bridge (EPB)
1208          * in the 5708 cannot address memory above
1209          * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1210          */
1211         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1212                 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1213         else
1214                 sc->max_bus_addr = BUS_SPACE_MAXADDR;
1215
1216         /*
1217          * Find the base address for shared memory access.
1218          * Newer versions of bootcode use a signature and offset
1219          * while older versions use a fixed address.
1220          */
1221         val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1222         if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1223                 /* Multi-port devices use different offsets in shared memory. */
1224                 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1225                     (pci_get_function(sc->bce_dev) << 2));
1226         else
1227                 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1228
1229         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1230             __FUNCTION__, sc->bce_shmem_base);
1231
1232         /* Fetch the bootcode revision. */
1233         val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1234         for (int i = 0, j = 0; i < 3; i++) {
1235                 u8 num;
1236
1237                 num = (u8) (val >> (24 - (i * 8)));
1238                 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1239                         if (num >= k || !skip0 || k == 1) {
1240                                 sc->bce_bc_ver[j++] = (num / k) + '0';
1241                                 skip0 = 0;
1242                         }
1243                 }
1244
1245                 if (i != 2)
1246                         sc->bce_bc_ver[j++] = '.';
1247         }
1248
1249         /* Check if any management firwmare is enabled. */
1250         val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1251         if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1252                 sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1253
1254                 /* Allow time for firmware to enter the running state. */
1255                 for (int i = 0; i < 30; i++) {
1256                         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1257                         if (val & BCE_CONDITION_MFW_RUN_MASK)
1258                                 break;
1259                         DELAY(10000);
1260                 }
1261
1262                 /* Check if management firmware is running. */
1263                 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1264                 val &= BCE_CONDITION_MFW_RUN_MASK;
1265                 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1266                     (val != BCE_CONDITION_MFW_RUN_NONE)) {
1267                         u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1268                         int i = 0;
1269
1270                         /* Read the management firmware version string. */
1271                         for (int j = 0; j < 3; j++) {
1272                                 val = bce_reg_rd_ind(sc, addr + j * 4);
1273                                 val = bswap32(val);
1274                                 memcpy(&sc->bce_mfw_ver[i], &val, 4);
1275                                 i += 4;
1276                         }
1277                 } else {
1278                         /* May cause firmware synchronization timeouts. */
1279                         BCE_PRINTF("%s(%d): Management firmware enabled "
1280                             "but not running!\n", __FILE__, __LINE__);
1281                         strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1282
1283                         /* ToDo: Any action the driver should take? */
1284                 }
1285         }
1286
1287         /* Get PCI bus information (speed and type). */
1288         val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1289         if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1290                 u32 clkreg;
1291
1292                 sc->bce_flags |= BCE_PCIX_FLAG;
1293
1294                 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1295
1296                 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1297                 switch (clkreg) {
1298                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1299                         sc->bus_speed_mhz = 133;
1300                         break;
1301
1302                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1303                         sc->bus_speed_mhz = 100;
1304                         break;
1305
1306                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1307                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1308                         sc->bus_speed_mhz = 66;
1309                         break;
1310
1311                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1312                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1313                         sc->bus_speed_mhz = 50;
1314                         break;
1315
1316                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1317                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1318                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1319                         sc->bus_speed_mhz = 33;
1320                         break;
1321                 }
1322         } else {
1323                 if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1324                         sc->bus_speed_mhz = 66;
1325                 else
1326                         sc->bus_speed_mhz = 33;
1327         }
1328
1329         if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1330                 sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1331
1332         /* Find the media type for the adapter. */
1333         bce_get_media(sc);
1334
1335         /* Reset controller and announce to bootcode that driver is present. */
1336         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1337                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
1338                     __FILE__, __LINE__);
1339                 rc = ENXIO;
1340                 goto bce_attach_fail;
1341         }
1342
1343         /* Initialize the controller. */
1344         if (bce_chipinit(sc)) {
1345                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1346                     __FILE__, __LINE__);
1347                 rc = ENXIO;
1348                 goto bce_attach_fail;
1349         }
1350
1351         /* Perform NVRAM test. */
1352         if (bce_nvram_test(sc)) {
1353                 BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1354                     __FILE__, __LINE__);
1355                 rc = ENXIO;
1356                 goto bce_attach_fail;
1357         }
1358
1359         /* Fetch the permanent Ethernet MAC address. */
1360         bce_get_mac_addr(sc);
1361
1362         /* Update statistics once every second. */
1363         sc->bce_stats_ticks = 1000000 & 0xffff00;
1364
1365         /* Store data needed by PHY driver for backplane applications */
1366         sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1367         sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1368
1369         /* Allocate DMA memory resources. */
1370         if (bce_dma_alloc(dev)) {
1371                 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1372                     __FILE__, __LINE__);
1373                 rc = ENXIO;
1374                 goto bce_attach_fail;
1375         }
1376
1377         /* Allocate an ifnet structure. */
1378         ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1379         if (ifp == NULL) {
1380                 BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1381                     __FILE__, __LINE__);
1382                 rc = ENXIO;
1383                 goto bce_attach_fail;
1384         }
1385
1386         /* Initialize the ifnet interface. */
1387         ifp->if_softc   = sc;
1388         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1389         ifp->if_flags   = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1390         ifp->if_ioctl   = bce_ioctl;
1391         ifp->if_start   = bce_start;
1392         ifp->if_init    = bce_init;
1393         ifp->if_mtu     = ETHERMTU;
1394
1395         if (bce_tso_enable) {
1396                 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1397                 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1398                     IFCAP_VLAN_HWTSO;
1399         } else {
1400                 ifp->if_hwassist = BCE_IF_HWASSIST;
1401                 ifp->if_capabilities = BCE_IF_CAPABILITIES;
1402         }
1403
1404 #if __FreeBSD_version >= 800505
1405         /*
1406          * Introducing IFCAP_LINKSTATE didn't bump __FreeBSD_version
1407          * so it's approximate value.
1408          */
1409         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1410                 ifp->if_capabilities |= IFCAP_LINKSTATE;
1411 #endif
1412
1413         ifp->if_capenable = ifp->if_capabilities;
1414
1415         /*
1416          * Assume standard mbuf sizes for buffer allocation.
1417          * This may change later if the MTU size is set to
1418          * something other than 1500.
1419          */
1420         bce_get_rx_buffer_sizes(sc,
1421             (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1422
1423         /* Recalculate our buffer allocation sizes. */
1424         ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1425         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1426         IFQ_SET_READY(&ifp->if_snd);
1427
1428         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1429                 ifp->if_baudrate = IF_Mbps(2500ULL);
1430         else
1431                 ifp->if_baudrate = IF_Mbps(1000);
1432
1433         /* Handle any special PHY initialization for SerDes PHYs. */
1434         bce_init_media(sc);
1435
1436         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1437                 ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1438                     bce_ifmedia_sts);
1439                 /*
1440                  * We can't manually override remote PHY's link and assume
1441                  * PHY port configuration(Fiber or TP) is not changed after
1442                  * device attach.  This may not be correct though.
1443                  */
1444                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1445                         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1446                                 ifmedia_add(&sc->bce_ifmedia,
1447                                     IFM_ETHER | IFM_2500_SX, 0, NULL);
1448                                 ifmedia_add(&sc->bce_ifmedia,
1449                                     IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1450                         }
1451                         ifmedia_add(&sc->bce_ifmedia,
1452                             IFM_ETHER | IFM_1000_SX, 0, NULL);
1453                         ifmedia_add(&sc->bce_ifmedia,
1454                             IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1455                 } else {
1456                         ifmedia_add(&sc->bce_ifmedia,
1457                             IFM_ETHER | IFM_10_T, 0, NULL);
1458                         ifmedia_add(&sc->bce_ifmedia,
1459                             IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1460                         ifmedia_add(&sc->bce_ifmedia,
1461                             IFM_ETHER | IFM_100_TX, 0, NULL);
1462                         ifmedia_add(&sc->bce_ifmedia,
1463                             IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1464                         ifmedia_add(&sc->bce_ifmedia,
1465                             IFM_ETHER | IFM_1000_T, 0, NULL);
1466                         ifmedia_add(&sc->bce_ifmedia,
1467                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1468                 }
1469                 ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1470                 ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1471                 sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1472         } else {
1473                 /* MII child bus by attaching the PHY. */
1474                 rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1475                     bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1476                     MII_OFFSET_ANY, MIIF_DOPAUSE);
1477                 if (rc != 0) {
1478                         BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1479                             __LINE__);
1480                         goto bce_attach_fail;
1481                 }
1482         }
1483
1484         /* Attach to the Ethernet interface list. */
1485         ether_ifattach(ifp, sc->eaddr);
1486
1487 #if __FreeBSD_version < 500000
1488         callout_init(&sc->bce_tick_callout);
1489         callout_init(&sc->bce_pulse_callout);
1490 #else
1491         callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1492         callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1493 #endif
1494
1495         /* Hookup IRQ last. */
1496         rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1497                 NULL, bce_intr, sc, &sc->bce_intrhand);
1498
1499         if (rc) {
1500                 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1501                     __FILE__, __LINE__);
1502                 bce_detach(dev);
1503                 goto bce_attach_exit;
1504         }
1505
1506         /*
1507          * At this point we've acquired all the resources
1508          * we need to run so there's no turning back, we're
1509          * cleared for launch.
1510          */
1511
1512         /* Print some important debugging info. */
1513         DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1514
1515         /* Add the supported sysctls to the kernel. */
1516         bce_add_sysctls(sc);
1517
1518         BCE_LOCK(sc);
1519
1520         /*
1521          * The chip reset earlier notified the bootcode that
1522          * a driver is present.  We now need to start our pulse
1523          * routine so that the bootcode is reminded that we're
1524          * still running.
1525          */
1526         bce_pulse(sc);
1527
1528         bce_mgmt_init_locked(sc);
1529         BCE_UNLOCK(sc);
1530
1531         /* Finally, print some useful adapter info */
1532         bce_print_adapter_info(sc);
1533         DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1534                 __FUNCTION__, sc);
1535
1536         goto bce_attach_exit;
1537
1538 bce_attach_fail:
1539         bce_release_resources(sc);
1540
1541 bce_attach_exit:
1542
1543         DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1544
1545         return(rc);
1546 }
1547
1548
1549 /****************************************************************************/
1550 /* Device detach function.                                                  */
1551 /*                                                                          */
1552 /* Stops the controller, resets the controller, and releases resources.     */
1553 /*                                                                          */
1554 /* Returns:                                                                 */
1555 /*   0 on success, positive value on failure.                               */
1556 /****************************************************************************/
1557 static int
1558 bce_detach(device_t dev)
1559 {
1560         struct bce_softc *sc = device_get_softc(dev);
1561         struct ifnet *ifp;
1562         u32 msg;
1563
1564         DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1565
1566         ifp = sc->bce_ifp;
1567
1568         /* Stop and reset the controller. */
1569         BCE_LOCK(sc);
1570
1571         /* Stop the pulse so the bootcode can go to driver absent state. */
1572         callout_stop(&sc->bce_pulse_callout);
1573
1574         bce_stop(sc);
1575         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1576                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1577         else
1578                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1579         bce_reset(sc, msg);
1580
1581         BCE_UNLOCK(sc);
1582
1583         ether_ifdetach(ifp);
1584
1585         /* If we have a child device on the MII bus remove it too. */
1586         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1587                 ifmedia_removeall(&sc->bce_ifmedia);
1588         else {
1589                 bus_generic_detach(dev);
1590                 device_delete_child(dev, sc->bce_miibus);
1591         }
1592
1593         /* Release all remaining resources. */
1594         bce_release_resources(sc);
1595
1596         DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1597
1598         return(0);
1599 }
1600
1601
1602 /****************************************************************************/
1603 /* Device shutdown function.                                                */
1604 /*                                                                          */
1605 /* Stops and resets the controller.                                         */
1606 /*                                                                          */
1607 /* Returns:                                                                 */
1608 /*   0 on success, positive value on failure.                               */
1609 /****************************************************************************/
1610 static int
1611 bce_shutdown(device_t dev)
1612 {
1613         struct bce_softc *sc = device_get_softc(dev);
1614         u32 msg;
1615
1616         DBENTER(BCE_VERBOSE);
1617
1618         BCE_LOCK(sc);
1619         bce_stop(sc);
1620         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1621                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1622         else
1623                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1624         bce_reset(sc, msg);
1625         BCE_UNLOCK(sc);
1626
1627         DBEXIT(BCE_VERBOSE);
1628
1629         return (0);
1630 }
1631
1632
1633 #ifdef BCE_DEBUG
1634 /****************************************************************************/
1635 /* Register read.                                                           */
1636 /*                                                                          */
1637 /* Returns:                                                                 */
1638 /*   The value of the register.                                             */
1639 /****************************************************************************/
1640 static u32
1641 bce_reg_rd(struct bce_softc *sc, u32 offset)
1642 {
1643         u32 val = REG_RD(sc, offset);
1644         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1645                 __FUNCTION__, offset, val);
1646         return val;
1647 }
1648
1649
1650 /****************************************************************************/
1651 /* Register write (16 bit).                                                 */
1652 /*                                                                          */
1653 /* Returns:                                                                 */
1654 /*   Nothing.                                                               */
1655 /****************************************************************************/
1656 static void
1657 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1658 {
1659         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1660                 __FUNCTION__, offset, val);
1661         REG_WR16(sc, offset, val);
1662 }
1663
1664
1665 /****************************************************************************/
1666 /* Register write.                                                          */
1667 /*                                                                          */
1668 /* Returns:                                                                 */
1669 /*   Nothing.                                                               */
1670 /****************************************************************************/
1671 static void
1672 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1673 {
1674         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1675                 __FUNCTION__, offset, val);
1676         REG_WR(sc, offset, val);
1677 }
1678 #endif
1679
1680 /****************************************************************************/
1681 /* Indirect register read.                                                  */
1682 /*                                                                          */
1683 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1684 /* configuration space.  Using this mechanism avoids issues with posted     */
1685 /* reads but is much slower than memory-mapped I/O.                         */
1686 /*                                                                          */
1687 /* Returns:                                                                 */
1688 /*   The value of the register.                                             */
1689 /****************************************************************************/
1690 static u32
1691 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1692 {
1693         device_t dev;
1694         dev = sc->bce_dev;
1695
1696         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1697 #ifdef BCE_DEBUG
1698         {
1699                 u32 val;
1700                 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1701                 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1702                         __FUNCTION__, offset, val);
1703                 return val;
1704         }
1705 #else
1706         return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1707 #endif
1708 }
1709
1710
1711 /****************************************************************************/
1712 /* Indirect register write.                                                 */
1713 /*                                                                          */
1714 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1715 /* configuration space.  Using this mechanism avoids issues with posted     */
1716 /* writes but is muchh slower than memory-mapped I/O.                       */
1717 /*                                                                          */
1718 /* Returns:                                                                 */
1719 /*   Nothing.                                                               */
1720 /****************************************************************************/
1721 static void
1722 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1723 {
1724         device_t dev;
1725         dev = sc->bce_dev;
1726
1727         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1728                 __FUNCTION__, offset, val);
1729
1730         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1731         pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1732 }
1733
1734
1735 /****************************************************************************/
1736 /* Shared memory write.                                                     */
1737 /*                                                                          */
1738 /* Writes NetXtreme II shared memory region.                                */
1739 /*                                                                          */
1740 /* Returns:                                                                 */
1741 /*   Nothing.                                                               */
1742 /****************************************************************************/
1743 static void
1744 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1745 {
1746         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1747             "0x%08X\n", __FUNCTION__, val, offset);
1748
1749         bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1750 }
1751
1752
1753 /****************************************************************************/
1754 /* Shared memory read.                                                      */
1755 /*                                                                          */
1756 /* Reads NetXtreme II shared memory region.                                 */
1757 /*                                                                          */
1758 /* Returns:                                                                 */
1759 /*   The 32 bit value read.                                                 */
1760 /****************************************************************************/
1761 static u32
1762 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1763 {
1764         u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1765
1766         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1767             "0x%08X\n", __FUNCTION__, val, offset);
1768
1769         return val;
1770 }
1771
1772
1773 #ifdef BCE_DEBUG
1774 /****************************************************************************/
1775 /* Context memory read.                                                     */
1776 /*                                                                          */
1777 /* The NetXtreme II controller uses context memory to track connection      */
1778 /* information for L2 and higher network protocols.                         */
1779 /*                                                                          */
1780 /* Returns:                                                                 */
1781 /*   The requested 32 bit value of context memory.                          */
1782 /****************************************************************************/
1783 static u32
1784 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1785 {
1786         u32 idx, offset, retry_cnt = 5, val;
1787
1788         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1789             cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1790             "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1791
1792         offset = ctx_offset + cid_addr;
1793
1794         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1795
1796                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1797
1798                 for (idx = 0; idx < retry_cnt; idx++) {
1799                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1800                         if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1801                                 break;
1802                         DELAY(5);
1803                 }
1804
1805                 if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1806                         BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1807                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1808                             __FILE__, __LINE__, cid_addr, ctx_offset);
1809
1810                 val = REG_RD(sc, BCE_CTX_CTX_DATA);
1811         } else {
1812                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1813                 val = REG_RD(sc, BCE_CTX_DATA);
1814         }
1815
1816         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1817                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1818
1819         return(val);
1820 }
1821 #endif
1822
1823
1824 /****************************************************************************/
1825 /* Context memory write.                                                    */
1826 /*                                                                          */
1827 /* The NetXtreme II controller uses context memory to track connection      */
1828 /* information for L2 and higher network protocols.                         */
1829 /*                                                                          */
1830 /* Returns:                                                                 */
1831 /*   Nothing.                                                               */
1832 /****************************************************************************/
1833 static void
1834 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1835 {
1836         u32 idx, offset = ctx_offset + cid_addr;
1837         u32 val, retry_cnt = 5;
1838
1839         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1840                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1841
1842         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1843                 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1844                     __FUNCTION__, cid_addr));
1845
1846         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1847
1848                 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1849                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1850
1851                 for (idx = 0; idx < retry_cnt; idx++) {
1852                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1853                         if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1854                                 break;
1855                         DELAY(5);
1856                 }
1857
1858                 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1859                         BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1860                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1861                             __FILE__, __LINE__, cid_addr, ctx_offset);
1862
1863         } else {
1864                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1865                 REG_WR(sc, BCE_CTX_DATA, ctx_val);
1866         }
1867 }
1868
1869
1870 /****************************************************************************/
1871 /* PHY register read.                                                       */
1872 /*                                                                          */
1873 /* Implements register reads on the MII bus.                                */
1874 /*                                                                          */
1875 /* Returns:                                                                 */
1876 /*   The value of the register.                                             */
1877 /****************************************************************************/
1878 static int
1879 bce_miibus_read_reg(device_t dev, int phy, int reg)
1880 {
1881         struct bce_softc *sc;
1882         u32 val;
1883         int i;
1884
1885         sc = device_get_softc(dev);
1886
1887     /*
1888      * The 5709S PHY is an IEEE Clause 45 PHY
1889      * with special mappings to work with IEEE
1890      * Clause 22 register accesses.
1891      */
1892         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1893                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1894                         reg += 0x10;
1895         }
1896
1897     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1898                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1899                 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1900
1901                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1902                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1903
1904                 DELAY(40);
1905         }
1906
1907
1908         val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1909             BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1910             BCE_EMAC_MDIO_COMM_START_BUSY;
1911         REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1912
1913         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1914                 DELAY(10);
1915
1916                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1917                 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1918                         DELAY(5);
1919
1920                         val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1921                         val &= BCE_EMAC_MDIO_COMM_DATA;
1922
1923                         break;
1924                 }
1925         }
1926
1927         if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1928                 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1929                     "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1930                 val = 0x0;
1931         } else {
1932                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1933         }
1934
1935
1936         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1937                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1938                 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1939
1940                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1941                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1942
1943                 DELAY(40);
1944         }
1945
1946         DB_PRINT_PHY_REG(reg, val);
1947         return (val & 0xffff);
1948 }
1949
1950
1951 /****************************************************************************/
1952 /* PHY register write.                                                      */
1953 /*                                                                          */
1954 /* Implements register writes on the MII bus.                               */
1955 /*                                                                          */
1956 /* Returns:                                                                 */
1957 /*   The value of the register.                                             */
1958 /****************************************************************************/
1959 static int
1960 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1961 {
1962         struct bce_softc *sc;
1963         u32 val1;
1964         int i;
1965
1966         sc = device_get_softc(dev);
1967
1968         DB_PRINT_PHY_REG(reg, val);
1969
1970         /*
1971          * The 5709S PHY is an IEEE Clause 45 PHY
1972          * with special mappings to work with IEEE
1973          * Clause 22 register accesses.
1974          */
1975         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1976                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1977                         reg += 0x10;
1978         }
1979
1980         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1981                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1982                 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1983
1984                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1985                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1986
1987                 DELAY(40);
1988         }
1989
1990         val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1991             BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1992             BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1993         REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1994
1995         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1996                 DELAY(10);
1997
1998                 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1999                 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
2000                         DELAY(5);
2001                         break;
2002                 }
2003         }
2004
2005         if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
2006                 BCE_PRINTF("%s(%d): PHY write timeout!\n",
2007                     __FILE__, __LINE__);
2008
2009         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
2010                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
2011                 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
2012
2013                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
2014                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
2015
2016                 DELAY(40);
2017         }
2018
2019         return 0;
2020 }
2021
2022
2023 /****************************************************************************/
2024 /* MII bus status change.                                                   */
2025 /*                                                                          */
2026 /* Called by the MII bus driver when the PHY establishes link to set the    */
2027 /* MAC interface registers.                                                 */
2028 /*                                                                          */
2029 /* Returns:                                                                 */
2030 /*   Nothing.                                                               */
2031 /****************************************************************************/
2032 static void
2033 bce_miibus_statchg(device_t dev)
2034 {
2035         struct bce_softc *sc;
2036         struct mii_data *mii;
2037         struct ifmediareq ifmr;
2038         int media_active, media_status, val;
2039
2040         sc = device_get_softc(dev);
2041
2042         DBENTER(BCE_VERBOSE_PHY);
2043
2044         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2045                 bzero(&ifmr, sizeof(ifmr));
2046                 bce_ifmedia_sts_rphy(sc, &ifmr);
2047                 media_active = ifmr.ifm_active;
2048                 media_status = ifmr.ifm_status;
2049         } else {
2050                 mii = device_get_softc(sc->bce_miibus);
2051                 media_active = mii->mii_media_active;
2052                 media_status = mii->mii_media_status;
2053         }
2054
2055         /* Ignore invalid media status. */
2056         if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2057             (IFM_ACTIVE | IFM_AVALID))
2058                 goto bce_miibus_statchg_exit;
2059
2060         val = REG_RD(sc, BCE_EMAC_MODE);
2061         val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2062             BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2063             BCE_EMAC_MODE_25G);
2064
2065         /* Set MII or GMII interface based on the PHY speed. */
2066         switch (IFM_SUBTYPE(media_active)) {
2067         case IFM_10_T:
2068                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2069                         DBPRINT(sc, BCE_INFO_PHY,
2070                             "Enabling 10Mb interface.\n");
2071                         val |= BCE_EMAC_MODE_PORT_MII_10;
2072                         break;
2073                 }
2074                 /* fall-through */
2075         case IFM_100_TX:
2076                 DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2077                 val |= BCE_EMAC_MODE_PORT_MII;
2078                 break;
2079         case IFM_2500_SX:
2080                 DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2081                 val |= BCE_EMAC_MODE_25G;
2082                 /* fall-through */
2083         case IFM_1000_T:
2084         case IFM_1000_SX:
2085                 DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2086                 val |= BCE_EMAC_MODE_PORT_GMII;
2087                 break;
2088         default:
2089                 DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2090                     "default GMII interface.\n");
2091                 val |= BCE_EMAC_MODE_PORT_GMII;
2092         }
2093
2094         /* Set half or full duplex based on PHY settings. */
2095         if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2096                 DBPRINT(sc, BCE_INFO_PHY,
2097                     "Setting Half-Duplex interface.\n");
2098                 val |= BCE_EMAC_MODE_HALF_DUPLEX;
2099         } else
2100                 DBPRINT(sc, BCE_INFO_PHY,
2101                     "Setting Full-Duplex interface.\n");
2102
2103         REG_WR(sc, BCE_EMAC_MODE, val);
2104
2105         if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2106                 DBPRINT(sc, BCE_INFO_PHY,
2107                     "%s(): Enabling RX flow control.\n", __FUNCTION__);
2108                 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2109                 sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2110         } else {
2111                 DBPRINT(sc, BCE_INFO_PHY,
2112                     "%s(): Disabling RX flow control.\n", __FUNCTION__);
2113                 BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2114                 sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2115         }
2116
2117         if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2118                 DBPRINT(sc, BCE_INFO_PHY,
2119                     "%s(): Enabling TX flow control.\n", __FUNCTION__);
2120                 BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2121                 sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2122         } else {
2123                 DBPRINT(sc, BCE_INFO_PHY,
2124                     "%s(): Disabling TX flow control.\n", __FUNCTION__);
2125                 BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2126                 sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2127         }
2128
2129         /* ToDo: Update watermarks in bce_init_rx_context(). */
2130
2131 bce_miibus_statchg_exit:
2132         DBEXIT(BCE_VERBOSE_PHY);
2133 }
2134
2135
2136 /****************************************************************************/
2137 /* Acquire NVRAM lock.                                                      */
2138 /*                                                                          */
2139 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2140 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2141 /* for use by the driver.                                                   */
2142 /*                                                                          */
2143 /* Returns:                                                                 */
2144 /*   0 on success, positive value on failure.                               */
2145 /****************************************************************************/
2146 static int
2147 bce_acquire_nvram_lock(struct bce_softc *sc)
2148 {
2149         u32 val;
2150         int j, rc = 0;
2151
2152         DBENTER(BCE_VERBOSE_NVRAM);
2153
2154         /* Request access to the flash interface. */
2155         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2156         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2157                 val = REG_RD(sc, BCE_NVM_SW_ARB);
2158                 if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2159                         break;
2160
2161                 DELAY(5);
2162         }
2163
2164         if (j >= NVRAM_TIMEOUT_COUNT) {
2165                 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2166                 rc = EBUSY;
2167         }
2168
2169         DBEXIT(BCE_VERBOSE_NVRAM);
2170         return (rc);
2171 }
2172
2173
2174 /****************************************************************************/
2175 /* Release NVRAM lock.                                                      */
2176 /*                                                                          */
2177 /* When the caller is finished accessing NVRAM the lock must be released.   */
2178 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2179 /* for use by the driver.                                                   */
2180 /*                                                                          */
2181 /* Returns:                                                                 */
2182 /*   0 on success, positive value on failure.                               */
2183 /****************************************************************************/
2184 static int
2185 bce_release_nvram_lock(struct bce_softc *sc)
2186 {
2187         u32 val;
2188         int j, rc = 0;
2189
2190         DBENTER(BCE_VERBOSE_NVRAM);
2191
2192         /*
2193          * Relinquish nvram interface.
2194          */
2195         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2196
2197         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2198                 val = REG_RD(sc, BCE_NVM_SW_ARB);
2199                 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2200                         break;
2201
2202                 DELAY(5);
2203         }
2204
2205         if (j >= NVRAM_TIMEOUT_COUNT) {
2206                 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2207                 rc = EBUSY;
2208         }
2209
2210         DBEXIT(BCE_VERBOSE_NVRAM);
2211         return (rc);
2212 }
2213
2214
2215 #ifdef BCE_NVRAM_WRITE_SUPPORT
2216 /****************************************************************************/
2217 /* Enable NVRAM write access.                                               */
2218 /*                                                                          */
2219 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2220 /*                                                                          */
2221 /* Returns:                                                                 */
2222 /*   0 on success, positive value on failure.                               */
2223 /****************************************************************************/
2224 static int
2225 bce_enable_nvram_write(struct bce_softc *sc)
2226 {
2227         u32 val;
2228         int rc = 0;
2229
2230         DBENTER(BCE_VERBOSE_NVRAM);
2231
2232         val = REG_RD(sc, BCE_MISC_CFG);
2233         REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2234
2235         if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2236                 int j;
2237
2238                 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2239                 REG_WR(sc, BCE_NVM_COMMAND,     BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2240
2241                 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2242                         DELAY(5);
2243
2244                         val = REG_RD(sc, BCE_NVM_COMMAND);
2245                         if (val & BCE_NVM_COMMAND_DONE)
2246                                 break;
2247                 }
2248
2249                 if (j >= NVRAM_TIMEOUT_COUNT) {
2250                         DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2251                         rc = EBUSY;
2252                 }
2253         }
2254
2255         DBENTER(BCE_VERBOSE_NVRAM);
2256         return (rc);
2257 }
2258
2259
2260 /****************************************************************************/
2261 /* Disable NVRAM write access.                                              */
2262 /*                                                                          */
2263 /* When the caller is finished writing to NVRAM write access must be        */
2264 /* disabled.                                                                */
2265 /*                                                                          */
2266 /* Returns:                                                                 */
2267 /*   Nothing.                                                               */
2268 /****************************************************************************/
2269 static void
2270 bce_disable_nvram_write(struct bce_softc *sc)
2271 {
2272         u32 val;
2273
2274         DBENTER(BCE_VERBOSE_NVRAM);
2275
2276         val = REG_RD(sc, BCE_MISC_CFG);
2277         REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2278
2279         DBEXIT(BCE_VERBOSE_NVRAM);
2280
2281 }
2282 #endif
2283
2284
2285 /****************************************************************************/
2286 /* Enable NVRAM access.                                                     */
2287 /*                                                                          */
2288 /* Before accessing NVRAM for read or write operations the caller must      */
2289 /* enabled NVRAM access.                                                    */
2290 /*                                                                          */
2291 /* Returns:                                                                 */
2292 /*   Nothing.                                                               */
2293 /****************************************************************************/
2294 static void
2295 bce_enable_nvram_access(struct bce_softc *sc)
2296 {
2297         u32 val;
2298
2299         DBENTER(BCE_VERBOSE_NVRAM);
2300
2301         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2302         /* Enable both bits, even on read. */
2303         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2304             BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2305
2306         DBEXIT(BCE_VERBOSE_NVRAM);
2307 }
2308
2309
2310 /****************************************************************************/
2311 /* Disable NVRAM access.                                                    */
2312 /*                                                                          */
2313 /* When the caller is finished accessing NVRAM access must be disabled.     */
2314 /*                                                                          */
2315 /* Returns:                                                                 */
2316 /*   Nothing.                                                               */
2317 /****************************************************************************/
2318 static void
2319 bce_disable_nvram_access(struct bce_softc *sc)
2320 {
2321         u32 val;
2322
2323         DBENTER(BCE_VERBOSE_NVRAM);
2324
2325         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2326
2327         /* Disable both bits, even after read. */
2328         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2329             ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2330
2331         DBEXIT(BCE_VERBOSE_NVRAM);
2332 }
2333
2334
2335 #ifdef BCE_NVRAM_WRITE_SUPPORT
2336 /****************************************************************************/
2337 /* Erase NVRAM page before writing.                                         */
2338 /*                                                                          */
2339 /* Non-buffered flash parts require that a page be erased before it is      */
2340 /* written.                                                                 */
2341 /*                                                                          */
2342 /* Returns:                                                                 */
2343 /*   0 on success, positive value on failure.                               */
2344 /****************************************************************************/
2345 static int
2346 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2347 {
2348         u32 cmd;
2349         int j, rc = 0;
2350
2351         DBENTER(BCE_VERBOSE_NVRAM);
2352
2353         /* Buffered flash doesn't require an erase. */
2354         if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2355                 goto bce_nvram_erase_page_exit;
2356
2357         /* Build an erase command. */
2358         cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2359             BCE_NVM_COMMAND_DOIT;
2360
2361         /*
2362          * Clear the DONE bit separately, set the NVRAM adress to erase,
2363          * and issue the erase command.
2364          */
2365         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2366         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2367         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2368
2369         /* Wait for completion. */
2370         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2371                 u32 val;
2372
2373                 DELAY(5);
2374
2375                 val = REG_RD(sc, BCE_NVM_COMMAND);
2376                 if (val & BCE_NVM_COMMAND_DONE)
2377                         break;
2378         }
2379
2380         if (j >= NVRAM_TIMEOUT_COUNT) {
2381                 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2382                 rc = EBUSY;
2383         }
2384
2385 bce_nvram_erase_page_exit:
2386         DBEXIT(BCE_VERBOSE_NVRAM);
2387         return (rc);
2388 }
2389 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2390
2391
2392 /****************************************************************************/
2393 /* Read a dword (32 bits) from NVRAM.                                       */
2394 /*                                                                          */
2395 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2396 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2397 /*                                                                          */
2398 /* Returns:                                                                 */
2399 /*   0 on success and the 32 bit value read, positive value on failure.     */
2400 /****************************************************************************/
2401 static int
2402 bce_nvram_read_dword(struct bce_softc *sc,
2403     u32 offset, u8 *ret_val, u32 cmd_flags)
2404 {
2405         u32 cmd;
2406         int i, rc = 0;
2407
2408         DBENTER(BCE_EXTREME_NVRAM);
2409
2410         /* Build the command word. */
2411         cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2412
2413         /* Calculate the offset for buffered flash if translation is used. */
2414         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2415                 offset = ((offset / sc->bce_flash_info->page_size) <<
2416                     sc->bce_flash_info->page_bits) +
2417                     (offset % sc->bce_flash_info->page_size);
2418         }
2419
2420         /*
2421          * Clear the DONE bit separately, set the address to read,
2422          * and issue the read.
2423          */
2424         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2425         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2426         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2427
2428         /* Wait for completion. */
2429         for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2430                 u32 val;
2431
2432                 DELAY(5);
2433
2434                 val = REG_RD(sc, BCE_NVM_COMMAND);
2435                 if (val & BCE_NVM_COMMAND_DONE) {
2436                         val = REG_RD(sc, BCE_NVM_READ);
2437
2438                         val = bce_be32toh(val);
2439                         memcpy(ret_val, &val, 4);
2440                         break;
2441                 }
2442         }
2443
2444         /* Check for errors. */
2445         if (i >= NVRAM_TIMEOUT_COUNT) {
2446                 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2447                     "offset 0x%08X!\n", __FILE__, __LINE__, offset);
2448                 rc = EBUSY;
2449         }
2450
2451         DBEXIT(BCE_EXTREME_NVRAM);
2452         return(rc);
2453 }
2454
2455
2456 #ifdef BCE_NVRAM_WRITE_SUPPORT
2457 /****************************************************************************/
2458 /* Write a dword (32 bits) to NVRAM.                                        */
2459 /*                                                                          */
2460 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2461 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2462 /* enabled NVRAM write access.                                              */
2463 /*                                                                          */
2464 /* Returns:                                                                 */
2465 /*   0 on success, positive value on failure.                               */
2466 /****************************************************************************/
2467 static int
2468 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2469         u32 cmd_flags)
2470 {
2471         u32 cmd, val32;
2472         int j, rc = 0;
2473
2474         DBENTER(BCE_VERBOSE_NVRAM);
2475
2476         /* Build the command word. */
2477         cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2478
2479         /* Calculate the offset for buffered flash if translation is used. */
2480         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2481                 offset = ((offset / sc->bce_flash_info->page_size) <<
2482                     sc->bce_flash_info->page_bits) +
2483                     (offset % sc->bce_flash_info->page_size);
2484         }
2485
2486         /*
2487          * Clear the DONE bit separately, convert NVRAM data to big-endian,
2488          * set the NVRAM address to write, and issue the write command
2489          */
2490         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2491         memcpy(&val32, val, 4);
2492         val32 = htobe32(val32);
2493         REG_WR(sc, BCE_NVM_WRITE, val32);
2494         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2495         REG_WR(sc, BCE_NVM_COMMAND, cmd);
2496
2497         /* Wait for completion. */
2498         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2499                 DELAY(5);
2500
2501                 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2502                         break;
2503         }
2504         if (j >= NVRAM_TIMEOUT_COUNT) {
2505                 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2506                     "offset 0x%08X\n", __FILE__, __LINE__, offset);
2507                 rc = EBUSY;
2508         }
2509
2510         DBEXIT(BCE_VERBOSE_NVRAM);
2511         return (rc);
2512 }
2513 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2514
2515
2516 /****************************************************************************/
2517 /* Initialize NVRAM access.                                                 */
2518 /*                                                                          */
2519 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2520 /* access that device.                                                      */
2521 /*                                                                          */
2522 /* Returns:                                                                 */
2523 /*   0 on success, positive value on failure.                               */
2524 /****************************************************************************/
2525 static int
2526 bce_init_nvram(struct bce_softc *sc)
2527 {
2528         u32 val;
2529         int j, entry_count, rc = 0;
2530         const struct flash_spec *flash;
2531
2532         DBENTER(BCE_VERBOSE_NVRAM);
2533
2534         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2535                 sc->bce_flash_info = &flash_5709;
2536                 goto bce_init_nvram_get_flash_size;
2537         }
2538
2539         /* Determine the selected interface. */
2540         val = REG_RD(sc, BCE_NVM_CFG1);
2541
2542         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2543
2544         /*
2545          * Flash reconfiguration is required to support additional
2546          * NVRAM devices not directly supported in hardware.
2547          * Check if the flash interface was reconfigured
2548          * by the bootcode.
2549          */
2550
2551         if (val & 0x40000000) {
2552                 /* Flash interface reconfigured by bootcode. */
2553
2554                 DBPRINT(sc,BCE_INFO_LOAD,
2555                         "bce_init_nvram(): Flash WAS reconfigured.\n");
2556
2557                 for (j = 0, flash = &flash_table[0]; j < entry_count;
2558                      j++, flash++) {
2559                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
2560                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2561                                 sc->bce_flash_info = flash;
2562                                 break;
2563                         }
2564                 }
2565         } else {
2566                 /* Flash interface not yet reconfigured. */
2567                 u32 mask;
2568
2569                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2570                         __FUNCTION__);
2571
2572                 if (val & (1 << 23))
2573                         mask = FLASH_BACKUP_STRAP_MASK;
2574                 else
2575                         mask = FLASH_STRAP_MASK;
2576
2577                 /* Look for the matching NVRAM device configuration data. */
2578                 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2579
2580                         /* Check if the device matches any of the known devices. */
2581                         if ((val & mask) == (flash->strapping & mask)) {
2582                                 /* Found a device match. */
2583                                 sc->bce_flash_info = flash;
2584
2585                                 /* Request access to the flash interface. */
2586                                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2587                                         return rc;
2588
2589                                 /* Reconfigure the flash interface. */
2590                                 bce_enable_nvram_access(sc);
2591                                 REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2592                                 REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2593                                 REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2594                                 REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2595                                 bce_disable_nvram_access(sc);
2596                                 bce_release_nvram_lock(sc);
2597
2598                                 break;
2599                         }
2600                 }
2601         }
2602
2603         /* Check if a matching device was found. */
2604         if (j == entry_count) {
2605                 sc->bce_flash_info = NULL;
2606                 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2607                     __FILE__, __LINE__);
2608                 DBEXIT(BCE_VERBOSE_NVRAM);
2609                 return (ENODEV);
2610         }
2611
2612 bce_init_nvram_get_flash_size:
2613         /* Write the flash config data to the shared memory interface. */
2614         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2615         val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2616         if (val)
2617                 sc->bce_flash_size = val;
2618         else
2619                 sc->bce_flash_size = sc->bce_flash_info->total_size;
2620
2621         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2622             __FUNCTION__, sc->bce_flash_info->name,
2623             sc->bce_flash_info->total_size);
2624
2625         DBEXIT(BCE_VERBOSE_NVRAM);
2626         return rc;
2627 }
2628
2629
2630 /****************************************************************************/
2631 /* Read an arbitrary range of data from NVRAM.                              */
2632 /*                                                                          */
2633 /* Prepares the NVRAM interface for access and reads the requested data     */
2634 /* into the supplied buffer.                                                */
2635 /*                                                                          */
2636 /* Returns:                                                                 */
2637 /*   0 on success and the data read, positive value on failure.             */
2638 /****************************************************************************/
2639 static int
2640 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2641         int buf_size)
2642 {
2643         int rc = 0;
2644         u32 cmd_flags, offset32, len32, extra;
2645
2646         DBENTER(BCE_VERBOSE_NVRAM);
2647
2648         if (buf_size == 0)
2649                 goto bce_nvram_read_exit;
2650
2651         /* Request access to the flash interface. */
2652         if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2653                 goto bce_nvram_read_exit;
2654
2655         /* Enable access to flash interface */
2656         bce_enable_nvram_access(sc);
2657
2658         len32 = buf_size;
2659         offset32 = offset;
2660         extra = 0;
2661
2662         cmd_flags = 0;
2663
2664         if (offset32 & 3) {
2665                 u8 buf[4];
2666                 u32 pre_len;
2667
2668                 offset32 &= ~3;
2669                 pre_len = 4 - (offset & 3);
2670
2671                 if (pre_len >= len32) {
2672                         pre_len = len32;
2673                         cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2674                 }
2675                 else {
2676                         cmd_flags = BCE_NVM_COMMAND_FIRST;
2677                 }
2678
2679                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2680
2681                 if (rc)
2682                         return rc;
2683
2684                 memcpy(ret_buf, buf + (offset & 3), pre_len);
2685
2686                 offset32 += 4;
2687                 ret_buf += pre_len;
2688                 len32 -= pre_len;
2689         }
2690
2691         if (len32 & 3) {
2692                 extra = 4 - (len32 & 3);
2693                 len32 = (len32 + 4) & ~3;
2694         }
2695
2696         if (len32 == 4) {
2697                 u8 buf[4];
2698
2699                 if (cmd_flags)
2700                         cmd_flags = BCE_NVM_COMMAND_LAST;
2701                 else
2702                         cmd_flags = BCE_NVM_COMMAND_FIRST |
2703                                     BCE_NVM_COMMAND_LAST;
2704
2705                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2706
2707                 memcpy(ret_buf, buf, 4 - extra);
2708         }
2709         else if (len32 > 0) {
2710                 u8 buf[4];
2711
2712                 /* Read the first word. */
2713                 if (cmd_flags)
2714                         cmd_flags = 0;
2715                 else
2716                         cmd_flags = BCE_NVM_COMMAND_FIRST;
2717
2718                 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2719
2720                 /* Advance to the next dword. */
2721                 offset32 += 4;
2722                 ret_buf += 4;
2723                 len32 -= 4;
2724
2725                 while (len32 > 4 && rc == 0) {
2726                         rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2727
2728                         /* Advance to the next dword. */
2729                         offset32 += 4;
2730                         ret_buf += 4;
2731                         len32 -= 4;
2732                 }
2733
2734                 if (rc)
2735                         goto bce_nvram_read_locked_exit;
2736
2737                 cmd_flags = BCE_NVM_COMMAND_LAST;
2738                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2739
2740                 memcpy(ret_buf, buf, 4 - extra);
2741         }
2742
2743 bce_nvram_read_locked_exit:
2744         /* Disable access to flash interface and release the lock. */
2745         bce_disable_nvram_access(sc);
2746         bce_release_nvram_lock(sc);
2747
2748 bce_nvram_read_exit:
2749         DBEXIT(BCE_VERBOSE_NVRAM);
2750         return rc;
2751 }
2752
2753
2754 #ifdef BCE_NVRAM_WRITE_SUPPORT
2755 /****************************************************************************/
2756 /* Write an arbitrary range of data from NVRAM.                             */
2757 /*                                                                          */
2758 /* Prepares the NVRAM interface for write access and writes the requested   */
2759 /* data from the supplied buffer.  The caller is responsible for            */
2760 /* calculating any appropriate CRCs.                                        */
2761 /*                                                                          */
2762 /* Returns:                                                                 */
2763 /*   0 on success, positive value on failure.                               */
2764 /****************************************************************************/
2765 static int
2766 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2767         int buf_size)
2768 {
2769         u32 written, offset32, len32;
2770         u8 *buf, start[4], end[4];
2771         int rc = 0;
2772         int align_start, align_end;
2773
2774         DBENTER(BCE_VERBOSE_NVRAM);
2775
2776         buf = data_buf;
2777         offset32 = offset;
2778         len32 = buf_size;
2779         align_start = align_end = 0;
2780
2781         if ((align_start = (offset32 & 3))) {
2782                 offset32 &= ~3;
2783                 len32 += align_start;
2784                 if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2785                         goto bce_nvram_write_exit;
2786         }
2787
2788         if (len32 & 3) {
2789                 if ((len32 > 4) || !align_start) {
2790                         align_end = 4 - (len32 & 3);
2791                         len32 += align_end;
2792                         if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2793                                 end, 4))) {
2794                                 goto bce_nvram_write_exit;
2795                         }
2796                 }
2797         }
2798
2799         if (align_start || align_end) {
2800                 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2801                 if (buf == 0) {
2802                         rc = ENOMEM;
2803                         goto bce_nvram_write_exit;
2804                 }
2805
2806                 if (align_start) {
2807                         memcpy(buf, start, 4);
2808                 }
2809
2810                 if (align_end) {
2811                         memcpy(buf + len32 - 4, end, 4);
2812                 }
2813                 memcpy(buf + align_start, data_buf, buf_size);
2814         }
2815
2816         written = 0;
2817         while ((written < len32) && (rc == 0)) {
2818                 u32 page_start, page_end, data_start, data_end;
2819                 u32 addr, cmd_flags;
2820                 int i;
2821                 u8 flash_buffer[264];
2822
2823             /* Find the page_start addr */
2824                 page_start = offset32 + written;
2825                 page_start -= (page_start % sc->bce_flash_info->page_size);
2826                 /* Find the page_end addr */
2827                 page_end = page_start + sc->bce_flash_info->page_size;
2828                 /* Find the data_start addr */
2829                 data_start = (written == 0) ? offset32 : page_start;
2830                 /* Find the data_end addr */
2831                 data_end = (page_end > offset32 + len32) ?
2832                         (offset32 + len32) : page_end;
2833
2834                 /* Request access to the flash interface. */
2835                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2836                         goto bce_nvram_write_exit;
2837
2838                 /* Enable access to flash interface */
2839                 bce_enable_nvram_access(sc);
2840
2841                 cmd_flags = BCE_NVM_COMMAND_FIRST;
2842                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2843                         int j;
2844
2845                         /* Read the whole page into the buffer
2846                          * (non-buffer flash only) */
2847                         for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2848                                 if (j == (sc->bce_flash_info->page_size - 4)) {
2849                                         cmd_flags |= BCE_NVM_COMMAND_LAST;
2850                                 }
2851                                 rc = bce_nvram_read_dword(sc,
2852                                         page_start + j,
2853                                         &flash_buffer[j],
2854                                         cmd_flags);
2855
2856                                 if (rc)
2857                                         goto bce_nvram_write_locked_exit;
2858
2859                                 cmd_flags = 0;
2860                         }
2861                 }
2862
2863                 /* Enable writes to flash interface (unlock write-protect) */
2864                 if ((rc = bce_enable_nvram_write(sc)) != 0)
2865                         goto bce_nvram_write_locked_exit;
2866
2867                 /* Erase the page */
2868                 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2869                         goto bce_nvram_write_locked_exit;
2870
2871                 /* Re-enable the write again for the actual write */
2872                 bce_enable_nvram_write(sc);
2873
2874                 /* Loop to write back the buffer data from page_start to
2875                  * data_start */
2876                 i = 0;
2877                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2878                         for (addr = page_start; addr < data_start;
2879                                 addr += 4, i += 4) {
2880
2881                                 rc = bce_nvram_write_dword(sc, addr,
2882                                         &flash_buffer[i], cmd_flags);
2883
2884                                 if (rc != 0)
2885                                         goto bce_nvram_write_locked_exit;
2886
2887                                 cmd_flags = 0;
2888                         }
2889                 }
2890
2891                 /* Loop to write the new data from data_start to data_end */
2892                 for (addr = data_start; addr < data_end; addr += 4, i++) {
2893                         if ((addr == page_end - 4) ||
2894                                 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2895                                 (addr == data_end - 4))) {
2896
2897                                 cmd_flags |= BCE_NVM_COMMAND_LAST;
2898                         }
2899                         rc = bce_nvram_write_dword(sc, addr, buf,
2900                                 cmd_flags);
2901
2902                         if (rc != 0)
2903                                 goto bce_nvram_write_locked_exit;
2904
2905                         cmd_flags = 0;
2906                         buf += 4;
2907                 }
2908
2909                 /* Loop to write back the buffer data from data_end
2910                  * to page_end */
2911                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2912                         for (addr = data_end; addr < page_end;
2913                                 addr += 4, i += 4) {
2914
2915                                 if (addr == page_end-4) {
2916                                         cmd_flags = BCE_NVM_COMMAND_LAST;
2917                                 }
2918                                 rc = bce_nvram_write_dword(sc, addr,
2919                                         &flash_buffer[i], cmd_flags);
2920
2921                                 if (rc != 0)
2922                                         goto bce_nvram_write_locked_exit;
2923
2924                                 cmd_flags = 0;
2925                         }
2926                 }
2927
2928                 /* Disable writes to flash interface (lock write-protect) */
2929                 bce_disable_nvram_write(sc);
2930
2931                 /* Disable access to flash interface */
2932                 bce_disable_nvram_access(sc);
2933                 bce_release_nvram_lock(sc);
2934
2935                 /* Increment written */
2936                 written += data_end - data_start;
2937         }
2938
2939         goto bce_nvram_write_exit;
2940
2941 bce_nvram_write_locked_exit:
2942         bce_disable_nvram_write(sc);
2943         bce_disable_nvram_access(sc);
2944         bce_release_nvram_lock(sc);
2945
2946 bce_nvram_write_exit:
2947         if (align_start || align_end)
2948                 free(buf, M_DEVBUF);
2949
2950         DBEXIT(BCE_VERBOSE_NVRAM);
2951         return (rc);
2952 }
2953 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2954
2955
2956 /****************************************************************************/
2957 /* Verifies that NVRAM is accessible and contains valid data.               */
2958 /*                                                                          */
2959 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2960 /* correct.                                                                 */
2961 /*                                                                          */
2962 /* Returns:                                                                 */
2963 /*   0 on success, positive value on failure.                               */
2964 /****************************************************************************/
2965 static int
2966 bce_nvram_test(struct bce_softc *sc)
2967 {
2968         u32 buf[BCE_NVRAM_SIZE / 4];
2969         u8 *data = (u8 *) buf;
2970         int rc = 0;
2971         u32 magic, csum;
2972
2973         DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2974
2975         /*
2976          * Check that the device NVRAM is valid by reading
2977          * the magic value at offset 0.
2978          */
2979         if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2980                 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2981                     __FILE__, __LINE__);
2982                 goto bce_nvram_test_exit;
2983         }
2984
2985         /*
2986          * Verify that offset 0 of the NVRAM contains
2987          * a valid magic number.
2988          */
2989         magic = bce_be32toh(buf[0]);
2990         if (magic != BCE_NVRAM_MAGIC) {
2991                 rc = ENODEV;
2992                 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2993                     "Expected: 0x%08X, Found: 0x%08X\n",
2994                     __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2995                 goto bce_nvram_test_exit;
2996         }
2997
2998         /*
2999          * Verify that the device NVRAM includes valid
3000          * configuration data.
3001          */
3002         if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
3003                 BCE_PRINTF("%s(%d): Unable to read manufacturing "
3004                     "Information from  NVRAM!\n", __FILE__, __LINE__);
3005                 goto bce_nvram_test_exit;
3006         }
3007
3008         csum = ether_crc32_le(data, 0x100);
3009         if (csum != BCE_CRC32_RESIDUAL) {
3010                 rc = ENODEV;
3011                 BCE_PRINTF("%s(%d): Invalid manufacturing information "
3012                     "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
3013                     __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
3014                 goto bce_nvram_test_exit;
3015         }
3016
3017         csum = ether_crc32_le(data + 0x100, 0x100);
3018         if (csum != BCE_CRC32_RESIDUAL) {
3019                 rc = ENODEV;
3020                 BCE_PRINTF("%s(%d): Invalid feature configuration "
3021                     "information NVRAM CRC! Expected: 0x%08X, "
3022                     "Found: 08%08X\n", __FILE__, __LINE__,
3023                     BCE_CRC32_RESIDUAL, csum);
3024         }
3025
3026 bce_nvram_test_exit:
3027         DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
3028         return rc;
3029 }
3030
3031
3032 /****************************************************************************/
3033 /* Calculates the size of the buffers to allocate based on the MTU.         */
3034 /*                                                                          */
3035 /* Returns:                                                                 */
3036 /*   Nothing.                                                               */
3037 /****************************************************************************/
3038 static void
3039 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
3040 {
3041         DBENTER(BCE_VERBOSE_LOAD);
3042
3043         /* Use a single allocation type when header splitting enabled. */
3044         if (bce_hdr_split == TRUE) {
3045                 sc->rx_bd_mbuf_alloc_size = MHLEN;
3046                 /* Make sure offset is 16 byte aligned for hardware. */
3047                 sc->rx_bd_mbuf_align_pad =
3048                         roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
3049                 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
3050                         sc->rx_bd_mbuf_align_pad;
3051         } else {
3052                 if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
3053                     ETHER_CRC_LEN) > MCLBYTES) {
3054                         /* Setup for jumbo RX buffer allocations. */
3055                         sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
3056                         sc->rx_bd_mbuf_align_pad  =
3057                                 roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3058                         sc->rx_bd_mbuf_data_len =
3059                             sc->rx_bd_mbuf_alloc_size -
3060                             sc->rx_bd_mbuf_align_pad;
3061                 } else {
3062                         /* Setup for standard RX buffer allocations. */
3063                         sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3064                         sc->rx_bd_mbuf_align_pad  =
3065                             roundup2(MCLBYTES, 16) - MCLBYTES;
3066                         sc->rx_bd_mbuf_data_len =
3067                             sc->rx_bd_mbuf_alloc_size -
3068                             sc->rx_bd_mbuf_align_pad;
3069                 }
3070         }
3071
3072 //      DBPRINT(sc, BCE_INFO_LOAD,
3073         DBPRINT(sc, BCE_WARN,
3074            "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3075            "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3076            sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3077            sc->rx_bd_mbuf_align_pad);
3078
3079         DBEXIT(BCE_VERBOSE_LOAD);
3080 }
3081
3082 /****************************************************************************/
3083 /* Identifies the current media type of the controller and sets the PHY     */
3084 /* address.                                                                 */
3085 /*                                                                          */
3086 /* Returns:                                                                 */
3087 /*   Nothing.                                                               */
3088 /****************************************************************************/
3089 static void
3090 bce_get_media(struct bce_softc *sc)
3091 {
3092         u32 val;
3093
3094         DBENTER(BCE_VERBOSE_PHY);
3095
3096         /* Assume PHY address for copper controllers. */
3097         sc->bce_phy_addr = 1;
3098
3099         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3100                 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3101                 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3102                 u32 strap;
3103
3104                 /*
3105                  * The BCM5709S is software configurable
3106                  * for Copper or SerDes operation.
3107                  */
3108                 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3109                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3110                             "for copper.\n");
3111                         goto bce_get_media_exit;
3112                 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3113                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3114                             "for dual media.\n");
3115                         sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3116                         goto bce_get_media_exit;
3117                 }
3118
3119                 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3120                         strap = (val &
3121                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3122                 else
3123                         strap = (val &
3124                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3125
3126                 if (pci_get_function(sc->bce_dev) == 0) {
3127                         switch (strap) {
3128                         case 0x4:
3129                         case 0x5:
3130                         case 0x6:
3131                                 DBPRINT(sc, BCE_INFO_LOAD,
3132                                     "BCM5709 s/w configured for SerDes.\n");
3133                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3134                                 break;
3135                         default:
3136                                 DBPRINT(sc, BCE_INFO_LOAD,
3137                                     "BCM5709 s/w configured for Copper.\n");
3138                                 break;
3139                         }
3140                 } else {
3141                         switch (strap) {
3142                         case 0x1:
3143                         case 0x2:
3144                         case 0x4:
3145                                 DBPRINT(sc, BCE_INFO_LOAD,
3146                                     "BCM5709 s/w configured for SerDes.\n");
3147                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3148                                 break;
3149                         default:
3150                                 DBPRINT(sc, BCE_INFO_LOAD,
3151                                     "BCM5709 s/w configured for Copper.\n");
3152                                 break;
3153                         }
3154                 }
3155
3156         } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3157                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3158
3159         if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3160
3161                 sc->bce_flags |= BCE_NO_WOL_FLAG;
3162
3163                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3164                         sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3165
3166                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3167                         /* 5708S/09S/16S use a separate PHY for SerDes. */
3168                         sc->bce_phy_addr = 2;
3169
3170                         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3171                         if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3172                                 sc->bce_phy_flags |=
3173                                     BCE_PHY_2_5G_CAPABLE_FLAG;
3174                                 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3175                                     "capable adapter\n");
3176                         }
3177                 }
3178         } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3179             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3180                 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3181
3182 bce_get_media_exit:
3183         DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3184                 "Using PHY address %d.\n", sc->bce_phy_addr);
3185
3186         DBEXIT(BCE_VERBOSE_PHY);
3187 }
3188
3189
3190 /****************************************************************************/
3191 /* Performs PHY initialization required before MII drivers access the       */
3192 /* device.                                                                  */
3193 /*                                                                          */
3194 /* Returns:                                                                 */
3195 /*   Nothing.                                                               */
3196 /****************************************************************************/
3197 static void
3198 bce_init_media(struct bce_softc *sc)
3199 {
3200         if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3201             BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3202                 /*
3203                  * Configure 5709S/5716S PHYs to use traditional IEEE
3204                  * Clause 22 method. Otherwise we have no way to attach
3205                  * the PHY in mii(4) layer. PHY specific configuration
3206                  * is done in mii layer.
3207                  */
3208
3209                 /* Select auto-negotiation MMD of the PHY. */
3210                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3211                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3212                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3213                     BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3214
3215                 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3216                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3217                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3218         }
3219 }
3220
3221
3222 /****************************************************************************/
3223 /* Free any DMA memory owned by the driver.                                 */
3224 /*                                                                          */
3225 /* Scans through each data structre that requires DMA memory and frees      */
3226 /* the memory if allocated.                                                 */
3227 /*                                                                          */
3228 /* Returns:                                                                 */
3229 /*   Nothing.                                                               */
3230 /****************************************************************************/
3231 static void
3232 bce_dma_free(struct bce_softc *sc)
3233 {
3234         int i;
3235
3236         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3237
3238         /* Free, unmap, and destroy the status block. */
3239         if (sc->status_block_paddr != 0) {
3240                 bus_dmamap_unload(
3241                     sc->status_tag,
3242                     sc->status_map);
3243                 sc->status_block_paddr = 0;
3244         }
3245
3246         if (sc->status_block != NULL) {
3247                 bus_dmamem_free(
3248                    sc->status_tag,
3249                     sc->status_block,
3250                     sc->status_map);
3251                 sc->status_block = NULL;
3252         }
3253
3254         if (sc->status_tag != NULL) {
3255                 bus_dma_tag_destroy(sc->status_tag);
3256                 sc->status_tag = NULL;
3257         }
3258
3259
3260         /* Free, unmap, and destroy the statistics block. */
3261         if (sc->stats_block_paddr != 0) {
3262                 bus_dmamap_unload(
3263                     sc->stats_tag,
3264                     sc->stats_map);
3265                 sc->stats_block_paddr = 0;
3266         }
3267
3268         if (sc->stats_block != NULL) {
3269                 bus_dmamem_free(
3270                     sc->stats_tag,
3271                     sc->stats_block,
3272                     sc->stats_map);
3273                 sc->stats_block = NULL;
3274         }
3275
3276         if (sc->stats_tag != NULL) {
3277                 bus_dma_tag_destroy(sc->stats_tag);
3278                 sc->stats_tag = NULL;
3279         }
3280
3281
3282         /* Free, unmap and destroy all context memory pages. */
3283         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3284                 for (i = 0; i < sc->ctx_pages; i++ ) {
3285                         if (sc->ctx_paddr[i] != 0) {
3286                                 bus_dmamap_unload(
3287                                     sc->ctx_tag,
3288                                     sc->ctx_map[i]);
3289                                 sc->ctx_paddr[i] = 0;
3290                         }
3291
3292                         if (sc->ctx_block[i] != NULL) {
3293                                 bus_dmamem_free(
3294                                     sc->ctx_tag,
3295                                     sc->ctx_block[i],
3296                                     sc->ctx_map[i]);
3297                                 sc->ctx_block[i] = NULL;
3298                         }
3299                 }
3300
3301                 /* Destroy the context memory tag. */
3302                 if (sc->ctx_tag != NULL) {
3303                         bus_dma_tag_destroy(sc->ctx_tag);
3304                         sc->ctx_tag = NULL;
3305                 }
3306         }
3307
3308
3309         /* Free, unmap and destroy all TX buffer descriptor chain pages. */
3310         for (i = 0; i < sc->tx_pages; i++ ) {
3311                 if (sc->tx_bd_chain_paddr[i] != 0) {
3312                         bus_dmamap_unload(
3313                             sc->tx_bd_chain_tag,
3314                             sc->tx_bd_chain_map[i]);
3315                         sc->tx_bd_chain_paddr[i] = 0;
3316                 }
3317
3318                 if (sc->tx_bd_chain[i] != NULL) {
3319                         bus_dmamem_free(
3320                             sc->tx_bd_chain_tag,
3321                             sc->tx_bd_chain[i],
3322                             sc->tx_bd_chain_map[i]);
3323                         sc->tx_bd_chain[i] = NULL;
3324                 }
3325         }
3326
3327         /* Destroy the TX buffer descriptor tag. */
3328         if (sc->tx_bd_chain_tag != NULL) {
3329                 bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3330                 sc->tx_bd_chain_tag = NULL;
3331         }
3332
3333
3334         /* Free, unmap and destroy all RX buffer descriptor chain pages. */
3335         for (i = 0; i < sc->rx_pages; i++ ) {
3336                 if (sc->rx_bd_chain_paddr[i] != 0) {
3337                         bus_dmamap_unload(
3338                             sc->rx_bd_chain_tag,
3339                             sc->rx_bd_chain_map[i]);
3340                         sc->rx_bd_chain_paddr[i] = 0;
3341                 }
3342
3343                 if (sc->rx_bd_chain[i] != NULL) {
3344                         bus_dmamem_free(
3345                             sc->rx_bd_chain_tag,
3346                             sc->rx_bd_chain[i],
3347                             sc->rx_bd_chain_map[i]);
3348                         sc->rx_bd_chain[i] = NULL;
3349                 }
3350         }
3351
3352         /* Destroy the RX buffer descriptor tag. */
3353         if (sc->rx_bd_chain_tag != NULL) {
3354                 bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3355                 sc->rx_bd_chain_tag = NULL;
3356         }
3357
3358
3359         /* Free, unmap and destroy all page buffer descriptor chain pages. */
3360         if (bce_hdr_split == TRUE) {
3361                 for (i = 0; i < sc->pg_pages; i++ ) {
3362                         if (sc->pg_bd_chain_paddr[i] != 0) {
3363                                 bus_dmamap_unload(
3364                                     sc->pg_bd_chain_tag,
3365                                     sc->pg_bd_chain_map[i]);
3366                                 sc->pg_bd_chain_paddr[i] = 0;
3367                         }
3368
3369                         if (sc->pg_bd_chain[i] != NULL) {
3370                                 bus_dmamem_free(
3371                                     sc->pg_bd_chain_tag,
3372                                     sc->pg_bd_chain[i],
3373                                     sc->pg_bd_chain_map[i]);
3374                                 sc->pg_bd_chain[i] = NULL;
3375                         }
3376                 }
3377
3378                 /* Destroy the page buffer descriptor tag. */
3379                 if (sc->pg_bd_chain_tag != NULL) {
3380                         bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3381                         sc->pg_bd_chain_tag = NULL;
3382                 }
3383         }
3384
3385
3386         /* Unload and destroy the TX mbuf maps. */
3387         for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3388                 if (sc->tx_mbuf_map[i] != NULL) {
3389                         bus_dmamap_unload(sc->tx_mbuf_tag,
3390                             sc->tx_mbuf_map[i]);
3391                         bus_dmamap_destroy(sc->tx_mbuf_tag,
3392                             sc->tx_mbuf_map[i]);
3393                         sc->tx_mbuf_map[i] = NULL;
3394                 }
3395         }
3396
3397         /* Destroy the TX mbuf tag. */
3398         if (sc->tx_mbuf_tag != NULL) {
3399                 bus_dma_tag_destroy(sc->tx_mbuf_tag);
3400                 sc->tx_mbuf_tag = NULL;
3401         }
3402
3403         /* Unload and destroy the RX mbuf maps. */
3404         for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3405                 if (sc->rx_mbuf_map[i] != NULL) {
3406                         bus_dmamap_unload(sc->rx_mbuf_tag,
3407                             sc->rx_mbuf_map[i]);
3408                         bus_dmamap_destroy(sc->rx_mbuf_tag,
3409                             sc->rx_mbuf_map[i]);
3410                         sc->rx_mbuf_map[i] = NULL;
3411                 }
3412         }
3413
3414         /* Destroy the RX mbuf tag. */
3415         if (sc->rx_mbuf_tag != NULL) {
3416                 bus_dma_tag_destroy(sc->rx_mbuf_tag);
3417                 sc->rx_mbuf_tag = NULL;
3418         }
3419
3420         /* Unload and destroy the page mbuf maps. */
3421         if (bce_hdr_split == TRUE) {
3422                 for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3423                         if (sc->pg_mbuf_map[i] != NULL) {
3424                                 bus_dmamap_unload(sc->pg_mbuf_tag,
3425                                     sc->pg_mbuf_map[i]);
3426                                 bus_dmamap_destroy(sc->pg_mbuf_tag,
3427                                     sc->pg_mbuf_map[i]);
3428                                 sc->pg_mbuf_map[i] = NULL;
3429                         }
3430                 }
3431
3432                 /* Destroy the page mbuf tag. */
3433                 if (sc->pg_mbuf_tag != NULL) {
3434                         bus_dma_tag_destroy(sc->pg_mbuf_tag);
3435                         sc->pg_mbuf_tag = NULL;
3436                 }
3437         }
3438
3439         /* Destroy the parent tag */
3440         if (sc->parent_tag != NULL) {
3441                 bus_dma_tag_destroy(sc->parent_tag);
3442                 sc->parent_tag = NULL;
3443         }
3444
3445         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3446 }
3447
3448
3449 /****************************************************************************/
3450 /* Get DMA memory from the OS.                                              */
3451 /*                                                                          */
3452 /* Validates that the OS has provided DMA buffers in response to a          */
3453 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3454 /* When the callback is used the OS will return 0 for the mapping function  */
3455 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3456 /* failures back to the caller.                                             */
3457 /*                                                                          */
3458 /* Returns:                                                                 */
3459 /*   Nothing.                                                               */
3460 /****************************************************************************/
3461 static void
3462 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3463 {
3464         bus_addr_t *busaddr = arg;
3465
3466         KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3467             __FUNCTION__, nseg));
3468         /* Simulate a mapping failure. */
3469         DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3470             error = ENOMEM);
3471
3472         /* ToDo: How to increment debug sim_count variable here? */
3473
3474         /* Check for an error and signal the caller that an error occurred. */
3475         if (error) {
3476                 *busaddr = 0;
3477         } else {
3478                 *busaddr = segs->ds_addr;
3479         }
3480 }
3481
3482
3483 /****************************************************************************/
3484 /* Allocate any DMA memory needed by the driver.                            */
3485 /*                                                                          */
3486 /* Allocates DMA memory needed for the various global structures needed by  */
3487 /* hardware.                                                                */
3488 /*                                                                          */
3489 /* Memory alignment requirements:                                           */
3490 /* +-----------------+----------+----------+----------+----------+          */
3491 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3492 /* +-----------------+----------+----------+----------+----------+          */
3493 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3494 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3495 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3496 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3497 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3498 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3499 /* |Context Memory   |          |          |          |          |          */
3500 /* +-----------------+----------+----------+----------+----------+          */
3501 /*                                                                          */
3502 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3503 /*                                                                          */
3504 /* Returns:                                                                 */
3505 /*   0 for success, positive value for failure.                             */
3506 /****************************************************************************/
3507 static int
3508 bce_dma_alloc(device_t dev)
3509 {
3510         struct bce_softc *sc;
3511         int i, error, rc = 0;
3512         bus_size_t max_size, max_seg_size;
3513         int max_segments;
3514
3515         sc = device_get_softc(dev);
3516
3517         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3518
3519         /*
3520          * Allocate the parent bus DMA tag appropriate for PCI.
3521          */
3522         if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3523             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3524             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3525             &sc->parent_tag)) {
3526                 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3527                     __FILE__, __LINE__);
3528                 rc = ENOMEM;
3529                 goto bce_dma_alloc_exit;
3530         }
3531
3532         /*
3533          * Create a DMA tag for the status block, allocate and clear the
3534          * memory, map the memory into DMA space, and fetch the physical
3535          * address of the block.
3536          */
3537         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3538             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3539             NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3540             0, NULL, NULL, &sc->status_tag)) {
3541                 BCE_PRINTF("%s(%d): Could not allocate status block "
3542                     "DMA tag!\n", __FILE__, __LINE__);
3543                 rc = ENOMEM;
3544                 goto bce_dma_alloc_exit;
3545         }
3546
3547         if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3548             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3549             &sc->status_map)) {
3550                 BCE_PRINTF("%s(%d): Could not allocate status block "
3551                     "DMA memory!\n", __FILE__, __LINE__);
3552                 rc = ENOMEM;
3553                 goto bce_dma_alloc_exit;
3554         }
3555
3556         error = bus_dmamap_load(sc->status_tag, sc->status_map,
3557             sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3558             &sc->status_block_paddr, BUS_DMA_NOWAIT);
3559
3560         if (error || sc->status_block_paddr == 0) {
3561                 BCE_PRINTF("%s(%d): Could not map status block "
3562                     "DMA memory!\n", __FILE__, __LINE__);
3563                 rc = ENOMEM;
3564                 goto bce_dma_alloc_exit;
3565         }
3566
3567         DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3568             __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3569
3570         /*
3571          * Create a DMA tag for the statistics block, allocate and clear the
3572          * memory, map the memory into DMA space, and fetch the physical
3573          * address of the block.
3574          */
3575         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3576             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3577             NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3578             0, NULL, NULL, &sc->stats_tag)) {
3579                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
3580                     "DMA tag!\n", __FILE__, __LINE__);
3581                 rc = ENOMEM;
3582                 goto bce_dma_alloc_exit;
3583         }
3584
3585         if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3586             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3587                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
3588                     "DMA memory!\n", __FILE__, __LINE__);
3589                 rc = ENOMEM;
3590                 goto bce_dma_alloc_exit;
3591         }
3592
3593         error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3594             sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3595             &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3596
3597         if (error || sc->stats_block_paddr == 0) {
3598                 BCE_PRINTF("%s(%d): Could not map statistics block "
3599                     "DMA memory!\n", __FILE__, __LINE__);
3600                 rc = ENOMEM;
3601                 goto bce_dma_alloc_exit;
3602         }
3603
3604         DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3605             __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3606
3607         /* BCM5709 uses host memory as cache for context memory. */
3608         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3609                 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3610                 if (sc->ctx_pages == 0)
3611                         sc->ctx_pages = 1;
3612
3613                 DBRUNIF((sc->ctx_pages > 512),
3614                     BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3615                     __FILE__, __LINE__, sc->ctx_pages));
3616
3617                 /*
3618                  * Create a DMA tag for the context pages,
3619                  * allocate and clear the memory, map the
3620                  * memory into DMA space, and fetch the
3621                  * physical address of the block.
3622                  */
3623                 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3624                     BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3625                     NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3626                     0, NULL, NULL, &sc->ctx_tag)) {
3627                         BCE_PRINTF("%s(%d): Could not allocate CTX "
3628                             "DMA tag!\n", __FILE__, __LINE__);
3629                         rc = ENOMEM;
3630                         goto bce_dma_alloc_exit;
3631                 }
3632
3633                 for (i = 0; i < sc->ctx_pages; i++) {
3634
3635                         if(bus_dmamem_alloc(sc->ctx_tag,
3636                             (void **)&sc->ctx_block[i],
3637                             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3638                             &sc->ctx_map[i])) {
3639                                 BCE_PRINTF("%s(%d): Could not allocate CTX "
3640                                     "DMA memory!\n", __FILE__, __LINE__);
3641                                 rc = ENOMEM;
3642                                 goto bce_dma_alloc_exit;
3643                         }
3644
3645                         error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3646                             sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3647                             &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3648
3649                         if (error || sc->ctx_paddr[i] == 0) {
3650                                 BCE_PRINTF("%s(%d): Could not map CTX "
3651                                     "DMA memory!\n", __FILE__, __LINE__);
3652                                 rc = ENOMEM;
3653                                 goto bce_dma_alloc_exit;
3654                         }
3655
3656                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3657                             "= 0x%jX\n", __FUNCTION__, i,
3658                             (uintmax_t) sc->ctx_paddr[i]);
3659                 }
3660         }
3661
3662         /*
3663          * Create a DMA tag for the TX buffer descriptor chain,
3664          * allocate and clear the  memory, and fetch the
3665          * physical address of the block.
3666          */
3667         if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3668             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3669             BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3670             NULL, NULL, &sc->tx_bd_chain_tag)) {
3671                 BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3672                     "chain DMA tag!\n", __FILE__, __LINE__);
3673                 rc = ENOMEM;
3674                 goto bce_dma_alloc_exit;
3675         }
3676
3677         for (i = 0; i < sc->tx_pages; i++) {
3678
3679                 if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3680                     (void **)&sc->tx_bd_chain[i],
3681                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3682                     &sc->tx_bd_chain_map[i])) {
3683                         BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3684                             "chain DMA memory!\n", __FILE__, __LINE__);
3685                         rc = ENOMEM;
3686                         goto bce_dma_alloc_exit;
3687                 }
3688
3689                 error = bus_dmamap_load(sc->tx_bd_chain_tag,
3690                     sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3691                     BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3692                     &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3693
3694                 if (error || sc->tx_bd_chain_paddr[i] == 0) {
3695                         BCE_PRINTF("%s(%d): Could not map TX descriptor "
3696                             "chain DMA memory!\n", __FILE__, __LINE__);
3697                         rc = ENOMEM;
3698                         goto bce_dma_alloc_exit;
3699                 }
3700
3701                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3702                     "0x%jX\n", __FUNCTION__, i,
3703                     (uintmax_t) sc->tx_bd_chain_paddr[i]);
3704         }
3705
3706         /* Check the required size before mapping to conserve resources. */
3707         if (bce_tso_enable) {
3708                 max_size     = BCE_TSO_MAX_SIZE;
3709                 max_segments = BCE_MAX_SEGMENTS;
3710                 max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3711         } else {
3712                 max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3713                 max_segments = BCE_MAX_SEGMENTS;
3714                 max_seg_size = MCLBYTES;
3715         }
3716
3717         /* Create a DMA tag for TX mbufs. */
3718         if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3719             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3720             max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) {
3721                 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3722                     __FILE__, __LINE__);
3723                 rc = ENOMEM;
3724                 goto bce_dma_alloc_exit;
3725         }
3726
3727         /* Create DMA maps for the TX mbufs clusters. */
3728         for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3729                 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3730                         &sc->tx_mbuf_map[i])) {
3731                         BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3732                             "map!\n", __FILE__, __LINE__);
3733                         rc = ENOMEM;
3734                         goto bce_dma_alloc_exit;
3735                 }
3736         }
3737
3738         /*
3739          * Create a DMA tag for the RX buffer descriptor chain,
3740          * allocate and clear the memory, and fetch the physical
3741          * address of the blocks.
3742          */
3743         if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3744                         BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3745                         sc->max_bus_addr, NULL, NULL,
3746                         BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3747                         0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3748                 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3749                     "DMA tag!\n", __FILE__, __LINE__);
3750                 rc = ENOMEM;
3751                 goto bce_dma_alloc_exit;
3752         }
3753
3754         for (i = 0; i < sc->rx_pages; i++) {
3755
3756                 if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3757                     (void **)&sc->rx_bd_chain[i],
3758                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3759                     &sc->rx_bd_chain_map[i])) {
3760                         BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3761                             "chain DMA memory!\n", __FILE__, __LINE__);
3762                         rc = ENOMEM;
3763                         goto bce_dma_alloc_exit;
3764                 }
3765
3766                 error = bus_dmamap_load(sc->rx_bd_chain_tag,
3767                     sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3768                     BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3769                     &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3770
3771                 if (error || sc->rx_bd_chain_paddr[i] == 0) {
3772                         BCE_PRINTF("%s(%d): Could not map RX descriptor "
3773                             "chain DMA memory!\n", __FILE__, __LINE__);
3774                         rc = ENOMEM;
3775                         goto bce_dma_alloc_exit;
3776                 }
3777
3778                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3779                     "0x%jX\n", __FUNCTION__, i,
3780                     (uintmax_t) sc->rx_bd_chain_paddr[i]);
3781         }
3782
3783         /*
3784          * Create a DMA tag for RX mbufs.
3785          */
3786         if (bce_hdr_split == TRUE)
3787                 max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3788                     MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3789         else
3790                 max_size = MJUM9BYTES;
3791
3792         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3793             "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3794
3795         if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3796             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3797             max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3798                 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3799                     __FILE__, __LINE__);
3800                 rc = ENOMEM;
3801                 goto bce_dma_alloc_exit;
3802         }
3803
3804         /* Create DMA maps for the RX mbuf clusters. */
3805         for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3806                 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3807                     &sc->rx_mbuf_map[i])) {
3808                         BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3809                             "DMA map!\n", __FILE__, __LINE__);
3810                         rc = ENOMEM;
3811                         goto bce_dma_alloc_exit;
3812                 }
3813         }
3814
3815         if (bce_hdr_split == TRUE) {
3816                 /*
3817                  * Create a DMA tag for the page buffer descriptor chain,
3818                  * allocate and clear the memory, and fetch the physical
3819                  * address of the blocks.
3820                  */
3821                 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3822                             BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3823                             NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3824                             0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3825                         BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3826                             "chain DMA tag!\n", __FILE__, __LINE__);
3827                         rc = ENOMEM;
3828                         goto bce_dma_alloc_exit;
3829                 }
3830
3831                 for (i = 0; i < sc->pg_pages; i++) {
3832                         if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3833                             (void **)&sc->pg_bd_chain[i],
3834                             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3835                             &sc->pg_bd_chain_map[i])) {
3836                                 BCE_PRINTF("%s(%d): Could not allocate page "
3837                                     "descriptor chain DMA memory!\n",
3838                                     __FILE__, __LINE__);
3839                                 rc = ENOMEM;
3840                                 goto bce_dma_alloc_exit;
3841                         }
3842
3843                         error = bus_dmamap_load(sc->pg_bd_chain_tag,
3844                             sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3845                             BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3846                             &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3847
3848                         if (error || sc->pg_bd_chain_paddr[i] == 0) {
3849                                 BCE_PRINTF("%s(%d): Could not map page descriptor "
3850                                         "chain DMA memory!\n", __FILE__, __LINE__);
3851                                 rc = ENOMEM;
3852                                 goto bce_dma_alloc_exit;
3853                         }
3854
3855                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3856                                 "0x%jX\n", __FUNCTION__, i,
3857                                 (uintmax_t) sc->pg_bd_chain_paddr[i]);
3858                 }
3859
3860                 /*
3861                  * Create a DMA tag for page mbufs.
3862                  */
3863                 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3864                     sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3865                     1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3866                         BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3867                                 "DMA tag!\n", __FILE__, __LINE__);
3868                         rc = ENOMEM;
3869                         goto bce_dma_alloc_exit;
3870                 }
3871
3872                 /* Create DMA maps for the page mbuf clusters. */
3873                 for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3874                         if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3875                                 &sc->pg_mbuf_map[i])) {
3876                                 BCE_PRINTF("%s(%d): Unable to create page mbuf "
3877                                         "DMA map!\n", __FILE__, __LINE__);
3878                                 rc = ENOMEM;
3879                                 goto bce_dma_alloc_exit;
3880                         }
3881                 }
3882         }
3883
3884 bce_dma_alloc_exit:
3885         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3886         return(rc);
3887 }
3888
3889
3890 /****************************************************************************/
3891 /* Release all resources used by the driver.                                */
3892 /*                                                                          */
3893 /* Releases all resources acquired by the driver including interrupts,      */
3894 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3895 /*                                                                          */
3896 /* Returns:                                                                 */
3897 /*   Nothing.                                                               */
3898 /****************************************************************************/
3899 static void
3900 bce_release_resources(struct bce_softc *sc)
3901 {
3902         device_t dev;
3903
3904         DBENTER(BCE_VERBOSE_RESET);
3905
3906         dev = sc->bce_dev;
3907
3908         bce_dma_free(sc);
3909
3910         if (sc->bce_intrhand != NULL) {
3911                 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3912                 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3913         }
3914
3915         if (sc->bce_res_irq != NULL) {
3916                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3917                 bus_release_resource(dev, SYS_RES_IRQ,
3918                     rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3919         }
3920
3921         if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3922                 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3923                 pci_release_msi(dev);
3924         }
3925
3926         if (sc->bce_res_mem != NULL) {
3927                 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3928                     bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3929                     sc->bce_res_mem);
3930         }
3931
3932         if (sc->bce_ifp != NULL) {
3933                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3934                 if_free(sc->bce_ifp);
3935         }
3936
3937         if (mtx_initialized(&sc->bce_mtx))
3938                 BCE_LOCK_DESTROY(sc);
3939
3940         DBEXIT(BCE_VERBOSE_RESET);
3941 }
3942
3943
3944 /****************************************************************************/
3945 /* Firmware synchronization.                                                */
3946 /*                                                                          */
3947 /* Before performing certain events such as a chip reset, synchronize with  */
3948 /* the firmware first.                                                      */
3949 /*                                                                          */
3950 /* Returns:                                                                 */
3951 /*   0 for success, positive value for failure.                             */
3952 /****************************************************************************/
3953 static int
3954 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3955 {
3956         int i, rc = 0;
3957         u32 val;
3958
3959         DBENTER(BCE_VERBOSE_RESET);
3960
3961         /* Don't waste any time if we've timed out before. */
3962         if (sc->bce_fw_timed_out == TRUE) {
3963                 rc = EBUSY;
3964                 goto bce_fw_sync_exit;
3965         }
3966
3967         /* Increment the message sequence number. */
3968         sc->bce_fw_wr_seq++;
3969         msg_data |= sc->bce_fw_wr_seq;
3970
3971         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3972             "0x%08X\n", msg_data);
3973
3974         /* Send the message to the bootcode driver mailbox. */
3975         bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3976
3977         /* Wait for the bootcode to acknowledge the message. */
3978         for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3979                 /* Check for a response in the bootcode firmware mailbox. */
3980                 val = bce_shmem_rd(sc, BCE_FW_MB);
3981                 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3982                         break;
3983                 DELAY(1000);
3984         }
3985
3986         /* If we've timed out, tell bootcode that we've stopped waiting. */
3987         if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3988             ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3989
3990                 BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3991                     "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3992
3993                 msg_data &= ~BCE_DRV_MSG_CODE;
3994                 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3995
3996                 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3997
3998                 sc->bce_fw_timed_out = TRUE;
3999                 rc = EBUSY;
4000         }
4001
4002 bce_fw_sync_exit:
4003         DBEXIT(BCE_VERBOSE_RESET);
4004         return (rc);
4005 }
4006
4007
4008 /****************************************************************************/
4009 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
4010 /*                                                                          */
4011 /* Returns:                                                                 */
4012 /*   Nothing.                                                               */
4013 /****************************************************************************/
4014 static void
4015 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
4016         u32 rv2p_code_len, u32 rv2p_proc)
4017 {
4018         int i;
4019         u32 val;
4020
4021         DBENTER(BCE_VERBOSE_RESET);
4022
4023         /* Set the page size used by RV2P. */
4024         if (rv2p_proc == RV2P_PROC2) {
4025                 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
4026         }
4027
4028         for (i = 0; i < rv2p_code_len; i += 8) {
4029                 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
4030                 rv2p_code++;
4031                 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
4032                 rv2p_code++;
4033
4034                 if (rv2p_proc == RV2P_PROC1) {
4035                         val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
4036                         REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
4037                 }
4038                 else {
4039                         val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
4040                         REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
4041                 }
4042         }
4043
4044         /* Reset the processor, un-stall is done later. */
4045         if (rv2p_proc == RV2P_PROC1) {
4046                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
4047         }
4048         else {
4049                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
4050         }
4051
4052         DBEXIT(BCE_VERBOSE_RESET);
4053 }
4054
4055
4056 /****************************************************************************/
4057 /* Load RISC processor firmware.                                            */
4058 /*                                                                          */
4059 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
4060 /* associated with a particular processor.                                  */
4061 /*                                                                          */
4062 /* Returns:                                                                 */
4063 /*   Nothing.                                                               */
4064 /****************************************************************************/
4065 static void
4066 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
4067         struct fw_info *fw)
4068 {
4069         u32 offset;
4070
4071         DBENTER(BCE_VERBOSE_RESET);
4072
4073     bce_halt_cpu(sc, cpu_reg);
4074
4075         /* Load the Text area. */
4076         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4077         if (fw->text) {
4078                 int j;
4079
4080                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4081                         REG_WR_IND(sc, offset, fw->text[j]);
4082                 }
4083         }
4084
4085         /* Load the Data area. */
4086         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4087         if (fw->data) {
4088                 int j;
4089
4090                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4091                         REG_WR_IND(sc, offset, fw->data[j]);
4092                 }
4093         }
4094
4095         /* Load the SBSS area. */
4096         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4097         if (fw->sbss) {
4098                 int j;
4099
4100                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4101                         REG_WR_IND(sc, offset, fw->sbss[j]);
4102                 }
4103         }
4104
4105         /* Load the BSS area. */
4106         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4107         if (fw->bss) {
4108                 int j;
4109
4110                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4111                         REG_WR_IND(sc, offset, fw->bss[j]);
4112                 }
4113         }
4114
4115         /* Load the Read-Only area. */
4116         offset = cpu_reg->spad_base +
4117                 (fw->rodata_addr - cpu_reg->mips_view_base);
4118         if (fw->rodata) {
4119                 int j;
4120
4121                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4122                         REG_WR_IND(sc, offset, fw->rodata[j]);
4123                 }
4124         }
4125
4126         /* Clear the pre-fetch instruction and set the FW start address. */
4127         REG_WR_IND(sc, cpu_reg->inst, 0);
4128         REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4129
4130         DBEXIT(BCE_VERBOSE_RESET);
4131 }
4132
4133
4134 /****************************************************************************/
4135 /* Starts the RISC processor.                                               */
4136 /*                                                                          */
4137 /* Assumes the CPU starting address has already been set.                   */
4138 /*                                                                          */
4139 /* Returns:                                                                 */
4140 /*   Nothing.                                                               */
4141 /****************************************************************************/
4142 static void
4143 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4144 {
4145         u32 val;
4146
4147         DBENTER(BCE_VERBOSE_RESET);
4148
4149         /* Start the CPU. */
4150         val = REG_RD_IND(sc, cpu_reg->mode);
4151         val &= ~cpu_reg->mode_value_halt;
4152         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4153         REG_WR_IND(sc, cpu_reg->mode, val);
4154
4155         DBEXIT(BCE_VERBOSE_RESET);
4156 }
4157
4158
4159 /****************************************************************************/
4160 /* Halts the RISC processor.                                                */
4161 /*                                                                          */
4162 /* Returns:                                                                 */
4163 /*   Nothing.                                                               */
4164 /****************************************************************************/
4165 static void
4166 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4167 {
4168         u32 val;
4169
4170         DBENTER(BCE_VERBOSE_RESET);
4171
4172         /* Halt the CPU. */
4173         val = REG_RD_IND(sc, cpu_reg->mode);
4174         val |= cpu_reg->mode_value_halt;
4175         REG_WR_IND(sc, cpu_reg->mode, val);
4176         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4177
4178         DBEXIT(BCE_VERBOSE_RESET);
4179 }
4180
4181
4182 /****************************************************************************/
4183 /* Initialize the RX CPU.                                                   */
4184 /*                                                                          */
4185 /* Returns:                                                                 */
4186 /*   Nothing.                                                               */
4187 /****************************************************************************/
4188 static void
4189 bce_start_rxp_cpu(struct bce_softc *sc)
4190 {
4191         struct cpu_reg cpu_reg;
4192
4193         DBENTER(BCE_VERBOSE_RESET);
4194
4195         cpu_reg.mode = BCE_RXP_CPU_MODE;
4196         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4197         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4198         cpu_reg.state = BCE_RXP_CPU_STATE;
4199         cpu_reg.state_value_clear = 0xffffff;
4200         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4201         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4202         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4203         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4204         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4205         cpu_reg.spad_base = BCE_RXP_SCRATCH;
4206         cpu_reg.mips_view_base = 0x8000000;
4207
4208         DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4209         bce_start_cpu(sc, &cpu_reg);
4210
4211         DBEXIT(BCE_VERBOSE_RESET);
4212 }
4213
4214
4215 /****************************************************************************/
4216 /* Initialize the RX CPU.                                                   */
4217 /*                                                                          */
4218 /* Returns:                                                                 */
4219 /*   Nothing.                                                               */
4220 /****************************************************************************/
4221 static void
4222 bce_init_rxp_cpu(struct bce_softc *sc)
4223 {
4224         struct cpu_reg cpu_reg;
4225         struct fw_info fw;
4226
4227         DBENTER(BCE_VERBOSE_RESET);
4228
4229         cpu_reg.mode = BCE_RXP_CPU_MODE;
4230         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4231         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4232         cpu_reg.state = BCE_RXP_CPU_STATE;
4233         cpu_reg.state_value_clear = 0xffffff;
4234         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4235         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4236         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4237         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4238         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4239         cpu_reg.spad_base = BCE_RXP_SCRATCH;
4240         cpu_reg.mips_view_base = 0x8000000;
4241
4242         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4243                 fw.ver_major = bce_RXP_b09FwReleaseMajor;
4244                 fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4245                 fw.ver_fix = bce_RXP_b09FwReleaseFix;
4246                 fw.start_addr = bce_RXP_b09FwStartAddr;
4247
4248                 fw.text_addr = bce_RXP_b09FwTextAddr;
4249                 fw.text_len = bce_RXP_b09FwTextLen;
4250                 fw.text_index = 0;
4251                 fw.text = bce_RXP_b09FwText;
4252
4253                 fw.data_addr = bce_RXP_b09FwDataAddr;
4254                 fw.data_len = bce_RXP_b09FwDataLen;
4255                 fw.data_index = 0;
4256                 fw.data = bce_RXP_b09FwData;
4257
4258                 fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4259                 fw.sbss_len = bce_RXP_b09FwSbssLen;
4260                 fw.sbss_index = 0;
4261                 fw.sbss = bce_RXP_b09FwSbss;
4262
4263                 fw.bss_addr = bce_RXP_b09FwBssAddr;
4264                 fw.bss_len = bce_RXP_b09FwBssLen;
4265                 fw.bss_index = 0;
4266                 fw.bss = bce_RXP_b09FwBss;
4267
4268                 fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4269                 fw.rodata_len = bce_RXP_b09FwRodataLen;
4270                 fw.rodata_index = 0;
4271                 fw.rodata = bce_RXP_b09FwRodata;
4272         } else {
4273                 fw.ver_major = bce_RXP_b06FwReleaseMajor;
4274                 fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4275                 fw.ver_fix = bce_RXP_b06FwReleaseFix;
4276                 fw.start_addr = bce_RXP_b06FwStartAddr;
4277
4278                 fw.text_addr = bce_RXP_b06FwTextAddr;
4279                 fw.text_len = bce_RXP_b06FwTextLen;
4280                 fw.text_index = 0;
4281                 fw.text = bce_RXP_b06FwText;
4282
4283                 fw.data_addr = bce_RXP_b06FwDataAddr;
4284                 fw.data_len = bce_RXP_b06FwDataLen;
4285                 fw.data_index = 0;
4286                 fw.data = bce_RXP_b06FwData;
4287
4288                 fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4289                 fw.sbss_len = bce_RXP_b06FwSbssLen;
4290                 fw.sbss_index = 0;
4291                 fw.sbss = bce_RXP_b06FwSbss;
4292
4293                 fw.bss_addr = bce_RXP_b06FwBssAddr;
4294                 fw.bss_len = bce_RXP_b06FwBssLen;
4295                 fw.bss_index = 0;
4296                 fw.bss = bce_RXP_b06FwBss;
4297
4298                 fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4299                 fw.rodata_len = bce_RXP_b06FwRodataLen;
4300                 fw.rodata_index = 0;
4301                 fw.rodata = bce_RXP_b06FwRodata;
4302         }
4303
4304         DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4305         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4306
4307     /* Delay RXP start until initialization is complete. */
4308
4309         DBEXIT(BCE_VERBOSE_RESET);
4310 }
4311
4312
4313 /****************************************************************************/
4314 /* Initialize the TX CPU.                                                   */
4315 /*                                                                          */
4316 /* Returns:                                                                 */
4317 /*   Nothing.                                                               */
4318 /****************************************************************************/
4319 static void
4320 bce_init_txp_cpu(struct bce_softc *sc)
4321 {
4322         struct cpu_reg cpu_reg;
4323         struct fw_info fw;
4324
4325         DBENTER(BCE_VERBOSE_RESET);
4326
4327         cpu_reg.mode = BCE_TXP_CPU_MODE;
4328         cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4329         cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4330         cpu_reg.state = BCE_TXP_CPU_STATE;
4331         cpu_reg.state_value_clear = 0xffffff;
4332         cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4333         cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4334         cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4335         cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4336         cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4337         cpu_reg.spad_base = BCE_TXP_SCRATCH;
4338         cpu_reg.mips_view_base = 0x8000000;
4339
4340         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4341                 fw.ver_major = bce_TXP_b09FwReleaseMajor;
4342                 fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4343                 fw.ver_fix = bce_TXP_b09FwReleaseFix;
4344                 fw.start_addr = bce_TXP_b09FwStartAddr;
4345
4346                 fw.text_addr = bce_TXP_b09FwTextAddr;
4347                 fw.text_len = bce_TXP_b09FwTextLen;
4348                 fw.text_index = 0;
4349                 fw.text = bce_TXP_b09FwText;
4350
4351                 fw.data_addr = bce_TXP_b09FwDataAddr;
4352                 fw.data_len = bce_TXP_b09FwDataLen;
4353                 fw.data_index = 0;
4354                 fw.data = bce_TXP_b09FwData;
4355
4356                 fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4357                 fw.sbss_len = bce_TXP_b09FwSbssLen;
4358                 fw.sbss_index = 0;
4359                 fw.sbss = bce_TXP_b09FwSbss;
4360
4361                 fw.bss_addr = bce_TXP_b09FwBssAddr;
4362                 fw.bss_len = bce_TXP_b09FwBssLen;
4363                 fw.bss_index = 0;
4364                 fw.bss = bce_TXP_b09FwBss;
4365
4366                 fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4367                 fw.rodata_len = bce_TXP_b09FwRodataLen;
4368                 fw.rodata_index = 0;
4369                 fw.rodata = bce_TXP_b09FwRodata;
4370         } else {
4371                 fw.ver_major = bce_TXP_b06FwReleaseMajor;
4372                 fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4373                 fw.ver_fix = bce_TXP_b06FwReleaseFix;
4374                 fw.start_addr = bce_TXP_b06FwStartAddr;
4375
4376                 fw.text_addr = bce_TXP_b06FwTextAddr;
4377                 fw.text_len = bce_TXP_b06FwTextLen;
4378                 fw.text_index = 0;
4379                 fw.text = bce_TXP_b06FwText;
4380
4381                 fw.data_addr = bce_TXP_b06FwDataAddr;
4382                 fw.data_len = bce_TXP_b06FwDataLen;
4383                 fw.data_index = 0;
4384                 fw.data = bce_TXP_b06FwData;
4385
4386                 fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4387                 fw.sbss_len = bce_TXP_b06FwSbssLen;
4388                 fw.sbss_index = 0;
4389                 fw.sbss = bce_TXP_b06FwSbss;
4390
4391                 fw.bss_addr = bce_TXP_b06FwBssAddr;
4392                 fw.bss_len = bce_TXP_b06FwBssLen;
4393                 fw.bss_index = 0;
4394                 fw.bss = bce_TXP_b06FwBss;
4395
4396                 fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4397                 fw.rodata_len = bce_TXP_b06FwRodataLen;
4398                 fw.rodata_index = 0;
4399                 fw.rodata = bce_TXP_b06FwRodata;
4400         }
4401
4402         DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4403         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4404     bce_start_cpu(sc, &cpu_reg);
4405
4406         DBEXIT(BCE_VERBOSE_RESET);
4407 }
4408
4409
4410 /****************************************************************************/
4411 /* Initialize the TPAT CPU.                                                 */
4412 /*                                                                          */
4413 /* Returns:                                                                 */
4414 /*   Nothing.                                                               */
4415 /****************************************************************************/
4416 static void
4417 bce_init_tpat_cpu(struct bce_softc *sc)
4418 {
4419         struct cpu_reg cpu_reg;
4420         struct fw_info fw;
4421
4422         DBENTER(BCE_VERBOSE_RESET);
4423
4424         cpu_reg.mode = BCE_TPAT_CPU_MODE;
4425         cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4426         cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4427         cpu_reg.state = BCE_TPAT_CPU_STATE;
4428         cpu_reg.state_value_clear = 0xffffff;
4429         cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4430         cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4431         cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4432         cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4433         cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4434         cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4435         cpu_reg.mips_view_base = 0x8000000;
4436
4437         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4438                 fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4439                 fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4440                 fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4441                 fw.start_addr = bce_TPAT_b09FwStartAddr;
4442
4443                 fw.text_addr = bce_TPAT_b09FwTextAddr;
4444                 fw.text_len = bce_TPAT_b09FwTextLen;
4445                 fw.text_index = 0;
4446                 fw.text = bce_TPAT_b09FwText;
4447
4448                 fw.data_addr = bce_TPAT_b09FwDataAddr;
4449                 fw.data_len = bce_TPAT_b09FwDataLen;
4450                 fw.data_index = 0;
4451                 fw.data = bce_TPAT_b09FwData;
4452
4453                 fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4454                 fw.sbss_len = bce_TPAT_b09FwSbssLen;
4455                 fw.sbss_index = 0;
4456                 fw.sbss = bce_TPAT_b09FwSbss;
4457
4458                 fw.bss_addr = bce_TPAT_b09FwBssAddr;
4459                 fw.bss_len = bce_TPAT_b09FwBssLen;
4460                 fw.bss_index = 0;
4461                 fw.bss = bce_TPAT_b09FwBss;
4462
4463                 fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4464                 fw.rodata_len = bce_TPAT_b09FwRodataLen;
4465                 fw.rodata_index = 0;
4466                 fw.rodata = bce_TPAT_b09FwRodata;
4467         } else {
4468                 fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4469                 fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4470                 fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4471                 fw.start_addr = bce_TPAT_b06FwStartAddr;
4472
4473                 fw.text_addr = bce_TPAT_b06FwTextAddr;
4474                 fw.text_len = bce_TPAT_b06FwTextLen;
4475                 fw.text_index = 0;
4476                 fw.text = bce_TPAT_b06FwText;
4477
4478                 fw.data_addr = bce_TPAT_b06FwDataAddr;
4479                 fw.data_len = bce_TPAT_b06FwDataLen;
4480                 fw.data_index = 0;
4481                 fw.data = bce_TPAT_b06FwData;
4482
4483                 fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4484                 fw.sbss_len = bce_TPAT_b06FwSbssLen;
4485                 fw.sbss_index = 0;
4486                 fw.sbss = bce_TPAT_b06FwSbss;
4487
4488                 fw.bss_addr = bce_TPAT_b06FwBssAddr;
4489                 fw.bss_len = bce_TPAT_b06FwBssLen;
4490                 fw.bss_index = 0;
4491                 fw.bss = bce_TPAT_b06FwBss;
4492
4493                 fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4494                 fw.rodata_len = bce_TPAT_b06FwRodataLen;
4495                 fw.rodata_index = 0;
4496                 fw.rodata = bce_TPAT_b06FwRodata;
4497         }
4498
4499         DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4500         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4501         bce_start_cpu(sc, &cpu_reg);
4502
4503         DBEXIT(BCE_VERBOSE_RESET);
4504 }
4505
4506
4507 /****************************************************************************/
4508 /* Initialize the CP CPU.                                                   */
4509 /*                                                                          */
4510 /* Returns:                                                                 */
4511 /*   Nothing.                                                               */
4512 /****************************************************************************/
4513 static void
4514 bce_init_cp_cpu(struct bce_softc *sc)
4515 {
4516         struct cpu_reg cpu_reg;
4517         struct fw_info fw;
4518
4519         DBENTER(BCE_VERBOSE_RESET);
4520
4521         cpu_reg.mode = BCE_CP_CPU_MODE;
4522         cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4523         cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4524         cpu_reg.state = BCE_CP_CPU_STATE;
4525         cpu_reg.state_value_clear = 0xffffff;
4526         cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4527         cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4528         cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4529         cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4530         cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4531         cpu_reg.spad_base = BCE_CP_SCRATCH;
4532         cpu_reg.mips_view_base = 0x8000000;
4533
4534         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4535                 fw.ver_major = bce_CP_b09FwReleaseMajor;
4536                 fw.ver_minor = bce_CP_b09FwReleaseMinor;
4537                 fw.ver_fix = bce_CP_b09FwReleaseFix;
4538                 fw.start_addr = bce_CP_b09FwStartAddr;
4539
4540                 fw.text_addr = bce_CP_b09FwTextAddr;
4541                 fw.text_len = bce_CP_b09FwTextLen;
4542                 fw.text_index = 0;
4543                 fw.text = bce_CP_b09FwText;
4544
4545                 fw.data_addr = bce_CP_b09FwDataAddr;
4546                 fw.data_len = bce_CP_b09FwDataLen;
4547                 fw.data_index = 0;
4548                 fw.data = bce_CP_b09FwData;
4549
4550                 fw.sbss_addr = bce_CP_b09FwSbssAddr;
4551                 fw.sbss_len = bce_CP_b09FwSbssLen;
4552                 fw.sbss_index = 0;
4553                 fw.sbss = bce_CP_b09FwSbss;
4554
4555                 fw.bss_addr = bce_CP_b09FwBssAddr;
4556                 fw.bss_len = bce_CP_b09FwBssLen;
4557                 fw.bss_index = 0;
4558                 fw.bss = bce_CP_b09FwBss;
4559
4560                 fw.rodata_addr = bce_CP_b09FwRodataAddr;
4561                 fw.rodata_len = bce_CP_b09FwRodataLen;
4562                 fw.rodata_index = 0;
4563                 fw.rodata = bce_CP_b09FwRodata;
4564         } else {
4565                 fw.ver_major = bce_CP_b06FwReleaseMajor;
4566                 fw.ver_minor = bce_CP_b06FwReleaseMinor;
4567                 fw.ver_fix = bce_CP_b06FwReleaseFix;
4568                 fw.start_addr = bce_CP_b06FwStartAddr;
4569
4570                 fw.text_addr = bce_CP_b06FwTextAddr;
4571                 fw.text_len = bce_CP_b06FwTextLen;
4572                 fw.text_index = 0;
4573                 fw.text = bce_CP_b06FwText;
4574
4575                 fw.data_addr = bce_CP_b06FwDataAddr;
4576                 fw.data_len = bce_CP_b06FwDataLen;
4577                 fw.data_index = 0;
4578                 fw.data = bce_CP_b06FwData;
4579
4580                 fw.sbss_addr = bce_CP_b06FwSbssAddr;
4581                 fw.sbss_len = bce_CP_b06FwSbssLen;
4582                 fw.sbss_index = 0;
4583                 fw.sbss = bce_CP_b06FwSbss;
4584
4585                 fw.bss_addr = bce_CP_b06FwBssAddr;
4586                 fw.bss_len = bce_CP_b06FwBssLen;
4587                 fw.bss_index = 0;
4588                 fw.bss = bce_CP_b06FwBss;
4589
4590                 fw.rodata_addr = bce_CP_b06FwRodataAddr;
4591                 fw.rodata_len = bce_CP_b06FwRodataLen;
4592                 fw.rodata_index = 0;
4593                 fw.rodata = bce_CP_b06FwRodata;
4594         }
4595
4596         DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4597         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4598         bce_start_cpu(sc, &cpu_reg);
4599
4600         DBEXIT(BCE_VERBOSE_RESET);
4601 }
4602
4603
4604 /****************************************************************************/
4605 /* Initialize the COM CPU.                                                 */
4606 /*                                                                          */
4607 /* Returns:                                                                 */
4608 /*   Nothing.                                                               */
4609 /****************************************************************************/
4610 static void
4611 bce_init_com_cpu(struct bce_softc *sc)
4612 {
4613         struct cpu_reg cpu_reg;
4614         struct fw_info fw;
4615
4616         DBENTER(BCE_VERBOSE_RESET);
4617
4618         cpu_reg.mode = BCE_COM_CPU_MODE;
4619         cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4620         cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4621         cpu_reg.state = BCE_COM_CPU_STATE;
4622         cpu_reg.state_value_clear = 0xffffff;
4623         cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4624         cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4625         cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4626         cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4627         cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4628         cpu_reg.spad_base = BCE_COM_SCRATCH;
4629         cpu_reg.mips_view_base = 0x8000000;
4630
4631         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4632                 fw.ver_major = bce_COM_b09FwReleaseMajor;
4633                 fw.ver_minor = bce_COM_b09FwReleaseMinor;
4634                 fw.ver_fix = bce_COM_b09FwReleaseFix;
4635                 fw.start_addr = bce_COM_b09FwStartAddr;
4636
4637                 fw.text_addr = bce_COM_b09FwTextAddr;
4638                 fw.text_len = bce_COM_b09FwTextLen;
4639                 fw.text_index = 0;
4640                 fw.text = bce_COM_b09FwText;
4641
4642                 fw.data_addr = bce_COM_b09FwDataAddr;
4643                 fw.data_len = bce_COM_b09FwDataLen;
4644                 fw.data_index = 0;
4645                 fw.data = bce_COM_b09FwData;
4646
4647                 fw.sbss_addr = bce_COM_b09FwSbssAddr;
4648                 fw.sbss_len = bce_COM_b09FwSbssLen;
4649                 fw.sbss_index = 0;
4650                 fw.sbss = bce_COM_b09FwSbss;
4651
4652                 fw.bss_addr = bce_COM_b09FwBssAddr;
4653                 fw.bss_len = bce_COM_b09FwBssLen;
4654                 fw.bss_index = 0;
4655                 fw.bss = bce_COM_b09FwBss;
4656
4657                 fw.rodata_addr = bce_COM_b09FwRodataAddr;
4658                 fw.rodata_len = bce_COM_b09FwRodataLen;
4659                 fw.rodata_index = 0;
4660                 fw.rodata = bce_COM_b09FwRodata;
4661         } else {
4662                 fw.ver_major = bce_COM_b06FwReleaseMajor;
4663                 fw.ver_minor = bce_COM_b06FwReleaseMinor;
4664                 fw.ver_fix = bce_COM_b06FwReleaseFix;
4665                 fw.start_addr = bce_COM_b06FwStartAddr;
4666
4667                 fw.text_addr = bce_COM_b06FwTextAddr;
4668                 fw.text_len = bce_COM_b06FwTextLen;
4669                 fw.text_index = 0;
4670                 fw.text = bce_COM_b06FwText;
4671
4672                 fw.data_addr = bce_COM_b06FwDataAddr;
4673                 fw.data_len = bce_COM_b06FwDataLen;
4674                 fw.data_index = 0;
4675                 fw.data = bce_COM_b06FwData;
4676
4677                 fw.sbss_addr = bce_COM_b06FwSbssAddr;
4678                 fw.sbss_len = bce_COM_b06FwSbssLen;
4679                 fw.sbss_index = 0;
4680                 fw.sbss = bce_COM_b06FwSbss;
4681
4682                 fw.bss_addr = bce_COM_b06FwBssAddr;
4683                 fw.bss_len = bce_COM_b06FwBssLen;
4684                 fw.bss_index = 0;
4685                 fw.bss = bce_COM_b06FwBss;
4686
4687                 fw.rodata_addr = bce_COM_b06FwRodataAddr;
4688                 fw.rodata_len = bce_COM_b06FwRodataLen;
4689                 fw.rodata_index = 0;
4690                 fw.rodata = bce_COM_b06FwRodata;
4691         }
4692
4693         DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4694         bce_load_cpu_fw(sc, &cpu_reg, &fw);
4695         bce_start_cpu(sc, &cpu_reg);
4696
4697         DBEXIT(BCE_VERBOSE_RESET);
4698 }
4699
4700
4701 /****************************************************************************/
4702 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4703 /*                                                                          */
4704 /* Loads the firmware for each CPU and starts the CPU.                      */
4705 /*                                                                          */
4706 /* Returns:                                                                 */
4707 /*   Nothing.                                                               */
4708 /****************************************************************************/
4709 static void
4710 bce_init_cpus(struct bce_softc *sc)
4711 {
4712         DBENTER(BCE_VERBOSE_RESET);
4713
4714         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4715
4716                 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4717                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4718                             sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4719                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4720                             sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4721                 } else {
4722                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4723                             sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4724                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4725                             sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4726                 }
4727
4728         } else {
4729                 bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4730                     sizeof(bce_rv2p_proc1), RV2P_PROC1);
4731                 bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4732                     sizeof(bce_rv2p_proc2), RV2P_PROC2);
4733         }
4734
4735         bce_init_rxp_cpu(sc);
4736         bce_init_txp_cpu(sc);
4737         bce_init_tpat_cpu(sc);
4738         bce_init_com_cpu(sc);
4739         bce_init_cp_cpu(sc);
4740
4741         DBEXIT(BCE_VERBOSE_RESET);
4742 }
4743
4744
4745 /****************************************************************************/
4746 /* Initialize context memory.                                               */
4747 /*                                                                          */
4748 /* Clears the memory associated with each Context ID (CID).                 */
4749 /*                                                                          */
4750 /* Returns:                                                                 */
4751 /*   Nothing.                                                               */
4752 /****************************************************************************/
4753 static int
4754 bce_init_ctx(struct bce_softc *sc)
4755 {
4756         u32 offset, val, vcid_addr;
4757         int i, j, rc, retry_cnt;
4758
4759         rc = 0;
4760         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4761
4762         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4763                 retry_cnt = CTX_INIT_RETRY_COUNT;
4764
4765                 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4766
4767                 /*
4768                  * BCM5709 context memory may be cached
4769                  * in host memory so prepare the host memory
4770                  * for access.
4771                  */
4772                 val = BCE_CTX_COMMAND_ENABLED |
4773                     BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4774                 val |= (BCM_PAGE_BITS - 8) << 16;
4775                 REG_WR(sc, BCE_CTX_COMMAND, val);
4776
4777                 /* Wait for mem init command to complete. */
4778                 for (i = 0; i < retry_cnt; i++) {
4779                         val = REG_RD(sc, BCE_CTX_COMMAND);
4780                         if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4781                                 break;
4782                         DELAY(2);
4783                 }
4784                 if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4785                         BCE_PRINTF("%s(): Context memory initialization failed!\n",
4786                             __FUNCTION__);
4787                         rc = EBUSY;
4788                         goto init_ctx_fail;
4789                 }
4790
4791                 for (i = 0; i < sc->ctx_pages; i++) {
4792                         /* Set the physical address of the context memory. */
4793                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4794                             BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4795                             BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4796                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4797                             BCE_ADDR_HI(sc->ctx_paddr[i]));
4798                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4799                             BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4800
4801                         /* Verify the context memory write was successful. */
4802                         for (j = 0; j < retry_cnt; j++) {
4803                                 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4804                                 if ((val &
4805                                     BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4806                                         break;
4807                                 DELAY(5);
4808                         }
4809                         if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4810                                 BCE_PRINTF("%s(): Failed to initialize "
4811                                     "context page %d!\n", __FUNCTION__, i);
4812                                 rc = EBUSY;
4813                                 goto init_ctx_fail;
4814                         }
4815                 }
4816         } else {
4817
4818                 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4819
4820                 /*
4821                  * For the 5706/5708, context memory is local to
4822                  * the controller, so initialize the controller
4823                  * context memory.
4824                  */
4825
4826                 vcid_addr = GET_CID_ADDR(96);
4827                 while (vcid_addr) {
4828
4829                         vcid_addr -= PHY_CTX_SIZE;
4830
4831                         REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4832                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4833
4834                         for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4835                                 CTX_WR(sc, 0x00, offset, 0);
4836                         }
4837
4838                         REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4839                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4840                 }
4841
4842         }
4843 init_ctx_fail:
4844         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4845         return (rc);
4846 }
4847
4848
4849 /****************************************************************************/
4850 /* Fetch the permanent MAC address of the controller.                       */
4851 /*                                                                          */
4852 /* Returns:                                                                 */
4853 /*   Nothing.                                                               */
4854 /****************************************************************************/
4855 static void
4856 bce_get_mac_addr(struct bce_softc *sc)
4857 {
4858         u32 mac_lo = 0, mac_hi = 0;
4859
4860         DBENTER(BCE_VERBOSE_RESET);
4861
4862         /*
4863          * The NetXtreme II bootcode populates various NIC
4864          * power-on and runtime configuration items in a
4865          * shared memory area.  The factory configured MAC
4866          * address is available from both NVRAM and the
4867          * shared memory area so we'll read the value from
4868          * shared memory for speed.
4869          */
4870
4871         mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4872         mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4873
4874         if ((mac_lo == 0) && (mac_hi == 0)) {
4875                 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4876                     __FILE__, __LINE__);
4877         } else {
4878                 sc->eaddr[0] = (u_char)(mac_hi >> 8);
4879                 sc->eaddr[1] = (u_char)(mac_hi >> 0);
4880                 sc->eaddr[2] = (u_char)(mac_lo >> 24);
4881                 sc->eaddr[3] = (u_char)(mac_lo >> 16);
4882                 sc->eaddr[4] = (u_char)(mac_lo >> 8);
4883                 sc->eaddr[5] = (u_char)(mac_lo >> 0);
4884         }
4885
4886         DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4887             "address = %6D\n", sc->eaddr, ":");
4888         DBEXIT(BCE_VERBOSE_RESET);
4889 }
4890
4891
4892 /****************************************************************************/
4893 /* Program the MAC address.                                                 */
4894 /*                                                                          */
4895 /* Returns:                                                                 */
4896 /*   Nothing.                                                               */
4897 /****************************************************************************/
4898 static void
4899 bce_set_mac_addr(struct bce_softc *sc)
4900 {
4901         u32 val;
4902         u8 *mac_addr = sc->eaddr;
4903
4904         /* ToDo: Add support for setting multiple MAC addresses. */
4905
4906         DBENTER(BCE_VERBOSE_RESET);
4907         DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4908             "%6D\n", sc->eaddr, ":");
4909
4910         val = (mac_addr[0] << 8) | mac_addr[1];
4911
4912         REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4913
4914         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4915             (mac_addr[4] << 8) | mac_addr[5];
4916
4917         REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4918
4919         DBEXIT(BCE_VERBOSE_RESET);
4920 }
4921
4922
4923 /****************************************************************************/
4924 /* Stop the controller.                                                     */
4925 /*                                                                          */
4926 /* Returns:                                                                 */
4927 /*   Nothing.                                                               */
4928 /****************************************************************************/
4929 static void
4930 bce_stop(struct bce_softc *sc)
4931 {
4932         struct ifnet *ifp;
4933
4934         DBENTER(BCE_VERBOSE_RESET);
4935
4936         BCE_LOCK_ASSERT(sc);
4937
4938         ifp = sc->bce_ifp;
4939
4940         callout_stop(&sc->bce_tick_callout);
4941
4942         /* Disable the transmit/receive blocks. */
4943         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4944         REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4945         DELAY(20);
4946
4947         bce_disable_intr(sc);
4948
4949         /* Free RX buffers. */
4950         if (bce_hdr_split == TRUE) {
4951                 bce_free_pg_chain(sc);
4952         }
4953         bce_free_rx_chain(sc);
4954
4955         /* Free TX buffers. */
4956         bce_free_tx_chain(sc);
4957
4958         sc->watchdog_timer = 0;
4959
4960         sc->bce_link_up = FALSE;
4961
4962         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4963
4964         DBEXIT(BCE_VERBOSE_RESET);
4965 }
4966
4967
4968 static int
4969 bce_reset(struct bce_softc *sc, u32 reset_code)
4970 {
4971         u32 emac_mode_save, val;
4972         int i, rc = 0;
4973         static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4974             BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4975
4976         DBENTER(BCE_VERBOSE_RESET);
4977
4978         DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4979             __FUNCTION__, reset_code);
4980
4981         /*
4982          * If ASF/IPMI is operational, then the EMAC Mode register already
4983          * contains appropriate values for the link settings that have
4984          * been auto-negotiated.  Resetting the chip will clobber those
4985          * values.  Save the important bits so we can restore them after
4986          * the reset.
4987          */
4988         emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
4989
4990         /* Wait for pending PCI transactions to complete. */
4991         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4992             BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4993             BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4994             BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4995             BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4996         val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4997         DELAY(5);
4998
4999         /* Disable DMA */
5000         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5001                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5002                 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5003                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5004         }
5005
5006         /* Assume bootcode is running. */
5007         sc->bce_fw_timed_out = FALSE;
5008         sc->bce_drv_cardiac_arrest = FALSE;
5009
5010         /* Give the firmware a chance to prepare for the reset. */
5011         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
5012         if (rc)
5013                 goto bce_reset_exit;
5014
5015         /* Set a firmware reminder that this is a soft reset. */
5016         bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
5017
5018         /* Dummy read to force the chip to complete all current transactions. */
5019         val = REG_RD(sc, BCE_MISC_ID);
5020
5021         /* Chip reset. */
5022         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5023                 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
5024                 REG_RD(sc, BCE_MISC_COMMAND);
5025                 DELAY(5);
5026
5027                 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5028                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5029
5030                 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
5031         } else {
5032                 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5033                     BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
5034                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
5035                 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
5036
5037                 /* Allow up to 30us for reset to complete. */
5038                 for (i = 0; i < 10; i++) {
5039                         val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
5040                         if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5041                             BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
5042                                 break;
5043                         }
5044                         DELAY(10);
5045                 }
5046
5047                 /* Check that reset completed successfully. */
5048                 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
5049                     BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
5050                         BCE_PRINTF("%s(%d): Reset failed!\n",
5051                             __FILE__, __LINE__);
5052                         rc = EBUSY;
5053                         goto bce_reset_exit;
5054                 }
5055         }
5056
5057         /* Make sure byte swapping is properly configured. */
5058         val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
5059         if (val != 0x01020304) {
5060                 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
5061                     __FILE__, __LINE__);
5062                 rc = ENODEV;
5063                 goto bce_reset_exit;
5064         }
5065
5066         /* Just completed a reset, assume that firmware is running again. */
5067         sc->bce_fw_timed_out = FALSE;
5068         sc->bce_drv_cardiac_arrest = FALSE;
5069
5070         /* Wait for the firmware to finish its initialization. */
5071         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
5072         if (rc)
5073                 BCE_PRINTF("%s(%d): Firmware did not complete "
5074                     "initialization!\n", __FILE__, __LINE__);
5075         /* Get firmware capabilities. */
5076         bce_fw_cap_init(sc);
5077
5078 bce_reset_exit:
5079         /* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
5080         if (reset_code == BCE_DRV_MSG_CODE_RESET) {
5081                 val = REG_RD(sc, BCE_EMAC_MODE);
5082                 val = (val & ~emac_mode_mask) | emac_mode_save;
5083                 REG_WR(sc, BCE_EMAC_MODE, val);
5084         }
5085
5086         DBEXIT(BCE_VERBOSE_RESET);
5087         return (rc);
5088 }
5089
5090
5091 static int
5092 bce_chipinit(struct bce_softc *sc)
5093 {
5094         u32 val;
5095         int rc = 0;
5096
5097         DBENTER(BCE_VERBOSE_RESET);
5098
5099         bce_disable_intr(sc);
5100
5101         /*
5102          * Initialize DMA byte/word swapping, configure the number of DMA
5103          * channels and PCI clock compensation delay.
5104          */
5105         val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5106             BCE_DMA_CONFIG_DATA_WORD_SWAP |
5107 #if BYTE_ORDER == BIG_ENDIAN
5108             BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5109 #endif
5110             BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5111             DMA_READ_CHANS << 12 |
5112             DMA_WRITE_CHANS << 16;
5113
5114         val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5115
5116         if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5117                 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5118
5119         /*
5120          * This setting resolves a problem observed on certain Intel PCI
5121          * chipsets that cannot handle multiple outstanding DMA operations.
5122          * See errata E9_5706A1_65.
5123          */
5124         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5125             (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5126             !(sc->bce_flags & BCE_PCIX_FLAG))
5127                 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5128
5129         REG_WR(sc, BCE_DMA_CONFIG, val);
5130
5131         /* Enable the RX_V2P and Context state machines before access. */
5132         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5133             BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5134             BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5135             BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5136
5137         /* Initialize context mapping and zero out the quick contexts. */
5138         if ((rc = bce_init_ctx(sc)) != 0)
5139                 goto bce_chipinit_exit;
5140
5141         /* Initialize the on-boards CPUs */
5142         bce_init_cpus(sc);
5143
5144         /* Enable management frames (NC-SI) to flow to the MCP. */
5145         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5146                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5147                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5148         }
5149
5150         /* Prepare NVRAM for access. */
5151         if ((rc = bce_init_nvram(sc)) != 0)
5152                 goto bce_chipinit_exit;
5153
5154         /* Set the kernel bypass block size */
5155         val = REG_RD(sc, BCE_MQ_CONFIG);
5156         val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5157         val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5158
5159         /* Enable bins used on the 5709. */
5160         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5161                 val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5162                 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5163                         val |= BCE_MQ_CONFIG_HALT_DIS;
5164         }
5165
5166         REG_WR(sc, BCE_MQ_CONFIG, val);
5167
5168         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5169         REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5170         REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5171
5172         /* Set the page size and clear the RV2P processor stall bits. */
5173         val = (BCM_PAGE_BITS - 8) << 24;
5174         REG_WR(sc, BCE_RV2P_CONFIG, val);
5175
5176         /* Configure page size. */
5177         val = REG_RD(sc, BCE_TBDR_CONFIG);
5178         val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5179         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5180         REG_WR(sc, BCE_TBDR_CONFIG, val);
5181
5182         /* Set the perfect match control register to default. */
5183         REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5184
5185 bce_chipinit_exit:
5186         DBEXIT(BCE_VERBOSE_RESET);
5187
5188         return(rc);
5189 }
5190
5191
5192 /****************************************************************************/
5193 /* Initialize the controller in preparation to send/receive traffic.        */
5194 /*                                                                          */
5195 /* Returns:                                                                 */
5196 /*   0 for success, positive value for failure.                             */
5197 /****************************************************************************/
5198 static int
5199 bce_blockinit(struct bce_softc *sc)
5200 {
5201         u32 reg, val;
5202         int rc = 0;
5203
5204         DBENTER(BCE_VERBOSE_RESET);
5205
5206         /* Load the hardware default MAC address. */
5207         bce_set_mac_addr(sc);
5208
5209         /* Set the Ethernet backoff seed value */
5210         val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5211               (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5212               (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5213         REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5214
5215         sc->last_status_idx = 0;
5216         sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5217
5218         /* Set up link change interrupt generation. */
5219         REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5220
5221         /* Program the physical address of the status block. */
5222         REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5223             BCE_ADDR_LO(sc->status_block_paddr));
5224         REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5225             BCE_ADDR_HI(sc->status_block_paddr));
5226
5227         /* Program the physical address of the statistics block. */
5228         REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5229             BCE_ADDR_LO(sc->stats_block_paddr));
5230         REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5231             BCE_ADDR_HI(sc->stats_block_paddr));
5232
5233         /*
5234          * Program various host coalescing parameters.
5235          * Trip points control how many BDs should be ready before generating
5236          * an interrupt while ticks control how long a BD can sit in the chain
5237          * before generating an interrupt.
5238          */
5239         REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5240             (sc->bce_tx_quick_cons_trip_int << 16) |
5241             sc->bce_tx_quick_cons_trip);
5242         REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5243             (sc->bce_rx_quick_cons_trip_int << 16) |
5244             sc->bce_rx_quick_cons_trip);
5245         REG_WR(sc, BCE_HC_TX_TICKS,
5246             (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5247         REG_WR(sc, BCE_HC_RX_TICKS,
5248             (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5249         REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5250         REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5251         /* Not used for L2. */
5252         REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5253         REG_WR(sc, BCE_HC_COM_TICKS, 0);
5254         REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5255
5256         /* Configure the Host Coalescing block. */
5257         val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5258             BCE_HC_CONFIG_COLLECT_STATS;
5259
5260 #if 0
5261         /* ToDo: Add MSI-X support. */
5262         if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5263                 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5264                     BCE_HC_SB_CONFIG_1;
5265
5266                 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5267
5268                 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5269                     BCE_HC_SB_CONFIG_1_ONE_SHOT);
5270
5271                 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5272                     (sc->tx_quick_cons_trip_int << 16) |
5273                      sc->tx_quick_cons_trip);
5274
5275                 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5276                     (sc->tx_ticks_int << 16) | sc->tx_ticks);
5277
5278                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5279         }
5280
5281         /*
5282          * Tell the HC block to automatically set the
5283          * INT_MASK bit after an MSI/MSI-X interrupt
5284          * is generated so the driver doesn't have to.
5285          */
5286         if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5287                 val |= BCE_HC_CONFIG_ONE_SHOT;
5288
5289         /* Set the MSI-X status blocks to 128 byte boundaries. */
5290         if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5291                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5292 #endif
5293
5294         REG_WR(sc, BCE_HC_CONFIG, val);
5295
5296         /* Clear the internal statistics counters. */
5297         REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5298
5299         /* Verify that bootcode is running. */
5300         reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5301
5302         DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5303             BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5304             __FILE__, __LINE__);
5305             reg = 0);
5306
5307         if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5308             BCE_DEV_INFO_SIGNATURE_MAGIC) {
5309                 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5310                     "Expected: 08%08X\n", __FILE__, __LINE__,
5311                     (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5312                     BCE_DEV_INFO_SIGNATURE_MAGIC);
5313                 rc = ENODEV;
5314                 goto bce_blockinit_exit;
5315         }
5316
5317         /* Enable DMA */
5318         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5319                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5320                 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5321                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5322         }
5323
5324         /* Allow bootcode to apply additional fixes before enabling MAC. */
5325         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5326             BCE_DRV_MSG_CODE_RESET);
5327
5328         /* Enable link state change interrupt generation. */
5329         REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5330
5331         /* Enable the RXP. */
5332         bce_start_rxp_cpu(sc);
5333
5334         /* Disable management frames (NC-SI) from flowing to the MCP. */
5335         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5336                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5337                     ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5338                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5339         }
5340
5341         /* Enable all remaining blocks in the MAC. */
5342         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5343                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5344                     BCE_MISC_ENABLE_DEFAULT_XI);
5345         else
5346                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5347                     BCE_MISC_ENABLE_DEFAULT);
5348
5349         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5350         DELAY(20);
5351
5352         /* Save the current host coalescing block settings. */
5353         sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5354
5355 bce_blockinit_exit:
5356         DBEXIT(BCE_VERBOSE_RESET);
5357
5358         return (rc);
5359 }
5360
5361
5362 /****************************************************************************/
5363 /* Encapsulate an mbuf into the rx_bd chain.                                */
5364 /*                                                                          */
5365 /* Returns:                                                                 */
5366 /*   0 for success, positive value for failure.                             */
5367 /****************************************************************************/
5368 static int
5369 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5370 {
5371         bus_dma_segment_t segs[1];
5372         struct mbuf *m_new = NULL;
5373         struct rx_bd *rxbd;
5374         int nsegs, error, rc = 0;
5375 #ifdef BCE_DEBUG
5376         u16 debug_chain_prod = chain_prod;
5377 #endif
5378
5379         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5380
5381         /* Make sure the inputs are valid. */
5382         DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5383             BCE_PRINTF("%s(%d): RX producer out of range: "
5384             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5385             chain_prod, (u16)MAX_RX_BD_ALLOC));
5386
5387         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5388             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5389             prod, chain_prod, *prod_bseq);
5390
5391         /* Update some debug statistic counters */
5392         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5393             sc->rx_low_watermark = sc->free_rx_bd);
5394         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5395             sc->rx_empty_count++);
5396
5397         /* Simulate an mbuf allocation failure. */
5398         DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5399             sc->mbuf_alloc_failed_count++;
5400             sc->mbuf_alloc_failed_sim_count++;
5401             rc = ENOBUFS;
5402             goto bce_get_rx_buf_exit);
5403
5404         /* This is a new mbuf allocation. */
5405         if (bce_hdr_split == TRUE)
5406                 MGETHDR(m_new, M_NOWAIT, MT_DATA);
5407         else
5408                 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5409                     sc->rx_bd_mbuf_alloc_size);
5410
5411         if (m_new == NULL) {
5412                 sc->mbuf_alloc_failed_count++;
5413                 rc = ENOBUFS;
5414                 goto bce_get_rx_buf_exit;
5415         }
5416
5417         DBRUN(sc->debug_rx_mbuf_alloc++);
5418
5419         /* Make sure we have a valid packet header. */
5420         M_ASSERTPKTHDR(m_new);
5421
5422         /* Initialize the mbuf size and pad if necessary for alignment. */
5423         m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5424         m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5425
5426         /* ToDo: Consider calling m_fragment() to test error handling. */
5427
5428         /* Map the mbuf cluster into device memory. */
5429         error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5430             sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5431
5432         /* Handle any mapping errors. */
5433         if (error) {
5434                 BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5435                     "chain (%d)!\n", __FILE__, __LINE__, error);
5436
5437                 sc->dma_map_addr_rx_failed_count++;
5438                 m_freem(m_new);
5439
5440                 DBRUN(sc->debug_rx_mbuf_alloc--);
5441
5442                 rc = ENOBUFS;
5443                 goto bce_get_rx_buf_exit;
5444         }
5445
5446         /* All mbufs must map to a single segment. */
5447         KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5448             __FUNCTION__, nsegs));
5449
5450         /* Setup the rx_bd for the segment. */
5451         rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5452
5453         rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5454         rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5455         rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5456         rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5457         *prod_bseq += segs[0].ds_len;
5458
5459         /* Save the mbuf and update our counter. */
5460         sc->rx_mbuf_ptr[chain_prod] = m_new;
5461         sc->free_rx_bd -= nsegs;
5462
5463         DBRUNMSG(BCE_INSANE_RECV,
5464             bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5465
5466         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5467             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5468             chain_prod, *prod_bseq);
5469
5470 bce_get_rx_buf_exit:
5471         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5472
5473         return(rc);
5474 }
5475
5476
5477 /****************************************************************************/
5478 /* Encapsulate an mbuf cluster into the page chain.                         */
5479 /*                                                                          */
5480 /* Returns:                                                                 */
5481 /*   0 for success, positive value for failure.                             */
5482 /****************************************************************************/
5483 static int
5484 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5485 {
5486         bus_dma_segment_t segs[1];
5487         struct mbuf *m_new = NULL;
5488         struct rx_bd *pgbd;
5489         int error, nsegs, rc = 0;
5490 #ifdef BCE_DEBUG
5491         u16 debug_prod_idx = prod_idx;
5492 #endif
5493
5494         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5495
5496         /* Make sure the inputs are valid. */
5497         DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5498             BCE_PRINTF("%s(%d): page producer out of range: "
5499             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5500             prod_idx, (u16)MAX_PG_BD_ALLOC));
5501
5502         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5503             "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5504
5505         /* Update counters if we've hit a new low or run out of pages. */
5506         DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5507             sc->pg_low_watermark = sc->free_pg_bd);
5508         DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5509
5510         /* Simulate an mbuf allocation failure. */
5511         DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5512             sc->mbuf_alloc_failed_count++;
5513             sc->mbuf_alloc_failed_sim_count++;
5514             rc = ENOBUFS;
5515             goto bce_get_pg_buf_exit);
5516
5517         /* This is a new mbuf allocation. */
5518         m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5519         if (m_new == NULL) {
5520                 sc->mbuf_alloc_failed_count++;
5521                 rc = ENOBUFS;
5522                 goto bce_get_pg_buf_exit;
5523         }
5524
5525         DBRUN(sc->debug_pg_mbuf_alloc++);
5526
5527         m_new->m_len = MCLBYTES;
5528
5529         /* ToDo: Consider calling m_fragment() to test error handling. */
5530
5531         /* Map the mbuf cluster into device memory. */
5532         error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5533             sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5534
5535         /* Handle any mapping errors. */
5536         if (error) {
5537                 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5538                     __FILE__, __LINE__);
5539
5540                 m_freem(m_new);
5541                 DBRUN(sc->debug_pg_mbuf_alloc--);
5542
5543                 rc = ENOBUFS;
5544                 goto bce_get_pg_buf_exit;
5545         }
5546
5547         /* All mbufs must map to a single segment. */
5548         KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5549             __FUNCTION__, nsegs));
5550
5551         /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5552
5553         /*
5554          * The page chain uses the same rx_bd data structure
5555          * as the receive chain but doesn't require a byte sequence (bseq).
5556          */
5557         pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5558
5559         pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5560         pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5561         pgbd->rx_bd_len       = htole32(MCLBYTES);
5562         pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5563
5564         /* Save the mbuf and update our counter. */
5565         sc->pg_mbuf_ptr[prod_idx] = m_new;
5566         sc->free_pg_bd--;
5567
5568         DBRUNMSG(BCE_INSANE_RECV,
5569             bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5570
5571         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5572             "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5573
5574 bce_get_pg_buf_exit:
5575         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5576
5577         return(rc);
5578 }
5579
5580
5581 /****************************************************************************/
5582 /* Initialize the TX context memory.                                        */
5583 /*                                                                          */
5584 /* Returns:                                                                 */
5585 /*   Nothing                                                                */
5586 /****************************************************************************/
5587 static void
5588 bce_init_tx_context(struct bce_softc *sc)
5589 {
5590         u32 val;
5591
5592         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5593
5594         /* Initialize the context ID for an L2 TX chain. */
5595         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5596                 /* Set the CID type to support an L2 connection. */
5597                 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5598                     BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5599                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5600                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5601                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5602                     BCE_L2CTX_TX_CMD_TYPE_XI, val);
5603
5604                 /* Point the hardware to the first page in the chain. */
5605                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5606                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5607                     BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5608                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5609                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5610                     BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5611         } else {
5612                 /* Set the CID type to support an L2 connection. */
5613                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5614                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5615                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5616                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5617
5618                 /* Point the hardware to the first page in the chain. */
5619                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5620                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5621                     BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5622                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5623                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5624                     BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5625         }
5626
5627         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5628 }
5629
5630
5631 /****************************************************************************/
5632 /* Allocate memory and initialize the TX data structures.                   */
5633 /*                                                                          */
5634 /* Returns:                                                                 */
5635 /*   0 for success, positive value for failure.                             */
5636 /****************************************************************************/
5637 static int
5638 bce_init_tx_chain(struct bce_softc *sc)
5639 {
5640         struct tx_bd *txbd;
5641         int i, rc = 0;
5642
5643         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5644
5645         /* Set the initial TX producer/consumer indices. */
5646         sc->tx_prod        = 0;
5647         sc->tx_cons        = 0;
5648         sc->tx_prod_bseq   = 0;
5649         sc->used_tx_bd     = 0;
5650         sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5651         DBRUN(sc->tx_hi_watermark = 0);
5652         DBRUN(sc->tx_full_count = 0);
5653
5654         /*
5655          * The NetXtreme II supports a linked-list structre called
5656          * a Buffer Descriptor Chain (or BD chain).  A BD chain
5657          * consists of a series of 1 or more chain pages, each of which
5658          * consists of a fixed number of BD entries.
5659          * The last BD entry on each page is a pointer to the next page
5660          * in the chain, and the last pointer in the BD chain
5661          * points back to the beginning of the chain.
5662          */
5663
5664         /* Set the TX next pointer chain entries. */
5665         for (i = 0; i < sc->tx_pages; i++) {
5666                 int j;
5667
5668                 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5669
5670                 /* Check if we've reached the last page. */
5671                 if (i == (sc->tx_pages - 1))
5672                         j = 0;
5673                 else
5674                         j = i + 1;
5675
5676                 txbd->tx_bd_haddr_hi =
5677                     htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5678                 txbd->tx_bd_haddr_lo =
5679                     htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5680         }
5681
5682         bce_init_tx_context(sc);
5683
5684         DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5685         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5686
5687         return(rc);
5688 }
5689
5690
5691 /****************************************************************************/
5692 /* Free memory and clear the TX data structures.                            */
5693 /*                                                                          */
5694 /* Returns:                                                                 */
5695 /*   Nothing.                                                               */
5696 /****************************************************************************/
5697 static void
5698 bce_free_tx_chain(struct bce_softc *sc)
5699 {
5700         int i;
5701
5702         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5703
5704         /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5705         for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5706                 if (sc->tx_mbuf_ptr[i] != NULL) {
5707                         if (sc->tx_mbuf_map[i] != NULL)
5708                                 bus_dmamap_sync(sc->tx_mbuf_tag,
5709                                     sc->tx_mbuf_map[i],
5710                                     BUS_DMASYNC_POSTWRITE);
5711                         m_freem(sc->tx_mbuf_ptr[i]);
5712                         sc->tx_mbuf_ptr[i] = NULL;
5713                         DBRUN(sc->debug_tx_mbuf_alloc--);
5714                 }
5715         }
5716
5717         /* Clear each TX chain page. */
5718         for (i = 0; i < sc->tx_pages; i++)
5719                 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5720
5721         sc->used_tx_bd = 0;
5722
5723         /* Check if we lost any mbufs in the process. */
5724         DBRUNIF((sc->debug_tx_mbuf_alloc),
5725             BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5726             "from tx chain!\n", __FILE__, __LINE__,
5727             sc->debug_tx_mbuf_alloc));
5728
5729         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5730 }
5731
5732
5733 /****************************************************************************/
5734 /* Initialize the RX context memory.                                        */
5735 /*                                                                          */
5736 /* Returns:                                                                 */
5737 /*   Nothing                                                                */
5738 /****************************************************************************/
5739 static void
5740 bce_init_rx_context(struct bce_softc *sc)
5741 {
5742         u32 val;
5743
5744         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5745
5746         /* Init the type, size, and BD cache levels for the RX context. */
5747         val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5748             BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5749             (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5750
5751         /*
5752          * Set the level for generating pause frames
5753          * when the number of available rx_bd's gets
5754          * too low (the low watermark) and the level
5755          * when pause frames can be stopped (the high
5756          * watermark).
5757          */
5758         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5759                 u32 lo_water, hi_water;
5760
5761                 if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5762                         lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5763                 } else {
5764                         lo_water = 0;
5765                 }
5766
5767                 if (lo_water >= USABLE_RX_BD_ALLOC) {
5768                         lo_water = 0;
5769                 }
5770
5771                 hi_water = USABLE_RX_BD_ALLOC / 4;
5772
5773                 if (hi_water <= lo_water) {
5774                         lo_water = 0;
5775                 }
5776
5777                 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5778                 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5779
5780                 if (hi_water > 0xf)
5781                         hi_water = 0xf;
5782                 else if (hi_water == 0)
5783                         lo_water = 0;
5784
5785                 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5786                     (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5787         }
5788
5789         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5790
5791         /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5792         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5793                 val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5794                 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5795         }
5796
5797         /* Point the hardware to the first page in the chain. */
5798         val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5799         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5800         val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5801         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5802
5803         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5804 }
5805
5806
5807 /****************************************************************************/
5808 /* Allocate memory and initialize the RX data structures.                   */
5809 /*                                                                          */
5810 /* Returns:                                                                 */
5811 /*   0 for success, positive value for failure.                             */
5812 /****************************************************************************/
5813 static int
5814 bce_init_rx_chain(struct bce_softc *sc)
5815 {
5816         struct rx_bd *rxbd;
5817         int i, rc = 0;
5818
5819         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5820             BCE_VERBOSE_CTX);
5821
5822         /* Initialize the RX producer and consumer indices. */
5823         sc->rx_prod        = 0;
5824         sc->rx_cons        = 0;
5825         sc->rx_prod_bseq   = 0;
5826         sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5827         sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5828
5829         /* Initialize the RX next pointer chain entries. */
5830         for (i = 0; i < sc->rx_pages; i++) {
5831                 int j;
5832
5833                 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5834
5835                 /* Check if we've reached the last page. */
5836                 if (i == (sc->rx_pages - 1))
5837                         j = 0;
5838                 else
5839                         j = i + 1;
5840
5841                 /* Setup the chain page pointers. */
5842                 rxbd->rx_bd_haddr_hi =
5843                     htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5844                 rxbd->rx_bd_haddr_lo =
5845                     htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5846         }
5847
5848         /* Fill up the RX chain. */
5849         bce_fill_rx_chain(sc);
5850
5851         DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5852         DBRUN(sc->rx_empty_count = 0);
5853         for (i = 0; i < sc->rx_pages; i++) {
5854                 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5855                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5856         }
5857
5858         bce_init_rx_context(sc);
5859
5860         DBRUNMSG(BCE_EXTREME_RECV,
5861             bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5862         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5863             BCE_VERBOSE_CTX);
5864
5865         /* ToDo: Are there possible failure modes here? */
5866
5867         return(rc);
5868 }
5869
5870
5871 /****************************************************************************/
5872 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5873 /* occurs.                                                                  */
5874 /*                                                                          */
5875 /* Returns:                                                                 */
5876 /*   Nothing                                                                */
5877 /****************************************************************************/
5878 static void
5879 bce_fill_rx_chain(struct bce_softc *sc)
5880 {
5881         u16 prod, prod_idx;
5882         u32 prod_bseq;
5883
5884         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5885             BCE_VERBOSE_CTX);
5886
5887         /* Get the RX chain producer indices. */
5888         prod      = sc->rx_prod;
5889         prod_bseq = sc->rx_prod_bseq;
5890
5891         /* Keep filling the RX chain until it's full. */
5892         while (sc->free_rx_bd > 0) {
5893                 prod_idx = RX_CHAIN_IDX(prod);
5894                 if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5895                         /* Bail out if we can't add an mbuf to the chain. */
5896                         break;
5897                 }
5898                 prod = NEXT_RX_BD(prod);
5899         }
5900
5901         /* Save the RX chain producer indices. */
5902         sc->rx_prod      = prod;
5903         sc->rx_prod_bseq = prod_bseq;
5904
5905         /* We should never end up pointing to a next page pointer. */
5906         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5907             BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5908             __FUNCTION__, rx_prod));
5909
5910         /* Write the mailbox and tell the chip about the waiting rx_bd's. */
5911         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5912         REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5913
5914         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5915             BCE_VERBOSE_CTX);
5916 }
5917
5918
5919 /****************************************************************************/
5920 /* Free memory and clear the RX data structures.                            */
5921 /*                                                                          */
5922 /* Returns:                                                                 */
5923 /*   Nothing.                                                               */
5924 /****************************************************************************/
5925 static void
5926 bce_free_rx_chain(struct bce_softc *sc)
5927 {
5928         int i;
5929
5930         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5931
5932         /* Free any mbufs still in the RX mbuf chain. */
5933         for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5934                 if (sc->rx_mbuf_ptr[i] != NULL) {
5935                         if (sc->rx_mbuf_map[i] != NULL)
5936                                 bus_dmamap_sync(sc->rx_mbuf_tag,
5937                                     sc->rx_mbuf_map[i],
5938                                     BUS_DMASYNC_POSTREAD);
5939                         m_freem(sc->rx_mbuf_ptr[i]);
5940                         sc->rx_mbuf_ptr[i] = NULL;
5941                         DBRUN(sc->debug_rx_mbuf_alloc--);
5942                 }
5943         }
5944
5945         /* Clear each RX chain page. */
5946         for (i = 0; i < sc->rx_pages; i++)
5947                 if (sc->rx_bd_chain[i] != NULL)
5948                         bzero((char *)sc->rx_bd_chain[i],
5949                             BCE_RX_CHAIN_PAGE_SZ);
5950
5951         sc->free_rx_bd = sc->max_rx_bd;
5952
5953         /* Check if we lost any mbufs in the process. */
5954         DBRUNIF((sc->debug_rx_mbuf_alloc),
5955             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5956             __FUNCTION__, sc->debug_rx_mbuf_alloc));
5957
5958         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5959 }
5960
5961
5962 /****************************************************************************/
5963 /* Allocate memory and initialize the page data structures.                 */
5964 /* Assumes that bce_init_rx_chain() has not already been called.            */
5965 /*                                                                          */
5966 /* Returns:                                                                 */
5967 /*   0 for success, positive value for failure.                             */
5968 /****************************************************************************/
5969 static int
5970 bce_init_pg_chain(struct bce_softc *sc)
5971 {
5972         struct rx_bd *pgbd;
5973         int i, rc = 0;
5974         u32 val;
5975
5976         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5977                 BCE_VERBOSE_CTX);
5978
5979         /* Initialize the page producer and consumer indices. */
5980         sc->pg_prod        = 0;
5981         sc->pg_cons        = 0;
5982         sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5983         sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5984         DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5985         DBRUN(sc->pg_empty_count = 0);
5986
5987         /* Initialize the page next pointer chain entries. */
5988         for (i = 0; i < sc->pg_pages; i++) {
5989                 int j;
5990
5991                 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5992
5993                 /* Check if we've reached the last page. */
5994                 if (i == (sc->pg_pages - 1))
5995                         j = 0;
5996                 else
5997                         j = i + 1;
5998
5999                 /* Setup the chain page pointers. */
6000                 pgbd->rx_bd_haddr_hi =
6001                     htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
6002                 pgbd->rx_bd_haddr_lo =
6003                     htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
6004         }
6005
6006         /* Setup the MQ BIN mapping for host_pg_bidx. */
6007         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
6008                 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
6009
6010         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
6011
6012         /* Configure the rx_bd and page chain mbuf cluster size. */
6013         val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
6014         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
6015
6016         /* Configure the context reserved for jumbo support. */
6017         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
6018                 BCE_L2CTX_RX_RBDC_JUMBO_KEY);
6019
6020         /* Point the hardware to the first page in the page chain. */
6021         val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
6022         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
6023         val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
6024         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
6025
6026         /* Fill up the page chain. */
6027         bce_fill_pg_chain(sc);
6028
6029         for (i = 0; i < sc->pg_pages; i++) {
6030                 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
6031                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6032         }
6033
6034         DBRUNMSG(BCE_EXTREME_RECV,
6035             bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
6036         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
6037                 BCE_VERBOSE_CTX);
6038         return(rc);
6039 }
6040
6041
6042 /****************************************************************************/
6043 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
6044 /* occurs.                                                                  */
6045 /*                                                                          */
6046 /* Returns:                                                                 */
6047 /*   Nothing                                                                */
6048 /****************************************************************************/
6049 static void
6050 bce_fill_pg_chain(struct bce_softc *sc)
6051 {
6052         u16 prod, prod_idx;
6053
6054         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6055             BCE_VERBOSE_CTX);
6056
6057         /* Get the page chain prodcuer index. */
6058         prod = sc->pg_prod;
6059
6060         /* Keep filling the page chain until it's full. */
6061         while (sc->free_pg_bd > 0) {
6062                 prod_idx = PG_CHAIN_IDX(prod);
6063                 if (bce_get_pg_buf(sc, prod, prod_idx)) {
6064                         /* Bail out if we can't add an mbuf to the chain. */
6065                         break;
6066                 }
6067                 prod = NEXT_PG_BD(prod);
6068         }
6069
6070         /* Save the page chain producer index. */
6071         sc->pg_prod = prod;
6072
6073         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
6074             BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
6075             __FUNCTION__, pg_prod));
6076
6077         /*
6078          * Write the mailbox and tell the chip about
6079          * the new rx_bd's in the page chain.
6080          */
6081         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
6082             prod);
6083
6084         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
6085             BCE_VERBOSE_CTX);
6086 }
6087
6088
6089 /****************************************************************************/
6090 /* Free memory and clear the RX data structures.                            */
6091 /*                                                                          */
6092 /* Returns:                                                                 */
6093 /*   Nothing.                                                               */
6094 /****************************************************************************/
6095 static void
6096 bce_free_pg_chain(struct bce_softc *sc)
6097 {
6098         int i;
6099
6100         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6101
6102         /* Free any mbufs still in the mbuf page chain. */
6103         for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
6104                 if (sc->pg_mbuf_ptr[i] != NULL) {
6105                         if (sc->pg_mbuf_map[i] != NULL)
6106                                 bus_dmamap_sync(sc->pg_mbuf_tag,
6107                                     sc->pg_mbuf_map[i],
6108                                     BUS_DMASYNC_POSTREAD);
6109                         m_freem(sc->pg_mbuf_ptr[i]);
6110                         sc->pg_mbuf_ptr[i] = NULL;
6111                         DBRUN(sc->debug_pg_mbuf_alloc--);
6112                 }
6113         }
6114
6115         /* Clear each page chain pages. */
6116         for (i = 0; i < sc->pg_pages; i++)
6117                 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6118
6119         sc->free_pg_bd = sc->max_pg_bd;
6120
6121         /* Check if we lost any mbufs in the process. */
6122         DBRUNIF((sc->debug_pg_mbuf_alloc),
6123             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6124             __FUNCTION__, sc->debug_pg_mbuf_alloc));
6125
6126         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6127 }
6128
6129
6130 static u32
6131 bce_get_rphy_link(struct bce_softc *sc)
6132 {
6133         u32 advertise, link;
6134         int fdpx;
6135
6136         advertise = 0;
6137         fdpx = 0;
6138         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6139                 link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6140         else
6141                 link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6142         if (link & BCE_NETLINK_ANEG_ENB)
6143                 advertise |= BCE_NETLINK_ANEG_ENB;
6144         if (link & BCE_NETLINK_SPEED_10HALF)
6145                 advertise |= BCE_NETLINK_SPEED_10HALF;
6146         if (link & BCE_NETLINK_SPEED_10FULL) {
6147                 advertise |= BCE_NETLINK_SPEED_10FULL;
6148                 fdpx++;
6149         }
6150         if (link & BCE_NETLINK_SPEED_100HALF)
6151                 advertise |= BCE_NETLINK_SPEED_100HALF;
6152         if (link & BCE_NETLINK_SPEED_100FULL) {
6153                 advertise |= BCE_NETLINK_SPEED_100FULL;
6154                 fdpx++;
6155         }
6156         if (link & BCE_NETLINK_SPEED_1000HALF)
6157                 advertise |= BCE_NETLINK_SPEED_1000HALF;
6158         if (link & BCE_NETLINK_SPEED_1000FULL) {
6159                 advertise |= BCE_NETLINK_SPEED_1000FULL;
6160                 fdpx++;
6161         }
6162         if (link & BCE_NETLINK_SPEED_2500HALF)
6163                 advertise |= BCE_NETLINK_SPEED_2500HALF;
6164         if (link & BCE_NETLINK_SPEED_2500FULL) {
6165                 advertise |= BCE_NETLINK_SPEED_2500FULL;
6166                 fdpx++;
6167         }
6168         if (fdpx)
6169                 advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6170                     BCE_NETLINK_FC_PAUSE_ASYM;
6171         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6172                 advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6173                     BCE_NETLINK_ETH_AT_WIRESPEED;
6174
6175         return (advertise);
6176 }
6177
6178
6179 /****************************************************************************/
6180 /* Set media options.                                                       */
6181 /*                                                                          */
6182 /* Returns:                                                                 */
6183 /*   0 for success, positive value for failure.                             */
6184 /****************************************************************************/
6185 static int
6186 bce_ifmedia_upd(struct ifnet *ifp)
6187 {
6188         struct bce_softc *sc = ifp->if_softc;
6189         int error;
6190
6191         DBENTER(BCE_VERBOSE);
6192
6193         BCE_LOCK(sc);
6194         error = bce_ifmedia_upd_locked(ifp);
6195         BCE_UNLOCK(sc);
6196
6197         DBEXIT(BCE_VERBOSE);
6198         return (error);
6199 }
6200
6201
6202 /****************************************************************************/
6203 /* Set media options.                                                       */
6204 /*                                                                          */
6205 /* Returns:                                                                 */
6206 /*   Nothing.                                                               */
6207 /****************************************************************************/
6208 static int
6209 bce_ifmedia_upd_locked(struct ifnet *ifp)
6210 {
6211         struct bce_softc *sc = ifp->if_softc;
6212         struct mii_data *mii;
6213         struct mii_softc *miisc;
6214         struct ifmedia *ifm;
6215         u32 link;
6216         int error, fdx;
6217
6218         DBENTER(BCE_VERBOSE_PHY);
6219
6220         error = 0;
6221         BCE_LOCK_ASSERT(sc);
6222
6223         sc->bce_link_up = FALSE;
6224         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6225                 ifm = &sc->bce_ifmedia;
6226                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6227                         return (EINVAL);
6228                 link = 0;
6229                 fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6230                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
6231                 case IFM_AUTO:
6232                         /*
6233                          * Check advertised link of remote PHY by reading
6234                          * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6235                          * Always use the same link type of remote PHY.
6236                          */
6237                         link = bce_get_rphy_link(sc);
6238                         break;
6239                 case IFM_2500_SX:
6240                         if ((sc->bce_phy_flags &
6241                             (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6242                             BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6243                                 return (EINVAL);
6244                         /*
6245                          * XXX
6246                          * Have to enable forced 2.5Gbps configuration.
6247                          */
6248                         if (fdx != 0)
6249                                 link |= BCE_NETLINK_SPEED_2500FULL;
6250                         else
6251                                 link |= BCE_NETLINK_SPEED_2500HALF;
6252                         break;
6253                 case IFM_1000_SX:
6254                         if ((sc->bce_phy_flags &
6255                             BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6256                                 return (EINVAL);
6257                         /*
6258                          * XXX
6259                          * Have to disable 2.5Gbps configuration.
6260                          */
6261                         if (fdx != 0)
6262                                 link = BCE_NETLINK_SPEED_1000FULL;
6263                         else
6264                                 link = BCE_NETLINK_SPEED_1000HALF;
6265                         break;
6266                 case IFM_1000_T:
6267                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6268                                 return (EINVAL);
6269                         if (fdx != 0)
6270                                 link = BCE_NETLINK_SPEED_1000FULL;
6271                         else
6272                                 link = BCE_NETLINK_SPEED_1000HALF;
6273                         break;
6274                 case IFM_100_TX:
6275                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6276                                 return (EINVAL);
6277                         if (fdx != 0)
6278                                 link = BCE_NETLINK_SPEED_100FULL;
6279                         else
6280                                 link = BCE_NETLINK_SPEED_100HALF;
6281                         break;
6282                 case IFM_10_T:
6283                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6284                                 return (EINVAL);
6285                         if (fdx != 0)
6286                                 link = BCE_NETLINK_SPEED_10FULL;
6287                         else
6288                                 link = BCE_NETLINK_SPEED_10HALF;
6289                         break;
6290                 default:
6291                         return (EINVAL);
6292                 }
6293                 if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6294                         /*
6295                          * XXX
6296                          * Advertise pause capability for full-duplex media.
6297                          */
6298                         if (fdx != 0)
6299                                 link |= BCE_NETLINK_FC_PAUSE_SYM |
6300                                     BCE_NETLINK_FC_PAUSE_ASYM;
6301                         if ((sc->bce_phy_flags &
6302                             BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6303                                 link |= BCE_NETLINK_PHY_APP_REMOTE |
6304                                     BCE_NETLINK_ETH_AT_WIRESPEED;
6305                 }
6306
6307                 bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6308                 error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6309         } else {
6310                 mii = device_get_softc(sc->bce_miibus);
6311
6312                 /* Make sure the MII bus has been enumerated. */
6313                 if (mii) {
6314                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6315                                 PHY_RESET(miisc);
6316                         error = mii_mediachg(mii);
6317                 }
6318         }
6319
6320         DBEXIT(BCE_VERBOSE_PHY);
6321         return (error);
6322 }
6323
6324
6325 static void
6326 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6327 {
6328         struct ifnet *ifp;
6329         u32 link;
6330
6331         ifp = sc->bce_ifp;
6332         BCE_LOCK_ASSERT(sc);
6333
6334         ifmr->ifm_status = IFM_AVALID;
6335         ifmr->ifm_active = IFM_ETHER;
6336         link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6337         /* XXX Handle heart beat status? */
6338         if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6339                 ifmr->ifm_status |= IFM_ACTIVE;
6340         else {
6341                 ifmr->ifm_active |= IFM_NONE;
6342                 ifp->if_baudrate = 0;
6343                 return;
6344         }
6345         switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6346         case BCE_LINK_STATUS_10HALF:
6347                 ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6348                 ifp->if_baudrate = IF_Mbps(10UL);
6349                 break;
6350         case BCE_LINK_STATUS_10FULL:
6351                 ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6352                 ifp->if_baudrate = IF_Mbps(10UL);
6353                 break;
6354         case BCE_LINK_STATUS_100HALF:
6355                 ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6356                 ifp->if_baudrate = IF_Mbps(100UL);
6357                 break;
6358         case BCE_LINK_STATUS_100FULL:
6359                 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6360                 ifp->if_baudrate = IF_Mbps(100UL);
6361                 break;
6362         case BCE_LINK_STATUS_1000HALF:
6363                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6364                         ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6365                 else
6366                         ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6367                 ifp->if_baudrate = IF_Mbps(1000UL);
6368                 break;
6369         case BCE_LINK_STATUS_1000FULL:
6370                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6371                         ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6372                 else
6373                         ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6374                 ifp->if_baudrate = IF_Mbps(1000UL);
6375                 break;
6376         case BCE_LINK_STATUS_2500HALF:
6377                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6378                         ifmr->ifm_active |= IFM_NONE;
6379                         return;
6380                 } else
6381                         ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6382                 ifp->if_baudrate = IF_Mbps(2500UL);
6383                 break;
6384         case BCE_LINK_STATUS_2500FULL:
6385                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6386                         ifmr->ifm_active |= IFM_NONE;
6387                         return;
6388                 } else
6389                         ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6390                 ifp->if_baudrate = IF_Mbps(2500UL);
6391                 break;
6392         default:
6393                 ifmr->ifm_active |= IFM_NONE;
6394                 return;
6395         }
6396
6397         if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6398                 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6399         if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6400                 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6401 }
6402
6403
6404 /****************************************************************************/
6405 /* Reports current media status.                                            */
6406 /*                                                                          */
6407 /* Returns:                                                                 */
6408 /*   Nothing.                                                               */
6409 /****************************************************************************/
6410 static void
6411 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6412 {
6413         struct bce_softc *sc = ifp->if_softc;
6414         struct mii_data *mii;
6415
6416         DBENTER(BCE_VERBOSE_PHY);
6417
6418         BCE_LOCK(sc);
6419
6420         if ((ifp->if_flags & IFF_UP) == 0) {
6421                 BCE_UNLOCK(sc);
6422                 return;
6423         }
6424
6425         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6426                 bce_ifmedia_sts_rphy(sc, ifmr);
6427         else {
6428                 mii = device_get_softc(sc->bce_miibus);
6429                 mii_pollstat(mii);
6430                 ifmr->ifm_active = mii->mii_media_active;
6431                 ifmr->ifm_status = mii->mii_media_status;
6432         }
6433
6434         BCE_UNLOCK(sc);
6435
6436         DBEXIT(BCE_VERBOSE_PHY);
6437 }
6438
6439
6440 /****************************************************************************/
6441 /* Handles PHY generated interrupt events.                                  */
6442 /*                                                                          */
6443 /* Returns:                                                                 */
6444 /*   Nothing.                                                               */
6445 /****************************************************************************/
6446 static void
6447 bce_phy_intr(struct bce_softc *sc)
6448 {
6449         u32 new_link_state, old_link_state;
6450
6451         DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6452
6453         DBRUN(sc->phy_interrupts++);
6454
6455         new_link_state = sc->status_block->status_attn_bits &
6456             STATUS_ATTN_BITS_LINK_STATE;
6457         old_link_state = sc->status_block->status_attn_bits_ack &
6458             STATUS_ATTN_BITS_LINK_STATE;
6459
6460         /* Handle any changes if the link state has changed. */
6461         if (new_link_state != old_link_state) {
6462
6463                 /* Update the status_attn_bits_ack field. */
6464                 if (new_link_state) {
6465                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6466                             STATUS_ATTN_BITS_LINK_STATE);
6467                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6468                             __FUNCTION__);
6469                 } else {
6470                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6471                             STATUS_ATTN_BITS_LINK_STATE);
6472                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6473                             __FUNCTION__);
6474                 }
6475
6476                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6477                         if (new_link_state) {
6478                                 if (bootverbose)
6479                                         if_printf(sc->bce_ifp, "link UP\n");
6480                                 if_link_state_change(sc->bce_ifp,
6481                                     LINK_STATE_UP);
6482                         } else {
6483                                 if (bootverbose)
6484                                         if_printf(sc->bce_ifp, "link DOWN\n");
6485                                 if_link_state_change(sc->bce_ifp,
6486                                     LINK_STATE_DOWN);
6487                         }
6488                 }
6489                 /*
6490                  * Assume link is down and allow
6491                  * tick routine to update the state
6492                  * based on the actual media state.
6493                  */
6494                 sc->bce_link_up = FALSE;
6495                 callout_stop(&sc->bce_tick_callout);
6496                 bce_tick(sc);
6497         }
6498
6499         /* Acknowledge the link change interrupt. */
6500         REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6501
6502         DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6503 }
6504
6505
6506 /****************************************************************************/
6507 /* Reads the receive consumer value from the status block (skipping over    */
6508 /* chain page pointer if necessary).                                        */
6509 /*                                                                          */
6510 /* Returns:                                                                 */
6511 /*   hw_cons                                                                */
6512 /****************************************************************************/
6513 static inline u16
6514 bce_get_hw_rx_cons(struct bce_softc *sc)
6515 {
6516         u16 hw_cons;
6517
6518         rmb();
6519         hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6520         if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6521                 hw_cons++;
6522
6523         return hw_cons;
6524 }
6525
6526 /****************************************************************************/
6527 /* Handles received frame interrupt events.                                 */
6528 /*                                                                          */
6529 /* Returns:                                                                 */
6530 /*   Nothing.                                                               */
6531 /****************************************************************************/
6532 static void
6533 bce_rx_intr(struct bce_softc *sc)
6534 {
6535         struct ifnet *ifp = sc->bce_ifp;
6536         struct l2_fhdr *l2fhdr;
6537         struct ether_vlan_header *vh;
6538         unsigned int pkt_len;
6539         u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6540         u32 status;
6541         unsigned int rem_len;
6542         u16 sw_pg_cons, sw_pg_cons_idx;
6543
6544         DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6545         DBRUN(sc->interrupts_rx++);
6546         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6547             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6548             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6549
6550         /* Prepare the RX chain pages to be accessed by the host CPU. */
6551         for (int i = 0; i < sc->rx_pages; i++)
6552                 bus_dmamap_sync(sc->rx_bd_chain_tag,
6553                     sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6554
6555         /* Prepare the page chain pages to be accessed by the host CPU. */
6556         if (bce_hdr_split == TRUE) {
6557                 for (int i = 0; i < sc->pg_pages; i++)
6558                         bus_dmamap_sync(sc->pg_bd_chain_tag,
6559                             sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6560         }
6561
6562         /* Get the hardware's view of the RX consumer index. */
6563         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6564
6565         /* Get working copies of the driver's view of the consumer indices. */
6566         sw_rx_cons = sc->rx_cons;
6567         sw_pg_cons = sc->pg_cons;
6568
6569         /* Update some debug statistics counters */
6570         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6571             sc->rx_low_watermark = sc->free_rx_bd);
6572         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6573             sc->rx_empty_count++);
6574
6575         /* Scan through the receive chain as long as there is work to do */
6576         /* ToDo: Consider setting a limit on the number of packets processed. */
6577         rmb();
6578         while (sw_rx_cons != hw_rx_cons) {
6579                 struct mbuf *m0;
6580
6581                 /* Convert the producer/consumer indices to an actual rx_bd index. */
6582                 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6583
6584                 /* Unmap the mbuf from DMA space. */
6585                 bus_dmamap_sync(sc->rx_mbuf_tag,
6586                     sc->rx_mbuf_map[sw_rx_cons_idx],
6587                     BUS_DMASYNC_POSTREAD);
6588                 bus_dmamap_unload(sc->rx_mbuf_tag,
6589                     sc->rx_mbuf_map[sw_rx_cons_idx]);
6590
6591                 /* Remove the mbuf from the RX chain. */
6592                 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6593                 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6594                 DBRUN(sc->debug_rx_mbuf_alloc--);
6595                 sc->free_rx_bd++;
6596
6597                 /*
6598                  * Frames received on the NetXteme II are prepended
6599                  * with an l2_fhdr structure which provides status
6600                  * information about the received frame (including
6601                  * VLAN tags and checksum info).  The frames are
6602                  * also automatically adjusted to word align the IP
6603                  * header (i.e. two null bytes are inserted before
6604                  * the Ethernet header).  As a result the data
6605                  * DMA'd by the controller into the mbuf looks
6606                  * like this:
6607                  *
6608                  * +---------+-----+---------------------+-----+
6609                  * | l2_fhdr | pad | packet data         | FCS |
6610                  * +---------+-----+---------------------+-----+
6611                  *
6612                  * The l2_fhdr needs to be checked and skipped and
6613                  * the FCS needs to be stripped before sending the
6614                  * packet up the stack.
6615                  */
6616                 l2fhdr  = mtod(m0, struct l2_fhdr *);
6617
6618                 /* Get the packet data + FCS length and the status. */
6619                 pkt_len = l2fhdr->l2_fhdr_pkt_len;
6620                 status  = l2fhdr->l2_fhdr_status;
6621
6622                 /*
6623                  * Skip over the l2_fhdr and pad, resulting in the
6624                  * following data in the mbuf:
6625                  * +---------------------+-----+
6626                  * | packet data         | FCS |
6627                  * +---------------------+-----+
6628                  */
6629                 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6630
6631                 /*
6632                  * When split header mode is used, an ethernet frame
6633                  * may be split across the receive chain and the
6634                  * page chain. If that occurs an mbuf cluster must be
6635                  * reassembled from the individual mbuf pieces.
6636                  */
6637                 if (bce_hdr_split == TRUE) {
6638                         /*
6639                          * Check whether the received frame fits in a single
6640                          * mbuf or not (i.e. packet data + FCS <=
6641                          * sc->rx_bd_mbuf_data_len bytes).
6642                          */
6643                         if (pkt_len > m0->m_len) {
6644                                 /*
6645                                  * The received frame is larger than a single mbuf.
6646                                  * If the frame was a TCP frame then only the TCP
6647                                  * header is placed in the mbuf, the remaining
6648                                  * payload (including FCS) is placed in the page
6649                                  * chain, the SPLIT flag is set, and the header
6650                                  * length is placed in the IP checksum field.
6651                                  * If the frame is not a TCP frame then the mbuf
6652                                  * is filled and the remaining bytes are placed
6653                                  * in the page chain.
6654                                  */
6655
6656                                 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6657                                         "packet.\n", __FUNCTION__);
6658                                 DBRUN(sc->split_header_frames_rcvd++);
6659
6660                                 /*
6661                                  * When the page chain is enabled and the TCP
6662                                  * header has been split from the TCP payload,
6663                                  * the ip_xsum structure will reflect the length
6664                                  * of the TCP header, not the IP checksum.  Set
6665                                  * the packet length of the mbuf accordingly.
6666                                  */
6667                                 if (status & L2_FHDR_STATUS_SPLIT) {
6668                                         m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6669                                         DBRUN(sc->split_header_tcp_frames_rcvd++);
6670                                 }
6671
6672                                 rem_len = pkt_len - m0->m_len;
6673
6674                                 /* Pull mbufs off the page chain for any remaining data. */
6675                                 while (rem_len > 0) {
6676                                         struct mbuf *m_pg;
6677
6678                                         sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6679
6680                                         /* Remove the mbuf from the page chain. */
6681                                         m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6682                                         sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6683                                         DBRUN(sc->debug_pg_mbuf_alloc--);
6684                                         sc->free_pg_bd++;
6685
6686                                         /* Unmap the page chain mbuf from DMA space. */
6687                                         bus_dmamap_sync(sc->pg_mbuf_tag,
6688                                                 sc->pg_mbuf_map[sw_pg_cons_idx],
6689                                                 BUS_DMASYNC_POSTREAD);
6690                                         bus_dmamap_unload(sc->pg_mbuf_tag,
6691                                                 sc->pg_mbuf_map[sw_pg_cons_idx]);
6692
6693                                         /* Adjust the mbuf length. */
6694                                         if (rem_len < m_pg->m_len) {
6695                                                 /* The mbuf chain is complete. */
6696                                                 m_pg->m_len = rem_len;
6697                                                 rem_len = 0;
6698                                         } else {
6699                                                 /* More packet data is waiting. */
6700                                                 rem_len -= m_pg->m_len;
6701                                         }
6702
6703                                         /* Concatenate the mbuf cluster to the mbuf. */
6704                                         m_cat(m0, m_pg);
6705
6706                                         sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6707                                 }
6708
6709                                 /* Set the total packet length. */
6710                                 m0->m_pkthdr.len = pkt_len;
6711
6712                         } else {
6713                                 /*
6714                                  * The received packet is small and fits in a
6715                                  * single mbuf (i.e. the l2_fhdr + pad + packet +
6716                                  * FCS <= MHLEN).  In other words, the packet is
6717                                  * 154 bytes or less in size.
6718                                  */
6719
6720                                 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6721                                         "packet.\n", __FUNCTION__);
6722
6723                                 /* Set the total packet length. */
6724                                 m0->m_pkthdr.len = m0->m_len = pkt_len;
6725                         }
6726                 } else
6727                         /* Set the total packet length. */
6728                         m0->m_pkthdr.len = m0->m_len = pkt_len;
6729
6730                 /* Remove the trailing Ethernet FCS. */
6731                 m_adj(m0, -ETHER_CRC_LEN);
6732
6733                 /* Check that the resulting mbuf chain is valid. */
6734                 DBRUN(m_sanity(m0, FALSE));
6735                 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6736                     (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6737                     BCE_PRINTF("Invalid Ethernet frame size!\n");
6738                     m_print(m0, 128));
6739
6740                 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6741                     sc->l2fhdr_error_sim_count++;
6742                     status = status | L2_FHDR_ERRORS_PHY_DECODE);
6743
6744                 /* Check the received frame for errors. */
6745                 if (status & (L2_FHDR_ERRORS_BAD_CRC |
6746                     L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6747                     L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6748
6749                         /* Log the error and release the mbuf. */
6750                         ifp->if_ierrors++;
6751                         sc->l2fhdr_error_count++;
6752
6753                         m_freem(m0);
6754                         m0 = NULL;
6755                         goto bce_rx_intr_next_rx;
6756                 }
6757
6758                 /* Send the packet to the appropriate interface. */
6759                 m0->m_pkthdr.rcvif = ifp;
6760
6761                 /* Assume no hardware checksum. */
6762                 m0->m_pkthdr.csum_flags = 0;
6763
6764                 /* Validate the checksum if offload enabled. */
6765                 if (ifp->if_capenable & IFCAP_RXCSUM) {
6766                         /* Check for an IP datagram. */
6767                         if (!(status & L2_FHDR_STATUS_SPLIT) &&
6768                             (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6769                                 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6770                                 DBRUN(sc->csum_offload_ip++);
6771                                 /* Check if the IP checksum is valid. */
6772                                 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6773                                         m0->m_pkthdr.csum_flags |=
6774                                             CSUM_IP_VALID;
6775                         }
6776
6777                         /* Check for a valid TCP/UDP frame. */
6778                         if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6779                             L2_FHDR_STATUS_UDP_DATAGRAM)) {
6780
6781                                 /* Check for a good TCP/UDP checksum. */
6782                                 if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6783                                     L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6784                                         DBRUN(sc->csum_offload_tcp_udp++);
6785                                         m0->m_pkthdr.csum_data =
6786                                             l2fhdr->l2_fhdr_tcp_udp_xsum;
6787                                         m0->m_pkthdr.csum_flags |=
6788                                             (CSUM_DATA_VALID
6789                                             | CSUM_PSEUDO_HDR);
6790                                 }
6791                         }
6792                 }
6793
6794                 /* Attach the VLAN tag. */
6795                 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6796                     !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6797                         DBRUN(sc->vlan_tagged_frames_rcvd++);
6798                         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6799                                 DBRUN(sc->vlan_tagged_frames_stripped++);
6800 #if __FreeBSD_version < 700000
6801                                 VLAN_INPUT_TAG(ifp, m0,
6802                                     l2fhdr->l2_fhdr_vlan_tag, continue);
6803 #else
6804                                 m0->m_pkthdr.ether_vtag =
6805                                     l2fhdr->l2_fhdr_vlan_tag;
6806                                 m0->m_flags |= M_VLANTAG;
6807 #endif
6808                         } else {
6809                                 /*
6810                                  * bce(4) controllers can't disable VLAN
6811                                  * tag stripping if management firmware
6812                                  * (ASF/IPMI/UMP) is running. So we always
6813                                  * strip VLAN tag and manually reconstruct
6814                                  * the VLAN frame by appending stripped
6815                                  * VLAN tag in driver if VLAN tag stripping
6816                                  * was disabled.
6817                                  *
6818                                  * TODO: LLC SNAP handling.
6819                                  */
6820                                 bcopy(mtod(m0, uint8_t *),
6821                                     mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6822                                     ETHER_ADDR_LEN * 2);
6823                                 m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6824                                 vh = mtod(m0, struct ether_vlan_header *);
6825                                 vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6826                                 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6827                                 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6828                                 m0->m_len += ETHER_VLAN_ENCAP_LEN;
6829                         }
6830                 }
6831
6832                 /* Increment received packet statistics. */
6833                 ifp->if_ipackets++;
6834
6835 bce_rx_intr_next_rx:
6836                 sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6837
6838                 /* If we have a packet, pass it up the stack */
6839                 if (m0) {
6840                         /* Make sure we don't lose our place when we release the lock. */
6841                         sc->rx_cons = sw_rx_cons;
6842                         sc->pg_cons = sw_pg_cons;
6843
6844                         BCE_UNLOCK(sc);
6845                         (*ifp->if_input)(ifp, m0);
6846                         BCE_LOCK(sc);
6847
6848                         /* Recover our place. */
6849                         sw_rx_cons = sc->rx_cons;
6850                         sw_pg_cons = sc->pg_cons;
6851                 }
6852
6853                 /* Refresh hw_cons to see if there's new work */
6854                 if (sw_rx_cons == hw_rx_cons)
6855                         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6856         }
6857
6858         /* No new packets.  Refill the page chain. */
6859         if (bce_hdr_split == TRUE) {
6860                 sc->pg_cons = sw_pg_cons;
6861                 bce_fill_pg_chain(sc);
6862         }
6863
6864         /* No new packets.  Refill the RX chain. */
6865         sc->rx_cons = sw_rx_cons;
6866         bce_fill_rx_chain(sc);
6867
6868         /* Prepare the page chain pages to be accessed by the NIC. */
6869         for (int i = 0; i < sc->rx_pages; i++)
6870                 bus_dmamap_sync(sc->rx_bd_chain_tag,
6871                     sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6872
6873         if (bce_hdr_split == TRUE) {
6874                 for (int i = 0; i < sc->pg_pages; i++)
6875                         bus_dmamap_sync(sc->pg_bd_chain_tag,
6876                             sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6877         }
6878
6879         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6880             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6881             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6882         DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6883 }
6884
6885
6886 /****************************************************************************/
6887 /* Reads the transmit consumer value from the status block (skipping over   */
6888 /* chain page pointer if necessary).                                        */
6889 /*                                                                          */
6890 /* Returns:                                                                 */
6891 /*   hw_cons                                                                */
6892 /****************************************************************************/
6893 static inline u16
6894 bce_get_hw_tx_cons(struct bce_softc *sc)
6895 {
6896         u16 hw_cons;
6897
6898         mb();
6899         hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6900         if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6901                 hw_cons++;
6902
6903         return hw_cons;
6904 }
6905
6906
6907 /****************************************************************************/
6908 /* Handles transmit completion interrupt events.                            */
6909 /*                                                                          */
6910 /* Returns:                                                                 */
6911 /*   Nothing.                                                               */
6912 /****************************************************************************/
6913 static void
6914 bce_tx_intr(struct bce_softc *sc)
6915 {
6916         struct ifnet *ifp = sc->bce_ifp;
6917         u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6918
6919         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6920         DBRUN(sc->interrupts_tx++);
6921         DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6922             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6923             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6924
6925         BCE_LOCK_ASSERT(sc);
6926
6927         /* Get the hardware's view of the TX consumer index. */
6928         hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6929         sw_tx_cons = sc->tx_cons;
6930
6931         /* Prevent speculative reads of the status block. */
6932         bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6933             BUS_SPACE_BARRIER_READ);
6934
6935         /* Cycle through any completed TX chain page entries. */
6936         while (sw_tx_cons != hw_tx_cons) {
6937 #ifdef BCE_DEBUG
6938                 struct tx_bd *txbd = NULL;
6939 #endif
6940                 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6941
6942                 DBPRINT(sc, BCE_INFO_SEND,
6943                     "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6944                     "sw_tx_chain_cons = 0x%04X\n",
6945                     __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6946
6947                 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6948                     BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6949                     " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6950                     (int) MAX_TX_BD_ALLOC);
6951                     bce_breakpoint(sc));
6952
6953                 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6954                     [TX_IDX(sw_tx_chain_cons)]);
6955
6956                 DBRUNIF((txbd == NULL),
6957                     BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6958                     __FILE__, __LINE__, sw_tx_chain_cons);
6959                     bce_breakpoint(sc));
6960
6961                 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6962                     bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6963
6964                 /*
6965                  * Free the associated mbuf. Remember
6966                  * that only the last tx_bd of a packet
6967                  * has an mbuf pointer and DMA map.
6968                  */
6969                 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6970
6971                         /* Validate that this is the last tx_bd. */
6972                         DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6973                             BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6974                             "txmbuf == NULL!\n", __FILE__, __LINE__);
6975                             bce_breakpoint(sc));
6976
6977                         DBRUNMSG(BCE_INFO_SEND,
6978                             BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6979                             "from tx_bd[0x%04X]\n", __FUNCTION__,
6980                             sw_tx_chain_cons));
6981
6982                         /* Unmap the mbuf. */
6983                         bus_dmamap_unload(sc->tx_mbuf_tag,
6984                             sc->tx_mbuf_map[sw_tx_chain_cons]);
6985
6986                         /* Free the mbuf. */
6987                         m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6988                         sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6989                         DBRUN(sc->debug_tx_mbuf_alloc--);
6990
6991                         ifp->if_opackets++;
6992                 }
6993
6994                 sc->used_tx_bd--;
6995                 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6996
6997                 /* Refresh hw_cons to see if there's new work. */
6998                 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6999
7000                 /* Prevent speculative reads of the status block. */
7001                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7002                     BUS_SPACE_BARRIER_READ);
7003         }
7004
7005         /* Clear the TX timeout timer. */
7006         sc->watchdog_timer = 0;
7007
7008         /* Clear the tx hardware queue full flag. */
7009         if (sc->used_tx_bd < sc->max_tx_bd) {
7010                 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
7011                     DBPRINT(sc, BCE_INFO_SEND,
7012                     "%s(): Open TX chain! %d/%d (used/total)\n",
7013                     __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
7014                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7015         }
7016
7017         sc->tx_cons = sw_tx_cons;
7018
7019         DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
7020             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
7021             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
7022         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
7023 }
7024
7025
7026 /****************************************************************************/
7027 /* Disables interrupt generation.                                           */
7028 /*                                                                          */
7029 /* Returns:                                                                 */
7030 /*   Nothing.                                                               */
7031 /****************************************************************************/
7032 static void
7033 bce_disable_intr(struct bce_softc *sc)
7034 {
7035         DBENTER(BCE_VERBOSE_INTR);
7036
7037         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7038         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
7039
7040         DBEXIT(BCE_VERBOSE_INTR);
7041 }
7042
7043
7044 /****************************************************************************/
7045 /* Enables interrupt generation.                                            */
7046 /*                                                                          */
7047 /* Returns:                                                                 */
7048 /*   Nothing.                                                               */
7049 /****************************************************************************/
7050 static void
7051 bce_enable_intr(struct bce_softc *sc, int coal_now)
7052 {
7053         DBENTER(BCE_VERBOSE_INTR);
7054
7055         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7056             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
7057             BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
7058
7059         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7060             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
7061
7062         /* Force an immediate interrupt (whether there is new data or not). */
7063         if (coal_now)
7064                 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
7065
7066         DBEXIT(BCE_VERBOSE_INTR);
7067 }
7068
7069
7070 /****************************************************************************/
7071 /* Handles controller initialization.                                       */
7072 /*                                                                          */
7073 /* Returns:                                                                 */
7074 /*   Nothing.                                                               */
7075 /****************************************************************************/
7076 static void
7077 bce_init_locked(struct bce_softc *sc)
7078 {
7079         struct ifnet *ifp;
7080         u32 ether_mtu = 0;
7081
7082         DBENTER(BCE_VERBOSE_RESET);
7083
7084         BCE_LOCK_ASSERT(sc);
7085
7086         ifp = sc->bce_ifp;
7087
7088         /* Check if the driver is still running and bail out if it is. */
7089         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7090                 goto bce_init_locked_exit;
7091
7092         bce_stop(sc);
7093
7094         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
7095                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
7096                     __FILE__, __LINE__);
7097                 goto bce_init_locked_exit;
7098         }
7099
7100         if (bce_chipinit(sc)) {
7101                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
7102                     __FILE__, __LINE__);
7103                 goto bce_init_locked_exit;
7104         }
7105
7106         if (bce_blockinit(sc)) {
7107                 BCE_PRINTF("%s(%d): Block initialization failed!\n",
7108                     __FILE__, __LINE__);
7109                 goto bce_init_locked_exit;
7110         }
7111
7112         /* Load our MAC address. */
7113         bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
7114         bce_set_mac_addr(sc);
7115
7116         if (bce_hdr_split == FALSE)
7117                 bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
7118         /*
7119          * Calculate and program the hardware Ethernet MTU
7120          * size. Be generous on the receive if we have room
7121          * and allowed by the user.
7122          */
7123         if (bce_strict_rx_mtu == TRUE)
7124                 ether_mtu = ifp->if_mtu;
7125         else {
7126                 if (bce_hdr_split == TRUE) {
7127                         if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
7128                                 ether_mtu = sc->rx_bd_mbuf_data_len +
7129                                     MCLBYTES;
7130                         else
7131                                 ether_mtu = ifp->if_mtu;
7132                 } else {
7133                         if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7134                                 ether_mtu = sc->rx_bd_mbuf_data_len;
7135                         else
7136                                 ether_mtu = ifp->if_mtu;
7137                 }
7138         }
7139
7140         ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7141
7142         DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7143             __FUNCTION__, ether_mtu);
7144
7145         /* Program the mtu, enabling jumbo frame support if necessary. */
7146         if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7147                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7148                     min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7149                     BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7150         else
7151                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7152
7153         /* Program appropriate promiscuous/multicast filtering. */
7154         bce_set_rx_mode(sc);
7155
7156         if (bce_hdr_split == TRUE) {
7157                 /* Init page buffer descriptor chain. */
7158                 bce_init_pg_chain(sc);
7159         }
7160
7161         /* Init RX buffer descriptor chain. */
7162         bce_init_rx_chain(sc);
7163
7164         /* Init TX buffer descriptor chain. */
7165         bce_init_tx_chain(sc);
7166
7167         /* Enable host interrupts. */
7168         bce_enable_intr(sc, 1);
7169
7170         bce_ifmedia_upd_locked(ifp);
7171
7172         /* Let the OS know the driver is up and running. */
7173         ifp->if_drv_flags |= IFF_DRV_RUNNING;
7174         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7175
7176         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7177
7178 bce_init_locked_exit:
7179         DBEXIT(BCE_VERBOSE_RESET);
7180 }
7181
7182
7183 /****************************************************************************/
7184 /* Initialize the controller just enough so that any management firmware    */
7185 /* running on the device will continue to operate correctly.                */
7186 /*                                                                          */
7187 /* Returns:                                                                 */
7188 /*   Nothing.                                                               */
7189 /****************************************************************************/
7190 static void
7191 bce_mgmt_init_locked(struct bce_softc *sc)
7192 {
7193         struct ifnet *ifp;
7194
7195         DBENTER(BCE_VERBOSE_RESET);
7196
7197         BCE_LOCK_ASSERT(sc);
7198
7199         /* Bail out if management firmware is not running. */
7200         if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7201                 DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7202                     "No management firmware running...\n");
7203                 goto bce_mgmt_init_locked_exit;
7204         }
7205
7206         ifp = sc->bce_ifp;
7207
7208         /* Enable all critical blocks in the MAC. */
7209         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7210         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7211         DELAY(20);
7212
7213         bce_ifmedia_upd_locked(ifp);
7214
7215 bce_mgmt_init_locked_exit:
7216         DBEXIT(BCE_VERBOSE_RESET);
7217 }
7218
7219
7220 /****************************************************************************/
7221 /* Handles controller initialization when called from an unlocked routine.  */
7222 /*                                                                          */
7223 /* Returns:                                                                 */
7224 /*   Nothing.                                                               */
7225 /****************************************************************************/
7226 static void
7227 bce_init(void *xsc)
7228 {
7229         struct bce_softc *sc = xsc;
7230
7231         DBENTER(BCE_VERBOSE_RESET);
7232
7233         BCE_LOCK(sc);
7234         bce_init_locked(sc);
7235         BCE_UNLOCK(sc);
7236
7237         DBEXIT(BCE_VERBOSE_RESET);
7238 }
7239
7240
7241 /****************************************************************************/
7242 /* Modifies an mbuf for TSO on the hardware.                                */
7243 /*                                                                          */
7244 /* Returns:                                                                 */
7245 /*   Pointer to a modified mbuf.                                            */
7246 /****************************************************************************/
7247 static struct mbuf *
7248 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7249 {
7250         struct mbuf *m;
7251         struct ether_header *eh;
7252         struct ip *ip;
7253         struct tcphdr *th;
7254         u16 etype;
7255         int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
7256
7257         DBRUN(sc->tso_frames_requested++);
7258
7259         /* Controller may modify mbuf chains. */
7260         if (M_WRITABLE(*m_head) == 0) {
7261                 m = m_dup(*m_head, M_NOWAIT);
7262                 m_freem(*m_head);
7263                 if (m == NULL) {
7264                         sc->mbuf_alloc_failed_count++;
7265                         *m_head = NULL;
7266                         return (NULL);
7267                 }
7268                 *m_head = m;
7269         }
7270
7271         /*
7272          * For TSO the controller needs two pieces of info,
7273          * the MSS and the IP+TCP options length.
7274          */
7275         m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7276         if (m == NULL) {
7277                 *m_head = NULL;
7278                 return (NULL);
7279         }
7280         eh = mtod(m, struct ether_header *);
7281         etype = ntohs(eh->ether_type);
7282
7283         /* Check for supported TSO Ethernet types (only IPv4 for now) */
7284         switch (etype) {
7285         case ETHERTYPE_IP:
7286                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7287                 /* TSO only supported for TCP protocol. */
7288                 if (ip->ip_p != IPPROTO_TCP) {
7289                         BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7290                             __FILE__, __LINE__);
7291                         m_freem(*m_head);
7292                         *m_head = NULL;
7293                         return (NULL);
7294                 }
7295
7296                 /* Get IP header length in bytes (min 20) */
7297                 ip_hlen = ip->ip_hl << 2;
7298                 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7299                     sizeof(struct tcphdr));
7300                 if (m == NULL) {
7301                         *m_head = NULL;
7302                         return (NULL);
7303                 }
7304
7305                 /* Get the TCP header length in bytes (min 20) */
7306                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7307                 th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7308                 tcp_hlen = (th->th_off << 2);
7309
7310                 /* Make sure all IP/TCP options live in the same buffer. */
7311                 m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7312                     tcp_hlen);
7313                 if (m == NULL) {
7314                         *m_head = NULL;
7315                         return (NULL);
7316                 }
7317
7318                 /* Clear IP header length and checksum, will be calc'd by h/w. */
7319                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7320                 ip_len = ip->ip_len;
7321                 ip->ip_len = 0;
7322                 ip->ip_sum = 0;
7323                 break;
7324         case ETHERTYPE_IPV6:
7325                 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7326                     __FILE__, __LINE__);
7327                 m_freem(*m_head);
7328                 *m_head = NULL;
7329                 return (NULL);
7330                 /* NOT REACHED */
7331         default:
7332                 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7333                     __FILE__, __LINE__);
7334                 m_freem(*m_head);
7335                 *m_head = NULL;
7336                 return (NULL);
7337         }
7338
7339         hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7340
7341         DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7342             "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7343             __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7344             tcp_hlen, ip_len);
7345
7346         /* Set the LSO flag in the TX BD */
7347         *flags |= TX_BD_FLAGS_SW_LSO;
7348
7349         /* Set the length of IP + TCP options (in 32 bit words) */
7350         *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7351             sizeof(struct tcphdr)) >> 2) << 8);
7352
7353         DBRUN(sc->tso_frames_completed++);
7354         return (*m_head);
7355 }
7356
7357
7358 /****************************************************************************/
7359 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7360 /* memory visible to the controller.                                        */
7361 /*                                                                          */
7362 /* Returns:                                                                 */
7363 /*   0 for success, positive value for failure.                             */
7364 /* Modified:                                                                */
7365 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7366 /****************************************************************************/
7367 static int
7368 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7369 {
7370         bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7371         bus_dmamap_t map;
7372         struct tx_bd *txbd = NULL;
7373         struct mbuf *m0;
7374         u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7375         u32 prod_bseq;
7376
7377 #ifdef BCE_DEBUG
7378         u16 debug_prod;
7379 #endif
7380
7381         int i, error, nsegs, rc = 0;
7382
7383         DBENTER(BCE_VERBOSE_SEND);
7384
7385         /* Make sure we have room in the TX chain. */
7386         if (sc->used_tx_bd >= sc->max_tx_bd)
7387                 goto bce_tx_encap_exit;
7388
7389         /* Transfer any checksum offload flags to the bd. */
7390         m0 = *m_head;
7391         if (m0->m_pkthdr.csum_flags) {
7392                 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7393                         m0 = bce_tso_setup(sc, m_head, &flags);
7394                         if (m0 == NULL) {
7395                                 DBRUN(sc->tso_frames_failed++);
7396                                 goto bce_tx_encap_exit;
7397                         }
7398                         mss = htole16(m0->m_pkthdr.tso_segsz);
7399                 } else {
7400                         if (m0->m_pkthdr.csum_flags & CSUM_IP)
7401                                 flags |= TX_BD_FLAGS_IP_CKSUM;
7402                         if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7403                                 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7404                 }
7405         }
7406
7407         /* Transfer any VLAN tags to the bd. */
7408         if (m0->m_flags & M_VLANTAG) {
7409                 flags |= TX_BD_FLAGS_VLAN_TAG;
7410                 vlan_tag = m0->m_pkthdr.ether_vtag;
7411         }
7412
7413         /* Map the mbuf into DMAable memory. */
7414         prod = sc->tx_prod;
7415         chain_prod = TX_CHAIN_IDX(prod);
7416         map = sc->tx_mbuf_map[chain_prod];
7417
7418         /* Map the mbuf into our DMA address space. */
7419         error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7420             segs, &nsegs, BUS_DMA_NOWAIT);
7421
7422         /* Check if the DMA mapping was successful */
7423         if (error == EFBIG) {
7424                 sc->mbuf_frag_count++;
7425
7426                 /* Try to defrag the mbuf. */
7427                 m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7428                 if (m0 == NULL) {
7429                         /* Defrag was unsuccessful */
7430                         m_freem(*m_head);
7431                         *m_head = NULL;
7432                         sc->mbuf_alloc_failed_count++;
7433                         rc = ENOBUFS;
7434                         goto bce_tx_encap_exit;
7435                 }
7436
7437                 /* Defrag was successful, try mapping again */
7438                 *m_head = m0;
7439                 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7440                     map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7441
7442                 /* Still getting an error after a defrag. */
7443                 if (error == ENOMEM) {
7444                         /* Insufficient DMA buffers available. */
7445                         sc->dma_map_addr_tx_failed_count++;
7446                         rc = error;
7447                         goto bce_tx_encap_exit;
7448                 } else if (error != 0) {
7449                         /* Release it and return an error. */
7450                         BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7451                             "TX chain!\n", __FILE__, __LINE__);
7452                         m_freem(m0);
7453                         *m_head = NULL;
7454                         sc->dma_map_addr_tx_failed_count++;
7455                         rc = ENOBUFS;
7456                         goto bce_tx_encap_exit;
7457                 }
7458         } else if (error == ENOMEM) {
7459                 /* Insufficient DMA buffers available. */
7460                 sc->dma_map_addr_tx_failed_count++;
7461                 rc = error;
7462                 goto bce_tx_encap_exit;
7463         } else if (error != 0) {
7464                 m_freem(m0);
7465                 *m_head = NULL;
7466                 sc->dma_map_addr_tx_failed_count++;
7467                 rc = error;
7468                 goto bce_tx_encap_exit;
7469         }
7470
7471         /* Make sure there's room in the chain */
7472         if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7473                 bus_dmamap_unload(sc->tx_mbuf_tag, map);
7474                 rc = ENOBUFS;
7475                 goto bce_tx_encap_exit;
7476         }
7477
7478         /* prod points to an empty tx_bd at this point. */
7479         prod_bseq  = sc->tx_prod_bseq;
7480
7481 #ifdef BCE_DEBUG
7482         debug_prod = chain_prod;
7483 #endif
7484
7485         DBPRINT(sc, BCE_INFO_SEND,
7486             "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7487             "prod_bseq = 0x%08X\n",
7488             __FUNCTION__, prod, chain_prod, prod_bseq);
7489
7490         /*
7491          * Cycle through each mbuf segment that makes up
7492          * the outgoing frame, gathering the mapping info
7493          * for that segment and creating a tx_bd for
7494          * the mbuf.
7495          */
7496         for (i = 0; i < nsegs ; i++) {
7497
7498                 chain_prod = TX_CHAIN_IDX(prod);
7499                 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7500                     [TX_IDX(chain_prod)];
7501
7502                 txbd->tx_bd_haddr_lo =
7503                     htole32(BCE_ADDR_LO(segs[i].ds_addr));
7504                 txbd->tx_bd_haddr_hi =
7505                     htole32(BCE_ADDR_HI(segs[i].ds_addr));
7506                 txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7507                     htole16(segs[i].ds_len);
7508                 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7509                 txbd->tx_bd_flags = htole16(flags);
7510                 prod_bseq += segs[i].ds_len;
7511                 if (i == 0)
7512                         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7513                 prod = NEXT_TX_BD(prod);
7514         }
7515
7516         /* Set the END flag on the last TX buffer descriptor. */
7517         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7518
7519         DBRUNMSG(BCE_EXTREME_SEND,
7520             bce_dump_tx_chain(sc, debug_prod, nsegs));
7521
7522         /*
7523          * Ensure that the mbuf pointer for this transmission
7524          * is placed at the array index of the last
7525          * descriptor in this chain.  This is done
7526          * because a single map is used for all
7527          * segments of the mbuf and we don't want to
7528          * unload the map before all of the segments
7529          * have been freed.
7530          */
7531         sc->tx_mbuf_ptr[chain_prod] = m0;
7532         sc->used_tx_bd += nsegs;
7533
7534         /* Update some debug statistic counters */
7535         DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7536             sc->tx_hi_watermark = sc->used_tx_bd);
7537         DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7538         DBRUNIF(sc->debug_tx_mbuf_alloc++);
7539
7540         DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7541
7542         /* prod points to the next free tx_bd at this point. */
7543         sc->tx_prod = prod;
7544         sc->tx_prod_bseq = prod_bseq;
7545
7546         /* Tell the chip about the waiting TX frames. */
7547         REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7548             BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7549         REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7550             BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7551
7552 bce_tx_encap_exit:
7553         DBEXIT(BCE_VERBOSE_SEND);
7554         return(rc);
7555 }
7556
7557
7558 /****************************************************************************/
7559 /* Main transmit routine when called from another routine with a lock.      */
7560 /*                                                                          */
7561 /* Returns:                                                                 */
7562 /*   Nothing.                                                               */
7563 /****************************************************************************/
7564 static void
7565 bce_start_locked(struct ifnet *ifp)
7566 {
7567         struct bce_softc *sc = ifp->if_softc;
7568         struct mbuf *m_head = NULL;
7569         int count = 0;
7570         u16 tx_prod, tx_chain_prod;
7571
7572         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7573
7574         BCE_LOCK_ASSERT(sc);
7575
7576         /* prod points to the next free tx_bd. */
7577         tx_prod = sc->tx_prod;
7578         tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7579
7580         DBPRINT(sc, BCE_INFO_SEND,
7581             "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7582             "tx_prod_bseq = 0x%08X\n",
7583             __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7584
7585         /* If there's no link or the transmit queue is empty then just exit. */
7586         if (sc->bce_link_up == FALSE) {
7587                 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7588                     __FUNCTION__);
7589                 goto bce_start_locked_exit;
7590         }
7591
7592         if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7593                 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7594                     __FUNCTION__);
7595                 goto bce_start_locked_exit;
7596         }
7597
7598         /*
7599          * Keep adding entries while there is space in the ring.
7600          */
7601         while (sc->used_tx_bd < sc->max_tx_bd) {
7602
7603                 /* Check for any frames to send. */
7604                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7605
7606                 /* Stop when the transmit queue is empty. */
7607                 if (m_head == NULL)
7608                         break;
7609
7610                 /*
7611                  * Pack the data into the transmit ring. If we
7612                  * don't have room, place the mbuf back at the
7613                  * head of the queue and set the OACTIVE flag
7614                  * to wait for the NIC to drain the chain.
7615                  */
7616                 if (bce_tx_encap(sc, &m_head)) {
7617                         if (m_head != NULL)
7618                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7619                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7620                         DBPRINT(sc, BCE_INFO_SEND,
7621                             "TX chain is closed for business! Total "
7622                             "tx_bd used = %d\n", sc->used_tx_bd);
7623                         break;
7624                 }
7625
7626                 count++;
7627
7628                 /* Send a copy of the frame to any BPF listeners. */
7629                 ETHER_BPF_MTAP(ifp, m_head);
7630         }
7631
7632         /* Exit if no packets were dequeued. */
7633         if (count == 0) {
7634                 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7635                     "dequeued\n", __FUNCTION__);
7636                 goto bce_start_locked_exit;
7637         }
7638
7639         DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7640             "send queue.\n", __FUNCTION__, count);
7641
7642         /* Set the tx timeout. */
7643         sc->watchdog_timer = BCE_TX_TIMEOUT;
7644
7645         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7646         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7647
7648 bce_start_locked_exit:
7649         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7650 }
7651
7652
7653 /****************************************************************************/
7654 /* Main transmit routine when called from another routine without a lock.   */
7655 /*                                                                          */
7656 /* Returns:                                                                 */
7657 /*   Nothing.                                                               */
7658 /****************************************************************************/
7659 static void
7660 bce_start(struct ifnet *ifp)
7661 {
7662         struct bce_softc *sc = ifp->if_softc;
7663
7664         DBENTER(BCE_VERBOSE_SEND);
7665
7666         BCE_LOCK(sc);
7667         bce_start_locked(ifp);
7668         BCE_UNLOCK(sc);
7669
7670         DBEXIT(BCE_VERBOSE_SEND);
7671 }
7672
7673
7674 /****************************************************************************/
7675 /* Handles any IOCTL calls from the operating system.                       */
7676 /*                                                                          */
7677 /* Returns:                                                                 */
7678 /*   0 for success, positive value for failure.                             */
7679 /****************************************************************************/
7680 static int
7681 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7682 {
7683         struct bce_softc *sc = ifp->if_softc;
7684         struct ifreq *ifr = (struct ifreq *) data;
7685         struct mii_data *mii;
7686         int mask, error = 0;
7687
7688         DBENTER(BCE_VERBOSE_MISC);
7689
7690         switch(command) {
7691
7692         /* Set the interface MTU. */
7693         case SIOCSIFMTU:
7694                 /* Check that the MTU setting is supported. */
7695                 if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7696                         (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7697                         error = EINVAL;
7698                         break;
7699                 }
7700
7701                 DBPRINT(sc, BCE_INFO_MISC,
7702                     "SIOCSIFMTU: Changing MTU from %d to %d\n",
7703                     (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7704
7705                 BCE_LOCK(sc);
7706                 ifp->if_mtu = ifr->ifr_mtu;
7707                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7708                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7709                         bce_init_locked(sc);
7710                 }
7711                 BCE_UNLOCK(sc);
7712                 break;
7713
7714         /* Set interface flags. */
7715         case SIOCSIFFLAGS:
7716                 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7717
7718                 BCE_LOCK(sc);
7719
7720                 /* Check if the interface is up. */
7721                 if (ifp->if_flags & IFF_UP) {
7722                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7723                                 /* Change promiscuous/multicast flags as necessary. */
7724                                 bce_set_rx_mode(sc);
7725                         } else {
7726                                 /* Start the HW */
7727                                 bce_init_locked(sc);
7728                         }
7729                 } else {
7730                         /* The interface is down, check if driver is running. */
7731                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7732                                 bce_stop(sc);
7733
7734                                 /* If MFW is running, restart the controller a bit. */
7735                                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7736                                         bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7737                                         bce_chipinit(sc);
7738                                         bce_mgmt_init_locked(sc);
7739                                 }
7740                         }
7741                 }
7742
7743                 BCE_UNLOCK(sc);
7744                 break;
7745
7746         /* Add/Delete multicast address */
7747         case SIOCADDMULTI:
7748         case SIOCDELMULTI:
7749                 DBPRINT(sc, BCE_VERBOSE_MISC,
7750                     "Received SIOCADDMULTI/SIOCDELMULTI\n");
7751
7752                 BCE_LOCK(sc);
7753                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7754                         bce_set_rx_mode(sc);
7755                 BCE_UNLOCK(sc);
7756
7757                 break;
7758
7759         /* Set/Get Interface media */
7760         case SIOCSIFMEDIA:
7761         case SIOCGIFMEDIA:
7762                 DBPRINT(sc, BCE_VERBOSE_MISC,
7763                     "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7764                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7765                         error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7766                             command);
7767                 else {
7768                         mii = device_get_softc(sc->bce_miibus);
7769                         error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7770                             command);
7771                 }
7772                 break;
7773
7774         /* Set interface capability */
7775         case SIOCSIFCAP:
7776                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7777                 DBPRINT(sc, BCE_INFO_MISC,
7778                     "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7779
7780                 /* Toggle the TX checksum capabilities enable flag. */
7781                 if (mask & IFCAP_TXCSUM &&
7782                     ifp->if_capabilities & IFCAP_TXCSUM) {
7783                         ifp->if_capenable ^= IFCAP_TXCSUM;
7784                         if (IFCAP_TXCSUM & ifp->if_capenable)
7785                                 ifp->if_hwassist |= BCE_IF_HWASSIST;
7786                         else
7787                                 ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7788                 }
7789
7790                 /* Toggle the RX checksum capabilities enable flag. */
7791                 if (mask & IFCAP_RXCSUM &&
7792                     ifp->if_capabilities & IFCAP_RXCSUM)
7793                         ifp->if_capenable ^= IFCAP_RXCSUM;
7794
7795                 /* Toggle the TSO capabilities enable flag. */
7796                 if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7797                     ifp->if_capabilities & IFCAP_TSO4) {
7798                         ifp->if_capenable ^= IFCAP_TSO4;
7799                         if (IFCAP_TSO4 & ifp->if_capenable)
7800                                 ifp->if_hwassist |= CSUM_TSO;
7801                         else
7802                                 ifp->if_hwassist &= ~CSUM_TSO;
7803                 }
7804
7805                 if (mask & IFCAP_VLAN_HWCSUM &&
7806                     ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7807                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7808
7809                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7810                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7811                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7812                 /*
7813                  * Don't actually disable VLAN tag stripping as
7814                  * management firmware (ASF/IPMI/UMP) requires the
7815                  * feature. If VLAN tag stripping is disabled driver
7816                  * will manually reconstruct the VLAN frame by
7817                  * appending stripped VLAN tag.
7818                  */
7819                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7820                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7821                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7822                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7823                             == 0)
7824                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7825                 }
7826                 VLAN_CAPABILITIES(ifp);
7827                 break;
7828         default:
7829                 /* We don't know how to handle the IOCTL, pass it on. */
7830                 error = ether_ioctl(ifp, command, data);
7831                 break;
7832         }
7833
7834         DBEXIT(BCE_VERBOSE_MISC);
7835         return(error);
7836 }
7837
7838
7839 /****************************************************************************/
7840 /* Transmit timeout handler.                                                */
7841 /*                                                                          */
7842 /* Returns:                                                                 */
7843 /*   Nothing.                                                               */
7844 /****************************************************************************/
7845 static void
7846 bce_watchdog(struct bce_softc *sc)
7847 {
7848         uint32_t status;
7849
7850         DBENTER(BCE_EXTREME_SEND);
7851
7852         BCE_LOCK_ASSERT(sc);
7853
7854         status = 0;
7855         /* If the watchdog timer hasn't expired then just exit. */
7856         if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7857                 goto bce_watchdog_exit;
7858
7859         status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7860         /* If pause frames are active then don't reset the hardware. */
7861         if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7862                 if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7863                         /*
7864                          * If link partner has us in XOFF state then wait for
7865                          * the condition to clear.
7866                          */
7867                         sc->watchdog_timer = BCE_TX_TIMEOUT;
7868                         goto bce_watchdog_exit;
7869                 } else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7870                         (status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7871                         /*
7872                          * If we're not currently XOFF'ed but have recently
7873                          * been XOFF'd/XON'd then assume that's delaying TX
7874                          * this time around.
7875                          */
7876                         sc->watchdog_timer = BCE_TX_TIMEOUT;
7877                         goto bce_watchdog_exit;
7878                 }
7879                 /*
7880                  * Any other condition is unexpected and the controller
7881                  * should be reset.
7882                  */
7883         }
7884
7885         BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7886             __FILE__, __LINE__);
7887
7888         DBRUNMSG(BCE_INFO,
7889             bce_dump_driver_state(sc);
7890             bce_dump_status_block(sc);
7891             bce_dump_stats_block(sc);
7892             bce_dump_ftqs(sc);
7893             bce_dump_txp_state(sc, 0);
7894             bce_dump_rxp_state(sc, 0);
7895             bce_dump_tpat_state(sc, 0);
7896             bce_dump_cp_state(sc, 0);
7897             bce_dump_com_state(sc, 0));
7898
7899         DBRUN(bce_breakpoint(sc));
7900
7901         sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7902
7903         bce_init_locked(sc);
7904         sc->bce_ifp->if_oerrors++;
7905
7906 bce_watchdog_exit:
7907         REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7908         DBEXIT(BCE_EXTREME_SEND);
7909 }
7910
7911
7912 /*
7913  * Interrupt handler.
7914  */
7915 /****************************************************************************/
7916 /* Main interrupt entry point.  Verifies that the controller generated the  */
7917 /* interrupt and then calls a separate routine for handle the various       */
7918 /* interrupt causes (PHY, TX, RX).                                          */
7919 /*                                                                          */
7920 /* Returns:                                                                 */
7921 /*   Nothing.                                                               */
7922 /****************************************************************************/
7923 static void
7924 bce_intr(void *xsc)
7925 {
7926         struct bce_softc *sc;
7927         struct ifnet *ifp;
7928         u32 status_attn_bits;
7929         u16 hw_rx_cons, hw_tx_cons;
7930
7931         sc = xsc;
7932         ifp = sc->bce_ifp;
7933
7934         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7935         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7936         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7937
7938         BCE_LOCK(sc);
7939
7940         DBRUN(sc->interrupts_generated++);
7941
7942         /* Synchnorize before we read from interface's status block */
7943         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7944
7945         /*
7946          * If the hardware status block index matches the last value read
7947          * by the driver and we haven't asserted our interrupt then there's
7948          * nothing to do.  This may only happen in case of INTx due to the
7949          * interrupt arriving at the CPU before the status block is updated.
7950          */
7951         if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7952             sc->status_block->status_idx == sc->last_status_idx &&
7953             (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7954              BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7955                 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7956                     __FUNCTION__);
7957                 goto bce_intr_exit;
7958         }
7959
7960         /* Ack the interrupt and stop others from occuring. */
7961         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7962             BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7963             BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7964
7965         /* Check if the hardware has finished any work. */
7966         hw_rx_cons = bce_get_hw_rx_cons(sc);
7967         hw_tx_cons = bce_get_hw_tx_cons(sc);
7968
7969         /* Keep processing data as long as there is work to do. */
7970         for (;;) {
7971
7972                 status_attn_bits = sc->status_block->status_attn_bits;
7973
7974                 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7975                     BCE_PRINTF("Simulating unexpected status attention "
7976                     "bit set.");
7977                     sc->unexpected_attention_sim_count++;
7978                     status_attn_bits = status_attn_bits |
7979                     STATUS_ATTN_BITS_PARITY_ERROR);
7980
7981                 /* Was it a link change interrupt? */
7982                 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7983                     (sc->status_block->status_attn_bits_ack &
7984                      STATUS_ATTN_BITS_LINK_STATE)) {
7985                         bce_phy_intr(sc);
7986
7987                         /* Clear transient updates during link state change. */
7988                         REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7989                             BCE_HC_COMMAND_COAL_NOW_WO_INT);
7990                         REG_RD(sc, BCE_HC_COMMAND);
7991                 }
7992
7993                 /* If any other attention is asserted, the chip is toast. */
7994                 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7995                     (sc->status_block->status_attn_bits_ack &
7996                     ~STATUS_ATTN_BITS_LINK_STATE))) {
7997
7998                         sc->unexpected_attention_count++;
7999
8000                         BCE_PRINTF("%s(%d): Fatal attention detected: "
8001                             "0x%08X\n", __FILE__, __LINE__,
8002                             sc->status_block->status_attn_bits);
8003
8004                         DBRUNMSG(BCE_FATAL,
8005                             if (unexpected_attention_sim_control == 0)
8006                                 bce_breakpoint(sc));
8007
8008                         bce_init_locked(sc);
8009                         goto bce_intr_exit;
8010                 }
8011
8012                 /* Check for any completed RX frames. */
8013                 if (hw_rx_cons != sc->hw_rx_cons)
8014                         bce_rx_intr(sc);
8015
8016                 /* Check for any completed TX frames. */
8017                 if (hw_tx_cons != sc->hw_tx_cons)
8018                         bce_tx_intr(sc);
8019
8020                 /* Save status block index value for the next interrupt. */
8021                 sc->last_status_idx = sc->status_block->status_idx;
8022
8023                 /*
8024                  * Prevent speculative reads from getting
8025                  * ahead of the status block.
8026                  */
8027                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
8028                     BUS_SPACE_BARRIER_READ);
8029
8030                 /*
8031                  * If there's no work left then exit the
8032                  * interrupt service routine.
8033                  */
8034                 hw_rx_cons = bce_get_hw_rx_cons(sc);
8035                 hw_tx_cons = bce_get_hw_tx_cons(sc);
8036
8037                 if ((hw_rx_cons == sc->hw_rx_cons) &&
8038                     (hw_tx_cons == sc->hw_tx_cons))
8039                         break;
8040         }
8041
8042         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_PREREAD);
8043
8044         /* Re-enable interrupts. */
8045         bce_enable_intr(sc, 0);
8046
8047         /* Handle any frames that arrived while handling the interrupt. */
8048         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
8049             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
8050                 bce_start_locked(ifp);
8051
8052 bce_intr_exit:
8053         BCE_UNLOCK(sc);
8054
8055         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
8056 }
8057
8058
8059 /****************************************************************************/
8060 /* Programs the various packet receive modes (broadcast and multicast).     */
8061 /*                                                                          */
8062 /* Returns:                                                                 */
8063 /*   Nothing.                                                               */
8064 /****************************************************************************/
8065 static void
8066 bce_set_rx_mode(struct bce_softc *sc)
8067 {
8068         struct ifnet *ifp;
8069         struct ifmultiaddr *ifma;
8070         u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
8071         u32 rx_mode, sort_mode;
8072         int h, i;
8073
8074         DBENTER(BCE_VERBOSE_MISC);
8075
8076         BCE_LOCK_ASSERT(sc);
8077
8078         ifp = sc->bce_ifp;
8079
8080         /* Initialize receive mode default settings. */
8081         rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
8082             BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
8083         sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
8084
8085         /*
8086          * ASF/IPMI/UMP firmware requires that VLAN tag stripping
8087          * be enbled.
8088          */
8089         if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
8090             (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
8091                 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
8092
8093         /*
8094          * Check for promiscuous, all multicast, or selected
8095          * multicast address filtering.
8096          */
8097         if (ifp->if_flags & IFF_PROMISC) {
8098                 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
8099
8100                 /* Enable promiscuous mode. */
8101                 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
8102                 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
8103         } else if (ifp->if_flags & IFF_ALLMULTI) {
8104                 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
8105
8106                 /* Enable all multicast addresses. */
8107                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
8108                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
8109                             0xffffffff);
8110                 }
8111                 sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
8112         } else {
8113                 /* Accept one or more multicast(s). */
8114                 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
8115
8116                 if_maddr_rlock(ifp);
8117                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
8118                         if (ifma->ifma_addr->sa_family != AF_LINK)
8119                                 continue;
8120                         h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
8121                             ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
8122                             hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
8123                 }
8124                 if_maddr_runlock(ifp);
8125
8126                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
8127                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
8128
8129                 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
8130         }
8131
8132         /* Only make changes if the recive mode has actually changed. */
8133         if (rx_mode != sc->rx_mode) {
8134                 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
8135                     "0x%08X\n", rx_mode);
8136
8137                 sc->rx_mode = rx_mode;
8138                 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
8139         }
8140
8141         /* Disable and clear the exisitng sort before enabling a new sort. */
8142         REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
8143         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8144         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8145
8146         DBEXIT(BCE_VERBOSE_MISC);
8147 }
8148
8149
8150 /****************************************************************************/
8151 /* Called periodically to updates statistics from the controllers           */
8152 /* statistics block.                                                        */
8153 /*                                                                          */
8154 /* Returns:                                                                 */
8155 /*   Nothing.                                                               */
8156 /****************************************************************************/
8157 static void
8158 bce_stats_update(struct bce_softc *sc)
8159 {
8160         struct ifnet *ifp;
8161         struct statistics_block *stats;
8162
8163         DBENTER(BCE_EXTREME_MISC);
8164
8165         ifp = sc->bce_ifp;
8166
8167         bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8168
8169         stats = (struct statistics_block *) sc->stats_block;
8170
8171         /*
8172          * Certain controllers don't report
8173          * carrier sense errors correctly.
8174          * See errata E11_5708CA0_1165.
8175          */
8176         if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8177             !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8178                 ifp->if_oerrors +=
8179                     (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
8180
8181         /*
8182          * Update the sysctl statistics from the
8183          * hardware statistics.
8184          */
8185         sc->stat_IfHCInOctets =
8186             ((u64) stats->stat_IfHCInOctets_hi << 32) +
8187              (u64) stats->stat_IfHCInOctets_lo;
8188
8189         sc->stat_IfHCInBadOctets =
8190             ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8191              (u64) stats->stat_IfHCInBadOctets_lo;
8192
8193         sc->stat_IfHCOutOctets =
8194             ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8195              (u64) stats->stat_IfHCOutOctets_lo;
8196
8197         sc->stat_IfHCOutBadOctets =
8198             ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8199              (u64) stats->stat_IfHCOutBadOctets_lo;
8200
8201         sc->stat_IfHCInUcastPkts =
8202             ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8203              (u64) stats->stat_IfHCInUcastPkts_lo;
8204
8205         sc->stat_IfHCInMulticastPkts =
8206             ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8207              (u64) stats->stat_IfHCInMulticastPkts_lo;
8208
8209         sc->stat_IfHCInBroadcastPkts =
8210             ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8211              (u64) stats->stat_IfHCInBroadcastPkts_lo;
8212
8213         sc->stat_IfHCOutUcastPkts =
8214             ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8215              (u64) stats->stat_IfHCOutUcastPkts_lo;
8216
8217         sc->stat_IfHCOutMulticastPkts =
8218             ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8219              (u64) stats->stat_IfHCOutMulticastPkts_lo;
8220
8221         sc->stat_IfHCOutBroadcastPkts =
8222             ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8223              (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8224
8225         /* ToDo: Preserve counters beyond 32 bits? */
8226         /* ToDo: Read the statistics from auto-clear regs? */
8227
8228         sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8229             stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8230
8231         sc->stat_Dot3StatsCarrierSenseErrors =
8232             stats->stat_Dot3StatsCarrierSenseErrors;
8233
8234         sc->stat_Dot3StatsFCSErrors =
8235             stats->stat_Dot3StatsFCSErrors;
8236
8237         sc->stat_Dot3StatsAlignmentErrors =
8238             stats->stat_Dot3StatsAlignmentErrors;
8239
8240         sc->stat_Dot3StatsSingleCollisionFrames =
8241             stats->stat_Dot3StatsSingleCollisionFrames;
8242
8243         sc->stat_Dot3StatsMultipleCollisionFrames =
8244             stats->stat_Dot3StatsMultipleCollisionFrames;
8245
8246         sc->stat_Dot3StatsDeferredTransmissions =
8247             stats->stat_Dot3StatsDeferredTransmissions;
8248
8249         sc->stat_Dot3StatsExcessiveCollisions =
8250             stats->stat_Dot3StatsExcessiveCollisions;
8251
8252         sc->stat_Dot3StatsLateCollisions =
8253             stats->stat_Dot3StatsLateCollisions;
8254
8255         sc->stat_EtherStatsCollisions =
8256             stats->stat_EtherStatsCollisions;
8257
8258         sc->stat_EtherStatsFragments =
8259             stats->stat_EtherStatsFragments;
8260
8261         sc->stat_EtherStatsJabbers =
8262             stats->stat_EtherStatsJabbers;
8263
8264         sc->stat_EtherStatsUndersizePkts =
8265             stats->stat_EtherStatsUndersizePkts;
8266
8267         sc->stat_EtherStatsOversizePkts =
8268              stats->stat_EtherStatsOversizePkts;
8269
8270         sc->stat_EtherStatsPktsRx64Octets =
8271             stats->stat_EtherStatsPktsRx64Octets;
8272
8273         sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8274             stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8275
8276         sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8277             stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8278
8279         sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8280             stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8281
8282         sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8283             stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8284
8285         sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8286             stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8287
8288         sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8289             stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8290
8291         sc->stat_EtherStatsPktsTx64Octets =
8292             stats->stat_EtherStatsPktsTx64Octets;
8293
8294         sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8295             stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8296
8297         sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8298             stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8299
8300         sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8301             stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8302
8303         sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8304             stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8305
8306         sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8307             stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8308
8309         sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8310             stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8311
8312         sc->stat_XonPauseFramesReceived =
8313             stats->stat_XonPauseFramesReceived;
8314
8315         sc->stat_XoffPauseFramesReceived =
8316             stats->stat_XoffPauseFramesReceived;
8317
8318         sc->stat_OutXonSent =
8319             stats->stat_OutXonSent;
8320
8321         sc->stat_OutXoffSent =
8322             stats->stat_OutXoffSent;
8323
8324         sc->stat_FlowControlDone =
8325             stats->stat_FlowControlDone;
8326
8327         sc->stat_MacControlFramesReceived =
8328             stats->stat_MacControlFramesReceived;
8329
8330         sc->stat_XoffStateEntered =
8331             stats->stat_XoffStateEntered;
8332
8333         sc->stat_IfInFramesL2FilterDiscards =
8334             stats->stat_IfInFramesL2FilterDiscards;
8335
8336         sc->stat_IfInRuleCheckerDiscards =
8337             stats->stat_IfInRuleCheckerDiscards;
8338
8339         sc->stat_IfInFTQDiscards =
8340             stats->stat_IfInFTQDiscards;
8341
8342         sc->stat_IfInMBUFDiscards =
8343             stats->stat_IfInMBUFDiscards;
8344
8345         sc->stat_IfInRuleCheckerP4Hit =
8346             stats->stat_IfInRuleCheckerP4Hit;
8347
8348         sc->stat_CatchupInRuleCheckerDiscards =
8349             stats->stat_CatchupInRuleCheckerDiscards;
8350
8351         sc->stat_CatchupInFTQDiscards =
8352             stats->stat_CatchupInFTQDiscards;
8353
8354         sc->stat_CatchupInMBUFDiscards =
8355             stats->stat_CatchupInMBUFDiscards;
8356
8357         sc->stat_CatchupInRuleCheckerP4Hit =
8358             stats->stat_CatchupInRuleCheckerP4Hit;
8359
8360         sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8361
8362         /*
8363          * Update the interface statistics from the
8364          * hardware statistics.
8365          */
8366         ifp->if_collisions =
8367             (u_long) sc->stat_EtherStatsCollisions;
8368
8369         /* ToDo: This method loses soft errors. */
8370         ifp->if_ierrors =
8371             (u_long) sc->stat_EtherStatsUndersizePkts +
8372             (u_long) sc->stat_EtherStatsOversizePkts +
8373             (u_long) sc->stat_IfInMBUFDiscards +
8374             (u_long) sc->stat_Dot3StatsAlignmentErrors +
8375             (u_long) sc->stat_Dot3StatsFCSErrors +
8376             (u_long) sc->stat_IfInRuleCheckerDiscards +
8377             (u_long) sc->stat_IfInFTQDiscards +
8378             (u_long) sc->com_no_buffers;
8379
8380         /* ToDo: This method loses soft errors. */
8381         ifp->if_oerrors =
8382             (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8383             (u_long) sc->stat_Dot3StatsExcessiveCollisions +
8384             (u_long) sc->stat_Dot3StatsLateCollisions;
8385
8386         /* ToDo: Add additional statistics? */
8387
8388         DBEXIT(BCE_EXTREME_MISC);
8389 }
8390
8391
8392 /****************************************************************************/
8393 /* Periodic function to notify the bootcode that the driver is still        */
8394 /* present.                                                                 */
8395 /*                                                                          */
8396 /* Returns:                                                                 */
8397 /*   Nothing.                                                               */
8398 /****************************************************************************/
8399 static void
8400 bce_pulse(void *xsc)
8401 {
8402         struct bce_softc *sc = xsc;
8403         u32 msg;
8404
8405         DBENTER(BCE_EXTREME_MISC);
8406
8407         BCE_LOCK_ASSERT(sc);
8408
8409         /* Tell the firmware that the driver is still running. */
8410         msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8411         bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8412
8413         /* Update the bootcode condition. */
8414         sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8415
8416         /* Report whether the bootcode still knows the driver is running. */
8417         if (bce_verbose || bootverbose) {
8418                 if (sc->bce_drv_cardiac_arrest == FALSE) {
8419                         if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8420                                 sc->bce_drv_cardiac_arrest = TRUE;
8421                                 BCE_PRINTF("%s(): Warning: bootcode "
8422                                     "thinks driver is absent! "
8423                                     "(bc_state = 0x%08X)\n",
8424                                     __FUNCTION__, sc->bc_state);
8425                         }
8426                 } else {
8427                         /*
8428                          * Not supported by all bootcode versions.
8429                          * (v5.0.11+ and v5.2.1+)  Older bootcode
8430                          * will require the driver to reset the
8431                          * controller to clear this condition.
8432                          */
8433                         if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8434                                 sc->bce_drv_cardiac_arrest = FALSE;
8435                                 BCE_PRINTF("%s(): Bootcode found the "
8436                                     "driver pulse! (bc_state = 0x%08X)\n",
8437                                     __FUNCTION__, sc->bc_state);
8438                         }
8439                 }
8440         }
8441
8442
8443         /* Schedule the next pulse. */
8444         callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8445
8446         DBEXIT(BCE_EXTREME_MISC);
8447 }
8448
8449
8450 /****************************************************************************/
8451 /* Periodic function to perform maintenance tasks.                          */
8452 /*                                                                          */
8453 /* Returns:                                                                 */
8454 /*   Nothing.                                                               */
8455 /****************************************************************************/
8456 static void
8457 bce_tick(void *xsc)
8458 {
8459         struct bce_softc *sc = xsc;
8460         struct mii_data *mii;
8461         struct ifnet *ifp;
8462         struct ifmediareq ifmr;
8463
8464         ifp = sc->bce_ifp;
8465
8466         DBENTER(BCE_EXTREME_MISC);
8467
8468         BCE_LOCK_ASSERT(sc);
8469
8470         /* Schedule the next tick. */
8471         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8472
8473         /* Update the statistics from the hardware statistics block. */
8474         bce_stats_update(sc);
8475
8476         /* Ensure page and RX chains get refilled in low-memory situations. */
8477         if (bce_hdr_split == TRUE)
8478                 bce_fill_pg_chain(sc);
8479         bce_fill_rx_chain(sc);
8480
8481         /* Check that chip hasn't hung. */
8482         bce_watchdog(sc);
8483
8484         /* If link is up already up then we're done. */
8485         if (sc->bce_link_up == TRUE)
8486                 goto bce_tick_exit;
8487
8488         /* Link is down.  Check what the PHY's doing. */
8489         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8490                 bzero(&ifmr, sizeof(ifmr));
8491                 bce_ifmedia_sts_rphy(sc, &ifmr);
8492                 if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8493                     (IFM_ACTIVE | IFM_AVALID)) {
8494                         sc->bce_link_up = TRUE;
8495                         bce_miibus_statchg(sc->bce_dev);
8496                 }
8497         } else {
8498                 mii = device_get_softc(sc->bce_miibus);
8499                 mii_tick(mii);
8500                 /* Check if the link has come up. */
8501                 if ((mii->mii_media_status & IFM_ACTIVE) &&
8502                     (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8503                         DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8504                             __FUNCTION__);
8505                         sc->bce_link_up = TRUE;
8506                         if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8507                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8508                             IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8509                             (bce_verbose || bootverbose))
8510                                 BCE_PRINTF("Gigabit link up!\n");
8511                 }
8512
8513         }
8514         if (sc->bce_link_up == TRUE) {
8515                 /* Now that link is up, handle any outstanding TX traffic. */
8516                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8517                         DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8518                             "pending TX traffic.\n", __FUNCTION__);
8519                         bce_start_locked(ifp);
8520                 }
8521         }
8522
8523 bce_tick_exit:
8524         DBEXIT(BCE_EXTREME_MISC);
8525 }
8526
8527 static void
8528 bce_fw_cap_init(struct bce_softc *sc)
8529 {
8530         u32 ack, cap, link;
8531
8532         ack = 0;
8533         cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8534         if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8535             BCE_FW_CAP_SIGNATURE_MAGIC)
8536                 return;
8537         if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8538             (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8539                 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8540                     BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8541         if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8542             (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8543                 sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8544                 sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8545                 link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8546                 if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8547                         sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8548                 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8549                     BCE_FW_CAP_REMOTE_PHY_CAP;
8550         }
8551
8552         if (ack != 0)
8553                 bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8554 }
8555
8556
8557 #ifdef BCE_DEBUG
8558 /****************************************************************************/
8559 /* Allows the driver state to be dumped through the sysctl interface.       */
8560 /*                                                                          */
8561 /* Returns:                                                                 */
8562 /*   0 for success, positive value for failure.                             */
8563 /****************************************************************************/
8564 static int
8565 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8566 {
8567         int error;
8568         int result;
8569         struct bce_softc *sc;
8570
8571         result = -1;
8572         error = sysctl_handle_int(oidp, &result, 0, req);
8573
8574         if (error || !req->newptr)
8575                 return (error);
8576
8577         if (result == 1) {
8578                 sc = (struct bce_softc *)arg1;
8579                 bce_dump_driver_state(sc);
8580         }
8581
8582         return error;
8583 }
8584
8585
8586 /****************************************************************************/
8587 /* Allows the hardware state to be dumped through the sysctl interface.     */
8588 /*                                                                          */
8589 /* Returns:                                                                 */
8590 /*   0 for success, positive value for failure.                             */
8591 /****************************************************************************/
8592 static int
8593 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8594 {
8595         int error;
8596         int result;
8597         struct bce_softc *sc;
8598
8599         result = -1;
8600         error = sysctl_handle_int(oidp, &result, 0, req);
8601
8602         if (error || !req->newptr)
8603                 return (error);
8604
8605         if (result == 1) {
8606                 sc = (struct bce_softc *)arg1;
8607                 bce_dump_hw_state(sc);
8608         }
8609
8610         return error;
8611 }
8612
8613
8614 /****************************************************************************/
8615 /* Allows the status block to be dumped through the sysctl interface.       */
8616 /*                                                                          */
8617 /* Returns:                                                                 */
8618 /*   0 for success, positive value for failure.                             */
8619 /****************************************************************************/
8620 static int
8621 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8622 {
8623         int error;
8624         int result;
8625         struct bce_softc *sc;
8626
8627         result = -1;
8628         error = sysctl_handle_int(oidp, &result, 0, req);
8629
8630         if (error || !req->newptr)
8631                 return (error);
8632
8633         if (result == 1) {
8634                 sc = (struct bce_softc *)arg1;
8635                 bce_dump_status_block(sc);
8636         }
8637
8638         return error;
8639 }
8640
8641
8642 /****************************************************************************/
8643 /* Allows the stats block to be dumped through the sysctl interface.        */
8644 /*                                                                          */
8645 /* Returns:                                                                 */
8646 /*   0 for success, positive value for failure.                             */
8647 /****************************************************************************/
8648 static int
8649 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8650 {
8651         int error;
8652         int result;
8653         struct bce_softc *sc;
8654
8655         result = -1;
8656         error = sysctl_handle_int(oidp, &result, 0, req);
8657
8658         if (error || !req->newptr)
8659                 return (error);
8660
8661         if (result == 1) {
8662                 sc = (struct bce_softc *)arg1;
8663                 bce_dump_stats_block(sc);
8664         }
8665
8666         return error;
8667 }
8668
8669
8670 /****************************************************************************/
8671 /* Allows the stat counters to be cleared without unloading/reloading the   */
8672 /* driver.                                                                  */
8673 /*                                                                          */
8674 /* Returns:                                                                 */
8675 /*   0 for success, positive value for failure.                             */
8676 /****************************************************************************/
8677 static int
8678 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8679 {
8680         int error;
8681         int result;
8682         struct bce_softc *sc;
8683
8684         result = -1;
8685         error = sysctl_handle_int(oidp, &result, 0, req);
8686
8687         if (error || !req->newptr)
8688                 return (error);
8689
8690         if (result == 1) {
8691                 sc = (struct bce_softc *)arg1;
8692                 struct statistics_block *stats;
8693
8694                 stats = (struct statistics_block *) sc->stats_block;
8695                 bzero(stats, sizeof(struct statistics_block));
8696                 bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8697                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8698
8699                 /* Clear the internal H/W statistics counters. */
8700                 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8701
8702                 /* Reset the driver maintained statistics. */
8703                 sc->interrupts_rx =
8704                     sc->interrupts_tx = 0;
8705                 sc->tso_frames_requested =
8706                     sc->tso_frames_completed =
8707                     sc->tso_frames_failed = 0;
8708                 sc->rx_empty_count =
8709                     sc->tx_full_count = 0;
8710                 sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8711                 sc->tx_hi_watermark = 0;
8712                 sc->l2fhdr_error_count =
8713                     sc->l2fhdr_error_sim_count = 0;
8714                 sc->mbuf_alloc_failed_count =
8715                     sc->mbuf_alloc_failed_sim_count = 0;
8716                 sc->dma_map_addr_rx_failed_count =
8717                     sc->dma_map_addr_tx_failed_count = 0;
8718                 sc->mbuf_frag_count = 0;
8719                 sc->csum_offload_tcp_udp =
8720                     sc->csum_offload_ip = 0;
8721                 sc->vlan_tagged_frames_rcvd =
8722                     sc->vlan_tagged_frames_stripped = 0;
8723                 sc->split_header_frames_rcvd =
8724                     sc->split_header_tcp_frames_rcvd = 0;
8725
8726                 /* Clear firmware maintained statistics. */
8727                 REG_WR_IND(sc, 0x120084, 0);
8728         }
8729
8730         return error;
8731 }
8732
8733
8734 /****************************************************************************/
8735 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8736 /* interface.                                                               */
8737 /*                                                                          */
8738 /* Returns:                                                                 */
8739 /*   0 for success, positive value for failure.                             */
8740 /****************************************************************************/
8741 static int
8742 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8743 {
8744         int error;
8745         int result;
8746         struct bce_softc *sc;
8747
8748         result = -1;
8749         error = sysctl_handle_int(oidp, &result, 0, req);
8750
8751         if (error || !req->newptr)
8752                 return (error);
8753
8754         if (result == 1) {
8755                 sc = (struct bce_softc *)arg1;
8756                 bce_dump_shmem_state(sc);
8757         }
8758
8759         return error;
8760 }
8761
8762
8763 /****************************************************************************/
8764 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8765 /*                                                                          */
8766 /* Returns:                                                                 */
8767 /*   0 for success, positive value for failure.                             */
8768 /****************************************************************************/
8769 static int
8770 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8771 {
8772         int error;
8773         int result;
8774         struct bce_softc *sc;
8775
8776         result = -1;
8777         error = sysctl_handle_int(oidp, &result, 0, req);
8778
8779         if (error || !req->newptr)
8780                 return (error);
8781
8782         if (result == 1) {
8783                 sc = (struct bce_softc *)arg1;
8784                 bce_dump_bc_state(sc);
8785         }
8786
8787         return error;
8788 }
8789
8790
8791 /****************************************************************************/
8792 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8793 /*                                                                          */
8794 /* Returns:                                                                 */
8795 /*   0 for success, positive value for failure.                             */
8796 /****************************************************************************/
8797 static int
8798 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8799 {
8800         int error;
8801         int result;
8802         struct bce_softc *sc;
8803
8804         result = -1;
8805         error = sysctl_handle_int(oidp, &result, 0, req);
8806
8807         if (error || !req->newptr)
8808                 return (error);
8809
8810         if (result == 1) {
8811                 sc = (struct bce_softc *)arg1;
8812                 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8813         }
8814
8815         return error;
8816 }
8817
8818
8819 /****************************************************************************/
8820 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8821 /*                                                                          */
8822 /* Returns:                                                                 */
8823 /*   0 for success, positive value for failure.                             */
8824 /****************************************************************************/
8825 static int
8826 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8827 {
8828         int error;
8829         int result;
8830         struct bce_softc *sc;
8831
8832         result = -1;
8833         error = sysctl_handle_int(oidp, &result, 0, req);
8834
8835         if (error || !req->newptr)
8836                 return (error);
8837
8838         if (result == 1) {
8839                 sc = (struct bce_softc *)arg1;
8840                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8841         }
8842
8843         return error;
8844 }
8845
8846
8847 /****************************************************************************/
8848 /* Provides a sysctl interface to allow dumping the TX chain.               */
8849 /*                                                                          */
8850 /* Returns:                                                                 */
8851 /*   0 for success, positive value for failure.                             */
8852 /****************************************************************************/
8853 static int
8854 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8855 {
8856         int error;
8857         int result;
8858         struct bce_softc *sc;
8859
8860         result = -1;
8861         error = sysctl_handle_int(oidp, &result, 0, req);
8862
8863         if (error || !req->newptr)
8864                 return (error);
8865
8866         if (result == 1) {
8867                 sc = (struct bce_softc *)arg1;
8868                 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8869         }
8870
8871         return error;
8872 }
8873
8874
8875 /****************************************************************************/
8876 /* Provides a sysctl interface to allow dumping the page chain.             */
8877 /*                                                                          */
8878 /* Returns:                                                                 */
8879 /*   0 for success, positive value for failure.                             */
8880 /****************************************************************************/
8881 static int
8882 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8883 {
8884         int error;
8885         int result;
8886         struct bce_softc *sc;
8887
8888         result = -1;
8889         error = sysctl_handle_int(oidp, &result, 0, req);
8890
8891         if (error || !req->newptr)
8892                 return (error);
8893
8894         if (result == 1) {
8895                 sc = (struct bce_softc *)arg1;
8896                 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8897         }
8898
8899         return error;
8900 }
8901
8902 /****************************************************************************/
8903 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8904 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8905 /*                                                                          */
8906 /* Returns:                                                                 */
8907 /*   0 for success, positive value for failure.                             */
8908 /****************************************************************************/
8909 static int
8910 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8911 {
8912         struct bce_softc *sc = (struct bce_softc *)arg1;
8913         int error;
8914         u32 result;
8915         u32 val[1];
8916         u8 *data = (u8 *) val;
8917
8918         result = -1;
8919         error = sysctl_handle_int(oidp, &result, 0, req);
8920         if (error || (req->newptr == NULL))
8921                 return (error);
8922
8923         error = bce_nvram_read(sc, result, data, 4);
8924
8925         BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8926
8927         return (error);
8928 }
8929
8930
8931 /****************************************************************************/
8932 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8933 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8934 /*                                                                          */
8935 /* Returns:                                                                 */
8936 /*   0 for success, positive value for failure.                             */
8937 /****************************************************************************/
8938 static int
8939 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8940 {
8941         struct bce_softc *sc = (struct bce_softc *)arg1;
8942         int error;
8943         u32 val, result;
8944
8945         result = -1;
8946         error = sysctl_handle_int(oidp, &result, 0, req);
8947         if (error || (req->newptr == NULL))
8948                 return (error);
8949
8950         /* Make sure the register is accessible. */
8951         if (result < 0x8000) {
8952                 val = REG_RD(sc, result);
8953                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8954         } else if (result < 0x0280000) {
8955                 val = REG_RD_IND(sc, result);
8956                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8957         }
8958
8959         return (error);
8960 }
8961
8962
8963 /****************************************************************************/
8964 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8965 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8966 /*                                                                          */
8967 /* Returns:                                                                 */
8968 /*   0 for success, positive value for failure.                             */
8969 /****************************************************************************/
8970 static int
8971 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8972 {
8973         struct bce_softc *sc;
8974         device_t dev;
8975         int error, result;
8976         u16 val;
8977
8978         result = -1;
8979         error = sysctl_handle_int(oidp, &result, 0, req);
8980         if (error || (req->newptr == NULL))
8981                 return (error);
8982
8983         /* Make sure the register is accessible. */
8984         if (result < 0x20) {
8985                 sc = (struct bce_softc *)arg1;
8986                 dev = sc->bce_dev;
8987                 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8988                 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8989         }
8990         return (error);
8991 }
8992
8993
8994 /****************************************************************************/
8995 /* Provides a sysctl interface for dumping the nvram contents.              */
8996 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!                                     */
8997 /*                                                                          */
8998 /* Returns:                                                                 */
8999 /*   0 for success, positive errno for failure.                             */
9000 /****************************************************************************/
9001 static int
9002 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
9003 {
9004         struct bce_softc *sc = (struct bce_softc *)arg1;
9005         int error, i;
9006
9007         if (sc->nvram_buf == NULL)
9008                 sc->nvram_buf = malloc(sc->bce_flash_size,
9009                                     M_TEMP, M_ZERO | M_WAITOK);
9010
9011         error = 0;
9012         if (req->oldlen == sc->bce_flash_size) {
9013                 for (i = 0; i < sc->bce_flash_size && error == 0; i++)
9014                         error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
9015         }
9016
9017         if (error == 0)
9018                 error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
9019
9020         return error;
9021 }
9022
9023 #ifdef BCE_NVRAM_WRITE_SUPPORT
9024 /****************************************************************************/
9025 /* Provides a sysctl interface for writing to nvram.                        */
9026 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!                                     */
9027 /*                                                                          */
9028 /* Returns:                                                                 */
9029 /*   0 for success, positive errno for failure.                             */
9030 /****************************************************************************/
9031 static int
9032 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
9033 {
9034         struct bce_softc *sc = (struct bce_softc *)arg1;
9035         int error;
9036
9037         if (sc->nvram_buf == NULL)
9038                 sc->nvram_buf = malloc(sc->bce_flash_size,
9039                                     M_TEMP, M_ZERO | M_WAITOK);
9040         else
9041                 bzero(sc->nvram_buf, sc->bce_flash_size);
9042
9043         error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
9044         if (error == 0)
9045                 return (error);
9046
9047         if (req->newlen == sc->bce_flash_size)
9048                 error = bce_nvram_write(sc, 0, sc->nvram_buf,
9049                             sc->bce_flash_size);
9050
9051
9052         return error;
9053 }
9054 #endif
9055
9056
9057 /****************************************************************************/
9058 /* Provides a sysctl interface to allow reading a CID.                      */
9059 /*                                                                          */
9060 /* Returns:                                                                 */
9061 /*   0 for success, positive value for failure.                             */
9062 /****************************************************************************/
9063 static int
9064 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
9065 {
9066         struct bce_softc *sc;
9067         int error, result;
9068
9069         result = -1;
9070         error = sysctl_handle_int(oidp, &result, 0, req);
9071         if (error || (req->newptr == NULL))
9072                 return (error);
9073
9074         /* Make sure the register is accessible. */
9075         if (result <= TX_CID) {
9076                 sc = (struct bce_softc *)arg1;
9077                 bce_dump_ctx(sc, result);
9078         }
9079
9080         return (error);
9081 }
9082
9083
9084 /****************************************************************************/
9085 /* Provides a sysctl interface to forcing the driver to dump state and      */
9086 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
9087 /*                                                                          */
9088 /* Returns:                                                                 */
9089 /*   0 for success, positive value for failure.                             */
9090 /****************************************************************************/
9091 static int
9092 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
9093 {
9094         int error;
9095         int result;
9096         struct bce_softc *sc;
9097
9098         result = -1;
9099         error = sysctl_handle_int(oidp, &result, 0, req);
9100
9101         if (error || !req->newptr)
9102                 return (error);
9103
9104         if (result == 1) {
9105                 sc = (struct bce_softc *)arg1;
9106                 bce_breakpoint(sc);
9107         }
9108
9109         return error;
9110 }
9111 #endif
9112
9113 /****************************************************************************/
9114 /* Adds any sysctl parameters for tuning or debugging purposes.             */
9115 /*                                                                          */
9116 /* Returns:                                                                 */
9117 /*   0 for success, positive value for failure.                             */
9118 /****************************************************************************/
9119 static void
9120 bce_add_sysctls(struct bce_softc *sc)
9121 {
9122         struct sysctl_ctx_list *ctx;
9123         struct sysctl_oid_list *children;
9124
9125         DBENTER(BCE_VERBOSE_MISC);
9126
9127         ctx = device_get_sysctl_ctx(sc->bce_dev);
9128         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
9129
9130 #ifdef BCE_DEBUG
9131         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9132             "l2fhdr_error_sim_control",
9133             CTLFLAG_RW, &l2fhdr_error_sim_control,
9134             0, "Debug control to force l2fhdr errors");
9135
9136         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9137             "l2fhdr_error_sim_count",
9138             CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
9139             0, "Number of simulated l2_fhdr errors");
9140 #endif
9141
9142         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9143             "l2fhdr_error_count",
9144             CTLFLAG_RD, &sc->l2fhdr_error_count,
9145             0, "Number of l2_fhdr errors");
9146
9147 #ifdef BCE_DEBUG
9148         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9149             "mbuf_alloc_failed_sim_control",
9150             CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
9151             0, "Debug control to force mbuf allocation failures");
9152
9153         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9154             "mbuf_alloc_failed_sim_count",
9155             CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
9156             0, "Number of simulated mbuf cluster allocation failures");
9157 #endif
9158
9159         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9160             "mbuf_alloc_failed_count",
9161             CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
9162             0, "Number of mbuf allocation failures");
9163
9164         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9165             "mbuf_frag_count",
9166             CTLFLAG_RD, &sc->mbuf_frag_count,
9167             0, "Number of fragmented mbufs");
9168
9169 #ifdef BCE_DEBUG
9170         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9171             "dma_map_addr_failed_sim_control",
9172             CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9173             0, "Debug control to force DMA mapping failures");
9174
9175         /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9176         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9177             "dma_map_addr_failed_sim_count",
9178             CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9179             0, "Number of simulated DMA mapping failures");
9180
9181 #endif
9182
9183         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9184             "dma_map_addr_rx_failed_count",
9185             CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9186             0, "Number of RX DMA mapping failures");
9187
9188         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9189             "dma_map_addr_tx_failed_count",
9190             CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9191             0, "Number of TX DMA mapping failures");
9192
9193 #ifdef BCE_DEBUG
9194         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9195             "unexpected_attention_sim_control",
9196             CTLFLAG_RW, &unexpected_attention_sim_control,
9197             0, "Debug control to simulate unexpected attentions");
9198
9199         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9200             "unexpected_attention_sim_count",
9201             CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9202             0, "Number of simulated unexpected attentions");
9203 #endif
9204
9205         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9206             "unexpected_attention_count",
9207             CTLFLAG_RW, &sc->unexpected_attention_count,
9208             0, "Number of unexpected attentions");
9209
9210 #ifdef BCE_DEBUG
9211         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9212             "debug_bootcode_running_failure",
9213             CTLFLAG_RW, &bootcode_running_failure_sim_control,
9214             0, "Debug control to force bootcode running failures");
9215
9216         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9217             "rx_low_watermark",
9218             CTLFLAG_RD, &sc->rx_low_watermark,
9219             0, "Lowest level of free rx_bd's");
9220
9221         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9222             "rx_empty_count",
9223             CTLFLAG_RD, &sc->rx_empty_count,
9224             "Number of times the RX chain was empty");
9225
9226         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9227             "tx_hi_watermark",
9228             CTLFLAG_RD, &sc->tx_hi_watermark,
9229             0, "Highest level of used tx_bd's");
9230
9231         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9232             "tx_full_count",
9233             CTLFLAG_RD, &sc->tx_full_count,
9234             "Number of times the TX chain was full");
9235
9236         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9237             "tso_frames_requested",
9238             CTLFLAG_RD, &sc->tso_frames_requested,
9239             "Number of TSO frames requested");
9240
9241         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9242             "tso_frames_completed",
9243             CTLFLAG_RD, &sc->tso_frames_completed,
9244             "Number of TSO frames completed");
9245
9246         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9247             "tso_frames_failed",
9248             CTLFLAG_RD, &sc->tso_frames_failed,
9249             "Number of TSO frames failed");
9250
9251         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9252             "csum_offload_ip",
9253             CTLFLAG_RD, &sc->csum_offload_ip,
9254             "Number of IP checksum offload frames");
9255
9256         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9257             "csum_offload_tcp_udp",
9258             CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9259             "Number of TCP/UDP checksum offload frames");
9260
9261         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9262             "vlan_tagged_frames_rcvd",
9263             CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9264             "Number of VLAN tagged frames received");
9265
9266         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9267             "vlan_tagged_frames_stripped",
9268             CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9269             "Number of VLAN tagged frames stripped");
9270
9271         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9272             "interrupts_rx",
9273             CTLFLAG_RD, &sc->interrupts_rx,
9274             "Number of RX interrupts");
9275
9276         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9277             "interrupts_tx",
9278             CTLFLAG_RD, &sc->interrupts_tx,
9279             "Number of TX interrupts");
9280
9281         if (bce_hdr_split == TRUE) {
9282                 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9283                     "split_header_frames_rcvd",
9284                     CTLFLAG_RD, &sc->split_header_frames_rcvd,
9285                     "Number of split header frames received");
9286
9287                 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9288                     "split_header_tcp_frames_rcvd",
9289                     CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9290                     "Number of split header TCP frames received");
9291         }
9292
9293         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9294             "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD,
9295             (void *)sc, 0,
9296             bce_sysctl_nvram_dump, "S", "");
9297
9298 #ifdef BCE_NVRAM_WRITE_SUPPORT
9299         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9300             "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR,
9301             (void *)sc, 0,
9302             bce_sysctl_nvram_write, "S", "");
9303 #endif
9304 #endif /* BCE_DEBUG */
9305
9306         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9307             "stat_IfHcInOctets",
9308             CTLFLAG_RD, &sc->stat_IfHCInOctets,
9309             "Bytes received");
9310
9311         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9312             "stat_IfHCInBadOctets",
9313             CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9314             "Bad bytes received");
9315
9316         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9317             "stat_IfHCOutOctets",
9318             CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9319             "Bytes sent");
9320
9321         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9322             "stat_IfHCOutBadOctets",
9323             CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9324             "Bad bytes sent");
9325
9326         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9327             "stat_IfHCInUcastPkts",
9328             CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9329             "Unicast packets received");
9330
9331         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9332             "stat_IfHCInMulticastPkts",
9333             CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9334             "Multicast packets received");
9335
9336         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9337             "stat_IfHCInBroadcastPkts",
9338             CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9339             "Broadcast packets received");
9340
9341         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9342             "stat_IfHCOutUcastPkts",
9343             CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9344             "Unicast packets sent");
9345
9346         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9347             "stat_IfHCOutMulticastPkts",
9348             CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9349             "Multicast packets sent");
9350
9351         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9352             "stat_IfHCOutBroadcastPkts",
9353             CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9354             "Broadcast packets sent");
9355
9356         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9357             "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9358             CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9359             0, "Internal MAC transmit errors");
9360
9361         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9362             "stat_Dot3StatsCarrierSenseErrors",
9363             CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9364             0, "Carrier sense errors");
9365
9366         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9367             "stat_Dot3StatsFCSErrors",
9368             CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9369             0, "Frame check sequence errors");
9370
9371         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9372             "stat_Dot3StatsAlignmentErrors",
9373             CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9374             0, "Alignment errors");
9375
9376         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9377             "stat_Dot3StatsSingleCollisionFrames",
9378             CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9379             0, "Single Collision Frames");
9380
9381         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9382             "stat_Dot3StatsMultipleCollisionFrames",
9383             CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9384             0, "Multiple Collision Frames");
9385
9386         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9387             "stat_Dot3StatsDeferredTransmissions",
9388             CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9389             0, "Deferred Transmissions");
9390
9391         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9392             "stat_Dot3StatsExcessiveCollisions",
9393             CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9394             0, "Excessive Collisions");
9395
9396         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9397             "stat_Dot3StatsLateCollisions",
9398             CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9399             0, "Late Collisions");
9400
9401         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9402             "stat_EtherStatsCollisions",
9403             CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9404             0, "Collisions");
9405
9406         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9407             "stat_EtherStatsFragments",
9408             CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9409             0, "Fragments");
9410
9411         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9412             "stat_EtherStatsJabbers",
9413             CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9414             0, "Jabbers");
9415
9416         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9417             "stat_EtherStatsUndersizePkts",
9418             CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9419             0, "Undersize packets");
9420
9421         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9422             "stat_EtherStatsOversizePkts",
9423             CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9424             0, "stat_EtherStatsOversizePkts");
9425
9426         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9427             "stat_EtherStatsPktsRx64Octets",
9428             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9429             0, "Bytes received in 64 byte packets");
9430
9431         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9432             "stat_EtherStatsPktsRx65Octetsto127Octets",
9433             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9434             0, "Bytes received in 65 to 127 byte packets");
9435
9436         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9437             "stat_EtherStatsPktsRx128Octetsto255Octets",
9438             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9439             0, "Bytes received in 128 to 255 byte packets");
9440
9441         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9442             "stat_EtherStatsPktsRx256Octetsto511Octets",
9443             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9444             0, "Bytes received in 256 to 511 byte packets");
9445
9446         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9447             "stat_EtherStatsPktsRx512Octetsto1023Octets",
9448             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9449             0, "Bytes received in 512 to 1023 byte packets");
9450
9451         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9452             "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9453             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9454             0, "Bytes received in 1024 t0 1522 byte packets");
9455
9456         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9457             "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9458             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9459             0, "Bytes received in 1523 to 9022 byte packets");
9460
9461         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9462             "stat_EtherStatsPktsTx64Octets",
9463             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9464             0, "Bytes sent in 64 byte packets");
9465
9466         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9467             "stat_EtherStatsPktsTx65Octetsto127Octets",
9468             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9469             0, "Bytes sent in 65 to 127 byte packets");
9470
9471         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9472             "stat_EtherStatsPktsTx128Octetsto255Octets",
9473             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9474             0, "Bytes sent in 128 to 255 byte packets");
9475
9476         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9477             "stat_EtherStatsPktsTx256Octetsto511Octets",
9478             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9479             0, "Bytes sent in 256 to 511 byte packets");
9480
9481         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9482             "stat_EtherStatsPktsTx512Octetsto1023Octets",
9483             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9484             0, "Bytes sent in 512 to 1023 byte packets");
9485
9486         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9487             "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9488             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9489             0, "Bytes sent in 1024 to 1522 byte packets");
9490
9491         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9492             "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9493             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9494             0, "Bytes sent in 1523 to 9022 byte packets");
9495
9496         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9497             "stat_XonPauseFramesReceived",
9498             CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9499             0, "XON pause frames receved");
9500
9501         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9502             "stat_XoffPauseFramesReceived",
9503             CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9504             0, "XOFF pause frames received");
9505
9506         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9507             "stat_OutXonSent",
9508             CTLFLAG_RD, &sc->stat_OutXonSent,
9509             0, "XON pause frames sent");
9510
9511         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9512             "stat_OutXoffSent",
9513             CTLFLAG_RD, &sc->stat_OutXoffSent,
9514             0, "XOFF pause frames sent");
9515
9516         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9517             "stat_FlowControlDone",
9518             CTLFLAG_RD, &sc->stat_FlowControlDone,
9519             0, "Flow control done");
9520
9521         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9522             "stat_MacControlFramesReceived",
9523             CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9524             0, "MAC control frames received");
9525
9526         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9527             "stat_XoffStateEntered",
9528             CTLFLAG_RD, &sc->stat_XoffStateEntered,
9529             0, "XOFF state entered");
9530
9531         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9532             "stat_IfInFramesL2FilterDiscards",
9533             CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9534             0, "Received L2 packets discarded");
9535
9536         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9537             "stat_IfInRuleCheckerDiscards",
9538             CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9539             0, "Received packets discarded by rule");
9540
9541         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9542             "stat_IfInFTQDiscards",
9543             CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9544             0, "Received packet FTQ discards");
9545
9546         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9547             "stat_IfInMBUFDiscards",
9548             CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9549             0, "Received packets discarded due to lack "
9550             "of controller buffer memory");
9551
9552         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9553             "stat_IfInRuleCheckerP4Hit",
9554             CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9555             0, "Received packets rule checker hits");
9556
9557         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9558             "stat_CatchupInRuleCheckerDiscards",
9559             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9560             0, "Received packets discarded in Catchup path");
9561
9562         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9563             "stat_CatchupInFTQDiscards",
9564             CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9565             0, "Received packets discarded in FTQ in Catchup path");
9566
9567         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9568             "stat_CatchupInMBUFDiscards",
9569             CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9570             0, "Received packets discarded in controller "
9571             "buffer memory in Catchup path");
9572
9573         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9574             "stat_CatchupInRuleCheckerP4Hit",
9575             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9576             0, "Received packets rule checker hits in Catchup path");
9577
9578         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9579             "com_no_buffers",
9580             CTLFLAG_RD, &sc->com_no_buffers,
9581             0, "Valid packets received but no RX buffers available");
9582
9583 #ifdef BCE_DEBUG
9584         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9585             "driver_state", CTLTYPE_INT | CTLFLAG_RW,
9586             (void *)sc, 0,
9587             bce_sysctl_driver_state, "I", "Drive state information");
9588
9589         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9590             "hw_state", CTLTYPE_INT | CTLFLAG_RW,
9591             (void *)sc, 0,
9592             bce_sysctl_hw_state, "I", "Hardware state information");
9593
9594         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9595             "status_block", CTLTYPE_INT | CTLFLAG_RW,
9596             (void *)sc, 0,
9597             bce_sysctl_status_block, "I", "Dump status block");
9598
9599         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9600             "stats_block", CTLTYPE_INT | CTLFLAG_RW,
9601             (void *)sc, 0,
9602             bce_sysctl_stats_block, "I", "Dump statistics block");
9603
9604         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9605             "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
9606             (void *)sc, 0,
9607             bce_sysctl_stats_clear, "I", "Clear statistics block");
9608
9609         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9610             "shmem_state", CTLTYPE_INT | CTLFLAG_RW,
9611             (void *)sc, 0,
9612             bce_sysctl_shmem_state, "I", "Shared memory state information");
9613
9614         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9615             "bc_state", CTLTYPE_INT | CTLFLAG_RW,
9616             (void *)sc, 0,
9617             bce_sysctl_bc_state, "I", "Bootcode state information");
9618
9619         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9620             "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
9621             (void *)sc, 0,
9622             bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9623
9624         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9625             "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
9626             (void *)sc, 0,
9627             bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9628
9629         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9630             "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
9631             (void *)sc, 0,
9632             bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9633
9634         if (bce_hdr_split == TRUE) {
9635                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9636                     "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
9637                     (void *)sc, 0,
9638                     bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9639         }
9640
9641         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9642             "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
9643             (void *)sc, 0,
9644             bce_sysctl_dump_ctx, "I", "Dump context memory");
9645
9646         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9647             "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
9648             (void *)sc, 0,
9649             bce_sysctl_breakpoint, "I", "Driver breakpoint");
9650
9651         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9652             "reg_read", CTLTYPE_INT | CTLFLAG_RW,
9653             (void *)sc, 0,
9654             bce_sysctl_reg_read, "I", "Register read");
9655
9656         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9657             "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
9658             (void *)sc, 0,
9659             bce_sysctl_nvram_read, "I", "NVRAM read");
9660
9661         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9662             "phy_read", CTLTYPE_INT | CTLFLAG_RW,
9663             (void *)sc, 0,
9664             bce_sysctl_phy_read, "I", "PHY register read");
9665
9666 #endif
9667
9668         DBEXIT(BCE_VERBOSE_MISC);
9669 }
9670
9671
9672 /****************************************************************************/
9673 /* BCE Debug Routines                                                       */
9674 /****************************************************************************/
9675 #ifdef BCE_DEBUG
9676
9677 /****************************************************************************/
9678 /* Freezes the controller to allow for a cohesive state dump.               */
9679 /*                                                                          */
9680 /* Returns:                                                                 */
9681 /*   Nothing.                                                               */
9682 /****************************************************************************/
9683 static __attribute__ ((noinline)) void
9684 bce_freeze_controller(struct bce_softc *sc)
9685 {
9686         u32 val;
9687         val = REG_RD(sc, BCE_MISC_COMMAND);
9688         val |= BCE_MISC_COMMAND_DISABLE_ALL;
9689         REG_WR(sc, BCE_MISC_COMMAND, val);
9690 }
9691
9692
9693 /****************************************************************************/
9694 /* Unfreezes the controller after a freeze operation.  This may not always  */
9695 /* work and the controller will require a reset!                            */
9696 /*                                                                          */
9697 /* Returns:                                                                 */
9698 /*   Nothing.                                                               */
9699 /****************************************************************************/
9700 static __attribute__ ((noinline)) void
9701 bce_unfreeze_controller(struct bce_softc *sc)
9702 {
9703         u32 val;
9704         val = REG_RD(sc, BCE_MISC_COMMAND);
9705         val |= BCE_MISC_COMMAND_ENABLE_ALL;
9706         REG_WR(sc, BCE_MISC_COMMAND, val);
9707 }
9708
9709
9710 /****************************************************************************/
9711 /* Prints out Ethernet frame information from an mbuf.                      */
9712 /*                                                                          */
9713 /* Partially decode an Ethernet frame to look at some important headers.    */
9714 /*                                                                          */
9715 /* Returns:                                                                 */
9716 /*   Nothing.                                                               */
9717 /****************************************************************************/
9718 static __attribute__ ((noinline)) void
9719 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9720 {
9721         struct ether_vlan_header *eh;
9722         u16 etype;
9723         int ehlen;
9724         struct ip *ip;
9725         struct tcphdr *th;
9726         struct udphdr *uh;
9727         struct arphdr *ah;
9728
9729         BCE_PRINTF(
9730             "-----------------------------"
9731             " Frame Decode "
9732             "-----------------------------\n");
9733
9734         eh = mtod(m, struct ether_vlan_header *);
9735
9736         /* Handle VLAN encapsulation if present. */
9737         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9738                 etype = ntohs(eh->evl_proto);
9739                 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9740         } else {
9741                 etype = ntohs(eh->evl_encap_proto);
9742                 ehlen = ETHER_HDR_LEN;
9743         }
9744
9745         /* ToDo: Add VLAN output. */
9746         BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9747             eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9748
9749         switch (etype) {
9750         case ETHERTYPE_IP:
9751                 ip = (struct ip *)(m->m_data + ehlen);
9752                 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9753                     "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9754                     ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9755                     ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9756
9757                 switch (ip->ip_p) {
9758                 case IPPROTO_TCP:
9759                         th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9760                         BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9761                             "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9762                             ntohs(th->th_dport), ntohs(th->th_sport),
9763                             (th->th_off << 2), th->th_flags,
9764                             "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9765                             "\02SYN\01FIN", ntohs(th->th_sum));
9766                         break;
9767                 case IPPROTO_UDP:
9768                         uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9769                         BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9770                             "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9771                             ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9772                             ntohs(uh->uh_sum));
9773                         break;
9774                 case IPPROTO_ICMP:
9775                         BCE_PRINTF("icmp:\n");
9776                         break;
9777                 default:
9778                         BCE_PRINTF("----: Other IP protocol.\n");
9779                         }
9780                 break;
9781         case ETHERTYPE_IPV6:
9782                 BCE_PRINTF("ipv6: No decode supported.\n");
9783                 break;
9784         case ETHERTYPE_ARP:
9785                 BCE_PRINTF("-arp: ");
9786                 ah = (struct arphdr *) (m->m_data + ehlen);
9787                 switch (ntohs(ah->ar_op)) {
9788                 case ARPOP_REVREQUEST:
9789                         printf("reverse ARP request\n");
9790                         break;
9791                 case ARPOP_REVREPLY:
9792                         printf("reverse ARP reply\n");
9793                         break;
9794                 case ARPOP_REQUEST:
9795                         printf("ARP request\n");
9796                         break;
9797                 case ARPOP_REPLY:
9798                         printf("ARP reply\n");
9799                         break;
9800                 default:
9801                         printf("other ARP operation\n");
9802                 }
9803                 break;
9804         default:
9805                 BCE_PRINTF("----: Other protocol.\n");
9806         }
9807
9808         BCE_PRINTF(
9809                 "-----------------------------"
9810                 "--------------"
9811                 "-----------------------------\n");
9812 }
9813
9814
9815 /****************************************************************************/
9816 /* Prints out information about an mbuf.                                    */
9817 /*                                                                          */
9818 /* Returns:                                                                 */
9819 /*   Nothing.                                                               */
9820 /****************************************************************************/
9821 static __attribute__ ((noinline)) void
9822 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9823 {
9824         struct mbuf *mp = m;
9825
9826         if (m == NULL) {
9827                 BCE_PRINTF("mbuf: null pointer\n");
9828                 return;
9829         }
9830
9831         while (mp) {
9832                 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9833                     "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9834                     "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9835
9836                 if (mp->m_flags & M_PKTHDR) {
9837                         BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9838                             "csum_flags = %b\n", mp->m_pkthdr.len,
9839                             mp->m_flags, M_FLAG_PRINTF,
9840                             mp->m_pkthdr.csum_flags,
9841                             "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP"
9842                             "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
9843                             "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
9844                             "\14CSUM_PSEUDO_HDR");
9845                 }
9846
9847                 if (mp->m_flags & M_EXT) {
9848                         BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9849                             mp->m_ext.ext_buf, mp->m_ext.ext_size);
9850                         switch (mp->m_ext.ext_type) {
9851                         case EXT_CLUSTER:
9852                                 printf("EXT_CLUSTER\n"); break;
9853                         case EXT_SFBUF:
9854                                 printf("EXT_SFBUF\n"); break;
9855                         case EXT_JUMBO9:
9856                                 printf("EXT_JUMBO9\n"); break;
9857                         case EXT_JUMBO16:
9858                                 printf("EXT_JUMBO16\n"); break;
9859                         case EXT_PACKET:
9860                                 printf("EXT_PACKET\n"); break;
9861                         case EXT_MBUF:
9862                                 printf("EXT_MBUF\n"); break;
9863                         case EXT_NET_DRV:
9864                                 printf("EXT_NET_DRV\n"); break;
9865                         case EXT_MOD_TYPE:
9866                                 printf("EXT_MDD_TYPE\n"); break;
9867                         case EXT_DISPOSABLE:
9868                                 printf("EXT_DISPOSABLE\n"); break;
9869                         case EXT_EXTREF:
9870                                 printf("EXT_EXTREF\n"); break;
9871                         default:
9872                                 printf("UNKNOWN\n");
9873                         }
9874                 }
9875
9876                 mp = mp->m_next;
9877         }
9878 }
9879
9880
9881 /****************************************************************************/
9882 /* Prints out the mbufs in the TX mbuf chain.                               */
9883 /*                                                                          */
9884 /* Returns:                                                                 */
9885 /*   Nothing.                                                               */
9886 /****************************************************************************/
9887 static __attribute__ ((noinline)) void
9888 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9889 {
9890         struct mbuf *m;
9891
9892         BCE_PRINTF(
9893                 "----------------------------"
9894                 "  tx mbuf data  "
9895                 "----------------------------\n");
9896
9897         for (int i = 0; i < count; i++) {
9898                 m = sc->tx_mbuf_ptr[chain_prod];
9899                 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9900                 bce_dump_mbuf(sc, m);
9901                 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9902         }
9903
9904         BCE_PRINTF(
9905                 "----------------------------"
9906                 "----------------"
9907                 "----------------------------\n");
9908 }
9909
9910
9911 /****************************************************************************/
9912 /* Prints out the mbufs in the RX mbuf chain.                               */
9913 /*                                                                          */
9914 /* Returns:                                                                 */
9915 /*   Nothing.                                                               */
9916 /****************************************************************************/
9917 static __attribute__ ((noinline)) void
9918 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9919 {
9920         struct mbuf *m;
9921
9922         BCE_PRINTF(
9923                 "----------------------------"
9924                 "  rx mbuf data  "
9925                 "----------------------------\n");
9926
9927         for (int i = 0; i < count; i++) {
9928                 m = sc->rx_mbuf_ptr[chain_prod];
9929                 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9930                 bce_dump_mbuf(sc, m);
9931                 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9932         }
9933
9934
9935         BCE_PRINTF(
9936                 "----------------------------"
9937                 "----------------"
9938                 "----------------------------\n");
9939 }
9940
9941
9942 /****************************************************************************/
9943 /* Prints out the mbufs in the mbuf page chain.                             */
9944 /*                                                                          */
9945 /* Returns:                                                                 */
9946 /*   Nothing.                                                               */
9947 /****************************************************************************/
9948 static __attribute__ ((noinline)) void
9949 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9950 {
9951         struct mbuf *m;
9952
9953         BCE_PRINTF(
9954                 "----------------------------"
9955                 "  pg mbuf data  "
9956                 "----------------------------\n");
9957
9958         for (int i = 0; i < count; i++) {
9959                 m = sc->pg_mbuf_ptr[chain_prod];
9960                 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9961                 bce_dump_mbuf(sc, m);
9962                 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9963         }
9964
9965
9966         BCE_PRINTF(
9967                 "----------------------------"
9968                 "----------------"
9969                 "----------------------------\n");
9970 }
9971
9972
9973 /****************************************************************************/
9974 /* Prints out a tx_bd structure.                                            */
9975 /*                                                                          */
9976 /* Returns:                                                                 */
9977 /*   Nothing.                                                               */
9978 /****************************************************************************/
9979 static __attribute__ ((noinline)) void
9980 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9981 {
9982         int i = 0;
9983
9984         if (idx > MAX_TX_BD_ALLOC)
9985                 /* Index out of range. */
9986                 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9987         else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9988                 /* TX Chain page pointer. */
9989                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9990                     "pointer\n", idx, txbd->tx_bd_haddr_hi,
9991                     txbd->tx_bd_haddr_lo);
9992         else {
9993                 /* Normal tx_bd entry. */
9994                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9995                     "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9996                     "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9997                     txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9998                     txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9999
10000                 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
10001                         if (i>0)
10002                                 printf("|");
10003                         printf("CONN_FAULT");
10004                         i++;
10005                 }
10006
10007                 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
10008                         if (i>0)
10009                                 printf("|");
10010                         printf("TCP_UDP_CKSUM");
10011                         i++;
10012                 }
10013
10014                 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
10015                         if (i>0)
10016                                 printf("|");
10017                         printf("IP_CKSUM");
10018                         i++;
10019                 }
10020
10021                 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
10022                         if (i>0)
10023                                 printf("|");
10024                         printf("VLAN");
10025                         i++;
10026                 }
10027
10028                 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
10029                         if (i>0)
10030                                 printf("|");
10031                         printf("COAL_NOW");
10032                         i++;
10033                 }
10034
10035                 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
10036                         if (i>0)
10037                                 printf("|");
10038                         printf("DONT_GEN_CRC");
10039                         i++;
10040                 }
10041
10042                 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
10043                         if (i>0)
10044                                 printf("|");
10045                         printf("START");
10046                         i++;
10047                 }
10048
10049                 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
10050                         if (i>0)
10051                                 printf("|");
10052                         printf("END");
10053                         i++;
10054                 }
10055
10056                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
10057                         if (i>0)
10058                                 printf("|");
10059                         printf("LSO");
10060                         i++;
10061                 }
10062
10063                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
10064                         if (i>0)
10065                                 printf("|");
10066                         printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
10067                             TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
10068                 }
10069
10070                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
10071                         if (i>0)
10072                                 printf("|");
10073                         printf("SW_FLAGS");
10074                         i++;
10075                 }
10076
10077                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
10078                         if (i>0)
10079                                 printf("|");
10080                         printf("SNAP)");
10081                 } else {
10082                         printf(")\n");
10083                 }
10084         }
10085 }
10086
10087
10088 /****************************************************************************/
10089 /* Prints out a rx_bd structure.                                            */
10090 /*                                                                          */
10091 /* Returns:                                                                 */
10092 /*   Nothing.                                                               */
10093 /****************************************************************************/
10094 static __attribute__ ((noinline)) void
10095 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
10096 {
10097         if (idx > MAX_RX_BD_ALLOC)
10098                 /* Index out of range. */
10099                 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
10100         else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
10101                 /* RX Chain page pointer. */
10102                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
10103                     "pointer\n", idx, rxbd->rx_bd_haddr_hi,
10104                     rxbd->rx_bd_haddr_lo);
10105         else
10106                 /* Normal rx_bd entry. */
10107                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
10108                     "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
10109                     rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
10110                     rxbd->rx_bd_flags);
10111 }
10112
10113
10114 /****************************************************************************/
10115 /* Prints out a rx_bd structure in the page chain.                          */
10116 /*                                                                          */
10117 /* Returns:                                                                 */
10118 /*   Nothing.                                                               */
10119 /****************************************************************************/
10120 static __attribute__ ((noinline)) void
10121 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
10122 {
10123         if (idx > MAX_PG_BD_ALLOC)
10124                 /* Index out of range. */
10125                 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
10126         else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
10127                 /* Page Chain page pointer. */
10128                 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
10129                         idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
10130         else
10131                 /* Normal rx_bd entry. */
10132                 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
10133                         "flags = 0x%08X\n", idx,
10134                         pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
10135                         pgbd->rx_bd_len, pgbd->rx_bd_flags);
10136 }
10137
10138
10139 /****************************************************************************/
10140 /* Prints out a l2_fhdr structure.                                          */
10141 /*                                                                          */
10142 /* Returns:                                                                 */
10143 /*   Nothing.                                                               */
10144 /****************************************************************************/
10145 static __attribute__ ((noinline)) void
10146 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
10147 {
10148         BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
10149                 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
10150                 "tcp_udp_xsum = 0x%04X\n", idx,
10151                 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
10152                 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
10153                 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
10154 }
10155
10156
10157 /****************************************************************************/
10158 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
10159 /*                                                                          */
10160 /* Returns:                                                                 */
10161 /*   Nothing.                                                               */
10162 /****************************************************************************/
10163 static __attribute__ ((noinline)) void
10164 bce_dump_ctx(struct bce_softc *sc, u16 cid)
10165 {
10166         if (cid > TX_CID) {
10167                 BCE_PRINTF(" Unknown CID\n");
10168                 return;
10169         }
10170
10171         BCE_PRINTF(
10172             "----------------------------"
10173             "    CTX Data    "
10174             "----------------------------\n");
10175
10176         BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
10177
10178         if (cid == RX_CID) {
10179                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10180                    "producer index\n",
10181                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10182                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10183                     "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10184                     BCE_L2CTX_RX_HOST_BSEQ));
10185                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10186                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10187                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10188                     "descriptor address\n",
10189                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10190                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10191                     "descriptor address\n",
10192                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10193                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10194                     "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10195                     BCE_L2CTX_RX_NX_BDIDX));
10196                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10197                     "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10198                     BCE_L2CTX_RX_HOST_PG_BDIDX));
10199                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10200                     "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10201                     BCE_L2CTX_RX_PG_BUF_SIZE));
10202                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10203                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10204                     BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10205                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10206                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10207                     BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10208                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10209                     "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10210                     BCE_L2CTX_RX_NX_PG_BDIDX));
10211         } else if (cid == TX_CID) {
10212                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10213                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10214                             CTX_RD(sc, GET_CID_ADDR(cid),
10215                             BCE_L2CTX_TX_TYPE_XI));
10216                         BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10217                             "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10218                             BCE_L2CTX_TX_CMD_TYPE_XI));
10219                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10220                             "h/w buffer descriptor address\n",
10221                             CTX_RD(sc, GET_CID_ADDR(cid),
10222                             BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10223                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10224                             "h/w buffer descriptor address\n",
10225                             CTX_RD(sc, GET_CID_ADDR(cid),
10226                             BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10227                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10228                             "host producer index\n",
10229                             CTX_RD(sc, GET_CID_ADDR(cid),
10230                             BCE_L2CTX_TX_HOST_BIDX_XI));
10231                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10232                             "host byte sequence\n",
10233                             CTX_RD(sc, GET_CID_ADDR(cid),
10234                             BCE_L2CTX_TX_HOST_BSEQ_XI));
10235                 } else {
10236                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10237                             CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10238                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10239                             CTX_RD(sc, GET_CID_ADDR(cid),
10240                             BCE_L2CTX_TX_CMD_TYPE));
10241                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10242                             "h/w buffer descriptor address\n",
10243                             CTX_RD(sc, GET_CID_ADDR(cid),
10244                             BCE_L2CTX_TX_TBDR_BHADDR_HI));
10245                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10246                             "h/w buffer descriptor address\n",
10247                             CTX_RD(sc, GET_CID_ADDR(cid),
10248                             BCE_L2CTX_TX_TBDR_BHADDR_LO));
10249                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10250                             "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10251                             BCE_L2CTX_TX_HOST_BIDX));
10252                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10253                             "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10254                             BCE_L2CTX_TX_HOST_BSEQ));
10255                 }
10256         }
10257
10258         BCE_PRINTF(
10259            "----------------------------"
10260            "    Raw CTX     "
10261            "----------------------------\n");
10262
10263         for (int i = 0x0; i < 0x300; i += 0x10) {
10264                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10265                    CTX_RD(sc, GET_CID_ADDR(cid), i),
10266                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10267                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10268                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10269         }
10270
10271
10272         BCE_PRINTF(
10273            "----------------------------"
10274            "----------------"
10275            "----------------------------\n");
10276 }
10277
10278
10279 /****************************************************************************/
10280 /* Prints out the FTQ data.                                                 */
10281 /*                                                                          */
10282 /* Returns:                                                                */
10283 /*   Nothing.                                                               */
10284 /****************************************************************************/
10285 static __attribute__ ((noinline)) void
10286 bce_dump_ftqs(struct bce_softc *sc)
10287 {
10288         u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10289
10290         BCE_PRINTF(
10291             "----------------------------"
10292             "    FTQ Data    "
10293             "----------------------------\n");
10294
10295         BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10296             "Max_Depth  Valid_Cnt \n");
10297         BCE_PRINTF(" ------- ---------- ---------- ---------- "
10298             "---------- ----------\n");
10299
10300         /* Setup the generic statistic counters for the FTQ valid count. */
10301         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10302             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10303             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10304             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10305         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10306
10307         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10308             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10309             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10310             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10311         REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10312
10313         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10314             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10315             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10316             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10317         REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10318
10319         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10320             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10321             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10322             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10323         REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10324
10325         /* Input queue to the Receive Lookup state machine */
10326         cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10327         ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10328         cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10329         max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10330         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10331         BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10332             cmd, ctl, cur_depth, max_depth, valid_cnt);
10333
10334         /* Input queue to the Receive Processor */
10335         cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10336         ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10337         cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10338         max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10339         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10340         BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10341             cmd, ctl, cur_depth, max_depth, valid_cnt);
10342
10343         /* Input queue to the Recevie Processor */
10344         cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10345         ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10346         cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10347         max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10348         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10349         BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10350             cmd, ctl, cur_depth, max_depth, valid_cnt);
10351
10352         /* Input queue to the Receive Virtual to Physical state machine */
10353         cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10354         ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10355         cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10356         max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10357         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10358         BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10359             cmd, ctl, cur_depth, max_depth, valid_cnt);
10360
10361         /* Input queue to the Recevie Virtual to Physical state machine */
10362         cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10363         ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10364         cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10365         max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10366         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10367         BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10368             cmd, ctl, cur_depth, max_depth, valid_cnt);
10369
10370         /* Input queue to the Receive Virtual to Physical state machine */
10371         cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10372         ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10373         cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10374         max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10375         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10376         BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10377             cmd, ctl, cur_depth, max_depth, valid_cnt);
10378
10379         /* Input queue to the Receive DMA state machine */
10380         cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10381         ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10382         cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10383         max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10384         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10385         BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10386             cmd, ctl, cur_depth, max_depth, valid_cnt);
10387
10388         /* Input queue to the Transmit Scheduler state machine */
10389         cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10390         ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10391         cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10392         max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10393         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10394         BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10395             cmd, ctl, cur_depth, max_depth, valid_cnt);
10396
10397         /* Input queue to the Transmit Buffer Descriptor state machine */
10398         cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10399         ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10400         cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10401         max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10402         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10403         BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10404             cmd, ctl, cur_depth, max_depth, valid_cnt);
10405
10406         /* Input queue to the Transmit Processor */
10407         cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10408         ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10409         cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10410         max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10411         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10412         BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10413             cmd, ctl, cur_depth, max_depth, valid_cnt);
10414
10415         /* Input queue to the Transmit DMA state machine */
10416         cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10417         ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10418         cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10419         max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10420         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10421         BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10422             cmd, ctl, cur_depth, max_depth, valid_cnt);
10423
10424         /* Input queue to the Transmit Patch-Up Processor */
10425         cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10426         ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10427         cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10428         max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10429         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10430         BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10431             cmd, ctl, cur_depth, max_depth, valid_cnt);
10432
10433         /* Input queue to the Transmit Assembler state machine */
10434         cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10435         ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10436         cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10437         max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10438         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10439         BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10440             cmd, ctl, cur_depth, max_depth, valid_cnt);
10441
10442         /* Input queue to the Completion Processor */
10443         cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10444         ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10445         cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10446         max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10447         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10448         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10449             cmd, ctl, cur_depth, max_depth, valid_cnt);
10450
10451         /* Input queue to the Completion Processor */
10452         cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10453         ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10454         cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10455         max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10456         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10457         BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10458             cmd, ctl, cur_depth, max_depth, valid_cnt);
10459
10460         /* Input queue to the Completion Processor */
10461         cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10462         ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10463         cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10464         max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10465         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10466         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10467             cmd, ctl, cur_depth, max_depth, valid_cnt);
10468
10469         /* Setup the generic statistic counters for the FTQ valid count. */
10470         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10471             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10472             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10473
10474         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10475                 val = val |
10476                     (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10477                      24);
10478         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10479
10480         /* Input queue to the Management Control Processor */
10481         cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10482         ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10483         cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10484         max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10485         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10486         BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10487             cmd, ctl, cur_depth, max_depth, valid_cnt);
10488
10489         /* Input queue to the Command Processor */
10490         cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10491         ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10492         cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10493         max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10494         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10495         BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10496             cmd, ctl, cur_depth, max_depth, valid_cnt);
10497
10498         /* Input queue to the Completion Scheduler state machine */
10499         cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10500         ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10501         cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10502         max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10503         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10504         BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10505             cmd, ctl, cur_depth, max_depth, valid_cnt);
10506
10507         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10508                 /* Input queue to the RV2P Command Scheduler */
10509                 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10510                 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10511                 cur_depth = (ctl & 0xFFC00000) >> 22;
10512                 max_depth = (ctl & 0x003FF000) >> 12;
10513                 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10514                 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10515                     cmd, ctl, cur_depth, max_depth, valid_cnt);
10516         }
10517
10518         BCE_PRINTF(
10519             "----------------------------"
10520             "----------------"
10521             "----------------------------\n");
10522 }
10523
10524
10525 /****************************************************************************/
10526 /* Prints out the TX chain.                                                 */
10527 /*                                                                          */
10528 /* Returns:                                                                 */
10529 /*   Nothing.                                                               */
10530 /****************************************************************************/
10531 static __attribute__ ((noinline)) void
10532 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10533 {
10534         struct tx_bd *txbd;
10535
10536         /* First some info about the tx_bd chain structure. */
10537         BCE_PRINTF(
10538             "----------------------------"
10539             "  tx_bd  chain  "
10540             "----------------------------\n");
10541
10542         BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10543             (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10544         BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10545             (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10546         BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10547
10548         BCE_PRINTF(
10549             "----------------------------"
10550             "   tx_bd data   "
10551             "----------------------------\n");
10552
10553         /* Now print out a decoded list of TX buffer descriptors. */
10554         for (int i = 0; i < count; i++) {
10555                 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10556                 bce_dump_txbd(sc, tx_prod, txbd);
10557                 tx_prod++;
10558         }
10559
10560         BCE_PRINTF(
10561             "----------------------------"
10562             "----------------"
10563             "----------------------------\n");
10564 }
10565
10566
10567 /****************************************************************************/
10568 /* Prints out the RX chain.                                                 */
10569 /*                                                                          */
10570 /* Returns:                                                                 */
10571 /*   Nothing.                                                               */
10572 /****************************************************************************/
10573 static __attribute__ ((noinline)) void
10574 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10575 {
10576         struct rx_bd *rxbd;
10577
10578         /* First some info about the rx_bd chain structure. */
10579         BCE_PRINTF(
10580             "----------------------------"
10581             "  rx_bd  chain  "
10582             "----------------------------\n");
10583
10584         BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10585             (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10586
10587         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10588             (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10589
10590         BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10591
10592         BCE_PRINTF(
10593             "----------------------------"
10594             "   rx_bd data   "
10595             "----------------------------\n");
10596
10597         /* Now print out the rx_bd's themselves. */
10598         for (int i = 0; i < count; i++) {
10599                 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10600                 bce_dump_rxbd(sc, rx_prod, rxbd);
10601                 rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10602         }
10603
10604         BCE_PRINTF(
10605             "----------------------------"
10606             "----------------"
10607             "----------------------------\n");
10608 }
10609
10610
10611 /****************************************************************************/
10612 /* Prints out the page chain.                                               */
10613 /*                                                                          */
10614 /* Returns:                                                                 */
10615 /*   Nothing.                                                               */
10616 /****************************************************************************/
10617 static __attribute__ ((noinline)) void
10618 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10619 {
10620         struct rx_bd *pgbd;
10621
10622         /* First some info about the page chain structure. */
10623         BCE_PRINTF(
10624             "----------------------------"
10625             "   page chain   "
10626             "----------------------------\n");
10627
10628         BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10629             (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10630
10631         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10632             (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10633
10634         BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10635
10636         BCE_PRINTF(
10637             "----------------------------"
10638             "   page data    "
10639             "----------------------------\n");
10640
10641         /* Now print out the rx_bd's themselves. */
10642         for (int i = 0; i < count; i++) {
10643                 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10644                 bce_dump_pgbd(sc, pg_prod, pgbd);
10645                 pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10646         }
10647
10648         BCE_PRINTF(
10649             "----------------------------"
10650             "----------------"
10651             "----------------------------\n");
10652 }
10653
10654
10655 #define BCE_PRINT_RX_CONS(arg)                                          \
10656 if (sblk->status_rx_quick_consumer_index##arg)                          \
10657         BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",      \
10658             sblk->status_rx_quick_consumer_index##arg, (u16)            \
10659             RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),    \
10660             arg);
10661
10662
10663 #define BCE_PRINT_TX_CONS(arg)                                          \
10664 if (sblk->status_tx_quick_consumer_index##arg)                          \
10665         BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",      \
10666             sblk->status_tx_quick_consumer_index##arg, (u16)            \
10667             TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),    \
10668             arg);
10669
10670 /****************************************************************************/
10671 /* Prints out the status block from host memory.                            */
10672 /*                                                                          */
10673 /* Returns:                                                                 */
10674 /*   Nothing.                                                               */
10675 /****************************************************************************/
10676 static __attribute__ ((noinline)) void
10677 bce_dump_status_block(struct bce_softc *sc)
10678 {
10679         struct status_block *sblk;
10680
10681         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10682
10683         sblk = sc->status_block;
10684
10685         BCE_PRINTF(
10686             "----------------------------"
10687             "  Status Block  "
10688             "----------------------------\n");
10689
10690         /* Theses indices are used for normal L2 drivers. */
10691         BCE_PRINTF("    0x%08X - attn_bits\n",
10692             sblk->status_attn_bits);
10693
10694         BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10695             sblk->status_attn_bits_ack);
10696
10697         BCE_PRINT_RX_CONS(0);
10698         BCE_PRINT_TX_CONS(0)
10699
10700         BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10701
10702         /* Theses indices are not used for normal L2 drivers. */
10703         BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10704         BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10705         BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10706         BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10707         BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10708
10709         BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10710
10711         if (sblk->status_completion_producer_index ||
10712             sblk->status_cmd_consumer_index)
10713                 BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10714                     sblk->status_completion_producer_index,
10715                     sblk->status_cmd_consumer_index);
10716
10717         BCE_PRINTF(
10718             "----------------------------"
10719             "----------------"
10720             "----------------------------\n");
10721 }
10722
10723
10724 #define BCE_PRINT_64BIT_STAT(arg)                               \
10725 if (sblk->arg##_lo || sblk->arg##_hi)                           \
10726         BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,        \
10727             sblk->arg##_lo, #arg);
10728
10729 #define BCE_PRINT_32BIT_STAT(arg)                               \
10730 if (sblk->arg)                                                  \
10731         BCE_PRINTF("         0x%08X : %s\n",                    \
10732             sblk->arg, #arg);
10733
10734 /****************************************************************************/
10735 /* Prints out the statistics block from host memory.                        */
10736 /*                                                                          */
10737 /* Returns:                                                                 */
10738 /*   Nothing.                                                               */
10739 /****************************************************************************/
10740 static __attribute__ ((noinline)) void
10741 bce_dump_stats_block(struct bce_softc *sc)
10742 {
10743         struct statistics_block *sblk;
10744
10745         bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10746
10747         sblk = sc->stats_block;
10748
10749         BCE_PRINTF(
10750             "---------------"
10751             " Stats Block  (All Stats Not Shown Are 0) "
10752             "---------------\n");
10753
10754         BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10755         BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10756         BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10757         BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10758         BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10759         BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10760         BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10761         BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10762         BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10763         BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10764         BCE_PRINT_32BIT_STAT(
10765             stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10766         BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10767         BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10768         BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10769         BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10770         BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10771         BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10772         BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10773         BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10774         BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10775         BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10776         BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10777         BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10778         BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10779         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10780         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10781         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10782         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10783         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10784         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10785         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10786         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10787         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10788         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10789         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10790         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10791         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10792         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10793         BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10794         BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10795         BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10796         BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10797         BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10798         BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10799         BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10800         BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10801         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10802         BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10803         BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10804         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10805         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10806         BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10807         BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10808         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10809
10810         BCE_PRINTF(
10811             "----------------------------"
10812             "----------------"
10813             "----------------------------\n");
10814 }
10815
10816
10817 /****************************************************************************/
10818 /* Prints out a summary of the driver state.                                */
10819 /*                                                                          */
10820 /* Returns:                                                                 */
10821 /*   Nothing.                                                               */
10822 /****************************************************************************/
10823 static __attribute__ ((noinline)) void
10824 bce_dump_driver_state(struct bce_softc *sc)
10825 {
10826         u32 val_hi, val_lo;
10827
10828         BCE_PRINTF(
10829             "-----------------------------"
10830             " Driver State "
10831             "-----------------------------\n");
10832
10833         val_hi = BCE_ADDR_HI(sc);
10834         val_lo = BCE_ADDR_LO(sc);
10835         BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10836             "address\n", val_hi, val_lo);
10837
10838         val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10839         val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10840         BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10841             "address\n", val_hi, val_lo);
10842
10843         val_hi = BCE_ADDR_HI(sc->status_block);
10844         val_lo = BCE_ADDR_LO(sc->status_block);
10845         BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10846             "virtual address\n",        val_hi, val_lo);
10847
10848         val_hi = BCE_ADDR_HI(sc->stats_block);
10849         val_lo = BCE_ADDR_LO(sc->stats_block);
10850         BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10851             "virtual address\n", val_hi, val_lo);
10852
10853         val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10854         val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10855         BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10856             "virtual adddress\n", val_hi, val_lo);
10857
10858         val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10859         val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10860         BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10861             "virtual address\n", val_hi, val_lo);
10862
10863         if (bce_hdr_split == TRUE) {
10864                 val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10865                 val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10866                 BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10867                     "virtual address\n", val_hi, val_lo);
10868         }
10869
10870         val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10871         val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10872         BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10873             "virtual address\n",        val_hi, val_lo);
10874
10875         val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10876         val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10877         BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10878             "virtual address\n", val_hi, val_lo);
10879
10880         if (bce_hdr_split == TRUE) {
10881                 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10882                 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10883                 BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10884                     "virtual address\n", val_hi, val_lo);
10885         }
10886
10887         BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10888             "h/w intrs\n",
10889             (long long unsigned int) sc->interrupts_generated);
10890
10891         BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10892             "rx interrupts handled\n",
10893             (long long unsigned int) sc->interrupts_rx);
10894
10895         BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10896             "tx interrupts handled\n",
10897             (long long unsigned int) sc->interrupts_tx);
10898
10899         BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10900             "phy interrupts handled\n",
10901             (long long unsigned int) sc->phy_interrupts);
10902
10903         BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10904             "status block index\n", sc->last_status_idx);
10905
10906         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10907             "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10908
10909         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10910             "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10911
10912         BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10913             "byte seq index\n", sc->tx_prod_bseq);
10914
10915         BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10916             "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10917
10918         BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10919             "tx_bd's\n", sc->used_tx_bd);
10920
10921         BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10922             "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10923
10924         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10925             "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10926
10927         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10928             "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10929
10930         BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10931             "byte seq index\n", sc->rx_prod_bseq);
10932
10933         BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10934                    "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10935
10936         BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10937             "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10938
10939         BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10940             "rx_bd's\n", sc->free_rx_bd);
10941
10942         if (bce_hdr_split == TRUE) {
10943                 BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10944                     "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10945
10946                 BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10947                     "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10948
10949                 BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10950                     "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10951         }
10952
10953         BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10954             "rx_bd's\n", sc->free_pg_bd);
10955
10956         BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10957             "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10958
10959         BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10960             "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10961
10962         BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10963             "bce mac flags\n", sc->bce_flags);
10964
10965         BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10966             "bce phy flags\n", sc->bce_phy_flags);
10967
10968         BCE_PRINTF(
10969             "----------------------------"
10970             "----------------"
10971             "----------------------------\n");
10972 }
10973
10974
10975 /****************************************************************************/
10976 /* Prints out the hardware state through a summary of important register,   */
10977 /* followed by a complete register dump.                                    */
10978 /*                                                                          */
10979 /* Returns:                                                                 */
10980 /*   Nothing.                                                               */
10981 /****************************************************************************/
10982 static __attribute__ ((noinline)) void
10983 bce_dump_hw_state(struct bce_softc *sc)
10984 {
10985         u32 val;
10986
10987         BCE_PRINTF(
10988             "----------------------------"
10989             " Hardware State "
10990             "----------------------------\n");
10991
10992         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10993
10994         val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10995         BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10996             val, BCE_MISC_ENABLE_STATUS_BITS);
10997
10998         val = REG_RD(sc, BCE_DMA_STATUS);
10999         BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
11000             val, BCE_DMA_STATUS);
11001
11002         val = REG_RD(sc, BCE_CTX_STATUS);
11003         BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
11004             val, BCE_CTX_STATUS);
11005
11006         val = REG_RD(sc, BCE_EMAC_STATUS);
11007         BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
11008             val, BCE_EMAC_STATUS);
11009
11010         val = REG_RD(sc, BCE_RPM_STATUS);
11011         BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
11012             val, BCE_RPM_STATUS);
11013
11014         /* ToDo: Create a #define for this constant. */
11015         val = REG_RD(sc, 0x2004);
11016         BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
11017             val, 0x2004);
11018
11019         val = REG_RD(sc, BCE_RV2P_STATUS);
11020         BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
11021             val, BCE_RV2P_STATUS);
11022
11023         /* ToDo: Create a #define for this constant. */
11024         val = REG_RD(sc, 0x2c04);
11025         BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
11026             val, 0x2c04);
11027
11028         val = REG_RD(sc, BCE_TBDR_STATUS);
11029         BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
11030             val, BCE_TBDR_STATUS);
11031
11032         val = REG_RD(sc, BCE_TDMA_STATUS);
11033         BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
11034             val, BCE_TDMA_STATUS);
11035
11036         val = REG_RD(sc, BCE_HC_STATUS);
11037         BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
11038             val, BCE_HC_STATUS);
11039
11040         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11041         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11042             val, BCE_TXP_CPU_STATE);
11043
11044         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11045         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11046             val, BCE_TPAT_CPU_STATE);
11047
11048         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11049         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11050             val, BCE_RXP_CPU_STATE);
11051
11052         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11053         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11054             val, BCE_COM_CPU_STATE);
11055
11056         val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
11057         BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
11058             val, BCE_MCP_CPU_STATE);
11059
11060         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11061         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11062             val, BCE_CP_CPU_STATE);
11063
11064         BCE_PRINTF(
11065             "----------------------------"
11066             "----------------"
11067             "----------------------------\n");
11068
11069         BCE_PRINTF(
11070             "----------------------------"
11071             " Register  Dump "
11072             "----------------------------\n");
11073
11074         for (int i = 0x400; i < 0x8000; i += 0x10) {
11075                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11076                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11077                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11078         }
11079
11080         BCE_PRINTF(
11081             "----------------------------"
11082             "----------------"
11083             "----------------------------\n");
11084 }
11085
11086
11087 /****************************************************************************/
11088 /* Prints out the contentst of shared memory which is used for host driver  */
11089 /* to bootcode firmware communication.                                      */
11090 /*                                                                          */
11091 /* Returns:                                                                 */
11092 /*   Nothing.                                                               */
11093 /****************************************************************************/
11094 static __attribute__ ((noinline)) void
11095 bce_dump_shmem_state(struct bce_softc *sc)
11096 {
11097         BCE_PRINTF(
11098             "----------------------------"
11099             " Hardware State "
11100             "----------------------------\n");
11101
11102         BCE_PRINTF("0x%08X - Shared memory base address\n",
11103             sc->bce_shmem_base);
11104         BCE_PRINTF("%s - bootcode version\n",
11105             sc->bce_bc_ver);
11106
11107         BCE_PRINTF(
11108             "----------------------------"
11109             "   Shared Mem   "
11110             "----------------------------\n");
11111
11112         for (int i = 0x0; i < 0x200; i += 0x10) {
11113                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11114                     i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
11115                     bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
11116         }
11117
11118         BCE_PRINTF(
11119             "----------------------------"
11120             "----------------"
11121             "----------------------------\n");
11122 }
11123
11124
11125 /****************************************************************************/
11126 /* Prints out the mailbox queue registers.                                  */
11127 /*                                                                          */
11128 /* Returns:                                                                 */
11129 /*   Nothing.                                                               */
11130 /****************************************************************************/
11131 static __attribute__ ((noinline)) void
11132 bce_dump_mq_regs(struct bce_softc *sc)
11133 {
11134         BCE_PRINTF(
11135             "----------------------------"
11136             "    MQ Regs     "
11137             "----------------------------\n");
11138
11139         BCE_PRINTF(
11140             "----------------------------"
11141             "----------------"
11142             "----------------------------\n");
11143
11144         for (int i = 0x3c00; i < 0x4000; i += 0x10) {
11145                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
11146                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
11147                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
11148         }
11149
11150         BCE_PRINTF(
11151             "----------------------------"
11152             "----------------"
11153             "----------------------------\n");
11154 }
11155
11156
11157 /****************************************************************************/
11158 /* Prints out the bootcode state.                                           */
11159 /*                                                                          */
11160 /* Returns:                                                                 */
11161 /*   Nothing.                                                               */
11162 /****************************************************************************/
11163 static __attribute__ ((noinline)) void
11164 bce_dump_bc_state(struct bce_softc *sc)
11165 {
11166         u32 val;
11167
11168         BCE_PRINTF(
11169             "----------------------------"
11170             " Bootcode State "
11171             "----------------------------\n");
11172
11173         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
11174
11175         val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
11176         BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
11177             val, BCE_BC_RESET_TYPE);
11178
11179         val = bce_shmem_rd(sc, BCE_BC_STATE);
11180         BCE_PRINTF("0x%08X - (0x%06X) state\n",
11181             val, BCE_BC_STATE);
11182
11183         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
11184         BCE_PRINTF("0x%08X - (0x%06X) condition\n",
11185             val, BCE_BC_STATE_CONDITION);
11186
11187         val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
11188         BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
11189             val, BCE_BC_STATE_DEBUG_CMD);
11190
11191         BCE_PRINTF(
11192             "----------------------------"
11193             "----------------"
11194             "----------------------------\n");
11195 }
11196
11197
11198 /****************************************************************************/
11199 /* Prints out the TXP processor state.                                      */
11200 /*                                                                          */
11201 /* Returns:                                                                 */
11202 /*   Nothing.                                                               */
11203 /****************************************************************************/
11204 static __attribute__ ((noinline)) void
11205 bce_dump_txp_state(struct bce_softc *sc, int regs)
11206 {
11207         u32 val;
11208         u32 fw_version[3];
11209
11210         BCE_PRINTF(
11211             "----------------------------"
11212             "   TXP  State   "
11213             "----------------------------\n");
11214
11215         for (int i = 0; i < 3; i++)
11216                 fw_version[i] = htonl(REG_RD_IND(sc,
11217                     (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11218         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11219
11220         val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11221         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11222             val, BCE_TXP_CPU_MODE);
11223
11224         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11225         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11226             val, BCE_TXP_CPU_STATE);
11227
11228         val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11229         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11230             val, BCE_TXP_CPU_EVENT_MASK);
11231
11232         if (regs) {
11233                 BCE_PRINTF(
11234                     "----------------------------"
11235                     " Register  Dump "
11236                     "----------------------------\n");
11237
11238                 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11239                         /* Skip the big blank spaces */
11240                         if (i < 0x454000 && i > 0x5ffff)
11241                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11242                                     "0x%08X 0x%08X\n", i,
11243                                     REG_RD_IND(sc, i),
11244                                     REG_RD_IND(sc, i + 0x4),
11245                                     REG_RD_IND(sc, i + 0x8),
11246                                     REG_RD_IND(sc, i + 0xC));
11247                 }
11248         }
11249
11250         BCE_PRINTF(
11251             "----------------------------"
11252             "----------------"
11253             "----------------------------\n");
11254 }
11255
11256
11257 /****************************************************************************/
11258 /* Prints out the RXP processor state.                                      */
11259 /*                                                                          */
11260 /* Returns:                                                                 */
11261 /*   Nothing.                                                               */
11262 /****************************************************************************/
11263 static __attribute__ ((noinline)) void
11264 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11265 {
11266         u32 val;
11267         u32 fw_version[3];
11268
11269         BCE_PRINTF(
11270             "----------------------------"
11271             "   RXP  State   "
11272             "----------------------------\n");
11273
11274         for (int i = 0; i < 3; i++)
11275                 fw_version[i] = htonl(REG_RD_IND(sc,
11276                     (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11277
11278         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11279
11280         val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11281         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11282             val, BCE_RXP_CPU_MODE);
11283
11284         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11285         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11286             val, BCE_RXP_CPU_STATE);
11287
11288         val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11289         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11290             val, BCE_RXP_CPU_EVENT_MASK);
11291
11292         if (regs) {
11293                 BCE_PRINTF(
11294                     "----------------------------"
11295                     " Register  Dump "
11296                     "----------------------------\n");
11297
11298                 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11299                         /* Skip the big blank sapces */
11300                         if (i < 0xc5400 && i > 0xdffff)
11301                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11302                                     "0x%08X 0x%08X\n", i,
11303                                     REG_RD_IND(sc, i),
11304                                     REG_RD_IND(sc, i + 0x4),
11305                                     REG_RD_IND(sc, i + 0x8),
11306                                     REG_RD_IND(sc, i + 0xC));
11307                 }
11308         }
11309
11310         BCE_PRINTF(
11311             "----------------------------"
11312             "----------------"
11313             "----------------------------\n");
11314 }
11315
11316
11317 /****************************************************************************/
11318 /* Prints out the TPAT processor state.                                     */
11319 /*                                                                          */
11320 /* Returns:                                                                 */
11321 /*   Nothing.                                                               */
11322 /****************************************************************************/
11323 static __attribute__ ((noinline)) void
11324 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11325 {
11326         u32 val;
11327         u32 fw_version[3];
11328
11329         BCE_PRINTF(
11330             "----------------------------"
11331             "   TPAT State   "
11332             "----------------------------\n");
11333
11334         for (int i = 0; i < 3; i++)
11335                 fw_version[i] = htonl(REG_RD_IND(sc,
11336                     (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11337
11338         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11339
11340         val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11341         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11342             val, BCE_TPAT_CPU_MODE);
11343
11344         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11345         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11346             val, BCE_TPAT_CPU_STATE);
11347
11348         val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11349         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11350             val, BCE_TPAT_CPU_EVENT_MASK);
11351
11352         if (regs) {
11353                 BCE_PRINTF(
11354                     "----------------------------"
11355                     " Register  Dump "
11356                     "----------------------------\n");
11357
11358                 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11359                         /* Skip the big blank spaces */
11360                         if (i < 0x854000 && i > 0x9ffff)
11361                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11362                                     "0x%08X 0x%08X\n", i,
11363                                     REG_RD_IND(sc, i),
11364                                     REG_RD_IND(sc, i + 0x4),
11365                                     REG_RD_IND(sc, i + 0x8),
11366                                     REG_RD_IND(sc, i + 0xC));
11367                 }
11368         }
11369
11370         BCE_PRINTF(
11371                 "----------------------------"
11372                 "----------------"
11373                 "----------------------------\n");
11374 }
11375
11376
11377 /****************************************************************************/
11378 /* Prints out the Command Procesor (CP) state.                              */
11379 /*                                                                          */
11380 /* Returns:                                                                 */
11381 /*   Nothing.                                                               */
11382 /****************************************************************************/
11383 static __attribute__ ((noinline)) void
11384 bce_dump_cp_state(struct bce_softc *sc, int regs)
11385 {
11386         u32 val;
11387         u32 fw_version[3];
11388
11389         BCE_PRINTF(
11390             "----------------------------"
11391             "    CP State    "
11392             "----------------------------\n");
11393
11394         for (int i = 0; i < 3; i++)
11395                 fw_version[i] = htonl(REG_RD_IND(sc,
11396                     (BCE_CP_SCRATCH + 0x10 + i * 4)));
11397
11398         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11399
11400         val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11401         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11402             val, BCE_CP_CPU_MODE);
11403
11404         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11405         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11406             val, BCE_CP_CPU_STATE);
11407
11408         val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11409         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11410             BCE_CP_CPU_EVENT_MASK);
11411
11412         if (regs) {
11413                 BCE_PRINTF(
11414                     "----------------------------"
11415                     " Register  Dump "
11416                     "----------------------------\n");
11417
11418                 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11419                         /* Skip the big blank spaces */
11420                         if (i < 0x185400 && i > 0x19ffff)
11421                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11422                                     "0x%08X 0x%08X\n", i,
11423                                     REG_RD_IND(sc, i),
11424                                     REG_RD_IND(sc, i + 0x4),
11425                                     REG_RD_IND(sc, i + 0x8),
11426                                     REG_RD_IND(sc, i + 0xC));
11427                 }
11428         }
11429
11430         BCE_PRINTF(
11431             "----------------------------"
11432             "----------------"
11433             "----------------------------\n");
11434 }
11435
11436
11437 /****************************************************************************/
11438 /* Prints out the Completion Procesor (COM) state.                          */
11439 /*                                                                          */
11440 /* Returns:                                                                 */
11441 /*   Nothing.                                                               */
11442 /****************************************************************************/
11443 static __attribute__ ((noinline)) void
11444 bce_dump_com_state(struct bce_softc *sc, int regs)
11445 {
11446         u32 val;
11447         u32 fw_version[4];
11448
11449         BCE_PRINTF(
11450             "----------------------------"
11451             "   COM State    "
11452             "----------------------------\n");
11453
11454         for (int i = 0; i < 3; i++)
11455                 fw_version[i] = htonl(REG_RD_IND(sc,
11456                     (BCE_COM_SCRATCH + 0x10 + i * 4)));
11457
11458         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11459
11460         val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11461         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11462             val, BCE_COM_CPU_MODE);
11463
11464         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11465         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11466             val, BCE_COM_CPU_STATE);
11467
11468         val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11469         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11470             BCE_COM_CPU_EVENT_MASK);
11471
11472         if (regs) {
11473                 BCE_PRINTF(
11474                     "----------------------------"
11475                     " Register  Dump "
11476                     "----------------------------\n");
11477
11478                 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11479                         BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11480                             "0x%08X 0x%08X\n", i,
11481                             REG_RD_IND(sc, i),
11482                             REG_RD_IND(sc, i + 0x4),
11483                             REG_RD_IND(sc, i + 0x8),
11484                             REG_RD_IND(sc, i + 0xC));
11485                 }
11486         }
11487
11488         BCE_PRINTF(
11489                 "----------------------------"
11490                 "----------------"
11491                 "----------------------------\n");
11492 }
11493
11494
11495 /****************************************************************************/
11496 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11497 /*                                                                          */
11498 /* Returns:                                                                 */
11499 /*   Nothing.                                                               */
11500 /****************************************************************************/
11501 static __attribute__ ((noinline)) void
11502 bce_dump_rv2p_state(struct bce_softc *sc)
11503 {
11504         u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11505
11506         BCE_PRINTF(
11507             "----------------------------"
11508             "   RV2P State   "
11509             "----------------------------\n");
11510
11511         /* Stall the RV2P processors. */
11512         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11513         val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11514         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11515
11516         /* Read the firmware version. */
11517         val = 0x00000001;
11518         REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11519         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11520         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11521             BCE_RV2P_INSTR_HIGH_HIGH;
11522         BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11523             fw_ver_high, fw_ver_low);
11524
11525         val = 0x00000001;
11526         REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11527         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11528         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11529             BCE_RV2P_INSTR_HIGH_HIGH;
11530         BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11531             fw_ver_high, fw_ver_low);
11532
11533         /* Resume the RV2P processors. */
11534         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11535         val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11536         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11537
11538         /* Fetch the program counter value. */
11539         val = 0x68007800;
11540         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11541         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11542         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11543         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11544         BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11545         BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11546
11547         /* Fetch the program counter value again to see if it is advancing. */
11548         val = 0x68007800;
11549         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11550         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11551         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11552         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11553         BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11554         BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11555
11556         BCE_PRINTF(
11557             "----------------------------"
11558             "----------------"
11559             "----------------------------\n");
11560 }
11561
11562
11563 /****************************************************************************/
11564 /* Prints out the driver state and then enters the debugger.                */
11565 /*                                                                          */
11566 /* Returns:                                                                 */
11567 /*   Nothing.                                                               */
11568 /****************************************************************************/
11569 static __attribute__ ((noinline)) void
11570 bce_breakpoint(struct bce_softc *sc)
11571 {
11572
11573         /*
11574          * Unreachable code to silence compiler warnings
11575          * about unused functions.
11576          */
11577         if (0) {
11578                 bce_freeze_controller(sc);
11579                 bce_unfreeze_controller(sc);
11580                 bce_dump_enet(sc, NULL);
11581                 bce_dump_txbd(sc, 0, NULL);
11582                 bce_dump_rxbd(sc, 0, NULL);
11583                 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11584                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11585                 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11586                 bce_dump_l2fhdr(sc, 0, NULL);
11587                 bce_dump_ctx(sc, RX_CID);
11588                 bce_dump_ftqs(sc);
11589                 bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11590                 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11591                 bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11592                 bce_dump_status_block(sc);
11593                 bce_dump_stats_block(sc);
11594                 bce_dump_driver_state(sc);
11595                 bce_dump_hw_state(sc);
11596                 bce_dump_bc_state(sc);
11597                 bce_dump_txp_state(sc, 0);
11598                 bce_dump_rxp_state(sc, 0);
11599                 bce_dump_tpat_state(sc, 0);
11600                 bce_dump_cp_state(sc, 0);
11601                 bce_dump_com_state(sc, 0);
11602                 bce_dump_rv2p_state(sc);
11603                 bce_dump_pgbd(sc, 0, NULL);
11604         }
11605
11606         bce_dump_status_block(sc);
11607         bce_dump_driver_state(sc);
11608
11609         /* Call the debugger. */
11610         breakpoint();
11611 }
11612 #endif