]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/bge/if_bge.c
Re-select the SD card before getting the SD status. On a couple Atmel
[FreeBSD/FreeBSD.git] / sys / dev / bge / if_bge.c
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 /*
38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84
85 #include <net/if.h>
86 #include <net/if_var.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91
92 #include <net/bpf.h>
93
94 #include <net/if_types.h>
95 #include <net/if_vlan_var.h>
96
97 #include <netinet/in_systm.h>
98 #include <netinet/in.h>
99 #include <netinet/ip.h>
100 #include <netinet/tcp.h>
101
102 #include <machine/bus.h>
103 #include <machine/resource.h>
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include "miidevs.h"
110 #include <dev/mii/brgphyreg.h>
111
112 #ifdef __sparc64__
113 #include <dev/ofw/ofw_bus.h>
114 #include <dev/ofw/openfirm.h>
115 #include <machine/ofw_machdep.h>
116 #include <machine/ver.h>
117 #endif
118
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121
122 #include <dev/bge/if_bgereg.h>
123
124 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
125 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
126
127 MODULE_DEPEND(bge, pci, 1, 1, 1);
128 MODULE_DEPEND(bge, ether, 1, 1, 1);
129 MODULE_DEPEND(bge, miibus, 1, 1, 1);
130
131 /* "device miibus" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133
134 /*
135  * Various supported device vendors/types and their names. Note: the
136  * spec seems to indicate that the hardware still has Alteon's vendor
137  * ID burned into it, though it will always be overriden by the vendor
138  * ID in the EEPROM. Just to be safe, we cover all possibilities.
139  */
140 static const struct bge_type {
141         uint16_t        bge_vid;
142         uint16_t        bge_did;
143 } bge_devs[] = {
144         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
145         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
146
147         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
148         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
149         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
150
151         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
152
153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5717 },
174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5718 },
175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5719 },
176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5723 },
180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5725 },
181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5727 },
182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5756 },
197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761 },
198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761E },
199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761S },
200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761SE },
201         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5762 },
202         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5764 },
203         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
204         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
205         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
206         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
207         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5784 },
208         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785F },
209         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785G },
210         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
211         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
212         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787F },
213         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
214         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
215         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
216         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
217         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
218         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
219         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
220         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
221         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57760 },
222         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57761 },
223         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57762 },
224         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57764 },
225         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57765 },
226         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57766 },
227         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57767 },
228         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57780 },
229         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57781 },
230         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57782 },
231         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57785 },
232         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57786 },
233         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57787 },
234         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57788 },
235         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57790 },
236         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57791 },
237         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57795 },
238
239         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
240
241         { TC_VENDORID,          TC_DEVICEID_3C996 },
242
243         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE4 },
244         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE5 },
245         { FJTSU_VENDORID,       FJTSU_DEVICEID_PP250450 },
246
247         { 0, 0 }
248 };
249
250 static const struct bge_vendor {
251         uint16_t        v_id;
252         const char      *v_name;
253 } bge_vendors[] = {
254         { ALTEON_VENDORID,      "Alteon" },
255         { ALTIMA_VENDORID,      "Altima" },
256         { APPLE_VENDORID,       "Apple" },
257         { BCOM_VENDORID,        "Broadcom" },
258         { SK_VENDORID,          "SysKonnect" },
259         { TC_VENDORID,          "3Com" },
260         { FJTSU_VENDORID,       "Fujitsu" },
261
262         { 0, NULL }
263 };
264
265 static const struct bge_revision {
266         uint32_t        br_chipid;
267         const char      *br_name;
268 } bge_revisions[] = {
269         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
270         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
271         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
272         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
273         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
274         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
275         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
276         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
277         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
278         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
279         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
280         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
281         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
282         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
283         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
284         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
285         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
286         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
287         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
288         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
289         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
290         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
291         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
292         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
293         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
294         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
295         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
296         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
297         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
298         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
299         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
300         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
301         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
302         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
303         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
304         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
305         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
306         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
307         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
308         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
309         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
310         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
311         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
312         { BGE_CHIPID_BCM5717_A0,        "BCM5717 A0" },
313         { BGE_CHIPID_BCM5717_B0,        "BCM5717 B0" },
314         { BGE_CHIPID_BCM5719_A0,        "BCM5719 A0" },
315         { BGE_CHIPID_BCM5720_A0,        "BCM5720 A0" },
316         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
317         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
318         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
319         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
320         { BGE_CHIPID_BCM5761_A0,        "BCM5761 A0" },
321         { BGE_CHIPID_BCM5761_A1,        "BCM5761 A1" },
322         { BGE_CHIPID_BCM5762_A0,        "BCM5762 A0" },
323         { BGE_CHIPID_BCM5784_A0,        "BCM5784 A0" },
324         { BGE_CHIPID_BCM5784_A1,        "BCM5784 A1" },
325         /* 5754 and 5787 share the same ASIC ID */
326         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" },
327         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
328         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
329         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
330         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
331         { BGE_CHIPID_BCM57765_A0,       "BCM57765 A0" },
332         { BGE_CHIPID_BCM57765_B0,       "BCM57765 B0" },
333         { BGE_CHIPID_BCM57780_A0,       "BCM57780 A0" },
334         { BGE_CHIPID_BCM57780_A1,       "BCM57780 A1" },
335
336         { 0, NULL }
337 };
338
339 /*
340  * Some defaults for major revisions, so that newer steppings
341  * that we don't know about have a shot at working.
342  */
343 static const struct bge_revision bge_majorrevs[] = {
344         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
345         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
346         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
347         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
348         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
349         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
350         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
351         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
352         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
353         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
354         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
355         { BGE_ASICREV_BCM5761,          "unknown BCM5761" },
356         { BGE_ASICREV_BCM5784,          "unknown BCM5784" },
357         { BGE_ASICREV_BCM5785,          "unknown BCM5785" },
358         /* 5754 and 5787 share the same ASIC ID */
359         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
360         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
361         { BGE_ASICREV_BCM57765,         "unknown BCM57765" },
362         { BGE_ASICREV_BCM57766,         "unknown BCM57766" },
363         { BGE_ASICREV_BCM57780,         "unknown BCM57780" },
364         { BGE_ASICREV_BCM5717,          "unknown BCM5717" },
365         { BGE_ASICREV_BCM5719,          "unknown BCM5719" },
366         { BGE_ASICREV_BCM5720,          "unknown BCM5720" },
367         { BGE_ASICREV_BCM5762,          "unknown BCM5762" },
368
369         { 0, NULL }
370 };
371
372 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
373 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
374 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
375 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
376 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
377 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
378 #define BGE_IS_5717_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
379 #define BGE_IS_57765_PLUS(sc)           ((sc)->bge_flags & BGE_FLAG_57765_PLUS)
380
381 static uint32_t bge_chipid(device_t);
382 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
383 static const struct bge_revision * bge_lookup_rev(uint32_t);
384
385 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
386
387 static int bge_probe(device_t);
388 static int bge_attach(device_t);
389 static int bge_detach(device_t);
390 static int bge_suspend(device_t);
391 static int bge_resume(device_t);
392 static void bge_release_resources(struct bge_softc *);
393 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
394 static int bge_dma_alloc(struct bge_softc *);
395 static void bge_dma_free(struct bge_softc *);
396 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
397     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
398
399 static void bge_devinfo(struct bge_softc *);
400 static int bge_mbox_reorder(struct bge_softc *);
401
402 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
403 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
404 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
405 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
406 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
407
408 static void bge_txeof(struct bge_softc *, uint16_t);
409 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
410 static int bge_rxeof(struct bge_softc *, uint16_t, int);
411
412 static void bge_asf_driver_up (struct bge_softc *);
413 static void bge_tick(void *);
414 static void bge_stats_clear_regs(struct bge_softc *);
415 static void bge_stats_update(struct bge_softc *);
416 static void bge_stats_update_regs(struct bge_softc *);
417 static struct mbuf *bge_check_short_dma(struct mbuf *);
418 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
419     uint16_t *, uint16_t *);
420 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
421
422 static void bge_intr(void *);
423 static int bge_msi_intr(void *);
424 static void bge_intr_task(void *, int);
425 static void bge_start_locked(if_t);
426 static void bge_start(if_t);
427 static int bge_ioctl(if_t, u_long, caddr_t);
428 static void bge_init_locked(struct bge_softc *);
429 static void bge_init(void *);
430 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
431 static void bge_stop(struct bge_softc *);
432 static void bge_watchdog(struct bge_softc *);
433 static int bge_shutdown(device_t);
434 static int bge_ifmedia_upd_locked(if_t);
435 static int bge_ifmedia_upd(if_t);
436 static void bge_ifmedia_sts(if_t, struct ifmediareq *);
437 static uint64_t bge_get_counter(if_t, ift_counter);
438
439 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
440 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
441
442 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
443 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
444
445 static void bge_setpromisc(struct bge_softc *);
446 static void bge_setmulti(struct bge_softc *);
447 static void bge_setvlan(struct bge_softc *);
448
449 static __inline void bge_rxreuse_std(struct bge_softc *, int);
450 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
451 static int bge_newbuf_std(struct bge_softc *, int);
452 static int bge_newbuf_jumbo(struct bge_softc *, int);
453 static int bge_init_rx_ring_std(struct bge_softc *);
454 static void bge_free_rx_ring_std(struct bge_softc *);
455 static int bge_init_rx_ring_jumbo(struct bge_softc *);
456 static void bge_free_rx_ring_jumbo(struct bge_softc *);
457 static void bge_free_tx_ring(struct bge_softc *);
458 static int bge_init_tx_ring(struct bge_softc *);
459
460 static int bge_chipinit(struct bge_softc *);
461 static int bge_blockinit(struct bge_softc *);
462 static uint32_t bge_dma_swap_options(struct bge_softc *);
463
464 static int bge_has_eaddr(struct bge_softc *);
465 static uint32_t bge_readmem_ind(struct bge_softc *, int);
466 static void bge_writemem_ind(struct bge_softc *, int, int);
467 static void bge_writembx(struct bge_softc *, int, int);
468 #ifdef notdef
469 static uint32_t bge_readreg_ind(struct bge_softc *, int);
470 #endif
471 static void bge_writemem_direct(struct bge_softc *, int, int);
472 static void bge_writereg_ind(struct bge_softc *, int, int);
473
474 static int bge_miibus_readreg(device_t, int, int);
475 static int bge_miibus_writereg(device_t, int, int, int);
476 static void bge_miibus_statchg(device_t);
477 #ifdef DEVICE_POLLING
478 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
479 #endif
480
481 #define BGE_RESET_SHUTDOWN      0
482 #define BGE_RESET_START         1
483 #define BGE_RESET_SUSPEND       2
484 static void bge_sig_post_reset(struct bge_softc *, int);
485 static void bge_sig_legacy(struct bge_softc *, int);
486 static void bge_sig_pre_reset(struct bge_softc *, int);
487 static void bge_stop_fw(struct bge_softc *);
488 static int bge_reset(struct bge_softc *);
489 static void bge_link_upd(struct bge_softc *);
490
491 static void bge_ape_lock_init(struct bge_softc *);
492 static void bge_ape_read_fw_ver(struct bge_softc *);
493 static int bge_ape_lock(struct bge_softc *, int);
494 static void bge_ape_unlock(struct bge_softc *, int);
495 static void bge_ape_send_event(struct bge_softc *, uint32_t);
496 static void bge_ape_driver_state_change(struct bge_softc *, int);
497
498 /*
499  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
500  * leak information to untrusted users.  It is also known to cause alignment
501  * traps on certain architectures.
502  */
503 #ifdef BGE_REGISTER_DEBUG
504 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
505 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
506 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
507 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
508 #endif
509 static void bge_add_sysctls(struct bge_softc *);
510 static void bge_add_sysctl_stats_regs(struct bge_softc *,
511     struct sysctl_ctx_list *, struct sysctl_oid_list *);
512 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
513     struct sysctl_oid_list *);
514 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
515
516 static device_method_t bge_methods[] = {
517         /* Device interface */
518         DEVMETHOD(device_probe,         bge_probe),
519         DEVMETHOD(device_attach,        bge_attach),
520         DEVMETHOD(device_detach,        bge_detach),
521         DEVMETHOD(device_shutdown,      bge_shutdown),
522         DEVMETHOD(device_suspend,       bge_suspend),
523         DEVMETHOD(device_resume,        bge_resume),
524
525         /* MII interface */
526         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
527         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
528         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
529
530         DEVMETHOD_END
531 };
532
533 static driver_t bge_driver = {
534         "bge",
535         bge_methods,
536         sizeof(struct bge_softc)
537 };
538
539 static devclass_t bge_devclass;
540
541 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
542 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
543
544 static int bge_allow_asf = 1;
545
546 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
547 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
548         "Allow ASF mode if available");
549
550 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
551 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
552 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
553 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
554 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
555
556 static int
557 bge_has_eaddr(struct bge_softc *sc)
558 {
559 #ifdef __sparc64__
560         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
561         device_t dev;
562         uint32_t subvendor;
563
564         dev = sc->bge_dev;
565
566         /*
567          * The on-board BGEs found in sun4u machines aren't fitted with
568          * an EEPROM which means that we have to obtain the MAC address
569          * via OFW and that some tests will always fail.  We distinguish
570          * such BGEs by the subvendor ID, which also has to be obtained
571          * from OFW instead of the PCI configuration space as the latter
572          * indicates Broadcom as the subvendor of the netboot interface.
573          * For early Blade 1500 and 2500 we even have to check the OFW
574          * device path as the subvendor ID always defaults to Broadcom
575          * there.
576          */
577         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
578             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
579             (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
580                 return (0);
581         memset(buf, 0, sizeof(buf));
582         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
583                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
584                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
585                         return (0);
586                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
587                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
588                         return (0);
589         }
590 #endif
591         return (1);
592 }
593
594 static uint32_t
595 bge_readmem_ind(struct bge_softc *sc, int off)
596 {
597         device_t dev;
598         uint32_t val;
599
600         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
601             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
602                 return (0);
603
604         dev = sc->bge_dev;
605
606         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
607         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
608         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
609         return (val);
610 }
611
612 static void
613 bge_writemem_ind(struct bge_softc *sc, int off, int val)
614 {
615         device_t dev;
616
617         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
618             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
619                 return;
620
621         dev = sc->bge_dev;
622
623         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
624         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
625         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
626 }
627
628 #ifdef notdef
629 static uint32_t
630 bge_readreg_ind(struct bge_softc *sc, int off)
631 {
632         device_t dev;
633
634         dev = sc->bge_dev;
635
636         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
637         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
638 }
639 #endif
640
641 static void
642 bge_writereg_ind(struct bge_softc *sc, int off, int val)
643 {
644         device_t dev;
645
646         dev = sc->bge_dev;
647
648         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
649         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
650 }
651
652 static void
653 bge_writemem_direct(struct bge_softc *sc, int off, int val)
654 {
655         CSR_WRITE_4(sc, off, val);
656 }
657
658 static void
659 bge_writembx(struct bge_softc *sc, int off, int val)
660 {
661         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
662                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
663
664         CSR_WRITE_4(sc, off, val);
665         if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
666                 CSR_READ_4(sc, off);
667 }
668
669 /*
670  * Clear all stale locks and select the lock for this driver instance.
671  */
672 static void
673 bge_ape_lock_init(struct bge_softc *sc)
674 {
675         uint32_t bit, regbase;
676         int i;
677
678         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
679                 regbase = BGE_APE_LOCK_GRANT;
680         else
681                 regbase = BGE_APE_PER_LOCK_GRANT;
682
683         /* Clear any stale locks. */
684         for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
685                 switch (i) {
686                 case BGE_APE_LOCK_PHY0:
687                 case BGE_APE_LOCK_PHY1:
688                 case BGE_APE_LOCK_PHY2:
689                 case BGE_APE_LOCK_PHY3:
690                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
691                         break;
692                 default:
693                         if (sc->bge_func_addr == 0)
694                                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
695                         else
696                                 bit = (1 << sc->bge_func_addr);
697                 }
698                 APE_WRITE_4(sc, regbase + 4 * i, bit);
699         }
700
701         /* Select the PHY lock based on the device's function number. */
702         switch (sc->bge_func_addr) {
703         case 0:
704                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
705                 break;
706         case 1:
707                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
708                 break;
709         case 2:
710                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
711                 break;
712         case 3:
713                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
714                 break;
715         default:
716                 device_printf(sc->bge_dev,
717                     "PHY lock not supported on this function\n");
718         }
719 }
720
721 /*
722  * Check for APE firmware, set flags, and print version info.
723  */
724 static void
725 bge_ape_read_fw_ver(struct bge_softc *sc)
726 {
727         const char *fwtype;
728         uint32_t apedata, features;
729
730         /* Check for a valid APE signature in shared memory. */
731         apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
732         if (apedata != BGE_APE_SEG_SIG_MAGIC) {
733                 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
734                 return;
735         }
736
737         /* Check if APE firmware is running. */
738         apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
739         if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
740                 device_printf(sc->bge_dev, "APE signature found "
741                     "but FW status not ready! 0x%08x\n", apedata);
742                 return;
743         }
744
745         sc->bge_mfw_flags |= BGE_MFW_ON_APE;
746
747         /* Fetch the APE firwmare type and version. */
748         apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
749         features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
750         if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
751                 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
752                 fwtype = "NCSI";
753         } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
754                 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
755                 fwtype = "DASH";
756         } else
757                 fwtype = "UNKN";
758
759         /* Print the APE firmware version. */
760         device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
761             fwtype,
762             (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
763             (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
764             (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
765             (apedata & BGE_APE_FW_VERSION_BLDMSK));
766 }
767
768 static int
769 bge_ape_lock(struct bge_softc *sc, int locknum)
770 {
771         uint32_t bit, gnt, req, status;
772         int i, off;
773
774         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
775                 return (0);
776
777         /* Lock request/grant registers have different bases. */
778         if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
779                 req = BGE_APE_LOCK_REQ;
780                 gnt = BGE_APE_LOCK_GRANT;
781         } else {
782                 req = BGE_APE_PER_LOCK_REQ;
783                 gnt = BGE_APE_PER_LOCK_GRANT;
784         }
785
786         off = 4 * locknum;
787
788         switch (locknum) {
789         case BGE_APE_LOCK_GPIO:
790                 /* Lock required when using GPIO. */
791                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
792                         return (0);
793                 if (sc->bge_func_addr == 0)
794                         bit = BGE_APE_LOCK_REQ_DRIVER0;
795                 else
796                         bit = (1 << sc->bge_func_addr);
797                 break;
798         case BGE_APE_LOCK_GRC:
799                 /* Lock required to reset the device. */
800                 if (sc->bge_func_addr == 0)
801                         bit = BGE_APE_LOCK_REQ_DRIVER0;
802                 else
803                         bit = (1 << sc->bge_func_addr);
804                 break;
805         case BGE_APE_LOCK_MEM:
806                 /* Lock required when accessing certain APE memory. */
807                 if (sc->bge_func_addr == 0)
808                         bit = BGE_APE_LOCK_REQ_DRIVER0;
809                 else
810                         bit = (1 << sc->bge_func_addr);
811                 break;
812         case BGE_APE_LOCK_PHY0:
813         case BGE_APE_LOCK_PHY1:
814         case BGE_APE_LOCK_PHY2:
815         case BGE_APE_LOCK_PHY3:
816                 /* Lock required when accessing PHYs. */
817                 bit = BGE_APE_LOCK_REQ_DRIVER0;
818                 break;
819         default:
820                 return (EINVAL);
821         }
822
823         /* Request a lock. */
824         APE_WRITE_4(sc, req + off, bit);
825
826         /* Wait up to 1 second to acquire lock. */
827         for (i = 0; i < 20000; i++) {
828                 status = APE_READ_4(sc, gnt + off);
829                 if (status == bit)
830                         break;
831                 DELAY(50);
832         }
833
834         /* Handle any errors. */
835         if (status != bit) {
836                 device_printf(sc->bge_dev, "APE lock %d request failed! "
837                     "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
838                     locknum, req + off, bit & 0xFFFF, gnt + off,
839                     status & 0xFFFF);
840                 /* Revoke the lock request. */
841                 APE_WRITE_4(sc, gnt + off, bit);
842                 return (EBUSY);
843         }
844
845         return (0);
846 }
847
848 static void
849 bge_ape_unlock(struct bge_softc *sc, int locknum)
850 {
851         uint32_t bit, gnt;
852         int off;
853
854         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
855                 return;
856
857         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
858                 gnt = BGE_APE_LOCK_GRANT;
859         else
860                 gnt = BGE_APE_PER_LOCK_GRANT;
861
862         off = 4 * locknum;
863
864         switch (locknum) {
865         case BGE_APE_LOCK_GPIO:
866                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
867                         return;
868                 if (sc->bge_func_addr == 0)
869                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
870                 else
871                         bit = (1 << sc->bge_func_addr);
872                 break;
873         case BGE_APE_LOCK_GRC:
874                 if (sc->bge_func_addr == 0)
875                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
876                 else
877                         bit = (1 << sc->bge_func_addr);
878                 break;
879         case BGE_APE_LOCK_MEM:
880                 if (sc->bge_func_addr == 0)
881                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
882                 else
883                         bit = (1 << sc->bge_func_addr);
884                 break;
885         case BGE_APE_LOCK_PHY0:
886         case BGE_APE_LOCK_PHY1:
887         case BGE_APE_LOCK_PHY2:
888         case BGE_APE_LOCK_PHY3:
889                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
890                 break;
891         default:
892                 return;
893         }
894
895         APE_WRITE_4(sc, gnt + off, bit);
896 }
897
898 /*
899  * Send an event to the APE firmware.
900  */
901 static void
902 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
903 {
904         uint32_t apedata;
905         int i;
906
907         /* NCSI does not support APE events. */
908         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
909                 return;
910
911         /* Wait up to 1ms for APE to service previous event. */
912         for (i = 10; i > 0; i--) {
913                 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
914                         break;
915                 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
916                 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
917                         APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
918                             BGE_APE_EVENT_STATUS_EVENT_PENDING);
919                         bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
920                         APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
921                         break;
922                 }
923                 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
924                 DELAY(100);
925         }
926         if (i == 0)
927                 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
928                     event);
929 }
930
931 static void
932 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
933 {
934         uint32_t apedata, event;
935
936         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
937                 return;
938
939         switch (kind) {
940         case BGE_RESET_START:
941                 /* If this is the first load, clear the load counter. */
942                 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
943                 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
944                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
945                 else {
946                         apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
947                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
948                 }
949                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
950                     BGE_APE_HOST_SEG_SIG_MAGIC);
951                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
952                     BGE_APE_HOST_SEG_LEN_MAGIC);
953
954                 /* Add some version info if bge(4) supports it. */
955                 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
956                     BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
957                 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
958                     BGE_APE_HOST_BEHAV_NO_PHYLOCK);
959                 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
960                     BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
961                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
962                     BGE_APE_HOST_DRVR_STATE_START);
963                 event = BGE_APE_EVENT_STATUS_STATE_START;
964                 break;
965         case BGE_RESET_SHUTDOWN:
966                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
967                     BGE_APE_HOST_DRVR_STATE_UNLOAD);
968                 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
969                 break;
970         case BGE_RESET_SUSPEND:
971                 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
972                 break;
973         default:
974                 return;
975         }
976
977         bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
978             BGE_APE_EVENT_STATUS_STATE_CHNGE);
979 }
980
981 /*
982  * Map a single buffer address.
983  */
984
985 static void
986 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
987 {
988         struct bge_dmamap_arg *ctx;
989
990         if (error)
991                 return;
992
993         KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
994
995         ctx = arg;
996         ctx->bge_busaddr = segs->ds_addr;
997 }
998
999 static uint8_t
1000 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1001 {
1002         uint32_t access, byte = 0;
1003         int i;
1004
1005         /* Lock. */
1006         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1007         for (i = 0; i < 8000; i++) {
1008                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1009                         break;
1010                 DELAY(20);
1011         }
1012         if (i == 8000)
1013                 return (1);
1014
1015         /* Enable access. */
1016         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1017         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1018
1019         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1020         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1021         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1022                 DELAY(10);
1023                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1024                         DELAY(10);
1025                         break;
1026                 }
1027         }
1028
1029         if (i == BGE_TIMEOUT * 10) {
1030                 if_printf(sc->bge_ifp, "nvram read timed out\n");
1031                 return (1);
1032         }
1033
1034         /* Get result. */
1035         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1036
1037         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1038
1039         /* Disable access. */
1040         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1041
1042         /* Unlock. */
1043         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1044         CSR_READ_4(sc, BGE_NVRAM_SWARB);
1045
1046         return (0);
1047 }
1048
1049 /*
1050  * Read a sequence of bytes from NVRAM.
1051  */
1052 static int
1053 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1054 {
1055         int err = 0, i;
1056         uint8_t byte = 0;
1057
1058         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1059                 return (1);
1060
1061         for (i = 0; i < cnt; i++) {
1062                 err = bge_nvram_getbyte(sc, off + i, &byte);
1063                 if (err)
1064                         break;
1065                 *(dest + i) = byte;
1066         }
1067
1068         return (err ? 1 : 0);
1069 }
1070
1071 /*
1072  * Read a byte of data stored in the EEPROM at address 'addr.' The
1073  * BCM570x supports both the traditional bitbang interface and an
1074  * auto access interface for reading the EEPROM. We use the auto
1075  * access method.
1076  */
1077 static uint8_t
1078 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1079 {
1080         int i;
1081         uint32_t byte = 0;
1082
1083         /*
1084          * Enable use of auto EEPROM access so we can avoid
1085          * having to use the bitbang method.
1086          */
1087         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1088
1089         /* Reset the EEPROM, load the clock period. */
1090         CSR_WRITE_4(sc, BGE_EE_ADDR,
1091             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1092         DELAY(20);
1093
1094         /* Issue the read EEPROM command. */
1095         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1096
1097         /* Wait for completion */
1098         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1099                 DELAY(10);
1100                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1101                         break;
1102         }
1103
1104         if (i == BGE_TIMEOUT * 10) {
1105                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
1106                 return (1);
1107         }
1108
1109         /* Get result. */
1110         byte = CSR_READ_4(sc, BGE_EE_DATA);
1111
1112         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1113
1114         return (0);
1115 }
1116
1117 /*
1118  * Read a sequence of bytes from the EEPROM.
1119  */
1120 static int
1121 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1122 {
1123         int i, error = 0;
1124         uint8_t byte = 0;
1125
1126         for (i = 0; i < cnt; i++) {
1127                 error = bge_eeprom_getbyte(sc, off + i, &byte);
1128                 if (error)
1129                         break;
1130                 *(dest + i) = byte;
1131         }
1132
1133         return (error ? 1 : 0);
1134 }
1135
1136 static int
1137 bge_miibus_readreg(device_t dev, int phy, int reg)
1138 {
1139         struct bge_softc *sc;
1140         uint32_t val;
1141         int i;
1142
1143         sc = device_get_softc(dev);
1144
1145         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1146                 return (0);
1147
1148         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1149         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1150                 CSR_WRITE_4(sc, BGE_MI_MODE,
1151                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1152                 DELAY(80);
1153         }
1154
1155         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1156             BGE_MIPHY(phy) | BGE_MIREG(reg));
1157
1158         /* Poll for the PHY register access to complete. */
1159         for (i = 0; i < BGE_TIMEOUT; i++) {
1160                 DELAY(10);
1161                 val = CSR_READ_4(sc, BGE_MI_COMM);
1162                 if ((val & BGE_MICOMM_BUSY) == 0) {
1163                         DELAY(5);
1164                         val = CSR_READ_4(sc, BGE_MI_COMM);
1165                         break;
1166                 }
1167         }
1168
1169         if (i == BGE_TIMEOUT) {
1170                 device_printf(sc->bge_dev,
1171                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1172                     phy, reg, val);
1173                 val = 0;
1174         }
1175
1176         /* Restore the autopoll bit if necessary. */
1177         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1178                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1179                 DELAY(80);
1180         }
1181
1182         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1183
1184         if (val & BGE_MICOMM_READFAIL)
1185                 return (0);
1186
1187         return (val & 0xFFFF);
1188 }
1189
1190 static int
1191 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1192 {
1193         struct bge_softc *sc;
1194         int i;
1195
1196         sc = device_get_softc(dev);
1197
1198         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1199             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1200                 return (0);
1201
1202         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1203                 return (0);
1204
1205         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1206         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1207                 CSR_WRITE_4(sc, BGE_MI_MODE,
1208                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1209                 DELAY(80);
1210         }
1211
1212         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1213             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1214
1215         for (i = 0; i < BGE_TIMEOUT; i++) {
1216                 DELAY(10);
1217                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1218                         DELAY(5);
1219                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1220                         break;
1221                 }
1222         }
1223
1224         /* Restore the autopoll bit if necessary. */
1225         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1226                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1227                 DELAY(80);
1228         }
1229
1230         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1231
1232         if (i == BGE_TIMEOUT)
1233                 device_printf(sc->bge_dev,
1234                     "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1235                     phy, reg, val);
1236
1237         return (0);
1238 }
1239
1240 static void
1241 bge_miibus_statchg(device_t dev)
1242 {
1243         struct bge_softc *sc;
1244         struct mii_data *mii;
1245         uint32_t mac_mode, rx_mode, tx_mode;
1246
1247         sc = device_get_softc(dev);
1248         if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
1249                 return;
1250         mii = device_get_softc(sc->bge_miibus);
1251
1252         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1253             (IFM_ACTIVE | IFM_AVALID)) {
1254                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1255                 case IFM_10_T:
1256                 case IFM_100_TX:
1257                         sc->bge_link = 1;
1258                         break;
1259                 case IFM_1000_T:
1260                 case IFM_1000_SX:
1261                 case IFM_2500_SX:
1262                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1263                                 sc->bge_link = 1;
1264                         else
1265                                 sc->bge_link = 0;
1266                         break;
1267                 default:
1268                         sc->bge_link = 0;
1269                         break;
1270                 }
1271         } else
1272                 sc->bge_link = 0;
1273         if (sc->bge_link == 0)
1274                 return;
1275
1276         /*
1277          * APE firmware touches these registers to keep the MAC
1278          * connected to the outside world.  Try to keep the
1279          * accesses atomic.
1280          */
1281
1282         /* Set the port mode (MII/GMII) to match the link speed. */
1283         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1284             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1285         tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1286         rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1287
1288         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1289             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1290                 mac_mode |= BGE_PORTMODE_GMII;
1291         else
1292                 mac_mode |= BGE_PORTMODE_MII;
1293
1294         /* Set MAC flow control behavior to match link flow control settings. */
1295         tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1296         rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1297         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1298                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1299                         tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1300                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1301                         rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1302         } else
1303                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1304
1305         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1306         DELAY(40);
1307         CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1308         CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1309 }
1310
1311 /*
1312  * Intialize a standard receive ring descriptor.
1313  */
1314 static int
1315 bge_newbuf_std(struct bge_softc *sc, int i)
1316 {
1317         struct mbuf *m;
1318         struct bge_rx_bd *r;
1319         bus_dma_segment_t segs[1];
1320         bus_dmamap_t map;
1321         int error, nsegs;
1322
1323         if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1324             (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
1325             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1326                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1327                 if (m == NULL)
1328                         return (ENOBUFS);
1329                 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1330         } else {
1331                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1332                 if (m == NULL)
1333                         return (ENOBUFS);
1334                 m->m_len = m->m_pkthdr.len = MCLBYTES;
1335         }
1336         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1337                 m_adj(m, ETHER_ALIGN);
1338
1339         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1340             sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1341         if (error != 0) {
1342                 m_freem(m);
1343                 return (error);
1344         }
1345         if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1346                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1347                     sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1348                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1349                     sc->bge_cdata.bge_rx_std_dmamap[i]);
1350         }
1351         map = sc->bge_cdata.bge_rx_std_dmamap[i];
1352         sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1353         sc->bge_cdata.bge_rx_std_sparemap = map;
1354         sc->bge_cdata.bge_rx_std_chain[i] = m;
1355         sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1356         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1357         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1358         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1359         r->bge_flags = BGE_RXBDFLAG_END;
1360         r->bge_len = segs[0].ds_len;
1361         r->bge_idx = i;
1362
1363         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1364             sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1365
1366         return (0);
1367 }
1368
1369 /*
1370  * Initialize a jumbo receive ring descriptor. This allocates
1371  * a jumbo buffer from the pool managed internally by the driver.
1372  */
1373 static int
1374 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1375 {
1376         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1377         bus_dmamap_t map;
1378         struct bge_extrx_bd *r;
1379         struct mbuf *m;
1380         int error, nsegs;
1381
1382         MGETHDR(m, M_NOWAIT, MT_DATA);
1383         if (m == NULL)
1384                 return (ENOBUFS);
1385
1386         if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
1387                 m_freem(m);
1388                 return (ENOBUFS);
1389         }
1390         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1391         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1392                 m_adj(m, ETHER_ALIGN);
1393
1394         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1395             sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1396         if (error != 0) {
1397                 m_freem(m);
1398                 return (error);
1399         }
1400
1401         if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1402                 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1403                     sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1404                 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1405                     sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1406         }
1407         map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1408         sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1409             sc->bge_cdata.bge_rx_jumbo_sparemap;
1410         sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1411         sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1412         sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1413         sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1414         sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1415         sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1416
1417         /*
1418          * Fill in the extended RX buffer descriptor.
1419          */
1420         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1421         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1422         r->bge_idx = i;
1423         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1424         switch (nsegs) {
1425         case 4:
1426                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1427                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1428                 r->bge_len3 = segs[3].ds_len;
1429                 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1430         case 3:
1431                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1432                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1433                 r->bge_len2 = segs[2].ds_len;
1434                 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1435         case 2:
1436                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1437                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1438                 r->bge_len1 = segs[1].ds_len;
1439                 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1440         case 1:
1441                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1442                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1443                 r->bge_len0 = segs[0].ds_len;
1444                 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1445                 break;
1446         default:
1447                 panic("%s: %d segments\n", __func__, nsegs);
1448         }
1449
1450         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1451             sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1452
1453         return (0);
1454 }
1455
1456 static int
1457 bge_init_rx_ring_std(struct bge_softc *sc)
1458 {
1459         int error, i;
1460
1461         bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1462         sc->bge_std = 0;
1463         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1464                 if ((error = bge_newbuf_std(sc, i)) != 0)
1465                         return (error);
1466                 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1467         }
1468
1469         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1470             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1471
1472         sc->bge_std = 0;
1473         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1474
1475         return (0);
1476 }
1477
1478 static void
1479 bge_free_rx_ring_std(struct bge_softc *sc)
1480 {
1481         int i;
1482
1483         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1484                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1485                         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1486                             sc->bge_cdata.bge_rx_std_dmamap[i],
1487                             BUS_DMASYNC_POSTREAD);
1488                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1489                             sc->bge_cdata.bge_rx_std_dmamap[i]);
1490                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1491                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1492                 }
1493                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1494                     sizeof(struct bge_rx_bd));
1495         }
1496 }
1497
1498 static int
1499 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1500 {
1501         struct bge_rcb *rcb;
1502         int error, i;
1503
1504         bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1505         sc->bge_jumbo = 0;
1506         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1507                 if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1508                         return (error);
1509                 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1510         }
1511
1512         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1513             sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1514
1515         sc->bge_jumbo = 0;
1516
1517         /* Enable the jumbo receive producer ring. */
1518         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1519         rcb->bge_maxlen_flags =
1520             BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1521         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1522
1523         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1524
1525         return (0);
1526 }
1527
1528 static void
1529 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1530 {
1531         int i;
1532
1533         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1534                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1535                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1536                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1537                             BUS_DMASYNC_POSTREAD);
1538                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1539                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1540                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1541                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1542                 }
1543                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1544                     sizeof(struct bge_extrx_bd));
1545         }
1546 }
1547
1548 static void
1549 bge_free_tx_ring(struct bge_softc *sc)
1550 {
1551         int i;
1552
1553         if (sc->bge_ldata.bge_tx_ring == NULL)
1554                 return;
1555
1556         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1557                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1558                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1559                             sc->bge_cdata.bge_tx_dmamap[i],
1560                             BUS_DMASYNC_POSTWRITE);
1561                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1562                             sc->bge_cdata.bge_tx_dmamap[i]);
1563                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1564                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1565                 }
1566                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1567                     sizeof(struct bge_tx_bd));
1568         }
1569 }
1570
1571 static int
1572 bge_init_tx_ring(struct bge_softc *sc)
1573 {
1574         sc->bge_txcnt = 0;
1575         sc->bge_tx_saved_considx = 0;
1576
1577         bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1578         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1579             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1580
1581         /* Initialize transmit producer index for host-memory send ring. */
1582         sc->bge_tx_prodidx = 0;
1583         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1584
1585         /* 5700 b2 errata */
1586         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1587                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1588
1589         /* NIC-memory send ring not used; initialize to zero. */
1590         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1591         /* 5700 b2 errata */
1592         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1593                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1594
1595         return (0);
1596 }
1597
1598 static void
1599 bge_setpromisc(struct bge_softc *sc)
1600 {
1601         if_t ifp;
1602
1603         BGE_LOCK_ASSERT(sc);
1604
1605         ifp = sc->bge_ifp;
1606
1607         /* Enable or disable promiscuous mode as needed. */
1608         if (if_getflags(ifp) & IFF_PROMISC)
1609                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1610         else
1611                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1612 }
1613
1614 static void
1615 bge_setmulti(struct bge_softc *sc)
1616 {
1617         if_t ifp;
1618         int mc_count = 0;
1619         uint32_t hashes[4] = { 0, 0, 0, 0 };
1620         int h, i, mcnt;
1621         unsigned char *mta;
1622
1623         BGE_LOCK_ASSERT(sc);
1624
1625         ifp = sc->bge_ifp;
1626
1627         mc_count = if_multiaddr_count(ifp, -1);
1628         mta = malloc(sizeof(unsigned char) *  ETHER_ADDR_LEN *
1629             mc_count, M_DEVBUF, M_NOWAIT);
1630
1631         if(mta == NULL) {
1632                 device_printf(sc->bge_dev, 
1633                     "Failed to allocated temp mcast list\n");
1634                 return;
1635         }
1636
1637         if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
1638                 for (i = 0; i < 4; i++)
1639                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1640                 free(mta, M_DEVBUF);
1641                 return;
1642         }
1643
1644         /* First, zot all the existing filters. */
1645         for (i = 0; i < 4; i++)
1646                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1647
1648         if_multiaddr_array(ifp, mta, &mcnt, mc_count);
1649         for(i = 0; i < mcnt; i++) {
1650                 h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
1651                     ETHER_ADDR_LEN) & 0x7F;
1652                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1653         }
1654
1655         for (i = 0; i < 4; i++)
1656                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1657
1658         free(mta, M_DEVBUF);
1659 }
1660
1661 static void
1662 bge_setvlan(struct bge_softc *sc)
1663 {
1664         if_t ifp;
1665
1666         BGE_LOCK_ASSERT(sc);
1667
1668         ifp = sc->bge_ifp;
1669
1670         /* Enable or disable VLAN tag stripping as needed. */
1671         if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
1672                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1673         else
1674                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1675 }
1676
1677 static void
1678 bge_sig_pre_reset(struct bge_softc *sc, int type)
1679 {
1680
1681         /*
1682          * Some chips don't like this so only do this if ASF is enabled
1683          */
1684         if (sc->bge_asf_mode)
1685                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1686
1687         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1688                 switch (type) {
1689                 case BGE_RESET_START:
1690                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1691                             BGE_FW_DRV_STATE_START);
1692                         break;
1693                 case BGE_RESET_SHUTDOWN:
1694                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1695                             BGE_FW_DRV_STATE_UNLOAD);
1696                         break;
1697                 case BGE_RESET_SUSPEND:
1698                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1699                             BGE_FW_DRV_STATE_SUSPEND);
1700                         break;
1701                 }
1702         }
1703
1704         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1705                 bge_ape_driver_state_change(sc, type);
1706 }
1707
1708 static void
1709 bge_sig_post_reset(struct bge_softc *sc, int type)
1710 {
1711
1712         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1713                 switch (type) {
1714                 case BGE_RESET_START:
1715                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1716                             BGE_FW_DRV_STATE_START_DONE);
1717                         /* START DONE */
1718                         break;
1719                 case BGE_RESET_SHUTDOWN:
1720                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1721                             BGE_FW_DRV_STATE_UNLOAD_DONE);
1722                         break;
1723                 }
1724         }
1725         if (type == BGE_RESET_SHUTDOWN)
1726                 bge_ape_driver_state_change(sc, type);
1727 }
1728
1729 static void
1730 bge_sig_legacy(struct bge_softc *sc, int type)
1731 {
1732
1733         if (sc->bge_asf_mode) {
1734                 switch (type) {
1735                 case BGE_RESET_START:
1736                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1737                             BGE_FW_DRV_STATE_START);
1738                         break;
1739                 case BGE_RESET_SHUTDOWN:
1740                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1741                             BGE_FW_DRV_STATE_UNLOAD);
1742                         break;
1743                 }
1744         }
1745 }
1746
1747 static void
1748 bge_stop_fw(struct bge_softc *sc)
1749 {
1750         int i;
1751
1752         if (sc->bge_asf_mode) {
1753                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1754                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1755                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1756
1757                 for (i = 0; i < 100; i++ ) {
1758                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1759                             BGE_RX_CPU_DRV_EVENT))
1760                                 break;
1761                         DELAY(10);
1762                 }
1763         }
1764 }
1765
1766 static uint32_t
1767 bge_dma_swap_options(struct bge_softc *sc)
1768 {
1769         uint32_t dma_options;
1770
1771         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1772             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1773 #if BYTE_ORDER == BIG_ENDIAN
1774         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1775 #endif
1776         return (dma_options);
1777 }
1778
1779 /*
1780  * Do endian, PCI and DMA initialization.
1781  */
1782 static int
1783 bge_chipinit(struct bge_softc *sc)
1784 {
1785         uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1786         uint16_t val;
1787         int i;
1788
1789         /* Set endianness before we access any non-PCI registers. */
1790         misc_ctl = BGE_INIT;
1791         if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1792                 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1793         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1794
1795         /*
1796          * Clear the MAC statistics block in the NIC's
1797          * internal memory.
1798          */
1799         for (i = BGE_STATS_BLOCK;
1800             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1801                 BGE_MEMWIN_WRITE(sc, i, 0);
1802
1803         for (i = BGE_STATUS_BLOCK;
1804             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1805                 BGE_MEMWIN_WRITE(sc, i, 0);
1806
1807         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1808                 /*
1809                  *  Fix data corruption caused by non-qword write with WB.
1810                  *  Fix master abort in PCI mode.
1811                  *  Fix PCI latency timer.
1812                  */
1813                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1814                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1815                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1816         }
1817
1818         if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1819             sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1820                 /*
1821                  * For the 57766 and non Ax versions of 57765, bootcode
1822                  * needs to setup the PCIE Fast Training Sequence (FTS)
1823                  * value to prevent transmit hangs.
1824                  */
1825                 if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1826                         CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1827                             CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1828                             BGE_CPMU_PADRNG_CTL_RDIV2);
1829                 }
1830         }
1831
1832         /*
1833          * Set up the PCI DMA control register.
1834          */
1835         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1836             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1837         if (sc->bge_flags & BGE_FLAG_PCIE) {
1838                 if (sc->bge_mps >= 256)
1839                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1840                 else
1841                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1842         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1843                 if (BGE_IS_5714_FAMILY(sc)) {
1844                         /* 256 bytes for read and write. */
1845                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1846                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1847                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1848                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1849                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1850                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1851                         /*
1852                          * In the BCM5703, the DMA read watermark should
1853                          * be set to less than or equal to the maximum
1854                          * memory read byte count of the PCI-X command
1855                          * register.
1856                          */
1857                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1858                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1859                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1860                         /* 1536 bytes for read, 384 bytes for write. */
1861                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1862                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1863                 } else {
1864                         /* 384 bytes for read and write. */
1865                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1866                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1867                             0x0F;
1868                 }
1869                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1870                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1871                         uint32_t tmp;
1872
1873                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
1874                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1875                         if (tmp == 6 || tmp == 7)
1876                                 dma_rw_ctl |=
1877                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1878
1879                         /* Set PCI-X DMA write workaround. */
1880                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1881                 }
1882         } else {
1883                 /* Conventional PCI bus: 256 bytes for read and write. */
1884                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1885                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1886
1887                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1888                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1889                         dma_rw_ctl |= 0x0F;
1890         }
1891         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1892             sc->bge_asicrev == BGE_ASICREV_BCM5701)
1893                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1894                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1895         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1896             sc->bge_asicrev == BGE_ASICREV_BCM5704)
1897                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1898         if (BGE_IS_5717_PLUS(sc)) {
1899                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1900                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1901                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1902                 /*
1903                  * Enable HW workaround for controllers that misinterpret
1904                  * a status tag update and leave interrupts permanently
1905                  * disabled.
1906                  */
1907                 if (!BGE_IS_57765_PLUS(sc) &&
1908                     sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1909                     sc->bge_asicrev != BGE_ASICREV_BCM5762)
1910                         dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1911         }
1912         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1913
1914         /*
1915          * Set up general mode register.
1916          */
1917         mode_ctl = bge_dma_swap_options(sc);
1918         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1919             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1920                 /* Retain Host-2-BMC settings written by APE firmware. */
1921                 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1922                     (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1923                     BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1924                     BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1925         }
1926         mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1927             BGE_MODECTL_TX_NO_PHDR_CSUM;
1928
1929         /*
1930          * BCM5701 B5 have a bug causing data corruption when using
1931          * 64-bit DMA reads, which can be terminated early and then
1932          * completed later as 32-bit accesses, in combination with
1933          * certain bridges.
1934          */
1935         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1936             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1937                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1938
1939         /*
1940          * Tell the firmware the driver is running
1941          */
1942         if (sc->bge_asf_mode & ASF_STACKUP)
1943                 mode_ctl |= BGE_MODECTL_STACKUP;
1944
1945         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1946
1947         /*
1948          * Disable memory write invalidate.  Apparently it is not supported
1949          * properly by these devices.
1950          */
1951         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1952
1953         /* Set the timer prescaler (always 66 MHz). */
1954         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1955
1956         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1957         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1958                 DELAY(40);      /* XXX */
1959
1960                 /* Put PHY into ready state */
1961                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1962                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1963                 DELAY(40);
1964         }
1965
1966         return (0);
1967 }
1968
1969 static int
1970 bge_blockinit(struct bge_softc *sc)
1971 {
1972         struct bge_rcb *rcb;
1973         bus_size_t vrcb;
1974         bge_hostaddr taddr;
1975         uint32_t dmactl, rdmareg, val;
1976         int i, limit;
1977
1978         /*
1979          * Initialize the memory window pointer register so that
1980          * we can access the first 32K of internal NIC RAM. This will
1981          * allow us to set up the TX send ring RCBs and the RX return
1982          * ring RCBs, plus other things which live in NIC memory.
1983          */
1984         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1985
1986         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1987
1988         if (!(BGE_IS_5705_PLUS(sc))) {
1989                 /* Configure mbuf memory pool */
1990                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1991                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1992                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1993                 else
1994                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1995
1996                 /* Configure DMA resource pool */
1997                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1998                     BGE_DMA_DESCRIPTORS);
1999                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2000         }
2001
2002         /* Configure mbuf pool watermarks */
2003         if (BGE_IS_5717_PLUS(sc)) {
2004                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2005                 if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
2006                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2007                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2008                 } else {
2009                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2010                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2011                 }
2012         } else if (!BGE_IS_5705_PLUS(sc)) {
2013                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2014                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2015                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2016         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2017                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2018                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2019                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2020         } else {
2021                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2022                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2023                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2024         }
2025
2026         /* Configure DMA resource watermarks */
2027         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2028         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2029
2030         /* Enable buffer manager */
2031         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2032         /*
2033          * Change the arbitration algorithm of TXMBUF read request to
2034          * round-robin instead of priority based for BCM5719.  When
2035          * TXFIFO is almost empty, RDMA will hold its request until
2036          * TXFIFO is not almost empty.
2037          */
2038         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2039                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2040         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2041
2042         /* Poll for buffer manager start indication */
2043         for (i = 0; i < BGE_TIMEOUT; i++) {
2044                 DELAY(10);
2045                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2046                         break;
2047         }
2048
2049         if (i == BGE_TIMEOUT) {
2050                 device_printf(sc->bge_dev, "buffer manager failed to start\n");
2051                 return (ENXIO);
2052         }
2053
2054         /* Enable flow-through queues */
2055         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2056         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2057
2058         /* Wait until queue initialization is complete */
2059         for (i = 0; i < BGE_TIMEOUT; i++) {
2060                 DELAY(10);
2061                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2062                         break;
2063         }
2064
2065         if (i == BGE_TIMEOUT) {
2066                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
2067                 return (ENXIO);
2068         }
2069
2070         /*
2071          * Summary of rings supported by the controller:
2072          *
2073          * Standard Receive Producer Ring
2074          * - This ring is used to feed receive buffers for "standard"
2075          *   sized frames (typically 1536 bytes) to the controller.
2076          *
2077          * Jumbo Receive Producer Ring
2078          * - This ring is used to feed receive buffers for jumbo sized
2079          *   frames (i.e. anything bigger than the "standard" frames)
2080          *   to the controller.
2081          *
2082          * Mini Receive Producer Ring
2083          * - This ring is used to feed receive buffers for "mini"
2084          *   sized frames to the controller.
2085          * - This feature required external memory for the controller
2086          *   but was never used in a production system.  Should always
2087          *   be disabled.
2088          *
2089          * Receive Return Ring
2090          * - After the controller has placed an incoming frame into a
2091          *   receive buffer that buffer is moved into a receive return
2092          *   ring.  The driver is then responsible to passing the
2093          *   buffer up to the stack.  Many versions of the controller
2094          *   support multiple RR rings.
2095          *
2096          * Send Ring
2097          * - This ring is used for outgoing frames.  Many versions of
2098          *   the controller support multiple send rings.
2099          */
2100
2101         /* Initialize the standard receive producer ring control block. */
2102         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2103         rcb->bge_hostaddr.bge_addr_lo =
2104             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2105         rcb->bge_hostaddr.bge_addr_hi =
2106             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2107         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2108             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2109         if (BGE_IS_5717_PLUS(sc)) {
2110                 /*
2111                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2112                  * Bits 15-2 : Maximum RX frame size
2113                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2114                  * Bit 0     : Reserved
2115                  */
2116                 rcb->bge_maxlen_flags =
2117                     BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2118         } else if (BGE_IS_5705_PLUS(sc)) {
2119                 /*
2120                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2121                  * Bits 15-2 : Reserved (should be 0)
2122                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2123                  * Bit 0     : Reserved
2124                  */
2125                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2126         } else {
2127                 /*
2128                  * Ring size is always XXX entries
2129                  * Bits 31-16: Maximum RX frame size
2130                  * Bits 15-2 : Reserved (should be 0)
2131                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2132                  * Bit 0     : Reserved
2133                  */
2134                 rcb->bge_maxlen_flags =
2135                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2136         }
2137         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2138             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2139             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2140                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2141         else
2142                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2143         /* Write the standard receive producer ring control block. */
2144         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2145         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2146         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2147         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2148
2149         /* Reset the standard receive producer ring producer index. */
2150         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2151
2152         /*
2153          * Initialize the jumbo RX producer ring control
2154          * block.  We set the 'ring disabled' bit in the
2155          * flags field until we're actually ready to start
2156          * using this ring (i.e. once we set the MTU
2157          * high enough to require it).
2158          */
2159         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2160                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2161                 /* Get the jumbo receive producer ring RCB parameters. */
2162                 rcb->bge_hostaddr.bge_addr_lo =
2163                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2164                 rcb->bge_hostaddr.bge_addr_hi =
2165                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2166                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2167                     sc->bge_cdata.bge_rx_jumbo_ring_map,
2168                     BUS_DMASYNC_PREREAD);
2169                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2170                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2171                 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2172                     sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2173                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
2174                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2175                 else
2176                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2177                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2178                     rcb->bge_hostaddr.bge_addr_hi);
2179                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2180                     rcb->bge_hostaddr.bge_addr_lo);
2181                 /* Program the jumbo receive producer ring RCB parameters. */
2182                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2183                     rcb->bge_maxlen_flags);
2184                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2185                 /* Reset the jumbo receive producer ring producer index. */
2186                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2187         }
2188
2189         /* Disable the mini receive producer ring RCB. */
2190         if (BGE_IS_5700_FAMILY(sc)) {
2191                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2192                 rcb->bge_maxlen_flags =
2193                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2194                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2195                     rcb->bge_maxlen_flags);
2196                 /* Reset the mini receive producer ring producer index. */
2197                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2198         }
2199
2200         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2201         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2202                 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2203                     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2204                     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2205                         CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2206                             (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2207         }
2208         /*
2209          * The BD ring replenish thresholds control how often the
2210          * hardware fetches new BD's from the producer rings in host
2211          * memory.  Setting the value too low on a busy system can
2212          * starve the hardware and recue the throughpout.
2213          *
2214          * Set the BD ring replentish thresholds. The recommended
2215          * values are 1/8th the number of descriptors allocated to
2216          * each ring.
2217          * XXX The 5754 requires a lower threshold, so it might be a
2218          * requirement of all 575x family chips.  The Linux driver sets
2219          * the lower threshold for all 5705 family chips as well, but there
2220          * are reports that it might not need to be so strict.
2221          *
2222          * XXX Linux does some extra fiddling here for the 5906 parts as
2223          * well.
2224          */
2225         if (BGE_IS_5705_PLUS(sc))
2226                 val = 8;
2227         else
2228                 val = BGE_STD_RX_RING_CNT / 8;
2229         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2230         if (BGE_IS_JUMBO_CAPABLE(sc))
2231                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2232                     BGE_JUMBO_RX_RING_CNT/8);
2233         if (BGE_IS_5717_PLUS(sc)) {
2234                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2235                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2236         }
2237
2238         /*
2239          * Disable all send rings by setting the 'ring disabled' bit
2240          * in the flags field of all the TX send ring control blocks,
2241          * located in NIC memory.
2242          */
2243         if (!BGE_IS_5705_PLUS(sc))
2244                 /* 5700 to 5704 had 16 send rings. */
2245                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2246         else if (BGE_IS_57765_PLUS(sc) ||
2247             sc->bge_asicrev == BGE_ASICREV_BCM5762)
2248                 limit = 2;
2249         else if (BGE_IS_5717_PLUS(sc))
2250                 limit = 4;
2251         else
2252                 limit = 1;
2253         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2254         for (i = 0; i < limit; i++) {
2255                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2256                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2257                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2258                 vrcb += sizeof(struct bge_rcb);
2259         }
2260
2261         /* Configure send ring RCB 0 (we use only the first ring) */
2262         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2263         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2264         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2265         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2266         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2267             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2268             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2269                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2270         else
2271                 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2272                     BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2273         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2274             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2275
2276         /*
2277          * Disable all receive return rings by setting the
2278          * 'ring diabled' bit in the flags field of all the receive
2279          * return ring control blocks, located in NIC memory.
2280          */
2281         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2282             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2283             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2284                 /* Should be 17, use 16 until we get an SRAM map. */
2285                 limit = 16;
2286         } else if (!BGE_IS_5705_PLUS(sc))
2287                 limit = BGE_RX_RINGS_MAX;
2288         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2289             sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2290             BGE_IS_57765_PLUS(sc))
2291                 limit = 4;
2292         else
2293                 limit = 1;
2294         /* Disable all receive return rings. */
2295         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2296         for (i = 0; i < limit; i++) {
2297                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2298                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2299                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2300                     BGE_RCB_FLAG_RING_DISABLED);
2301                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2302                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2303                     (i * (sizeof(uint64_t))), 0);
2304                 vrcb += sizeof(struct bge_rcb);
2305         }
2306
2307         /*
2308          * Set up receive return ring 0.  Note that the NIC address
2309          * for RX return rings is 0x0.  The return rings live entirely
2310          * within the host, so the nicaddr field in the RCB isn't used.
2311          */
2312         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2313         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2314         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2315         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2316         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2317         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2318             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2319
2320         /* Set random backoff seed for TX */
2321         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2322             (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2323             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2324             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2325             BGE_TX_BACKOFF_SEED_MASK);
2326
2327         /* Set inter-packet gap */
2328         val = 0x2620;
2329         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2330             sc->bge_asicrev == BGE_ASICREV_BCM5762)
2331                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2332                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2333         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2334
2335         /*
2336          * Specify which ring to use for packets that don't match
2337          * any RX rules.
2338          */
2339         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2340
2341         /*
2342          * Configure number of RX lists. One interrupt distribution
2343          * list, sixteen active lists, one bad frames class.
2344          */
2345         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2346
2347         /* Inialize RX list placement stats mask. */
2348         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2349         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2350
2351         /* Disable host coalescing until we get it set up */
2352         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2353
2354         /* Poll to make sure it's shut down. */
2355         for (i = 0; i < BGE_TIMEOUT; i++) {
2356                 DELAY(10);
2357                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2358                         break;
2359         }
2360
2361         if (i == BGE_TIMEOUT) {
2362                 device_printf(sc->bge_dev,
2363                     "host coalescing engine failed to idle\n");
2364                 return (ENXIO);
2365         }
2366
2367         /* Set up host coalescing defaults */
2368         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2369         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2370         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2371         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2372         if (!(BGE_IS_5705_PLUS(sc))) {
2373                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2374                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2375         }
2376         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2377         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2378
2379         /* Set up address of statistics block */
2380         if (!(BGE_IS_5705_PLUS(sc))) {
2381                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2382                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2383                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2384                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2385                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2386                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2387                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2388         }
2389
2390         /* Set up address of status block */
2391         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2392             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2393         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2394             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2395
2396         /* Set up status block size. */
2397         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2398             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2399                 val = BGE_STATBLKSZ_FULL;
2400                 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2401         } else {
2402                 val = BGE_STATBLKSZ_32BYTE;
2403                 bzero(sc->bge_ldata.bge_status_block, 32);
2404         }
2405         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2406             sc->bge_cdata.bge_status_map,
2407             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2408
2409         /* Turn on host coalescing state machine */
2410         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2411
2412         /* Turn on RX BD completion state machine and enable attentions */
2413         CSR_WRITE_4(sc, BGE_RBDC_MODE,
2414             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2415
2416         /* Turn on RX list placement state machine */
2417         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2418
2419         /* Turn on RX list selector state machine. */
2420         if (!(BGE_IS_5705_PLUS(sc)))
2421                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2422
2423         /* Turn on DMA, clear stats. */
2424         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2425             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2426             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2427             BGE_MACMODE_FRMHDR_DMA_ENB;
2428
2429         if (sc->bge_flags & BGE_FLAG_TBI)
2430                 val |= BGE_PORTMODE_TBI;
2431         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2432                 val |= BGE_PORTMODE_GMII;
2433         else
2434                 val |= BGE_PORTMODE_MII;
2435
2436         /* Allow APE to send/receive frames. */
2437         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2438                 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2439
2440         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2441         DELAY(40);
2442
2443         /* Set misc. local control, enable interrupts on attentions */
2444         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2445
2446 #ifdef notdef
2447         /* Assert GPIO pins for PHY reset */
2448         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2449             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2450         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2451             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2452 #endif
2453
2454         /* Turn on DMA completion state machine */
2455         if (!(BGE_IS_5705_PLUS(sc)))
2456                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2457
2458         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2459
2460         /* Enable host coalescing bug fix. */
2461         if (BGE_IS_5755_PLUS(sc))
2462                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2463
2464         /* Request larger DMA burst size to get better performance. */
2465         if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2466                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2467
2468         /* Turn on write DMA state machine */
2469         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2470         DELAY(40);
2471
2472         /* Turn on read DMA state machine */
2473         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2474
2475         if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2476                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2477
2478         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2479             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2480             sc->bge_asicrev == BGE_ASICREV_BCM57780)
2481                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2482                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2483                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2484         if (sc->bge_flags & BGE_FLAG_PCIE)
2485                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2486         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2487                 val |= BGE_RDMAMODE_TSO4_ENABLE;
2488                 if (sc->bge_flags & BGE_FLAG_TSO3 ||
2489                     sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2490                     sc->bge_asicrev == BGE_ASICREV_BCM57780)
2491                         val |= BGE_RDMAMODE_TSO6_ENABLE;
2492         }
2493
2494         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2495             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2496                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2497                         BGE_RDMAMODE_H2BNC_VLAN_DET;
2498                 /*
2499                  * Allow multiple outstanding read requests from
2500                  * non-LSO read DMA engine.
2501                  */
2502                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2503         }
2504
2505         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2506             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2507             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2508             sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2509             BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2510                 if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2511                         rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2512                 else
2513                         rdmareg = BGE_RDMA_RSRVCTRL;
2514                 dmactl = CSR_READ_4(sc, rdmareg);
2515                 /*
2516                  * Adjust tx margin to prevent TX data corruption and
2517                  * fix internal FIFO overflow.
2518                  */
2519                 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2520                     sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2521                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2522                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2523                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2524                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2525                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2526                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2527                 }
2528                 /*
2529                  * Enable fix for read DMA FIFO overruns.
2530                  * The fix is to limit the number of RX BDs
2531                  * the hardware would fetch at a fime.
2532                  */
2533                 CSR_WRITE_4(sc, rdmareg, dmactl |
2534                     BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2535         }
2536
2537         if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2538                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2539                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2540                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2541                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2542         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2543                 /*
2544                  * Allow 4KB burst length reads for non-LSO frames.
2545                  * Enable 512B burst length reads for buffer descriptors.
2546                  */
2547                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2548                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2549                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2550                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2551         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2552                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2553                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2554                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2555                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2556         }
2557
2558         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2559         DELAY(40);
2560
2561         if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2562                 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2563                         val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2564                         if ((val & 0xFFFF) > BGE_FRAMELEN)
2565                                 break;
2566                         if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2567                                 break;
2568                 }
2569                 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2570                         val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2571                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2572                                 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2573                         else
2574                                 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2575                         CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2576                 }
2577         }
2578
2579         /* Turn on RX data completion state machine */
2580         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2581
2582         /* Turn on RX BD initiator state machine */
2583         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2584
2585         /* Turn on RX data and RX BD initiator state machine */
2586         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2587
2588         /* Turn on Mbuf cluster free state machine */
2589         if (!(BGE_IS_5705_PLUS(sc)))
2590                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2591
2592         /* Turn on send BD completion state machine */
2593         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2594
2595         /* Turn on send data completion state machine */
2596         val = BGE_SDCMODE_ENABLE;
2597         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2598                 val |= BGE_SDCMODE_CDELAY;
2599         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2600
2601         /* Turn on send data initiator state machine */
2602         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2603                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2604                     BGE_SDIMODE_HW_LSO_PRE_DMA);
2605         else
2606                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2607
2608         /* Turn on send BD initiator state machine */
2609         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2610
2611         /* Turn on send BD selector state machine */
2612         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2613
2614         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2615         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2616             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2617
2618         /* ack/clear link change events */
2619         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2620             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2621             BGE_MACSTAT_LINK_CHANGED);
2622         CSR_WRITE_4(sc, BGE_MI_STS, 0);
2623
2624         /*
2625          * Enable attention when the link has changed state for
2626          * devices that use auto polling.
2627          */
2628         if (sc->bge_flags & BGE_FLAG_TBI) {
2629                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2630         } else {
2631                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2632                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2633                         DELAY(80);
2634                 }
2635                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2636                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2637                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2638                             BGE_EVTENB_MI_INTERRUPT);
2639         }
2640
2641         /*
2642          * Clear any pending link state attention.
2643          * Otherwise some link state change events may be lost until attention
2644          * is cleared by bge_intr() -> bge_link_upd() sequence.
2645          * It's not necessary on newer BCM chips - perhaps enabling link
2646          * state change attentions implies clearing pending attention.
2647          */
2648         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2649             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2650             BGE_MACSTAT_LINK_CHANGED);
2651
2652         /* Enable link state change attentions. */
2653         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2654
2655         return (0);
2656 }
2657
2658 static const struct bge_revision *
2659 bge_lookup_rev(uint32_t chipid)
2660 {
2661         const struct bge_revision *br;
2662
2663         for (br = bge_revisions; br->br_name != NULL; br++) {
2664                 if (br->br_chipid == chipid)
2665                         return (br);
2666         }
2667
2668         for (br = bge_majorrevs; br->br_name != NULL; br++) {
2669                 if (br->br_chipid == BGE_ASICREV(chipid))
2670                         return (br);
2671         }
2672
2673         return (NULL);
2674 }
2675
2676 static const struct bge_vendor *
2677 bge_lookup_vendor(uint16_t vid)
2678 {
2679         const struct bge_vendor *v;
2680
2681         for (v = bge_vendors; v->v_name != NULL; v++)
2682                 if (v->v_id == vid)
2683                         return (v);
2684
2685         return (NULL);
2686 }
2687
2688 static uint32_t
2689 bge_chipid(device_t dev)
2690 {
2691         uint32_t id;
2692
2693         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2694             BGE_PCIMISCCTL_ASICREV_SHIFT;
2695         if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2696                 /*
2697                  * Find the ASCI revision.  Different chips use different
2698                  * registers.
2699                  */
2700                 switch (pci_get_device(dev)) {
2701                 case BCOM_DEVICEID_BCM5717:
2702                 case BCOM_DEVICEID_BCM5718:
2703                 case BCOM_DEVICEID_BCM5719:
2704                 case BCOM_DEVICEID_BCM5720:
2705                 case BCOM_DEVICEID_BCM5725:
2706                 case BCOM_DEVICEID_BCM5727:
2707                 case BCOM_DEVICEID_BCM5762:
2708                 case BCOM_DEVICEID_BCM57764:
2709                 case BCOM_DEVICEID_BCM57767:
2710                 case BCOM_DEVICEID_BCM57787:
2711                         id = pci_read_config(dev,
2712                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
2713                         break;
2714                 case BCOM_DEVICEID_BCM57761:
2715                 case BCOM_DEVICEID_BCM57762:
2716                 case BCOM_DEVICEID_BCM57765:
2717                 case BCOM_DEVICEID_BCM57766:
2718                 case BCOM_DEVICEID_BCM57781:
2719                 case BCOM_DEVICEID_BCM57782:
2720                 case BCOM_DEVICEID_BCM57785:
2721                 case BCOM_DEVICEID_BCM57786:
2722                 case BCOM_DEVICEID_BCM57791:
2723                 case BCOM_DEVICEID_BCM57795:
2724                         id = pci_read_config(dev,
2725                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
2726                         break;
2727                 default:
2728                         id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2729                 }
2730         }
2731         return (id);
2732 }
2733
2734 /*
2735  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2736  * against our list and return its name if we find a match.
2737  *
2738  * Note that since the Broadcom controller contains VPD support, we
2739  * try to get the device name string from the controller itself instead
2740  * of the compiled-in string. It guarantees we'll always announce the
2741  * right product name. We fall back to the compiled-in string when
2742  * VPD is unavailable or corrupt.
2743  */
2744 static int
2745 bge_probe(device_t dev)
2746 {
2747         char buf[96];
2748         char model[64];
2749         const struct bge_revision *br;
2750         const char *pname;
2751         struct bge_softc *sc;
2752         const struct bge_type *t = bge_devs;
2753         const struct bge_vendor *v;
2754         uint32_t id;
2755         uint16_t did, vid;
2756
2757         sc = device_get_softc(dev);
2758         sc->bge_dev = dev;
2759         vid = pci_get_vendor(dev);
2760         did = pci_get_device(dev);
2761         while(t->bge_vid != 0) {
2762                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
2763                         id = bge_chipid(dev);
2764                         br = bge_lookup_rev(id);
2765                         if (bge_has_eaddr(sc) &&
2766                             pci_get_vpd_ident(dev, &pname) == 0)
2767                                 snprintf(model, sizeof(model), "%s", pname);
2768                         else {
2769                                 v = bge_lookup_vendor(vid);
2770                                 snprintf(model, sizeof(model), "%s %s",
2771                                     v != NULL ? v->v_name : "Unknown",
2772                                     br != NULL ? br->br_name :
2773                                     "NetXtreme/NetLink Ethernet Controller");
2774                         }
2775                         snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2776                             model, br != NULL ? "" : "unknown ", id);
2777                         device_set_desc_copy(dev, buf);
2778                         return (BUS_PROBE_DEFAULT);
2779                 }
2780                 t++;
2781         }
2782
2783         return (ENXIO);
2784 }
2785
2786 static void
2787 bge_dma_free(struct bge_softc *sc)
2788 {
2789         int i;
2790
2791         /* Destroy DMA maps for RX buffers. */
2792         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2793                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
2794                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2795                             sc->bge_cdata.bge_rx_std_dmamap[i]);
2796         }
2797         if (sc->bge_cdata.bge_rx_std_sparemap)
2798                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2799                     sc->bge_cdata.bge_rx_std_sparemap);
2800
2801         /* Destroy DMA maps for jumbo RX buffers. */
2802         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2803                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2804                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2805                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2806         }
2807         if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2808                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2809                     sc->bge_cdata.bge_rx_jumbo_sparemap);
2810
2811         /* Destroy DMA maps for TX buffers. */
2812         for (i = 0; i < BGE_TX_RING_CNT; i++) {
2813                 if (sc->bge_cdata.bge_tx_dmamap[i])
2814                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2815                             sc->bge_cdata.bge_tx_dmamap[i]);
2816         }
2817
2818         if (sc->bge_cdata.bge_rx_mtag)
2819                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2820         if (sc->bge_cdata.bge_mtag_jumbo)
2821                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2822         if (sc->bge_cdata.bge_tx_mtag)
2823                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2824
2825         /* Destroy standard RX ring. */
2826         if (sc->bge_ldata.bge_rx_std_ring_paddr)
2827                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2828                     sc->bge_cdata.bge_rx_std_ring_map);
2829         if (sc->bge_ldata.bge_rx_std_ring)
2830                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2831                     sc->bge_ldata.bge_rx_std_ring,
2832                     sc->bge_cdata.bge_rx_std_ring_map);
2833
2834         if (sc->bge_cdata.bge_rx_std_ring_tag)
2835                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2836
2837         /* Destroy jumbo RX ring. */
2838         if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2839                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2840                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2841
2842         if (sc->bge_ldata.bge_rx_jumbo_ring)
2843                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2844                     sc->bge_ldata.bge_rx_jumbo_ring,
2845                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2846
2847         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2848                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2849
2850         /* Destroy RX return ring. */
2851         if (sc->bge_ldata.bge_rx_return_ring_paddr)
2852                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2853                     sc->bge_cdata.bge_rx_return_ring_map);
2854
2855         if (sc->bge_ldata.bge_rx_return_ring)
2856                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2857                     sc->bge_ldata.bge_rx_return_ring,
2858                     sc->bge_cdata.bge_rx_return_ring_map);
2859
2860         if (sc->bge_cdata.bge_rx_return_ring_tag)
2861                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2862
2863         /* Destroy TX ring. */
2864         if (sc->bge_ldata.bge_tx_ring_paddr)
2865                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2866                     sc->bge_cdata.bge_tx_ring_map);
2867
2868         if (sc->bge_ldata.bge_tx_ring)
2869                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2870                     sc->bge_ldata.bge_tx_ring,
2871                     sc->bge_cdata.bge_tx_ring_map);
2872
2873         if (sc->bge_cdata.bge_tx_ring_tag)
2874                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2875
2876         /* Destroy status block. */
2877         if (sc->bge_ldata.bge_status_block_paddr)
2878                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2879                     sc->bge_cdata.bge_status_map);
2880
2881         if (sc->bge_ldata.bge_status_block)
2882                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2883                     sc->bge_ldata.bge_status_block,
2884                     sc->bge_cdata.bge_status_map);
2885
2886         if (sc->bge_cdata.bge_status_tag)
2887                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2888
2889         /* Destroy statistics block. */
2890         if (sc->bge_ldata.bge_stats_paddr)
2891                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2892                     sc->bge_cdata.bge_stats_map);
2893
2894         if (sc->bge_ldata.bge_stats)
2895                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2896                     sc->bge_ldata.bge_stats,
2897                     sc->bge_cdata.bge_stats_map);
2898
2899         if (sc->bge_cdata.bge_stats_tag)
2900                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2901
2902         if (sc->bge_cdata.bge_buffer_tag)
2903                 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2904
2905         /* Destroy the parent tag. */
2906         if (sc->bge_cdata.bge_parent_tag)
2907                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2908 }
2909
2910 static int
2911 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2912     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2913     bus_addr_t *paddr, const char *msg)
2914 {
2915         struct bge_dmamap_arg ctx;
2916         int error;
2917
2918         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2919             alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2920             NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2921         if (error != 0) {
2922                 device_printf(sc->bge_dev,
2923                     "could not create %s dma tag\n", msg);
2924                 return (ENOMEM);
2925         }
2926         /* Allocate DMA'able memory for ring. */
2927         error = bus_dmamem_alloc(*tag, (void **)ring,
2928             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2929         if (error != 0) {
2930                 device_printf(sc->bge_dev,
2931                     "could not allocate DMA'able memory for %s\n", msg);
2932                 return (ENOMEM);
2933         }
2934         /* Load the address of the ring. */
2935         ctx.bge_busaddr = 0;
2936         error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2937             &ctx, BUS_DMA_NOWAIT);
2938         if (error != 0) {
2939                 device_printf(sc->bge_dev,
2940                     "could not load DMA'able memory for %s\n", msg);
2941                 return (ENOMEM);
2942         }
2943         *paddr = ctx.bge_busaddr;
2944         return (0);
2945 }
2946
2947 static int
2948 bge_dma_alloc(struct bge_softc *sc)
2949 {
2950         bus_addr_t lowaddr;
2951         bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2952         int i, error;
2953
2954         lowaddr = BUS_SPACE_MAXADDR;
2955         if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2956                 lowaddr = BGE_DMA_MAXADDR;
2957         /*
2958          * Allocate the parent bus DMA tag appropriate for PCI.
2959          */
2960         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2961             1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2962             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2963             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2964         if (error != 0) {
2965                 device_printf(sc->bge_dev,
2966                     "could not allocate parent dma tag\n");
2967                 return (ENOMEM);
2968         }
2969
2970         /* Create tag for standard RX ring. */
2971         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2972             &sc->bge_cdata.bge_rx_std_ring_tag,
2973             (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2974             &sc->bge_cdata.bge_rx_std_ring_map,
2975             &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2976         if (error)
2977                 return (error);
2978
2979         /* Create tag for RX return ring. */
2980         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2981             &sc->bge_cdata.bge_rx_return_ring_tag,
2982             (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2983             &sc->bge_cdata.bge_rx_return_ring_map,
2984             &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2985         if (error)
2986                 return (error);
2987
2988         /* Create tag for TX ring. */
2989         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2990             &sc->bge_cdata.bge_tx_ring_tag,
2991             (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2992             &sc->bge_cdata.bge_tx_ring_map,
2993             &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2994         if (error)
2995                 return (error);
2996
2997         /*
2998          * Create tag for status block.
2999          * Because we only use single Tx/Rx/Rx return ring, use
3000          * minimum status block size except BCM5700 AX/BX which
3001          * seems to want to see full status block size regardless
3002          * of configured number of ring.
3003          */
3004         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3005             sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3006                 sbsz = BGE_STATUS_BLK_SZ;
3007         else
3008                 sbsz = 32;
3009         error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3010             &sc->bge_cdata.bge_status_tag,
3011             (uint8_t **)&sc->bge_ldata.bge_status_block,
3012             &sc->bge_cdata.bge_status_map,
3013             &sc->bge_ldata.bge_status_block_paddr, "status block");
3014         if (error)
3015                 return (error);
3016
3017         /* Create tag for statistics block. */
3018         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3019             &sc->bge_cdata.bge_stats_tag,
3020             (uint8_t **)&sc->bge_ldata.bge_stats,
3021             &sc->bge_cdata.bge_stats_map,
3022             &sc->bge_ldata.bge_stats_paddr, "statistics block");
3023         if (error)
3024                 return (error);
3025
3026         /* Create tag for jumbo RX ring. */
3027         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3028                 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3029                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3030                     (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3031                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
3032                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3033                 if (error)
3034                         return (error);
3035         }
3036
3037         /* Create parent tag for buffers. */
3038         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3039                 /*
3040                  * XXX
3041                  * watchdog timeout issue was observed on BCM5704 which
3042                  * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3043                  * Both limiting DMA address space to 32bits and flushing
3044                  * mailbox write seem to address the issue.
3045                  */
3046                 if (sc->bge_pcixcap != 0)
3047                         lowaddr = BUS_SPACE_MAXADDR_32BIT;
3048         }
3049         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3050             BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3051             BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3052             &sc->bge_cdata.bge_buffer_tag);
3053         if (error != 0) {
3054                 device_printf(sc->bge_dev,
3055                     "could not allocate buffer dma tag\n");
3056                 return (ENOMEM);
3057         }
3058         /* Create tag for Tx mbufs. */
3059         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3060                 txsegsz = BGE_TSOSEG_SZ;
3061                 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3062         } else {
3063                 txsegsz = MCLBYTES;
3064                 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3065         }
3066         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3067             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3068             txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3069             &sc->bge_cdata.bge_tx_mtag);
3070
3071         if (error) {
3072                 device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3073                 return (ENOMEM);
3074         }
3075
3076         /* Create tag for Rx mbufs. */
3077         if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3078                 rxmaxsegsz = MJUM9BYTES;
3079         else
3080                 rxmaxsegsz = MCLBYTES;
3081         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3082             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3083             rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3084
3085         if (error) {
3086                 device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3087                 return (ENOMEM);
3088         }
3089
3090         /* Create DMA maps for RX buffers. */
3091         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3092             &sc->bge_cdata.bge_rx_std_sparemap);
3093         if (error) {
3094                 device_printf(sc->bge_dev,
3095                     "can't create spare DMA map for RX\n");
3096                 return (ENOMEM);
3097         }
3098         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3099                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3100                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
3101                 if (error) {
3102                         device_printf(sc->bge_dev,
3103                             "can't create DMA map for RX\n");
3104                         return (ENOMEM);
3105                 }
3106         }
3107
3108         /* Create DMA maps for TX buffers. */
3109         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3110                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3111                             &sc->bge_cdata.bge_tx_dmamap[i]);
3112                 if (error) {
3113                         device_printf(sc->bge_dev,
3114                             "can't create DMA map for TX\n");
3115                         return (ENOMEM);
3116                 }
3117         }
3118
3119         /* Create tags for jumbo RX buffers. */
3120         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3121                 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3122                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3123                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3124                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3125                 if (error) {
3126                         device_printf(sc->bge_dev,
3127                             "could not allocate jumbo dma tag\n");
3128                         return (ENOMEM);
3129                 }
3130                 /* Create DMA maps for jumbo RX buffers. */
3131                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3132                     0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3133                 if (error) {
3134                         device_printf(sc->bge_dev,
3135                             "can't create spare DMA map for jumbo RX\n");
3136                         return (ENOMEM);
3137                 }
3138                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3139                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3140                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3141                         if (error) {
3142                                 device_printf(sc->bge_dev,
3143                                     "can't create DMA map for jumbo RX\n");
3144                                 return (ENOMEM);
3145                         }
3146                 }
3147         }
3148
3149         return (0);
3150 }
3151
3152 /*
3153  * Return true if this device has more than one port.
3154  */
3155 static int
3156 bge_has_multiple_ports(struct bge_softc *sc)
3157 {
3158         device_t dev = sc->bge_dev;
3159         u_int b, d, f, fscan, s;
3160
3161         d = pci_get_domain(dev);
3162         b = pci_get_bus(dev);
3163         s = pci_get_slot(dev);
3164         f = pci_get_function(dev);
3165         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3166                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3167                         return (1);
3168         return (0);
3169 }
3170
3171 /*
3172  * Return true if MSI can be used with this device.
3173  */
3174 static int
3175 bge_can_use_msi(struct bge_softc *sc)
3176 {
3177         int can_use_msi = 0;
3178
3179         if (sc->bge_msi == 0)
3180                 return (0);
3181
3182         /* Disable MSI for polling(4). */
3183 #ifdef DEVICE_POLLING
3184         return (0);
3185 #endif
3186         switch (sc->bge_asicrev) {
3187         case BGE_ASICREV_BCM5714_A0:
3188         case BGE_ASICREV_BCM5714:
3189                 /*
3190                  * Apparently, MSI doesn't work when these chips are
3191                  * configured in single-port mode.
3192                  */
3193                 if (bge_has_multiple_ports(sc))
3194                         can_use_msi = 1;
3195                 break;
3196         case BGE_ASICREV_BCM5750:
3197                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3198                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3199                         can_use_msi = 1;
3200                 break;
3201         default:
3202                 if (BGE_IS_575X_PLUS(sc))
3203                         can_use_msi = 1;
3204         }
3205         return (can_use_msi);
3206 }
3207
3208 static int
3209 bge_mbox_reorder(struct bge_softc *sc)
3210 {
3211         /* Lists of PCI bridges that are known to reorder mailbox writes. */
3212         static const struct mbox_reorder {
3213                 const uint16_t vendor;
3214                 const uint16_t device;
3215                 const char *desc;
3216         } mbox_reorder_lists[] = {
3217                 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3218         };
3219         devclass_t pci, pcib;
3220         device_t bus, dev;
3221         int i;
3222
3223         pci = devclass_find("pci");
3224         pcib = devclass_find("pcib");
3225         dev = sc->bge_dev;
3226         bus = device_get_parent(dev);
3227         for (;;) {
3228                 dev = device_get_parent(bus);
3229                 bus = device_get_parent(dev);
3230                 if (device_get_devclass(dev) != pcib)
3231                         break;
3232                 for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3233                         if (pci_get_vendor(dev) ==
3234                             mbox_reorder_lists[i].vendor &&
3235                             pci_get_device(dev) ==
3236                             mbox_reorder_lists[i].device) {
3237                                 device_printf(sc->bge_dev,
3238                                     "enabling MBOX workaround for %s\n",
3239                                     mbox_reorder_lists[i].desc);
3240                                 return (1);
3241                         }
3242                 }
3243                 if (device_get_devclass(bus) != pci)
3244                         break;
3245         }
3246         return (0);
3247 }
3248
3249 static void
3250 bge_devinfo(struct bge_softc *sc)
3251 {
3252         uint32_t cfg, clk;
3253
3254         device_printf(sc->bge_dev,
3255             "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3256             sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3257         if (sc->bge_flags & BGE_FLAG_PCIE)
3258                 printf("PCI-E\n");
3259         else if (sc->bge_flags & BGE_FLAG_PCIX) {
3260                 printf("PCI-X ");
3261                 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3262                 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3263                         clk = 133;
3264                 else {
3265                         clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3266                         switch (clk) {
3267                         case 0:
3268                                 clk = 33;
3269                                 break;
3270                         case 2:
3271                                 clk = 50;
3272                                 break;
3273                         case 4:
3274                                 clk = 66;
3275                                 break;
3276                         case 6:
3277                                 clk = 100;
3278                                 break;
3279                         case 7:
3280                                 clk = 133;
3281                                 break;
3282                         }
3283                 }
3284                 printf("%u MHz\n", clk);
3285         } else {
3286                 if (sc->bge_pcixcap != 0)
3287                         printf("PCI on PCI-X ");
3288                 else
3289                         printf("PCI ");
3290                 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3291                 if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3292                         clk = 66;
3293                 else
3294                         clk = 33;
3295                 if (cfg & BGE_PCISTATE_32BIT_BUS)
3296                         printf("%u MHz; 32bit\n", clk);
3297                 else
3298                         printf("%u MHz; 64bit\n", clk);
3299         }
3300 }
3301
3302 static int
3303 bge_attach(device_t dev)
3304 {
3305         if_t ifp;
3306         struct bge_softc *sc;
3307         uint32_t hwcfg = 0, misccfg, pcistate;
3308         u_char eaddr[ETHER_ADDR_LEN];
3309         int capmask, error, reg, rid, trys;
3310
3311         sc = device_get_softc(dev);
3312         sc->bge_dev = dev;
3313
3314         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3315         TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3316         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3317
3318         pci_enable_busmaster(dev);
3319
3320         /*
3321          * Allocate control/status registers.
3322          */
3323         rid = PCIR_BAR(0);
3324         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3325             RF_ACTIVE);
3326
3327         if (sc->bge_res == NULL) {
3328                 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3329                 error = ENXIO;
3330                 goto fail;
3331         }
3332
3333         /* Save various chip information. */
3334         sc->bge_func_addr = pci_get_function(dev);
3335         sc->bge_chipid = bge_chipid(dev);
3336         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3337         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3338
3339         /* Set default PHY address. */
3340         sc->bge_phy_addr = 1;
3341          /*
3342           * PHY address mapping for various devices.
3343           *
3344           *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3345           * ---------+-------+-------+-------+-------+
3346           * BCM57XX  |   1   |   X   |   X   |   X   |
3347           * BCM5704  |   1   |   X   |   1   |   X   |
3348           * BCM5717  |   1   |   8   |   2   |   9   |
3349           * BCM5719  |   1   |   8   |   2   |   9   |
3350           * BCM5720  |   1   |   8   |   2   |   9   |
3351           *
3352           *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3353           * ---------+-------+-------+-------+-------+
3354           * BCM57XX  |   X   |   X   |   X   |   X   |
3355           * BCM5704  |   X   |   X   |   X   |   X   |
3356           * BCM5717  |   X   |   X   |   X   |   X   |
3357           * BCM5719  |   3   |   10  |   4   |   11  |
3358           * BCM5720  |   X   |   X   |   X   |   X   |
3359           *
3360           * Other addresses may respond but they are not
3361           * IEEE compliant PHYs and should be ignored.
3362           */
3363         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3364             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3365             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3366                 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3367                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3368                             BGE_SGDIGSTS_IS_SERDES)
3369                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3370                         else
3371                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3372                 } else {
3373                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3374                             BGE_CPMU_PHY_STRAP_IS_SERDES)
3375                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3376                         else
3377                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3378                 }
3379         }
3380
3381         if (bge_has_eaddr(sc))
3382                 sc->bge_flags |= BGE_FLAG_EADDR;
3383
3384         /* Save chipset family. */
3385         switch (sc->bge_asicrev) {
3386         case BGE_ASICREV_BCM5762:
3387         case BGE_ASICREV_BCM57765:
3388         case BGE_ASICREV_BCM57766:
3389                 sc->bge_flags |= BGE_FLAG_57765_PLUS;
3390                 /* FALLTHROUGH */
3391         case BGE_ASICREV_BCM5717:
3392         case BGE_ASICREV_BCM5719:
3393         case BGE_ASICREV_BCM5720:
3394                 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3395                     BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3396                     BGE_FLAG_JUMBO_FRAME;
3397                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3398                     sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3399                         /*
3400                          * Enable work around for DMA engine miscalculation
3401                          * of TXMBUF available space.
3402                          */
3403                         sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3404                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3405                             sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3406                                 /* Jumbo frame on BCM5719 A0 does not work. */
3407                                 sc->bge_flags &= ~BGE_FLAG_JUMBO;
3408                         }
3409                 }
3410                 break;
3411         case BGE_ASICREV_BCM5755:
3412         case BGE_ASICREV_BCM5761:
3413         case BGE_ASICREV_BCM5784:
3414         case BGE_ASICREV_BCM5785:
3415         case BGE_ASICREV_BCM5787:
3416         case BGE_ASICREV_BCM57780:
3417                 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3418                     BGE_FLAG_5705_PLUS;
3419                 break;
3420         case BGE_ASICREV_BCM5700:
3421         case BGE_ASICREV_BCM5701:
3422         case BGE_ASICREV_BCM5703:
3423         case BGE_ASICREV_BCM5704:
3424                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3425                 break;
3426         case BGE_ASICREV_BCM5714_A0:
3427         case BGE_ASICREV_BCM5780:
3428         case BGE_ASICREV_BCM5714:
3429                 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3430                 /* FALLTHROUGH */
3431         case BGE_ASICREV_BCM5750:
3432         case BGE_ASICREV_BCM5752:
3433         case BGE_ASICREV_BCM5906:
3434                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
3435                 /* FALLTHROUGH */
3436         case BGE_ASICREV_BCM5705:
3437                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
3438                 break;
3439         }
3440
3441         /* Identify chips with APE processor. */
3442         switch (sc->bge_asicrev) {
3443         case BGE_ASICREV_BCM5717:
3444         case BGE_ASICREV_BCM5719:
3445         case BGE_ASICREV_BCM5720:
3446         case BGE_ASICREV_BCM5761:
3447         case BGE_ASICREV_BCM5762:
3448                 sc->bge_flags |= BGE_FLAG_APE;
3449                 break;
3450         }
3451
3452         /* Chips with APE need BAR2 access for APE registers/memory. */
3453         if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3454                 rid = PCIR_BAR(2);
3455                 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3456                     RF_ACTIVE);
3457                 if (sc->bge_res2 == NULL) {
3458                         device_printf (sc->bge_dev,
3459                             "couldn't map BAR2 memory\n");
3460                         error = ENXIO;
3461                         goto fail;
3462                 }
3463
3464                 /* Enable APE register/memory access by host driver. */
3465                 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3466                 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3467                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3468                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3469                 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3470
3471                 bge_ape_lock_init(sc);
3472                 bge_ape_read_fw_ver(sc);
3473         }
3474
3475         /* Add SYSCTLs, requires the chipset family to be set. */
3476         bge_add_sysctls(sc);
3477
3478         /* Identify the chips that use an CPMU. */
3479         if (BGE_IS_5717_PLUS(sc) ||
3480             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3481             sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3482             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3483             sc->bge_asicrev == BGE_ASICREV_BCM57780)
3484                 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3485         if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3486                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3487         else
3488                 sc->bge_mi_mode = BGE_MIMODE_BASE;
3489         /* Enable auto polling for BCM570[0-5]. */
3490         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3491                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3492
3493         /*
3494          * All Broadcom controllers have 4GB boundary DMA bug.
3495          * Whenever an address crosses a multiple of the 4GB boundary
3496          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3497          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3498          * state machine will lockup and cause the device to hang.
3499          */
3500         sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3501
3502         /* BCM5755 or higher and BCM5906 have short DMA bug. */
3503         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3504                 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3505
3506         /*
3507          * BCM5719 cannot handle DMA requests for DMA segments that
3508          * have larger than 4KB in size.  However the maximum DMA
3509          * segment size created in DMA tag is 4KB for TSO, so we
3510          * wouldn't encounter the issue here.
3511          */
3512         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3513                 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3514
3515         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3516         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3517                 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3518                     misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3519                         sc->bge_flags |= BGE_FLAG_5788;
3520         }
3521
3522         capmask = BMSR_DEFCAPMASK;
3523         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3524             (misccfg == 0x4000 || misccfg == 0x8000)) ||
3525             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3526             pci_get_vendor(dev) == BCOM_VENDORID &&
3527             (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3528             pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3529             pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3530             (pci_get_vendor(dev) == BCOM_VENDORID &&
3531             (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3532             pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3533             pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3534             pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3535             pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3536             pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3537             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3538                 /* These chips are 10/100 only. */
3539                 capmask &= ~BMSR_EXTSTAT;
3540                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3541         }
3542
3543         /*
3544          * Some controllers seem to require a special firmware to use
3545          * TSO. But the firmware is not available to FreeBSD and Linux
3546          * claims that the TSO performed by the firmware is slower than
3547          * hardware based TSO. Moreover the firmware based TSO has one
3548          * known bug which can't handle TSO if Ethernet header + IP/TCP
3549          * header is greater than 80 bytes. A workaround for the TSO
3550          * bug exist but it seems it's too expensive than not using
3551          * TSO at all. Some hardwares also have the TSO bug so limit
3552          * the TSO to the controllers that are not affected TSO issues
3553          * (e.g. 5755 or higher).
3554          */
3555         if (BGE_IS_5717_PLUS(sc)) {
3556                 /* BCM5717 requires different TSO configuration. */
3557                 sc->bge_flags |= BGE_FLAG_TSO3;
3558                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3559                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3560                         /* TSO on BCM5719 A0 does not work. */
3561                         sc->bge_flags &= ~BGE_FLAG_TSO3;
3562                 }
3563         } else if (BGE_IS_5755_PLUS(sc)) {
3564                 /*
3565                  * BCM5754 and BCM5787 shares the same ASIC id so
3566                  * explicit device id check is required.
3567                  * Due to unknown reason TSO does not work on BCM5755M.
3568                  */
3569                 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3570                     pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3571                     pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3572                         sc->bge_flags |= BGE_FLAG_TSO;
3573         }
3574
3575         /*
3576          * Check if this is a PCI-X or PCI Express device.
3577          */
3578         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3579                 /*
3580                  * Found a PCI Express capabilities register, this
3581                  * must be a PCI Express device.
3582                  */
3583                 sc->bge_flags |= BGE_FLAG_PCIE;
3584                 sc->bge_expcap = reg;
3585                 /* Extract supported maximum payload size. */
3586                 sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3587                     PCIER_DEVICE_CAP, 2);
3588                 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3589                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3590                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
3591                         sc->bge_expmrq = 2048;
3592                 else
3593                         sc->bge_expmrq = 4096;
3594                 pci_set_max_read_req(dev, sc->bge_expmrq);
3595         } else {
3596                 /*
3597                  * Check if the device is in PCI-X Mode.
3598                  * (This bit is not valid on PCI Express controllers.)
3599                  */
3600                 if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3601                         sc->bge_pcixcap = reg;
3602                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3603                     BGE_PCISTATE_PCI_BUSMODE) == 0)
3604                         sc->bge_flags |= BGE_FLAG_PCIX;
3605         }
3606
3607         /*
3608          * The 40bit DMA bug applies to the 5714/5715 controllers and is
3609          * not actually a MAC controller bug but an issue with the embedded
3610          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3611          */
3612         if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3613                 sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3614         /*
3615          * Some PCI-X bridges are known to trigger write reordering to
3616          * the mailbox registers. Typical phenomena is watchdog timeouts
3617          * caused by out-of-order TX completions.  Enable workaround for
3618          * PCI-X devices that live behind these bridges.
3619          * Note, PCI-X controllers can run in PCI mode so we can't use
3620          * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3621          */
3622         if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3623                 sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3624         /*
3625          * Allocate the interrupt, using MSI if possible.  These devices
3626          * support 8 MSI messages, but only the first one is used in
3627          * normal operation.
3628          */
3629         rid = 0;
3630         if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3631                 sc->bge_msicap = reg;
3632                 reg = 1;
3633                 if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3634                         rid = 1;
3635                         sc->bge_flags |= BGE_FLAG_MSI;
3636                 }
3637         }
3638
3639         /*
3640          * All controllers except BCM5700 supports tagged status but
3641          * we use tagged status only for MSI case on BCM5717. Otherwise
3642          * MSI on BCM5717 does not work.
3643          */
3644 #ifndef DEVICE_POLLING
3645         if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3646                 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3647 #endif
3648
3649         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3650             RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3651
3652         if (sc->bge_irq == NULL) {
3653                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
3654                 error = ENXIO;
3655                 goto fail;
3656         }
3657
3658         bge_devinfo(sc);
3659
3660         sc->bge_asf_mode = 0;
3661         /* No ASF if APE present. */
3662         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3663                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3664                     BGE_SRAM_DATA_SIG_MAGIC)) {
3665                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3666                             BGE_HWCFG_ASF) {
3667                                 sc->bge_asf_mode |= ASF_ENABLE;
3668                                 sc->bge_asf_mode |= ASF_STACKUP;
3669                                 if (BGE_IS_575X_PLUS(sc))
3670                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3671                         }
3672                 }
3673         }
3674
3675         bge_stop_fw(sc);
3676         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3677         if (bge_reset(sc)) {
3678                 device_printf(sc->bge_dev, "chip reset failed\n");
3679                 error = ENXIO;
3680                 goto fail;
3681         }
3682
3683         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3684         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3685
3686         if (bge_chipinit(sc)) {
3687                 device_printf(sc->bge_dev, "chip initialization failed\n");
3688                 error = ENXIO;
3689                 goto fail;
3690         }
3691
3692         error = bge_get_eaddr(sc, eaddr);
3693         if (error) {
3694                 device_printf(sc->bge_dev,
3695                     "failed to read station address\n");
3696                 error = ENXIO;
3697                 goto fail;
3698         }
3699
3700         /* 5705 limits RX return ring to 512 entries. */
3701         if (BGE_IS_5717_PLUS(sc))
3702                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3703         else if (BGE_IS_5705_PLUS(sc))
3704                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3705         else
3706                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3707
3708         if (bge_dma_alloc(sc)) {
3709                 device_printf(sc->bge_dev,
3710                     "failed to allocate DMA resources\n");
3711                 error = ENXIO;
3712                 goto fail;
3713         }
3714
3715         /* Set default tuneable values. */
3716         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3717         sc->bge_rx_coal_ticks = 150;
3718         sc->bge_tx_coal_ticks = 150;
3719         sc->bge_rx_max_coal_bds = 10;
3720         sc->bge_tx_max_coal_bds = 10;
3721
3722         /* Initialize checksum features to use. */
3723         sc->bge_csum_features = BGE_CSUM_FEATURES;
3724         if (sc->bge_forced_udpcsum != 0)
3725                 sc->bge_csum_features |= CSUM_UDP;
3726
3727         /* Set up ifnet structure */
3728         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3729         if (ifp == NULL) {
3730                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
3731                 error = ENXIO;
3732                 goto fail;
3733         }
3734         if_setsoftc(ifp, sc);
3735         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3736         if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
3737         if_setioctlfn(ifp, bge_ioctl);
3738         if_setstartfn(ifp, bge_start);
3739         if_setinitfn(ifp, bge_init);
3740         if_setgetcounterfn(ifp, bge_get_counter);
3741         if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
3742         if_setsendqready(ifp);
3743         if_sethwassist(ifp, sc->bge_csum_features);
3744         if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3745             IFCAP_VLAN_MTU);
3746         if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3747                 if_sethwassistbits(ifp, CSUM_TSO, 0);
3748                 if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
3749         }
3750 #ifdef IFCAP_VLAN_HWCSUM
3751         if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
3752 #endif
3753         if_setcapenable(ifp, if_getcapabilities(ifp));
3754 #ifdef DEVICE_POLLING
3755         if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
3756 #endif
3757
3758         /*
3759          * 5700 B0 chips do not support checksumming correctly due
3760          * to hardware bugs.
3761          */
3762         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3763                 if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
3764                 if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
3765                 if_sethwassist(ifp, 0);
3766         }
3767
3768         /*
3769          * Figure out what sort of media we have by checking the
3770          * hardware config word in the first 32k of NIC internal memory,
3771          * or fall back to examining the EEPROM if necessary.
3772          * Note: on some BCM5700 cards, this value appears to be unset.
3773          * If that's the case, we have to rely on identifying the NIC
3774          * by its PCI subsystem ID, as we do below for the SysKonnect
3775          * SK-9D41.
3776          */
3777         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3778                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3779         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3780             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3781                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3782                     sizeof(hwcfg))) {
3783                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
3784                         error = ENXIO;
3785                         goto fail;
3786                 }
3787                 hwcfg = ntohl(hwcfg);
3788         }
3789
3790         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3791         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3792             SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3793                 if (BGE_IS_5705_PLUS(sc)) {
3794                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
3795                         sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3796                 } else
3797                         sc->bge_flags |= BGE_FLAG_TBI;
3798         }
3799
3800         /* Set various PHY bug flags. */
3801         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3802             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3803                 sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3804         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3805             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3806                 sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3807         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3808                 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3809         if (pci_get_subvendor(dev) == DELL_VENDORID)
3810                 sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3811         if ((BGE_IS_5705_PLUS(sc)) &&
3812             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3813             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3814             sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3815             !BGE_IS_5717_PLUS(sc)) {
3816                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3817                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3818                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3819                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3820                         if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3821                             pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3822                                 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3823                         if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3824                                 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3825                 } else
3826                         sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3827         }
3828
3829         /*
3830          * Don't enable Ethernet@WireSpeed for the 5700 or the
3831          * 5705 A0 and A1 chips.
3832          */
3833         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3834             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3835             (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3836             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3837                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3838
3839         if (sc->bge_flags & BGE_FLAG_TBI) {
3840                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3841                     bge_ifmedia_sts);
3842                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3843                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3844                     0, NULL);
3845                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3846                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3847                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3848         } else {
3849                 /*
3850                  * Do transceiver setup and tell the firmware the
3851                  * driver is down so we can try to get access the
3852                  * probe if ASF is running.  Retry a couple of times
3853                  * if we get a conflict with the ASF firmware accessing
3854                  * the PHY.
3855                  */
3856                 trys = 0;
3857                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3858 again:
3859                 bge_asf_driver_up(sc);
3860
3861                 error = mii_attach(dev, &sc->bge_miibus, ifp, 
3862                     (ifm_change_cb_t)bge_ifmedia_upd,
3863                     (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr, 
3864                     MII_OFFSET_ANY, MIIF_DOPAUSE);
3865                 if (error != 0) {
3866                         if (trys++ < 4) {
3867                                 device_printf(sc->bge_dev, "Try again\n");
3868                                 bge_miibus_writereg(sc->bge_dev,
3869                                     sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3870                                 goto again;
3871                         }
3872                         device_printf(sc->bge_dev, "attaching PHYs failed\n");
3873                         goto fail;
3874                 }
3875
3876                 /*
3877                  * Now tell the firmware we are going up after probing the PHY
3878                  */
3879                 if (sc->bge_asf_mode & ASF_STACKUP)
3880                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3881         }
3882
3883         /*
3884          * When using the BCM5701 in PCI-X mode, data corruption has
3885          * been observed in the first few bytes of some received packets.
3886          * Aligning the packet buffer in memory eliminates the corruption.
3887          * Unfortunately, this misaligns the packet payloads.  On platforms
3888          * which do not support unaligned accesses, we will realign the
3889          * payloads by copying the received packets.
3890          */
3891         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3892             sc->bge_flags & BGE_FLAG_PCIX)
3893                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3894
3895         /*
3896          * Call MI attach routine.
3897          */
3898         ether_ifattach(ifp, eaddr);
3899
3900         /* Tell upper layer we support long frames. */
3901         if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
3902
3903         /*
3904          * Hookup IRQ last.
3905          */
3906         if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3907                 /* Take advantage of single-shot MSI. */
3908                 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3909                     ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3910                 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3911                     taskqueue_thread_enqueue, &sc->bge_tq);
3912                 if (sc->bge_tq == NULL) {
3913                         device_printf(dev, "could not create taskqueue.\n");
3914                         ether_ifdetach(ifp);
3915                         error = ENOMEM;
3916                         goto fail;
3917                 }
3918                 error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3919                     "%s taskq", device_get_nameunit(sc->bge_dev));
3920                 if (error != 0) {
3921                         device_printf(dev, "could not start threads.\n");
3922                         ether_ifdetach(ifp);
3923                         goto fail;
3924                 }
3925                 error = bus_setup_intr(dev, sc->bge_irq,
3926                     INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3927                     &sc->bge_intrhand);
3928         } else
3929                 error = bus_setup_intr(dev, sc->bge_irq,
3930                     INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3931                     &sc->bge_intrhand);
3932
3933         if (error) {
3934                 ether_ifdetach(ifp);
3935                 device_printf(sc->bge_dev, "couldn't set up irq\n");
3936         }
3937
3938 fail:
3939         if (error)
3940                 bge_detach(dev);
3941         return (error);
3942 }
3943
3944 static int
3945 bge_detach(device_t dev)
3946 {
3947         struct bge_softc *sc;
3948         if_t ifp;
3949
3950         sc = device_get_softc(dev);
3951         ifp = sc->bge_ifp;
3952
3953 #ifdef DEVICE_POLLING
3954         if (if_getcapenable(ifp) & IFCAP_POLLING)
3955                 ether_poll_deregister(ifp);
3956 #endif
3957
3958         if (device_is_attached(dev)) {
3959                 ether_ifdetach(ifp);
3960                 BGE_LOCK(sc);
3961                 bge_stop(sc);
3962                 BGE_UNLOCK(sc);
3963                 callout_drain(&sc->bge_stat_ch);
3964         }
3965
3966         if (sc->bge_tq)
3967                 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3968
3969         if (sc->bge_flags & BGE_FLAG_TBI)
3970                 ifmedia_removeall(&sc->bge_ifmedia);
3971         else if (sc->bge_miibus != NULL) {
3972                 bus_generic_detach(dev);
3973                 device_delete_child(dev, sc->bge_miibus);
3974         }
3975
3976         bge_release_resources(sc);
3977
3978         return (0);
3979 }
3980
3981 static void
3982 bge_release_resources(struct bge_softc *sc)
3983 {
3984         device_t dev;
3985
3986         dev = sc->bge_dev;
3987
3988         if (sc->bge_tq != NULL)
3989                 taskqueue_free(sc->bge_tq);
3990
3991         if (sc->bge_intrhand != NULL)
3992                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3993
3994         if (sc->bge_irq != NULL) {
3995                 bus_release_resource(dev, SYS_RES_IRQ,
3996                     rman_get_rid(sc->bge_irq), sc->bge_irq);
3997                 pci_release_msi(dev);
3998         }
3999
4000         if (sc->bge_res != NULL)
4001                 bus_release_resource(dev, SYS_RES_MEMORY,
4002                     rman_get_rid(sc->bge_res), sc->bge_res);
4003
4004         if (sc->bge_res2 != NULL)
4005                 bus_release_resource(dev, SYS_RES_MEMORY,
4006                     rman_get_rid(sc->bge_res2), sc->bge_res2);
4007
4008         if (sc->bge_ifp != NULL)
4009                 if_free(sc->bge_ifp);
4010
4011         bge_dma_free(sc);
4012
4013         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
4014                 BGE_LOCK_DESTROY(sc);
4015 }
4016
4017 static int
4018 bge_reset(struct bge_softc *sc)
4019 {
4020         device_t dev;
4021         uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4022         void (*write_op)(struct bge_softc *, int, int);
4023         uint16_t devctl;
4024         int i;
4025
4026         dev = sc->bge_dev;
4027
4028         mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4029         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4030                 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4031         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4032
4033         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4034             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4035                 if (sc->bge_flags & BGE_FLAG_PCIE)
4036                         write_op = bge_writemem_direct;
4037                 else
4038                         write_op = bge_writemem_ind;
4039         } else
4040                 write_op = bge_writereg_ind;
4041
4042         if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4043             sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4044                 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4045                 for (i = 0; i < 8000; i++) {
4046                         if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4047                             BGE_NVRAMSWARB_GNT1)
4048                                 break;
4049                         DELAY(20);
4050                 }
4051                 if (i == 8000) {
4052                         if (bootverbose)
4053                                 device_printf(dev, "NVRAM lock timedout!\n");
4054                 }
4055         }
4056         /* Take APE lock when performing reset. */
4057         bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4058
4059         /* Save some important PCI state. */
4060         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4061         command = pci_read_config(dev, BGE_PCI_CMD, 4);
4062
4063         pci_write_config(dev, BGE_PCI_MISC_CTL,
4064             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4065             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4066
4067         /* Disable fastboot on controllers that support it. */
4068         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4069             BGE_IS_5755_PLUS(sc)) {
4070                 if (bootverbose)
4071                         device_printf(dev, "Disabling fastboot\n");
4072                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4073         }
4074
4075         /*
4076          * Write the magic number to SRAM at offset 0xB50.
4077          * When firmware finishes its initialization it will
4078          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4079          */
4080         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4081
4082         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4083
4084         /* XXX: Broadcom Linux driver. */
4085         if (sc->bge_flags & BGE_FLAG_PCIE) {
4086                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4087                     (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4088                         if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
4089                                 CSR_WRITE_4(sc, 0x7E2C, 0x20);
4090                 }
4091                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4092                         /* Prevent PCIE link training during global reset */
4093                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4094                         reset |= 1 << 29;
4095                 }
4096         }
4097
4098         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4099                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4100                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4101                     val | BGE_VCPU_STATUS_DRV_RESET);
4102                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4103                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4104                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4105         }
4106
4107         /*
4108          * Set GPHY Power Down Override to leave GPHY
4109          * powered up in D0 uninitialized.
4110          */
4111         if (BGE_IS_5705_PLUS(sc) &&
4112             (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4113                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4114
4115         /* Issue global reset */
4116         write_op(sc, BGE_MISC_CFG, reset);
4117
4118         if (sc->bge_flags & BGE_FLAG_PCIE)
4119                 DELAY(100 * 1000);
4120         else
4121                 DELAY(1000);
4122
4123         /* XXX: Broadcom Linux driver. */
4124         if (sc->bge_flags & BGE_FLAG_PCIE) {
4125                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4126                         DELAY(500000); /* wait for link training to complete */
4127                         val = pci_read_config(dev, 0xC4, 4);
4128                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4129                 }
4130                 devctl = pci_read_config(dev,
4131                     sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4132                 /* Clear enable no snoop and disable relaxed ordering. */
4133                 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4134                     PCIEM_CTL_NOSNOOP_ENABLE);
4135                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4136                     devctl, 2);
4137                 pci_set_max_read_req(dev, sc->bge_expmrq);
4138                 /* Clear error status. */
4139                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4140                     PCIEM_STA_CORRECTABLE_ERROR |
4141                     PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4142                     PCIEM_STA_UNSUPPORTED_REQ, 2);
4143         }
4144
4145         /* Reset some of the PCI state that got zapped by reset. */
4146         pci_write_config(dev, BGE_PCI_MISC_CTL,
4147             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4148             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4149         val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4150         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4151             (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4152                 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4153         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4154                 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4155                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4156                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4157         pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4158         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4159         pci_write_config(dev, BGE_PCI_CMD, command, 4);
4160         /*
4161          * Disable PCI-X relaxed ordering to ensure status block update
4162          * comes first then packet buffer DMA. Otherwise driver may
4163          * read stale status block.
4164          */
4165         if (sc->bge_flags & BGE_FLAG_PCIX) {
4166                 devctl = pci_read_config(dev,
4167                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
4168                 devctl &= ~PCIXM_COMMAND_ERO;
4169                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4170                         devctl &= ~PCIXM_COMMAND_MAX_READ;
4171                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4172                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4173                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4174                             PCIXM_COMMAND_MAX_READ);
4175                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4176                 }
4177                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4178                     devctl, 2);
4179         }
4180         /* Re-enable MSI, if necessary, and enable the memory arbiter. */
4181         if (BGE_IS_5714_FAMILY(sc)) {
4182                 /* This chip disables MSI on reset. */
4183                 if (sc->bge_flags & BGE_FLAG_MSI) {
4184                         val = pci_read_config(dev,
4185                             sc->bge_msicap + PCIR_MSI_CTRL, 2);
4186                         pci_write_config(dev,
4187                             sc->bge_msicap + PCIR_MSI_CTRL,
4188                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
4189                         val = CSR_READ_4(sc, BGE_MSI_MODE);
4190                         CSR_WRITE_4(sc, BGE_MSI_MODE,
4191                             val | BGE_MSIMODE_ENABLE);
4192                 }
4193                 val = CSR_READ_4(sc, BGE_MARB_MODE);
4194                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4195         } else
4196                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4197
4198         /* Fix up byte swapping. */
4199         CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4200
4201         val = CSR_READ_4(sc, BGE_MAC_MODE);
4202         val = (val & ~mac_mode_mask) | mac_mode;
4203         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4204         DELAY(40);
4205
4206         bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4207
4208         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4209                 for (i = 0; i < BGE_TIMEOUT; i++) {
4210                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4211                         if (val & BGE_VCPU_STATUS_INIT_DONE)
4212                                 break;
4213                         DELAY(100);
4214                 }
4215                 if (i == BGE_TIMEOUT) {
4216                         device_printf(dev, "reset timed out\n");
4217                         return (1);
4218                 }
4219         } else {
4220                 /*
4221                  * Poll until we see the 1's complement of the magic number.
4222                  * This indicates that the firmware initialization is complete.
4223                  * We expect this to fail if no chip containing the Ethernet
4224                  * address is fitted though.
4225                  */
4226                 for (i = 0; i < BGE_TIMEOUT; i++) {
4227                         DELAY(10);
4228                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4229                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
4230                                 break;
4231                 }
4232
4233                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4234                         device_printf(dev,
4235                             "firmware handshake timed out, found 0x%08x\n",
4236                             val);
4237                 /* BCM57765 A0 needs additional time before accessing. */
4238                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4239                         DELAY(10 * 1000);       /* XXX */
4240         }
4241
4242         /*
4243          * The 5704 in TBI mode apparently needs some special
4244          * adjustment to insure the SERDES drive level is set
4245          * to 1.2V.
4246          */
4247         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4248             sc->bge_flags & BGE_FLAG_TBI) {
4249                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
4250                 val = (val & ~0xFFF) | 0x880;
4251                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4252         }
4253
4254         /* XXX: Broadcom Linux driver. */
4255         if (sc->bge_flags & BGE_FLAG_PCIE &&
4256             !BGE_IS_5717_PLUS(sc) &&
4257             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4258             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4259                 /* Enable Data FIFO protection. */
4260                 val = CSR_READ_4(sc, 0x7C00);
4261                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4262         }
4263
4264         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4265                 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4266                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4267
4268         return (0);
4269 }
4270
4271 static __inline void
4272 bge_rxreuse_std(struct bge_softc *sc, int i)
4273 {
4274         struct bge_rx_bd *r;
4275
4276         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4277         r->bge_flags = BGE_RXBDFLAG_END;
4278         r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4279         r->bge_idx = i;
4280         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4281 }
4282
4283 static __inline void
4284 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4285 {
4286         struct bge_extrx_bd *r;
4287
4288         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4289         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4290         r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4291         r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4292         r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4293         r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4294         r->bge_idx = i;
4295         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4296 }
4297
4298 /*
4299  * Frame reception handling. This is called if there's a frame
4300  * on the receive return list.
4301  *
4302  * Note: we have to be able to handle two possibilities here:
4303  * 1) the frame is from the jumbo receive ring
4304  * 2) the frame is from the standard receive ring
4305  */
4306
4307 static int
4308 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4309 {
4310         if_t ifp;
4311         int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4312         uint16_t rx_cons;
4313
4314         rx_cons = sc->bge_rx_saved_considx;
4315
4316         /* Nothing to do. */
4317         if (rx_cons == rx_prod)
4318                 return (rx_npkts);
4319
4320         ifp = sc->bge_ifp;
4321
4322         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4323             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4324         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4325             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4326         if (BGE_IS_JUMBO_CAPABLE(sc) &&
4327             if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 
4328             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
4329                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4330                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4331
4332         while (rx_cons != rx_prod) {
4333                 struct bge_rx_bd        *cur_rx;
4334                 uint32_t                rxidx;
4335                 struct mbuf             *m = NULL;
4336                 uint16_t                vlan_tag = 0;
4337                 int                     have_tag = 0;
4338
4339 #ifdef DEVICE_POLLING
4340                 if (if_getcapenable(ifp) & IFCAP_POLLING) {
4341                         if (sc->rxcycles <= 0)
4342                                 break;
4343                         sc->rxcycles--;
4344                 }
4345 #endif
4346
4347                 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4348
4349                 rxidx = cur_rx->bge_idx;
4350                 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4351
4352                 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4353                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4354                         have_tag = 1;
4355                         vlan_tag = cur_rx->bge_vlan_tag;
4356                 }
4357
4358                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4359                         jumbocnt++;
4360                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4361                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4362                                 bge_rxreuse_jumbo(sc, rxidx);
4363                                 continue;
4364                         }
4365                         if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4366                                 bge_rxreuse_jumbo(sc, rxidx);
4367                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4368                                 continue;
4369                         }
4370                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4371                 } else {
4372                         stdcnt++;
4373                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4374                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4375                                 bge_rxreuse_std(sc, rxidx);
4376                                 continue;
4377                         }
4378                         if (bge_newbuf_std(sc, rxidx) != 0) {
4379                                 bge_rxreuse_std(sc, rxidx);
4380                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4381                                 continue;
4382                         }
4383                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4384                 }
4385
4386                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
4387 #ifndef __NO_STRICT_ALIGNMENT
4388                 /*
4389                  * For architectures with strict alignment we must make sure
4390                  * the payload is aligned.
4391                  */
4392                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4393                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4394                             cur_rx->bge_len);
4395                         m->m_data += ETHER_ALIGN;
4396                 }
4397 #endif
4398                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4399                 m->m_pkthdr.rcvif = ifp;
4400
4401                 if (if_getcapenable(ifp) & IFCAP_RXCSUM)
4402                         bge_rxcsum(sc, cur_rx, m);
4403
4404                 /*
4405                  * If we received a packet with a vlan tag,
4406                  * attach that information to the packet.
4407                  */
4408                 if (have_tag) {
4409                         m->m_pkthdr.ether_vtag = vlan_tag;
4410                         m->m_flags |= M_VLANTAG;
4411                 }
4412
4413                 if (holdlck != 0) {
4414                         BGE_UNLOCK(sc);
4415                         if_input(ifp, m);
4416                         BGE_LOCK(sc);
4417                 } else
4418                         if_input(ifp, m);
4419                 rx_npkts++;
4420
4421                 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4422                         return (rx_npkts);
4423         }
4424
4425         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4426             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4427         if (stdcnt > 0)
4428                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4429                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4430
4431         if (jumbocnt > 0)
4432                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4433                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4434
4435         sc->bge_rx_saved_considx = rx_cons;
4436         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4437         if (stdcnt)
4438                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4439                     BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4440         if (jumbocnt)
4441                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4442                     BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4443 #ifdef notyet
4444         /*
4445          * This register wraps very quickly under heavy packet drops.
4446          * If you need correct statistics, you can enable this check.
4447          */
4448         if (BGE_IS_5705_PLUS(sc))
4449                 if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4450 #endif
4451         return (rx_npkts);
4452 }
4453
4454 static void
4455 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4456 {
4457
4458         if (BGE_IS_5717_PLUS(sc)) {
4459                 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4460                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4461                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4462                                 if ((cur_rx->bge_error_flag &
4463                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4464                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4465                         }
4466                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4467                                 m->m_pkthdr.csum_data =
4468                                     cur_rx->bge_tcp_udp_csum;
4469                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4470                                     CSUM_PSEUDO_HDR;
4471                         }
4472                 }
4473         } else {
4474                 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4475                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4476                         if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4477                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4478                 }
4479                 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4480                     m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4481                         m->m_pkthdr.csum_data =
4482                             cur_rx->bge_tcp_udp_csum;
4483                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4484                             CSUM_PSEUDO_HDR;
4485                 }
4486         }
4487 }
4488
4489 static void
4490 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4491 {
4492         struct bge_tx_bd *cur_tx;
4493         if_t ifp;
4494
4495         BGE_LOCK_ASSERT(sc);
4496
4497         /* Nothing to do. */
4498         if (sc->bge_tx_saved_considx == tx_cons)
4499                 return;
4500
4501         ifp = sc->bge_ifp;
4502
4503         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4504             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4505         /*
4506          * Go through our tx ring and free mbufs for those
4507          * frames that have been sent.
4508          */
4509         while (sc->bge_tx_saved_considx != tx_cons) {
4510                 uint32_t                idx;
4511
4512                 idx = sc->bge_tx_saved_considx;
4513                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4514                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4515                         if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4516                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4517                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4518                             sc->bge_cdata.bge_tx_dmamap[idx],
4519                             BUS_DMASYNC_POSTWRITE);
4520                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4521                             sc->bge_cdata.bge_tx_dmamap[idx]);
4522                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4523                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
4524                 }
4525                 sc->bge_txcnt--;
4526                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4527         }
4528
4529         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4530         if (sc->bge_txcnt == 0)
4531                 sc->bge_timer = 0;
4532 }
4533
4534 #ifdef DEVICE_POLLING
4535 static int
4536 bge_poll(if_t ifp, enum poll_cmd cmd, int count)
4537 {
4538         struct bge_softc *sc = if_getsoftc(ifp);
4539         uint16_t rx_prod, tx_cons;
4540         uint32_t statusword;
4541         int rx_npkts = 0;
4542
4543         BGE_LOCK(sc);
4544         if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4545                 BGE_UNLOCK(sc);
4546                 return (rx_npkts);
4547         }
4548
4549         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4550             sc->bge_cdata.bge_status_map,
4551             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4552         /* Fetch updates from the status block. */
4553         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4554         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4555
4556         statusword = sc->bge_ldata.bge_status_block->bge_status;
4557         /* Clear the status so the next pass only sees the changes. */
4558         sc->bge_ldata.bge_status_block->bge_status = 0;
4559
4560         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4561             sc->bge_cdata.bge_status_map,
4562             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4563
4564         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4565         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4566                 sc->bge_link_evt++;
4567
4568         if (cmd == POLL_AND_CHECK_STATUS)
4569                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4570                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4571                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4572                         bge_link_upd(sc);
4573
4574         sc->rxcycles = count;
4575         rx_npkts = bge_rxeof(sc, rx_prod, 1);
4576         if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4577                 BGE_UNLOCK(sc);
4578                 return (rx_npkts);
4579         }
4580         bge_txeof(sc, tx_cons);
4581         if (!if_sendq_empty(ifp))
4582                 bge_start_locked(ifp);
4583
4584         BGE_UNLOCK(sc);
4585         return (rx_npkts);
4586 }
4587 #endif /* DEVICE_POLLING */
4588
4589 static int
4590 bge_msi_intr(void *arg)
4591 {
4592         struct bge_softc *sc;
4593
4594         sc = (struct bge_softc *)arg;
4595         /*
4596          * This interrupt is not shared and controller already
4597          * disabled further interrupt.
4598          */
4599         taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4600         return (FILTER_HANDLED);
4601 }
4602
4603 static void
4604 bge_intr_task(void *arg, int pending)
4605 {
4606         struct bge_softc *sc;
4607         if_t ifp;
4608         uint32_t status, status_tag;
4609         uint16_t rx_prod, tx_cons;
4610
4611         sc = (struct bge_softc *)arg;
4612         ifp = sc->bge_ifp;
4613
4614         BGE_LOCK(sc);
4615         if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4616                 BGE_UNLOCK(sc);
4617                 return;
4618         }
4619
4620         /* Get updated status block. */
4621         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4622             sc->bge_cdata.bge_status_map,
4623             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4624
4625         /* Save producer/consumer indices. */
4626         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4627         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4628         status = sc->bge_ldata.bge_status_block->bge_status;
4629         status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4630         /* Dirty the status flag. */
4631         sc->bge_ldata.bge_status_block->bge_status = 0;
4632         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4633             sc->bge_cdata.bge_status_map,
4634             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4635         if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4636                 status_tag = 0;
4637
4638         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4639                 bge_link_upd(sc);
4640
4641         /* Let controller work. */
4642         bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4643
4644         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4645             sc->bge_rx_saved_considx != rx_prod) {
4646                 /* Check RX return ring producer/consumer. */
4647                 BGE_UNLOCK(sc);
4648                 bge_rxeof(sc, rx_prod, 0);
4649                 BGE_LOCK(sc);
4650         }
4651         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4652                 /* Check TX ring producer/consumer. */
4653                 bge_txeof(sc, tx_cons);
4654                 if (!if_sendq_empty(ifp))
4655                         bge_start_locked(ifp);
4656         }
4657         BGE_UNLOCK(sc);
4658 }
4659
4660 static void
4661 bge_intr(void *xsc)
4662 {
4663         struct bge_softc *sc;
4664         if_t ifp;
4665         uint32_t statusword;
4666         uint16_t rx_prod, tx_cons;
4667
4668         sc = xsc;
4669
4670         BGE_LOCK(sc);
4671
4672         ifp = sc->bge_ifp;
4673
4674 #ifdef DEVICE_POLLING
4675         if (if_getcapenable(ifp) & IFCAP_POLLING) {
4676                 BGE_UNLOCK(sc);
4677                 return;
4678         }
4679 #endif
4680
4681         /*
4682          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4683          * disable interrupts by writing nonzero like we used to, since with
4684          * our current organization this just gives complications and
4685          * pessimizations for re-enabling interrupts.  We used to have races
4686          * instead of the necessary complications.  Disabling interrupts
4687          * would just reduce the chance of a status update while we are
4688          * running (by switching to the interrupt-mode coalescence
4689          * parameters), but this chance is already very low so it is more
4690          * efficient to get another interrupt than prevent it.
4691          *
4692          * We do the ack first to ensure another interrupt if there is a
4693          * status update after the ack.  We don't check for the status
4694          * changing later because it is more efficient to get another
4695          * interrupt than prevent it, not quite as above (not checking is
4696          * a smaller optimization than not toggling the interrupt enable,
4697          * since checking doesn't involve PCI accesses and toggling require
4698          * the status check).  So toggling would probably be a pessimization
4699          * even with MSI.  It would only be needed for using a task queue.
4700          */
4701         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4702
4703         /*
4704          * Do the mandatory PCI flush as well as get the link status.
4705          */
4706         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4707
4708         /* Make sure the descriptor ring indexes are coherent. */
4709         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4710             sc->bge_cdata.bge_status_map,
4711             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4712         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4713         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4714         sc->bge_ldata.bge_status_block->bge_status = 0;
4715         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4716             sc->bge_cdata.bge_status_map,
4717             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4718
4719         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4720             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4721             statusword || sc->bge_link_evt)
4722                 bge_link_upd(sc);
4723
4724         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4725                 /* Check RX return ring producer/consumer. */
4726                 bge_rxeof(sc, rx_prod, 1);
4727         }
4728
4729         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4730                 /* Check TX ring producer/consumer. */
4731                 bge_txeof(sc, tx_cons);
4732         }
4733
4734         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4735             !if_sendq_empty(ifp))
4736                 bge_start_locked(ifp);
4737
4738         BGE_UNLOCK(sc);
4739 }
4740
4741 static void
4742 bge_asf_driver_up(struct bge_softc *sc)
4743 {
4744         if (sc->bge_asf_mode & ASF_STACKUP) {
4745                 /* Send ASF heartbeat aprox. every 2s */
4746                 if (sc->bge_asf_count)
4747                         sc->bge_asf_count --;
4748                 else {
4749                         sc->bge_asf_count = 2;
4750                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4751                             BGE_FW_CMD_DRV_ALIVE);
4752                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4753                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4754                             BGE_FW_HB_TIMEOUT_SEC);
4755                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4756                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4757                             BGE_RX_CPU_DRV_EVENT);
4758                 }
4759         }
4760 }
4761
4762 static void
4763 bge_tick(void *xsc)
4764 {
4765         struct bge_softc *sc = xsc;
4766         struct mii_data *mii = NULL;
4767
4768         BGE_LOCK_ASSERT(sc);
4769
4770         /* Synchronize with possible callout reset/stop. */
4771         if (callout_pending(&sc->bge_stat_ch) ||
4772             !callout_active(&sc->bge_stat_ch))
4773                 return;
4774
4775         if (BGE_IS_5705_PLUS(sc))
4776                 bge_stats_update_regs(sc);
4777         else
4778                 bge_stats_update(sc);
4779
4780         /* XXX Add APE heartbeat check here? */
4781
4782         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4783                 mii = device_get_softc(sc->bge_miibus);
4784                 /*
4785                  * Do not touch PHY if we have link up. This could break
4786                  * IPMI/ASF mode or produce extra input errors
4787                  * (extra errors was reported for bcm5701 & bcm5704).
4788                  */
4789                 if (!sc->bge_link)
4790                         mii_tick(mii);
4791         } else {
4792                 /*
4793                  * Since in TBI mode auto-polling can't be used we should poll
4794                  * link status manually. Here we register pending link event
4795                  * and trigger interrupt.
4796                  */
4797 #ifdef DEVICE_POLLING
4798                 /* In polling mode we poll link state in bge_poll(). */
4799                 if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
4800 #endif
4801                 {
4802                 sc->bge_link_evt++;
4803                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4804                     sc->bge_flags & BGE_FLAG_5788)
4805                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4806                 else
4807                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4808                 }
4809         }
4810
4811         bge_asf_driver_up(sc);
4812         bge_watchdog(sc);
4813
4814         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4815 }
4816
4817 static void
4818 bge_stats_update_regs(struct bge_softc *sc)
4819 {
4820         if_t ifp;
4821         struct bge_mac_stats *stats;
4822         uint32_t val;
4823
4824         ifp = sc->bge_ifp;
4825         stats = &sc->bge_mac_stats;
4826
4827         stats->ifHCOutOctets +=
4828             CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4829         stats->etherStatsCollisions +=
4830             CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4831         stats->outXonSent +=
4832             CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4833         stats->outXoffSent +=
4834             CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4835         stats->dot3StatsInternalMacTransmitErrors +=
4836             CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4837         stats->dot3StatsSingleCollisionFrames +=
4838             CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4839         stats->dot3StatsMultipleCollisionFrames +=
4840             CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4841         stats->dot3StatsDeferredTransmissions +=
4842             CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4843         stats->dot3StatsExcessiveCollisions +=
4844             CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4845         stats->dot3StatsLateCollisions +=
4846             CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4847         stats->ifHCOutUcastPkts +=
4848             CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4849         stats->ifHCOutMulticastPkts +=
4850             CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4851         stats->ifHCOutBroadcastPkts +=
4852             CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4853
4854         stats->ifHCInOctets +=
4855             CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4856         stats->etherStatsFragments +=
4857             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4858         stats->ifHCInUcastPkts +=
4859             CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4860         stats->ifHCInMulticastPkts +=
4861             CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4862         stats->ifHCInBroadcastPkts +=
4863             CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4864         stats->dot3StatsFCSErrors +=
4865             CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4866         stats->dot3StatsAlignmentErrors +=
4867             CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4868         stats->xonPauseFramesReceived +=
4869             CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4870         stats->xoffPauseFramesReceived +=
4871             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4872         stats->macControlFramesReceived +=
4873             CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4874         stats->xoffStateEntered +=
4875             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4876         stats->dot3StatsFramesTooLong +=
4877             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4878         stats->etherStatsJabbers +=
4879             CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4880         stats->etherStatsUndersizePkts +=
4881             CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4882
4883         stats->FramesDroppedDueToFilters +=
4884             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4885         stats->DmaWriteQueueFull +=
4886             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4887         stats->DmaWriteHighPriQueueFull +=
4888             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4889         stats->NoMoreRxBDs +=
4890             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4891         /*
4892          * XXX
4893          * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4894          * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4895          * includes number of unwanted multicast frames.  This comes
4896          * from silicon bug and known workaround to get rough(not
4897          * exact) counter is to enable interrupt on MBUF low water
4898          * attention.  This can be accomplished by setting
4899          * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4900          * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4901          * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4902          * However that change would generate more interrupts and
4903          * there are still possibilities of losing multiple frames
4904          * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4905          * Given that the workaround still would not get correct
4906          * counter I don't think it's worth to implement it.  So
4907          * ignore reading the counter on controllers that have the
4908          * silicon bug.
4909          */
4910         if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4911             sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4912             sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4913                 stats->InputDiscards +=
4914                     CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4915         stats->InputErrors +=
4916             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4917         stats->RecvThresholdHit +=
4918             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4919
4920         if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4921                 /*
4922                  * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4923                  * frames, it's safe to disable workaround for DMA engine's
4924                  * miscalculation of TXMBUF space.
4925                  */
4926                 if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4927                     stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4928                         val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4929                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4930                                 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4931                         else
4932                                 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4933                         CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4934                         sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4935                 }
4936         }
4937 }
4938
4939 static void
4940 bge_stats_clear_regs(struct bge_softc *sc)
4941 {
4942
4943         CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4944         CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4945         CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4946         CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4947         CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4948         CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4949         CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4950         CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4951         CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4952         CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4953         CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4954         CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4955         CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4956
4957         CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4958         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4959         CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4960         CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4961         CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4962         CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4963         CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4964         CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4965         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4966         CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4967         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4968         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4969         CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4970         CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4971
4972         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4973         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4974         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4975         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4976         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4977         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4978         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4979 }
4980
4981 static void
4982 bge_stats_update(struct bge_softc *sc)
4983 {
4984         if_t ifp;
4985         bus_size_t stats;
4986         uint32_t cnt;   /* current register value */
4987
4988         ifp = sc->bge_ifp;
4989
4990         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4991
4992 #define READ_STAT(sc, stats, stat) \
4993         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4994
4995         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4996         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
4997         sc->bge_tx_collisions = cnt;
4998
4999         cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
5000         if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
5001         sc->bge_rx_nobds = cnt;
5002         cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5003         if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
5004         sc->bge_rx_inerrs = cnt;
5005         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5006         if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
5007         sc->bge_rx_discards = cnt;
5008
5009         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5010         if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
5011         sc->bge_tx_discards = cnt;
5012
5013 #undef  READ_STAT
5014 }
5015
5016 /*
5017  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5018  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5019  * but when such padded frames employ the bge IP/TCP checksum offload,
5020  * the hardware checksum assist gives incorrect results (possibly
5021  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5022  * If we pad such runts with zeros, the onboard checksum comes out correct.
5023  */
5024 static __inline int
5025 bge_cksum_pad(struct mbuf *m)
5026 {
5027         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5028         struct mbuf *last;
5029
5030         /* If there's only the packet-header and we can pad there, use it. */
5031         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5032             M_TRAILINGSPACE(m) >= padlen) {
5033                 last = m;
5034         } else {
5035                 /*
5036                  * Walk packet chain to find last mbuf. We will either
5037                  * pad there, or append a new mbuf and pad it.
5038                  */
5039                 for (last = m; last->m_next != NULL; last = last->m_next);
5040                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5041                         /* Allocate new empty mbuf, pad it. Compact later. */
5042                         struct mbuf *n;
5043
5044                         MGET(n, M_NOWAIT, MT_DATA);
5045                         if (n == NULL)
5046                                 return (ENOBUFS);
5047                         n->m_len = 0;
5048                         last->m_next = n;
5049                         last = n;
5050                 }
5051         }
5052
5053         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
5054         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5055         last->m_len += padlen;
5056         m->m_pkthdr.len += padlen;
5057
5058         return (0);
5059 }
5060
5061 static struct mbuf *
5062 bge_check_short_dma(struct mbuf *m)
5063 {
5064         struct mbuf *n;
5065         int found;
5066
5067         /*
5068          * If device receive two back-to-back send BDs with less than
5069          * or equal to 8 total bytes then the device may hang.  The two
5070          * back-to-back send BDs must in the same frame for this failure
5071          * to occur.  Scan mbuf chains and see whether two back-to-back
5072          * send BDs are there. If this is the case, allocate new mbuf
5073          * and copy the frame to workaround the silicon bug.
5074          */
5075         for (n = m, found = 0; n != NULL; n = n->m_next) {
5076                 if (n->m_len < 8) {
5077                         found++;
5078                         if (found > 1)
5079                                 break;
5080                         continue;
5081                 }
5082                 found = 0;
5083         }
5084
5085         if (found > 1) {
5086                 n = m_defrag(m, M_NOWAIT);
5087                 if (n == NULL)
5088                         m_freem(m);
5089         } else
5090                 n = m;
5091         return (n);
5092 }
5093
5094 static struct mbuf *
5095 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5096     uint16_t *flags)
5097 {
5098         struct ip *ip;
5099         struct tcphdr *tcp;
5100         struct mbuf *n;
5101         uint16_t hlen;
5102         uint32_t poff;
5103
5104         if (M_WRITABLE(m) == 0) {
5105                 /* Get a writable copy. */
5106                 n = m_dup(m, M_NOWAIT);
5107                 m_freem(m);
5108                 if (n == NULL)
5109                         return (NULL);
5110                 m = n;
5111         }
5112         m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5113         if (m == NULL)
5114                 return (NULL);
5115         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5116         poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5117         m = m_pullup(m, poff + sizeof(struct tcphdr));
5118         if (m == NULL)
5119                 return (NULL);
5120         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5121         m = m_pullup(m, poff + (tcp->th_off << 2));
5122         if (m == NULL)
5123                 return (NULL);
5124         /*
5125          * It seems controller doesn't modify IP length and TCP pseudo
5126          * checksum. These checksum computed by upper stack should be 0.
5127          */
5128         *mss = m->m_pkthdr.tso_segsz;
5129         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5130         ip->ip_sum = 0;
5131         ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5132         /* Clear pseudo checksum computed by TCP stack. */
5133         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5134         tcp->th_sum = 0;
5135         /*
5136          * Broadcom controllers uses different descriptor format for
5137          * TSO depending on ASIC revision. Due to TSO-capable firmware
5138          * license issue and lower performance of firmware based TSO
5139          * we only support hardware based TSO.
5140          */
5141         /* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5142         hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5143         if (sc->bge_flags & BGE_FLAG_TSO3) {
5144                 /*
5145                  * For BCM5717 and newer controllers, hardware based TSO
5146                  * uses the 14 lower bits of the bge_mss field to store the
5147                  * MSS and the upper 2 bits to store the lowest 2 bits of
5148                  * the IP/TCP header length.  The upper 6 bits of the header
5149                  * length are stored in the bge_flags[14:10,4] field.  Jumbo
5150                  * frames are supported.
5151                  */
5152                 *mss |= ((hlen & 0x3) << 14);
5153                 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5154         } else {
5155                 /*
5156                  * For BCM5755 and newer controllers, hardware based TSO uses
5157                  * the lower 11 bits to store the MSS and the upper 5 bits to
5158                  * store the IP/TCP header length. Jumbo frames are not
5159                  * supported.
5160                  */
5161                 *mss |= (hlen << 11);
5162         }
5163         return (m);
5164 }
5165
5166 /*
5167  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5168  * pointers to descriptors.
5169  */
5170 static int
5171 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5172 {
5173         bus_dma_segment_t       segs[BGE_NSEG_NEW];
5174         bus_dmamap_t            map;
5175         struct bge_tx_bd        *d;
5176         struct mbuf             *m = *m_head;
5177         uint32_t                idx = *txidx;
5178         uint16_t                csum_flags, mss, vlan_tag;
5179         int                     nsegs, i, error;
5180
5181         csum_flags = 0;
5182         mss = 0;
5183         vlan_tag = 0;
5184         if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5185             m->m_next != NULL) {
5186                 *m_head = bge_check_short_dma(m);
5187                 if (*m_head == NULL)
5188                         return (ENOBUFS);
5189                 m = *m_head;
5190         }
5191         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5192                 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5193                 if (*m_head == NULL)
5194                         return (ENOBUFS);
5195                 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5196                     BGE_TXBDFLAG_CPU_POST_DMA;
5197         } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5198                 if (m->m_pkthdr.csum_flags & CSUM_IP)
5199                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5200                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5201                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5202                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5203                             (error = bge_cksum_pad(m)) != 0) {
5204                                 m_freem(m);
5205                                 *m_head = NULL;
5206                                 return (error);
5207                         }
5208                 }
5209         }
5210
5211         if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5212                 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5213                     m->m_pkthdr.len > ETHER_MAX_LEN)
5214                         csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5215                 if (sc->bge_forced_collapse > 0 &&
5216                     (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5217                         /*
5218                          * Forcedly collapse mbuf chains to overcome hardware
5219                          * limitation which only support a single outstanding
5220                          * DMA read operation.
5221                          */
5222                         if (sc->bge_forced_collapse == 1)
5223                                 m = m_defrag(m, M_NOWAIT);
5224                         else
5225                                 m = m_collapse(m, M_NOWAIT,
5226                                     sc->bge_forced_collapse);
5227                         if (m == NULL)
5228                                 m = *m_head;
5229                         *m_head = m;
5230                 }
5231         }
5232
5233         map = sc->bge_cdata.bge_tx_dmamap[idx];
5234         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5235             &nsegs, BUS_DMA_NOWAIT);
5236         if (error == EFBIG) {
5237                 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5238                 if (m == NULL) {
5239                         m_freem(*m_head);
5240                         *m_head = NULL;
5241                         return (ENOBUFS);
5242                 }
5243                 *m_head = m;
5244                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5245                     m, segs, &nsegs, BUS_DMA_NOWAIT);
5246                 if (error) {
5247                         m_freem(m);
5248                         *m_head = NULL;
5249                         return (error);
5250                 }
5251         } else if (error != 0)
5252                 return (error);
5253
5254         /* Check if we have enough free send BDs. */
5255         if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5256                 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5257                 return (ENOBUFS);
5258         }
5259
5260         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5261
5262         if (m->m_flags & M_VLANTAG) {
5263                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5264                 vlan_tag = m->m_pkthdr.ether_vtag;
5265         }
5266
5267         if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5268             (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5269                 /*
5270                  * 5725 family of devices corrupts TSO packets when TSO DMA
5271                  * buffers cross into regions which are within MSS bytes of
5272                  * a 4GB boundary.  If we encounter the condition, drop the
5273                  * packet.
5274                  */
5275                 for (i = 0; ; i++) {
5276                         d = &sc->bge_ldata.bge_tx_ring[idx];
5277                         d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5278                         d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5279                         d->bge_len = segs[i].ds_len;
5280                         if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5281                             d->bge_addr.bge_addr_lo)
5282                                 break;
5283                         d->bge_flags = csum_flags;
5284                         d->bge_vlan_tag = vlan_tag;
5285                         d->bge_mss = mss;
5286                         if (i == nsegs - 1)
5287                                 break;
5288                         BGE_INC(idx, BGE_TX_RING_CNT);
5289                 }
5290                 if (i != nsegs - 1) {
5291                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5292                             BUS_DMASYNC_POSTWRITE);
5293                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5294                         m_freem(*m_head);
5295                         *m_head = NULL;
5296                         return (EIO);
5297                 }
5298         } else {
5299                 for (i = 0; ; i++) {
5300                         d = &sc->bge_ldata.bge_tx_ring[idx];
5301                         d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5302                         d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5303                         d->bge_len = segs[i].ds_len;
5304                         d->bge_flags = csum_flags;
5305                         d->bge_vlan_tag = vlan_tag;
5306                         d->bge_mss = mss;
5307                         if (i == nsegs - 1)
5308                                 break;
5309                         BGE_INC(idx, BGE_TX_RING_CNT);
5310                 }
5311         }
5312
5313         /* Mark the last segment as end of packet... */
5314         d->bge_flags |= BGE_TXBDFLAG_END;
5315
5316         /*
5317          * Insure that the map for this transmission
5318          * is placed at the array index of the last descriptor
5319          * in this chain.
5320          */
5321         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5322         sc->bge_cdata.bge_tx_dmamap[idx] = map;
5323         sc->bge_cdata.bge_tx_chain[idx] = m;
5324         sc->bge_txcnt += nsegs;
5325
5326         BGE_INC(idx, BGE_TX_RING_CNT);
5327         *txidx = idx;
5328
5329         return (0);
5330 }
5331
5332 /*
5333  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5334  * to the mbuf data regions directly in the transmit descriptors.
5335  */
5336 static void
5337 bge_start_locked(if_t ifp)
5338 {
5339         struct bge_softc *sc;
5340         struct mbuf *m_head;
5341         uint32_t prodidx;
5342         int count;
5343
5344         sc = if_getsoftc(ifp);
5345         BGE_LOCK_ASSERT(sc);
5346
5347         if (!sc->bge_link ||
5348             (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5349             IFF_DRV_RUNNING)
5350                 return;
5351
5352         prodidx = sc->bge_tx_prodidx;
5353
5354         for (count = 0; !if_sendq_empty(ifp);) {
5355                 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5356                         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5357                         break;
5358                 }
5359                 m_head = if_dequeue(ifp);
5360                 if (m_head == NULL)
5361                         break;
5362
5363                 /*
5364                  * Pack the data into the transmit ring. If we
5365                  * don't have room, set the OACTIVE flag and wait
5366                  * for the NIC to drain the ring.
5367                  */
5368                 if (bge_encap(sc, &m_head, &prodidx)) {
5369                         if (m_head == NULL)
5370                                 break;
5371                         if_sendq_prepend(ifp, m_head);
5372                         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5373                         break;
5374                 }
5375                 ++count;
5376
5377                 /*
5378                  * If there's a BPF listener, bounce a copy of this frame
5379                  * to him.
5380                  */
5381                 if_bpfmtap(ifp, m_head);
5382         }
5383
5384         if (count > 0) {
5385                 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5386                     sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5387                 /* Transmit. */
5388                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5389                 /* 5700 b2 errata */
5390                 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5391                         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5392
5393                 sc->bge_tx_prodidx = prodidx;
5394
5395                 /*
5396                  * Set a timeout in case the chip goes out to lunch.
5397                  */
5398                 sc->bge_timer = BGE_TX_TIMEOUT;
5399         }
5400 }
5401
5402 /*
5403  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5404  * to the mbuf data regions directly in the transmit descriptors.
5405  */
5406 static void
5407 bge_start(if_t ifp)
5408 {
5409         struct bge_softc *sc;
5410
5411         sc = if_getsoftc(ifp);
5412         BGE_LOCK(sc);
5413         bge_start_locked(ifp);
5414         BGE_UNLOCK(sc);
5415 }
5416
5417 static void
5418 bge_init_locked(struct bge_softc *sc)
5419 {
5420         if_t ifp;
5421         uint16_t *m;
5422         uint32_t mode;
5423
5424         BGE_LOCK_ASSERT(sc);
5425
5426         ifp = sc->bge_ifp;
5427
5428         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5429                 return;
5430
5431         /* Cancel pending I/O and flush buffers. */
5432         bge_stop(sc);
5433
5434         bge_stop_fw(sc);
5435         bge_sig_pre_reset(sc, BGE_RESET_START);
5436         bge_reset(sc);
5437         bge_sig_legacy(sc, BGE_RESET_START);
5438         bge_sig_post_reset(sc, BGE_RESET_START);
5439
5440         bge_chipinit(sc);
5441
5442         /*
5443          * Init the various state machines, ring
5444          * control blocks and firmware.
5445          */
5446         if (bge_blockinit(sc)) {
5447                 device_printf(sc->bge_dev, "initialization failure\n");
5448                 return;
5449         }
5450
5451         ifp = sc->bge_ifp;
5452
5453         /* Specify MTU. */
5454         CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
5455             ETHER_HDR_LEN + ETHER_CRC_LEN +
5456             (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5457
5458         /* Load our MAC address. */
5459         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5460         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5461         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5462
5463         /* Program promiscuous mode. */
5464         bge_setpromisc(sc);
5465
5466         /* Program multicast filter. */
5467         bge_setmulti(sc);
5468
5469         /* Program VLAN tag stripping. */
5470         bge_setvlan(sc);
5471
5472         /* Override UDP checksum offloading. */
5473         if (sc->bge_forced_udpcsum == 0)
5474                 sc->bge_csum_features &= ~CSUM_UDP;
5475         else
5476                 sc->bge_csum_features |= CSUM_UDP;
5477         if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
5478             if_getcapenable(ifp) & IFCAP_TXCSUM) {
5479                 if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
5480                 if_sethwassistbits(ifp, sc->bge_csum_features, 0);
5481         }
5482
5483         /* Init RX ring. */
5484         if (bge_init_rx_ring_std(sc) != 0) {
5485                 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5486                 bge_stop(sc);
5487                 return;
5488         }
5489
5490         /*
5491          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5492          * memory to insure that the chip has in fact read the first
5493          * entry of the ring.
5494          */
5495         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5496                 uint32_t                v, i;
5497                 for (i = 0; i < 10; i++) {
5498                         DELAY(20);
5499                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5500                         if (v == (MCLBYTES - ETHER_ALIGN))
5501                                 break;
5502                 }
5503                 if (i == 10)
5504                         device_printf (sc->bge_dev,
5505                             "5705 A0 chip failed to load RX ring\n");
5506         }
5507
5508         /* Init jumbo RX ring. */
5509         if (BGE_IS_JUMBO_CAPABLE(sc) &&
5510             if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 
5511             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
5512                 if (bge_init_rx_ring_jumbo(sc) != 0) {
5513                         device_printf(sc->bge_dev,
5514                             "no memory for jumbo Rx buffers.\n");
5515                         bge_stop(sc);
5516                         return;
5517                 }
5518         }
5519
5520         /* Init our RX return ring index. */
5521         sc->bge_rx_saved_considx = 0;
5522
5523         /* Init our RX/TX stat counters. */
5524         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5525
5526         /* Init TX ring. */
5527         bge_init_tx_ring(sc);
5528
5529         /* Enable TX MAC state machine lockup fix. */
5530         mode = CSR_READ_4(sc, BGE_TX_MODE);
5531         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5532                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5533         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5534             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5535                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5536                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5537                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5538         }
5539         /* Turn on transmitter. */
5540         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5541         DELAY(100);
5542
5543         /* Turn on receiver. */
5544         mode = CSR_READ_4(sc, BGE_RX_MODE);
5545         if (BGE_IS_5755_PLUS(sc))
5546                 mode |= BGE_RXMODE_IPV6_ENABLE;
5547         if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5548                 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5549         CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5550         DELAY(10);
5551
5552         /*
5553          * Set the number of good frames to receive after RX MBUF
5554          * Low Watermark has been reached. After the RX MAC receives
5555          * this number of frames, it will drop subsequent incoming
5556          * frames until the MBUF High Watermark is reached.
5557          */
5558         if (BGE_IS_57765_PLUS(sc))
5559                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5560         else
5561                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5562
5563         /* Clear MAC statistics. */
5564         if (BGE_IS_5705_PLUS(sc))
5565                 bge_stats_clear_regs(sc);
5566
5567         /* Tell firmware we're alive. */
5568         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5569
5570 #ifdef DEVICE_POLLING
5571         /* Disable interrupts if we are polling. */
5572         if (if_getcapenable(ifp) & IFCAP_POLLING) {
5573                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5574                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5575                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5576         } else
5577 #endif
5578
5579         /* Enable host interrupts. */
5580         {
5581         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5582         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5583         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5584         }
5585
5586         if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
5587         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5588
5589         bge_ifmedia_upd_locked(ifp);
5590
5591         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5592 }
5593
5594 static void
5595 bge_init(void *xsc)
5596 {
5597         struct bge_softc *sc = xsc;
5598
5599         BGE_LOCK(sc);
5600         bge_init_locked(sc);
5601         BGE_UNLOCK(sc);
5602 }
5603
5604 /*
5605  * Set media options.
5606  */
5607 static int
5608 bge_ifmedia_upd(if_t ifp)
5609 {
5610         struct bge_softc *sc = if_getsoftc(ifp);
5611         int res;
5612
5613         BGE_LOCK(sc);
5614         res = bge_ifmedia_upd_locked(ifp);
5615         BGE_UNLOCK(sc);
5616
5617         return (res);
5618 }
5619
5620 static int
5621 bge_ifmedia_upd_locked(if_t ifp)
5622 {
5623         struct bge_softc *sc = if_getsoftc(ifp);
5624         struct mii_data *mii;
5625         struct mii_softc *miisc;
5626         struct ifmedia *ifm;
5627
5628         BGE_LOCK_ASSERT(sc);
5629
5630         ifm = &sc->bge_ifmedia;
5631
5632         /* If this is a 1000baseX NIC, enable the TBI port. */
5633         if (sc->bge_flags & BGE_FLAG_TBI) {
5634                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5635                         return (EINVAL);
5636                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
5637                 case IFM_AUTO:
5638                         /*
5639                          * The BCM5704 ASIC appears to have a special
5640                          * mechanism for programming the autoneg
5641                          * advertisement registers in TBI mode.
5642                          */
5643                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5644                                 uint32_t sgdig;
5645                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5646                                 if (sgdig & BGE_SGDIGSTS_DONE) {
5647                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5648                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5649                                         sgdig |= BGE_SGDIGCFG_AUTO |
5650                                             BGE_SGDIGCFG_PAUSE_CAP |
5651                                             BGE_SGDIGCFG_ASYM_PAUSE;
5652                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5653                                             sgdig | BGE_SGDIGCFG_SEND);
5654                                         DELAY(5);
5655                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5656                                 }
5657                         }
5658                         break;
5659                 case IFM_1000_SX:
5660                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5661                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
5662                                     BGE_MACMODE_HALF_DUPLEX);
5663                         } else {
5664                                 BGE_SETBIT(sc, BGE_MAC_MODE,
5665                                     BGE_MACMODE_HALF_DUPLEX);
5666                         }
5667                         DELAY(40);
5668                         break;
5669                 default:
5670                         return (EINVAL);
5671                 }
5672                 return (0);
5673         }
5674
5675         sc->bge_link_evt++;
5676         mii = device_get_softc(sc->bge_miibus);
5677         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5678                 PHY_RESET(miisc);
5679         mii_mediachg(mii);
5680
5681         /*
5682          * Force an interrupt so that we will call bge_link_upd
5683          * if needed and clear any pending link state attention.
5684          * Without this we are not getting any further interrupts
5685          * for link state changes and thus will not UP the link and
5686          * not be able to send in bge_start_locked. The only
5687          * way to get things working was to receive a packet and
5688          * get an RX intr.
5689          * bge_tick should help for fiber cards and we might not
5690          * need to do this here if BGE_FLAG_TBI is set but as
5691          * we poll for fiber anyway it should not harm.
5692          */
5693         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5694             sc->bge_flags & BGE_FLAG_5788)
5695                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5696         else
5697                 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5698
5699         return (0);
5700 }
5701
5702 /*
5703  * Report current media status.
5704  */
5705 static void
5706 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
5707 {
5708         struct bge_softc *sc = if_getsoftc(ifp);
5709         struct mii_data *mii;
5710
5711         BGE_LOCK(sc);
5712
5713         if ((if_getflags(ifp) & IFF_UP) == 0) {
5714                 BGE_UNLOCK(sc);
5715                 return;
5716         }
5717         if (sc->bge_flags & BGE_FLAG_TBI) {
5718                 ifmr->ifm_status = IFM_AVALID;
5719                 ifmr->ifm_active = IFM_ETHER;
5720                 if (CSR_READ_4(sc, BGE_MAC_STS) &
5721                     BGE_MACSTAT_TBI_PCS_SYNCHED)
5722                         ifmr->ifm_status |= IFM_ACTIVE;
5723                 else {
5724                         ifmr->ifm_active |= IFM_NONE;
5725                         BGE_UNLOCK(sc);
5726                         return;
5727                 }
5728                 ifmr->ifm_active |= IFM_1000_SX;
5729                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5730                         ifmr->ifm_active |= IFM_HDX;
5731                 else
5732                         ifmr->ifm_active |= IFM_FDX;
5733                 BGE_UNLOCK(sc);
5734                 return;
5735         }
5736
5737         mii = device_get_softc(sc->bge_miibus);
5738         mii_pollstat(mii);
5739         ifmr->ifm_active = mii->mii_media_active;
5740         ifmr->ifm_status = mii->mii_media_status;
5741
5742         BGE_UNLOCK(sc);
5743 }
5744
5745 static int
5746 bge_ioctl(if_t ifp, u_long command, caddr_t data)
5747 {
5748         struct bge_softc *sc = if_getsoftc(ifp);
5749         struct ifreq *ifr = (struct ifreq *) data;
5750         struct mii_data *mii;
5751         int flags, mask, error = 0;
5752
5753         switch (command) {
5754         case SIOCSIFMTU:
5755                 if (BGE_IS_JUMBO_CAPABLE(sc) ||
5756                     (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5757                         if (ifr->ifr_mtu < ETHERMIN ||
5758                             ifr->ifr_mtu > BGE_JUMBO_MTU) {
5759                                 error = EINVAL;
5760                                 break;
5761                         }
5762                 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5763                         error = EINVAL;
5764                         break;
5765                 }
5766                 BGE_LOCK(sc);
5767                 if (if_getmtu(ifp) != ifr->ifr_mtu) {
5768                         if_setmtu(ifp, ifr->ifr_mtu);
5769                         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5770                                 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5771                                 bge_init_locked(sc);
5772                         }
5773                 }
5774                 BGE_UNLOCK(sc);
5775                 break;
5776         case SIOCSIFFLAGS:
5777                 BGE_LOCK(sc);
5778                 if (if_getflags(ifp) & IFF_UP) {
5779                         /*
5780                          * If only the state of the PROMISC flag changed,
5781                          * then just use the 'set promisc mode' command
5782                          * instead of reinitializing the entire NIC. Doing
5783                          * a full re-init means reloading the firmware and
5784                          * waiting for it to start up, which may take a
5785                          * second or two.  Similarly for ALLMULTI.
5786                          */
5787                         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5788                                 flags = if_getflags(ifp) ^ sc->bge_if_flags;
5789                                 if (flags & IFF_PROMISC)
5790                                         bge_setpromisc(sc);
5791                                 if (flags & IFF_ALLMULTI)
5792                                         bge_setmulti(sc);
5793                         } else
5794                                 bge_init_locked(sc);
5795                 } else {
5796                         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5797                                 bge_stop(sc);
5798                         }
5799                 }
5800                 sc->bge_if_flags = if_getflags(ifp);
5801                 BGE_UNLOCK(sc);
5802                 error = 0;
5803                 break;
5804         case SIOCADDMULTI:
5805         case SIOCDELMULTI:
5806                 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5807                         BGE_LOCK(sc);
5808                         bge_setmulti(sc);
5809                         BGE_UNLOCK(sc);
5810                         error = 0;
5811                 }
5812                 break;
5813         case SIOCSIFMEDIA:
5814         case SIOCGIFMEDIA:
5815                 if (sc->bge_flags & BGE_FLAG_TBI) {
5816                         error = ifmedia_ioctl(ifp, ifr,
5817                             &sc->bge_ifmedia, command);
5818                 } else {
5819                         mii = device_get_softc(sc->bge_miibus);
5820                         error = ifmedia_ioctl(ifp, ifr,
5821                             &mii->mii_media, command);
5822                 }
5823                 break;
5824         case SIOCSIFCAP:
5825                 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
5826 #ifdef DEVICE_POLLING
5827                 if (mask & IFCAP_POLLING) {
5828                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
5829                                 error = ether_poll_register(bge_poll, ifp);
5830                                 if (error)
5831                                         return (error);
5832                                 BGE_LOCK(sc);
5833                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5834                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5835                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5836                                 if_setcapenablebit(ifp, IFCAP_POLLING, 0);
5837                                 BGE_UNLOCK(sc);
5838                         } else {
5839                                 error = ether_poll_deregister(ifp);
5840                                 /* Enable interrupt even in error case */
5841                                 BGE_LOCK(sc);
5842                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5843                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5844                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5845                                 if_setcapenablebit(ifp, 0, IFCAP_POLLING);
5846                                 BGE_UNLOCK(sc);
5847                         }
5848                 }
5849 #endif
5850                 if ((mask & IFCAP_TXCSUM) != 0 &&
5851                     (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
5852                         if_togglecapenable(ifp, IFCAP_TXCSUM);
5853                         if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
5854                                 if_sethwassistbits(ifp,
5855                                     sc->bge_csum_features, 0);
5856                         else
5857                                 if_sethwassistbits(ifp, 0,
5858                                     sc->bge_csum_features);
5859                 }
5860
5861                 if ((mask & IFCAP_RXCSUM) != 0 &&
5862                     (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
5863                         if_togglecapenable(ifp, IFCAP_RXCSUM);
5864
5865                 if ((mask & IFCAP_TSO4) != 0 &&
5866                     (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
5867                         if_togglecapenable(ifp, IFCAP_TSO4);
5868                         if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
5869                                 if_sethwassistbits(ifp, CSUM_TSO, 0);
5870                         else
5871                                 if_sethwassistbits(ifp, 0, CSUM_TSO);
5872                 }
5873
5874                 if (mask & IFCAP_VLAN_MTU) {
5875                         if_togglecapenable(ifp, IFCAP_VLAN_MTU);
5876                         if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5877                         bge_init(sc);
5878                 }
5879
5880                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5881                     (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
5882                         if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
5883                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5884                     (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
5885                         if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
5886                         if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
5887                                 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
5888                         BGE_LOCK(sc);
5889                         bge_setvlan(sc);
5890                         BGE_UNLOCK(sc);
5891                 }
5892 #ifdef VLAN_CAPABILITIES
5893                 if_vlancap(ifp);
5894 #endif
5895                 break;
5896         default:
5897                 error = ether_ioctl(ifp, command, data);
5898                 break;
5899         }
5900
5901         return (error);
5902 }
5903
5904 static void
5905 bge_watchdog(struct bge_softc *sc)
5906 {
5907         if_t ifp;
5908         uint32_t status;
5909
5910         BGE_LOCK_ASSERT(sc);
5911
5912         if (sc->bge_timer == 0 || --sc->bge_timer)
5913                 return;
5914
5915         /* If pause frames are active then don't reset the hardware. */
5916         if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5917                 status = CSR_READ_4(sc, BGE_RX_STS);
5918                 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5919                         /*
5920                          * If link partner has us in XOFF state then wait for
5921                          * the condition to clear.
5922                          */
5923                         CSR_WRITE_4(sc, BGE_RX_STS, status);
5924                         sc->bge_timer = BGE_TX_TIMEOUT;
5925                         return;
5926                 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5927                     (status & BGE_RXSTAT_RCVD_XON) != 0) {
5928                         /*
5929                          * If link partner has us in XOFF state then wait for
5930                          * the condition to clear.
5931                          */
5932                         CSR_WRITE_4(sc, BGE_RX_STS, status);
5933                         sc->bge_timer = BGE_TX_TIMEOUT;
5934                         return;
5935                 }
5936                 /*
5937                  * Any other condition is unexpected and the controller
5938                  * should be reset.
5939                  */
5940         }
5941
5942         ifp = sc->bge_ifp;
5943
5944         if_printf(ifp, "watchdog timeout -- resetting\n");
5945
5946         if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5947         bge_init_locked(sc);
5948
5949         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5950 }
5951
5952 static void
5953 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5954 {
5955         int i;
5956
5957         BGE_CLRBIT(sc, reg, bit);
5958
5959         for (i = 0; i < BGE_TIMEOUT; i++) {
5960                 if ((CSR_READ_4(sc, reg) & bit) == 0)
5961                         return;
5962                 DELAY(100);
5963         }
5964 }
5965
5966 /*
5967  * Stop the adapter and free any mbufs allocated to the
5968  * RX and TX lists.
5969  */
5970 static void
5971 bge_stop(struct bge_softc *sc)
5972 {
5973         if_t ifp;
5974
5975         BGE_LOCK_ASSERT(sc);
5976
5977         ifp = sc->bge_ifp;
5978
5979         callout_stop(&sc->bge_stat_ch);
5980
5981         /* Disable host interrupts. */
5982         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5983         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5984
5985         /*
5986          * Tell firmware we're shutting down.
5987          */
5988         bge_stop_fw(sc);
5989         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5990
5991         /*
5992          * Disable all of the receiver blocks.
5993          */
5994         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5995         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5996         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5997         if (BGE_IS_5700_FAMILY(sc))
5998                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5999         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6000         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6001         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6002
6003         /*
6004          * Disable all of the transmit blocks.
6005          */
6006         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6007         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6008         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6009         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6010         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6011         if (BGE_IS_5700_FAMILY(sc))
6012                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6013         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6014
6015         /*
6016          * Shut down all of the memory managers and related
6017          * state machines.
6018          */
6019         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6020         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6021         if (BGE_IS_5700_FAMILY(sc))
6022                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6023
6024         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6025         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6026         if (!(BGE_IS_5705_PLUS(sc))) {
6027                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6028                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6029         }
6030         /* Update MAC statistics. */
6031         if (BGE_IS_5705_PLUS(sc))
6032                 bge_stats_update_regs(sc);
6033
6034         bge_reset(sc);
6035         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6036         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6037
6038         /*
6039          * Keep the ASF firmware running if up.
6040          */
6041         if (sc->bge_asf_mode & ASF_STACKUP)
6042                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6043         else
6044                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6045
6046         /* Free the RX lists. */
6047         bge_free_rx_ring_std(sc);
6048
6049         /* Free jumbo RX list. */
6050         if (BGE_IS_JUMBO_CAPABLE(sc))
6051                 bge_free_rx_ring_jumbo(sc);
6052
6053         /* Free TX buffers. */
6054         bge_free_tx_ring(sc);
6055
6056         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6057
6058         /* Clear MAC's link state (PHY may still have link UP). */
6059         if (bootverbose && sc->bge_link)
6060                 if_printf(sc->bge_ifp, "link DOWN\n");
6061         sc->bge_link = 0;
6062
6063         if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
6064 }
6065
6066 /*
6067  * Stop all chip I/O so that the kernel's probe routines don't
6068  * get confused by errant DMAs when rebooting.
6069  */
6070 static int
6071 bge_shutdown(device_t dev)
6072 {
6073         struct bge_softc *sc;
6074
6075         sc = device_get_softc(dev);
6076         BGE_LOCK(sc);
6077         bge_stop(sc);
6078         BGE_UNLOCK(sc);
6079
6080         return (0);
6081 }
6082
6083 static int
6084 bge_suspend(device_t dev)
6085 {
6086         struct bge_softc *sc;
6087
6088         sc = device_get_softc(dev);
6089         BGE_LOCK(sc);
6090         bge_stop(sc);
6091         BGE_UNLOCK(sc);
6092
6093         return (0);
6094 }
6095
6096 static int
6097 bge_resume(device_t dev)
6098 {
6099         struct bge_softc *sc;
6100         if_t ifp;
6101
6102         sc = device_get_softc(dev);
6103         BGE_LOCK(sc);
6104         ifp = sc->bge_ifp;
6105         if (if_getflags(ifp) & IFF_UP) {
6106                 bge_init_locked(sc);
6107                 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6108                         bge_start_locked(ifp);
6109         }
6110         BGE_UNLOCK(sc);
6111
6112         return (0);
6113 }
6114
6115 static void
6116 bge_link_upd(struct bge_softc *sc)
6117 {
6118         struct mii_data *mii;
6119         uint32_t link, status;
6120
6121         BGE_LOCK_ASSERT(sc);
6122
6123         /* Clear 'pending link event' flag. */
6124         sc->bge_link_evt = 0;
6125
6126         /*
6127          * Process link state changes.
6128          * Grrr. The link status word in the status block does
6129          * not work correctly on the BCM5700 rev AX and BX chips,
6130          * according to all available information. Hence, we have
6131          * to enable MII interrupts in order to properly obtain
6132          * async link changes. Unfortunately, this also means that
6133          * we have to read the MAC status register to detect link
6134          * changes, thereby adding an additional register access to
6135          * the interrupt handler.
6136          *
6137          * XXX: perhaps link state detection procedure used for
6138          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6139          */
6140
6141         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6142             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6143                 status = CSR_READ_4(sc, BGE_MAC_STS);
6144                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6145                         mii = device_get_softc(sc->bge_miibus);
6146                         mii_pollstat(mii);
6147                         if (!sc->bge_link &&
6148                             mii->mii_media_status & IFM_ACTIVE &&
6149                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6150                                 sc->bge_link++;
6151                                 if (bootverbose)
6152                                         if_printf(sc->bge_ifp, "link UP\n");
6153                         } else if (sc->bge_link &&
6154                             (!(mii->mii_media_status & IFM_ACTIVE) ||
6155                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6156                                 sc->bge_link = 0;
6157                                 if (bootverbose)
6158                                         if_printf(sc->bge_ifp, "link DOWN\n");
6159                         }
6160
6161                         /* Clear the interrupt. */
6162                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6163                             BGE_EVTENB_MI_INTERRUPT);
6164                         bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6165                             BRGPHY_MII_ISR);
6166                         bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6167                             BRGPHY_MII_IMR, BRGPHY_INTRS);
6168                 }
6169                 return;
6170         }
6171
6172         if (sc->bge_flags & BGE_FLAG_TBI) {
6173                 status = CSR_READ_4(sc, BGE_MAC_STS);
6174                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6175                         if (!sc->bge_link) {
6176                                 sc->bge_link++;
6177                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6178                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
6179                                             BGE_MACMODE_TBI_SEND_CFGS);
6180                                         DELAY(40);
6181                                 }
6182                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6183                                 if (bootverbose)
6184                                         if_printf(sc->bge_ifp, "link UP\n");
6185                                 if_link_state_change(sc->bge_ifp,
6186                                     LINK_STATE_UP);
6187                         }
6188                 } else if (sc->bge_link) {
6189                         sc->bge_link = 0;
6190                         if (bootverbose)
6191                                 if_printf(sc->bge_ifp, "link DOWN\n");
6192                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6193                 }
6194         } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6195                 /*
6196                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6197                  * in status word always set. Workaround this bug by reading
6198                  * PHY link status directly.
6199                  */
6200                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6201
6202                 if (link != sc->bge_link ||
6203                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6204                         mii = device_get_softc(sc->bge_miibus);
6205                         mii_pollstat(mii);
6206                         if (!sc->bge_link &&
6207                             mii->mii_media_status & IFM_ACTIVE &&
6208                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6209                                 sc->bge_link++;
6210                                 if (bootverbose)
6211                                         if_printf(sc->bge_ifp, "link UP\n");
6212                         } else if (sc->bge_link &&
6213                             (!(mii->mii_media_status & IFM_ACTIVE) ||
6214                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6215                                 sc->bge_link = 0;
6216                                 if (bootverbose)
6217                                         if_printf(sc->bge_ifp, "link DOWN\n");
6218                         }
6219                 }
6220         } else {
6221                 /*
6222                  * For controllers that call mii_tick, we have to poll
6223                  * link status.
6224                  */
6225                 mii = device_get_softc(sc->bge_miibus);
6226                 mii_pollstat(mii);
6227                 bge_miibus_statchg(sc->bge_dev);
6228         }
6229
6230         /* Disable MAC attention when link is up. */
6231         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6232             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6233             BGE_MACSTAT_LINK_CHANGED);
6234 }
6235
6236 static void
6237 bge_add_sysctls(struct bge_softc *sc)
6238 {
6239         struct sysctl_ctx_list *ctx;
6240         struct sysctl_oid_list *children;
6241         int unit;
6242
6243         ctx = device_get_sysctl_ctx(sc->bge_dev);
6244         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6245
6246 #ifdef BGE_REGISTER_DEBUG
6247         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6248             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6249             "Debug Information");
6250
6251         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6252             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6253             "MAC Register Read");
6254
6255         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6256             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6257             "APE Register Read");
6258
6259         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6260             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6261             "Memory Read");
6262
6263 #endif
6264
6265         unit = device_get_unit(sc->bge_dev);
6266         /*
6267          * A common design characteristic for many Broadcom client controllers
6268          * is that they only support a single outstanding DMA read operation
6269          * on the PCIe bus. This means that it will take twice as long to fetch
6270          * a TX frame that is split into header and payload buffers as it does
6271          * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6272          * these controllers, coalescing buffers to reduce the number of memory
6273          * reads is effective way to get maximum performance(about 940Mbps).
6274          * Without collapsing TX buffers the maximum TCP bulk transfer
6275          * performance is about 850Mbps. However forcing coalescing mbufs
6276          * consumes a lot of CPU cycles, so leave it off by default.
6277          */
6278         sc->bge_forced_collapse = 0;
6279         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6280             CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
6281             "Number of fragmented TX buffers of a frame allowed before "
6282             "forced collapsing");
6283
6284         sc->bge_msi = 1;
6285         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6286             CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
6287
6288         /*
6289          * It seems all Broadcom controllers have a bug that can generate UDP
6290          * datagrams with checksum value 0 when TX UDP checksum offloading is
6291          * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6292          * Even though the probability of generating such UDP datagrams is
6293          * low, I don't want to see FreeBSD boxes to inject such datagrams
6294          * into network so disable UDP checksum offloading by default.  Users
6295          * still override this behavior by setting a sysctl variable,
6296          * dev.bge.0.forced_udpcsum.
6297          */
6298         sc->bge_forced_udpcsum = 0;
6299         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6300             CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
6301             "Enable UDP checksum offloading even if controller can "
6302             "generate UDP checksum value 0");
6303
6304         if (BGE_IS_5705_PLUS(sc))
6305                 bge_add_sysctl_stats_regs(sc, ctx, children);
6306         else
6307                 bge_add_sysctl_stats(sc, ctx, children);
6308 }
6309
6310 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6311         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6312             sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6313             desc)
6314
6315 static void
6316 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6317     struct sysctl_oid_list *parent)
6318 {
6319         struct sysctl_oid *tree;
6320         struct sysctl_oid_list *children, *schildren;
6321
6322         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6323             NULL, "BGE Statistics");
6324         schildren = children = SYSCTL_CHILDREN(tree);
6325         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6326             children, COSFramesDroppedDueToFilters,
6327             "FramesDroppedDueToFilters");
6328         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6329             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6330         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6331             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6332         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6333             children, nicNoMoreRxBDs, "NoMoreRxBDs");
6334         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6335             children, ifInDiscards, "InputDiscards");
6336         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6337             children, ifInErrors, "InputErrors");
6338         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6339             children, nicRecvThresholdHit, "RecvThresholdHit");
6340         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6341             children, nicDmaReadQueueFull, "DmaReadQueueFull");
6342         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6343             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6344         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6345             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6346         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6347             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6348         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6349             children, nicRingStatusUpdate, "RingStatusUpdate");
6350         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6351             children, nicInterrupts, "Interrupts");
6352         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6353             children, nicAvoidedInterrupts, "AvoidedInterrupts");
6354         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6355             children, nicSendThresholdHit, "SendThresholdHit");
6356
6357         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6358             NULL, "BGE RX Statistics");
6359         children = SYSCTL_CHILDREN(tree);
6360         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6361             children, rxstats.ifHCInOctets, "ifHCInOctets");
6362         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6363             children, rxstats.etherStatsFragments, "Fragments");
6364         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6365             children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6366         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6367             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6368         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6369             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6370         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6371             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6372         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6373             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6374         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6375             children, rxstats.xoffPauseFramesReceived,
6376             "xoffPauseFramesReceived");
6377         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6378             children, rxstats.macControlFramesReceived,
6379             "ControlFramesReceived");
6380         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6381             children, rxstats.xoffStateEntered, "xoffStateEntered");
6382         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6383             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6384         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6385             children, rxstats.etherStatsJabbers, "Jabbers");
6386         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6387             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6388         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6389             children, rxstats.inRangeLengthError, "inRangeLengthError");
6390         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6391             children, rxstats.outRangeLengthError, "outRangeLengthError");
6392
6393         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6394             NULL, "BGE TX Statistics");
6395         children = SYSCTL_CHILDREN(tree);
6396         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6397             children, txstats.ifHCOutOctets, "ifHCOutOctets");
6398         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6399             children, txstats.etherStatsCollisions, "Collisions");
6400         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6401             children, txstats.outXonSent, "XonSent");
6402         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6403             children, txstats.outXoffSent, "XoffSent");
6404         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6405             children, txstats.flowControlDone, "flowControlDone");
6406         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6407             children, txstats.dot3StatsInternalMacTransmitErrors,
6408             "InternalMacTransmitErrors");
6409         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6410             children, txstats.dot3StatsSingleCollisionFrames,
6411             "SingleCollisionFrames");
6412         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6413             children, txstats.dot3StatsMultipleCollisionFrames,
6414             "MultipleCollisionFrames");
6415         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6416             children, txstats.dot3StatsDeferredTransmissions,
6417             "DeferredTransmissions");
6418         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6419             children, txstats.dot3StatsExcessiveCollisions,
6420             "ExcessiveCollisions");
6421         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6422             children, txstats.dot3StatsLateCollisions,
6423             "LateCollisions");
6424         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6425             children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6426         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6427             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6428         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6429             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6430         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6431             children, txstats.dot3StatsCarrierSenseErrors,
6432             "CarrierSenseErrors");
6433         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6434             children, txstats.ifOutDiscards, "Discards");
6435         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6436             children, txstats.ifOutErrors, "Errors");
6437 }
6438
6439 #undef BGE_SYSCTL_STAT
6440
6441 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
6442             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6443
6444 static void
6445 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6446     struct sysctl_oid_list *parent)
6447 {
6448         struct sysctl_oid *tree;
6449         struct sysctl_oid_list *child, *schild;
6450         struct bge_mac_stats *stats;
6451
6452         stats = &sc->bge_mac_stats;
6453         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6454             NULL, "BGE Statistics");
6455         schild = child = SYSCTL_CHILDREN(tree);
6456         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6457             &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6458         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6459             &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6460         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6461             &stats->DmaWriteHighPriQueueFull,
6462             "NIC DMA Write High Priority Queue Full");
6463         BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6464             &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6465         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6466             &stats->InputDiscards, "Discarded Input Frames");
6467         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6468             &stats->InputErrors, "Input Errors");
6469         BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6470             &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6471
6472         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6473             NULL, "BGE RX Statistics");
6474         child = SYSCTL_CHILDREN(tree);
6475         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6476             &stats->ifHCInOctets, "Inbound Octets");
6477         BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6478             &stats->etherStatsFragments, "Fragments");
6479         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6480             &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6481         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6482             &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6483         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6484             &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6485         BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6486             &stats->dot3StatsFCSErrors, "FCS Errors");
6487         BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6488             &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6489         BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6490             &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6491         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6492             &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6493         BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6494             &stats->macControlFramesReceived, "MAC Control Frames Received");
6495         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6496             &stats->xoffStateEntered, "XOFF State Entered");
6497         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6498             &stats->dot3StatsFramesTooLong, "Frames Too Long");
6499         BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6500             &stats->etherStatsJabbers, "Jabbers");
6501         BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6502             &stats->etherStatsUndersizePkts, "Undersized Packets");
6503
6504         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6505             NULL, "BGE TX Statistics");
6506         child = SYSCTL_CHILDREN(tree);
6507         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6508             &stats->ifHCOutOctets, "Outbound Octets");
6509         BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6510             &stats->etherStatsCollisions, "TX Collisions");
6511         BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6512             &stats->outXonSent, "XON Sent");
6513         BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6514             &stats->outXoffSent, "XOFF Sent");
6515         BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6516             &stats->dot3StatsInternalMacTransmitErrors,
6517             "Internal MAC TX Errors");
6518         BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6519             &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6520         BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6521             &stats->dot3StatsMultipleCollisionFrames,
6522             "Multiple Collision Frames");
6523         BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6524             &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6525         BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6526             &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6527         BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6528             &stats->dot3StatsLateCollisions, "Late Collisions");
6529         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6530             &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6531         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6532             &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6533         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6534             &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6535 }
6536
6537 #undef  BGE_SYSCTL_STAT_ADD64
6538
6539 static int
6540 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6541 {
6542         struct bge_softc *sc;
6543         uint32_t result;
6544         int offset;
6545
6546         sc = (struct bge_softc *)arg1;
6547         offset = arg2;
6548         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6549             offsetof(bge_hostaddr, bge_addr_lo));
6550         return (sysctl_handle_int(oidp, &result, 0, req));
6551 }
6552
6553 #ifdef BGE_REGISTER_DEBUG
6554 static int
6555 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6556 {
6557         struct bge_softc *sc;
6558         uint16_t *sbdata;
6559         int error, result, sbsz;
6560         int i, j;
6561
6562         result = -1;
6563         error = sysctl_handle_int(oidp, &result, 0, req);
6564         if (error || (req->newptr == NULL))
6565                 return (error);
6566
6567         if (result == 1) {
6568                 sc = (struct bge_softc *)arg1;
6569
6570                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6571                     sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6572                         sbsz = BGE_STATUS_BLK_SZ;
6573                 else
6574                         sbsz = 32;
6575                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6576                 printf("Status Block:\n");
6577                 BGE_LOCK(sc);
6578                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6579                     sc->bge_cdata.bge_status_map,
6580                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6581                 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6582                         printf("%06x:", i);
6583                         for (j = 0; j < 8; j++)
6584                                 printf(" %04x", sbdata[i++]);
6585                         printf("\n");
6586                 }
6587
6588                 printf("Registers:\n");
6589                 for (i = 0x800; i < 0xA00; ) {
6590                         printf("%06x:", i);
6591                         for (j = 0; j < 8; j++) {
6592                                 printf(" %08x", CSR_READ_4(sc, i));
6593                                 i += 4;
6594                         }
6595                         printf("\n");
6596                 }
6597                 BGE_UNLOCK(sc);
6598
6599                 printf("Hardware Flags:\n");
6600                 if (BGE_IS_5717_PLUS(sc))
6601                         printf(" - 5717 Plus\n");
6602                 if (BGE_IS_5755_PLUS(sc))
6603                         printf(" - 5755 Plus\n");
6604                 if (BGE_IS_575X_PLUS(sc))
6605                         printf(" - 575X Plus\n");
6606                 if (BGE_IS_5705_PLUS(sc))
6607                         printf(" - 5705 Plus\n");
6608                 if (BGE_IS_5714_FAMILY(sc))
6609                         printf(" - 5714 Family\n");
6610                 if (BGE_IS_5700_FAMILY(sc))
6611                         printf(" - 5700 Family\n");
6612                 if (sc->bge_flags & BGE_FLAG_JUMBO)
6613                         printf(" - Supports Jumbo Frames\n");
6614                 if (sc->bge_flags & BGE_FLAG_PCIX)
6615                         printf(" - PCI-X Bus\n");
6616                 if (sc->bge_flags & BGE_FLAG_PCIE)
6617                         printf(" - PCI Express Bus\n");
6618                 if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6619                         printf(" - No 3 LEDs\n");
6620                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6621                         printf(" - RX Alignment Bug\n");
6622         }
6623
6624         return (error);
6625 }
6626
6627 static int
6628 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6629 {
6630         struct bge_softc *sc;
6631         int error;
6632         uint16_t result;
6633         uint32_t val;
6634
6635         result = -1;
6636         error = sysctl_handle_int(oidp, &result, 0, req);
6637         if (error || (req->newptr == NULL))
6638                 return (error);
6639
6640         if (result < 0x8000) {
6641                 sc = (struct bge_softc *)arg1;
6642                 val = CSR_READ_4(sc, result);
6643                 printf("reg 0x%06X = 0x%08X\n", result, val);
6644         }
6645
6646         return (error);
6647 }
6648
6649 static int
6650 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6651 {
6652         struct bge_softc *sc;
6653         int error;
6654         uint16_t result;
6655         uint32_t val;
6656
6657         result = -1;
6658         error = sysctl_handle_int(oidp, &result, 0, req);
6659         if (error || (req->newptr == NULL))
6660                 return (error);
6661
6662         if (result < 0x8000) {
6663                 sc = (struct bge_softc *)arg1;
6664                 val = APE_READ_4(sc, result);
6665                 printf("reg 0x%06X = 0x%08X\n", result, val);
6666         }
6667
6668         return (error);
6669 }
6670
6671 static int
6672 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6673 {
6674         struct bge_softc *sc;
6675         int error;
6676         uint16_t result;
6677         uint32_t val;
6678
6679         result = -1;
6680         error = sysctl_handle_int(oidp, &result, 0, req);
6681         if (error || (req->newptr == NULL))
6682                 return (error);
6683
6684         if (result < 0x8000) {
6685                 sc = (struct bge_softc *)arg1;
6686                 val = bge_readmem_ind(sc, result);
6687                 printf("mem 0x%06X = 0x%08X\n", result, val);
6688         }
6689
6690         return (error);
6691 }
6692 #endif
6693
6694 static int
6695 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6696 {
6697
6698         if (sc->bge_flags & BGE_FLAG_EADDR)
6699                 return (1);
6700
6701 #ifdef __sparc64__
6702         OF_getetheraddr(sc->bge_dev, ether_addr);
6703         return (0);
6704 #endif
6705         return (1);
6706 }
6707
6708 static int
6709 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6710 {
6711         uint32_t mac_addr;
6712
6713         mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6714         if ((mac_addr >> 16) == 0x484b) {
6715                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6716                 ether_addr[1] = (uint8_t)mac_addr;
6717                 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6718                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6719                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6720                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6721                 ether_addr[5] = (uint8_t)mac_addr;
6722                 return (0);
6723         }
6724         return (1);
6725 }
6726
6727 static int
6728 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6729 {
6730         int mac_offset = BGE_EE_MAC_OFFSET;
6731
6732         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6733                 mac_offset = BGE_EE_MAC_OFFSET_5906;
6734
6735         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6736             ETHER_ADDR_LEN));
6737 }
6738
6739 static int
6740 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6741 {
6742
6743         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6744                 return (1);
6745
6746         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6747            ETHER_ADDR_LEN));
6748 }
6749
6750 static int
6751 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6752 {
6753         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6754                 /* NOTE: Order is critical */
6755                 bge_get_eaddr_fw,
6756                 bge_get_eaddr_mem,
6757                 bge_get_eaddr_nvram,
6758                 bge_get_eaddr_eeprom,
6759                 NULL
6760         };
6761         const bge_eaddr_fcn_t *func;
6762
6763         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6764                 if ((*func)(sc, eaddr) == 0)
6765                         break;
6766         }
6767         return (*func == NULL ? ENXIO : 0);
6768 }
6769
6770 static uint64_t
6771 bge_get_counter(if_t ifp, ift_counter cnt)
6772 {
6773         struct bge_softc *sc;
6774         struct bge_mac_stats *stats;
6775
6776         sc = if_getsoftc(ifp);
6777         if (!BGE_IS_5705_PLUS(sc))
6778                 return (if_get_counter_default(ifp, cnt));
6779         stats = &sc->bge_mac_stats;
6780
6781         switch (cnt) {
6782         case IFCOUNTER_IERRORS:
6783                 return (stats->NoMoreRxBDs + stats->InputDiscards +
6784                     stats->InputErrors);
6785         case IFCOUNTER_COLLISIONS:
6786                 return (stats->etherStatsCollisions);
6787         default:
6788                 return (if_get_counter_default(ifp, cnt));
6789         }
6790 }