]> CyberLeo.Net >> Repos - FreeBSD/releng/9.1.git/blob - sys/dev/bge/if_bge.c
MFC r239655:
[FreeBSD/releng/9.1.git] / sys / dev / bge / if_bge.c
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90
91 #include <net/bpf.h>
92
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120
121 #include <dev/bge/if_bgereg.h>
122
123 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
124 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140         uint16_t        bge_vid;
141         uint16_t        bge_did;
142 } const bge_devs[] = {
143         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
144         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
145
146         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
147         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
148         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
149
150         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
151
152         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5717 },
173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5718 },
174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5719 },
175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5723 },
179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5756 },
194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761 },
195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761E },
196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761S },
197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761SE },
198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5764 },
199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
201         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
202         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
203         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5784 },
204         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785F },
205         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785G },
206         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
207         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
208         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787F },
209         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
210         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
211         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
212         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
213         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
214         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
215         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
216         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
217         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57760 },
218         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57761 },
219         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57765 },
220         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57780 },
221         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57781 },
222         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57785 },
223         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57788 },
224         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57790 },
225         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57791 },
226         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57795 },
227
228         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
229
230         { TC_VENDORID,          TC_DEVICEID_3C996 },
231
232         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE4 },
233         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE5 },
234         { FJTSU_VENDORID,       FJTSU_DEVICEID_PP250450 },
235
236         { 0, 0 }
237 };
238
239 static const struct bge_vendor {
240         uint16_t        v_id;
241         const char      *v_name;
242 } const bge_vendors[] = {
243         { ALTEON_VENDORID,      "Alteon" },
244         { ALTIMA_VENDORID,      "Altima" },
245         { APPLE_VENDORID,       "Apple" },
246         { BCOM_VENDORID,        "Broadcom" },
247         { SK_VENDORID,          "SysKonnect" },
248         { TC_VENDORID,          "3Com" },
249         { FJTSU_VENDORID,       "Fujitsu" },
250
251         { 0, NULL }
252 };
253
254 static const struct bge_revision {
255         uint32_t        br_chipid;
256         const char      *br_name;
257 } const bge_revisions[] = {
258         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
259         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
260         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
261         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
262         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
263         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
264         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
265         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
266         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
267         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
268         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
269         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
270         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
271         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
272         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
273         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
274         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
275         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
276         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
277         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
278         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
279         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
280         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
281         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
282         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
283         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
284         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
285         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
286         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
287         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
288         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
289         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
290         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
291         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
292         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
293         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
294         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
295         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
296         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
297         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
298         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
299         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
300         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
301         { BGE_CHIPID_BCM5717_A0,        "BCM5717 A0" },
302         { BGE_CHIPID_BCM5717_B0,        "BCM5717 B0" },
303         { BGE_CHIPID_BCM5719_A0,        "BCM5719 A0" },
304         { BGE_CHIPID_BCM5720_A0,        "BCM5720 A0" },
305         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
306         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
307         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
308         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
309         { BGE_CHIPID_BCM5761_A0,        "BCM5761 A0" },
310         { BGE_CHIPID_BCM5761_A1,        "BCM5761 A1" },
311         { BGE_CHIPID_BCM5784_A0,        "BCM5784 A0" },
312         { BGE_CHIPID_BCM5784_A1,        "BCM5784 A1" },
313         /* 5754 and 5787 share the same ASIC ID */
314         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" },
315         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
316         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
317         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
318         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
319         { BGE_CHIPID_BCM57765_A0,       "BCM57765 A0" },
320         { BGE_CHIPID_BCM57765_B0,       "BCM57765 B0" },
321         { BGE_CHIPID_BCM57780_A0,       "BCM57780 A0" },
322         { BGE_CHIPID_BCM57780_A1,       "BCM57780 A1" },
323
324         { 0, NULL }
325 };
326
327 /*
328  * Some defaults for major revisions, so that newer steppings
329  * that we don't know about have a shot at working.
330  */
331 static const struct bge_revision const bge_majorrevs[] = {
332         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
333         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
334         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
335         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
336         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
337         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
338         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
339         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
340         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
341         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
342         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
343         { BGE_ASICREV_BCM5761,          "unknown BCM5761" },
344         { BGE_ASICREV_BCM5784,          "unknown BCM5784" },
345         { BGE_ASICREV_BCM5785,          "unknown BCM5785" },
346         /* 5754 and 5787 share the same ASIC ID */
347         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
348         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
349         { BGE_ASICREV_BCM57765,         "unknown BCM57765" },
350         { BGE_ASICREV_BCM57780,         "unknown BCM57780" },
351         { BGE_ASICREV_BCM5717,          "unknown BCM5717" },
352         { BGE_ASICREV_BCM5719,          "unknown BCM5719" },
353         { BGE_ASICREV_BCM5720,          "unknown BCM5720" },
354
355         { 0, NULL }
356 };
357
358 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
359 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
360 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
361 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
362 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
363 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
364 #define BGE_IS_5717_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
365
366 const struct bge_revision * bge_lookup_rev(uint32_t);
367 const struct bge_vendor * bge_lookup_vendor(uint16_t);
368
369 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
370
371 static int bge_probe(device_t);
372 static int bge_attach(device_t);
373 static int bge_detach(device_t);
374 static int bge_suspend(device_t);
375 static int bge_resume(device_t);
376 static void bge_release_resources(struct bge_softc *);
377 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
378 static int bge_dma_alloc(struct bge_softc *);
379 static void bge_dma_free(struct bge_softc *);
380 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
381     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
382
383 static void bge_devinfo(struct bge_softc *);
384 static int bge_mbox_reorder(struct bge_softc *);
385
386 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
387 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
388 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
389 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
390 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
391
392 static void bge_txeof(struct bge_softc *, uint16_t);
393 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
394 static int bge_rxeof(struct bge_softc *, uint16_t, int);
395
396 static void bge_asf_driver_up (struct bge_softc *);
397 static void bge_tick(void *);
398 static void bge_stats_clear_regs(struct bge_softc *);
399 static void bge_stats_update(struct bge_softc *);
400 static void bge_stats_update_regs(struct bge_softc *);
401 static struct mbuf *bge_check_short_dma(struct mbuf *);
402 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
403     uint16_t *, uint16_t *);
404 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
405
406 static void bge_intr(void *);
407 static int bge_msi_intr(void *);
408 static void bge_intr_task(void *, int);
409 static void bge_start_locked(struct ifnet *);
410 static void bge_start(struct ifnet *);
411 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
412 static void bge_init_locked(struct bge_softc *);
413 static void bge_init(void *);
414 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
415 static void bge_stop(struct bge_softc *);
416 static void bge_watchdog(struct bge_softc *);
417 static int bge_shutdown(device_t);
418 static int bge_ifmedia_upd_locked(struct ifnet *);
419 static int bge_ifmedia_upd(struct ifnet *);
420 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
421
422 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
423 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
424
425 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
426 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
427
428 static void bge_setpromisc(struct bge_softc *);
429 static void bge_setmulti(struct bge_softc *);
430 static void bge_setvlan(struct bge_softc *);
431
432 static __inline void bge_rxreuse_std(struct bge_softc *, int);
433 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
434 static int bge_newbuf_std(struct bge_softc *, int);
435 static int bge_newbuf_jumbo(struct bge_softc *, int);
436 static int bge_init_rx_ring_std(struct bge_softc *);
437 static void bge_free_rx_ring_std(struct bge_softc *);
438 static int bge_init_rx_ring_jumbo(struct bge_softc *);
439 static void bge_free_rx_ring_jumbo(struct bge_softc *);
440 static void bge_free_tx_ring(struct bge_softc *);
441 static int bge_init_tx_ring(struct bge_softc *);
442
443 static int bge_chipinit(struct bge_softc *);
444 static int bge_blockinit(struct bge_softc *);
445 static uint32_t bge_dma_swap_options(struct bge_softc *);
446
447 static int bge_has_eaddr(struct bge_softc *);
448 static uint32_t bge_readmem_ind(struct bge_softc *, int);
449 static void bge_writemem_ind(struct bge_softc *, int, int);
450 static void bge_writembx(struct bge_softc *, int, int);
451 #ifdef notdef
452 static uint32_t bge_readreg_ind(struct bge_softc *, int);
453 #endif
454 static void bge_writemem_direct(struct bge_softc *, int, int);
455 static void bge_writereg_ind(struct bge_softc *, int, int);
456
457 static int bge_miibus_readreg(device_t, int, int);
458 static int bge_miibus_writereg(device_t, int, int, int);
459 static void bge_miibus_statchg(device_t);
460 #ifdef DEVICE_POLLING
461 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
462 #endif
463
464 #define BGE_RESET_START 1
465 #define BGE_RESET_STOP  2
466 static void bge_sig_post_reset(struct bge_softc *, int);
467 static void bge_sig_legacy(struct bge_softc *, int);
468 static void bge_sig_pre_reset(struct bge_softc *, int);
469 static void bge_stop_fw(struct bge_softc *);
470 static int bge_reset(struct bge_softc *);
471 static void bge_link_upd(struct bge_softc *);
472
473 /*
474  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
475  * leak information to untrusted users.  It is also known to cause alignment
476  * traps on certain architectures.
477  */
478 #ifdef BGE_REGISTER_DEBUG
479 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
480 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
481 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
482 #endif
483 static void bge_add_sysctls(struct bge_softc *);
484 static void bge_add_sysctl_stats_regs(struct bge_softc *,
485     struct sysctl_ctx_list *, struct sysctl_oid_list *);
486 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
487     struct sysctl_oid_list *);
488 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
489
490 static device_method_t bge_methods[] = {
491         /* Device interface */
492         DEVMETHOD(device_probe,         bge_probe),
493         DEVMETHOD(device_attach,        bge_attach),
494         DEVMETHOD(device_detach,        bge_detach),
495         DEVMETHOD(device_shutdown,      bge_shutdown),
496         DEVMETHOD(device_suspend,       bge_suspend),
497         DEVMETHOD(device_resume,        bge_resume),
498
499         /* MII interface */
500         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
501         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
502         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
503
504         DEVMETHOD_END
505 };
506
507 static driver_t bge_driver = {
508         "bge",
509         bge_methods,
510         sizeof(struct bge_softc)
511 };
512
513 static devclass_t bge_devclass;
514
515 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
516 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
517
518 static int bge_allow_asf = 1;
519
520 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
521
522 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
523 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
524         "Allow ASF mode if available");
525
526 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
527 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
528 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
529 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
530 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
531
532 static int
533 bge_has_eaddr(struct bge_softc *sc)
534 {
535 #ifdef __sparc64__
536         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
537         device_t dev;
538         uint32_t subvendor;
539
540         dev = sc->bge_dev;
541
542         /*
543          * The on-board BGEs found in sun4u machines aren't fitted with
544          * an EEPROM which means that we have to obtain the MAC address
545          * via OFW and that some tests will always fail.  We distinguish
546          * such BGEs by the subvendor ID, which also has to be obtained
547          * from OFW instead of the PCI configuration space as the latter
548          * indicates Broadcom as the subvendor of the netboot interface.
549          * For early Blade 1500 and 2500 we even have to check the OFW
550          * device path as the subvendor ID always defaults to Broadcom
551          * there.
552          */
553         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
554             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
555             (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
556                 return (0);
557         memset(buf, 0, sizeof(buf));
558         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
559                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
560                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
561                         return (0);
562                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
563                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
564                         return (0);
565         }
566 #endif
567         return (1);
568 }
569
570 static uint32_t
571 bge_readmem_ind(struct bge_softc *sc, int off)
572 {
573         device_t dev;
574         uint32_t val;
575
576         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
577             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
578                 return (0);
579
580         dev = sc->bge_dev;
581
582         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
583         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
584         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
585         return (val);
586 }
587
588 static void
589 bge_writemem_ind(struct bge_softc *sc, int off, int val)
590 {
591         device_t dev;
592
593         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
594             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
595                 return;
596
597         dev = sc->bge_dev;
598
599         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
600         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
601         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
602 }
603
604 #ifdef notdef
605 static uint32_t
606 bge_readreg_ind(struct bge_softc *sc, int off)
607 {
608         device_t dev;
609
610         dev = sc->bge_dev;
611
612         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
613         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
614 }
615 #endif
616
617 static void
618 bge_writereg_ind(struct bge_softc *sc, int off, int val)
619 {
620         device_t dev;
621
622         dev = sc->bge_dev;
623
624         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
625         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
626 }
627
628 static void
629 bge_writemem_direct(struct bge_softc *sc, int off, int val)
630 {
631         CSR_WRITE_4(sc, off, val);
632 }
633
634 static void
635 bge_writembx(struct bge_softc *sc, int off, int val)
636 {
637         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
638                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
639
640         CSR_WRITE_4(sc, off, val);
641         if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
642                 CSR_READ_4(sc, off);
643 }
644
645 /*
646  * Map a single buffer address.
647  */
648
649 static void
650 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
651 {
652         struct bge_dmamap_arg *ctx;
653
654         if (error)
655                 return;
656
657         KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
658
659         ctx = arg;
660         ctx->bge_busaddr = segs->ds_addr;
661 }
662
663 static uint8_t
664 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
665 {
666         uint32_t access, byte = 0;
667         int i;
668
669         /* Lock. */
670         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
671         for (i = 0; i < 8000; i++) {
672                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
673                         break;
674                 DELAY(20);
675         }
676         if (i == 8000)
677                 return (1);
678
679         /* Enable access. */
680         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
681         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
682
683         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
684         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
685         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
686                 DELAY(10);
687                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
688                         DELAY(10);
689                         break;
690                 }
691         }
692
693         if (i == BGE_TIMEOUT * 10) {
694                 if_printf(sc->bge_ifp, "nvram read timed out\n");
695                 return (1);
696         }
697
698         /* Get result. */
699         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
700
701         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
702
703         /* Disable access. */
704         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
705
706         /* Unlock. */
707         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
708         CSR_READ_4(sc, BGE_NVRAM_SWARB);
709
710         return (0);
711 }
712
713 /*
714  * Read a sequence of bytes from NVRAM.
715  */
716 static int
717 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
718 {
719         int err = 0, i;
720         uint8_t byte = 0;
721
722         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
723                 return (1);
724
725         for (i = 0; i < cnt; i++) {
726                 err = bge_nvram_getbyte(sc, off + i, &byte);
727                 if (err)
728                         break;
729                 *(dest + i) = byte;
730         }
731
732         return (err ? 1 : 0);
733 }
734
735 /*
736  * Read a byte of data stored in the EEPROM at address 'addr.' The
737  * BCM570x supports both the traditional bitbang interface and an
738  * auto access interface for reading the EEPROM. We use the auto
739  * access method.
740  */
741 static uint8_t
742 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
743 {
744         int i;
745         uint32_t byte = 0;
746
747         /*
748          * Enable use of auto EEPROM access so we can avoid
749          * having to use the bitbang method.
750          */
751         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
752
753         /* Reset the EEPROM, load the clock period. */
754         CSR_WRITE_4(sc, BGE_EE_ADDR,
755             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
756         DELAY(20);
757
758         /* Issue the read EEPROM command. */
759         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
760
761         /* Wait for completion */
762         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
763                 DELAY(10);
764                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
765                         break;
766         }
767
768         if (i == BGE_TIMEOUT * 10) {
769                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
770                 return (1);
771         }
772
773         /* Get result. */
774         byte = CSR_READ_4(sc, BGE_EE_DATA);
775
776         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
777
778         return (0);
779 }
780
781 /*
782  * Read a sequence of bytes from the EEPROM.
783  */
784 static int
785 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
786 {
787         int i, error = 0;
788         uint8_t byte = 0;
789
790         for (i = 0; i < cnt; i++) {
791                 error = bge_eeprom_getbyte(sc, off + i, &byte);
792                 if (error)
793                         break;
794                 *(dest + i) = byte;
795         }
796
797         return (error ? 1 : 0);
798 }
799
800 static int
801 bge_miibus_readreg(device_t dev, int phy, int reg)
802 {
803         struct bge_softc *sc;
804         uint32_t val;
805         int i;
806
807         sc = device_get_softc(dev);
808
809         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
810         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
811                 CSR_WRITE_4(sc, BGE_MI_MODE,
812                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
813                 DELAY(80);
814         }
815
816         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
817             BGE_MIPHY(phy) | BGE_MIREG(reg));
818
819         /* Poll for the PHY register access to complete. */
820         for (i = 0; i < BGE_TIMEOUT; i++) {
821                 DELAY(10);
822                 val = CSR_READ_4(sc, BGE_MI_COMM);
823                 if ((val & BGE_MICOMM_BUSY) == 0) {
824                         DELAY(5);
825                         val = CSR_READ_4(sc, BGE_MI_COMM);
826                         break;
827                 }
828         }
829
830         if (i == BGE_TIMEOUT) {
831                 device_printf(sc->bge_dev,
832                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
833                     phy, reg, val);
834                 val = 0;
835         }
836
837         /* Restore the autopoll bit if necessary. */
838         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
839                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
840                 DELAY(80);
841         }
842
843         if (val & BGE_MICOMM_READFAIL)
844                 return (0);
845
846         return (val & 0xFFFF);
847 }
848
849 static int
850 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
851 {
852         struct bge_softc *sc;
853         int i;
854
855         sc = device_get_softc(dev);
856
857         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
858             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
859                 return (0);
860
861         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
862         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
863                 CSR_WRITE_4(sc, BGE_MI_MODE,
864                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
865                 DELAY(80);
866         }
867
868         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
869             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
870
871         for (i = 0; i < BGE_TIMEOUT; i++) {
872                 DELAY(10);
873                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
874                         DELAY(5);
875                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
876                         break;
877                 }
878         }
879
880         /* Restore the autopoll bit if necessary. */
881         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
882                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
883                 DELAY(80);
884         }
885
886         if (i == BGE_TIMEOUT)
887                 device_printf(sc->bge_dev,
888                     "PHY write timed out (phy %d, reg %d, val %d)\n",
889                     phy, reg, val);
890
891         return (0);
892 }
893
894 static void
895 bge_miibus_statchg(device_t dev)
896 {
897         struct bge_softc *sc;
898         struct mii_data *mii;
899         sc = device_get_softc(dev);
900         mii = device_get_softc(sc->bge_miibus);
901
902         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
903             (IFM_ACTIVE | IFM_AVALID)) {
904                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
905                 case IFM_10_T:
906                 case IFM_100_TX:
907                         sc->bge_link = 1;
908                         break;
909                 case IFM_1000_T:
910                 case IFM_1000_SX:
911                 case IFM_2500_SX:
912                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
913                                 sc->bge_link = 1;
914                         else
915                                 sc->bge_link = 0;
916                         break;
917                 default:
918                         sc->bge_link = 0;
919                         break;
920                 }
921         } else
922                 sc->bge_link = 0;
923         if (sc->bge_link == 0)
924                 return;
925         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
926         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
927             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
928                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
929         else
930                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
931
932         if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
933                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
934                 if ((IFM_OPTIONS(mii->mii_media_active) &
935                     IFM_ETH_TXPAUSE) != 0)
936                         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
937                 else
938                         BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
939                 if ((IFM_OPTIONS(mii->mii_media_active) &
940                     IFM_ETH_RXPAUSE) != 0)
941                         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
942                 else
943                         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
944         } else {
945                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
946                 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
947                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
948         }
949 }
950
951 /*
952  * Intialize a standard receive ring descriptor.
953  */
954 static int
955 bge_newbuf_std(struct bge_softc *sc, int i)
956 {
957         struct mbuf *m;
958         struct bge_rx_bd *r;
959         bus_dma_segment_t segs[1];
960         bus_dmamap_t map;
961         int error, nsegs;
962
963         if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
964             (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
965             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
966                 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
967                 if (m == NULL)
968                         return (ENOBUFS);
969                 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
970         } else {
971                 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
972                 if (m == NULL)
973                         return (ENOBUFS);
974                 m->m_len = m->m_pkthdr.len = MCLBYTES;
975         }
976         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
977                 m_adj(m, ETHER_ALIGN);
978
979         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
980             sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
981         if (error != 0) {
982                 m_freem(m);
983                 return (error);
984         }
985         if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
986                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
987                     sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
988                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
989                     sc->bge_cdata.bge_rx_std_dmamap[i]);
990         }
991         map = sc->bge_cdata.bge_rx_std_dmamap[i];
992         sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
993         sc->bge_cdata.bge_rx_std_sparemap = map;
994         sc->bge_cdata.bge_rx_std_chain[i] = m;
995         sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
996         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
997         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
998         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
999         r->bge_flags = BGE_RXBDFLAG_END;
1000         r->bge_len = segs[0].ds_len;
1001         r->bge_idx = i;
1002
1003         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1004             sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1005
1006         return (0);
1007 }
1008
1009 /*
1010  * Initialize a jumbo receive ring descriptor. This allocates
1011  * a jumbo buffer from the pool managed internally by the driver.
1012  */
1013 static int
1014 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1015 {
1016         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1017         bus_dmamap_t map;
1018         struct bge_extrx_bd *r;
1019         struct mbuf *m;
1020         int error, nsegs;
1021
1022         MGETHDR(m, M_DONTWAIT, MT_DATA);
1023         if (m == NULL)
1024                 return (ENOBUFS);
1025
1026         m_cljget(m, M_DONTWAIT, MJUM9BYTES);
1027         if (!(m->m_flags & M_EXT)) {
1028                 m_freem(m);
1029                 return (ENOBUFS);
1030         }
1031         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1032         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1033                 m_adj(m, ETHER_ALIGN);
1034
1035         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1036             sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1037         if (error != 0) {
1038                 m_freem(m);
1039                 return (error);
1040         }
1041
1042         if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1043                 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1044                     sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1045                 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1046                     sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1047         }
1048         map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1049         sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1050             sc->bge_cdata.bge_rx_jumbo_sparemap;
1051         sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1052         sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1053         sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1054         sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1055         sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1056         sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1057
1058         /*
1059          * Fill in the extended RX buffer descriptor.
1060          */
1061         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1062         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1063         r->bge_idx = i;
1064         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1065         switch (nsegs) {
1066         case 4:
1067                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1068                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1069                 r->bge_len3 = segs[3].ds_len;
1070                 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1071         case 3:
1072                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1073                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1074                 r->bge_len2 = segs[2].ds_len;
1075                 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1076         case 2:
1077                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1078                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1079                 r->bge_len1 = segs[1].ds_len;
1080                 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1081         case 1:
1082                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1083                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1084                 r->bge_len0 = segs[0].ds_len;
1085                 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1086                 break;
1087         default:
1088                 panic("%s: %d segments\n", __func__, nsegs);
1089         }
1090
1091         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1092             sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1093
1094         return (0);
1095 }
1096
1097 static int
1098 bge_init_rx_ring_std(struct bge_softc *sc)
1099 {
1100         int error, i;
1101
1102         bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1103         sc->bge_std = 0;
1104         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1105                 if ((error = bge_newbuf_std(sc, i)) != 0)
1106                         return (error);
1107                 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1108         }
1109
1110         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1111             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1112
1113         sc->bge_std = 0;
1114         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1115
1116         return (0);
1117 }
1118
1119 static void
1120 bge_free_rx_ring_std(struct bge_softc *sc)
1121 {
1122         int i;
1123
1124         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1125                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1126                         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1127                             sc->bge_cdata.bge_rx_std_dmamap[i],
1128                             BUS_DMASYNC_POSTREAD);
1129                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1130                             sc->bge_cdata.bge_rx_std_dmamap[i]);
1131                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1132                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1133                 }
1134                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1135                     sizeof(struct bge_rx_bd));
1136         }
1137 }
1138
1139 static int
1140 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1141 {
1142         struct bge_rcb *rcb;
1143         int error, i;
1144
1145         bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1146         sc->bge_jumbo = 0;
1147         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1148                 if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1149                         return (error);
1150                 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1151         }
1152
1153         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1154             sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1155
1156         sc->bge_jumbo = 0;
1157
1158         /* Enable the jumbo receive producer ring. */
1159         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1160         rcb->bge_maxlen_flags =
1161             BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1162         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1163
1164         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1165
1166         return (0);
1167 }
1168
1169 static void
1170 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1171 {
1172         int i;
1173
1174         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1175                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1176                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1177                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1178                             BUS_DMASYNC_POSTREAD);
1179                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1180                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1181                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1182                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1183                 }
1184                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1185                     sizeof(struct bge_extrx_bd));
1186         }
1187 }
1188
1189 static void
1190 bge_free_tx_ring(struct bge_softc *sc)
1191 {
1192         int i;
1193
1194         if (sc->bge_ldata.bge_tx_ring == NULL)
1195                 return;
1196
1197         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1198                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1199                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1200                             sc->bge_cdata.bge_tx_dmamap[i],
1201                             BUS_DMASYNC_POSTWRITE);
1202                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1203                             sc->bge_cdata.bge_tx_dmamap[i]);
1204                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1205                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1206                 }
1207                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1208                     sizeof(struct bge_tx_bd));
1209         }
1210 }
1211
1212 static int
1213 bge_init_tx_ring(struct bge_softc *sc)
1214 {
1215         sc->bge_txcnt = 0;
1216         sc->bge_tx_saved_considx = 0;
1217
1218         bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1219         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1220             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1221
1222         /* Initialize transmit producer index for host-memory send ring. */
1223         sc->bge_tx_prodidx = 0;
1224         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1225
1226         /* 5700 b2 errata */
1227         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1228                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1229
1230         /* NIC-memory send ring not used; initialize to zero. */
1231         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1232         /* 5700 b2 errata */
1233         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1234                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1235
1236         return (0);
1237 }
1238
1239 static void
1240 bge_setpromisc(struct bge_softc *sc)
1241 {
1242         struct ifnet *ifp;
1243
1244         BGE_LOCK_ASSERT(sc);
1245
1246         ifp = sc->bge_ifp;
1247
1248         /* Enable or disable promiscuous mode as needed. */
1249         if (ifp->if_flags & IFF_PROMISC)
1250                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1251         else
1252                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1253 }
1254
1255 static void
1256 bge_setmulti(struct bge_softc *sc)
1257 {
1258         struct ifnet *ifp;
1259         struct ifmultiaddr *ifma;
1260         uint32_t hashes[4] = { 0, 0, 0, 0 };
1261         int h, i;
1262
1263         BGE_LOCK_ASSERT(sc);
1264
1265         ifp = sc->bge_ifp;
1266
1267         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1268                 for (i = 0; i < 4; i++)
1269                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1270                 return;
1271         }
1272
1273         /* First, zot all the existing filters. */
1274         for (i = 0; i < 4; i++)
1275                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1276
1277         /* Now program new ones. */
1278         if_maddr_rlock(ifp);
1279         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1280                 if (ifma->ifma_addr->sa_family != AF_LINK)
1281                         continue;
1282                 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1283                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1284                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1285         }
1286         if_maddr_runlock(ifp);
1287
1288         for (i = 0; i < 4; i++)
1289                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1290 }
1291
1292 static void
1293 bge_setvlan(struct bge_softc *sc)
1294 {
1295         struct ifnet *ifp;
1296
1297         BGE_LOCK_ASSERT(sc);
1298
1299         ifp = sc->bge_ifp;
1300
1301         /* Enable or disable VLAN tag stripping as needed. */
1302         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1303                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1304         else
1305                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1306 }
1307
1308 static void
1309 bge_sig_pre_reset(struct bge_softc *sc, int type)
1310 {
1311
1312         /*
1313          * Some chips don't like this so only do this if ASF is enabled
1314          */
1315         if (sc->bge_asf_mode)
1316                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1317
1318         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1319                 switch (type) {
1320                 case BGE_RESET_START:
1321                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1322                             BGE_FW_DRV_STATE_START);
1323                         break;
1324                 case BGE_RESET_STOP:
1325                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1326                             BGE_FW_DRV_STATE_UNLOAD);
1327                         break;
1328                 }
1329         }
1330 }
1331
1332 static void
1333 bge_sig_post_reset(struct bge_softc *sc, int type)
1334 {
1335
1336         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1337                 switch (type) {
1338                 case BGE_RESET_START:
1339                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1340                             BGE_FW_DRV_STATE_START_DONE);
1341                         /* START DONE */
1342                         break;
1343                 case BGE_RESET_STOP:
1344                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1345                             BGE_FW_DRV_STATE_UNLOAD_DONE);
1346                         break;
1347                 }
1348         }
1349 }
1350
1351 static void
1352 bge_sig_legacy(struct bge_softc *sc, int type)
1353 {
1354
1355         if (sc->bge_asf_mode) {
1356                 switch (type) {
1357                 case BGE_RESET_START:
1358                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1359                             BGE_FW_DRV_STATE_START);
1360                         break;
1361                 case BGE_RESET_STOP:
1362                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1363                             BGE_FW_DRV_STATE_UNLOAD);
1364                         break;
1365                 }
1366         }
1367 }
1368
1369 static void
1370 bge_stop_fw(struct bge_softc *sc)
1371 {
1372         int i;
1373
1374         if (sc->bge_asf_mode) {
1375                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1376                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1377                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1378
1379                 for (i = 0; i < 100; i++ ) {
1380                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1381                             BGE_RX_CPU_DRV_EVENT))
1382                                 break;
1383                         DELAY(10);
1384                 }
1385         }
1386 }
1387
1388 static uint32_t
1389 bge_dma_swap_options(struct bge_softc *sc)
1390 {
1391         uint32_t dma_options;
1392
1393         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1394             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1395 #if BYTE_ORDER == BIG_ENDIAN
1396         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1397 #endif
1398         if ((sc)->bge_asicrev == BGE_ASICREV_BCM5720)
1399                 dma_options |= BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1400                     BGE_MODECTL_WORDSWAP_B2HRX_DATA | BGE_MODECTL_B2HRX_ENABLE |
1401                     BGE_MODECTL_HTX2B_ENABLE;
1402
1403         return (dma_options);
1404 }
1405
1406 /*
1407  * Do endian, PCI and DMA initialization.
1408  */
1409 static int
1410 bge_chipinit(struct bge_softc *sc)
1411 {
1412         uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1413         uint16_t val;
1414         int i;
1415
1416         /* Set endianness before we access any non-PCI registers. */
1417         misc_ctl = BGE_INIT;
1418         if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1419                 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1420         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1421
1422         /* Clear the MAC control register */
1423         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1424
1425         /*
1426          * Clear the MAC statistics block in the NIC's
1427          * internal memory.
1428          */
1429         for (i = BGE_STATS_BLOCK;
1430             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1431                 BGE_MEMWIN_WRITE(sc, i, 0);
1432
1433         for (i = BGE_STATUS_BLOCK;
1434             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1435                 BGE_MEMWIN_WRITE(sc, i, 0);
1436
1437         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1438                 /*
1439                  *  Fix data corruption caused by non-qword write with WB.
1440                  *  Fix master abort in PCI mode.
1441                  *  Fix PCI latency timer.
1442                  */
1443                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1444                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1445                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1446         }
1447
1448         /*
1449          * Set up the PCI DMA control register.
1450          */
1451         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1452             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1453         if (sc->bge_flags & BGE_FLAG_PCIE) {
1454                 /* Read watermark not used, 128 bytes for write. */
1455                 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1456         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1457                 if (BGE_IS_5714_FAMILY(sc)) {
1458                         /* 256 bytes for read and write. */
1459                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1460                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1461                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1462                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1463                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1464                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1465                         /*
1466                          * In the BCM5703, the DMA read watermark should
1467                          * be set to less than or equal to the maximum
1468                          * memory read byte count of the PCI-X command
1469                          * register.
1470                          */
1471                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1472                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1473                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1474                         /* 1536 bytes for read, 384 bytes for write. */
1475                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1476                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1477                 } else {
1478                         /* 384 bytes for read and write. */
1479                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1480                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1481                             0x0F;
1482                 }
1483                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1484                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1485                         uint32_t tmp;
1486
1487                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
1488                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1489                         if (tmp == 6 || tmp == 7)
1490                                 dma_rw_ctl |=
1491                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1492
1493                         /* Set PCI-X DMA write workaround. */
1494                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1495                 }
1496         } else {
1497                 /* Conventional PCI bus: 256 bytes for read and write. */
1498                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1499                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1500
1501                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1502                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1503                         dma_rw_ctl |= 0x0F;
1504         }
1505         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1506             sc->bge_asicrev == BGE_ASICREV_BCM5701)
1507                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1508                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1509         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1510             sc->bge_asicrev == BGE_ASICREV_BCM5704)
1511                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1512         if (BGE_IS_5717_PLUS(sc)) {
1513                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1514                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1515                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1516                 /*
1517                  * Enable HW workaround for controllers that misinterpret
1518                  * a status tag update and leave interrupts permanently
1519                  * disabled.
1520                  */
1521                 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1522                     sc->bge_asicrev != BGE_ASICREV_BCM57765)
1523                         dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1524         }
1525         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1526
1527         /*
1528          * Set up general mode register.
1529          */
1530         mode_ctl = bge_dma_swap_options(sc) | BGE_MODECTL_MAC_ATTN_INTR |
1531             BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM;
1532
1533         /*
1534          * BCM5701 B5 have a bug causing data corruption when using
1535          * 64-bit DMA reads, which can be terminated early and then
1536          * completed later as 32-bit accesses, in combination with
1537          * certain bridges.
1538          */
1539         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1540             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1541                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1542
1543         /*
1544          * Tell the firmware the driver is running
1545          */
1546         if (sc->bge_asf_mode & ASF_STACKUP)
1547                 mode_ctl |= BGE_MODECTL_STACKUP;
1548
1549         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1550
1551         /*
1552          * Disable memory write invalidate.  Apparently it is not supported
1553          * properly by these devices.  Also ensure that INTx isn't disabled,
1554          * as these chips need it even when using MSI.
1555          */
1556         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1557             PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1558
1559         /* Set the timer prescaler (always 66Mhz) */
1560         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1561
1562         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1563         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1564                 DELAY(40);      /* XXX */
1565
1566                 /* Put PHY into ready state */
1567                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1568                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1569                 DELAY(40);
1570         }
1571
1572         return (0);
1573 }
1574
1575 static int
1576 bge_blockinit(struct bge_softc *sc)
1577 {
1578         struct bge_rcb *rcb;
1579         bus_size_t vrcb;
1580         bge_hostaddr taddr;
1581         uint32_t dmactl, val;
1582         int i, limit;
1583
1584         /*
1585          * Initialize the memory window pointer register so that
1586          * we can access the first 32K of internal NIC RAM. This will
1587          * allow us to set up the TX send ring RCBs and the RX return
1588          * ring RCBs, plus other things which live in NIC memory.
1589          */
1590         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1591
1592         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1593
1594         if (!(BGE_IS_5705_PLUS(sc))) {
1595                 /* Configure mbuf memory pool */
1596                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1597                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1598                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1599                 else
1600                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1601
1602                 /* Configure DMA resource pool */
1603                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1604                     BGE_DMA_DESCRIPTORS);
1605                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1606         }
1607
1608         /* Configure mbuf pool watermarks */
1609         if (BGE_IS_5717_PLUS(sc)) {
1610                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1611                 if (sc->bge_ifp->if_mtu > ETHERMTU) {
1612                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1613                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1614                 } else {
1615                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1616                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1617                 }
1618         } else if (!BGE_IS_5705_PLUS(sc)) {
1619                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1620                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1621                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1622         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1623                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1624                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1625                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1626         } else {
1627                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1628                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1629                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1630         }
1631
1632         /* Configure DMA resource watermarks */
1633         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1634         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1635
1636         /* Enable buffer manager */
1637         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1638         /*
1639          * Change the arbitration algorithm of TXMBUF read request to
1640          * round-robin instead of priority based for BCM5719.  When
1641          * TXFIFO is almost empty, RDMA will hold its request until
1642          * TXFIFO is not almost empty.
1643          */
1644         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
1645                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1646         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1647
1648         /* Poll for buffer manager start indication */
1649         for (i = 0; i < BGE_TIMEOUT; i++) {
1650                 DELAY(10);
1651                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1652                         break;
1653         }
1654
1655         if (i == BGE_TIMEOUT) {
1656                 device_printf(sc->bge_dev, "buffer manager failed to start\n");
1657                 return (ENXIO);
1658         }
1659
1660         /* Enable flow-through queues */
1661         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1662         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1663
1664         /* Wait until queue initialization is complete */
1665         for (i = 0; i < BGE_TIMEOUT; i++) {
1666                 DELAY(10);
1667                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1668                         break;
1669         }
1670
1671         if (i == BGE_TIMEOUT) {
1672                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
1673                 return (ENXIO);
1674         }
1675
1676         /*
1677          * Summary of rings supported by the controller:
1678          *
1679          * Standard Receive Producer Ring
1680          * - This ring is used to feed receive buffers for "standard"
1681          *   sized frames (typically 1536 bytes) to the controller.
1682          *
1683          * Jumbo Receive Producer Ring
1684          * - This ring is used to feed receive buffers for jumbo sized
1685          *   frames (i.e. anything bigger than the "standard" frames)
1686          *   to the controller.
1687          *
1688          * Mini Receive Producer Ring
1689          * - This ring is used to feed receive buffers for "mini"
1690          *   sized frames to the controller.
1691          * - This feature required external memory for the controller
1692          *   but was never used in a production system.  Should always
1693          *   be disabled.
1694          *
1695          * Receive Return Ring
1696          * - After the controller has placed an incoming frame into a
1697          *   receive buffer that buffer is moved into a receive return
1698          *   ring.  The driver is then responsible to passing the
1699          *   buffer up to the stack.  Many versions of the controller
1700          *   support multiple RR rings.
1701          *
1702          * Send Ring
1703          * - This ring is used for outgoing frames.  Many versions of
1704          *   the controller support multiple send rings.
1705          */
1706
1707         /* Initialize the standard receive producer ring control block. */
1708         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1709         rcb->bge_hostaddr.bge_addr_lo =
1710             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1711         rcb->bge_hostaddr.bge_addr_hi =
1712             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1713         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1714             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1715         if (BGE_IS_5717_PLUS(sc)) {
1716                 /*
1717                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1718                  * Bits 15-2 : Maximum RX frame size
1719                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1720                  * Bit 0     : Reserved
1721                  */
1722                 rcb->bge_maxlen_flags =
1723                     BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
1724         } else if (BGE_IS_5705_PLUS(sc)) {
1725                 /*
1726                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1727                  * Bits 15-2 : Reserved (should be 0)
1728                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1729                  * Bit 0     : Reserved
1730                  */
1731                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1732         } else {
1733                 /*
1734                  * Ring size is always XXX entries
1735                  * Bits 31-16: Maximum RX frame size
1736                  * Bits 15-2 : Reserved (should be 0)
1737                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1738                  * Bit 0     : Reserved
1739                  */
1740                 rcb->bge_maxlen_flags =
1741                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1742         }
1743         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1744             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1745             sc->bge_asicrev == BGE_ASICREV_BCM5720)
1746                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1747         else
1748                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1749         /* Write the standard receive producer ring control block. */
1750         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1751         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1752         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1753         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1754
1755         /* Reset the standard receive producer ring producer index. */
1756         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1757
1758         /*
1759          * Initialize the jumbo RX producer ring control
1760          * block.  We set the 'ring disabled' bit in the
1761          * flags field until we're actually ready to start
1762          * using this ring (i.e. once we set the MTU
1763          * high enough to require it).
1764          */
1765         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1766                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1767                 /* Get the jumbo receive producer ring RCB parameters. */
1768                 rcb->bge_hostaddr.bge_addr_lo =
1769                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1770                 rcb->bge_hostaddr.bge_addr_hi =
1771                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1772                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1773                     sc->bge_cdata.bge_rx_jumbo_ring_map,
1774                     BUS_DMASYNC_PREREAD);
1775                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1776                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1777                 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1778                     sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1779                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
1780                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1781                 else
1782                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1783                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1784                     rcb->bge_hostaddr.bge_addr_hi);
1785                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1786                     rcb->bge_hostaddr.bge_addr_lo);
1787                 /* Program the jumbo receive producer ring RCB parameters. */
1788                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1789                     rcb->bge_maxlen_flags);
1790                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1791                 /* Reset the jumbo receive producer ring producer index. */
1792                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1793         }
1794
1795         /* Disable the mini receive producer ring RCB. */
1796         if (BGE_IS_5700_FAMILY(sc)) {
1797                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1798                 rcb->bge_maxlen_flags =
1799                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1800                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1801                     rcb->bge_maxlen_flags);
1802                 /* Reset the mini receive producer ring producer index. */
1803                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1804         }
1805
1806         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1807         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1808                 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1809                     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1810                     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
1811                         CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1812                             (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1813         }
1814         /*
1815          * The BD ring replenish thresholds control how often the
1816          * hardware fetches new BD's from the producer rings in host
1817          * memory.  Setting the value too low on a busy system can
1818          * starve the hardware and recue the throughpout.
1819          *
1820          * Set the BD ring replentish thresholds. The recommended
1821          * values are 1/8th the number of descriptors allocated to
1822          * each ring.
1823          * XXX The 5754 requires a lower threshold, so it might be a
1824          * requirement of all 575x family chips.  The Linux driver sets
1825          * the lower threshold for all 5705 family chips as well, but there
1826          * are reports that it might not need to be so strict.
1827          *
1828          * XXX Linux does some extra fiddling here for the 5906 parts as
1829          * well.
1830          */
1831         if (BGE_IS_5705_PLUS(sc))
1832                 val = 8;
1833         else
1834                 val = BGE_STD_RX_RING_CNT / 8;
1835         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1836         if (BGE_IS_JUMBO_CAPABLE(sc))
1837                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1838                     BGE_JUMBO_RX_RING_CNT/8);
1839         if (BGE_IS_5717_PLUS(sc)) {
1840                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1841                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1842         }
1843
1844         /*
1845          * Disable all send rings by setting the 'ring disabled' bit
1846          * in the flags field of all the TX send ring control blocks,
1847          * located in NIC memory.
1848          */
1849         if (!BGE_IS_5705_PLUS(sc))
1850                 /* 5700 to 5704 had 16 send rings. */
1851                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1852         else
1853                 limit = 1;
1854         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1855         for (i = 0; i < limit; i++) {
1856                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1857                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1858                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1859                 vrcb += sizeof(struct bge_rcb);
1860         }
1861
1862         /* Configure send ring RCB 0 (we use only the first ring) */
1863         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1864         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1865         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1866         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1867         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1868             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1869             sc->bge_asicrev == BGE_ASICREV_BCM5720)
1870                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
1871         else
1872                 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1873                     BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1874         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1875             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1876
1877         /*
1878          * Disable all receive return rings by setting the
1879          * 'ring diabled' bit in the flags field of all the receive
1880          * return ring control blocks, located in NIC memory.
1881          */
1882         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1883             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1884             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
1885                 /* Should be 17, use 16 until we get an SRAM map. */
1886                 limit = 16;
1887         } else if (!BGE_IS_5705_PLUS(sc))
1888                 limit = BGE_RX_RINGS_MAX;
1889         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1890             sc->bge_asicrev == BGE_ASICREV_BCM57765)
1891                 limit = 4;
1892         else
1893                 limit = 1;
1894         /* Disable all receive return rings. */
1895         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1896         for (i = 0; i < limit; i++) {
1897                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1898                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1899                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1900                     BGE_RCB_FLAG_RING_DISABLED);
1901                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1902                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1903                     (i * (sizeof(uint64_t))), 0);
1904                 vrcb += sizeof(struct bge_rcb);
1905         }
1906
1907         /*
1908          * Set up receive return ring 0.  Note that the NIC address
1909          * for RX return rings is 0x0.  The return rings live entirely
1910          * within the host, so the nicaddr field in the RCB isn't used.
1911          */
1912         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1913         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1914         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1915         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1916         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1917         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1918             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1919
1920         /* Set random backoff seed for TX */
1921         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1922             IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1923             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1924             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1925             BGE_TX_BACKOFF_SEED_MASK);
1926
1927         /* Set inter-packet gap */
1928         val = 0x2620;
1929         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
1930                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
1931                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
1932         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
1933
1934         /*
1935          * Specify which ring to use for packets that don't match
1936          * any RX rules.
1937          */
1938         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1939
1940         /*
1941          * Configure number of RX lists. One interrupt distribution
1942          * list, sixteen active lists, one bad frames class.
1943          */
1944         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1945
1946         /* Inialize RX list placement stats mask. */
1947         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1948         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1949
1950         /* Disable host coalescing until we get it set up */
1951         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1952
1953         /* Poll to make sure it's shut down. */
1954         for (i = 0; i < BGE_TIMEOUT; i++) {
1955                 DELAY(10);
1956                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1957                         break;
1958         }
1959
1960         if (i == BGE_TIMEOUT) {
1961                 device_printf(sc->bge_dev,
1962                     "host coalescing engine failed to idle\n");
1963                 return (ENXIO);
1964         }
1965
1966         /* Set up host coalescing defaults */
1967         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1968         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1969         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1970         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1971         if (!(BGE_IS_5705_PLUS(sc))) {
1972                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1973                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1974         }
1975         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1976         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1977
1978         /* Set up address of statistics block */
1979         if (!(BGE_IS_5705_PLUS(sc))) {
1980                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1981                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1982                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1983                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1984                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1985                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1986                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1987         }
1988
1989         /* Set up address of status block */
1990         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1991             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1992         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1993             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1994
1995         /* Set up status block size. */
1996         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1997             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1998                 val = BGE_STATBLKSZ_FULL;
1999                 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2000         } else {
2001                 val = BGE_STATBLKSZ_32BYTE;
2002                 bzero(sc->bge_ldata.bge_status_block, 32);
2003         }
2004         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2005             sc->bge_cdata.bge_status_map,
2006             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2007
2008         /* Turn on host coalescing state machine */
2009         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2010
2011         /* Turn on RX BD completion state machine and enable attentions */
2012         CSR_WRITE_4(sc, BGE_RBDC_MODE,
2013             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2014
2015         /* Turn on RX list placement state machine */
2016         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2017
2018         /* Turn on RX list selector state machine. */
2019         if (!(BGE_IS_5705_PLUS(sc)))
2020                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2021
2022         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2023             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2024             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2025             BGE_MACMODE_FRMHDR_DMA_ENB;
2026
2027         if (sc->bge_flags & BGE_FLAG_TBI)
2028                 val |= BGE_PORTMODE_TBI;
2029         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2030                 val |= BGE_PORTMODE_GMII;
2031         else
2032                 val |= BGE_PORTMODE_MII;
2033
2034         /* Turn on DMA, clear stats */
2035         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2036
2037         /* Set misc. local control, enable interrupts on attentions */
2038         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2039
2040 #ifdef notdef
2041         /* Assert GPIO pins for PHY reset */
2042         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2043             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2044         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2045             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2046 #endif
2047
2048         /* Turn on DMA completion state machine */
2049         if (!(BGE_IS_5705_PLUS(sc)))
2050                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2051
2052         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2053
2054         /* Enable host coalescing bug fix. */
2055         if (BGE_IS_5755_PLUS(sc))
2056                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2057
2058         /* Request larger DMA burst size to get better performance. */
2059         if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2060                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2061
2062         /* Turn on write DMA state machine */
2063         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2064         DELAY(40);
2065
2066         /* Turn on read DMA state machine */
2067         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2068
2069         if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2070                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2071
2072         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2073             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2074             sc->bge_asicrev == BGE_ASICREV_BCM57780)
2075                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2076                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2077                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2078         if (sc->bge_flags & BGE_FLAG_PCIE)
2079                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2080         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2081                 val |= BGE_RDMAMODE_TSO4_ENABLE;
2082                 if (sc->bge_flags & BGE_FLAG_TSO3 ||
2083                     sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2084                     sc->bge_asicrev == BGE_ASICREV_BCM57780)
2085                         val |= BGE_RDMAMODE_TSO6_ENABLE;
2086         }
2087
2088         if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2089                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2090                         BGE_RDMAMODE_H2BNC_VLAN_DET;
2091                 /*
2092                  * Allow multiple outstanding read requests from
2093                  * non-LSO read DMA engine.
2094                  */
2095                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2096         }
2097
2098         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2099             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2100             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2101             sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2102             BGE_IS_5717_PLUS(sc)) {
2103                 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2104                 /*
2105                  * Adjust tx margin to prevent TX data corruption and
2106                  * fix internal FIFO overflow.
2107                  */
2108                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2109                     sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2110                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2111                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2112                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2113                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2114                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2115                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2116                 }
2117                 /*
2118                  * Enable fix for read DMA FIFO overruns.
2119                  * The fix is to limit the number of RX BDs
2120                  * the hardware would fetch at a fime.
2121                  */
2122                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2123                     BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2124         }
2125
2126         if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2127                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2128                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2129                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2130                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2131         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2132                 /*
2133                  * Allow 4KB burst length reads for non-LSO frames.
2134                  * Enable 512B burst length reads for buffer descriptors.
2135                  */
2136                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2137                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2138                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2139                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2140         }
2141
2142         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2143         DELAY(40);
2144
2145         /* Turn on RX data completion state machine */
2146         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2147
2148         /* Turn on RX BD initiator state machine */
2149         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2150
2151         /* Turn on RX data and RX BD initiator state machine */
2152         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2153
2154         /* Turn on Mbuf cluster free state machine */
2155         if (!(BGE_IS_5705_PLUS(sc)))
2156                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2157
2158         /* Turn on send BD completion state machine */
2159         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2160
2161         /* Turn on send data completion state machine */
2162         val = BGE_SDCMODE_ENABLE;
2163         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2164                 val |= BGE_SDCMODE_CDELAY;
2165         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2166
2167         /* Turn on send data initiator state machine */
2168         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2169                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2170                     BGE_SDIMODE_HW_LSO_PRE_DMA);
2171         else
2172                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2173
2174         /* Turn on send BD initiator state machine */
2175         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2176
2177         /* Turn on send BD selector state machine */
2178         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2179
2180         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2181         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2182             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2183
2184         /* ack/clear link change events */
2185         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2186             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2187             BGE_MACSTAT_LINK_CHANGED);
2188         CSR_WRITE_4(sc, BGE_MI_STS, 0);
2189
2190         /*
2191          * Enable attention when the link has changed state for
2192          * devices that use auto polling.
2193          */
2194         if (sc->bge_flags & BGE_FLAG_TBI) {
2195                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2196         } else {
2197                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2198                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2199                         DELAY(80);
2200                 }
2201                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2202                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2203                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2204                             BGE_EVTENB_MI_INTERRUPT);
2205         }
2206
2207         /*
2208          * Clear any pending link state attention.
2209          * Otherwise some link state change events may be lost until attention
2210          * is cleared by bge_intr() -> bge_link_upd() sequence.
2211          * It's not necessary on newer BCM chips - perhaps enabling link
2212          * state change attentions implies clearing pending attention.
2213          */
2214         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2215             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2216             BGE_MACSTAT_LINK_CHANGED);
2217
2218         /* Enable link state change attentions. */
2219         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2220
2221         return (0);
2222 }
2223
2224 const struct bge_revision *
2225 bge_lookup_rev(uint32_t chipid)
2226 {
2227         const struct bge_revision *br;
2228
2229         for (br = bge_revisions; br->br_name != NULL; br++) {
2230                 if (br->br_chipid == chipid)
2231                         return (br);
2232         }
2233
2234         for (br = bge_majorrevs; br->br_name != NULL; br++) {
2235                 if (br->br_chipid == BGE_ASICREV(chipid))
2236                         return (br);
2237         }
2238
2239         return (NULL);
2240 }
2241
2242 const struct bge_vendor *
2243 bge_lookup_vendor(uint16_t vid)
2244 {
2245         const struct bge_vendor *v;
2246
2247         for (v = bge_vendors; v->v_name != NULL; v++)
2248                 if (v->v_id == vid)
2249                         return (v);
2250
2251         panic("%s: unknown vendor %d", __func__, vid);
2252         return (NULL);
2253 }
2254
2255 /*
2256  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2257  * against our list and return its name if we find a match.
2258  *
2259  * Note that since the Broadcom controller contains VPD support, we
2260  * try to get the device name string from the controller itself instead
2261  * of the compiled-in string. It guarantees we'll always announce the
2262  * right product name. We fall back to the compiled-in string when
2263  * VPD is unavailable or corrupt.
2264  */
2265 static int
2266 bge_probe(device_t dev)
2267 {
2268         char buf[96];
2269         char model[64];
2270         const struct bge_revision *br;
2271         const char *pname;
2272         struct bge_softc *sc = device_get_softc(dev);
2273         const struct bge_type *t = bge_devs;
2274         const struct bge_vendor *v;
2275         uint32_t id;
2276         uint16_t did, vid;
2277
2278         sc->bge_dev = dev;
2279         vid = pci_get_vendor(dev);
2280         did = pci_get_device(dev);
2281         while(t->bge_vid != 0) {
2282                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
2283                         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2284                             BGE_PCIMISCCTL_ASICREV_SHIFT;
2285                         if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2286                                 /*
2287                                  * Find the ASCI revision.  Different chips
2288                                  * use different registers.
2289                                  */
2290                                 switch (pci_get_device(dev)) {
2291                                 case BCOM_DEVICEID_BCM5717:
2292                                 case BCOM_DEVICEID_BCM5718:
2293                                 case BCOM_DEVICEID_BCM5719:
2294                                 case BCOM_DEVICEID_BCM5720:
2295                                         id = pci_read_config(dev,
2296                                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
2297                                         break;
2298                                 case BCOM_DEVICEID_BCM57761:
2299                                 case BCOM_DEVICEID_BCM57765:
2300                                 case BCOM_DEVICEID_BCM57781:
2301                                 case BCOM_DEVICEID_BCM57785:
2302                                 case BCOM_DEVICEID_BCM57791:
2303                                 case BCOM_DEVICEID_BCM57795:
2304                                         id = pci_read_config(dev,
2305                                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
2306                                         break;
2307                                 default:
2308                                         id = pci_read_config(dev,
2309                                             BGE_PCI_PRODID_ASICREV, 4);
2310                                 }
2311                         }
2312                         br = bge_lookup_rev(id);
2313                         v = bge_lookup_vendor(vid);
2314                         if (bge_has_eaddr(sc) &&
2315                             pci_get_vpd_ident(dev, &pname) == 0)
2316                                 snprintf(model, 64, "%s", pname);
2317                         else
2318                                 snprintf(model, 64, "%s %s", v->v_name,
2319                                     br != NULL ? br->br_name :
2320                                     "NetXtreme Ethernet Controller");
2321                         snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
2322                             br != NULL ? "" : "unknown ", id);
2323                         device_set_desc_copy(dev, buf);
2324                         return (0);
2325                 }
2326                 t++;
2327         }
2328
2329         return (ENXIO);
2330 }
2331
2332 static void
2333 bge_dma_free(struct bge_softc *sc)
2334 {
2335         int i;
2336
2337         /* Destroy DMA maps for RX buffers. */
2338         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2339                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
2340                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2341                             sc->bge_cdata.bge_rx_std_dmamap[i]);
2342         }
2343         if (sc->bge_cdata.bge_rx_std_sparemap)
2344                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2345                     sc->bge_cdata.bge_rx_std_sparemap);
2346
2347         /* Destroy DMA maps for jumbo RX buffers. */
2348         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2349                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2350                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2351                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2352         }
2353         if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2354                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2355                     sc->bge_cdata.bge_rx_jumbo_sparemap);
2356
2357         /* Destroy DMA maps for TX buffers. */
2358         for (i = 0; i < BGE_TX_RING_CNT; i++) {
2359                 if (sc->bge_cdata.bge_tx_dmamap[i])
2360                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2361                             sc->bge_cdata.bge_tx_dmamap[i]);
2362         }
2363
2364         if (sc->bge_cdata.bge_rx_mtag)
2365                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2366         if (sc->bge_cdata.bge_mtag_jumbo)
2367                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2368         if (sc->bge_cdata.bge_tx_mtag)
2369                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2370
2371         /* Destroy standard RX ring. */
2372         if (sc->bge_cdata.bge_rx_std_ring_map)
2373                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2374                     sc->bge_cdata.bge_rx_std_ring_map);
2375         if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2376                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2377                     sc->bge_ldata.bge_rx_std_ring,
2378                     sc->bge_cdata.bge_rx_std_ring_map);
2379
2380         if (sc->bge_cdata.bge_rx_std_ring_tag)
2381                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2382
2383         /* Destroy jumbo RX ring. */
2384         if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2385                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2386                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2387
2388         if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2389             sc->bge_ldata.bge_rx_jumbo_ring)
2390                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2391                     sc->bge_ldata.bge_rx_jumbo_ring,
2392                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2393
2394         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2395                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2396
2397         /* Destroy RX return ring. */
2398         if (sc->bge_cdata.bge_rx_return_ring_map)
2399                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2400                     sc->bge_cdata.bge_rx_return_ring_map);
2401
2402         if (sc->bge_cdata.bge_rx_return_ring_map &&
2403             sc->bge_ldata.bge_rx_return_ring)
2404                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2405                     sc->bge_ldata.bge_rx_return_ring,
2406                     sc->bge_cdata.bge_rx_return_ring_map);
2407
2408         if (sc->bge_cdata.bge_rx_return_ring_tag)
2409                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2410
2411         /* Destroy TX ring. */
2412         if (sc->bge_cdata.bge_tx_ring_map)
2413                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2414                     sc->bge_cdata.bge_tx_ring_map);
2415
2416         if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2417                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2418                     sc->bge_ldata.bge_tx_ring,
2419                     sc->bge_cdata.bge_tx_ring_map);
2420
2421         if (sc->bge_cdata.bge_tx_ring_tag)
2422                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2423
2424         /* Destroy status block. */
2425         if (sc->bge_cdata.bge_status_map)
2426                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2427                     sc->bge_cdata.bge_status_map);
2428
2429         if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2430                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2431                     sc->bge_ldata.bge_status_block,
2432                     sc->bge_cdata.bge_status_map);
2433
2434         if (sc->bge_cdata.bge_status_tag)
2435                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2436
2437         /* Destroy statistics block. */
2438         if (sc->bge_cdata.bge_stats_map)
2439                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2440                     sc->bge_cdata.bge_stats_map);
2441
2442         if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2443                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2444                     sc->bge_ldata.bge_stats,
2445                     sc->bge_cdata.bge_stats_map);
2446
2447         if (sc->bge_cdata.bge_stats_tag)
2448                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2449
2450         if (sc->bge_cdata.bge_buffer_tag)
2451                 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2452
2453         /* Destroy the parent tag. */
2454         if (sc->bge_cdata.bge_parent_tag)
2455                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2456 }
2457
2458 static int
2459 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2460     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2461     bus_addr_t *paddr, const char *msg)
2462 {
2463         struct bge_dmamap_arg ctx;
2464         bus_addr_t lowaddr;
2465         bus_size_t ring_end;
2466         int error;
2467
2468         lowaddr = BUS_SPACE_MAXADDR;
2469 again:
2470         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2471             alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2472             NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2473         if (error != 0) {
2474                 device_printf(sc->bge_dev,
2475                     "could not create %s dma tag\n", msg);
2476                 return (ENOMEM);
2477         }
2478         /* Allocate DMA'able memory for ring. */
2479         error = bus_dmamem_alloc(*tag, (void **)ring,
2480             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2481         if (error != 0) {
2482                 device_printf(sc->bge_dev,
2483                     "could not allocate DMA'able memory for %s\n", msg);
2484                 return (ENOMEM);
2485         }
2486         /* Load the address of the ring. */
2487         ctx.bge_busaddr = 0;
2488         error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2489             &ctx, BUS_DMA_NOWAIT);
2490         if (error != 0) {
2491                 device_printf(sc->bge_dev,
2492                     "could not load DMA'able memory for %s\n", msg);
2493                 return (ENOMEM);
2494         }
2495         *paddr = ctx.bge_busaddr;
2496         ring_end = *paddr + maxsize;
2497         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 &&
2498             BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) {
2499                 /*
2500                  * 4GB boundary crossed.  Limit maximum allowable DMA
2501                  * address space to 32bit and try again.
2502                  */
2503                 bus_dmamap_unload(*tag, *map);
2504                 bus_dmamem_free(*tag, *ring, *map);
2505                 bus_dma_tag_destroy(*tag);
2506                 if (bootverbose)
2507                         device_printf(sc->bge_dev, "4GB boundary crossed, "
2508                             "limit DMA address space to 32bit for %s\n", msg);
2509                 *ring = NULL;
2510                 *tag = NULL;
2511                 *map = NULL;
2512                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
2513                 goto again;
2514         }
2515         return (0);
2516 }
2517
2518 static int
2519 bge_dma_alloc(struct bge_softc *sc)
2520 {
2521         bus_addr_t lowaddr;
2522         bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz;
2523         int i, error;
2524
2525         lowaddr = BUS_SPACE_MAXADDR;
2526         if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2527                 lowaddr = BGE_DMA_MAXADDR;
2528         /*
2529          * Allocate the parent bus DMA tag appropriate for PCI.
2530          */
2531         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2532             1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2533             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2534             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2535         if (error != 0) {
2536                 device_printf(sc->bge_dev,
2537                     "could not allocate parent dma tag\n");
2538                 return (ENOMEM);
2539         }
2540
2541         /* Create tag for standard RX ring. */
2542         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2543             &sc->bge_cdata.bge_rx_std_ring_tag,
2544             (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2545             &sc->bge_cdata.bge_rx_std_ring_map,
2546             &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2547         if (error)
2548                 return (error);
2549
2550         /* Create tag for RX return ring. */
2551         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2552             &sc->bge_cdata.bge_rx_return_ring_tag,
2553             (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2554             &sc->bge_cdata.bge_rx_return_ring_map,
2555             &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2556         if (error)
2557                 return (error);
2558
2559         /* Create tag for TX ring. */
2560         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2561             &sc->bge_cdata.bge_tx_ring_tag,
2562             (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2563             &sc->bge_cdata.bge_tx_ring_map,
2564             &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2565         if (error)
2566                 return (error);
2567
2568         /*
2569          * Create tag for status block.
2570          * Because we only use single Tx/Rx/Rx return ring, use
2571          * minimum status block size except BCM5700 AX/BX which
2572          * seems to want to see full status block size regardless
2573          * of configured number of ring.
2574          */
2575         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2576             sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2577                 sbsz = BGE_STATUS_BLK_SZ;
2578         else
2579                 sbsz = 32;
2580         error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2581             &sc->bge_cdata.bge_status_tag,
2582             (uint8_t **)&sc->bge_ldata.bge_status_block,
2583             &sc->bge_cdata.bge_status_map,
2584             &sc->bge_ldata.bge_status_block_paddr, "status block");
2585         if (error)
2586                 return (error);
2587
2588         /* Create tag for statistics block. */
2589         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2590             &sc->bge_cdata.bge_stats_tag,
2591             (uint8_t **)&sc->bge_ldata.bge_stats,
2592             &sc->bge_cdata.bge_stats_map,
2593             &sc->bge_ldata.bge_stats_paddr, "statistics block");
2594         if (error)
2595                 return (error);
2596
2597         /* Create tag for jumbo RX ring. */
2598         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2599                 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
2600                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
2601                     (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
2602                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
2603                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
2604                 if (error)
2605                         return (error);
2606         }
2607
2608         /* Create parent tag for buffers. */
2609         boundary = 0;
2610         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
2611                 boundary = BGE_DMA_BNDRY;
2612                 /*
2613                  * XXX
2614                  * watchdog timeout issue was observed on BCM5704 which
2615                  * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
2616                  * Both limiting DMA address space to 32bits and flushing
2617                  * mailbox write seem to address the issue.
2618                  */
2619                 if (sc->bge_pcixcap != 0)
2620                         lowaddr = BUS_SPACE_MAXADDR_32BIT;
2621         }
2622         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2623             1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL,
2624             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2625             0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag);
2626         if (error != 0) {
2627                 device_printf(sc->bge_dev,
2628                     "could not allocate buffer dma tag\n");
2629                 return (ENOMEM);
2630         }
2631         /* Create tag for Tx mbufs. */
2632         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2633                 txsegsz = BGE_TSOSEG_SZ;
2634                 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2635         } else {
2636                 txsegsz = MCLBYTES;
2637                 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2638         }
2639         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
2640             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2641             txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2642             &sc->bge_cdata.bge_tx_mtag);
2643
2644         if (error) {
2645                 device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2646                 return (ENOMEM);
2647         }
2648
2649         /* Create tag for Rx mbufs. */
2650         if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
2651                 rxmaxsegsz = MJUM9BYTES;
2652         else
2653                 rxmaxsegsz = MCLBYTES;
2654         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
2655             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
2656             rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2657
2658         if (error) {
2659                 device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2660                 return (ENOMEM);
2661         }
2662
2663         /* Create DMA maps for RX buffers. */
2664         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2665             &sc->bge_cdata.bge_rx_std_sparemap);
2666         if (error) {
2667                 device_printf(sc->bge_dev,
2668                     "can't create spare DMA map for RX\n");
2669                 return (ENOMEM);
2670         }
2671         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2672                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2673                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
2674                 if (error) {
2675                         device_printf(sc->bge_dev,
2676                             "can't create DMA map for RX\n");
2677                         return (ENOMEM);
2678                 }
2679         }
2680
2681         /* Create DMA maps for TX buffers. */
2682         for (i = 0; i < BGE_TX_RING_CNT; i++) {
2683                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2684                             &sc->bge_cdata.bge_tx_dmamap[i]);
2685                 if (error) {
2686                         device_printf(sc->bge_dev,
2687                             "can't create DMA map for TX\n");
2688                         return (ENOMEM);
2689                 }
2690         }
2691
2692         /* Create tags for jumbo RX buffers. */
2693         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2694                 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
2695                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2696                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2697                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2698                 if (error) {
2699                         device_printf(sc->bge_dev,
2700                             "could not allocate jumbo dma tag\n");
2701                         return (ENOMEM);
2702                 }
2703                 /* Create DMA maps for jumbo RX buffers. */
2704                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2705                     0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2706                 if (error) {
2707                         device_printf(sc->bge_dev,
2708                             "can't create spare DMA map for jumbo RX\n");
2709                         return (ENOMEM);
2710                 }
2711                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2712                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2713                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2714                         if (error) {
2715                                 device_printf(sc->bge_dev,
2716                                     "can't create DMA map for jumbo RX\n");
2717                                 return (ENOMEM);
2718                         }
2719                 }
2720         }
2721
2722         return (0);
2723 }
2724
2725 /*
2726  * Return true if this device has more than one port.
2727  */
2728 static int
2729 bge_has_multiple_ports(struct bge_softc *sc)
2730 {
2731         device_t dev = sc->bge_dev;
2732         u_int b, d, f, fscan, s;
2733
2734         d = pci_get_domain(dev);
2735         b = pci_get_bus(dev);
2736         s = pci_get_slot(dev);
2737         f = pci_get_function(dev);
2738         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2739                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2740                         return (1);
2741         return (0);
2742 }
2743
2744 /*
2745  * Return true if MSI can be used with this device.
2746  */
2747 static int
2748 bge_can_use_msi(struct bge_softc *sc)
2749 {
2750         int can_use_msi = 0;
2751
2752         if (sc->bge_msi == 0)
2753                 return (0);
2754
2755         /* Disable MSI for polling(4). */
2756 #ifdef DEVICE_POLLING
2757         return (0);
2758 #endif
2759         switch (sc->bge_asicrev) {
2760         case BGE_ASICREV_BCM5714_A0:
2761         case BGE_ASICREV_BCM5714:
2762                 /*
2763                  * Apparently, MSI doesn't work when these chips are
2764                  * configured in single-port mode.
2765                  */
2766                 if (bge_has_multiple_ports(sc))
2767                         can_use_msi = 1;
2768                 break;
2769         case BGE_ASICREV_BCM5750:
2770                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2771                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2772                         can_use_msi = 1;
2773                 break;
2774         default:
2775                 if (BGE_IS_575X_PLUS(sc))
2776                         can_use_msi = 1;
2777         }
2778         return (can_use_msi);
2779 }
2780
2781 static int
2782 bge_mbox_reorder(struct bge_softc *sc)
2783 {
2784         /* Lists of PCI bridges that are known to reorder mailbox writes. */
2785         static const struct mbox_reorder {
2786                 const uint16_t vendor;
2787                 const uint16_t device;
2788                 const char *desc;
2789         } const mbox_reorder_lists[] = {
2790                 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
2791         };
2792         devclass_t pci, pcib;
2793         device_t bus, dev;
2794         int i;
2795
2796         pci = devclass_find("pci");
2797         pcib = devclass_find("pcib");
2798         dev = sc->bge_dev;
2799         bus = device_get_parent(dev);
2800         for (;;) {
2801                 dev = device_get_parent(bus);
2802                 bus = device_get_parent(dev);
2803                 if (device_get_devclass(dev) != pcib)
2804                         break;
2805                 for (i = 0; i < nitems(mbox_reorder_lists); i++) {
2806                         if (pci_get_vendor(dev) ==
2807                             mbox_reorder_lists[i].vendor &&
2808                             pci_get_device(dev) ==
2809                             mbox_reorder_lists[i].device) {
2810                                 device_printf(sc->bge_dev,
2811                                     "enabling MBOX workaround for %s\n",
2812                                     mbox_reorder_lists[i].desc);
2813                                 return (1);
2814                         }
2815                 }
2816                 if (device_get_devclass(bus) != pci)
2817                         break;
2818         }
2819         return (0);
2820 }
2821
2822 static void
2823 bge_devinfo(struct bge_softc *sc)
2824 {
2825         uint32_t cfg, clk;
2826
2827         device_printf(sc->bge_dev,
2828             "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
2829             sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
2830         if (sc->bge_flags & BGE_FLAG_PCIE)
2831                 printf("PCI-E\n");
2832         else if (sc->bge_flags & BGE_FLAG_PCIX) {
2833                 printf("PCI-X ");
2834                 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2835                 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
2836                         clk = 133;
2837                 else {
2838                         clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
2839                         switch (clk) {
2840                         case 0:
2841                                 clk = 33;
2842                                 break;
2843                         case 2:
2844                                 clk = 50;
2845                                 break;
2846                         case 4:
2847                                 clk = 66;
2848                                 break;
2849                         case 6:
2850                                 clk = 100;
2851                                 break;
2852                         case 7:
2853                                 clk = 133;
2854                                 break;
2855                         }
2856                 }
2857                 printf("%u MHz\n", clk);
2858         } else {
2859                 if (sc->bge_pcixcap != 0)
2860                         printf("PCI on PCI-X ");
2861                 else
2862                         printf("PCI ");
2863                 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
2864                 if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
2865                         clk = 66;
2866                 else
2867                         clk = 33;
2868                 if (cfg & BGE_PCISTATE_32BIT_BUS)
2869                         printf("%u MHz; 32bit\n", clk);
2870                 else
2871                         printf("%u MHz; 64bit\n", clk);
2872         }
2873 }
2874
2875 static int
2876 bge_attach(device_t dev)
2877 {
2878         struct ifnet *ifp;
2879         struct bge_softc *sc;
2880         uint32_t hwcfg = 0, misccfg;
2881         u_char eaddr[ETHER_ADDR_LEN];
2882         int capmask, error, f, msicount, phy_addr, reg, rid, trys;
2883
2884         sc = device_get_softc(dev);
2885         sc->bge_dev = dev;
2886
2887         TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2888
2889         /*
2890          * Map control/status registers.
2891          */
2892         pci_enable_busmaster(dev);
2893
2894         rid = PCIR_BAR(0);
2895         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2896             RF_ACTIVE);
2897
2898         if (sc->bge_res == NULL) {
2899                 device_printf (sc->bge_dev, "couldn't map memory\n");
2900                 error = ENXIO;
2901                 goto fail;
2902         }
2903
2904         /* Save various chip information. */
2905         sc->bge_chipid =
2906             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2907             BGE_PCIMISCCTL_ASICREV_SHIFT;
2908         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2909                 /*
2910                  * Find the ASCI revision.  Different chips use different
2911                  * registers.
2912                  */
2913                 switch (pci_get_device(dev)) {
2914                 case BCOM_DEVICEID_BCM5717:
2915                 case BCOM_DEVICEID_BCM5718:
2916                 case BCOM_DEVICEID_BCM5719:
2917                 case BCOM_DEVICEID_BCM5720:
2918                         sc->bge_chipid = pci_read_config(dev,
2919                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
2920                         break;
2921                 case BCOM_DEVICEID_BCM57761:
2922                 case BCOM_DEVICEID_BCM57765:
2923                 case BCOM_DEVICEID_BCM57781:
2924                 case BCOM_DEVICEID_BCM57785:
2925                 case BCOM_DEVICEID_BCM57791:
2926                 case BCOM_DEVICEID_BCM57795:
2927                         sc->bge_chipid = pci_read_config(dev,
2928                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
2929                         break;
2930                 default:
2931                         sc->bge_chipid = pci_read_config(dev,
2932                             BGE_PCI_PRODID_ASICREV, 4);
2933                 }
2934         }
2935         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2936         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2937
2938         /* Set default PHY address. */
2939         phy_addr = 1;
2940          /*
2941           * PHY address mapping for various devices.
2942           *
2943           *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2944           * ---------+-------+-------+-------+-------+
2945           * BCM57XX  |   1   |   X   |   X   |   X   |
2946           * BCM5704  |   1   |   X   |   1   |   X   |
2947           * BCM5717  |   1   |   8   |   2   |   9   |
2948           * BCM5719  |   1   |   8   |   2   |   9   |
2949           * BCM5720  |   1   |   8   |   2   |   9   |
2950           *
2951           * Other addresses may respond but they are not
2952           * IEEE compliant PHYs and should be ignored.
2953           */
2954         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2955             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2956             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2957                 f = pci_get_function(dev);
2958                 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2959                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2960                             BGE_SGDIGSTS_IS_SERDES)
2961                                 phy_addr = f + 8;
2962                         else
2963                                 phy_addr = f + 1;
2964                 } else {
2965                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2966                             BGE_CPMU_PHY_STRAP_IS_SERDES)
2967                                 phy_addr = f + 8;
2968                         else
2969                                 phy_addr = f + 1;
2970                 }
2971         }
2972
2973         /*
2974          * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2975          * 5705 A0 and A1 chips.
2976          */
2977         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2978             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2979             (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2980             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2981             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2982                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
2983
2984         if (bge_has_eaddr(sc))
2985                 sc->bge_flags |= BGE_FLAG_EADDR;
2986
2987         /* Save chipset family. */
2988         switch (sc->bge_asicrev) {
2989         case BGE_ASICREV_BCM5717:
2990         case BGE_ASICREV_BCM5719:
2991         case BGE_ASICREV_BCM5720:
2992         case BGE_ASICREV_BCM57765:
2993                 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
2994                     BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
2995                     BGE_FLAG_JUMBO_FRAME;
2996                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2997                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2998                         /* Jumbo frame on BCM5719 A0 does not work. */
2999                         sc->bge_flags &= ~BGE_FLAG_JUMBO;
3000                 }
3001                 break;
3002         case BGE_ASICREV_BCM5755:
3003         case BGE_ASICREV_BCM5761:
3004         case BGE_ASICREV_BCM5784:
3005         case BGE_ASICREV_BCM5785:
3006         case BGE_ASICREV_BCM5787:
3007         case BGE_ASICREV_BCM57780:
3008                 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3009                     BGE_FLAG_5705_PLUS;
3010                 break;
3011         case BGE_ASICREV_BCM5700:
3012         case BGE_ASICREV_BCM5701:
3013         case BGE_ASICREV_BCM5703:
3014         case BGE_ASICREV_BCM5704:
3015                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3016                 break;
3017         case BGE_ASICREV_BCM5714_A0:
3018         case BGE_ASICREV_BCM5780:
3019         case BGE_ASICREV_BCM5714:
3020                 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3021                 /* FALLTHROUGH */
3022         case BGE_ASICREV_BCM5750:
3023         case BGE_ASICREV_BCM5752:
3024         case BGE_ASICREV_BCM5906:
3025                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
3026                 /* FALLTHROUGH */
3027         case BGE_ASICREV_BCM5705:
3028                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
3029                 break;
3030         }
3031
3032         /* Add SYSCTLs, requires the chipset family to be set. */
3033         bge_add_sysctls(sc);
3034
3035         /* Set various PHY bug flags. */
3036         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3037             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3038                 sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3039         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3040             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3041                 sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3042         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3043                 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3044         if (pci_get_subvendor(dev) == DELL_VENDORID)
3045                 sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3046         if ((BGE_IS_5705_PLUS(sc)) &&
3047             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3048             sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
3049             sc->bge_asicrev != BGE_ASICREV_BCM5719 &&
3050             sc->bge_asicrev != BGE_ASICREV_BCM5720 &&
3051             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3052             sc->bge_asicrev != BGE_ASICREV_BCM57765 &&
3053             sc->bge_asicrev != BGE_ASICREV_BCM57780) {
3054                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3055                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3056                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3057                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3058                         if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3059                             pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3060                                 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3061                         if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3062                                 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3063                 } else
3064                         sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3065         }
3066
3067         /* Identify the chips that use an CPMU. */
3068         if (BGE_IS_5717_PLUS(sc) ||
3069             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3070             sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3071             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3072             sc->bge_asicrev == BGE_ASICREV_BCM57780)
3073                 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3074         if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3075                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3076         else
3077                 sc->bge_mi_mode = BGE_MIMODE_BASE;
3078         /* Enable auto polling for BCM570[0-5]. */
3079         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3080                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3081
3082         /*
3083          * All Broadcom controllers have 4GB boundary DMA bug.
3084          * Whenever an address crosses a multiple of the 4GB boundary
3085          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3086          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3087          * state machine will lockup and cause the device to hang.
3088          */
3089         sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3090
3091         /* BCM5755 or higher and BCM5906 have short DMA bug. */
3092         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3093                 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3094
3095         /*
3096          * BCM5719 cannot handle DMA requests for DMA segments that
3097          * have larger than 4KB in size.  However the maximum DMA
3098          * segment size created in DMA tag is 4KB for TSO, so we
3099          * wouldn't encounter the issue here.
3100          */
3101         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3102                 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3103
3104         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3105         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3106                 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3107                     misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3108                         sc->bge_flags |= BGE_FLAG_5788;
3109         }
3110
3111         capmask = BMSR_DEFCAPMASK;
3112         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3113             (misccfg == 0x4000 || misccfg == 0x8000)) ||
3114             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3115             pci_get_vendor(dev) == BCOM_VENDORID &&
3116             (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3117             pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3118             pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3119             (pci_get_vendor(dev) == BCOM_VENDORID &&
3120             (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3121             pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3122             pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3123             pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3124             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3125                 /* These chips are 10/100 only. */
3126                 capmask &= ~BMSR_EXTSTAT;
3127         }
3128
3129         /*
3130          * Some controllers seem to require a special firmware to use
3131          * TSO. But the firmware is not available to FreeBSD and Linux
3132          * claims that the TSO performed by the firmware is slower than
3133          * hardware based TSO. Moreover the firmware based TSO has one
3134          * known bug which can't handle TSO if ethernet header + IP/TCP
3135          * header is greater than 80 bytes. The workaround for the TSO
3136          * bug exist but it seems it's too expensive than not using
3137          * TSO at all. Some hardwares also have the TSO bug so limit
3138          * the TSO to the controllers that are not affected TSO issues
3139          * (e.g. 5755 or higher).
3140          */
3141         if (BGE_IS_5717_PLUS(sc)) {
3142                 /* BCM5717 requires different TSO configuration. */
3143                 sc->bge_flags |= BGE_FLAG_TSO3;
3144                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3145                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3146                         /* TSO on BCM5719 A0 does not work. */
3147                         sc->bge_flags &= ~BGE_FLAG_TSO3;
3148                 }
3149         } else if (BGE_IS_5755_PLUS(sc)) {
3150                 /*
3151                  * BCM5754 and BCM5787 shares the same ASIC id so
3152                  * explicit device id check is required.
3153                  * Due to unknown reason TSO does not work on BCM5755M.
3154                  */
3155                 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3156                     pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3157                     pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3158                         sc->bge_flags |= BGE_FLAG_TSO;
3159         }
3160
3161         /*
3162          * Check if this is a PCI-X or PCI Express device.
3163          */
3164         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3165                 /*
3166                  * Found a PCI Express capabilities register, this
3167                  * must be a PCI Express device.
3168                  */
3169                 sc->bge_flags |= BGE_FLAG_PCIE;
3170                 sc->bge_expcap = reg;
3171                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3172                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
3173                         pci_set_max_read_req(dev, 2048);
3174                 else if (pci_get_max_read_req(dev) != 4096)
3175                         pci_set_max_read_req(dev, 4096);
3176         } else {
3177                 /*
3178                  * Check if the device is in PCI-X Mode.
3179                  * (This bit is not valid on PCI Express controllers.)
3180                  */
3181                 if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3182                         sc->bge_pcixcap = reg;
3183                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3184                     BGE_PCISTATE_PCI_BUSMODE) == 0)
3185                         sc->bge_flags |= BGE_FLAG_PCIX;
3186         }
3187
3188         /*
3189          * The 40bit DMA bug applies to the 5714/5715 controllers and is
3190          * not actually a MAC controller bug but an issue with the embedded
3191          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3192          */
3193         if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3194                 sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3195         /*
3196          * Some PCI-X bridges are known to trigger write reordering to
3197          * the mailbox registers. Typical phenomena is watchdog timeouts
3198          * caused by out-of-order TX completions.  Enable workaround for
3199          * PCI-X devices that live behind these bridges.
3200          * Note, PCI-X controllers can run in PCI mode so we can't use
3201          * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3202          */
3203         if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3204                 sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3205         /*
3206          * Allocate the interrupt, using MSI if possible.  These devices
3207          * support 8 MSI messages, but only the first one is used in
3208          * normal operation.
3209          */
3210         rid = 0;
3211         if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3212                 sc->bge_msicap = reg;
3213                 if (bge_can_use_msi(sc)) {
3214                         msicount = pci_msi_count(dev);
3215                         if (msicount > 1)
3216                                 msicount = 1;
3217                 } else
3218                         msicount = 0;
3219                 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
3220                         rid = 1;
3221                         sc->bge_flags |= BGE_FLAG_MSI;
3222                 }
3223         }
3224
3225         /*
3226          * All controllers except BCM5700 supports tagged status but
3227          * we use tagged status only for MSI case on BCM5717. Otherwise
3228          * MSI on BCM5717 does not work.
3229          */
3230 #ifndef DEVICE_POLLING
3231         if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3232                 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3233 #endif
3234
3235         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3236             RF_SHAREABLE | RF_ACTIVE);
3237
3238         if (sc->bge_irq == NULL) {
3239                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
3240                 error = ENXIO;
3241                 goto fail;
3242         }
3243
3244         bge_devinfo(sc);
3245
3246         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3247
3248         /* Try to reset the chip. */
3249         if (bge_reset(sc)) {
3250                 device_printf(sc->bge_dev, "chip reset failed\n");
3251                 error = ENXIO;
3252                 goto fail;
3253         }
3254
3255         sc->bge_asf_mode = 0;
3256         if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3257             BGE_SRAM_DATA_SIG_MAGIC)) {
3258                 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG)
3259                     & BGE_HWCFG_ASF) {
3260                         sc->bge_asf_mode |= ASF_ENABLE;
3261                         sc->bge_asf_mode |= ASF_STACKUP;
3262                         if (BGE_IS_575X_PLUS(sc))
3263                                 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3264                 }
3265         }
3266
3267         /* Try to reset the chip again the nice way. */
3268         bge_stop_fw(sc);
3269         bge_sig_pre_reset(sc, BGE_RESET_STOP);
3270         if (bge_reset(sc)) {
3271                 device_printf(sc->bge_dev, "chip reset failed\n");
3272                 error = ENXIO;
3273                 goto fail;
3274         }
3275
3276         bge_sig_legacy(sc, BGE_RESET_STOP);
3277         bge_sig_post_reset(sc, BGE_RESET_STOP);
3278
3279         if (bge_chipinit(sc)) {
3280                 device_printf(sc->bge_dev, "chip initialization failed\n");
3281                 error = ENXIO;
3282                 goto fail;
3283         }
3284
3285         error = bge_get_eaddr(sc, eaddr);
3286         if (error) {
3287                 device_printf(sc->bge_dev,
3288                     "failed to read station address\n");
3289                 error = ENXIO;
3290                 goto fail;
3291         }
3292
3293         /* 5705 limits RX return ring to 512 entries. */
3294         if (BGE_IS_5717_PLUS(sc))
3295                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3296         else if (BGE_IS_5705_PLUS(sc))
3297                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3298         else
3299                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3300
3301         if (bge_dma_alloc(sc)) {
3302                 device_printf(sc->bge_dev,
3303                     "failed to allocate DMA resources\n");
3304                 error = ENXIO;
3305                 goto fail;
3306         }
3307
3308         /* Set default tuneable values. */
3309         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3310         sc->bge_rx_coal_ticks = 150;
3311         sc->bge_tx_coal_ticks = 150;
3312         sc->bge_rx_max_coal_bds = 10;
3313         sc->bge_tx_max_coal_bds = 10;
3314
3315         /* Initialize checksum features to use. */
3316         sc->bge_csum_features = BGE_CSUM_FEATURES;
3317         if (sc->bge_forced_udpcsum != 0)
3318                 sc->bge_csum_features |= CSUM_UDP;
3319
3320         /* Set up ifnet structure */
3321         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3322         if (ifp == NULL) {
3323                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
3324                 error = ENXIO;
3325                 goto fail;
3326         }
3327         ifp->if_softc = sc;
3328         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3329         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3330         ifp->if_ioctl = bge_ioctl;
3331         ifp->if_start = bge_start;
3332         ifp->if_init = bge_init;
3333         ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3334         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3335         IFQ_SET_READY(&ifp->if_snd);
3336         ifp->if_hwassist = sc->bge_csum_features;
3337         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3338             IFCAP_VLAN_MTU;
3339         if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3340                 ifp->if_hwassist |= CSUM_TSO;
3341                 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3342         }
3343 #ifdef IFCAP_VLAN_HWCSUM
3344         ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3345 #endif
3346         ifp->if_capenable = ifp->if_capabilities;
3347 #ifdef DEVICE_POLLING
3348         ifp->if_capabilities |= IFCAP_POLLING;
3349 #endif
3350
3351         /*
3352          * 5700 B0 chips do not support checksumming correctly due
3353          * to hardware bugs.
3354          */
3355         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3356                 ifp->if_capabilities &= ~IFCAP_HWCSUM;
3357                 ifp->if_capenable &= ~IFCAP_HWCSUM;
3358                 ifp->if_hwassist = 0;
3359         }
3360
3361         /*
3362          * Figure out what sort of media we have by checking the
3363          * hardware config word in the first 32k of NIC internal memory,
3364          * or fall back to examining the EEPROM if necessary.
3365          * Note: on some BCM5700 cards, this value appears to be unset.
3366          * If that's the case, we have to rely on identifying the NIC
3367          * by its PCI subsystem ID, as we do below for the SysKonnect
3368          * SK-9D41.
3369          */
3370         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3371                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3372         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3373             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3374                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3375                     sizeof(hwcfg))) {
3376                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
3377                         error = ENXIO;
3378                         goto fail;
3379                 }
3380                 hwcfg = ntohl(hwcfg);
3381         }
3382
3383         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3384         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3385             SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3386                 if (BGE_IS_5714_FAMILY(sc))
3387                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
3388                 else
3389                         sc->bge_flags |= BGE_FLAG_TBI;
3390         }
3391
3392         if (sc->bge_flags & BGE_FLAG_TBI) {
3393                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3394                     bge_ifmedia_sts);
3395                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3396                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3397                     0, NULL);
3398                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3399                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3400                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3401         } else {
3402                 /*
3403                  * Do transceiver setup and tell the firmware the
3404                  * driver is down so we can try to get access the
3405                  * probe if ASF is running.  Retry a couple of times
3406                  * if we get a conflict with the ASF firmware accessing
3407                  * the PHY.
3408                  */
3409                 trys = 0;
3410                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3411 again:
3412                 bge_asf_driver_up(sc);
3413
3414                 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3415                     bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY,
3416                     MIIF_DOPAUSE);
3417                 if (error != 0) {
3418                         if (trys++ < 4) {
3419                                 device_printf(sc->bge_dev, "Try again\n");
3420                                 bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
3421                                     BMCR_RESET);
3422                                 goto again;
3423                         }
3424                         device_printf(sc->bge_dev, "attaching PHYs failed\n");
3425                         goto fail;
3426                 }
3427
3428                 /*
3429                  * Now tell the firmware we are going up after probing the PHY
3430                  */
3431                 if (sc->bge_asf_mode & ASF_STACKUP)
3432                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3433         }
3434
3435         /*
3436          * When using the BCM5701 in PCI-X mode, data corruption has
3437          * been observed in the first few bytes of some received packets.
3438          * Aligning the packet buffer in memory eliminates the corruption.
3439          * Unfortunately, this misaligns the packet payloads.  On platforms
3440          * which do not support unaligned accesses, we will realign the
3441          * payloads by copying the received packets.
3442          */
3443         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3444             sc->bge_flags & BGE_FLAG_PCIX)
3445                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3446
3447         /*
3448          * Call MI attach routine.
3449          */
3450         ether_ifattach(ifp, eaddr);
3451         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3452
3453         /* Tell upper layer we support long frames. */
3454         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3455
3456         /*
3457          * Hookup IRQ last.
3458          */
3459         if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3460                 /* Take advantage of single-shot MSI. */
3461                 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3462                     ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3463                 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3464                     taskqueue_thread_enqueue, &sc->bge_tq);
3465                 if (sc->bge_tq == NULL) {
3466                         device_printf(dev, "could not create taskqueue.\n");
3467                         ether_ifdetach(ifp);
3468                         error = ENXIO;
3469                         goto fail;
3470                 }
3471                 taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
3472                     device_get_nameunit(sc->bge_dev));
3473                 error = bus_setup_intr(dev, sc->bge_irq,
3474                     INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3475                     &sc->bge_intrhand);
3476                 if (error)
3477                         ether_ifdetach(ifp);
3478         } else
3479                 error = bus_setup_intr(dev, sc->bge_irq,
3480                     INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3481                     &sc->bge_intrhand);
3482
3483         if (error) {
3484                 bge_detach(dev);
3485                 device_printf(sc->bge_dev, "couldn't set up irq\n");
3486         }
3487
3488         return (0);
3489
3490 fail:
3491         bge_release_resources(sc);
3492
3493         return (error);
3494 }
3495
3496 static int
3497 bge_detach(device_t dev)
3498 {
3499         struct bge_softc *sc;
3500         struct ifnet *ifp;
3501
3502         sc = device_get_softc(dev);
3503         ifp = sc->bge_ifp;
3504
3505 #ifdef DEVICE_POLLING
3506         if (ifp->if_capenable & IFCAP_POLLING)
3507                 ether_poll_deregister(ifp);
3508 #endif
3509
3510         BGE_LOCK(sc);
3511         bge_stop(sc);
3512         bge_reset(sc);
3513         BGE_UNLOCK(sc);
3514
3515         callout_drain(&sc->bge_stat_ch);
3516
3517         if (sc->bge_tq)
3518                 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3519         ether_ifdetach(ifp);
3520
3521         if (sc->bge_flags & BGE_FLAG_TBI) {
3522                 ifmedia_removeall(&sc->bge_ifmedia);
3523         } else {
3524                 bus_generic_detach(dev);
3525                 device_delete_child(dev, sc->bge_miibus);
3526         }
3527
3528         bge_release_resources(sc);
3529
3530         return (0);
3531 }
3532
3533 static void
3534 bge_release_resources(struct bge_softc *sc)
3535 {
3536         device_t dev;
3537
3538         dev = sc->bge_dev;
3539
3540         if (sc->bge_tq != NULL)
3541                 taskqueue_free(sc->bge_tq);
3542
3543         if (sc->bge_intrhand != NULL)
3544                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3545
3546         if (sc->bge_irq != NULL)
3547                 bus_release_resource(dev, SYS_RES_IRQ,
3548                     sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3549
3550         if (sc->bge_flags & BGE_FLAG_MSI)
3551                 pci_release_msi(dev);
3552
3553         if (sc->bge_res != NULL)
3554                 bus_release_resource(dev, SYS_RES_MEMORY,
3555                     PCIR_BAR(0), sc->bge_res);
3556
3557         if (sc->bge_ifp != NULL)
3558                 if_free(sc->bge_ifp);
3559
3560         bge_dma_free(sc);
3561
3562         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
3563                 BGE_LOCK_DESTROY(sc);
3564 }
3565
3566 static int
3567 bge_reset(struct bge_softc *sc)
3568 {
3569         device_t dev;
3570         uint32_t cachesize, command, pcistate, reset, val;
3571         void (*write_op)(struct bge_softc *, int, int);
3572         uint16_t devctl;
3573         int i;
3574
3575         dev = sc->bge_dev;
3576
3577         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3578             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3579                 if (sc->bge_flags & BGE_FLAG_PCIE)
3580                         write_op = bge_writemem_direct;
3581                 else
3582                         write_op = bge_writemem_ind;
3583         } else
3584                 write_op = bge_writereg_ind;
3585
3586         /* Save some important PCI state. */
3587         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3588         command = pci_read_config(dev, BGE_PCI_CMD, 4);
3589         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3590
3591         pci_write_config(dev, BGE_PCI_MISC_CTL,
3592             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3593             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3594
3595         /* Disable fastboot on controllers that support it. */
3596         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3597             BGE_IS_5755_PLUS(sc)) {
3598                 if (bootverbose)
3599                         device_printf(dev, "Disabling fastboot\n");
3600                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3601         }
3602
3603         /*
3604          * Write the magic number to SRAM at offset 0xB50.
3605          * When firmware finishes its initialization it will
3606          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
3607          */
3608         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3609
3610         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3611
3612         /* XXX: Broadcom Linux driver. */
3613         if (sc->bge_flags & BGE_FLAG_PCIE) {
3614                 if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
3615                         CSR_WRITE_4(sc, 0x7E2C, 0x20);
3616                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3617                         /* Prevent PCIE link training during global reset */
3618                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3619                         reset |= 1 << 29;
3620                 }
3621         }
3622
3623         /*
3624          * Set GPHY Power Down Override to leave GPHY
3625          * powered up in D0 uninitialized.
3626          */
3627         if (BGE_IS_5705_PLUS(sc) &&
3628             (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
3629                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3630
3631         /* Issue global reset */
3632         write_op(sc, BGE_MISC_CFG, reset);
3633
3634         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3635                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3636                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3637                     val | BGE_VCPU_STATUS_DRV_RESET);
3638                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3639                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3640                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3641         }
3642
3643         DELAY(1000);
3644
3645         /* XXX: Broadcom Linux driver. */
3646         if (sc->bge_flags & BGE_FLAG_PCIE) {
3647                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3648                         DELAY(500000); /* wait for link training to complete */
3649                         val = pci_read_config(dev, 0xC4, 4);
3650                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3651                 }
3652                 devctl = pci_read_config(dev,
3653                     sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3654                 /* Clear enable no snoop and disable relaxed ordering. */
3655                 devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE |
3656                     PCIM_EXP_CTL_NOSNOOP_ENABLE);
3657                 pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3658                     devctl, 2);
3659                 /* Clear error status. */
3660                 pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3661                     PCIM_EXP_STA_CORRECTABLE_ERROR |
3662                     PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR |
3663                     PCIM_EXP_STA_UNSUPPORTED_REQ, 2);
3664         }
3665
3666         /* Reset some of the PCI state that got zapped by reset. */
3667         pci_write_config(dev, BGE_PCI_MISC_CTL,
3668             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3669             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3670         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3671         pci_write_config(dev, BGE_PCI_CMD, command, 4);
3672         write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3673         /*
3674          * Disable PCI-X relaxed ordering to ensure status block update
3675          * comes first then packet buffer DMA. Otherwise driver may
3676          * read stale status block.
3677          */
3678         if (sc->bge_flags & BGE_FLAG_PCIX) {
3679                 devctl = pci_read_config(dev,
3680                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
3681                 devctl &= ~PCIXM_COMMAND_ERO;
3682                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
3683                         devctl &= ~PCIXM_COMMAND_MAX_READ;
3684                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
3685                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3686                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
3687                             PCIXM_COMMAND_MAX_READ);
3688                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
3689                 }
3690                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
3691                     devctl, 2);
3692         }
3693         /* Re-enable MSI, if necessary, and enable the memory arbiter. */
3694         if (BGE_IS_5714_FAMILY(sc)) {
3695                 /* This chip disables MSI on reset. */
3696                 if (sc->bge_flags & BGE_FLAG_MSI) {
3697                         val = pci_read_config(dev,
3698                             sc->bge_msicap + PCIR_MSI_CTRL, 2);
3699                         pci_write_config(dev,
3700                             sc->bge_msicap + PCIR_MSI_CTRL,
3701                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
3702                         val = CSR_READ_4(sc, BGE_MSI_MODE);
3703                         CSR_WRITE_4(sc, BGE_MSI_MODE,
3704                             val | BGE_MSIMODE_ENABLE);
3705                 }
3706                 val = CSR_READ_4(sc, BGE_MARB_MODE);
3707                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3708         } else
3709                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3710
3711         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3712                 for (i = 0; i < BGE_TIMEOUT; i++) {
3713                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3714                         if (val & BGE_VCPU_STATUS_INIT_DONE)
3715                                 break;
3716                         DELAY(100);
3717                 }
3718                 if (i == BGE_TIMEOUT) {
3719                         device_printf(dev, "reset timed out\n");
3720                         return (1);
3721                 }
3722         } else {
3723                 /*
3724                  * Poll until we see the 1's complement of the magic number.
3725                  * This indicates that the firmware initialization is complete.
3726                  * We expect this to fail if no chip containing the Ethernet
3727                  * address is fitted though.
3728                  */
3729                 for (i = 0; i < BGE_TIMEOUT; i++) {
3730                         DELAY(10);
3731                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
3732                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
3733                                 break;
3734                 }
3735
3736                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3737                         device_printf(dev,
3738                             "firmware handshake timed out, found 0x%08x\n",
3739                             val);
3740                 /* BCM57765 A0 needs additional time before accessing. */
3741                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
3742                         DELAY(10 * 1000);       /* XXX */
3743         }
3744
3745         /*
3746          * XXX Wait for the value of the PCISTATE register to
3747          * return to its original pre-reset state. This is a
3748          * fairly good indicator of reset completion. If we don't
3749          * wait for the reset to fully complete, trying to read
3750          * from the device's non-PCI registers may yield garbage
3751          * results.
3752          */
3753         for (i = 0; i < BGE_TIMEOUT; i++) {
3754                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3755                         break;
3756                 DELAY(10);
3757         }
3758
3759         /* Fix up byte swapping. */
3760         CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
3761
3762         /* Tell the ASF firmware we are up */
3763         if (sc->bge_asf_mode & ASF_STACKUP)
3764                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3765
3766         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3767
3768         /*
3769          * The 5704 in TBI mode apparently needs some special
3770          * adjustment to insure the SERDES drive level is set
3771          * to 1.2V.
3772          */
3773         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3774             sc->bge_flags & BGE_FLAG_TBI) {
3775                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
3776                 val = (val & ~0xFFF) | 0x880;
3777                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3778         }
3779
3780         /* XXX: Broadcom Linux driver. */
3781         if (sc->bge_flags & BGE_FLAG_PCIE &&
3782             !BGE_IS_5717_PLUS(sc) &&
3783             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3784             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
3785                 /* Enable Data FIFO protection. */
3786                 val = CSR_READ_4(sc, 0x7C00);
3787                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3788         }
3789         DELAY(10000);
3790
3791         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
3792                 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
3793                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
3794
3795         return (0);
3796 }
3797
3798 static __inline void
3799 bge_rxreuse_std(struct bge_softc *sc, int i)
3800 {
3801         struct bge_rx_bd *r;
3802
3803         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
3804         r->bge_flags = BGE_RXBDFLAG_END;
3805         r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
3806         r->bge_idx = i;
3807         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3808 }
3809
3810 static __inline void
3811 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
3812 {
3813         struct bge_extrx_bd *r;
3814
3815         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
3816         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
3817         r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
3818         r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
3819         r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
3820         r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
3821         r->bge_idx = i;
3822         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3823 }
3824
3825 /*
3826  * Frame reception handling. This is called if there's a frame
3827  * on the receive return list.
3828  *
3829  * Note: we have to be able to handle two possibilities here:
3830  * 1) the frame is from the jumbo receive ring
3831  * 2) the frame is from the standard receive ring
3832  */
3833
3834 static int
3835 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3836 {
3837         struct ifnet *ifp;
3838         int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3839         uint16_t rx_cons;
3840
3841         rx_cons = sc->bge_rx_saved_considx;
3842
3843         /* Nothing to do. */
3844         if (rx_cons == rx_prod)
3845                 return (rx_npkts);
3846
3847         ifp = sc->bge_ifp;
3848
3849         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3850             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3851         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3852             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3853         if (BGE_IS_JUMBO_CAPABLE(sc) &&
3854             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3855             (MCLBYTES - ETHER_ALIGN))
3856                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3857                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3858
3859         while (rx_cons != rx_prod) {
3860                 struct bge_rx_bd        *cur_rx;
3861                 uint32_t                rxidx;
3862                 struct mbuf             *m = NULL;
3863                 uint16_t                vlan_tag = 0;
3864                 int                     have_tag = 0;
3865
3866 #ifdef DEVICE_POLLING
3867                 if (ifp->if_capenable & IFCAP_POLLING) {
3868                         if (sc->rxcycles <= 0)
3869                                 break;
3870                         sc->rxcycles--;
3871                 }
3872 #endif
3873
3874                 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3875
3876                 rxidx = cur_rx->bge_idx;
3877                 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3878
3879                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3880                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3881                         have_tag = 1;
3882                         vlan_tag = cur_rx->bge_vlan_tag;
3883                 }
3884
3885                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3886                         jumbocnt++;
3887                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3888                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3889                                 bge_rxreuse_jumbo(sc, rxidx);
3890                                 continue;
3891                         }
3892                         if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3893                                 bge_rxreuse_jumbo(sc, rxidx);
3894                                 ifp->if_iqdrops++;
3895                                 continue;
3896                         }
3897                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3898                 } else {
3899                         stdcnt++;
3900                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3901                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3902                                 bge_rxreuse_std(sc, rxidx);
3903                                 continue;
3904                         }
3905                         if (bge_newbuf_std(sc, rxidx) != 0) {
3906                                 bge_rxreuse_std(sc, rxidx);
3907                                 ifp->if_iqdrops++;
3908                                 continue;
3909                         }
3910                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3911                 }
3912
3913                 ifp->if_ipackets++;
3914 #ifndef __NO_STRICT_ALIGNMENT
3915                 /*
3916                  * For architectures with strict alignment we must make sure
3917                  * the payload is aligned.
3918                  */
3919                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3920                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3921                             cur_rx->bge_len);
3922                         m->m_data += ETHER_ALIGN;
3923                 }
3924 #endif
3925                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3926                 m->m_pkthdr.rcvif = ifp;
3927
3928                 if (ifp->if_capenable & IFCAP_RXCSUM)
3929                         bge_rxcsum(sc, cur_rx, m);
3930
3931                 /*
3932                  * If we received a packet with a vlan tag,
3933                  * attach that information to the packet.
3934                  */
3935                 if (have_tag) {
3936                         m->m_pkthdr.ether_vtag = vlan_tag;
3937                         m->m_flags |= M_VLANTAG;
3938                 }
3939
3940                 if (holdlck != 0) {
3941                         BGE_UNLOCK(sc);
3942                         (*ifp->if_input)(ifp, m);
3943                         BGE_LOCK(sc);
3944                 } else
3945                         (*ifp->if_input)(ifp, m);
3946                 rx_npkts++;
3947
3948                 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3949                         return (rx_npkts);
3950         }
3951
3952         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3953             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3954         if (stdcnt > 0)
3955                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3956                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3957
3958         if (jumbocnt > 0)
3959                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3960                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3961
3962         sc->bge_rx_saved_considx = rx_cons;
3963         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3964         if (stdcnt)
3965                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
3966                     BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
3967         if (jumbocnt)
3968                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
3969                     BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
3970 #ifdef notyet
3971         /*
3972          * This register wraps very quickly under heavy packet drops.
3973          * If you need correct statistics, you can enable this check.
3974          */
3975         if (BGE_IS_5705_PLUS(sc))
3976                 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3977 #endif
3978         return (rx_npkts);
3979 }
3980
3981 static void
3982 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
3983 {
3984
3985         if (BGE_IS_5717_PLUS(sc)) {
3986                 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
3987                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3988                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3989                                 if ((cur_rx->bge_error_flag &
3990                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
3991                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3992                         }
3993                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
3994                                 m->m_pkthdr.csum_data =
3995                                     cur_rx->bge_tcp_udp_csum;
3996                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3997                                     CSUM_PSEUDO_HDR;
3998                         }
3999                 }
4000         } else {
4001                 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4002                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4003                         if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4004                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4005                 }
4006                 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4007                     m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4008                         m->m_pkthdr.csum_data =
4009                             cur_rx->bge_tcp_udp_csum;
4010                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4011                             CSUM_PSEUDO_HDR;
4012                 }
4013         }
4014 }
4015
4016 static void
4017 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4018 {
4019         struct bge_tx_bd *cur_tx;
4020         struct ifnet *ifp;
4021
4022         BGE_LOCK_ASSERT(sc);
4023
4024         /* Nothing to do. */
4025         if (sc->bge_tx_saved_considx == tx_cons)
4026                 return;
4027
4028         ifp = sc->bge_ifp;
4029
4030         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4031             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4032         /*
4033          * Go through our tx ring and free mbufs for those
4034          * frames that have been sent.
4035          */
4036         while (sc->bge_tx_saved_considx != tx_cons) {
4037                 uint32_t                idx;
4038
4039                 idx = sc->bge_tx_saved_considx;
4040                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4041                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4042                         ifp->if_opackets++;
4043                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4044                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4045                             sc->bge_cdata.bge_tx_dmamap[idx],
4046                             BUS_DMASYNC_POSTWRITE);
4047                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4048                             sc->bge_cdata.bge_tx_dmamap[idx]);
4049                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4050                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
4051                 }
4052                 sc->bge_txcnt--;
4053                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4054         }
4055
4056         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4057         if (sc->bge_txcnt == 0)
4058                 sc->bge_timer = 0;
4059 }
4060
4061 #ifdef DEVICE_POLLING
4062 static int
4063 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4064 {
4065         struct bge_softc *sc = ifp->if_softc;
4066         uint16_t rx_prod, tx_cons;
4067         uint32_t statusword;
4068         int rx_npkts = 0;
4069
4070         BGE_LOCK(sc);
4071         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4072                 BGE_UNLOCK(sc);
4073                 return (rx_npkts);
4074         }
4075
4076         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4077             sc->bge_cdata.bge_status_map,
4078             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4079         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4080         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4081
4082         statusword = sc->bge_ldata.bge_status_block->bge_status;
4083         sc->bge_ldata.bge_status_block->bge_status = 0;
4084
4085         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4086             sc->bge_cdata.bge_status_map,
4087             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4088
4089         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4090         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4091                 sc->bge_link_evt++;
4092
4093         if (cmd == POLL_AND_CHECK_STATUS)
4094                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4095                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4096                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4097                         bge_link_upd(sc);
4098
4099         sc->rxcycles = count;
4100         rx_npkts = bge_rxeof(sc, rx_prod, 1);
4101         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4102                 BGE_UNLOCK(sc);
4103                 return (rx_npkts);
4104         }
4105         bge_txeof(sc, tx_cons);
4106         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4107                 bge_start_locked(ifp);
4108
4109         BGE_UNLOCK(sc);
4110         return (rx_npkts);
4111 }
4112 #endif /* DEVICE_POLLING */
4113
4114 static int
4115 bge_msi_intr(void *arg)
4116 {
4117         struct bge_softc *sc;
4118
4119         sc = (struct bge_softc *)arg;
4120         /*
4121          * This interrupt is not shared and controller already
4122          * disabled further interrupt.
4123          */
4124         taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4125         return (FILTER_HANDLED);
4126 }
4127
4128 static void
4129 bge_intr_task(void *arg, int pending)
4130 {
4131         struct bge_softc *sc;
4132         struct ifnet *ifp;
4133         uint32_t status, status_tag;
4134         uint16_t rx_prod, tx_cons;
4135
4136         sc = (struct bge_softc *)arg;
4137         ifp = sc->bge_ifp;
4138
4139         BGE_LOCK(sc);
4140         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4141                 BGE_UNLOCK(sc);
4142                 return;
4143         }
4144
4145         /* Get updated status block. */
4146         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4147             sc->bge_cdata.bge_status_map,
4148             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4149
4150         /* Save producer/consumer indexess. */
4151         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4152         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4153         status = sc->bge_ldata.bge_status_block->bge_status;
4154         status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4155         sc->bge_ldata.bge_status_block->bge_status = 0;
4156         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4157             sc->bge_cdata.bge_status_map,
4158             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4159         if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4160                 status_tag = 0;
4161
4162         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4163                 bge_link_upd(sc);
4164
4165         /* Let controller work. */
4166         bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4167
4168         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4169             sc->bge_rx_saved_considx != rx_prod) {
4170                 /* Check RX return ring producer/consumer. */
4171                 BGE_UNLOCK(sc);
4172                 bge_rxeof(sc, rx_prod, 0);
4173                 BGE_LOCK(sc);
4174         }
4175         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4176                 /* Check TX ring producer/consumer. */
4177                 bge_txeof(sc, tx_cons);
4178                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4179                         bge_start_locked(ifp);
4180         }
4181         BGE_UNLOCK(sc);
4182 }
4183
4184 static void
4185 bge_intr(void *xsc)
4186 {
4187         struct bge_softc *sc;
4188         struct ifnet *ifp;
4189         uint32_t statusword;
4190         uint16_t rx_prod, tx_cons;
4191
4192         sc = xsc;
4193
4194         BGE_LOCK(sc);
4195
4196         ifp = sc->bge_ifp;
4197
4198 #ifdef DEVICE_POLLING
4199         if (ifp->if_capenable & IFCAP_POLLING) {
4200                 BGE_UNLOCK(sc);
4201                 return;
4202         }
4203 #endif
4204
4205         /*
4206          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4207          * disable interrupts by writing nonzero like we used to, since with
4208          * our current organization this just gives complications and
4209          * pessimizations for re-enabling interrupts.  We used to have races
4210          * instead of the necessary complications.  Disabling interrupts
4211          * would just reduce the chance of a status update while we are
4212          * running (by switching to the interrupt-mode coalescence
4213          * parameters), but this chance is already very low so it is more
4214          * efficient to get another interrupt than prevent it.
4215          *
4216          * We do the ack first to ensure another interrupt if there is a
4217          * status update after the ack.  We don't check for the status
4218          * changing later because it is more efficient to get another
4219          * interrupt than prevent it, not quite as above (not checking is
4220          * a smaller optimization than not toggling the interrupt enable,
4221          * since checking doesn't involve PCI accesses and toggling require
4222          * the status check).  So toggling would probably be a pessimization
4223          * even with MSI.  It would only be needed for using a task queue.
4224          */
4225         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4226
4227         /*
4228          * Do the mandatory PCI flush as well as get the link status.
4229          */
4230         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4231
4232         /* Make sure the descriptor ring indexes are coherent. */
4233         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4234             sc->bge_cdata.bge_status_map,
4235             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4236         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4237         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4238         sc->bge_ldata.bge_status_block->bge_status = 0;
4239         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4240             sc->bge_cdata.bge_status_map,
4241             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4242
4243         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4244             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4245             statusword || sc->bge_link_evt)
4246                 bge_link_upd(sc);
4247
4248         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4249                 /* Check RX return ring producer/consumer. */
4250                 bge_rxeof(sc, rx_prod, 1);
4251         }
4252
4253         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4254                 /* Check TX ring producer/consumer. */
4255                 bge_txeof(sc, tx_cons);
4256         }
4257
4258         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4259             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4260                 bge_start_locked(ifp);
4261
4262         BGE_UNLOCK(sc);
4263 }
4264
4265 static void
4266 bge_asf_driver_up(struct bge_softc *sc)
4267 {
4268         if (sc->bge_asf_mode & ASF_STACKUP) {
4269                 /* Send ASF heartbeat aprox. every 2s */
4270                 if (sc->bge_asf_count)
4271                         sc->bge_asf_count --;
4272                 else {
4273                         sc->bge_asf_count = 2;
4274                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4275                             BGE_FW_CMD_DRV_ALIVE);
4276                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4277                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4278                             BGE_FW_HB_TIMEOUT_SEC);
4279                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4280                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4281                             BGE_RX_CPU_DRV_EVENT);
4282                 }
4283         }
4284 }
4285
4286 static void
4287 bge_tick(void *xsc)
4288 {
4289         struct bge_softc *sc = xsc;
4290         struct mii_data *mii = NULL;
4291
4292         BGE_LOCK_ASSERT(sc);
4293
4294         /* Synchronize with possible callout reset/stop. */
4295         if (callout_pending(&sc->bge_stat_ch) ||
4296             !callout_active(&sc->bge_stat_ch))
4297                 return;
4298
4299         if (BGE_IS_5705_PLUS(sc))
4300                 bge_stats_update_regs(sc);
4301         else
4302                 bge_stats_update(sc);
4303
4304         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4305                 mii = device_get_softc(sc->bge_miibus);
4306                 /*
4307                  * Do not touch PHY if we have link up. This could break
4308                  * IPMI/ASF mode or produce extra input errors
4309                  * (extra errors was reported for bcm5701 & bcm5704).
4310                  */
4311                 if (!sc->bge_link)
4312                         mii_tick(mii);
4313         } else {
4314                 /*
4315                  * Since in TBI mode auto-polling can't be used we should poll
4316                  * link status manually. Here we register pending link event
4317                  * and trigger interrupt.
4318                  */
4319 #ifdef DEVICE_POLLING
4320                 /* In polling mode we poll link state in bge_poll(). */
4321                 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4322 #endif
4323                 {
4324                 sc->bge_link_evt++;
4325                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4326                     sc->bge_flags & BGE_FLAG_5788)
4327                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4328                 else
4329                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4330                 }
4331         }
4332
4333         bge_asf_driver_up(sc);
4334         bge_watchdog(sc);
4335
4336         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4337 }
4338
4339 static void
4340 bge_stats_update_regs(struct bge_softc *sc)
4341 {
4342         struct ifnet *ifp;
4343         struct bge_mac_stats *stats;
4344
4345         ifp = sc->bge_ifp;
4346         stats = &sc->bge_mac_stats;
4347
4348         stats->ifHCOutOctets +=
4349             CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4350         stats->etherStatsCollisions +=
4351             CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4352         stats->outXonSent +=
4353             CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4354         stats->outXoffSent +=
4355             CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4356         stats->dot3StatsInternalMacTransmitErrors +=
4357             CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4358         stats->dot3StatsSingleCollisionFrames +=
4359             CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4360         stats->dot3StatsMultipleCollisionFrames +=
4361             CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4362         stats->dot3StatsDeferredTransmissions +=
4363             CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4364         stats->dot3StatsExcessiveCollisions +=
4365             CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4366         stats->dot3StatsLateCollisions +=
4367             CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4368         stats->ifHCOutUcastPkts +=
4369             CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4370         stats->ifHCOutMulticastPkts +=
4371             CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4372         stats->ifHCOutBroadcastPkts +=
4373             CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4374
4375         stats->ifHCInOctets +=
4376             CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4377         stats->etherStatsFragments +=
4378             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4379         stats->ifHCInUcastPkts +=
4380             CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4381         stats->ifHCInMulticastPkts +=
4382             CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4383         stats->ifHCInBroadcastPkts +=
4384             CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4385         stats->dot3StatsFCSErrors +=
4386             CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4387         stats->dot3StatsAlignmentErrors +=
4388             CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4389         stats->xonPauseFramesReceived +=
4390             CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4391         stats->xoffPauseFramesReceived +=
4392             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4393         stats->macControlFramesReceived +=
4394             CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4395         stats->xoffStateEntered +=
4396             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4397         stats->dot3StatsFramesTooLong +=
4398             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4399         stats->etherStatsJabbers +=
4400             CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4401         stats->etherStatsUndersizePkts +=
4402             CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4403
4404         stats->FramesDroppedDueToFilters +=
4405             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4406         stats->DmaWriteQueueFull +=
4407             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4408         stats->DmaWriteHighPriQueueFull +=
4409             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4410         stats->NoMoreRxBDs +=
4411             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4412         /*
4413          * XXX
4414          * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4415          * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4416          * includes number of unwanted multicast frames.  This comes
4417          * from silicon bug and known workaround to get rough(not
4418          * exact) counter is to enable interrupt on MBUF low water
4419          * attention.  This can be accomplished by setting
4420          * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4421          * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4422          * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4423          * However that change would generate more interrupts and
4424          * there are still possibilities of losing multiple frames
4425          * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4426          * Given that the workaround still would not get correct
4427          * counter I don't think it's worth to implement it.  So
4428          * ignore reading the counter on controllers that have the
4429          * silicon bug.
4430          */
4431         if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4432             sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4433             sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4434                 stats->InputDiscards +=
4435                     CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4436         stats->InputErrors +=
4437             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4438         stats->RecvThresholdHit +=
4439             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4440
4441         ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4442         ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4443             stats->InputErrors);
4444 }
4445
4446 static void
4447 bge_stats_clear_regs(struct bge_softc *sc)
4448 {
4449
4450         CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4451         CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4452         CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4453         CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4454         CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4455         CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4456         CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4457         CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4458         CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4459         CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4460         CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4461         CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4462         CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4463
4464         CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4465         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4466         CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4467         CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4468         CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4469         CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4470         CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4471         CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4472         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4473         CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4474         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4475         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4476         CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4477         CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4478
4479         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4480         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4481         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4482         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4483         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4484         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4485         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4486 }
4487
4488 static void
4489 bge_stats_update(struct bge_softc *sc)
4490 {
4491         struct ifnet *ifp;
4492         bus_size_t stats;
4493         uint32_t cnt;   /* current register value */
4494
4495         ifp = sc->bge_ifp;
4496
4497         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4498
4499 #define READ_STAT(sc, stats, stat) \
4500         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4501
4502         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4503         ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4504         sc->bge_tx_collisions = cnt;
4505
4506         cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4507         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4508         sc->bge_rx_nobds = cnt;
4509         cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4510         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
4511         sc->bge_rx_inerrs = cnt;
4512         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4513         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
4514         sc->bge_rx_discards = cnt;
4515
4516         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4517         ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
4518         sc->bge_tx_discards = cnt;
4519
4520 #undef  READ_STAT
4521 }
4522
4523 /*
4524  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4525  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4526  * but when such padded frames employ the bge IP/TCP checksum offload,
4527  * the hardware checksum assist gives incorrect results (possibly
4528  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4529  * If we pad such runts with zeros, the onboard checksum comes out correct.
4530  */
4531 static __inline int
4532 bge_cksum_pad(struct mbuf *m)
4533 {
4534         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
4535         struct mbuf *last;
4536
4537         /* If there's only the packet-header and we can pad there, use it. */
4538         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
4539             M_TRAILINGSPACE(m) >= padlen) {
4540                 last = m;
4541         } else {
4542                 /*
4543                  * Walk packet chain to find last mbuf. We will either
4544                  * pad there, or append a new mbuf and pad it.
4545                  */
4546                 for (last = m; last->m_next != NULL; last = last->m_next);
4547                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
4548                         /* Allocate new empty mbuf, pad it. Compact later. */
4549                         struct mbuf *n;
4550
4551                         MGET(n, M_DONTWAIT, MT_DATA);
4552                         if (n == NULL)
4553                                 return (ENOBUFS);
4554                         n->m_len = 0;
4555                         last->m_next = n;
4556                         last = n;
4557                 }
4558         }
4559
4560         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
4561         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
4562         last->m_len += padlen;
4563         m->m_pkthdr.len += padlen;
4564
4565         return (0);
4566 }
4567
4568 static struct mbuf *
4569 bge_check_short_dma(struct mbuf *m)
4570 {
4571         struct mbuf *n;
4572         int found;
4573
4574         /*
4575          * If device receive two back-to-back send BDs with less than
4576          * or equal to 8 total bytes then the device may hang.  The two
4577          * back-to-back send BDs must in the same frame for this failure
4578          * to occur.  Scan mbuf chains and see whether two back-to-back
4579          * send BDs are there. If this is the case, allocate new mbuf
4580          * and copy the frame to workaround the silicon bug.
4581          */
4582         for (n = m, found = 0; n != NULL; n = n->m_next) {
4583                 if (n->m_len < 8) {
4584                         found++;
4585                         if (found > 1)
4586                                 break;
4587                         continue;
4588                 }
4589                 found = 0;
4590         }
4591
4592         if (found > 1) {
4593                 n = m_defrag(m, M_DONTWAIT);
4594                 if (n == NULL)
4595                         m_freem(m);
4596         } else
4597                 n = m;
4598         return (n);
4599 }
4600
4601 static struct mbuf *
4602 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
4603     uint16_t *flags)
4604 {
4605         struct ip *ip;
4606         struct tcphdr *tcp;
4607         struct mbuf *n;
4608         uint16_t hlen;
4609         uint32_t poff;
4610
4611         if (M_WRITABLE(m) == 0) {
4612                 /* Get a writable copy. */
4613                 n = m_dup(m, M_DONTWAIT);
4614                 m_freem(m);
4615                 if (n == NULL)
4616                         return (NULL);
4617                 m = n;
4618         }
4619         m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
4620         if (m == NULL)
4621                 return (NULL);
4622         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4623         poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
4624         m = m_pullup(m, poff + sizeof(struct tcphdr));
4625         if (m == NULL)
4626                 return (NULL);
4627         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4628         m = m_pullup(m, poff + (tcp->th_off << 2));
4629         if (m == NULL)
4630                 return (NULL);
4631         /*
4632          * It seems controller doesn't modify IP length and TCP pseudo
4633          * checksum. These checksum computed by upper stack should be 0.
4634          */
4635         *mss = m->m_pkthdr.tso_segsz;
4636         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4637         ip->ip_sum = 0;
4638         ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
4639         /* Clear pseudo checksum computed by TCP stack. */
4640         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4641         tcp->th_sum = 0;
4642         /*
4643          * Broadcom controllers uses different descriptor format for
4644          * TSO depending on ASIC revision. Due to TSO-capable firmware
4645          * license issue and lower performance of firmware based TSO
4646          * we only support hardware based TSO.
4647          */
4648         /* Calculate header length, incl. TCP/IP options, in 32 bit units. */
4649         hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
4650         if (sc->bge_flags & BGE_FLAG_TSO3) {
4651                 /*
4652                  * For BCM5717 and newer controllers, hardware based TSO
4653                  * uses the 14 lower bits of the bge_mss field to store the
4654                  * MSS and the upper 2 bits to store the lowest 2 bits of
4655                  * the IP/TCP header length.  The upper 6 bits of the header
4656                  * length are stored in the bge_flags[14:10,4] field.  Jumbo
4657                  * frames are supported.
4658                  */
4659                 *mss |= ((hlen & 0x3) << 14);
4660                 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
4661         } else {
4662                 /*
4663                  * For BCM5755 and newer controllers, hardware based TSO uses
4664                  * the lower 11 bits to store the MSS and the upper 5 bits to
4665                  * store the IP/TCP header length. Jumbo frames are not
4666                  * supported.
4667                  */
4668                 *mss |= (hlen << 11);
4669         }
4670         return (m);
4671 }
4672
4673 /*
4674  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
4675  * pointers to descriptors.
4676  */
4677 static int
4678 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
4679 {
4680         bus_dma_segment_t       segs[BGE_NSEG_NEW];
4681         bus_dmamap_t            map;
4682         struct bge_tx_bd        *d;
4683         struct mbuf             *m = *m_head;
4684         uint32_t                idx = *txidx;
4685         uint16_t                csum_flags, mss, vlan_tag;
4686         int                     nsegs, i, error;
4687
4688         csum_flags = 0;
4689         mss = 0;
4690         vlan_tag = 0;
4691         if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
4692             m->m_next != NULL) {
4693                 *m_head = bge_check_short_dma(m);
4694                 if (*m_head == NULL)
4695                         return (ENOBUFS);
4696                 m = *m_head;
4697         }
4698         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
4699                 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
4700                 if (*m_head == NULL)
4701                         return (ENOBUFS);
4702                 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
4703                     BGE_TXBDFLAG_CPU_POST_DMA;
4704         } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
4705                 if (m->m_pkthdr.csum_flags & CSUM_IP)
4706                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4707                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
4708                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4709                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
4710                             (error = bge_cksum_pad(m)) != 0) {
4711                                 m_freem(m);
4712                                 *m_head = NULL;
4713                                 return (error);
4714                         }
4715                 }
4716                 if (m->m_flags & M_LASTFRAG)
4717                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
4718                 else if (m->m_flags & M_FRAG)
4719                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
4720         }
4721
4722         if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
4723                 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
4724                     m->m_pkthdr.len > ETHER_MAX_LEN)
4725                         csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
4726                 if (sc->bge_forced_collapse > 0 &&
4727                     (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
4728                         /*
4729                          * Forcedly collapse mbuf chains to overcome hardware
4730                          * limitation which only support a single outstanding
4731                          * DMA read operation.
4732                          */
4733                         if (sc->bge_forced_collapse == 1)
4734                                 m = m_defrag(m, M_DONTWAIT);
4735                         else
4736                                 m = m_collapse(m, M_DONTWAIT,
4737                                     sc->bge_forced_collapse);
4738                         if (m == NULL)
4739                                 m = *m_head;
4740                         *m_head = m;
4741                 }
4742         }
4743
4744         map = sc->bge_cdata.bge_tx_dmamap[idx];
4745         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
4746             &nsegs, BUS_DMA_NOWAIT);
4747         if (error == EFBIG) {
4748                 m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
4749                 if (m == NULL) {
4750                         m_freem(*m_head);
4751                         *m_head = NULL;
4752                         return (ENOBUFS);
4753                 }
4754                 *m_head = m;
4755                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
4756                     m, segs, &nsegs, BUS_DMA_NOWAIT);
4757                 if (error) {
4758                         m_freem(m);
4759                         *m_head = NULL;
4760                         return (error);
4761                 }
4762         } else if (error != 0)
4763                 return (error);
4764
4765         /* Check if we have enough free send BDs. */
4766         if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
4767                 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
4768                 return (ENOBUFS);
4769         }
4770
4771         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
4772
4773         if (m->m_flags & M_VLANTAG) {
4774                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
4775                 vlan_tag = m->m_pkthdr.ether_vtag;
4776         }
4777         for (i = 0; ; i++) {
4778                 d = &sc->bge_ldata.bge_tx_ring[idx];
4779                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
4780                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
4781                 d->bge_len = segs[i].ds_len;
4782                 d->bge_flags = csum_flags;
4783                 d->bge_vlan_tag = vlan_tag;
4784                 d->bge_mss = mss;
4785                 if (i == nsegs - 1)
4786                         break;
4787                 BGE_INC(idx, BGE_TX_RING_CNT);
4788         }
4789
4790         /* Mark the last segment as end of packet... */
4791         d->bge_flags |= BGE_TXBDFLAG_END;
4792
4793         /*
4794          * Insure that the map for this transmission
4795          * is placed at the array index of the last descriptor
4796          * in this chain.
4797          */
4798         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4799         sc->bge_cdata.bge_tx_dmamap[idx] = map;
4800         sc->bge_cdata.bge_tx_chain[idx] = m;
4801         sc->bge_txcnt += nsegs;
4802
4803         BGE_INC(idx, BGE_TX_RING_CNT);
4804         *txidx = idx;
4805
4806         return (0);
4807 }
4808
4809 /*
4810  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4811  * to the mbuf data regions directly in the transmit descriptors.
4812  */
4813 static void
4814 bge_start_locked(struct ifnet *ifp)
4815 {
4816         struct bge_softc *sc;
4817         struct mbuf *m_head;
4818         uint32_t prodidx;
4819         int count;
4820
4821         sc = ifp->if_softc;
4822         BGE_LOCK_ASSERT(sc);
4823
4824         if (!sc->bge_link ||
4825             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4826             IFF_DRV_RUNNING)
4827                 return;
4828
4829         prodidx = sc->bge_tx_prodidx;
4830
4831         for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4832                 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4833                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4834                         break;
4835                 }
4836                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4837                 if (m_head == NULL)
4838                         break;
4839
4840                 /*
4841                  * XXX
4842                  * The code inside the if() block is never reached since we
4843                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4844                  * requests to checksum TCP/UDP in a fragmented packet.
4845                  *
4846                  * XXX
4847                  * safety overkill.  If this is a fragmented packet chain
4848                  * with delayed TCP/UDP checksums, then only encapsulate
4849                  * it if we have enough descriptors to handle the entire
4850                  * chain at once.
4851                  * (paranoia -- may not actually be needed)
4852                  */
4853                 if (m_head->m_flags & M_FIRSTFRAG &&
4854                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4855                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4856                             m_head->m_pkthdr.csum_data + 16) {
4857                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4858                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4859                                 break;
4860                         }
4861                 }
4862
4863                 /*
4864                  * Pack the data into the transmit ring. If we
4865                  * don't have room, set the OACTIVE flag and wait
4866                  * for the NIC to drain the ring.
4867                  */
4868                 if (bge_encap(sc, &m_head, &prodidx)) {
4869                         if (m_head == NULL)
4870                                 break;
4871                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4872                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4873                         break;
4874                 }
4875                 ++count;
4876
4877                 /*
4878                  * If there's a BPF listener, bounce a copy of this frame
4879                  * to him.
4880                  */
4881 #ifdef ETHER_BPF_MTAP
4882                 ETHER_BPF_MTAP(ifp, m_head);
4883 #else
4884                 BPF_MTAP(ifp, m_head);
4885 #endif
4886         }
4887
4888         if (count > 0) {
4889                 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4890                     sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4891                 /* Transmit. */
4892                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4893                 /* 5700 b2 errata */
4894                 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4895                         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4896
4897                 sc->bge_tx_prodidx = prodidx;
4898
4899                 /*
4900                  * Set a timeout in case the chip goes out to lunch.
4901                  */
4902                 sc->bge_timer = 5;
4903         }
4904 }
4905
4906 /*
4907  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4908  * to the mbuf data regions directly in the transmit descriptors.
4909  */
4910 static void
4911 bge_start(struct ifnet *ifp)
4912 {
4913         struct bge_softc *sc;
4914
4915         sc = ifp->if_softc;
4916         BGE_LOCK(sc);
4917         bge_start_locked(ifp);
4918         BGE_UNLOCK(sc);
4919 }
4920
4921 static void
4922 bge_init_locked(struct bge_softc *sc)
4923 {
4924         struct ifnet *ifp;
4925         uint16_t *m;
4926         uint32_t mode;
4927
4928         BGE_LOCK_ASSERT(sc);
4929
4930         ifp = sc->bge_ifp;
4931
4932         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4933                 return;
4934
4935         /* Cancel pending I/O and flush buffers. */
4936         bge_stop(sc);
4937
4938         bge_stop_fw(sc);
4939         bge_sig_pre_reset(sc, BGE_RESET_START);
4940         bge_reset(sc);
4941         bge_sig_legacy(sc, BGE_RESET_START);
4942         bge_sig_post_reset(sc, BGE_RESET_START);
4943
4944         bge_chipinit(sc);
4945
4946         /*
4947          * Init the various state machines, ring
4948          * control blocks and firmware.
4949          */
4950         if (bge_blockinit(sc)) {
4951                 device_printf(sc->bge_dev, "initialization failure\n");
4952                 return;
4953         }
4954
4955         ifp = sc->bge_ifp;
4956
4957         /* Specify MTU. */
4958         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4959             ETHER_HDR_LEN + ETHER_CRC_LEN +
4960             (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4961
4962         /* Load our MAC address. */
4963         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4964         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4965         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4966
4967         /* Program promiscuous mode. */
4968         bge_setpromisc(sc);
4969
4970         /* Program multicast filter. */
4971         bge_setmulti(sc);
4972
4973         /* Program VLAN tag stripping. */
4974         bge_setvlan(sc);
4975
4976         /* Override UDP checksum offloading. */
4977         if (sc->bge_forced_udpcsum == 0)
4978                 sc->bge_csum_features &= ~CSUM_UDP;
4979         else
4980                 sc->bge_csum_features |= CSUM_UDP;
4981         if (ifp->if_capabilities & IFCAP_TXCSUM &&
4982             ifp->if_capenable & IFCAP_TXCSUM) {
4983                 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
4984                 ifp->if_hwassist |= sc->bge_csum_features;
4985         }
4986
4987         /* Init RX ring. */
4988         if (bge_init_rx_ring_std(sc) != 0) {
4989                 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4990                 bge_stop(sc);
4991                 return;
4992         }
4993
4994         /*
4995          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4996          * memory to insure that the chip has in fact read the first
4997          * entry of the ring.
4998          */
4999         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5000                 uint32_t                v, i;
5001                 for (i = 0; i < 10; i++) {
5002                         DELAY(20);
5003                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5004                         if (v == (MCLBYTES - ETHER_ALIGN))
5005                                 break;
5006                 }
5007                 if (i == 10)
5008                         device_printf (sc->bge_dev,
5009                             "5705 A0 chip failed to load RX ring\n");
5010         }
5011
5012         /* Init jumbo RX ring. */
5013         if (BGE_IS_JUMBO_CAPABLE(sc) &&
5014             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5015             (MCLBYTES - ETHER_ALIGN)) {
5016                 if (bge_init_rx_ring_jumbo(sc) != 0) {
5017                         device_printf(sc->bge_dev,
5018                             "no memory for jumbo Rx buffers.\n");
5019                         bge_stop(sc);
5020                         return;
5021                 }
5022         }
5023
5024         /* Init our RX return ring index. */
5025         sc->bge_rx_saved_considx = 0;
5026
5027         /* Init our RX/TX stat counters. */
5028         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5029
5030         /* Init TX ring. */
5031         bge_init_tx_ring(sc);
5032
5033         /* Enable TX MAC state machine lockup fix. */
5034         mode = CSR_READ_4(sc, BGE_TX_MODE);
5035         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5036                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5037         if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
5038                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5039                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5040                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5041         }
5042         /* Turn on transmitter. */
5043         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5044
5045         /* Turn on receiver. */
5046         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5047
5048         /*
5049          * Set the number of good frames to receive after RX MBUF
5050          * Low Watermark has been reached. After the RX MAC receives
5051          * this number of frames, it will drop subsequent incoming
5052          * frames until the MBUF High Watermark is reached.
5053          */
5054         if (sc->bge_asicrev == BGE_ASICREV_BCM57765)
5055                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5056         else
5057                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5058
5059         /* Clear MAC statistics. */
5060         if (BGE_IS_5705_PLUS(sc))
5061                 bge_stats_clear_regs(sc);
5062
5063         /* Tell firmware we're alive. */
5064         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5065
5066 #ifdef DEVICE_POLLING
5067         /* Disable interrupts if we are polling. */
5068         if (ifp->if_capenable & IFCAP_POLLING) {
5069                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5070                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5071                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5072         } else
5073 #endif
5074
5075         /* Enable host interrupts. */
5076         {
5077         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5078         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5079         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5080         }
5081
5082         bge_ifmedia_upd_locked(ifp);
5083
5084         ifp->if_drv_flags |= IFF_DRV_RUNNING;
5085         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5086
5087         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5088 }
5089
5090 static void
5091 bge_init(void *xsc)
5092 {
5093         struct bge_softc *sc = xsc;
5094
5095         BGE_LOCK(sc);
5096         bge_init_locked(sc);
5097         BGE_UNLOCK(sc);
5098 }
5099
5100 /*
5101  * Set media options.
5102  */
5103 static int
5104 bge_ifmedia_upd(struct ifnet *ifp)
5105 {
5106         struct bge_softc *sc = ifp->if_softc;
5107         int res;
5108
5109         BGE_LOCK(sc);
5110         res = bge_ifmedia_upd_locked(ifp);
5111         BGE_UNLOCK(sc);
5112
5113         return (res);
5114 }
5115
5116 static int
5117 bge_ifmedia_upd_locked(struct ifnet *ifp)
5118 {
5119         struct bge_softc *sc = ifp->if_softc;
5120         struct mii_data *mii;
5121         struct mii_softc *miisc;
5122         struct ifmedia *ifm;
5123
5124         BGE_LOCK_ASSERT(sc);
5125
5126         ifm = &sc->bge_ifmedia;
5127
5128         /* If this is a 1000baseX NIC, enable the TBI port. */
5129         if (sc->bge_flags & BGE_FLAG_TBI) {
5130                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5131                         return (EINVAL);
5132                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
5133                 case IFM_AUTO:
5134                         /*
5135                          * The BCM5704 ASIC appears to have a special
5136                          * mechanism for programming the autoneg
5137                          * advertisement registers in TBI mode.
5138                          */
5139                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5140                                 uint32_t sgdig;
5141                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5142                                 if (sgdig & BGE_SGDIGSTS_DONE) {
5143                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5144                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5145                                         sgdig |= BGE_SGDIGCFG_AUTO |
5146                                             BGE_SGDIGCFG_PAUSE_CAP |
5147                                             BGE_SGDIGCFG_ASYM_PAUSE;
5148                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5149                                             sgdig | BGE_SGDIGCFG_SEND);
5150                                         DELAY(5);
5151                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5152                                 }
5153                         }
5154                         break;
5155                 case IFM_1000_SX:
5156                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5157                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
5158                                     BGE_MACMODE_HALF_DUPLEX);
5159                         } else {
5160                                 BGE_SETBIT(sc, BGE_MAC_MODE,
5161                                     BGE_MACMODE_HALF_DUPLEX);
5162                         }
5163                         break;
5164                 default:
5165                         return (EINVAL);
5166                 }
5167                 return (0);
5168         }
5169
5170         sc->bge_link_evt++;
5171         mii = device_get_softc(sc->bge_miibus);
5172         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5173                 PHY_RESET(miisc);
5174         mii_mediachg(mii);
5175
5176         /*
5177          * Force an interrupt so that we will call bge_link_upd
5178          * if needed and clear any pending link state attention.
5179          * Without this we are not getting any further interrupts
5180          * for link state changes and thus will not UP the link and
5181          * not be able to send in bge_start_locked. The only
5182          * way to get things working was to receive a packet and
5183          * get an RX intr.
5184          * bge_tick should help for fiber cards and we might not
5185          * need to do this here if BGE_FLAG_TBI is set but as
5186          * we poll for fiber anyway it should not harm.
5187          */
5188         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5189             sc->bge_flags & BGE_FLAG_5788)
5190                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5191         else
5192                 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5193
5194         return (0);
5195 }
5196
5197 /*
5198  * Report current media status.
5199  */
5200 static void
5201 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5202 {
5203         struct bge_softc *sc = ifp->if_softc;
5204         struct mii_data *mii;
5205
5206         BGE_LOCK(sc);
5207
5208         if (sc->bge_flags & BGE_FLAG_TBI) {
5209                 ifmr->ifm_status = IFM_AVALID;
5210                 ifmr->ifm_active = IFM_ETHER;
5211                 if (CSR_READ_4(sc, BGE_MAC_STS) &
5212                     BGE_MACSTAT_TBI_PCS_SYNCHED)
5213                         ifmr->ifm_status |= IFM_ACTIVE;
5214                 else {
5215                         ifmr->ifm_active |= IFM_NONE;
5216                         BGE_UNLOCK(sc);
5217                         return;
5218                 }
5219                 ifmr->ifm_active |= IFM_1000_SX;
5220                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5221                         ifmr->ifm_active |= IFM_HDX;
5222                 else
5223                         ifmr->ifm_active |= IFM_FDX;
5224                 BGE_UNLOCK(sc);
5225                 return;
5226         }
5227
5228         mii = device_get_softc(sc->bge_miibus);
5229         mii_pollstat(mii);
5230         ifmr->ifm_active = mii->mii_media_active;
5231         ifmr->ifm_status = mii->mii_media_status;
5232
5233         BGE_UNLOCK(sc);
5234 }
5235
5236 static int
5237 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5238 {
5239         struct bge_softc *sc = ifp->if_softc;
5240         struct ifreq *ifr = (struct ifreq *) data;
5241         struct mii_data *mii;
5242         int flags, mask, error = 0;
5243
5244         switch (command) {
5245         case SIOCSIFMTU:
5246                 if (BGE_IS_JUMBO_CAPABLE(sc) ||
5247                     (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5248                         if (ifr->ifr_mtu < ETHERMIN ||
5249                             ifr->ifr_mtu > BGE_JUMBO_MTU) {
5250                                 error = EINVAL;
5251                                 break;
5252                         }
5253                 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5254                         error = EINVAL;
5255                         break;
5256                 }
5257                 BGE_LOCK(sc);
5258                 if (ifp->if_mtu != ifr->ifr_mtu) {
5259                         ifp->if_mtu = ifr->ifr_mtu;
5260                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5261                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5262                                 bge_init_locked(sc);
5263                         }
5264                 }
5265                 BGE_UNLOCK(sc);
5266                 break;
5267         case SIOCSIFFLAGS:
5268                 BGE_LOCK(sc);
5269                 if (ifp->if_flags & IFF_UP) {
5270                         /*
5271                          * If only the state of the PROMISC flag changed,
5272                          * then just use the 'set promisc mode' command
5273                          * instead of reinitializing the entire NIC. Doing
5274                          * a full re-init means reloading the firmware and
5275                          * waiting for it to start up, which may take a
5276                          * second or two.  Similarly for ALLMULTI.
5277                          */
5278                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5279                                 flags = ifp->if_flags ^ sc->bge_if_flags;
5280                                 if (flags & IFF_PROMISC)
5281                                         bge_setpromisc(sc);
5282                                 if (flags & IFF_ALLMULTI)
5283                                         bge_setmulti(sc);
5284                         } else
5285                                 bge_init_locked(sc);
5286                 } else {
5287                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5288                                 bge_stop(sc);
5289                         }
5290                 }
5291                 sc->bge_if_flags = ifp->if_flags;
5292                 BGE_UNLOCK(sc);
5293                 error = 0;
5294                 break;
5295         case SIOCADDMULTI:
5296         case SIOCDELMULTI:
5297                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5298                         BGE_LOCK(sc);
5299                         bge_setmulti(sc);
5300                         BGE_UNLOCK(sc);
5301                         error = 0;
5302                 }
5303                 break;
5304         case SIOCSIFMEDIA:
5305         case SIOCGIFMEDIA:
5306                 if (sc->bge_flags & BGE_FLAG_TBI) {
5307                         error = ifmedia_ioctl(ifp, ifr,
5308                             &sc->bge_ifmedia, command);
5309                 } else {
5310                         mii = device_get_softc(sc->bge_miibus);
5311                         error = ifmedia_ioctl(ifp, ifr,
5312                             &mii->mii_media, command);
5313                 }
5314                 break;
5315         case SIOCSIFCAP:
5316                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5317 #ifdef DEVICE_POLLING
5318                 if (mask & IFCAP_POLLING) {
5319                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
5320                                 error = ether_poll_register(bge_poll, ifp);
5321                                 if (error)
5322                                         return (error);
5323                                 BGE_LOCK(sc);
5324                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5325                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5326                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5327                                 ifp->if_capenable |= IFCAP_POLLING;
5328                                 BGE_UNLOCK(sc);
5329                         } else {
5330                                 error = ether_poll_deregister(ifp);
5331                                 /* Enable interrupt even in error case */
5332                                 BGE_LOCK(sc);
5333                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5334                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5335                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5336                                 ifp->if_capenable &= ~IFCAP_POLLING;
5337                                 BGE_UNLOCK(sc);
5338                         }
5339                 }
5340 #endif
5341                 if ((mask & IFCAP_TXCSUM) != 0 &&
5342                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5343                         ifp->if_capenable ^= IFCAP_TXCSUM;
5344                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5345                                 ifp->if_hwassist |= sc->bge_csum_features;
5346                         else
5347                                 ifp->if_hwassist &= ~sc->bge_csum_features;
5348                 }
5349
5350                 if ((mask & IFCAP_RXCSUM) != 0 &&
5351                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5352                         ifp->if_capenable ^= IFCAP_RXCSUM;
5353
5354                 if ((mask & IFCAP_TSO4) != 0 &&
5355                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5356                         ifp->if_capenable ^= IFCAP_TSO4;
5357                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5358                                 ifp->if_hwassist |= CSUM_TSO;
5359                         else
5360                                 ifp->if_hwassist &= ~CSUM_TSO;
5361                 }
5362
5363                 if (mask & IFCAP_VLAN_MTU) {
5364                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
5365                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5366                         bge_init(sc);
5367                 }
5368
5369                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5370                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5371                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5372                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5373                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5374                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5375                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5376                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5377                         BGE_LOCK(sc);
5378                         bge_setvlan(sc);
5379                         BGE_UNLOCK(sc);
5380                 }
5381 #ifdef VLAN_CAPABILITIES
5382                 VLAN_CAPABILITIES(ifp);
5383 #endif
5384                 break;
5385         default:
5386                 error = ether_ioctl(ifp, command, data);
5387                 break;
5388         }
5389
5390         return (error);
5391 }
5392
5393 static void
5394 bge_watchdog(struct bge_softc *sc)
5395 {
5396         struct ifnet *ifp;
5397
5398         BGE_LOCK_ASSERT(sc);
5399
5400         if (sc->bge_timer == 0 || --sc->bge_timer)
5401                 return;
5402
5403         ifp = sc->bge_ifp;
5404
5405         if_printf(ifp, "watchdog timeout -- resetting\n");
5406
5407         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5408         bge_init_locked(sc);
5409
5410         ifp->if_oerrors++;
5411 }
5412
5413 static void
5414 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5415 {
5416         int i;
5417
5418         BGE_CLRBIT(sc, reg, bit);
5419
5420         for (i = 0; i < BGE_TIMEOUT; i++) {
5421                 if ((CSR_READ_4(sc, reg) & bit) == 0)
5422                         return;
5423                 DELAY(100);
5424         }
5425 }
5426
5427 /*
5428  * Stop the adapter and free any mbufs allocated to the
5429  * RX and TX lists.
5430  */
5431 static void
5432 bge_stop(struct bge_softc *sc)
5433 {
5434         struct ifnet *ifp;
5435
5436         BGE_LOCK_ASSERT(sc);
5437
5438         ifp = sc->bge_ifp;
5439
5440         callout_stop(&sc->bge_stat_ch);
5441
5442         /* Disable host interrupts. */
5443         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5444         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5445
5446         /*
5447          * Tell firmware we're shutting down.
5448          */
5449         bge_stop_fw(sc);
5450         bge_sig_pre_reset(sc, BGE_RESET_STOP);
5451
5452         /*
5453          * Disable all of the receiver blocks.
5454          */
5455         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5456         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5457         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5458         if (BGE_IS_5700_FAMILY(sc))
5459                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5460         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5461         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5462         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5463
5464         /*
5465          * Disable all of the transmit blocks.
5466          */
5467         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5468         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5469         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5470         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5471         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5472         if (BGE_IS_5700_FAMILY(sc))
5473                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5474         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5475
5476         /*
5477          * Shut down all of the memory managers and related
5478          * state machines.
5479          */
5480         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5481         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5482         if (BGE_IS_5700_FAMILY(sc))
5483                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5484
5485         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5486         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5487         if (!(BGE_IS_5705_PLUS(sc))) {
5488                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5489                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5490         }
5491         /* Update MAC statistics. */
5492         if (BGE_IS_5705_PLUS(sc))
5493                 bge_stats_update_regs(sc);
5494
5495         bge_reset(sc);
5496         bge_sig_legacy(sc, BGE_RESET_STOP);
5497         bge_sig_post_reset(sc, BGE_RESET_STOP);
5498
5499         /*
5500          * Keep the ASF firmware running if up.
5501          */
5502         if (sc->bge_asf_mode & ASF_STACKUP)
5503                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5504         else
5505                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5506
5507         /* Free the RX lists. */
5508         bge_free_rx_ring_std(sc);
5509
5510         /* Free jumbo RX list. */
5511         if (BGE_IS_JUMBO_CAPABLE(sc))
5512                 bge_free_rx_ring_jumbo(sc);
5513
5514         /* Free TX buffers. */
5515         bge_free_tx_ring(sc);
5516
5517         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5518
5519         /* Clear MAC's link state (PHY may still have link UP). */
5520         if (bootverbose && sc->bge_link)
5521                 if_printf(sc->bge_ifp, "link DOWN\n");
5522         sc->bge_link = 0;
5523
5524         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5525 }
5526
5527 /*
5528  * Stop all chip I/O so that the kernel's probe routines don't
5529  * get confused by errant DMAs when rebooting.
5530  */
5531 static int
5532 bge_shutdown(device_t dev)
5533 {
5534         struct bge_softc *sc;
5535
5536         sc = device_get_softc(dev);
5537         BGE_LOCK(sc);
5538         bge_stop(sc);
5539         bge_reset(sc);
5540         BGE_UNLOCK(sc);
5541
5542         return (0);
5543 }
5544
5545 static int
5546 bge_suspend(device_t dev)
5547 {
5548         struct bge_softc *sc;
5549
5550         sc = device_get_softc(dev);
5551         BGE_LOCK(sc);
5552         bge_stop(sc);
5553         BGE_UNLOCK(sc);
5554
5555         return (0);
5556 }
5557
5558 static int
5559 bge_resume(device_t dev)
5560 {
5561         struct bge_softc *sc;
5562         struct ifnet *ifp;
5563
5564         sc = device_get_softc(dev);
5565         BGE_LOCK(sc);
5566         ifp = sc->bge_ifp;
5567         if (ifp->if_flags & IFF_UP) {
5568                 bge_init_locked(sc);
5569                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5570                         bge_start_locked(ifp);
5571         }
5572         BGE_UNLOCK(sc);
5573
5574         return (0);
5575 }
5576
5577 static void
5578 bge_link_upd(struct bge_softc *sc)
5579 {
5580         struct mii_data *mii;
5581         uint32_t link, status;
5582
5583         BGE_LOCK_ASSERT(sc);
5584
5585         /* Clear 'pending link event' flag. */
5586         sc->bge_link_evt = 0;
5587
5588         /*
5589          * Process link state changes.
5590          * Grrr. The link status word in the status block does
5591          * not work correctly on the BCM5700 rev AX and BX chips,
5592          * according to all available information. Hence, we have
5593          * to enable MII interrupts in order to properly obtain
5594          * async link changes. Unfortunately, this also means that
5595          * we have to read the MAC status register to detect link
5596          * changes, thereby adding an additional register access to
5597          * the interrupt handler.
5598          *
5599          * XXX: perhaps link state detection procedure used for
5600          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
5601          */
5602
5603         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
5604             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
5605                 status = CSR_READ_4(sc, BGE_MAC_STS);
5606                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5607                         mii = device_get_softc(sc->bge_miibus);
5608                         mii_pollstat(mii);
5609                         if (!sc->bge_link &&
5610                             mii->mii_media_status & IFM_ACTIVE &&
5611                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5612                                 sc->bge_link++;
5613                                 if (bootverbose)
5614                                         if_printf(sc->bge_ifp, "link UP\n");
5615                         } else if (sc->bge_link &&
5616                             (!(mii->mii_media_status & IFM_ACTIVE) ||
5617                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5618                                 sc->bge_link = 0;
5619                                 if (bootverbose)
5620                                         if_printf(sc->bge_ifp, "link DOWN\n");
5621                         }
5622
5623                         /* Clear the interrupt. */
5624                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5625                             BGE_EVTENB_MI_INTERRUPT);
5626                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
5627                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
5628                             BRGPHY_INTRS);
5629                 }
5630                 return;
5631         }
5632
5633         if (sc->bge_flags & BGE_FLAG_TBI) {
5634                 status = CSR_READ_4(sc, BGE_MAC_STS);
5635                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5636                         if (!sc->bge_link) {
5637                                 sc->bge_link++;
5638                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
5639                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
5640                                             BGE_MACMODE_TBI_SEND_CFGS);
5641                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5642                                 if (bootverbose)
5643                                         if_printf(sc->bge_ifp, "link UP\n");
5644                                 if_link_state_change(sc->bge_ifp,
5645                                     LINK_STATE_UP);
5646                         }
5647                 } else if (sc->bge_link) {
5648                         sc->bge_link = 0;
5649                         if (bootverbose)
5650                                 if_printf(sc->bge_ifp, "link DOWN\n");
5651                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
5652                 }
5653         } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
5654                 /*
5655                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
5656                  * in status word always set. Workaround this bug by reading
5657                  * PHY link status directly.
5658                  */
5659                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
5660
5661                 if (link != sc->bge_link ||
5662                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
5663                         mii = device_get_softc(sc->bge_miibus);
5664                         mii_pollstat(mii);
5665                         if (!sc->bge_link &&
5666                             mii->mii_media_status & IFM_ACTIVE &&
5667                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5668                                 sc->bge_link++;
5669                                 if (bootverbose)
5670                                         if_printf(sc->bge_ifp, "link UP\n");
5671                         } else if (sc->bge_link &&
5672                             (!(mii->mii_media_status & IFM_ACTIVE) ||
5673                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5674                                 sc->bge_link = 0;
5675                                 if (bootverbose)
5676                                         if_printf(sc->bge_ifp, "link DOWN\n");
5677                         }
5678                 }
5679         } else {
5680                 /*
5681                  * For controllers that call mii_tick, we have to poll
5682                  * link status.
5683                  */
5684                 mii = device_get_softc(sc->bge_miibus);
5685                 mii_pollstat(mii);
5686                 bge_miibus_statchg(sc->bge_dev);
5687         }
5688
5689         /* Clear the attention. */
5690         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
5691             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
5692             BGE_MACSTAT_LINK_CHANGED);
5693 }
5694
5695 static void
5696 bge_add_sysctls(struct bge_softc *sc)
5697 {
5698         struct sysctl_ctx_list *ctx;
5699         struct sysctl_oid_list *children;
5700         char tn[32];
5701         int unit;
5702
5703         ctx = device_get_sysctl_ctx(sc->bge_dev);
5704         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
5705
5706 #ifdef BGE_REGISTER_DEBUG
5707         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
5708             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
5709             "Debug Information");
5710
5711         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
5712             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
5713             "Register Read");
5714
5715         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
5716             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
5717             "Memory Read");
5718
5719 #endif
5720
5721         unit = device_get_unit(sc->bge_dev);
5722         /*
5723          * A common design characteristic for many Broadcom client controllers
5724          * is that they only support a single outstanding DMA read operation
5725          * on the PCIe bus. This means that it will take twice as long to fetch
5726          * a TX frame that is split into header and payload buffers as it does
5727          * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
5728          * these controllers, coalescing buffers to reduce the number of memory
5729          * reads is effective way to get maximum performance(about 940Mbps).
5730          * Without collapsing TX buffers the maximum TCP bulk transfer
5731          * performance is about 850Mbps. However forcing coalescing mbufs
5732          * consumes a lot of CPU cycles, so leave it off by default.
5733          */
5734         sc->bge_forced_collapse = 0;
5735         snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
5736         TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
5737         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
5738             CTLFLAG_RW, &sc->bge_forced_collapse, 0,
5739             "Number of fragmented TX buffers of a frame allowed before "
5740             "forced collapsing");
5741
5742         sc->bge_msi = 1;
5743         snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
5744         TUNABLE_INT_FETCH(tn, &sc->bge_msi);
5745         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
5746             CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
5747
5748         /*
5749          * It seems all Broadcom controllers have a bug that can generate UDP
5750          * datagrams with checksum value 0 when TX UDP checksum offloading is
5751          * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
5752          * Even though the probability of generating such UDP datagrams is
5753          * low, I don't want to see FreeBSD boxes to inject such datagrams
5754          * into network so disable UDP checksum offloading by default.  Users
5755          * still override this behavior by setting a sysctl variable,
5756          * dev.bge.0.forced_udpcsum.
5757          */
5758         sc->bge_forced_udpcsum = 0;
5759         snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
5760         TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
5761         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
5762             CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
5763             "Enable UDP checksum offloading even if controller can "
5764             "generate UDP checksum value 0");
5765
5766         if (BGE_IS_5705_PLUS(sc))
5767                 bge_add_sysctl_stats_regs(sc, ctx, children);
5768         else
5769                 bge_add_sysctl_stats(sc, ctx, children);
5770 }
5771
5772 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
5773         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
5774             sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
5775             desc)
5776
5777 static void
5778 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5779     struct sysctl_oid_list *parent)
5780 {
5781         struct sysctl_oid *tree;
5782         struct sysctl_oid_list *children, *schildren;
5783
5784         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5785             NULL, "BGE Statistics");
5786         schildren = children = SYSCTL_CHILDREN(tree);
5787         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
5788             children, COSFramesDroppedDueToFilters,
5789             "FramesDroppedDueToFilters");
5790         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
5791             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
5792         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
5793             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
5794         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
5795             children, nicNoMoreRxBDs, "NoMoreRxBDs");
5796         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
5797             children, ifInDiscards, "InputDiscards");
5798         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
5799             children, ifInErrors, "InputErrors");
5800         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
5801             children, nicRecvThresholdHit, "RecvThresholdHit");
5802         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
5803             children, nicDmaReadQueueFull, "DmaReadQueueFull");
5804         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
5805             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
5806         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
5807             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
5808         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
5809             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
5810         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
5811             children, nicRingStatusUpdate, "RingStatusUpdate");
5812         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
5813             children, nicInterrupts, "Interrupts");
5814         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
5815             children, nicAvoidedInterrupts, "AvoidedInterrupts");
5816         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
5817             children, nicSendThresholdHit, "SendThresholdHit");
5818
5819         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
5820             NULL, "BGE RX Statistics");
5821         children = SYSCTL_CHILDREN(tree);
5822         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
5823             children, rxstats.ifHCInOctets, "ifHCInOctets");
5824         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
5825             children, rxstats.etherStatsFragments, "Fragments");
5826         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
5827             children, rxstats.ifHCInUcastPkts, "UnicastPkts");
5828         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
5829             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
5830         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
5831             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
5832         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
5833             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
5834         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
5835             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
5836         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
5837             children, rxstats.xoffPauseFramesReceived,
5838             "xoffPauseFramesReceived");
5839         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
5840             children, rxstats.macControlFramesReceived,
5841             "ControlFramesReceived");
5842         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
5843             children, rxstats.xoffStateEntered, "xoffStateEntered");
5844         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
5845             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
5846         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
5847             children, rxstats.etherStatsJabbers, "Jabbers");
5848         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
5849             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
5850         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
5851             children, rxstats.inRangeLengthError, "inRangeLengthError");
5852         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
5853             children, rxstats.outRangeLengthError, "outRangeLengthError");
5854
5855         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
5856             NULL, "BGE TX Statistics");
5857         children = SYSCTL_CHILDREN(tree);
5858         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
5859             children, txstats.ifHCOutOctets, "ifHCOutOctets");
5860         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
5861             children, txstats.etherStatsCollisions, "Collisions");
5862         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
5863             children, txstats.outXonSent, "XonSent");
5864         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
5865             children, txstats.outXoffSent, "XoffSent");
5866         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
5867             children, txstats.flowControlDone, "flowControlDone");
5868         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
5869             children, txstats.dot3StatsInternalMacTransmitErrors,
5870             "InternalMacTransmitErrors");
5871         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
5872             children, txstats.dot3StatsSingleCollisionFrames,
5873             "SingleCollisionFrames");
5874         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
5875             children, txstats.dot3StatsMultipleCollisionFrames,
5876             "MultipleCollisionFrames");
5877         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
5878             children, txstats.dot3StatsDeferredTransmissions,
5879             "DeferredTransmissions");
5880         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
5881             children, txstats.dot3StatsExcessiveCollisions,
5882             "ExcessiveCollisions");
5883         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
5884             children, txstats.dot3StatsLateCollisions,
5885             "LateCollisions");
5886         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
5887             children, txstats.ifHCOutUcastPkts, "UnicastPkts");
5888         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
5889             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
5890         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5891             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5892         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5893             children, txstats.dot3StatsCarrierSenseErrors,
5894             "CarrierSenseErrors");
5895         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5896             children, txstats.ifOutDiscards, "Discards");
5897         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5898             children, txstats.ifOutErrors, "Errors");
5899 }
5900
5901 #undef BGE_SYSCTL_STAT
5902
5903 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
5904             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
5905
5906 static void
5907 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5908     struct sysctl_oid_list *parent)
5909 {
5910         struct sysctl_oid *tree;
5911         struct sysctl_oid_list *child, *schild;
5912         struct bge_mac_stats *stats;
5913
5914         stats = &sc->bge_mac_stats;
5915         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5916             NULL, "BGE Statistics");
5917         schild = child = SYSCTL_CHILDREN(tree);
5918         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
5919             &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
5920         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
5921             &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
5922         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
5923             &stats->DmaWriteHighPriQueueFull,
5924             "NIC DMA Write High Priority Queue Full");
5925         BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
5926             &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
5927         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
5928             &stats->InputDiscards, "Discarded Input Frames");
5929         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
5930             &stats->InputErrors, "Input Errors");
5931         BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
5932             &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
5933
5934         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
5935             NULL, "BGE RX Statistics");
5936         child = SYSCTL_CHILDREN(tree);
5937         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
5938             &stats->ifHCInOctets, "Inbound Octets");
5939         BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
5940             &stats->etherStatsFragments, "Fragments");
5941         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5942             &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
5943         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5944             &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
5945         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5946             &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
5947         BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
5948             &stats->dot3StatsFCSErrors, "FCS Errors");
5949         BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
5950             &stats->dot3StatsAlignmentErrors, "Alignment Errors");
5951         BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
5952             &stats->xonPauseFramesReceived, "XON Pause Frames Received");
5953         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
5954             &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
5955         BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
5956             &stats->macControlFramesReceived, "MAC Control Frames Received");
5957         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
5958             &stats->xoffStateEntered, "XOFF State Entered");
5959         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
5960             &stats->dot3StatsFramesTooLong, "Frames Too Long");
5961         BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
5962             &stats->etherStatsJabbers, "Jabbers");
5963         BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
5964             &stats->etherStatsUndersizePkts, "Undersized Packets");
5965
5966         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
5967             NULL, "BGE TX Statistics");
5968         child = SYSCTL_CHILDREN(tree);
5969         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
5970             &stats->ifHCOutOctets, "Outbound Octets");
5971         BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
5972             &stats->etherStatsCollisions, "TX Collisions");
5973         BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
5974             &stats->outXonSent, "XON Sent");
5975         BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
5976             &stats->outXoffSent, "XOFF Sent");
5977         BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
5978             &stats->dot3StatsInternalMacTransmitErrors,
5979             "Internal MAC TX Errors");
5980         BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
5981             &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
5982         BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
5983             &stats->dot3StatsMultipleCollisionFrames,
5984             "Multiple Collision Frames");
5985         BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
5986             &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
5987         BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
5988             &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
5989         BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
5990             &stats->dot3StatsLateCollisions, "Late Collisions");
5991         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5992             &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
5993         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5994             &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
5995         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5996             &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
5997 }
5998
5999 #undef  BGE_SYSCTL_STAT_ADD64
6000
6001 static int
6002 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6003 {
6004         struct bge_softc *sc;
6005         uint32_t result;
6006         int offset;
6007
6008         sc = (struct bge_softc *)arg1;
6009         offset = arg2;
6010         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6011             offsetof(bge_hostaddr, bge_addr_lo));
6012         return (sysctl_handle_int(oidp, &result, 0, req));
6013 }
6014
6015 #ifdef BGE_REGISTER_DEBUG
6016 static int
6017 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6018 {
6019         struct bge_softc *sc;
6020         uint16_t *sbdata;
6021         int error, result, sbsz;
6022         int i, j;
6023
6024         result = -1;
6025         error = sysctl_handle_int(oidp, &result, 0, req);
6026         if (error || (req->newptr == NULL))
6027                 return (error);
6028
6029         if (result == 1) {
6030                 sc = (struct bge_softc *)arg1;
6031
6032                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6033                     sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6034                         sbsz = BGE_STATUS_BLK_SZ;
6035                 else
6036                         sbsz = 32;
6037                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6038                 printf("Status Block:\n");
6039                 BGE_LOCK(sc);
6040                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6041                     sc->bge_cdata.bge_status_map,
6042                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6043                 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6044                         printf("%06x:", i);
6045                         for (j = 0; j < 8; j++)
6046                                 printf(" %04x", sbdata[i++]);
6047                         printf("\n");
6048                 }
6049
6050                 printf("Registers:\n");
6051                 for (i = 0x800; i < 0xA00; ) {
6052                         printf("%06x:", i);
6053                         for (j = 0; j < 8; j++) {
6054                                 printf(" %08x", CSR_READ_4(sc, i));
6055                                 i += 4;
6056                         }
6057                         printf("\n");
6058                 }
6059                 BGE_UNLOCK(sc);
6060
6061                 printf("Hardware Flags:\n");
6062                 if (BGE_IS_5717_PLUS(sc))
6063                         printf(" - 5717 Plus\n");
6064                 if (BGE_IS_5755_PLUS(sc))
6065                         printf(" - 5755 Plus\n");
6066                 if (BGE_IS_575X_PLUS(sc))
6067                         printf(" - 575X Plus\n");
6068                 if (BGE_IS_5705_PLUS(sc))
6069                         printf(" - 5705 Plus\n");
6070                 if (BGE_IS_5714_FAMILY(sc))
6071                         printf(" - 5714 Family\n");
6072                 if (BGE_IS_5700_FAMILY(sc))
6073                         printf(" - 5700 Family\n");
6074                 if (sc->bge_flags & BGE_FLAG_JUMBO)
6075                         printf(" - Supports Jumbo Frames\n");
6076                 if (sc->bge_flags & BGE_FLAG_PCIX)
6077                         printf(" - PCI-X Bus\n");
6078                 if (sc->bge_flags & BGE_FLAG_PCIE)
6079                         printf(" - PCI Express Bus\n");
6080                 if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6081                         printf(" - No 3 LEDs\n");
6082                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6083                         printf(" - RX Alignment Bug\n");
6084         }
6085
6086         return (error);
6087 }
6088
6089 static int
6090 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6091 {
6092         struct bge_softc *sc;
6093         int error;
6094         uint16_t result;
6095         uint32_t val;
6096
6097         result = -1;
6098         error = sysctl_handle_int(oidp, &result, 0, req);
6099         if (error || (req->newptr == NULL))
6100                 return (error);
6101
6102         if (result < 0x8000) {
6103                 sc = (struct bge_softc *)arg1;
6104                 val = CSR_READ_4(sc, result);
6105                 printf("reg 0x%06X = 0x%08X\n", result, val);
6106         }
6107
6108         return (error);
6109 }
6110
6111 static int
6112 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6113 {
6114         struct bge_softc *sc;
6115         int error;
6116         uint16_t result;
6117         uint32_t val;
6118
6119         result = -1;
6120         error = sysctl_handle_int(oidp, &result, 0, req);
6121         if (error || (req->newptr == NULL))
6122                 return (error);
6123
6124         if (result < 0x8000) {
6125                 sc = (struct bge_softc *)arg1;
6126                 val = bge_readmem_ind(sc, result);
6127                 printf("mem 0x%06X = 0x%08X\n", result, val);
6128         }
6129
6130         return (error);
6131 }
6132 #endif
6133
6134 static int
6135 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6136 {
6137
6138         if (sc->bge_flags & BGE_FLAG_EADDR)
6139                 return (1);
6140
6141 #ifdef __sparc64__
6142         OF_getetheraddr(sc->bge_dev, ether_addr);
6143         return (0);
6144 #endif
6145         return (1);
6146 }
6147
6148 static int
6149 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6150 {
6151         uint32_t mac_addr;
6152
6153         mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6154         if ((mac_addr >> 16) == 0x484b) {
6155                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6156                 ether_addr[1] = (uint8_t)mac_addr;
6157                 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6158                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6159                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6160                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6161                 ether_addr[5] = (uint8_t)mac_addr;
6162                 return (0);
6163         }
6164         return (1);
6165 }
6166
6167 static int
6168 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6169 {
6170         int mac_offset = BGE_EE_MAC_OFFSET;
6171
6172         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6173                 mac_offset = BGE_EE_MAC_OFFSET_5906;
6174
6175         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6176             ETHER_ADDR_LEN));
6177 }
6178
6179 static int
6180 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6181 {
6182
6183         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6184                 return (1);
6185
6186         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6187            ETHER_ADDR_LEN));
6188 }
6189
6190 static int
6191 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6192 {
6193         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6194                 /* NOTE: Order is critical */
6195                 bge_get_eaddr_fw,
6196                 bge_get_eaddr_mem,
6197                 bge_get_eaddr_nvram,
6198                 bge_get_eaddr_eeprom,
6199                 NULL
6200         };
6201         const bge_eaddr_fcn_t *func;
6202
6203         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6204                 if ((*func)(sc, eaddr) == 0)
6205                         break;
6206         }
6207         return (*func == NULL ? ENXIO : 0);
6208 }