]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/bge/if_bge.c
Define MAC address mail box and use it instead of using
[FreeBSD/FreeBSD.git] / sys / dev / bge / if_bge.c
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90
91 #include <net/bpf.h>
92
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120
121 #include <dev/bge/if_bgereg.h>
122
123 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
124 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140         uint16_t        bge_vid;
141         uint16_t        bge_did;
142 } const bge_devs[] = {
143         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
144         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
145
146         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
147         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
148         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
149
150         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
151
152         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5717 },
173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5718 },
174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5719 },
175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5723 },
179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5756 },
194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761 },
195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761E },
196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761S },
197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761SE },
198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5764 },
199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
201         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
202         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
203         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5784 },
204         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785F },
205         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785G },
206         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
207         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
208         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787F },
209         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
210         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
211         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
212         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
213         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
214         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
215         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
216         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
217         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57760 },
218         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57761 },
219         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57765 },
220         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57780 },
221         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57781 },
222         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57785 },
223         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57788 },
224         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57790 },
225         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57791 },
226         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57795 },
227
228         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
229
230         { TC_VENDORID,          TC_DEVICEID_3C996 },
231
232         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE4 },
233         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE5 },
234         { FJTSU_VENDORID,       FJTSU_DEVICEID_PP250450 },
235
236         { 0, 0 }
237 };
238
239 static const struct bge_vendor {
240         uint16_t        v_id;
241         const char      *v_name;
242 } const bge_vendors[] = {
243         { ALTEON_VENDORID,      "Alteon" },
244         { ALTIMA_VENDORID,      "Altima" },
245         { APPLE_VENDORID,       "Apple" },
246         { BCOM_VENDORID,        "Broadcom" },
247         { SK_VENDORID,          "SysKonnect" },
248         { TC_VENDORID,          "3Com" },
249         { FJTSU_VENDORID,       "Fujitsu" },
250
251         { 0, NULL }
252 };
253
254 static const struct bge_revision {
255         uint32_t        br_chipid;
256         const char      *br_name;
257 } const bge_revisions[] = {
258         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
259         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
260         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
261         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
262         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
263         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
264         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
265         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
266         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
267         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
268         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
269         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
270         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
271         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
272         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
273         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
274         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
275         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
276         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
277         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
278         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
279         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
280         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
281         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
282         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
283         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
284         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
285         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
286         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
287         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
288         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
289         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
290         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
291         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
292         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
293         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
294         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
295         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
296         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
297         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
298         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
299         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
300         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
301         { BGE_CHIPID_BCM5717_A0,        "BCM5717 A0" },
302         { BGE_CHIPID_BCM5717_B0,        "BCM5717 B0" },
303         { BGE_CHIPID_BCM5719_A0,        "BCM5719 A0" },
304         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
305         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
306         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
307         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
308         { BGE_CHIPID_BCM5761_A0,        "BCM5761 A0" },
309         { BGE_CHIPID_BCM5761_A1,        "BCM5761 A1" },
310         { BGE_CHIPID_BCM5784_A0,        "BCM5784 A0" },
311         { BGE_CHIPID_BCM5784_A1,        "BCM5784 A1" },
312         /* 5754 and 5787 share the same ASIC ID */
313         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" },
314         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
315         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
316         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
317         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
318         { BGE_CHIPID_BCM57765_A0,       "BCM57765 A0" },
319         { BGE_CHIPID_BCM57765_B0,       "BCM57765 B0" },
320         { BGE_CHIPID_BCM57780_A0,       "BCM57780 A0" },
321         { BGE_CHIPID_BCM57780_A1,       "BCM57780 A1" },
322
323         { 0, NULL }
324 };
325
326 /*
327  * Some defaults for major revisions, so that newer steppings
328  * that we don't know about have a shot at working.
329  */
330 static const struct bge_revision const bge_majorrevs[] = {
331         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
332         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
333         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
334         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
335         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
336         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
337         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
338         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
339         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
340         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
341         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
342         { BGE_ASICREV_BCM5761,          "unknown BCM5761" },
343         { BGE_ASICREV_BCM5784,          "unknown BCM5784" },
344         { BGE_ASICREV_BCM5785,          "unknown BCM5785" },
345         /* 5754 and 5787 share the same ASIC ID */
346         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
347         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
348         { BGE_ASICREV_BCM57765,         "unknown BCM57765" },
349         { BGE_ASICREV_BCM57780,         "unknown BCM57780" },
350         { BGE_ASICREV_BCM5717,          "unknown BCM5717" },
351         { BGE_ASICREV_BCM5719,          "unknown BCM5719" },
352
353         { 0, NULL }
354 };
355
356 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
357 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
358 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
359 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
360 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
361 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
362 #define BGE_IS_5717_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
363
364 const struct bge_revision * bge_lookup_rev(uint32_t);
365 const struct bge_vendor * bge_lookup_vendor(uint16_t);
366
367 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
368
369 static int bge_probe(device_t);
370 static int bge_attach(device_t);
371 static int bge_detach(device_t);
372 static int bge_suspend(device_t);
373 static int bge_resume(device_t);
374 static void bge_release_resources(struct bge_softc *);
375 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
376 static int bge_dma_alloc(struct bge_softc *);
377 static void bge_dma_free(struct bge_softc *);
378 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
379     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
380
381 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
382 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
383 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
384 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
385 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
386
387 static void bge_txeof(struct bge_softc *, uint16_t);
388 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
389 static int bge_rxeof(struct bge_softc *, uint16_t, int);
390
391 static void bge_asf_driver_up (struct bge_softc *);
392 static void bge_tick(void *);
393 static void bge_stats_clear_regs(struct bge_softc *);
394 static void bge_stats_update(struct bge_softc *);
395 static void bge_stats_update_regs(struct bge_softc *);
396 static struct mbuf *bge_check_short_dma(struct mbuf *);
397 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
398     uint16_t *, uint16_t *);
399 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
400
401 static void bge_intr(void *);
402 static int bge_msi_intr(void *);
403 static void bge_intr_task(void *, int);
404 static void bge_start_locked(struct ifnet *);
405 static void bge_start(struct ifnet *);
406 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
407 static void bge_init_locked(struct bge_softc *);
408 static void bge_init(void *);
409 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
410 static void bge_stop(struct bge_softc *);
411 static void bge_watchdog(struct bge_softc *);
412 static int bge_shutdown(device_t);
413 static int bge_ifmedia_upd_locked(struct ifnet *);
414 static int bge_ifmedia_upd(struct ifnet *);
415 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
416
417 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
418 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
419
420 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
421 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
422
423 static void bge_setpromisc(struct bge_softc *);
424 static void bge_setmulti(struct bge_softc *);
425 static void bge_setvlan(struct bge_softc *);
426
427 static __inline void bge_rxreuse_std(struct bge_softc *, int);
428 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
429 static int bge_newbuf_std(struct bge_softc *, int);
430 static int bge_newbuf_jumbo(struct bge_softc *, int);
431 static int bge_init_rx_ring_std(struct bge_softc *);
432 static void bge_free_rx_ring_std(struct bge_softc *);
433 static int bge_init_rx_ring_jumbo(struct bge_softc *);
434 static void bge_free_rx_ring_jumbo(struct bge_softc *);
435 static void bge_free_tx_ring(struct bge_softc *);
436 static int bge_init_tx_ring(struct bge_softc *);
437
438 static int bge_chipinit(struct bge_softc *);
439 static int bge_blockinit(struct bge_softc *);
440
441 static int bge_has_eaddr(struct bge_softc *);
442 static uint32_t bge_readmem_ind(struct bge_softc *, int);
443 static void bge_writemem_ind(struct bge_softc *, int, int);
444 static void bge_writembx(struct bge_softc *, int, int);
445 #ifdef notdef
446 static uint32_t bge_readreg_ind(struct bge_softc *, int);
447 #endif
448 static void bge_writemem_direct(struct bge_softc *, int, int);
449 static void bge_writereg_ind(struct bge_softc *, int, int);
450
451 static int bge_miibus_readreg(device_t, int, int);
452 static int bge_miibus_writereg(device_t, int, int, int);
453 static void bge_miibus_statchg(device_t);
454 #ifdef DEVICE_POLLING
455 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
456 #endif
457
458 #define BGE_RESET_START 1
459 #define BGE_RESET_STOP  2
460 static void bge_sig_post_reset(struct bge_softc *, int);
461 static void bge_sig_legacy(struct bge_softc *, int);
462 static void bge_sig_pre_reset(struct bge_softc *, int);
463 static void bge_stop_fw(struct bge_softc *);
464 static int bge_reset(struct bge_softc *);
465 static void bge_link_upd(struct bge_softc *);
466
467 /*
468  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
469  * leak information to untrusted users.  It is also known to cause alignment
470  * traps on certain architectures.
471  */
472 #ifdef BGE_REGISTER_DEBUG
473 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
474 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
475 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
476 #endif
477 static void bge_add_sysctls(struct bge_softc *);
478 static void bge_add_sysctl_stats_regs(struct bge_softc *,
479     struct sysctl_ctx_list *, struct sysctl_oid_list *);
480 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
481     struct sysctl_oid_list *);
482 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
483
484 static device_method_t bge_methods[] = {
485         /* Device interface */
486         DEVMETHOD(device_probe,         bge_probe),
487         DEVMETHOD(device_attach,        bge_attach),
488         DEVMETHOD(device_detach,        bge_detach),
489         DEVMETHOD(device_shutdown,      bge_shutdown),
490         DEVMETHOD(device_suspend,       bge_suspend),
491         DEVMETHOD(device_resume,        bge_resume),
492
493         /* bus interface */
494         DEVMETHOD(bus_print_child,      bus_generic_print_child),
495         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
496
497         /* MII interface */
498         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
499         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
500         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
501
502         { 0, 0 }
503 };
504
505 static driver_t bge_driver = {
506         "bge",
507         bge_methods,
508         sizeof(struct bge_softc)
509 };
510
511 static devclass_t bge_devclass;
512
513 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
514 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
515
516 static int bge_allow_asf = 1;
517
518 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
519
520 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
521 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
522         "Allow ASF mode if available");
523
524 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
525 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
526 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
527 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
528 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
529
530 static int
531 bge_has_eaddr(struct bge_softc *sc)
532 {
533 #ifdef __sparc64__
534         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
535         device_t dev;
536         uint32_t subvendor;
537
538         dev = sc->bge_dev;
539
540         /*
541          * The on-board BGEs found in sun4u machines aren't fitted with
542          * an EEPROM which means that we have to obtain the MAC address
543          * via OFW and that some tests will always fail.  We distinguish
544          * such BGEs by the subvendor ID, which also has to be obtained
545          * from OFW instead of the PCI configuration space as the latter
546          * indicates Broadcom as the subvendor of the netboot interface.
547          * For early Blade 1500 and 2500 we even have to check the OFW
548          * device path as the subvendor ID always defaults to Broadcom
549          * there.
550          */
551         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
552             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
553             (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
554                 return (0);
555         memset(buf, 0, sizeof(buf));
556         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
557                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
558                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
559                         return (0);
560                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
561                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
562                         return (0);
563         }
564 #endif
565         return (1);
566 }
567
568 static uint32_t
569 bge_readmem_ind(struct bge_softc *sc, int off)
570 {
571         device_t dev;
572         uint32_t val;
573
574         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
575             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
576                 return (0);
577
578         dev = sc->bge_dev;
579
580         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
581         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
582         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
583         return (val);
584 }
585
586 static void
587 bge_writemem_ind(struct bge_softc *sc, int off, int val)
588 {
589         device_t dev;
590
591         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
592             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
593                 return;
594
595         dev = sc->bge_dev;
596
597         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
598         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
599         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
600 }
601
602 #ifdef notdef
603 static uint32_t
604 bge_readreg_ind(struct bge_softc *sc, int off)
605 {
606         device_t dev;
607
608         dev = sc->bge_dev;
609
610         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
611         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
612 }
613 #endif
614
615 static void
616 bge_writereg_ind(struct bge_softc *sc, int off, int val)
617 {
618         device_t dev;
619
620         dev = sc->bge_dev;
621
622         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
623         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
624 }
625
626 static void
627 bge_writemem_direct(struct bge_softc *sc, int off, int val)
628 {
629         CSR_WRITE_4(sc, off, val);
630 }
631
632 static void
633 bge_writembx(struct bge_softc *sc, int off, int val)
634 {
635         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
636                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
637
638         CSR_WRITE_4(sc, off, val);
639 }
640
641 /*
642  * Map a single buffer address.
643  */
644
645 static void
646 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
647 {
648         struct bge_dmamap_arg *ctx;
649
650         if (error)
651                 return;
652
653         KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
654
655         ctx = arg;
656         ctx->bge_busaddr = segs->ds_addr;
657 }
658
659 static uint8_t
660 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
661 {
662         uint32_t access, byte = 0;
663         int i;
664
665         /* Lock. */
666         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
667         for (i = 0; i < 8000; i++) {
668                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
669                         break;
670                 DELAY(20);
671         }
672         if (i == 8000)
673                 return (1);
674
675         /* Enable access. */
676         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
677         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
678
679         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
680         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
681         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
682                 DELAY(10);
683                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
684                         DELAY(10);
685                         break;
686                 }
687         }
688
689         if (i == BGE_TIMEOUT * 10) {
690                 if_printf(sc->bge_ifp, "nvram read timed out\n");
691                 return (1);
692         }
693
694         /* Get result. */
695         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
696
697         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
698
699         /* Disable access. */
700         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
701
702         /* Unlock. */
703         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
704         CSR_READ_4(sc, BGE_NVRAM_SWARB);
705
706         return (0);
707 }
708
709 /*
710  * Read a sequence of bytes from NVRAM.
711  */
712 static int
713 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
714 {
715         int err = 0, i;
716         uint8_t byte = 0;
717
718         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
719                 return (1);
720
721         for (i = 0; i < cnt; i++) {
722                 err = bge_nvram_getbyte(sc, off + i, &byte);
723                 if (err)
724                         break;
725                 *(dest + i) = byte;
726         }
727
728         return (err ? 1 : 0);
729 }
730
731 /*
732  * Read a byte of data stored in the EEPROM at address 'addr.' The
733  * BCM570x supports both the traditional bitbang interface and an
734  * auto access interface for reading the EEPROM. We use the auto
735  * access method.
736  */
737 static uint8_t
738 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
739 {
740         int i;
741         uint32_t byte = 0;
742
743         /*
744          * Enable use of auto EEPROM access so we can avoid
745          * having to use the bitbang method.
746          */
747         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
748
749         /* Reset the EEPROM, load the clock period. */
750         CSR_WRITE_4(sc, BGE_EE_ADDR,
751             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
752         DELAY(20);
753
754         /* Issue the read EEPROM command. */
755         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
756
757         /* Wait for completion */
758         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
759                 DELAY(10);
760                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
761                         break;
762         }
763
764         if (i == BGE_TIMEOUT * 10) {
765                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
766                 return (1);
767         }
768
769         /* Get result. */
770         byte = CSR_READ_4(sc, BGE_EE_DATA);
771
772         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
773
774         return (0);
775 }
776
777 /*
778  * Read a sequence of bytes from the EEPROM.
779  */
780 static int
781 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
782 {
783         int i, error = 0;
784         uint8_t byte = 0;
785
786         for (i = 0; i < cnt; i++) {
787                 error = bge_eeprom_getbyte(sc, off + i, &byte);
788                 if (error)
789                         break;
790                 *(dest + i) = byte;
791         }
792
793         return (error ? 1 : 0);
794 }
795
796 static int
797 bge_miibus_readreg(device_t dev, int phy, int reg)
798 {
799         struct bge_softc *sc;
800         uint32_t val;
801         int i;
802
803         sc = device_get_softc(dev);
804
805         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
806         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
807                 CSR_WRITE_4(sc, BGE_MI_MODE,
808                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
809                 DELAY(80);
810         }
811
812         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
813             BGE_MIPHY(phy) | BGE_MIREG(reg));
814
815         /* Poll for the PHY register access to complete. */
816         for (i = 0; i < BGE_TIMEOUT; i++) {
817                 DELAY(10);
818                 val = CSR_READ_4(sc, BGE_MI_COMM);
819                 if ((val & BGE_MICOMM_BUSY) == 0) {
820                         DELAY(5);
821                         val = CSR_READ_4(sc, BGE_MI_COMM);
822                         break;
823                 }
824         }
825
826         if (i == BGE_TIMEOUT) {
827                 device_printf(sc->bge_dev,
828                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
829                     phy, reg, val);
830                 val = 0;
831         }
832
833         /* Restore the autopoll bit if necessary. */
834         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
835                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
836                 DELAY(80);
837         }
838
839         if (val & BGE_MICOMM_READFAIL)
840                 return (0);
841
842         return (val & 0xFFFF);
843 }
844
845 static int
846 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
847 {
848         struct bge_softc *sc;
849         int i;
850
851         sc = device_get_softc(dev);
852
853         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
854             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
855                 return (0);
856
857         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
858         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
859                 CSR_WRITE_4(sc, BGE_MI_MODE,
860                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
861                 DELAY(80);
862         }
863
864         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
865             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
866
867         for (i = 0; i < BGE_TIMEOUT; i++) {
868                 DELAY(10);
869                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
870                         DELAY(5);
871                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
872                         break;
873                 }
874         }
875
876         /* Restore the autopoll bit if necessary. */
877         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
878                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
879                 DELAY(80);
880         }
881
882         if (i == BGE_TIMEOUT)
883                 device_printf(sc->bge_dev,
884                     "PHY write timed out (phy %d, reg %d, val %d)\n",
885                     phy, reg, val);
886
887         return (0);
888 }
889
890 static void
891 bge_miibus_statchg(device_t dev)
892 {
893         struct bge_softc *sc;
894         struct mii_data *mii;
895         sc = device_get_softc(dev);
896         mii = device_get_softc(sc->bge_miibus);
897
898         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
899             (IFM_ACTIVE | IFM_AVALID)) {
900                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
901                 case IFM_10_T:
902                 case IFM_100_TX:
903                         sc->bge_link = 1;
904                         break;
905                 case IFM_1000_T:
906                 case IFM_1000_SX:
907                 case IFM_2500_SX:
908                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
909                                 sc->bge_link = 1;
910                         else
911                                 sc->bge_link = 0;
912                         break;
913                 default:
914                         sc->bge_link = 0;
915                         break;
916                 }
917         } else
918                 sc->bge_link = 0;
919         if (sc->bge_link == 0)
920                 return;
921         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
922         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
923             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
924                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
925         else
926                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
927
928         if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
929                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
930                 if ((IFM_OPTIONS(mii->mii_media_active) &
931                     IFM_ETH_TXPAUSE) != 0)
932                         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
933                 else
934                         BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
935                 if ((IFM_OPTIONS(mii->mii_media_active) &
936                     IFM_ETH_RXPAUSE) != 0)
937                         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
938                 else
939                         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
940         } else {
941                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
942                 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
943                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
944         }
945 }
946
947 /*
948  * Intialize a standard receive ring descriptor.
949  */
950 static int
951 bge_newbuf_std(struct bge_softc *sc, int i)
952 {
953         struct mbuf *m;
954         struct bge_rx_bd *r;
955         bus_dma_segment_t segs[1];
956         bus_dmamap_t map;
957         int error, nsegs;
958
959         if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
960             (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
961             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
962                 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
963                 if (m == NULL)
964                         return (ENOBUFS);
965                 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
966         } else {
967                 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
968                 if (m == NULL)
969                         return (ENOBUFS);
970                 m->m_len = m->m_pkthdr.len = MCLBYTES;
971         }
972         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
973                 m_adj(m, ETHER_ALIGN);
974
975         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
976             sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
977         if (error != 0) {
978                 m_freem(m);
979                 return (error);
980         }
981         if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
982                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
983                     sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
984                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
985                     sc->bge_cdata.bge_rx_std_dmamap[i]);
986         }
987         map = sc->bge_cdata.bge_rx_std_dmamap[i];
988         sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
989         sc->bge_cdata.bge_rx_std_sparemap = map;
990         sc->bge_cdata.bge_rx_std_chain[i] = m;
991         sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
992         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
993         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
994         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
995         r->bge_flags = BGE_RXBDFLAG_END;
996         r->bge_len = segs[0].ds_len;
997         r->bge_idx = i;
998
999         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1000             sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1001
1002         return (0);
1003 }
1004
1005 /*
1006  * Initialize a jumbo receive ring descriptor. This allocates
1007  * a jumbo buffer from the pool managed internally by the driver.
1008  */
1009 static int
1010 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1011 {
1012         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1013         bus_dmamap_t map;
1014         struct bge_extrx_bd *r;
1015         struct mbuf *m;
1016         int error, nsegs;
1017
1018         MGETHDR(m, M_DONTWAIT, MT_DATA);
1019         if (m == NULL)
1020                 return (ENOBUFS);
1021
1022         m_cljget(m, M_DONTWAIT, MJUM9BYTES);
1023         if (!(m->m_flags & M_EXT)) {
1024                 m_freem(m);
1025                 return (ENOBUFS);
1026         }
1027         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1028         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1029                 m_adj(m, ETHER_ALIGN);
1030
1031         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1032             sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1033         if (error != 0) {
1034                 m_freem(m);
1035                 return (error);
1036         }
1037
1038         if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1039                 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1040                     sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1041                 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1042                     sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1043         }
1044         map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1045         sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1046             sc->bge_cdata.bge_rx_jumbo_sparemap;
1047         sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1048         sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1049         sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1050         sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1051         sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1052         sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1053
1054         /*
1055          * Fill in the extended RX buffer descriptor.
1056          */
1057         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1058         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1059         r->bge_idx = i;
1060         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1061         switch (nsegs) {
1062         case 4:
1063                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1064                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1065                 r->bge_len3 = segs[3].ds_len;
1066                 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1067         case 3:
1068                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1069                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1070                 r->bge_len2 = segs[2].ds_len;
1071                 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1072         case 2:
1073                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1074                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1075                 r->bge_len1 = segs[1].ds_len;
1076                 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1077         case 1:
1078                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1079                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1080                 r->bge_len0 = segs[0].ds_len;
1081                 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1082                 break;
1083         default:
1084                 panic("%s: %d segments\n", __func__, nsegs);
1085         }
1086
1087         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1088             sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1089
1090         return (0);
1091 }
1092
1093 static int
1094 bge_init_rx_ring_std(struct bge_softc *sc)
1095 {
1096         int error, i;
1097
1098         bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1099         sc->bge_std = 0;
1100         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1101                 if ((error = bge_newbuf_std(sc, i)) != 0)
1102                         return (error);
1103                 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1104         }
1105
1106         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1107             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1108
1109         sc->bge_std = 0;
1110         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1111
1112         return (0);
1113 }
1114
1115 static void
1116 bge_free_rx_ring_std(struct bge_softc *sc)
1117 {
1118         int i;
1119
1120         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1121                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1122                         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1123                             sc->bge_cdata.bge_rx_std_dmamap[i],
1124                             BUS_DMASYNC_POSTREAD);
1125                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1126                             sc->bge_cdata.bge_rx_std_dmamap[i]);
1127                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1128                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1129                 }
1130                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1131                     sizeof(struct bge_rx_bd));
1132         }
1133 }
1134
1135 static int
1136 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1137 {
1138         struct bge_rcb *rcb;
1139         int error, i;
1140
1141         bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1142         sc->bge_jumbo = 0;
1143         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1144                 if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1145                         return (error);
1146                 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1147         }
1148
1149         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1150             sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1151
1152         sc->bge_jumbo = 0;
1153
1154         /* Enable the jumbo receive producer ring. */
1155         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1156         rcb->bge_maxlen_flags =
1157             BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1158         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1159
1160         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1161
1162         return (0);
1163 }
1164
1165 static void
1166 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1167 {
1168         int i;
1169
1170         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1171                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1172                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1173                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1174                             BUS_DMASYNC_POSTREAD);
1175                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1176                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1177                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1178                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1179                 }
1180                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1181                     sizeof(struct bge_extrx_bd));
1182         }
1183 }
1184
1185 static void
1186 bge_free_tx_ring(struct bge_softc *sc)
1187 {
1188         int i;
1189
1190         if (sc->bge_ldata.bge_tx_ring == NULL)
1191                 return;
1192
1193         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1194                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1195                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1196                             sc->bge_cdata.bge_tx_dmamap[i],
1197                             BUS_DMASYNC_POSTWRITE);
1198                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1199                             sc->bge_cdata.bge_tx_dmamap[i]);
1200                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1201                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1202                 }
1203                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1204                     sizeof(struct bge_tx_bd));
1205         }
1206 }
1207
1208 static int
1209 bge_init_tx_ring(struct bge_softc *sc)
1210 {
1211         sc->bge_txcnt = 0;
1212         sc->bge_tx_saved_considx = 0;
1213
1214         bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1215         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1216             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1217
1218         /* Initialize transmit producer index for host-memory send ring. */
1219         sc->bge_tx_prodidx = 0;
1220         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1221
1222         /* 5700 b2 errata */
1223         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1224                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1225
1226         /* NIC-memory send ring not used; initialize to zero. */
1227         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1228         /* 5700 b2 errata */
1229         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1230                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1231
1232         return (0);
1233 }
1234
1235 static void
1236 bge_setpromisc(struct bge_softc *sc)
1237 {
1238         struct ifnet *ifp;
1239
1240         BGE_LOCK_ASSERT(sc);
1241
1242         ifp = sc->bge_ifp;
1243
1244         /* Enable or disable promiscuous mode as needed. */
1245         if (ifp->if_flags & IFF_PROMISC)
1246                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1247         else
1248                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1249 }
1250
1251 static void
1252 bge_setmulti(struct bge_softc *sc)
1253 {
1254         struct ifnet *ifp;
1255         struct ifmultiaddr *ifma;
1256         uint32_t hashes[4] = { 0, 0, 0, 0 };
1257         int h, i;
1258
1259         BGE_LOCK_ASSERT(sc);
1260
1261         ifp = sc->bge_ifp;
1262
1263         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1264                 for (i = 0; i < 4; i++)
1265                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1266                 return;
1267         }
1268
1269         /* First, zot all the existing filters. */
1270         for (i = 0; i < 4; i++)
1271                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1272
1273         /* Now program new ones. */
1274         if_maddr_rlock(ifp);
1275         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1276                 if (ifma->ifma_addr->sa_family != AF_LINK)
1277                         continue;
1278                 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1279                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1280                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1281         }
1282         if_maddr_runlock(ifp);
1283
1284         for (i = 0; i < 4; i++)
1285                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1286 }
1287
1288 static void
1289 bge_setvlan(struct bge_softc *sc)
1290 {
1291         struct ifnet *ifp;
1292
1293         BGE_LOCK_ASSERT(sc);
1294
1295         ifp = sc->bge_ifp;
1296
1297         /* Enable or disable VLAN tag stripping as needed. */
1298         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1299                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1300         else
1301                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1302 }
1303
1304 static void
1305 bge_sig_pre_reset(struct bge_softc *sc, int type)
1306 {
1307
1308         /*
1309          * Some chips don't like this so only do this if ASF is enabled
1310          */
1311         if (sc->bge_asf_mode)
1312                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1313
1314         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1315                 switch (type) {
1316                 case BGE_RESET_START:
1317                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1318                         break;
1319                 case BGE_RESET_STOP:
1320                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1321                         break;
1322                 }
1323         }
1324 }
1325
1326 static void
1327 bge_sig_post_reset(struct bge_softc *sc, int type)
1328 {
1329
1330         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1331                 switch (type) {
1332                 case BGE_RESET_START:
1333                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1334                         /* START DONE */
1335                         break;
1336                 case BGE_RESET_STOP:
1337                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1338                         break;
1339                 }
1340         }
1341 }
1342
1343 static void
1344 bge_sig_legacy(struct bge_softc *sc, int type)
1345 {
1346
1347         if (sc->bge_asf_mode) {
1348                 switch (type) {
1349                 case BGE_RESET_START:
1350                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1351                         break;
1352                 case BGE_RESET_STOP:
1353                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1354                         break;
1355                 }
1356         }
1357 }
1358
1359 static void
1360 bge_stop_fw(struct bge_softc *sc)
1361 {
1362         int i;
1363
1364         if (sc->bge_asf_mode) {
1365                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_PAUSE);
1366                 CSR_WRITE_4(sc, BGE_CPU_EVENT,
1367                     CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1368
1369                 for (i = 0; i < 100; i++ ) {
1370                         if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1371                                 break;
1372                         DELAY(10);
1373                 }
1374         }
1375 }
1376
1377 /*
1378  * Do endian, PCI and DMA initialization.
1379  */
1380 static int
1381 bge_chipinit(struct bge_softc *sc)
1382 {
1383         uint32_t dma_rw_ctl, misc_ctl;
1384         uint16_t val;
1385         int i;
1386
1387         /* Set endianness before we access any non-PCI registers. */
1388         misc_ctl = BGE_INIT;
1389         if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1390                 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1391         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1392
1393         /* Clear the MAC control register */
1394         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1395
1396         /*
1397          * Clear the MAC statistics block in the NIC's
1398          * internal memory.
1399          */
1400         for (i = BGE_STATS_BLOCK;
1401             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1402                 BGE_MEMWIN_WRITE(sc, i, 0);
1403
1404         for (i = BGE_STATUS_BLOCK;
1405             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1406                 BGE_MEMWIN_WRITE(sc, i, 0);
1407
1408         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1409                 /*
1410                  *  Fix data corruption caused by non-qword write with WB.
1411                  *  Fix master abort in PCI mode.
1412                  *  Fix PCI latency timer.
1413                  */
1414                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1415                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1416                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1417         }
1418
1419         /*
1420          * Set up the PCI DMA control register.
1421          */
1422         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1423             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1424         if (sc->bge_flags & BGE_FLAG_PCIE) {
1425                 /* Read watermark not used, 128 bytes for write. */
1426                 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1427         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1428                 if (BGE_IS_5714_FAMILY(sc)) {
1429                         /* 256 bytes for read and write. */
1430                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1431                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1432                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1433                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1434                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1435                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1436                         /*
1437                          * In the BCM5703, the DMA read watermark should
1438                          * be set to less than or equal to the maximum
1439                          * memory read byte count of the PCI-X command
1440                          * register.
1441                          */
1442                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1443                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1444                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1445                         /* 1536 bytes for read, 384 bytes for write. */
1446                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1447                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1448                 } else {
1449                         /* 384 bytes for read and write. */
1450                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1451                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1452                             0x0F;
1453                 }
1454                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1455                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1456                         uint32_t tmp;
1457
1458                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
1459                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1460                         if (tmp == 6 || tmp == 7)
1461                                 dma_rw_ctl |=
1462                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1463
1464                         /* Set PCI-X DMA write workaround. */
1465                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1466                 }
1467         } else {
1468                 /* Conventional PCI bus: 256 bytes for read and write. */
1469                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1470                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1471
1472                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1473                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1474                         dma_rw_ctl |= 0x0F;
1475         }
1476         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1477             sc->bge_asicrev == BGE_ASICREV_BCM5701)
1478                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1479                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1480         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1481             sc->bge_asicrev == BGE_ASICREV_BCM5704)
1482                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1483         if (BGE_IS_5717_PLUS(sc)) {
1484                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1485                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1486                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1487                 /*
1488                  * Enable HW workaround for controllers that misinterpret
1489                  * a status tag update and leave interrupts permanently
1490                  * disabled.
1491                  */
1492                 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1493                     sc->bge_asicrev != BGE_ASICREV_BCM57765)
1494                         dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1495         }
1496         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1497
1498         /*
1499          * Set up general mode register.
1500          */
1501         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1502             BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1503             BGE_MODECTL_TX_NO_PHDR_CSUM);
1504
1505         /*
1506          * BCM5701 B5 have a bug causing data corruption when using
1507          * 64-bit DMA reads, which can be terminated early and then
1508          * completed later as 32-bit accesses, in combination with
1509          * certain bridges.
1510          */
1511         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1512             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1513                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1514
1515         /*
1516          * Tell the firmware the driver is running
1517          */
1518         if (sc->bge_asf_mode & ASF_STACKUP)
1519                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1520
1521         /*
1522          * Disable memory write invalidate.  Apparently it is not supported
1523          * properly by these devices.  Also ensure that INTx isn't disabled,
1524          * as these chips need it even when using MSI.
1525          */
1526         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1527             PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1528
1529         /* Set the timer prescaler (always 66Mhz) */
1530         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1531
1532         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1533         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1534                 DELAY(40);      /* XXX */
1535
1536                 /* Put PHY into ready state */
1537                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1538                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1539                 DELAY(40);
1540         }
1541
1542         return (0);
1543 }
1544
1545 static int
1546 bge_blockinit(struct bge_softc *sc)
1547 {
1548         struct bge_rcb *rcb;
1549         bus_size_t vrcb;
1550         bge_hostaddr taddr;
1551         uint32_t dmactl, val;
1552         int i, limit;
1553
1554         /*
1555          * Initialize the memory window pointer register so that
1556          * we can access the first 32K of internal NIC RAM. This will
1557          * allow us to set up the TX send ring RCBs and the RX return
1558          * ring RCBs, plus other things which live in NIC memory.
1559          */
1560         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1561
1562         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1563
1564         if (!(BGE_IS_5705_PLUS(sc))) {
1565                 /* Configure mbuf memory pool */
1566                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1567                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1568                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1569                 else
1570                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1571
1572                 /* Configure DMA resource pool */
1573                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1574                     BGE_DMA_DESCRIPTORS);
1575                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1576         }
1577
1578         /* Configure mbuf pool watermarks */
1579         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1580             sc->bge_asicrev == BGE_ASICREV_BCM57765) {
1581                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1582                 if (sc->bge_ifp->if_mtu > ETHERMTU) {
1583                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1584                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1585                 } else {
1586                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1587                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1588                 }
1589         } else if (!BGE_IS_5705_PLUS(sc)) {
1590                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1591                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1592                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1593         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1594                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1595                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1596                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1597         } else {
1598                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1599                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1600                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1601         }
1602
1603         /* Configure DMA resource watermarks */
1604         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1605         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1606
1607         /* Enable buffer manager */
1608         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1609         /*
1610          * Change the arbitration algorithm of TXMBUF read request to
1611          * round-robin instead of priority based for BCM5719.  When
1612          * TXFIFO is almost empty, RDMA will hold its request until
1613          * TXFIFO is not almost empty.
1614          */
1615         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
1616                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1617         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1618
1619         /* Poll for buffer manager start indication */
1620         for (i = 0; i < BGE_TIMEOUT; i++) {
1621                 DELAY(10);
1622                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1623                         break;
1624         }
1625
1626         if (i == BGE_TIMEOUT) {
1627                 device_printf(sc->bge_dev, "buffer manager failed to start\n");
1628                 return (ENXIO);
1629         }
1630
1631         /* Enable flow-through queues */
1632         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1633         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1634
1635         /* Wait until queue initialization is complete */
1636         for (i = 0; i < BGE_TIMEOUT; i++) {
1637                 DELAY(10);
1638                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1639                         break;
1640         }
1641
1642         if (i == BGE_TIMEOUT) {
1643                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
1644                 return (ENXIO);
1645         }
1646
1647         /*
1648          * Summary of rings supported by the controller:
1649          *
1650          * Standard Receive Producer Ring
1651          * - This ring is used to feed receive buffers for "standard"
1652          *   sized frames (typically 1536 bytes) to the controller.
1653          *
1654          * Jumbo Receive Producer Ring
1655          * - This ring is used to feed receive buffers for jumbo sized
1656          *   frames (i.e. anything bigger than the "standard" frames)
1657          *   to the controller.
1658          *
1659          * Mini Receive Producer Ring
1660          * - This ring is used to feed receive buffers for "mini"
1661          *   sized frames to the controller.
1662          * - This feature required external memory for the controller
1663          *   but was never used in a production system.  Should always
1664          *   be disabled.
1665          *
1666          * Receive Return Ring
1667          * - After the controller has placed an incoming frame into a
1668          *   receive buffer that buffer is moved into a receive return
1669          *   ring.  The driver is then responsible to passing the
1670          *   buffer up to the stack.  Many versions of the controller
1671          *   support multiple RR rings.
1672          *
1673          * Send Ring
1674          * - This ring is used for outgoing frames.  Many versions of
1675          *   the controller support multiple send rings.
1676          */
1677
1678         /* Initialize the standard receive producer ring control block. */
1679         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1680         rcb->bge_hostaddr.bge_addr_lo =
1681             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1682         rcb->bge_hostaddr.bge_addr_hi =
1683             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1684         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1685             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1686         if (BGE_IS_5717_PLUS(sc)) {
1687                 /*
1688                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1689                  * Bits 15-2 : Maximum RX frame size
1690                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1691                  * Bit 0     : Reserved
1692                  */
1693                 rcb->bge_maxlen_flags =
1694                     BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
1695         } else if (BGE_IS_5705_PLUS(sc)) {
1696                 /*
1697                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1698                  * Bits 15-2 : Reserved (should be 0)
1699                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1700                  * Bit 0     : Reserved
1701                  */
1702                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1703         } else {
1704                 /*
1705                  * Ring size is always XXX entries
1706                  * Bits 31-16: Maximum RX frame size
1707                  * Bits 15-2 : Reserved (should be 0)
1708                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1709                  * Bit 0     : Reserved
1710                  */
1711                 rcb->bge_maxlen_flags =
1712                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1713         }
1714         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1715             sc->bge_asicrev == BGE_ASICREV_BCM5719)
1716                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1717         else
1718                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1719         /* Write the standard receive producer ring control block. */
1720         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1721         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1722         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1723         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1724
1725         /* Reset the standard receive producer ring producer index. */
1726         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1727
1728         /*
1729          * Initialize the jumbo RX producer ring control
1730          * block.  We set the 'ring disabled' bit in the
1731          * flags field until we're actually ready to start
1732          * using this ring (i.e. once we set the MTU
1733          * high enough to require it).
1734          */
1735         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1736                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1737                 /* Get the jumbo receive producer ring RCB parameters. */
1738                 rcb->bge_hostaddr.bge_addr_lo =
1739                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1740                 rcb->bge_hostaddr.bge_addr_hi =
1741                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1742                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1743                     sc->bge_cdata.bge_rx_jumbo_ring_map,
1744                     BUS_DMASYNC_PREREAD);
1745                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1746                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1747                 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1748                     sc->bge_asicrev == BGE_ASICREV_BCM5719)
1749                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1750                 else
1751                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1752                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1753                     rcb->bge_hostaddr.bge_addr_hi);
1754                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1755                     rcb->bge_hostaddr.bge_addr_lo);
1756                 /* Program the jumbo receive producer ring RCB parameters. */
1757                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1758                     rcb->bge_maxlen_flags);
1759                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1760                 /* Reset the jumbo receive producer ring producer index. */
1761                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1762         }
1763
1764         /* Disable the mini receive producer ring RCB. */
1765         if (BGE_IS_5700_FAMILY(sc)) {
1766                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1767                 rcb->bge_maxlen_flags =
1768                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1769                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1770                     rcb->bge_maxlen_flags);
1771                 /* Reset the mini receive producer ring producer index. */
1772                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1773         }
1774
1775         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1776         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1777                 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1778                     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1779                     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
1780                         CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1781                             (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1782         }
1783         /*
1784          * The BD ring replenish thresholds control how often the
1785          * hardware fetches new BD's from the producer rings in host
1786          * memory.  Setting the value too low on a busy system can
1787          * starve the hardware and recue the throughpout.
1788          *
1789          * Set the BD ring replentish thresholds. The recommended
1790          * values are 1/8th the number of descriptors allocated to
1791          * each ring.
1792          * XXX The 5754 requires a lower threshold, so it might be a
1793          * requirement of all 575x family chips.  The Linux driver sets
1794          * the lower threshold for all 5705 family chips as well, but there
1795          * are reports that it might not need to be so strict.
1796          *
1797          * XXX Linux does some extra fiddling here for the 5906 parts as
1798          * well.
1799          */
1800         if (BGE_IS_5705_PLUS(sc))
1801                 val = 8;
1802         else
1803                 val = BGE_STD_RX_RING_CNT / 8;
1804         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1805         if (BGE_IS_JUMBO_CAPABLE(sc))
1806                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1807                     BGE_JUMBO_RX_RING_CNT/8);
1808         if (BGE_IS_5717_PLUS(sc)) {
1809                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1810                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1811         }
1812
1813         /*
1814          * Disable all send rings by setting the 'ring disabled' bit
1815          * in the flags field of all the TX send ring control blocks,
1816          * located in NIC memory.
1817          */
1818         if (!BGE_IS_5705_PLUS(sc))
1819                 /* 5700 to 5704 had 16 send rings. */
1820                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1821         else
1822                 limit = 1;
1823         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1824         for (i = 0; i < limit; i++) {
1825                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1826                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1827                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1828                 vrcb += sizeof(struct bge_rcb);
1829         }
1830
1831         /* Configure send ring RCB 0 (we use only the first ring) */
1832         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1833         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1834         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1835         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1836         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1837             sc->bge_asicrev == BGE_ASICREV_BCM5719)
1838                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
1839         else
1840                 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1841                     BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1842         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1843             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1844
1845         /*
1846          * Disable all receive return rings by setting the
1847          * 'ring diabled' bit in the flags field of all the receive
1848          * return ring control blocks, located in NIC memory.
1849          */
1850         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1851             sc->bge_asicrev == BGE_ASICREV_BCM5719) {
1852                 /* Should be 17, use 16 until we get an SRAM map. */
1853                 limit = 16;
1854         } else if (!BGE_IS_5705_PLUS(sc))
1855                 limit = BGE_RX_RINGS_MAX;
1856         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1857             sc->bge_asicrev == BGE_ASICREV_BCM57765)
1858                 limit = 4;
1859         else
1860                 limit = 1;
1861         /* Disable all receive return rings. */
1862         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1863         for (i = 0; i < limit; i++) {
1864                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1865                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1866                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1867                     BGE_RCB_FLAG_RING_DISABLED);
1868                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1869                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1870                     (i * (sizeof(uint64_t))), 0);
1871                 vrcb += sizeof(struct bge_rcb);
1872         }
1873
1874         /*
1875          * Set up receive return ring 0.  Note that the NIC address
1876          * for RX return rings is 0x0.  The return rings live entirely
1877          * within the host, so the nicaddr field in the RCB isn't used.
1878          */
1879         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1880         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1881         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1882         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1883         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1884         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1885             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1886
1887         /* Set random backoff seed for TX */
1888         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1889             IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1890             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1891             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1892             BGE_TX_BACKOFF_SEED_MASK);
1893
1894         /* Set inter-packet gap */
1895         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1896
1897         /*
1898          * Specify which ring to use for packets that don't match
1899          * any RX rules.
1900          */
1901         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1902
1903         /*
1904          * Configure number of RX lists. One interrupt distribution
1905          * list, sixteen active lists, one bad frames class.
1906          */
1907         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1908
1909         /* Inialize RX list placement stats mask. */
1910         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1911         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1912
1913         /* Disable host coalescing until we get it set up */
1914         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1915
1916         /* Poll to make sure it's shut down. */
1917         for (i = 0; i < BGE_TIMEOUT; i++) {
1918                 DELAY(10);
1919                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1920                         break;
1921         }
1922
1923         if (i == BGE_TIMEOUT) {
1924                 device_printf(sc->bge_dev,
1925                     "host coalescing engine failed to idle\n");
1926                 return (ENXIO);
1927         }
1928
1929         /* Set up host coalescing defaults */
1930         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1931         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1932         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1933         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1934         if (!(BGE_IS_5705_PLUS(sc))) {
1935                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1936                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1937         }
1938         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1939         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1940
1941         /* Set up address of statistics block */
1942         if (!(BGE_IS_5705_PLUS(sc))) {
1943                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1944                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1945                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1946                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1947                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1948                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1949                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1950         }
1951
1952         /* Set up address of status block */
1953         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1954             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1955         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1956             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1957
1958         /* Set up status block size. */
1959         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1960             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1961                 val = BGE_STATBLKSZ_FULL;
1962                 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1963         } else {
1964                 val = BGE_STATBLKSZ_32BYTE;
1965                 bzero(sc->bge_ldata.bge_status_block, 32);
1966         }
1967         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
1968             sc->bge_cdata.bge_status_map,
1969             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1970
1971         /* Turn on host coalescing state machine */
1972         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1973
1974         /* Turn on RX BD completion state machine and enable attentions */
1975         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1976             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1977
1978         /* Turn on RX list placement state machine */
1979         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1980
1981         /* Turn on RX list selector state machine. */
1982         if (!(BGE_IS_5705_PLUS(sc)))
1983                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1984
1985         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1986             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1987             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1988             BGE_MACMODE_FRMHDR_DMA_ENB;
1989
1990         if (sc->bge_flags & BGE_FLAG_TBI)
1991                 val |= BGE_PORTMODE_TBI;
1992         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1993                 val |= BGE_PORTMODE_GMII;
1994         else
1995                 val |= BGE_PORTMODE_MII;
1996
1997         /* Turn on DMA, clear stats */
1998         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1999
2000         /* Set misc. local control, enable interrupts on attentions */
2001         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2002
2003 #ifdef notdef
2004         /* Assert GPIO pins for PHY reset */
2005         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2006             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2007         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2008             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2009 #endif
2010
2011         /* Turn on DMA completion state machine */
2012         if (!(BGE_IS_5705_PLUS(sc)))
2013                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2014
2015         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2016
2017         /* Enable host coalescing bug fix. */
2018         if (BGE_IS_5755_PLUS(sc))
2019                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2020
2021         /* Request larger DMA burst size to get better performance. */
2022         if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2023                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2024
2025         /* Turn on write DMA state machine */
2026         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2027         DELAY(40);
2028
2029         /* Turn on read DMA state machine */
2030         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2031
2032         if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2033                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2034
2035         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2036             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2037             sc->bge_asicrev == BGE_ASICREV_BCM57780)
2038                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2039                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2040                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2041         if (sc->bge_flags & BGE_FLAG_PCIE)
2042                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2043         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2044                 val |= BGE_RDMAMODE_TSO4_ENABLE;
2045                 if (sc->bge_flags & BGE_FLAG_TSO3 ||
2046                     sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2047                     sc->bge_asicrev == BGE_ASICREV_BCM57780)
2048                         val |= BGE_RDMAMODE_TSO6_ENABLE;
2049         }
2050         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2051             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2052             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2053             sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2054             BGE_IS_5717_PLUS(sc)) {
2055                 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2056                 /*
2057                  * Adjust tx margin to prevent TX data corruption and
2058                  * fix internal FIFO overflow.
2059                  */
2060                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2061                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2062                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2063                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2064                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2065                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2066                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2067                 }
2068                 /*
2069                  * Enable fix for read DMA FIFO overruns.
2070                  * The fix is to limit the number of RX BDs
2071                  * the hardware would fetch at a fime.
2072                  */
2073                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2074                     BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2075         }
2076
2077         if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2078                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2079                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2080                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2081                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2082         }
2083
2084         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2085         DELAY(40);
2086
2087         /* Turn on RX data completion state machine */
2088         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2089
2090         /* Turn on RX BD initiator state machine */
2091         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2092
2093         /* Turn on RX data and RX BD initiator state machine */
2094         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2095
2096         /* Turn on Mbuf cluster free state machine */
2097         if (!(BGE_IS_5705_PLUS(sc)))
2098                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2099
2100         /* Turn on send BD completion state machine */
2101         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2102
2103         /* Turn on send data completion state machine */
2104         val = BGE_SDCMODE_ENABLE;
2105         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2106                 val |= BGE_SDCMODE_CDELAY;
2107         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2108
2109         /* Turn on send data initiator state machine */
2110         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2111                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2112                     BGE_SDIMODE_HW_LSO_PRE_DMA);
2113         else
2114                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2115
2116         /* Turn on send BD initiator state machine */
2117         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2118
2119         /* Turn on send BD selector state machine */
2120         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2121
2122         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2123         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2124             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2125
2126         /* ack/clear link change events */
2127         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2128             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2129             BGE_MACSTAT_LINK_CHANGED);
2130         CSR_WRITE_4(sc, BGE_MI_STS, 0);
2131
2132         /*
2133          * Enable attention when the link has changed state for
2134          * devices that use auto polling.
2135          */
2136         if (sc->bge_flags & BGE_FLAG_TBI) {
2137                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2138         } else {
2139                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2140                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2141                         DELAY(80);
2142                 }
2143                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2144                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2145                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2146                             BGE_EVTENB_MI_INTERRUPT);
2147         }
2148
2149         /*
2150          * Clear any pending link state attention.
2151          * Otherwise some link state change events may be lost until attention
2152          * is cleared by bge_intr() -> bge_link_upd() sequence.
2153          * It's not necessary on newer BCM chips - perhaps enabling link
2154          * state change attentions implies clearing pending attention.
2155          */
2156         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2157             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2158             BGE_MACSTAT_LINK_CHANGED);
2159
2160         /* Enable link state change attentions. */
2161         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2162
2163         return (0);
2164 }
2165
2166 const struct bge_revision *
2167 bge_lookup_rev(uint32_t chipid)
2168 {
2169         const struct bge_revision *br;
2170
2171         for (br = bge_revisions; br->br_name != NULL; br++) {
2172                 if (br->br_chipid == chipid)
2173                         return (br);
2174         }
2175
2176         for (br = bge_majorrevs; br->br_name != NULL; br++) {
2177                 if (br->br_chipid == BGE_ASICREV(chipid))
2178                         return (br);
2179         }
2180
2181         return (NULL);
2182 }
2183
2184 const struct bge_vendor *
2185 bge_lookup_vendor(uint16_t vid)
2186 {
2187         const struct bge_vendor *v;
2188
2189         for (v = bge_vendors; v->v_name != NULL; v++)
2190                 if (v->v_id == vid)
2191                         return (v);
2192
2193         panic("%s: unknown vendor %d", __func__, vid);
2194         return (NULL);
2195 }
2196
2197 /*
2198  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2199  * against our list and return its name if we find a match.
2200  *
2201  * Note that since the Broadcom controller contains VPD support, we
2202  * try to get the device name string from the controller itself instead
2203  * of the compiled-in string. It guarantees we'll always announce the
2204  * right product name. We fall back to the compiled-in string when
2205  * VPD is unavailable or corrupt.
2206  */
2207 static int
2208 bge_probe(device_t dev)
2209 {
2210         char buf[96];
2211         char model[64];
2212         const struct bge_revision *br;
2213         const char *pname;
2214         struct bge_softc *sc = device_get_softc(dev);
2215         const struct bge_type *t = bge_devs;
2216         const struct bge_vendor *v;
2217         uint32_t id;
2218         uint16_t did, vid;
2219
2220         sc->bge_dev = dev;
2221         vid = pci_get_vendor(dev);
2222         did = pci_get_device(dev);
2223         while(t->bge_vid != 0) {
2224                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
2225                         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2226                             BGE_PCIMISCCTL_ASICREV_SHIFT;
2227                         if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2228                                 /*
2229                                  * Find the ASCI revision.  Different chips
2230                                  * use different registers.
2231                                  */
2232                                 switch (pci_get_device(dev)) {
2233                                 case BCOM_DEVICEID_BCM5717:
2234                                 case BCOM_DEVICEID_BCM5718:
2235                                 case BCOM_DEVICEID_BCM5719:
2236                                         id = pci_read_config(dev,
2237                                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
2238                                         break;
2239                                 case BCOM_DEVICEID_BCM57761:
2240                                 case BCOM_DEVICEID_BCM57765:
2241                                 case BCOM_DEVICEID_BCM57781:
2242                                 case BCOM_DEVICEID_BCM57785:
2243                                 case BCOM_DEVICEID_BCM57791:
2244                                 case BCOM_DEVICEID_BCM57795:
2245                                         id = pci_read_config(dev,
2246                                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
2247                                         break;
2248                                 default:
2249                                         id = pci_read_config(dev,
2250                                             BGE_PCI_PRODID_ASICREV, 4);
2251                                 }
2252                         }
2253                         br = bge_lookup_rev(id);
2254                         v = bge_lookup_vendor(vid);
2255                         if (bge_has_eaddr(sc) &&
2256                             pci_get_vpd_ident(dev, &pname) == 0)
2257                                 snprintf(model, 64, "%s", pname);
2258                         else
2259                                 snprintf(model, 64, "%s %s", v->v_name,
2260                                     br != NULL ? br->br_name :
2261                                     "NetXtreme Ethernet Controller");
2262                         snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
2263                             br != NULL ? "" : "unknown ", id);
2264                         device_set_desc_copy(dev, buf);
2265                         return (0);
2266                 }
2267                 t++;
2268         }
2269
2270         return (ENXIO);
2271 }
2272
2273 static void
2274 bge_dma_free(struct bge_softc *sc)
2275 {
2276         int i;
2277
2278         /* Destroy DMA maps for RX buffers. */
2279         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2280                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
2281                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2282                             sc->bge_cdata.bge_rx_std_dmamap[i]);
2283         }
2284         if (sc->bge_cdata.bge_rx_std_sparemap)
2285                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2286                     sc->bge_cdata.bge_rx_std_sparemap);
2287
2288         /* Destroy DMA maps for jumbo RX buffers. */
2289         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2290                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2291                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2292                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2293         }
2294         if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2295                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2296                     sc->bge_cdata.bge_rx_jumbo_sparemap);
2297
2298         /* Destroy DMA maps for TX buffers. */
2299         for (i = 0; i < BGE_TX_RING_CNT; i++) {
2300                 if (sc->bge_cdata.bge_tx_dmamap[i])
2301                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2302                             sc->bge_cdata.bge_tx_dmamap[i]);
2303         }
2304
2305         if (sc->bge_cdata.bge_rx_mtag)
2306                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2307         if (sc->bge_cdata.bge_tx_mtag)
2308                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2309
2310
2311         /* Destroy standard RX ring. */
2312         if (sc->bge_cdata.bge_rx_std_ring_map)
2313                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2314                     sc->bge_cdata.bge_rx_std_ring_map);
2315         if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2316                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2317                     sc->bge_ldata.bge_rx_std_ring,
2318                     sc->bge_cdata.bge_rx_std_ring_map);
2319
2320         if (sc->bge_cdata.bge_rx_std_ring_tag)
2321                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2322
2323         /* Destroy jumbo RX ring. */
2324         if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2325                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2326                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2327
2328         if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2329             sc->bge_ldata.bge_rx_jumbo_ring)
2330                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2331                     sc->bge_ldata.bge_rx_jumbo_ring,
2332                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2333
2334         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2335                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2336
2337         /* Destroy RX return ring. */
2338         if (sc->bge_cdata.bge_rx_return_ring_map)
2339                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2340                     sc->bge_cdata.bge_rx_return_ring_map);
2341
2342         if (sc->bge_cdata.bge_rx_return_ring_map &&
2343             sc->bge_ldata.bge_rx_return_ring)
2344                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2345                     sc->bge_ldata.bge_rx_return_ring,
2346                     sc->bge_cdata.bge_rx_return_ring_map);
2347
2348         if (sc->bge_cdata.bge_rx_return_ring_tag)
2349                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2350
2351         /* Destroy TX ring. */
2352         if (sc->bge_cdata.bge_tx_ring_map)
2353                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2354                     sc->bge_cdata.bge_tx_ring_map);
2355
2356         if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2357                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2358                     sc->bge_ldata.bge_tx_ring,
2359                     sc->bge_cdata.bge_tx_ring_map);
2360
2361         if (sc->bge_cdata.bge_tx_ring_tag)
2362                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2363
2364         /* Destroy status block. */
2365         if (sc->bge_cdata.bge_status_map)
2366                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2367                     sc->bge_cdata.bge_status_map);
2368
2369         if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2370                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2371                     sc->bge_ldata.bge_status_block,
2372                     sc->bge_cdata.bge_status_map);
2373
2374         if (sc->bge_cdata.bge_status_tag)
2375                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2376
2377         /* Destroy statistics block. */
2378         if (sc->bge_cdata.bge_stats_map)
2379                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2380                     sc->bge_cdata.bge_stats_map);
2381
2382         if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2383                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2384                     sc->bge_ldata.bge_stats,
2385                     sc->bge_cdata.bge_stats_map);
2386
2387         if (sc->bge_cdata.bge_stats_tag)
2388                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2389
2390         if (sc->bge_cdata.bge_buffer_tag)
2391                 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2392
2393         /* Destroy the parent tag. */
2394         if (sc->bge_cdata.bge_parent_tag)
2395                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2396 }
2397
2398 static int
2399 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2400     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2401     bus_addr_t *paddr, const char *msg)
2402 {
2403         struct bge_dmamap_arg ctx;
2404         bus_addr_t lowaddr;
2405         bus_size_t ring_end;
2406         int error;
2407
2408         lowaddr = BUS_SPACE_MAXADDR;
2409 again:
2410         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2411             alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2412             NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2413         if (error != 0) {
2414                 device_printf(sc->bge_dev,
2415                     "could not create %s dma tag\n", msg);
2416                 return (ENOMEM);
2417         }
2418         /* Allocate DMA'able memory for ring. */
2419         error = bus_dmamem_alloc(*tag, (void **)ring,
2420             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2421         if (error != 0) {
2422                 device_printf(sc->bge_dev,
2423                     "could not allocate DMA'able memory for %s\n", msg);
2424                 return (ENOMEM);
2425         }
2426         /* Load the address of the ring. */
2427         ctx.bge_busaddr = 0;
2428         error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2429             &ctx, BUS_DMA_NOWAIT);
2430         if (error != 0) {
2431                 device_printf(sc->bge_dev,
2432                     "could not load DMA'able memory for %s\n", msg);
2433                 return (ENOMEM);
2434         }
2435         *paddr = ctx.bge_busaddr;
2436         ring_end = *paddr + maxsize;
2437         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 &&
2438             BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) {
2439                 /*
2440                  * 4GB boundary crossed.  Limit maximum allowable DMA
2441                  * address space to 32bit and try again.
2442                  */
2443                 bus_dmamap_unload(*tag, *map);
2444                 bus_dmamem_free(*tag, *ring, *map);
2445                 bus_dma_tag_destroy(*tag);
2446                 if (bootverbose)
2447                         device_printf(sc->bge_dev, "4GB boundary crossed, "
2448                             "limit DMA address space to 32bit for %s\n", msg);
2449                 *ring = NULL;
2450                 *tag = NULL;
2451                 *map = NULL;
2452                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
2453                 goto again;
2454         }
2455         return (0);
2456 }
2457
2458 static int
2459 bge_dma_alloc(struct bge_softc *sc)
2460 {
2461         bus_addr_t lowaddr;
2462         bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz;
2463         int i, error;
2464
2465         lowaddr = BUS_SPACE_MAXADDR;
2466         if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2467                 lowaddr = BGE_DMA_MAXADDR;
2468         /*
2469          * Allocate the parent bus DMA tag appropriate for PCI.
2470          */
2471         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2472             1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2473             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2474             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2475         if (error != 0) {
2476                 device_printf(sc->bge_dev,
2477                     "could not allocate parent dma tag\n");
2478                 return (ENOMEM);
2479         }
2480
2481         /* Create tag for standard RX ring. */
2482         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2483             &sc->bge_cdata.bge_rx_std_ring_tag,
2484             (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2485             &sc->bge_cdata.bge_rx_std_ring_map,
2486             &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2487         if (error)
2488                 return (error);
2489
2490         /* Create tag for RX return ring. */
2491         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2492             &sc->bge_cdata.bge_rx_return_ring_tag,
2493             (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2494             &sc->bge_cdata.bge_rx_return_ring_map,
2495             &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2496         if (error)
2497                 return (error);
2498
2499         /* Create tag for TX ring. */
2500         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2501             &sc->bge_cdata.bge_tx_ring_tag,
2502             (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2503             &sc->bge_cdata.bge_tx_ring_map,
2504             &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2505         if (error)
2506                 return (error);
2507
2508         /*
2509          * Create tag for status block.
2510          * Because we only use single Tx/Rx/Rx return ring, use
2511          * minimum status block size except BCM5700 AX/BX which
2512          * seems to want to see full status block size regardless
2513          * of configured number of ring.
2514          */
2515         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2516             sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2517                 sbsz = BGE_STATUS_BLK_SZ;
2518         else
2519                 sbsz = 32;
2520         error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2521             &sc->bge_cdata.bge_status_tag,
2522             (uint8_t **)&sc->bge_ldata.bge_status_block,
2523             &sc->bge_cdata.bge_status_map,
2524             &sc->bge_ldata.bge_status_block_paddr, "status block");
2525         if (error)
2526                 return (error);
2527
2528         /* Create tag for statistics block. */
2529         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2530             &sc->bge_cdata.bge_stats_tag,
2531             (uint8_t **)&sc->bge_ldata.bge_stats,
2532             &sc->bge_cdata.bge_stats_map,
2533             &sc->bge_ldata.bge_stats_paddr, "statistics block");
2534         if (error)
2535                 return (error);
2536
2537         /* Create tag for jumbo RX ring. */
2538         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2539                 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
2540                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
2541                     (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
2542                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
2543                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
2544                 if (error)
2545                         return (error);
2546         }
2547
2548         /* Create parent tag for buffers. */
2549         boundary = 0;
2550         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
2551                 boundary = BGE_DMA_BNDRY;
2552                 /*
2553                  * XXX
2554                  * watchdog timeout issue was observed on BCM5704 which
2555                  * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
2556                  * Limiting DMA address space to 32bits seems to address
2557                  * it.
2558                  */
2559                 if (sc->bge_flags & BGE_FLAG_PCIX)
2560                         lowaddr = BUS_SPACE_MAXADDR_32BIT;
2561         }
2562         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2563             1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL,
2564             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2565             0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag);
2566         if (error != 0) {
2567                 device_printf(sc->bge_dev,
2568                     "could not allocate buffer dma tag\n");
2569                 return (ENOMEM);
2570         }
2571         /* Create tag for Tx mbufs. */
2572         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2573                 txsegsz = BGE_TSOSEG_SZ;
2574                 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2575         } else {
2576                 txsegsz = MCLBYTES;
2577                 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2578         }
2579         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
2580             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2581             txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2582             &sc->bge_cdata.bge_tx_mtag);
2583
2584         if (error) {
2585                 device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2586                 return (ENOMEM);
2587         }
2588
2589         /* Create tag for Rx mbufs. */
2590         if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
2591                 rxmaxsegsz = MJUM9BYTES;
2592         else
2593                 rxmaxsegsz = MCLBYTES;
2594         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
2595             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
2596             rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2597
2598         if (error) {
2599                 device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2600                 return (ENOMEM);
2601         }
2602
2603         /* Create DMA maps for RX buffers. */
2604         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2605             &sc->bge_cdata.bge_rx_std_sparemap);
2606         if (error) {
2607                 device_printf(sc->bge_dev,
2608                     "can't create spare DMA map for RX\n");
2609                 return (ENOMEM);
2610         }
2611         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2612                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2613                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
2614                 if (error) {
2615                         device_printf(sc->bge_dev,
2616                             "can't create DMA map for RX\n");
2617                         return (ENOMEM);
2618                 }
2619         }
2620
2621         /* Create DMA maps for TX buffers. */
2622         for (i = 0; i < BGE_TX_RING_CNT; i++) {
2623                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2624                             &sc->bge_cdata.bge_tx_dmamap[i]);
2625                 if (error) {
2626                         device_printf(sc->bge_dev,
2627                             "can't create DMA map for TX\n");
2628                         return (ENOMEM);
2629                 }
2630         }
2631
2632         /* Create tags for jumbo RX buffers. */
2633         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2634                 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
2635                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2636                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2637                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2638                 if (error) {
2639                         device_printf(sc->bge_dev,
2640                             "could not allocate jumbo dma tag\n");
2641                         return (ENOMEM);
2642                 }
2643                 /* Create DMA maps for jumbo RX buffers. */
2644                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2645                     0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2646                 if (error) {
2647                         device_printf(sc->bge_dev,
2648                             "can't create spare DMA map for jumbo RX\n");
2649                         return (ENOMEM);
2650                 }
2651                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2652                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2653                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2654                         if (error) {
2655                                 device_printf(sc->bge_dev,
2656                                     "can't create DMA map for jumbo RX\n");
2657                                 return (ENOMEM);
2658                         }
2659                 }
2660         }
2661
2662         return (0);
2663 }
2664
2665 /*
2666  * Return true if this device has more than one port.
2667  */
2668 static int
2669 bge_has_multiple_ports(struct bge_softc *sc)
2670 {
2671         device_t dev = sc->bge_dev;
2672         u_int b, d, f, fscan, s;
2673
2674         d = pci_get_domain(dev);
2675         b = pci_get_bus(dev);
2676         s = pci_get_slot(dev);
2677         f = pci_get_function(dev);
2678         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2679                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2680                         return (1);
2681         return (0);
2682 }
2683
2684 /*
2685  * Return true if MSI can be used with this device.
2686  */
2687 static int
2688 bge_can_use_msi(struct bge_softc *sc)
2689 {
2690         int can_use_msi = 0;
2691
2692         /* Disable MSI for polling(4). */
2693 #ifdef DEVICE_POLLING
2694         return (0);
2695 #endif
2696         switch (sc->bge_asicrev) {
2697         case BGE_ASICREV_BCM5714_A0:
2698         case BGE_ASICREV_BCM5714:
2699                 /*
2700                  * Apparently, MSI doesn't work when these chips are
2701                  * configured in single-port mode.
2702                  */
2703                 if (bge_has_multiple_ports(sc))
2704                         can_use_msi = 1;
2705                 break;
2706         case BGE_ASICREV_BCM5750:
2707                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2708                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2709                         can_use_msi = 1;
2710                 break;
2711         default:
2712                 if (BGE_IS_575X_PLUS(sc))
2713                         can_use_msi = 1;
2714         }
2715         return (can_use_msi);
2716 }
2717
2718 static int
2719 bge_attach(device_t dev)
2720 {
2721         struct ifnet *ifp;
2722         struct bge_softc *sc;
2723         uint32_t hwcfg = 0, misccfg;
2724         u_char eaddr[ETHER_ADDR_LEN];
2725         int capmask, error, f, msicount, phy_addr, reg, rid, trys;
2726
2727         sc = device_get_softc(dev);
2728         sc->bge_dev = dev;
2729
2730         TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2731
2732         /*
2733          * Map control/status registers.
2734          */
2735         pci_enable_busmaster(dev);
2736
2737         rid = PCIR_BAR(0);
2738         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2739             RF_ACTIVE);
2740
2741         if (sc->bge_res == NULL) {
2742                 device_printf (sc->bge_dev, "couldn't map memory\n");
2743                 error = ENXIO;
2744                 goto fail;
2745         }
2746
2747         /* Save various chip information. */
2748         sc->bge_chipid =
2749             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2750             BGE_PCIMISCCTL_ASICREV_SHIFT;
2751         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2752                 /*
2753                  * Find the ASCI revision.  Different chips use different
2754                  * registers.
2755                  */
2756                 switch (pci_get_device(dev)) {
2757                 case BCOM_DEVICEID_BCM5717:
2758                 case BCOM_DEVICEID_BCM5718:
2759                 case BCOM_DEVICEID_BCM5719:
2760                         sc->bge_chipid = pci_read_config(dev,
2761                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
2762                         break;
2763                 case BCOM_DEVICEID_BCM57761:
2764                 case BCOM_DEVICEID_BCM57765:
2765                 case BCOM_DEVICEID_BCM57781:
2766                 case BCOM_DEVICEID_BCM57785:
2767                 case BCOM_DEVICEID_BCM57791:
2768                 case BCOM_DEVICEID_BCM57795:
2769                         sc->bge_chipid = pci_read_config(dev,
2770                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
2771                         break;
2772                 default:
2773                         sc->bge_chipid = pci_read_config(dev,
2774                             BGE_PCI_PRODID_ASICREV, 4);
2775                 }
2776         }
2777         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2778         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2779
2780         /* Set default PHY address. */
2781         phy_addr = 1;
2782          /*
2783           * PHY address mapping for various devices.
2784           *
2785           *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2786           * ---------+-------+-------+-------+-------+
2787           * BCM57XX  |   1   |   X   |   X   |   X   |
2788           * BCM5704  |   1   |   X   |   1   |   X   |
2789           * BCM5717  |   1   |   8   |   2   |   9   |
2790           * BCM5719  |   1   |   8   |   2   |   9   |
2791           *
2792           * Other addresses may respond but they are not
2793           * IEEE compliant PHYs and should be ignored.
2794           */
2795         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2796             sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2797                 f = pci_get_function(dev);
2798                 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2799                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2800                             BGE_SGDIGSTS_IS_SERDES)
2801                                 phy_addr = f + 8;
2802                         else
2803                                 phy_addr = f + 1;
2804                 } else {
2805                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2806                             BGE_CPMU_PHY_STRAP_IS_SERDES)
2807                                 phy_addr = f + 8;
2808                         else
2809                                 phy_addr = f + 1;
2810                 }
2811         }
2812
2813         /*
2814          * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2815          * 5705 A0 and A1 chips.
2816          */
2817         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2818             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2819             (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2820             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2821             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2822                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
2823
2824         if (bge_has_eaddr(sc))
2825                 sc->bge_flags |= BGE_FLAG_EADDR;
2826
2827         /* Save chipset family. */
2828         switch (sc->bge_asicrev) {
2829         case BGE_ASICREV_BCM5717:
2830         case BGE_ASICREV_BCM5719:
2831         case BGE_ASICREV_BCM57765:
2832                 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
2833                     BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
2834                     BGE_FLAG_JUMBO_FRAME;
2835                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2836                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2837                         /* Jumbo frame on BCM5719 A0 does not work. */
2838                         sc->bge_flags &= ~BGE_FLAG_JUMBO;
2839                 }
2840                 break;
2841         case BGE_ASICREV_BCM5755:
2842         case BGE_ASICREV_BCM5761:
2843         case BGE_ASICREV_BCM5784:
2844         case BGE_ASICREV_BCM5785:
2845         case BGE_ASICREV_BCM5787:
2846         case BGE_ASICREV_BCM57780:
2847                 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2848                     BGE_FLAG_5705_PLUS;
2849                 break;
2850         case BGE_ASICREV_BCM5700:
2851         case BGE_ASICREV_BCM5701:
2852         case BGE_ASICREV_BCM5703:
2853         case BGE_ASICREV_BCM5704:
2854                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2855                 break;
2856         case BGE_ASICREV_BCM5714_A0:
2857         case BGE_ASICREV_BCM5780:
2858         case BGE_ASICREV_BCM5714:
2859                 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
2860                 /* FALLTHROUGH */
2861         case BGE_ASICREV_BCM5750:
2862         case BGE_ASICREV_BCM5752:
2863         case BGE_ASICREV_BCM5906:
2864                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2865                 /* FALLTHROUGH */
2866         case BGE_ASICREV_BCM5705:
2867                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2868                 break;
2869         }
2870
2871         /* Set various PHY bug flags. */
2872         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2873             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2874                 sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
2875         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2876             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2877                 sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
2878         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2879                 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
2880         if (pci_get_subvendor(dev) == DELL_VENDORID)
2881                 sc->bge_phy_flags |= BGE_PHY_NO_3LED;
2882         if ((BGE_IS_5705_PLUS(sc)) &&
2883             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2884             sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
2885             sc->bge_asicrev != BGE_ASICREV_BCM5719 &&
2886             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2887             sc->bge_asicrev != BGE_ASICREV_BCM57765 &&
2888             sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2889                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2890                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2891                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2892                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2893                         if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
2894                             pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
2895                                 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
2896                         if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
2897                                 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
2898                 } else
2899                         sc->bge_phy_flags |= BGE_PHY_BER_BUG;
2900         }
2901
2902         /* Identify the chips that use an CPMU. */
2903         if (BGE_IS_5717_PLUS(sc) ||
2904             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2905             sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2906             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2907             sc->bge_asicrev == BGE_ASICREV_BCM57780)
2908                 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
2909         if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
2910                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2911         else
2912                 sc->bge_mi_mode = BGE_MIMODE_BASE;
2913         /* Enable auto polling for BCM570[0-5]. */
2914         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
2915                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2916
2917         /*
2918          * All Broadcom controllers have 4GB boundary DMA bug.
2919          * Whenever an address crosses a multiple of the 4GB boundary
2920          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
2921          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
2922          * state machine will lockup and cause the device to hang.
2923          */
2924         sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
2925
2926         /* BCM5755 or higher and BCM5906 have short DMA bug. */
2927         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2928                 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
2929
2930         /*
2931          * BCM5719 cannot handle DMA requests for DMA segments that
2932          * have larger than 4KB in size.  However the maximum DMA
2933          * segment size created in DMA tag is 4KB for TSO, so we
2934          * wouldn't encounter the issue here.
2935          */
2936         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2937                 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
2938
2939         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2940         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2941                 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2942                     misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2943                         sc->bge_flags |= BGE_FLAG_5788;
2944         }
2945
2946         capmask = BMSR_DEFCAPMASK;
2947         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2948             (misccfg == 0x4000 || misccfg == 0x8000)) ||
2949             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2950             pci_get_vendor(dev) == BCOM_VENDORID &&
2951             (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
2952             pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
2953             pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
2954             (pci_get_vendor(dev) == BCOM_VENDORID &&
2955             (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
2956             pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
2957             pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
2958             pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
2959             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2960                 /* These chips are 10/100 only. */
2961                 capmask &= ~BMSR_EXTSTAT;
2962         }
2963
2964         /*
2965          * Some controllers seem to require a special firmware to use
2966          * TSO. But the firmware is not available to FreeBSD and Linux
2967          * claims that the TSO performed by the firmware is slower than
2968          * hardware based TSO. Moreover the firmware based TSO has one
2969          * known bug which can't handle TSO if ethernet header + IP/TCP
2970          * header is greater than 80 bytes. The workaround for the TSO
2971          * bug exist but it seems it's too expensive than not using
2972          * TSO at all. Some hardwares also have the TSO bug so limit
2973          * the TSO to the controllers that are not affected TSO issues
2974          * (e.g. 5755 or higher).
2975          */
2976         if (BGE_IS_5717_PLUS(sc)) {
2977                 /* BCM5717 requires different TSO configuration. */
2978                 sc->bge_flags |= BGE_FLAG_TSO3;
2979                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2980                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2981                         /* TSO on BCM5719 A0 does not work. */
2982                         sc->bge_flags &= ~BGE_FLAG_TSO3;
2983                 }
2984         } else if (BGE_IS_5755_PLUS(sc)) {
2985                 /*
2986                  * BCM5754 and BCM5787 shares the same ASIC id so
2987                  * explicit device id check is required.
2988                  * Due to unknown reason TSO does not work on BCM5755M.
2989                  */
2990                 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
2991                     pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
2992                     pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
2993                         sc->bge_flags |= BGE_FLAG_TSO;
2994         }
2995
2996         /*
2997          * Check if this is a PCI-X or PCI Express device.
2998          */
2999         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3000                 /*
3001                  * Found a PCI Express capabilities register, this
3002                  * must be a PCI Express device.
3003                  */
3004                 sc->bge_flags |= BGE_FLAG_PCIE;
3005                 sc->bge_expcap = reg;
3006                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3007                         pci_set_max_read_req(dev, 2048);
3008                 else if (pci_get_max_read_req(dev) != 4096)
3009                         pci_set_max_read_req(dev, 4096);
3010         } else {
3011                 /*
3012                  * Check if the device is in PCI-X Mode.
3013                  * (This bit is not valid on PCI Express controllers.)
3014                  */
3015                 if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3016                         sc->bge_pcixcap = reg;
3017                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3018                     BGE_PCISTATE_PCI_BUSMODE) == 0)
3019                         sc->bge_flags |= BGE_FLAG_PCIX;
3020         }
3021
3022         /*
3023          * The 40bit DMA bug applies to the 5714/5715 controllers and is
3024          * not actually a MAC controller bug but an issue with the embedded
3025          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3026          */
3027         if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3028                 sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3029         /*
3030          * Allocate the interrupt, using MSI if possible.  These devices
3031          * support 8 MSI messages, but only the first one is used in
3032          * normal operation.
3033          */
3034         rid = 0;
3035         if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3036                 sc->bge_msicap = reg;
3037                 if (bge_can_use_msi(sc)) {
3038                         msicount = pci_msi_count(dev);
3039                         if (msicount > 1)
3040                                 msicount = 1;
3041                 } else
3042                         msicount = 0;
3043                 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
3044                         rid = 1;
3045                         sc->bge_flags |= BGE_FLAG_MSI;
3046                 }
3047         }
3048
3049         /*
3050          * All controllers except BCM5700 supports tagged status but
3051          * we use tagged status only for MSI case on BCM5717. Otherwise
3052          * MSI on BCM5717 does not work.
3053          */
3054 #ifndef DEVICE_POLLING
3055         if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3056                 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3057 #endif
3058
3059         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3060             RF_SHAREABLE | RF_ACTIVE);
3061
3062         if (sc->bge_irq == NULL) {
3063                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
3064                 error = ENXIO;
3065                 goto fail;
3066         }
3067
3068         device_printf(dev,
3069             "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
3070             sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
3071             (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
3072             ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
3073
3074         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3075
3076         /* Try to reset the chip. */
3077         if (bge_reset(sc)) {
3078                 device_printf(sc->bge_dev, "chip reset failed\n");
3079                 error = ENXIO;
3080                 goto fail;
3081         }
3082
3083         sc->bge_asf_mode = 0;
3084         if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3085             BGE_SRAM_DATA_SIG_MAGIC)) {
3086                 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG)
3087                     & BGE_HWCFG_ASF) {
3088                         sc->bge_asf_mode |= ASF_ENABLE;
3089                         sc->bge_asf_mode |= ASF_STACKUP;
3090                         if (BGE_IS_575X_PLUS(sc))
3091                                 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3092                 }
3093         }
3094
3095         /* Try to reset the chip again the nice way. */
3096         bge_stop_fw(sc);
3097         bge_sig_pre_reset(sc, BGE_RESET_STOP);
3098         if (bge_reset(sc)) {
3099                 device_printf(sc->bge_dev, "chip reset failed\n");
3100                 error = ENXIO;
3101                 goto fail;
3102         }
3103
3104         bge_sig_legacy(sc, BGE_RESET_STOP);
3105         bge_sig_post_reset(sc, BGE_RESET_STOP);
3106
3107         if (bge_chipinit(sc)) {
3108                 device_printf(sc->bge_dev, "chip initialization failed\n");
3109                 error = ENXIO;
3110                 goto fail;
3111         }
3112
3113         error = bge_get_eaddr(sc, eaddr);
3114         if (error) {
3115                 device_printf(sc->bge_dev,
3116                     "failed to read station address\n");
3117                 error = ENXIO;
3118                 goto fail;
3119         }
3120
3121         /* 5705 limits RX return ring to 512 entries. */
3122         if (BGE_IS_5717_PLUS(sc))
3123                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3124         else if (BGE_IS_5705_PLUS(sc))
3125                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3126         else
3127                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3128
3129         if (bge_dma_alloc(sc)) {
3130                 device_printf(sc->bge_dev,
3131                     "failed to allocate DMA resources\n");
3132                 error = ENXIO;
3133                 goto fail;
3134         }
3135
3136         bge_add_sysctls(sc);
3137
3138         /* Set default tuneable values. */
3139         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3140         sc->bge_rx_coal_ticks = 150;
3141         sc->bge_tx_coal_ticks = 150;
3142         sc->bge_rx_max_coal_bds = 10;
3143         sc->bge_tx_max_coal_bds = 10;
3144
3145         /* Initialize checksum features to use. */
3146         sc->bge_csum_features = BGE_CSUM_FEATURES;
3147         if (sc->bge_forced_udpcsum != 0)
3148                 sc->bge_csum_features |= CSUM_UDP;
3149
3150         /* Set up ifnet structure */
3151         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3152         if (ifp == NULL) {
3153                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
3154                 error = ENXIO;
3155                 goto fail;
3156         }
3157         ifp->if_softc = sc;
3158         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3159         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3160         ifp->if_ioctl = bge_ioctl;
3161         ifp->if_start = bge_start;
3162         ifp->if_init = bge_init;
3163         ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3164         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3165         IFQ_SET_READY(&ifp->if_snd);
3166         ifp->if_hwassist = sc->bge_csum_features;
3167         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3168             IFCAP_VLAN_MTU;
3169         if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3170                 ifp->if_hwassist |= CSUM_TSO;
3171                 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3172         }
3173 #ifdef IFCAP_VLAN_HWCSUM
3174         ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3175 #endif
3176         ifp->if_capenable = ifp->if_capabilities;
3177 #ifdef DEVICE_POLLING
3178         ifp->if_capabilities |= IFCAP_POLLING;
3179 #endif
3180
3181         /*
3182          * 5700 B0 chips do not support checksumming correctly due
3183          * to hardware bugs.
3184          */
3185         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3186                 ifp->if_capabilities &= ~IFCAP_HWCSUM;
3187                 ifp->if_capenable &= ~IFCAP_HWCSUM;
3188                 ifp->if_hwassist = 0;
3189         }
3190
3191         /*
3192          * Figure out what sort of media we have by checking the
3193          * hardware config word in the first 32k of NIC internal memory,
3194          * or fall back to examining the EEPROM if necessary.
3195          * Note: on some BCM5700 cards, this value appears to be unset.
3196          * If that's the case, we have to rely on identifying the NIC
3197          * by its PCI subsystem ID, as we do below for the SysKonnect
3198          * SK-9D41.
3199          */
3200         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3201                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3202         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3203             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3204                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3205                     sizeof(hwcfg))) {
3206                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
3207                         error = ENXIO;
3208                         goto fail;
3209                 }
3210                 hwcfg = ntohl(hwcfg);
3211         }
3212
3213         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3214         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3215             SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3216                 if (BGE_IS_5714_FAMILY(sc))
3217                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
3218                 else
3219                         sc->bge_flags |= BGE_FLAG_TBI;
3220         }
3221
3222         if (sc->bge_flags & BGE_FLAG_TBI) {
3223                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3224                     bge_ifmedia_sts);
3225                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3226                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3227                     0, NULL);
3228                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3229                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3230                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3231         } else {
3232                 /*
3233                  * Do transceiver setup and tell the firmware the
3234                  * driver is down so we can try to get access the
3235                  * probe if ASF is running.  Retry a couple of times
3236                  * if we get a conflict with the ASF firmware accessing
3237                  * the PHY.
3238                  */
3239                 trys = 0;
3240                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3241 again:
3242                 bge_asf_driver_up(sc);
3243
3244                 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3245                     bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY,
3246                     MIIF_DOPAUSE);
3247                 if (error != 0) {
3248                         if (trys++ < 4) {
3249                                 device_printf(sc->bge_dev, "Try again\n");
3250                                 bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
3251                                     BMCR_RESET);
3252                                 goto again;
3253                         }
3254                         device_printf(sc->bge_dev, "attaching PHYs failed\n");
3255                         goto fail;
3256                 }
3257
3258                 /*
3259                  * Now tell the firmware we are going up after probing the PHY
3260                  */
3261                 if (sc->bge_asf_mode & ASF_STACKUP)
3262                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3263         }
3264
3265         /*
3266          * When using the BCM5701 in PCI-X mode, data corruption has
3267          * been observed in the first few bytes of some received packets.
3268          * Aligning the packet buffer in memory eliminates the corruption.
3269          * Unfortunately, this misaligns the packet payloads.  On platforms
3270          * which do not support unaligned accesses, we will realign the
3271          * payloads by copying the received packets.
3272          */
3273         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3274             sc->bge_flags & BGE_FLAG_PCIX)
3275                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3276
3277         /*
3278          * Call MI attach routine.
3279          */
3280         ether_ifattach(ifp, eaddr);
3281         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3282
3283         /* Tell upper layer we support long frames. */
3284         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3285
3286         /*
3287          * Hookup IRQ last.
3288          */
3289         if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3290                 /* Take advantage of single-shot MSI. */
3291                 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3292                     ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3293                 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3294                     taskqueue_thread_enqueue, &sc->bge_tq);
3295                 if (sc->bge_tq == NULL) {
3296                         device_printf(dev, "could not create taskqueue.\n");
3297                         ether_ifdetach(ifp);
3298                         error = ENXIO;
3299                         goto fail;
3300                 }
3301                 taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
3302                     device_get_nameunit(sc->bge_dev));
3303                 error = bus_setup_intr(dev, sc->bge_irq,
3304                     INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3305                     &sc->bge_intrhand);
3306                 if (error)
3307                         ether_ifdetach(ifp);
3308         } else
3309                 error = bus_setup_intr(dev, sc->bge_irq,
3310                     INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3311                     &sc->bge_intrhand);
3312
3313         if (error) {
3314                 bge_detach(dev);
3315                 device_printf(sc->bge_dev, "couldn't set up irq\n");
3316         }
3317
3318         return (0);
3319
3320 fail:
3321         bge_release_resources(sc);
3322
3323         return (error);
3324 }
3325
3326 static int
3327 bge_detach(device_t dev)
3328 {
3329         struct bge_softc *sc;
3330         struct ifnet *ifp;
3331
3332         sc = device_get_softc(dev);
3333         ifp = sc->bge_ifp;
3334
3335 #ifdef DEVICE_POLLING
3336         if (ifp->if_capenable & IFCAP_POLLING)
3337                 ether_poll_deregister(ifp);
3338 #endif
3339
3340         BGE_LOCK(sc);
3341         bge_stop(sc);
3342         bge_reset(sc);
3343         BGE_UNLOCK(sc);
3344
3345         callout_drain(&sc->bge_stat_ch);
3346
3347         if (sc->bge_tq)
3348                 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3349         ether_ifdetach(ifp);
3350
3351         if (sc->bge_flags & BGE_FLAG_TBI) {
3352                 ifmedia_removeall(&sc->bge_ifmedia);
3353         } else {
3354                 bus_generic_detach(dev);
3355                 device_delete_child(dev, sc->bge_miibus);
3356         }
3357
3358         bge_release_resources(sc);
3359
3360         return (0);
3361 }
3362
3363 static void
3364 bge_release_resources(struct bge_softc *sc)
3365 {
3366         device_t dev;
3367
3368         dev = sc->bge_dev;
3369
3370         if (sc->bge_tq != NULL)
3371                 taskqueue_free(sc->bge_tq);
3372
3373         if (sc->bge_intrhand != NULL)
3374                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3375
3376         if (sc->bge_irq != NULL)
3377                 bus_release_resource(dev, SYS_RES_IRQ,
3378                     sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3379
3380         if (sc->bge_flags & BGE_FLAG_MSI)
3381                 pci_release_msi(dev);
3382
3383         if (sc->bge_res != NULL)
3384                 bus_release_resource(dev, SYS_RES_MEMORY,
3385                     PCIR_BAR(0), sc->bge_res);
3386
3387         if (sc->bge_ifp != NULL)
3388                 if_free(sc->bge_ifp);
3389
3390         bge_dma_free(sc);
3391
3392         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
3393                 BGE_LOCK_DESTROY(sc);
3394 }
3395
3396 static int
3397 bge_reset(struct bge_softc *sc)
3398 {
3399         device_t dev;
3400         uint32_t cachesize, command, pcistate, reset, val;
3401         void (*write_op)(struct bge_softc *, int, int);
3402         uint16_t devctl;
3403         int i;
3404
3405         dev = sc->bge_dev;
3406
3407         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3408             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3409                 if (sc->bge_flags & BGE_FLAG_PCIE)
3410                         write_op = bge_writemem_direct;
3411                 else
3412                         write_op = bge_writemem_ind;
3413         } else
3414                 write_op = bge_writereg_ind;
3415
3416         /* Save some important PCI state. */
3417         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3418         command = pci_read_config(dev, BGE_PCI_CMD, 4);
3419         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3420
3421         pci_write_config(dev, BGE_PCI_MISC_CTL,
3422             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3423             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3424
3425         /* Disable fastboot on controllers that support it. */
3426         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3427             BGE_IS_5755_PLUS(sc)) {
3428                 if (bootverbose)
3429                         device_printf(dev, "Disabling fastboot\n");
3430                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3431         }
3432
3433         /*
3434          * Write the magic number to SRAM at offset 0xB50.
3435          * When firmware finishes its initialization it will
3436          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
3437          */
3438         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3439
3440         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3441
3442         /* XXX: Broadcom Linux driver. */
3443         if (sc->bge_flags & BGE_FLAG_PCIE) {
3444                 if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
3445                         CSR_WRITE_4(sc, 0x7E2C, 0x20);
3446                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3447                         /* Prevent PCIE link training during global reset */
3448                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3449                         reset |= 1 << 29;
3450                 }
3451         }
3452
3453         /*
3454          * Set GPHY Power Down Override to leave GPHY
3455          * powered up in D0 uninitialized.
3456          */
3457         if (BGE_IS_5705_PLUS(sc) &&
3458             (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
3459                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3460
3461         /* Issue global reset */
3462         write_op(sc, BGE_MISC_CFG, reset);
3463
3464         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3465                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3466                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3467                     val | BGE_VCPU_STATUS_DRV_RESET);
3468                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3469                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3470                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3471         }
3472
3473         DELAY(1000);
3474
3475         /* XXX: Broadcom Linux driver. */
3476         if (sc->bge_flags & BGE_FLAG_PCIE) {
3477                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3478                         DELAY(500000); /* wait for link training to complete */
3479                         val = pci_read_config(dev, 0xC4, 4);
3480                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3481                 }
3482                 devctl = pci_read_config(dev,
3483                     sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3484                 /* Clear enable no snoop and disable relaxed ordering. */
3485                 devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE |
3486                     PCIM_EXP_CTL_NOSNOOP_ENABLE);
3487                 /* Set PCIE max payload size to 128. */
3488                 devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD;
3489                 pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3490                     devctl, 2);
3491                 /* Clear error status. */
3492                 pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3493                     PCIM_EXP_STA_CORRECTABLE_ERROR |
3494                     PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR |
3495                     PCIM_EXP_STA_UNSUPPORTED_REQ, 2);
3496         }
3497
3498         /* Reset some of the PCI state that got zapped by reset. */
3499         pci_write_config(dev, BGE_PCI_MISC_CTL,
3500             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3501             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3502         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3503         pci_write_config(dev, BGE_PCI_CMD, command, 4);
3504         write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3505         /*
3506          * Disable PCI-X relaxed ordering to ensure status block update
3507          * comes first then packet buffer DMA. Otherwise driver may
3508          * read stale status block.
3509          */
3510         if (sc->bge_flags & BGE_FLAG_PCIX) {
3511                 devctl = pci_read_config(dev,
3512                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
3513                 devctl &= ~PCIXM_COMMAND_ERO;
3514                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
3515                         devctl &= ~PCIXM_COMMAND_MAX_READ;
3516                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
3517                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3518                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
3519                             PCIXM_COMMAND_MAX_READ);
3520                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
3521                 }
3522                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
3523                     devctl, 2);
3524         }
3525         /* Re-enable MSI, if necessary, and enable the memory arbiter. */
3526         if (BGE_IS_5714_FAMILY(sc)) {
3527                 /* This chip disables MSI on reset. */
3528                 if (sc->bge_flags & BGE_FLAG_MSI) {
3529                         val = pci_read_config(dev,
3530                             sc->bge_msicap + PCIR_MSI_CTRL, 2);
3531                         pci_write_config(dev,
3532                             sc->bge_msicap + PCIR_MSI_CTRL,
3533                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
3534                         val = CSR_READ_4(sc, BGE_MSI_MODE);
3535                         CSR_WRITE_4(sc, BGE_MSI_MODE,
3536                             val | BGE_MSIMODE_ENABLE);
3537                 }
3538                 val = CSR_READ_4(sc, BGE_MARB_MODE);
3539                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3540         } else
3541                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3542
3543         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3544                 for (i = 0; i < BGE_TIMEOUT; i++) {
3545                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3546                         if (val & BGE_VCPU_STATUS_INIT_DONE)
3547                                 break;
3548                         DELAY(100);
3549                 }
3550                 if (i == BGE_TIMEOUT) {
3551                         device_printf(dev, "reset timed out\n");
3552                         return (1);
3553                 }
3554         } else {
3555                 /*
3556                  * Poll until we see the 1's complement of the magic number.
3557                  * This indicates that the firmware initialization is complete.
3558                  * We expect this to fail if no chip containing the Ethernet
3559                  * address is fitted though.
3560                  */
3561                 for (i = 0; i < BGE_TIMEOUT; i++) {
3562                         DELAY(10);
3563                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
3564                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
3565                                 break;
3566                 }
3567
3568                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3569                         device_printf(dev,
3570                             "firmware handshake timed out, found 0x%08x\n",
3571                             val);
3572                 /* BCM57765 A0 needs additional time before accessing. */
3573                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
3574                         DELAY(10 * 1000);       /* XXX */
3575         }
3576
3577         /*
3578          * XXX Wait for the value of the PCISTATE register to
3579          * return to its original pre-reset state. This is a
3580          * fairly good indicator of reset completion. If we don't
3581          * wait for the reset to fully complete, trying to read
3582          * from the device's non-PCI registers may yield garbage
3583          * results.
3584          */
3585         for (i = 0; i < BGE_TIMEOUT; i++) {
3586                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3587                         break;
3588                 DELAY(10);
3589         }
3590
3591         /* Fix up byte swapping. */
3592         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
3593             BGE_MODECTL_BYTESWAP_DATA);
3594
3595         /* Tell the ASF firmware we are up */
3596         if (sc->bge_asf_mode & ASF_STACKUP)
3597                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3598
3599         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3600
3601         /*
3602          * The 5704 in TBI mode apparently needs some special
3603          * adjustment to insure the SERDES drive level is set
3604          * to 1.2V.
3605          */
3606         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3607             sc->bge_flags & BGE_FLAG_TBI) {
3608                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
3609                 val = (val & ~0xFFF) | 0x880;
3610                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3611         }
3612
3613         /* XXX: Broadcom Linux driver. */
3614         if (sc->bge_flags & BGE_FLAG_PCIE &&
3615             !BGE_IS_5717_PLUS(sc) &&
3616             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3617             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
3618                 /* Enable Data FIFO protection. */
3619                 val = CSR_READ_4(sc, 0x7C00);
3620                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3621         }
3622         DELAY(10000);
3623
3624         return (0);
3625 }
3626
3627 static __inline void
3628 bge_rxreuse_std(struct bge_softc *sc, int i)
3629 {
3630         struct bge_rx_bd *r;
3631
3632         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
3633         r->bge_flags = BGE_RXBDFLAG_END;
3634         r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
3635         r->bge_idx = i;
3636         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3637 }
3638
3639 static __inline void
3640 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
3641 {
3642         struct bge_extrx_bd *r;
3643
3644         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
3645         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
3646         r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
3647         r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
3648         r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
3649         r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
3650         r->bge_idx = i;
3651         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3652 }
3653
3654 /*
3655  * Frame reception handling. This is called if there's a frame
3656  * on the receive return list.
3657  *
3658  * Note: we have to be able to handle two possibilities here:
3659  * 1) the frame is from the jumbo receive ring
3660  * 2) the frame is from the standard receive ring
3661  */
3662
3663 static int
3664 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3665 {
3666         struct ifnet *ifp;
3667         int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3668         uint16_t rx_cons;
3669
3670         rx_cons = sc->bge_rx_saved_considx;
3671
3672         /* Nothing to do. */
3673         if (rx_cons == rx_prod)
3674                 return (rx_npkts);
3675
3676         ifp = sc->bge_ifp;
3677
3678         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3679             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3680         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3681             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3682         if (BGE_IS_JUMBO_CAPABLE(sc) &&
3683             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3684             (MCLBYTES - ETHER_ALIGN))
3685                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3686                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3687
3688         while (rx_cons != rx_prod) {
3689                 struct bge_rx_bd        *cur_rx;
3690                 uint32_t                rxidx;
3691                 struct mbuf             *m = NULL;
3692                 uint16_t                vlan_tag = 0;
3693                 int                     have_tag = 0;
3694
3695 #ifdef DEVICE_POLLING
3696                 if (ifp->if_capenable & IFCAP_POLLING) {
3697                         if (sc->rxcycles <= 0)
3698                                 break;
3699                         sc->rxcycles--;
3700                 }
3701 #endif
3702
3703                 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3704
3705                 rxidx = cur_rx->bge_idx;
3706                 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3707
3708                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3709                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3710                         have_tag = 1;
3711                         vlan_tag = cur_rx->bge_vlan_tag;
3712                 }
3713
3714                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3715                         jumbocnt++;
3716                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3717                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3718                                 bge_rxreuse_jumbo(sc, rxidx);
3719                                 continue;
3720                         }
3721                         if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3722                                 bge_rxreuse_jumbo(sc, rxidx);
3723                                 ifp->if_iqdrops++;
3724                                 continue;
3725                         }
3726                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3727                 } else {
3728                         stdcnt++;
3729                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3730                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3731                                 bge_rxreuse_std(sc, rxidx);
3732                                 continue;
3733                         }
3734                         if (bge_newbuf_std(sc, rxidx) != 0) {
3735                                 bge_rxreuse_std(sc, rxidx);
3736                                 ifp->if_iqdrops++;
3737                                 continue;
3738                         }
3739                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3740                 }
3741
3742                 ifp->if_ipackets++;
3743 #ifndef __NO_STRICT_ALIGNMENT
3744                 /*
3745                  * For architectures with strict alignment we must make sure
3746                  * the payload is aligned.
3747                  */
3748                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3749                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3750                             cur_rx->bge_len);
3751                         m->m_data += ETHER_ALIGN;
3752                 }
3753 #endif
3754                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3755                 m->m_pkthdr.rcvif = ifp;
3756
3757                 if (ifp->if_capenable & IFCAP_RXCSUM)
3758                         bge_rxcsum(sc, cur_rx, m);
3759
3760                 /*
3761                  * If we received a packet with a vlan tag,
3762                  * attach that information to the packet.
3763                  */
3764                 if (have_tag) {
3765                         m->m_pkthdr.ether_vtag = vlan_tag;
3766                         m->m_flags |= M_VLANTAG;
3767                 }
3768
3769                 if (holdlck != 0) {
3770                         BGE_UNLOCK(sc);
3771                         (*ifp->if_input)(ifp, m);
3772                         BGE_LOCK(sc);
3773                 } else
3774                         (*ifp->if_input)(ifp, m);
3775                 rx_npkts++;
3776
3777                 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3778                         return (rx_npkts);
3779         }
3780
3781         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3782             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3783         if (stdcnt > 0)
3784                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3785                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3786
3787         if (jumbocnt > 0)
3788                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3789                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3790
3791         sc->bge_rx_saved_considx = rx_cons;
3792         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3793         if (stdcnt)
3794                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
3795                     BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
3796         if (jumbocnt)
3797                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
3798                     BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
3799 #ifdef notyet
3800         /*
3801          * This register wraps very quickly under heavy packet drops.
3802          * If you need correct statistics, you can enable this check.
3803          */
3804         if (BGE_IS_5705_PLUS(sc))
3805                 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3806 #endif
3807         return (rx_npkts);
3808 }
3809
3810 static void
3811 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
3812 {
3813
3814         if (BGE_IS_5717_PLUS(sc)) {
3815                 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
3816                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3817                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3818                                 if ((cur_rx->bge_error_flag &
3819                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
3820                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3821                         }
3822                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
3823                                 m->m_pkthdr.csum_data =
3824                                     cur_rx->bge_tcp_udp_csum;
3825                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3826                                     CSUM_PSEUDO_HDR;
3827                         }
3828                 }
3829         } else {
3830                 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3831                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3832                         if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3833                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3834                 }
3835                 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3836                     m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3837                         m->m_pkthdr.csum_data =
3838                             cur_rx->bge_tcp_udp_csum;
3839                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3840                             CSUM_PSEUDO_HDR;
3841                 }
3842         }
3843 }
3844
3845 static void
3846 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3847 {
3848         struct bge_tx_bd *cur_tx;
3849         struct ifnet *ifp;
3850
3851         BGE_LOCK_ASSERT(sc);
3852
3853         /* Nothing to do. */
3854         if (sc->bge_tx_saved_considx == tx_cons)
3855                 return;
3856
3857         ifp = sc->bge_ifp;
3858
3859         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3860             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
3861         /*
3862          * Go through our tx ring and free mbufs for those
3863          * frames that have been sent.
3864          */
3865         while (sc->bge_tx_saved_considx != tx_cons) {
3866                 uint32_t                idx;
3867
3868                 idx = sc->bge_tx_saved_considx;
3869                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3870                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3871                         ifp->if_opackets++;
3872                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3873                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
3874                             sc->bge_cdata.bge_tx_dmamap[idx],
3875                             BUS_DMASYNC_POSTWRITE);
3876                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3877                             sc->bge_cdata.bge_tx_dmamap[idx]);
3878                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3879                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
3880                 }
3881                 sc->bge_txcnt--;
3882                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3883         }
3884
3885         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3886         if (sc->bge_txcnt == 0)
3887                 sc->bge_timer = 0;
3888 }
3889
3890 #ifdef DEVICE_POLLING
3891 static int
3892 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3893 {
3894         struct bge_softc *sc = ifp->if_softc;
3895         uint16_t rx_prod, tx_cons;
3896         uint32_t statusword;
3897         int rx_npkts = 0;
3898
3899         BGE_LOCK(sc);
3900         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3901                 BGE_UNLOCK(sc);
3902                 return (rx_npkts);
3903         }
3904
3905         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3906             sc->bge_cdata.bge_status_map,
3907             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3908         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3909         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3910
3911         statusword = sc->bge_ldata.bge_status_block->bge_status;
3912         sc->bge_ldata.bge_status_block->bge_status = 0;
3913
3914         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3915             sc->bge_cdata.bge_status_map,
3916             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3917
3918         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3919         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3920                 sc->bge_link_evt++;
3921
3922         if (cmd == POLL_AND_CHECK_STATUS)
3923                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3924                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3925                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3926                         bge_link_upd(sc);
3927
3928         sc->rxcycles = count;
3929         rx_npkts = bge_rxeof(sc, rx_prod, 1);
3930         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3931                 BGE_UNLOCK(sc);
3932                 return (rx_npkts);
3933         }
3934         bge_txeof(sc, tx_cons);
3935         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3936                 bge_start_locked(ifp);
3937
3938         BGE_UNLOCK(sc);
3939         return (rx_npkts);
3940 }
3941 #endif /* DEVICE_POLLING */
3942
3943 static int
3944 bge_msi_intr(void *arg)
3945 {
3946         struct bge_softc *sc;
3947
3948         sc = (struct bge_softc *)arg;
3949         /*
3950          * This interrupt is not shared and controller already
3951          * disabled further interrupt.
3952          */
3953         taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
3954         return (FILTER_HANDLED);
3955 }
3956
3957 static void
3958 bge_intr_task(void *arg, int pending)
3959 {
3960         struct bge_softc *sc;
3961         struct ifnet *ifp;
3962         uint32_t status, status_tag;
3963         uint16_t rx_prod, tx_cons;
3964
3965         sc = (struct bge_softc *)arg;
3966         ifp = sc->bge_ifp;
3967
3968         BGE_LOCK(sc);
3969         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3970                 BGE_UNLOCK(sc);
3971                 return;
3972         }
3973
3974         /* Get updated status block. */
3975         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3976             sc->bge_cdata.bge_status_map,
3977             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3978
3979         /* Save producer/consumer indexess. */
3980         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3981         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3982         status = sc->bge_ldata.bge_status_block->bge_status;
3983         status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
3984         sc->bge_ldata.bge_status_block->bge_status = 0;
3985         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3986             sc->bge_cdata.bge_status_map,
3987             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3988         if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
3989                 status_tag = 0;
3990
3991         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
3992                 bge_link_upd(sc);
3993
3994         /* Let controller work. */
3995         bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
3996
3997         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3998             sc->bge_rx_saved_considx != rx_prod) {
3999                 /* Check RX return ring producer/consumer. */
4000                 BGE_UNLOCK(sc);
4001                 bge_rxeof(sc, rx_prod, 0);
4002                 BGE_LOCK(sc);
4003         }
4004         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4005                 /* Check TX ring producer/consumer. */
4006                 bge_txeof(sc, tx_cons);
4007                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4008                         bge_start_locked(ifp);
4009         }
4010         BGE_UNLOCK(sc);
4011 }
4012
4013 static void
4014 bge_intr(void *xsc)
4015 {
4016         struct bge_softc *sc;
4017         struct ifnet *ifp;
4018         uint32_t statusword;
4019         uint16_t rx_prod, tx_cons;
4020
4021         sc = xsc;
4022
4023         BGE_LOCK(sc);
4024
4025         ifp = sc->bge_ifp;
4026
4027 #ifdef DEVICE_POLLING
4028         if (ifp->if_capenable & IFCAP_POLLING) {
4029                 BGE_UNLOCK(sc);
4030                 return;
4031         }
4032 #endif
4033
4034         /*
4035          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4036          * disable interrupts by writing nonzero like we used to, since with
4037          * our current organization this just gives complications and
4038          * pessimizations for re-enabling interrupts.  We used to have races
4039          * instead of the necessary complications.  Disabling interrupts
4040          * would just reduce the chance of a status update while we are
4041          * running (by switching to the interrupt-mode coalescence
4042          * parameters), but this chance is already very low so it is more
4043          * efficient to get another interrupt than prevent it.
4044          *
4045          * We do the ack first to ensure another interrupt if there is a
4046          * status update after the ack.  We don't check for the status
4047          * changing later because it is more efficient to get another
4048          * interrupt than prevent it, not quite as above (not checking is
4049          * a smaller optimization than not toggling the interrupt enable,
4050          * since checking doesn't involve PCI accesses and toggling require
4051          * the status check).  So toggling would probably be a pessimization
4052          * even with MSI.  It would only be needed for using a task queue.
4053          */
4054         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4055
4056         /*
4057          * Do the mandatory PCI flush as well as get the link status.
4058          */
4059         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4060
4061         /* Make sure the descriptor ring indexes are coherent. */
4062         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4063             sc->bge_cdata.bge_status_map,
4064             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4065         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4066         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4067         sc->bge_ldata.bge_status_block->bge_status = 0;
4068         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4069             sc->bge_cdata.bge_status_map,
4070             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4071
4072         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4073             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4074             statusword || sc->bge_link_evt)
4075                 bge_link_upd(sc);
4076
4077         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4078                 /* Check RX return ring producer/consumer. */
4079                 bge_rxeof(sc, rx_prod, 1);
4080         }
4081
4082         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4083                 /* Check TX ring producer/consumer. */
4084                 bge_txeof(sc, tx_cons);
4085         }
4086
4087         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4088             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4089                 bge_start_locked(ifp);
4090
4091         BGE_UNLOCK(sc);
4092 }
4093
4094 static void
4095 bge_asf_driver_up(struct bge_softc *sc)
4096 {
4097         if (sc->bge_asf_mode & ASF_STACKUP) {
4098                 /* Send ASF heartbeat aprox. every 2s */
4099                 if (sc->bge_asf_count)
4100                         sc->bge_asf_count --;
4101                 else {
4102                         sc->bge_asf_count = 2;
4103                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4104                             BGE_FW_DRV_ALIVE);
4105                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4106                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB, 3);
4107                         CSR_WRITE_4(sc, BGE_CPU_EVENT,
4108                             CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
4109                 }
4110         }
4111 }
4112
4113 static void
4114 bge_tick(void *xsc)
4115 {
4116         struct bge_softc *sc = xsc;
4117         struct mii_data *mii = NULL;
4118
4119         BGE_LOCK_ASSERT(sc);
4120
4121         /* Synchronize with possible callout reset/stop. */
4122         if (callout_pending(&sc->bge_stat_ch) ||
4123             !callout_active(&sc->bge_stat_ch))
4124                 return;
4125
4126         if (BGE_IS_5705_PLUS(sc))
4127                 bge_stats_update_regs(sc);
4128         else
4129                 bge_stats_update(sc);
4130
4131         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4132                 mii = device_get_softc(sc->bge_miibus);
4133                 /*
4134                  * Do not touch PHY if we have link up. This could break
4135                  * IPMI/ASF mode or produce extra input errors
4136                  * (extra errors was reported for bcm5701 & bcm5704).
4137                  */
4138                 if (!sc->bge_link)
4139                         mii_tick(mii);
4140         } else {
4141                 /*
4142                  * Since in TBI mode auto-polling can't be used we should poll
4143                  * link status manually. Here we register pending link event
4144                  * and trigger interrupt.
4145                  */
4146 #ifdef DEVICE_POLLING
4147                 /* In polling mode we poll link state in bge_poll(). */
4148                 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4149 #endif
4150                 {
4151                 sc->bge_link_evt++;
4152                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4153                     sc->bge_flags & BGE_FLAG_5788)
4154                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4155                 else
4156                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4157                 }
4158         }
4159
4160         bge_asf_driver_up(sc);
4161         bge_watchdog(sc);
4162
4163         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4164 }
4165
4166 static void
4167 bge_stats_update_regs(struct bge_softc *sc)
4168 {
4169         struct ifnet *ifp;
4170         struct bge_mac_stats *stats;
4171
4172         ifp = sc->bge_ifp;
4173         stats = &sc->bge_mac_stats;
4174
4175         stats->ifHCOutOctets +=
4176             CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4177         stats->etherStatsCollisions +=
4178             CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4179         stats->outXonSent +=
4180             CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4181         stats->outXoffSent +=
4182             CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4183         stats->dot3StatsInternalMacTransmitErrors +=
4184             CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4185         stats->dot3StatsSingleCollisionFrames +=
4186             CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4187         stats->dot3StatsMultipleCollisionFrames +=
4188             CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4189         stats->dot3StatsDeferredTransmissions +=
4190             CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4191         stats->dot3StatsExcessiveCollisions +=
4192             CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4193         stats->dot3StatsLateCollisions +=
4194             CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4195         stats->ifHCOutUcastPkts +=
4196             CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4197         stats->ifHCOutMulticastPkts +=
4198             CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4199         stats->ifHCOutBroadcastPkts +=
4200             CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4201
4202         stats->ifHCInOctets +=
4203             CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4204         stats->etherStatsFragments +=
4205             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4206         stats->ifHCInUcastPkts +=
4207             CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4208         stats->ifHCInMulticastPkts +=
4209             CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4210         stats->ifHCInBroadcastPkts +=
4211             CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4212         stats->dot3StatsFCSErrors +=
4213             CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4214         stats->dot3StatsAlignmentErrors +=
4215             CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4216         stats->xonPauseFramesReceived +=
4217             CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4218         stats->xoffPauseFramesReceived +=
4219             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4220         stats->macControlFramesReceived +=
4221             CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4222         stats->xoffStateEntered +=
4223             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4224         stats->dot3StatsFramesTooLong +=
4225             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4226         stats->etherStatsJabbers +=
4227             CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4228         stats->etherStatsUndersizePkts +=
4229             CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4230
4231         stats->FramesDroppedDueToFilters +=
4232             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4233         stats->DmaWriteQueueFull +=
4234             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4235         stats->DmaWriteHighPriQueueFull +=
4236             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4237         stats->NoMoreRxBDs +=
4238             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4239         stats->InputDiscards +=
4240             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4241         stats->InputErrors +=
4242             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4243         stats->RecvThresholdHit +=
4244             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4245
4246         ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4247         ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4248             stats->InputErrors);
4249 }
4250
4251 static void
4252 bge_stats_clear_regs(struct bge_softc *sc)
4253 {
4254
4255         CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4256         CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4257         CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4258         CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4259         CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4260         CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4261         CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4262         CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4263         CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4264         CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4265         CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4266         CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4267         CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4268
4269         CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4270         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4271         CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4272         CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4273         CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4274         CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4275         CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4276         CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4277         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4278         CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4279         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4280         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4281         CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4282         CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4283
4284         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4285         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4286         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4287         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4288         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4289         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4290         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4291 }
4292
4293 static void
4294 bge_stats_update(struct bge_softc *sc)
4295 {
4296         struct ifnet *ifp;
4297         bus_size_t stats;
4298         uint32_t cnt;   /* current register value */
4299
4300         ifp = sc->bge_ifp;
4301
4302         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4303
4304 #define READ_STAT(sc, stats, stat) \
4305         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4306
4307         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4308         ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4309         sc->bge_tx_collisions = cnt;
4310
4311         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4312         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
4313         sc->bge_rx_discards = cnt;
4314
4315         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4316         ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
4317         sc->bge_tx_discards = cnt;
4318
4319 #undef  READ_STAT
4320 }
4321
4322 /*
4323  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4324  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4325  * but when such padded frames employ the bge IP/TCP checksum offload,
4326  * the hardware checksum assist gives incorrect results (possibly
4327  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4328  * If we pad such runts with zeros, the onboard checksum comes out correct.
4329  */
4330 static __inline int
4331 bge_cksum_pad(struct mbuf *m)
4332 {
4333         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
4334         struct mbuf *last;
4335
4336         /* If there's only the packet-header and we can pad there, use it. */
4337         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
4338             M_TRAILINGSPACE(m) >= padlen) {
4339                 last = m;
4340         } else {
4341                 /*
4342                  * Walk packet chain to find last mbuf. We will either
4343                  * pad there, or append a new mbuf and pad it.
4344                  */
4345                 for (last = m; last->m_next != NULL; last = last->m_next);
4346                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
4347                         /* Allocate new empty mbuf, pad it. Compact later. */
4348                         struct mbuf *n;
4349
4350                         MGET(n, M_DONTWAIT, MT_DATA);
4351                         if (n == NULL)
4352                                 return (ENOBUFS);
4353                         n->m_len = 0;
4354                         last->m_next = n;
4355                         last = n;
4356                 }
4357         }
4358
4359         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
4360         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
4361         last->m_len += padlen;
4362         m->m_pkthdr.len += padlen;
4363
4364         return (0);
4365 }
4366
4367 static struct mbuf *
4368 bge_check_short_dma(struct mbuf *m)
4369 {
4370         struct mbuf *n;
4371         int found;
4372
4373         /*
4374          * If device receive two back-to-back send BDs with less than
4375          * or equal to 8 total bytes then the device may hang.  The two
4376          * back-to-back send BDs must in the same frame for this failure
4377          * to occur.  Scan mbuf chains and see whether two back-to-back
4378          * send BDs are there. If this is the case, allocate new mbuf
4379          * and copy the frame to workaround the silicon bug.
4380          */
4381         for (n = m, found = 0; n != NULL; n = n->m_next) {
4382                 if (n->m_len < 8) {
4383                         found++;
4384                         if (found > 1)
4385                                 break;
4386                         continue;
4387                 }
4388                 found = 0;
4389         }
4390
4391         if (found > 1) {
4392                 n = m_defrag(m, M_DONTWAIT);
4393                 if (n == NULL)
4394                         m_freem(m);
4395         } else
4396                 n = m;
4397         return (n);
4398 }
4399
4400 static struct mbuf *
4401 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
4402     uint16_t *flags)
4403 {
4404         struct ip *ip;
4405         struct tcphdr *tcp;
4406         struct mbuf *n;
4407         uint16_t hlen;
4408         uint32_t poff;
4409
4410         if (M_WRITABLE(m) == 0) {
4411                 /* Get a writable copy. */
4412                 n = m_dup(m, M_DONTWAIT);
4413                 m_freem(m);
4414                 if (n == NULL)
4415                         return (NULL);
4416                 m = n;
4417         }
4418         m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
4419         if (m == NULL)
4420                 return (NULL);
4421         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4422         poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
4423         m = m_pullup(m, poff + sizeof(struct tcphdr));
4424         if (m == NULL)
4425                 return (NULL);
4426         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4427         m = m_pullup(m, poff + (tcp->th_off << 2));
4428         if (m == NULL)
4429                 return (NULL);
4430         /*
4431          * It seems controller doesn't modify IP length and TCP pseudo
4432          * checksum. These checksum computed by upper stack should be 0.
4433          */
4434         *mss = m->m_pkthdr.tso_segsz;
4435         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4436         ip->ip_sum = 0;
4437         ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
4438         /* Clear pseudo checksum computed by TCP stack. */
4439         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4440         tcp->th_sum = 0;
4441         /*
4442          * Broadcom controllers uses different descriptor format for
4443          * TSO depending on ASIC revision. Due to TSO-capable firmware
4444          * license issue and lower performance of firmware based TSO
4445          * we only support hardware based TSO.
4446          */
4447         /* Calculate header length, incl. TCP/IP options, in 32 bit units. */
4448         hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
4449         if (sc->bge_flags & BGE_FLAG_TSO3) {
4450                 /*
4451                  * For BCM5717 and newer controllers, hardware based TSO
4452                  * uses the 14 lower bits of the bge_mss field to store the
4453                  * MSS and the upper 2 bits to store the lowest 2 bits of
4454                  * the IP/TCP header length.  The upper 6 bits of the header
4455                  * length are stored in the bge_flags[14:10,4] field.  Jumbo
4456                  * frames are supported.
4457                  */
4458                 *mss |= ((hlen & 0x3) << 14);
4459                 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
4460         } else {
4461                 /*
4462                  * For BCM5755 and newer controllers, hardware based TSO uses
4463                  * the lower 11 bits to store the MSS and the upper 5 bits to
4464                  * store the IP/TCP header length. Jumbo frames are not
4465                  * supported.
4466                  */
4467                 *mss |= (hlen << 11);
4468         }
4469         return (m);
4470 }
4471
4472 /*
4473  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
4474  * pointers to descriptors.
4475  */
4476 static int
4477 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
4478 {
4479         bus_dma_segment_t       segs[BGE_NSEG_NEW];
4480         bus_dmamap_t            map;
4481         struct bge_tx_bd        *d;
4482         struct mbuf             *m = *m_head;
4483         uint32_t                idx = *txidx;
4484         uint16_t                csum_flags, mss, vlan_tag;
4485         int                     nsegs, i, error;
4486
4487         csum_flags = 0;
4488         mss = 0;
4489         vlan_tag = 0;
4490         if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
4491             m->m_next != NULL) {
4492                 *m_head = bge_check_short_dma(m);
4493                 if (*m_head == NULL)
4494                         return (ENOBUFS);
4495                 m = *m_head;
4496         }
4497         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
4498                 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
4499                 if (*m_head == NULL)
4500                         return (ENOBUFS);
4501                 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
4502                     BGE_TXBDFLAG_CPU_POST_DMA;
4503         } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
4504                 if (m->m_pkthdr.csum_flags & CSUM_IP)
4505                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4506                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
4507                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4508                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
4509                             (error = bge_cksum_pad(m)) != 0) {
4510                                 m_freem(m);
4511                                 *m_head = NULL;
4512                                 return (error);
4513                         }
4514                 }
4515                 if (m->m_flags & M_LASTFRAG)
4516                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
4517                 else if (m->m_flags & M_FRAG)
4518                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
4519         }
4520
4521         if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
4522                 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
4523                     m->m_pkthdr.len > ETHER_MAX_LEN)
4524                         csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
4525                 if (sc->bge_forced_collapse > 0 &&
4526                     (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
4527                         /*
4528                          * Forcedly collapse mbuf chains to overcome hardware
4529                          * limitation which only support a single outstanding
4530                          * DMA read operation.
4531                          */
4532                         if (sc->bge_forced_collapse == 1)
4533                                 m = m_defrag(m, M_DONTWAIT);
4534                         else
4535                                 m = m_collapse(m, M_DONTWAIT,
4536                                     sc->bge_forced_collapse);
4537                         if (m == NULL)
4538                                 m = *m_head;
4539                         *m_head = m;
4540                 }
4541         }
4542
4543         map = sc->bge_cdata.bge_tx_dmamap[idx];
4544         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
4545             &nsegs, BUS_DMA_NOWAIT);
4546         if (error == EFBIG) {
4547                 m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
4548                 if (m == NULL) {
4549                         m_freem(*m_head);
4550                         *m_head = NULL;
4551                         return (ENOBUFS);
4552                 }
4553                 *m_head = m;
4554                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
4555                     m, segs, &nsegs, BUS_DMA_NOWAIT);
4556                 if (error) {
4557                         m_freem(m);
4558                         *m_head = NULL;
4559                         return (error);
4560                 }
4561         } else if (error != 0)
4562                 return (error);
4563
4564         /* Check if we have enough free send BDs. */
4565         if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
4566                 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
4567                 return (ENOBUFS);
4568         }
4569
4570         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
4571
4572         if (m->m_flags & M_VLANTAG) {
4573                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
4574                 vlan_tag = m->m_pkthdr.ether_vtag;
4575         }
4576         for (i = 0; ; i++) {
4577                 d = &sc->bge_ldata.bge_tx_ring[idx];
4578                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
4579                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
4580                 d->bge_len = segs[i].ds_len;
4581                 d->bge_flags = csum_flags;
4582                 d->bge_vlan_tag = vlan_tag;
4583                 d->bge_mss = mss;
4584                 if (i == nsegs - 1)
4585                         break;
4586                 BGE_INC(idx, BGE_TX_RING_CNT);
4587         }
4588
4589         /* Mark the last segment as end of packet... */
4590         d->bge_flags |= BGE_TXBDFLAG_END;
4591
4592         /*
4593          * Insure that the map for this transmission
4594          * is placed at the array index of the last descriptor
4595          * in this chain.
4596          */
4597         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4598         sc->bge_cdata.bge_tx_dmamap[idx] = map;
4599         sc->bge_cdata.bge_tx_chain[idx] = m;
4600         sc->bge_txcnt += nsegs;
4601
4602         BGE_INC(idx, BGE_TX_RING_CNT);
4603         *txidx = idx;
4604
4605         return (0);
4606 }
4607
4608 /*
4609  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4610  * to the mbuf data regions directly in the transmit descriptors.
4611  */
4612 static void
4613 bge_start_locked(struct ifnet *ifp)
4614 {
4615         struct bge_softc *sc;
4616         struct mbuf *m_head;
4617         uint32_t prodidx;
4618         int count;
4619
4620         sc = ifp->if_softc;
4621         BGE_LOCK_ASSERT(sc);
4622
4623         if (!sc->bge_link ||
4624             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4625             IFF_DRV_RUNNING)
4626                 return;
4627
4628         prodidx = sc->bge_tx_prodidx;
4629
4630         for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4631                 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4632                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4633                         break;
4634                 }
4635                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4636                 if (m_head == NULL)
4637                         break;
4638
4639                 /*
4640                  * XXX
4641                  * The code inside the if() block is never reached since we
4642                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4643                  * requests to checksum TCP/UDP in a fragmented packet.
4644                  *
4645                  * XXX
4646                  * safety overkill.  If this is a fragmented packet chain
4647                  * with delayed TCP/UDP checksums, then only encapsulate
4648                  * it if we have enough descriptors to handle the entire
4649                  * chain at once.
4650                  * (paranoia -- may not actually be needed)
4651                  */
4652                 if (m_head->m_flags & M_FIRSTFRAG &&
4653                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4654                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4655                             m_head->m_pkthdr.csum_data + 16) {
4656                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4657                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4658                                 break;
4659                         }
4660                 }
4661
4662                 /*
4663                  * Pack the data into the transmit ring. If we
4664                  * don't have room, set the OACTIVE flag and wait
4665                  * for the NIC to drain the ring.
4666                  */
4667                 if (bge_encap(sc, &m_head, &prodidx)) {
4668                         if (m_head == NULL)
4669                                 break;
4670                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4671                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4672                         break;
4673                 }
4674                 ++count;
4675
4676                 /*
4677                  * If there's a BPF listener, bounce a copy of this frame
4678                  * to him.
4679                  */
4680 #ifdef ETHER_BPF_MTAP
4681                 ETHER_BPF_MTAP(ifp, m_head);
4682 #else
4683                 BPF_MTAP(ifp, m_head);
4684 #endif
4685         }
4686
4687         if (count > 0) {
4688                 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4689                     sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4690                 /* Transmit. */
4691                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4692                 /* 5700 b2 errata */
4693                 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4694                         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4695
4696                 sc->bge_tx_prodidx = prodidx;
4697
4698                 /*
4699                  * Set a timeout in case the chip goes out to lunch.
4700                  */
4701                 sc->bge_timer = 5;
4702         }
4703 }
4704
4705 /*
4706  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4707  * to the mbuf data regions directly in the transmit descriptors.
4708  */
4709 static void
4710 bge_start(struct ifnet *ifp)
4711 {
4712         struct bge_softc *sc;
4713
4714         sc = ifp->if_softc;
4715         BGE_LOCK(sc);
4716         bge_start_locked(ifp);
4717         BGE_UNLOCK(sc);
4718 }
4719
4720 static void
4721 bge_init_locked(struct bge_softc *sc)
4722 {
4723         struct ifnet *ifp;
4724         uint16_t *m;
4725         uint32_t mode;
4726
4727         BGE_LOCK_ASSERT(sc);
4728
4729         ifp = sc->bge_ifp;
4730
4731         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4732                 return;
4733
4734         /* Cancel pending I/O and flush buffers. */
4735         bge_stop(sc);
4736
4737         bge_stop_fw(sc);
4738         bge_sig_pre_reset(sc, BGE_RESET_START);
4739         bge_reset(sc);
4740         bge_sig_legacy(sc, BGE_RESET_START);
4741         bge_sig_post_reset(sc, BGE_RESET_START);
4742
4743         bge_chipinit(sc);
4744
4745         /*
4746          * Init the various state machines, ring
4747          * control blocks and firmware.
4748          */
4749         if (bge_blockinit(sc)) {
4750                 device_printf(sc->bge_dev, "initialization failure\n");
4751                 return;
4752         }
4753
4754         ifp = sc->bge_ifp;
4755
4756         /* Specify MTU. */
4757         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4758             ETHER_HDR_LEN + ETHER_CRC_LEN +
4759             (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4760
4761         /* Load our MAC address. */
4762         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4763         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4764         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4765
4766         /* Program promiscuous mode. */
4767         bge_setpromisc(sc);
4768
4769         /* Program multicast filter. */
4770         bge_setmulti(sc);
4771
4772         /* Program VLAN tag stripping. */
4773         bge_setvlan(sc);
4774
4775         /* Override UDP checksum offloading. */
4776         if (sc->bge_forced_udpcsum == 0)
4777                 sc->bge_csum_features &= ~CSUM_UDP;
4778         else
4779                 sc->bge_csum_features |= CSUM_UDP;
4780         if (ifp->if_capabilities & IFCAP_TXCSUM &&
4781             ifp->if_capenable & IFCAP_TXCSUM) {
4782                 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
4783                 ifp->if_hwassist |= sc->bge_csum_features;
4784         }
4785
4786         /* Init RX ring. */
4787         if (bge_init_rx_ring_std(sc) != 0) {
4788                 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4789                 bge_stop(sc);
4790                 return;
4791         }
4792
4793         /*
4794          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4795          * memory to insure that the chip has in fact read the first
4796          * entry of the ring.
4797          */
4798         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4799                 uint32_t                v, i;
4800                 for (i = 0; i < 10; i++) {
4801                         DELAY(20);
4802                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4803                         if (v == (MCLBYTES - ETHER_ALIGN))
4804                                 break;
4805                 }
4806                 if (i == 10)
4807                         device_printf (sc->bge_dev,
4808                             "5705 A0 chip failed to load RX ring\n");
4809         }
4810
4811         /* Init jumbo RX ring. */
4812         if (BGE_IS_JUMBO_CAPABLE(sc) &&
4813             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4814             (MCLBYTES - ETHER_ALIGN)) {
4815                 if (bge_init_rx_ring_jumbo(sc) != 0) {
4816                         device_printf(sc->bge_dev,
4817                             "no memory for jumbo Rx buffers.\n");
4818                         bge_stop(sc);
4819                         return;
4820                 }
4821         }
4822
4823         /* Init our RX return ring index. */
4824         sc->bge_rx_saved_considx = 0;
4825
4826         /* Init our RX/TX stat counters. */
4827         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
4828
4829         /* Init TX ring. */
4830         bge_init_tx_ring(sc);
4831
4832         /* Enable TX MAC state machine lockup fix. */
4833         mode = CSR_READ_4(sc, BGE_TX_MODE);
4834         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
4835                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
4836         /* Turn on transmitter. */
4837         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
4838
4839         /* Turn on receiver. */
4840         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4841
4842         /*
4843          * Set the number of good frames to receive after RX MBUF
4844          * Low Watermark has been reached. After the RX MAC receives
4845          * this number of frames, it will drop subsequent incoming
4846          * frames until the MBUF High Watermark is reached.
4847          */
4848         if (sc->bge_asicrev == BGE_ASICREV_BCM57765)
4849                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
4850         else
4851                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4852
4853         /* Clear MAC statistics. */
4854         if (BGE_IS_5705_PLUS(sc))
4855                 bge_stats_clear_regs(sc);
4856
4857         /* Tell firmware we're alive. */
4858         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4859
4860 #ifdef DEVICE_POLLING
4861         /* Disable interrupts if we are polling. */
4862         if (ifp->if_capenable & IFCAP_POLLING) {
4863                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4864                     BGE_PCIMISCCTL_MASK_PCI_INTR);
4865                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4866         } else
4867 #endif
4868
4869         /* Enable host interrupts. */
4870         {
4871         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4872         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4873         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4874         }
4875
4876         bge_ifmedia_upd_locked(ifp);
4877
4878         ifp->if_drv_flags |= IFF_DRV_RUNNING;
4879         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4880
4881         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4882 }
4883
4884 static void
4885 bge_init(void *xsc)
4886 {
4887         struct bge_softc *sc = xsc;
4888
4889         BGE_LOCK(sc);
4890         bge_init_locked(sc);
4891         BGE_UNLOCK(sc);
4892 }
4893
4894 /*
4895  * Set media options.
4896  */
4897 static int
4898 bge_ifmedia_upd(struct ifnet *ifp)
4899 {
4900         struct bge_softc *sc = ifp->if_softc;
4901         int res;
4902
4903         BGE_LOCK(sc);
4904         res = bge_ifmedia_upd_locked(ifp);
4905         BGE_UNLOCK(sc);
4906
4907         return (res);
4908 }
4909
4910 static int
4911 bge_ifmedia_upd_locked(struct ifnet *ifp)
4912 {
4913         struct bge_softc *sc = ifp->if_softc;
4914         struct mii_data *mii;
4915         struct mii_softc *miisc;
4916         struct ifmedia *ifm;
4917
4918         BGE_LOCK_ASSERT(sc);
4919
4920         ifm = &sc->bge_ifmedia;
4921
4922         /* If this is a 1000baseX NIC, enable the TBI port. */
4923         if (sc->bge_flags & BGE_FLAG_TBI) {
4924                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4925                         return (EINVAL);
4926                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
4927                 case IFM_AUTO:
4928                         /*
4929                          * The BCM5704 ASIC appears to have a special
4930                          * mechanism for programming the autoneg
4931                          * advertisement registers in TBI mode.
4932                          */
4933                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4934                                 uint32_t sgdig;
4935                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4936                                 if (sgdig & BGE_SGDIGSTS_DONE) {
4937                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4938                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4939                                         sgdig |= BGE_SGDIGCFG_AUTO |
4940                                             BGE_SGDIGCFG_PAUSE_CAP |
4941                                             BGE_SGDIGCFG_ASYM_PAUSE;
4942                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4943                                             sgdig | BGE_SGDIGCFG_SEND);
4944                                         DELAY(5);
4945                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4946                                 }
4947                         }
4948                         break;
4949                 case IFM_1000_SX:
4950                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4951                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
4952                                     BGE_MACMODE_HALF_DUPLEX);
4953                         } else {
4954                                 BGE_SETBIT(sc, BGE_MAC_MODE,
4955                                     BGE_MACMODE_HALF_DUPLEX);
4956                         }
4957                         break;
4958                 default:
4959                         return (EINVAL);
4960                 }
4961                 return (0);
4962         }
4963
4964         sc->bge_link_evt++;
4965         mii = device_get_softc(sc->bge_miibus);
4966         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4967                 PHY_RESET(miisc);
4968         mii_mediachg(mii);
4969
4970         /*
4971          * Force an interrupt so that we will call bge_link_upd
4972          * if needed and clear any pending link state attention.
4973          * Without this we are not getting any further interrupts
4974          * for link state changes and thus will not UP the link and
4975          * not be able to send in bge_start_locked. The only
4976          * way to get things working was to receive a packet and
4977          * get an RX intr.
4978          * bge_tick should help for fiber cards and we might not
4979          * need to do this here if BGE_FLAG_TBI is set but as
4980          * we poll for fiber anyway it should not harm.
4981          */
4982         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4983             sc->bge_flags & BGE_FLAG_5788)
4984                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4985         else
4986                 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4987
4988         return (0);
4989 }
4990
4991 /*
4992  * Report current media status.
4993  */
4994 static void
4995 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4996 {
4997         struct bge_softc *sc = ifp->if_softc;
4998         struct mii_data *mii;
4999
5000         BGE_LOCK(sc);
5001
5002         if (sc->bge_flags & BGE_FLAG_TBI) {
5003                 ifmr->ifm_status = IFM_AVALID;
5004                 ifmr->ifm_active = IFM_ETHER;
5005                 if (CSR_READ_4(sc, BGE_MAC_STS) &
5006                     BGE_MACSTAT_TBI_PCS_SYNCHED)
5007                         ifmr->ifm_status |= IFM_ACTIVE;
5008                 else {
5009                         ifmr->ifm_active |= IFM_NONE;
5010                         BGE_UNLOCK(sc);
5011                         return;
5012                 }
5013                 ifmr->ifm_active |= IFM_1000_SX;
5014                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5015                         ifmr->ifm_active |= IFM_HDX;
5016                 else
5017                         ifmr->ifm_active |= IFM_FDX;
5018                 BGE_UNLOCK(sc);
5019                 return;
5020         }
5021
5022         mii = device_get_softc(sc->bge_miibus);
5023         mii_pollstat(mii);
5024         ifmr->ifm_active = mii->mii_media_active;
5025         ifmr->ifm_status = mii->mii_media_status;
5026
5027         BGE_UNLOCK(sc);
5028 }
5029
5030 static int
5031 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5032 {
5033         struct bge_softc *sc = ifp->if_softc;
5034         struct ifreq *ifr = (struct ifreq *) data;
5035         struct mii_data *mii;
5036         int flags, mask, error = 0;
5037
5038         switch (command) {
5039         case SIOCSIFMTU:
5040                 if (BGE_IS_JUMBO_CAPABLE(sc) ||
5041                     (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5042                         if (ifr->ifr_mtu < ETHERMIN ||
5043                             ifr->ifr_mtu > BGE_JUMBO_MTU) {
5044                                 error = EINVAL;
5045                                 break;
5046                         }
5047                 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5048                         error = EINVAL;
5049                         break;
5050                 }
5051                 BGE_LOCK(sc);
5052                 if (ifp->if_mtu != ifr->ifr_mtu) {
5053                         ifp->if_mtu = ifr->ifr_mtu;
5054                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5055                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5056                                 bge_init_locked(sc);
5057                         }
5058                 }
5059                 BGE_UNLOCK(sc);
5060                 break;
5061         case SIOCSIFFLAGS:
5062                 BGE_LOCK(sc);
5063                 if (ifp->if_flags & IFF_UP) {
5064                         /*
5065                          * If only the state of the PROMISC flag changed,
5066                          * then just use the 'set promisc mode' command
5067                          * instead of reinitializing the entire NIC. Doing
5068                          * a full re-init means reloading the firmware and
5069                          * waiting for it to start up, which may take a
5070                          * second or two.  Similarly for ALLMULTI.
5071                          */
5072                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5073                                 flags = ifp->if_flags ^ sc->bge_if_flags;
5074                                 if (flags & IFF_PROMISC)
5075                                         bge_setpromisc(sc);
5076                                 if (flags & IFF_ALLMULTI)
5077                                         bge_setmulti(sc);
5078                         } else
5079                                 bge_init_locked(sc);
5080                 } else {
5081                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5082                                 bge_stop(sc);
5083                         }
5084                 }
5085                 sc->bge_if_flags = ifp->if_flags;
5086                 BGE_UNLOCK(sc);
5087                 error = 0;
5088                 break;
5089         case SIOCADDMULTI:
5090         case SIOCDELMULTI:
5091                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5092                         BGE_LOCK(sc);
5093                         bge_setmulti(sc);
5094                         BGE_UNLOCK(sc);
5095                         error = 0;
5096                 }
5097                 break;
5098         case SIOCSIFMEDIA:
5099         case SIOCGIFMEDIA:
5100                 if (sc->bge_flags & BGE_FLAG_TBI) {
5101                         error = ifmedia_ioctl(ifp, ifr,
5102                             &sc->bge_ifmedia, command);
5103                 } else {
5104                         mii = device_get_softc(sc->bge_miibus);
5105                         error = ifmedia_ioctl(ifp, ifr,
5106                             &mii->mii_media, command);
5107                 }
5108                 break;
5109         case SIOCSIFCAP:
5110                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5111 #ifdef DEVICE_POLLING
5112                 if (mask & IFCAP_POLLING) {
5113                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
5114                                 error = ether_poll_register(bge_poll, ifp);
5115                                 if (error)
5116                                         return (error);
5117                                 BGE_LOCK(sc);
5118                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5119                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5120                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5121                                 ifp->if_capenable |= IFCAP_POLLING;
5122                                 BGE_UNLOCK(sc);
5123                         } else {
5124                                 error = ether_poll_deregister(ifp);
5125                                 /* Enable interrupt even in error case */
5126                                 BGE_LOCK(sc);
5127                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5128                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5129                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5130                                 ifp->if_capenable &= ~IFCAP_POLLING;
5131                                 BGE_UNLOCK(sc);
5132                         }
5133                 }
5134 #endif
5135                 if ((mask & IFCAP_TXCSUM) != 0 &&
5136                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5137                         ifp->if_capenable ^= IFCAP_TXCSUM;
5138                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5139                                 ifp->if_hwassist |= sc->bge_csum_features;
5140                         else
5141                                 ifp->if_hwassist &= ~sc->bge_csum_features;
5142                 }
5143
5144                 if ((mask & IFCAP_RXCSUM) != 0 &&
5145                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5146                         ifp->if_capenable ^= IFCAP_RXCSUM;
5147
5148                 if ((mask & IFCAP_TSO4) != 0 &&
5149                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5150                         ifp->if_capenable ^= IFCAP_TSO4;
5151                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5152                                 ifp->if_hwassist |= CSUM_TSO;
5153                         else
5154                                 ifp->if_hwassist &= ~CSUM_TSO;
5155                 }
5156
5157                 if (mask & IFCAP_VLAN_MTU) {
5158                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
5159                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5160                         bge_init(sc);
5161                 }
5162
5163                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5164                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5165                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5166                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5167                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5168                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5169                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5170                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5171                         BGE_LOCK(sc);
5172                         bge_setvlan(sc);
5173                         BGE_UNLOCK(sc);
5174                 }
5175 #ifdef VLAN_CAPABILITIES
5176                 VLAN_CAPABILITIES(ifp);
5177 #endif
5178                 break;
5179         default:
5180                 error = ether_ioctl(ifp, command, data);
5181                 break;
5182         }
5183
5184         return (error);
5185 }
5186
5187 static void
5188 bge_watchdog(struct bge_softc *sc)
5189 {
5190         struct ifnet *ifp;
5191
5192         BGE_LOCK_ASSERT(sc);
5193
5194         if (sc->bge_timer == 0 || --sc->bge_timer)
5195                 return;
5196
5197         ifp = sc->bge_ifp;
5198
5199         if_printf(ifp, "watchdog timeout -- resetting\n");
5200
5201         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5202         bge_init_locked(sc);
5203
5204         ifp->if_oerrors++;
5205 }
5206
5207 static void
5208 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5209 {
5210         int i;
5211
5212         BGE_CLRBIT(sc, reg, bit);
5213
5214         for (i = 0; i < BGE_TIMEOUT; i++) {
5215                 if ((CSR_READ_4(sc, reg) & bit) == 0)
5216                         return;
5217                 DELAY(100);
5218         }
5219 }
5220
5221 /*
5222  * Stop the adapter and free any mbufs allocated to the
5223  * RX and TX lists.
5224  */
5225 static void
5226 bge_stop(struct bge_softc *sc)
5227 {
5228         struct ifnet *ifp;
5229
5230         BGE_LOCK_ASSERT(sc);
5231
5232         ifp = sc->bge_ifp;
5233
5234         callout_stop(&sc->bge_stat_ch);
5235
5236         /* Disable host interrupts. */
5237         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5238         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5239
5240         /*
5241          * Tell firmware we're shutting down.
5242          */
5243         bge_stop_fw(sc);
5244         bge_sig_pre_reset(sc, BGE_RESET_STOP);
5245
5246         /*
5247          * Disable all of the receiver blocks.
5248          */
5249         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5250         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5251         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5252         if (BGE_IS_5700_FAMILY(sc))
5253                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5254         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5255         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5256         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5257
5258         /*
5259          * Disable all of the transmit blocks.
5260          */
5261         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5262         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5263         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5264         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5265         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5266         if (BGE_IS_5700_FAMILY(sc))
5267                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5268         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5269
5270         /*
5271          * Shut down all of the memory managers and related
5272          * state machines.
5273          */
5274         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5275         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5276         if (BGE_IS_5700_FAMILY(sc))
5277                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5278
5279         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5280         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5281         if (!(BGE_IS_5705_PLUS(sc))) {
5282                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5283                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5284         }
5285         /* Update MAC statistics. */
5286         if (BGE_IS_5705_PLUS(sc))
5287                 bge_stats_update_regs(sc);
5288
5289         bge_reset(sc);
5290         bge_sig_legacy(sc, BGE_RESET_STOP);
5291         bge_sig_post_reset(sc, BGE_RESET_STOP);
5292
5293         /*
5294          * Keep the ASF firmware running if up.
5295          */
5296         if (sc->bge_asf_mode & ASF_STACKUP)
5297                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5298         else
5299                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5300
5301         /* Free the RX lists. */
5302         bge_free_rx_ring_std(sc);
5303
5304         /* Free jumbo RX list. */
5305         if (BGE_IS_JUMBO_CAPABLE(sc))
5306                 bge_free_rx_ring_jumbo(sc);
5307
5308         /* Free TX buffers. */
5309         bge_free_tx_ring(sc);
5310
5311         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5312
5313         /* Clear MAC's link state (PHY may still have link UP). */
5314         if (bootverbose && sc->bge_link)
5315                 if_printf(sc->bge_ifp, "link DOWN\n");
5316         sc->bge_link = 0;
5317
5318         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5319 }
5320
5321 /*
5322  * Stop all chip I/O so that the kernel's probe routines don't
5323  * get confused by errant DMAs when rebooting.
5324  */
5325 static int
5326 bge_shutdown(device_t dev)
5327 {
5328         struct bge_softc *sc;
5329
5330         sc = device_get_softc(dev);
5331         BGE_LOCK(sc);
5332         bge_stop(sc);
5333         bge_reset(sc);
5334         BGE_UNLOCK(sc);
5335
5336         return (0);
5337 }
5338
5339 static int
5340 bge_suspend(device_t dev)
5341 {
5342         struct bge_softc *sc;
5343
5344         sc = device_get_softc(dev);
5345         BGE_LOCK(sc);
5346         bge_stop(sc);
5347         BGE_UNLOCK(sc);
5348
5349         return (0);
5350 }
5351
5352 static int
5353 bge_resume(device_t dev)
5354 {
5355         struct bge_softc *sc;
5356         struct ifnet *ifp;
5357
5358         sc = device_get_softc(dev);
5359         BGE_LOCK(sc);
5360         ifp = sc->bge_ifp;
5361         if (ifp->if_flags & IFF_UP) {
5362                 bge_init_locked(sc);
5363                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5364                         bge_start_locked(ifp);
5365         }
5366         BGE_UNLOCK(sc);
5367
5368         return (0);
5369 }
5370
5371 static void
5372 bge_link_upd(struct bge_softc *sc)
5373 {
5374         struct mii_data *mii;
5375         uint32_t link, status;
5376
5377         BGE_LOCK_ASSERT(sc);
5378
5379         /* Clear 'pending link event' flag. */
5380         sc->bge_link_evt = 0;
5381
5382         /*
5383          * Process link state changes.
5384          * Grrr. The link status word in the status block does
5385          * not work correctly on the BCM5700 rev AX and BX chips,
5386          * according to all available information. Hence, we have
5387          * to enable MII interrupts in order to properly obtain
5388          * async link changes. Unfortunately, this also means that
5389          * we have to read the MAC status register to detect link
5390          * changes, thereby adding an additional register access to
5391          * the interrupt handler.
5392          *
5393          * XXX: perhaps link state detection procedure used for
5394          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
5395          */
5396
5397         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
5398             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
5399                 status = CSR_READ_4(sc, BGE_MAC_STS);
5400                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5401                         mii = device_get_softc(sc->bge_miibus);
5402                         mii_pollstat(mii);
5403                         if (!sc->bge_link &&
5404                             mii->mii_media_status & IFM_ACTIVE &&
5405                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5406                                 sc->bge_link++;
5407                                 if (bootverbose)
5408                                         if_printf(sc->bge_ifp, "link UP\n");
5409                         } else if (sc->bge_link &&
5410                             (!(mii->mii_media_status & IFM_ACTIVE) ||
5411                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5412                                 sc->bge_link = 0;
5413                                 if (bootverbose)
5414                                         if_printf(sc->bge_ifp, "link DOWN\n");
5415                         }
5416
5417                         /* Clear the interrupt. */
5418                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5419                             BGE_EVTENB_MI_INTERRUPT);
5420                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
5421                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
5422                             BRGPHY_INTRS);
5423                 }
5424                 return;
5425         }
5426
5427         if (sc->bge_flags & BGE_FLAG_TBI) {
5428                 status = CSR_READ_4(sc, BGE_MAC_STS);
5429                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5430                         if (!sc->bge_link) {
5431                                 sc->bge_link++;
5432                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
5433                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
5434                                             BGE_MACMODE_TBI_SEND_CFGS);
5435                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5436                                 if (bootverbose)
5437                                         if_printf(sc->bge_ifp, "link UP\n");
5438                                 if_link_state_change(sc->bge_ifp,
5439                                     LINK_STATE_UP);
5440                         }
5441                 } else if (sc->bge_link) {
5442                         sc->bge_link = 0;
5443                         if (bootverbose)
5444                                 if_printf(sc->bge_ifp, "link DOWN\n");
5445                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
5446                 }
5447         } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
5448                 /*
5449                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
5450                  * in status word always set. Workaround this bug by reading
5451                  * PHY link status directly.
5452                  */
5453                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
5454
5455                 if (link != sc->bge_link ||
5456                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
5457                         mii = device_get_softc(sc->bge_miibus);
5458                         mii_pollstat(mii);
5459                         if (!sc->bge_link &&
5460                             mii->mii_media_status & IFM_ACTIVE &&
5461                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5462                                 sc->bge_link++;
5463                                 if (bootverbose)
5464                                         if_printf(sc->bge_ifp, "link UP\n");
5465                         } else if (sc->bge_link &&
5466                             (!(mii->mii_media_status & IFM_ACTIVE) ||
5467                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5468                                 sc->bge_link = 0;
5469                                 if (bootverbose)
5470                                         if_printf(sc->bge_ifp, "link DOWN\n");
5471                         }
5472                 }
5473         } else {
5474                 /*
5475                  * For controllers that call mii_tick, we have to poll
5476                  * link status.
5477                  */
5478                 mii = device_get_softc(sc->bge_miibus);
5479                 mii_pollstat(mii);
5480                 bge_miibus_statchg(sc->bge_dev);
5481         }
5482
5483         /* Clear the attention. */
5484         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
5485             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
5486             BGE_MACSTAT_LINK_CHANGED);
5487 }
5488
5489 static void
5490 bge_add_sysctls(struct bge_softc *sc)
5491 {
5492         struct sysctl_ctx_list *ctx;
5493         struct sysctl_oid_list *children;
5494         char tn[32];
5495         int unit;
5496
5497         ctx = device_get_sysctl_ctx(sc->bge_dev);
5498         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
5499
5500 #ifdef BGE_REGISTER_DEBUG
5501         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
5502             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
5503             "Debug Information");
5504
5505         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
5506             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
5507             "Register Read");
5508
5509         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
5510             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
5511             "Memory Read");
5512
5513 #endif
5514
5515         unit = device_get_unit(sc->bge_dev);
5516         /*
5517          * A common design characteristic for many Broadcom client controllers
5518          * is that they only support a single outstanding DMA read operation
5519          * on the PCIe bus. This means that it will take twice as long to fetch
5520          * a TX frame that is split into header and payload buffers as it does
5521          * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
5522          * these controllers, coalescing buffers to reduce the number of memory
5523          * reads is effective way to get maximum performance(about 940Mbps).
5524          * Without collapsing TX buffers the maximum TCP bulk transfer
5525          * performance is about 850Mbps. However forcing coalescing mbufs
5526          * consumes a lot of CPU cycles, so leave it off by default.
5527          */
5528         sc->bge_forced_collapse = 0;
5529         snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
5530         TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
5531         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
5532             CTLFLAG_RW, &sc->bge_forced_collapse, 0,
5533             "Number of fragmented TX buffers of a frame allowed before "
5534             "forced collapsing");
5535
5536         /*
5537          * It seems all Broadcom controllers have a bug that can generate UDP
5538          * datagrams with checksum value 0 when TX UDP checksum offloading is
5539          * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
5540          * Even though the probability of generating such UDP datagrams is
5541          * low, I don't want to see FreeBSD boxes to inject such datagrams
5542          * into network so disable UDP checksum offloading by default.  Users
5543          * still override this behavior by setting a sysctl variable,
5544          * dev.bge.0.forced_udpcsum.
5545          */
5546         sc->bge_forced_udpcsum = 0;
5547         snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
5548         TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
5549         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
5550             CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
5551             "Enable UDP checksum offloading even if controller can "
5552             "generate UDP checksum value 0");
5553
5554         if (BGE_IS_5705_PLUS(sc))
5555                 bge_add_sysctl_stats_regs(sc, ctx, children);
5556         else
5557                 bge_add_sysctl_stats(sc, ctx, children);
5558 }
5559
5560 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
5561         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
5562             sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
5563             desc)
5564
5565 static void
5566 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5567     struct sysctl_oid_list *parent)
5568 {
5569         struct sysctl_oid *tree;
5570         struct sysctl_oid_list *children, *schildren;
5571
5572         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5573             NULL, "BGE Statistics");
5574         schildren = children = SYSCTL_CHILDREN(tree);
5575         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
5576             children, COSFramesDroppedDueToFilters,
5577             "FramesDroppedDueToFilters");
5578         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
5579             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
5580         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
5581             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
5582         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
5583             children, nicNoMoreRxBDs, "NoMoreRxBDs");
5584         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
5585             children, ifInDiscards, "InputDiscards");
5586         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
5587             children, ifInErrors, "InputErrors");
5588         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
5589             children, nicRecvThresholdHit, "RecvThresholdHit");
5590         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
5591             children, nicDmaReadQueueFull, "DmaReadQueueFull");
5592         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
5593             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
5594         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
5595             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
5596         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
5597             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
5598         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
5599             children, nicRingStatusUpdate, "RingStatusUpdate");
5600         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
5601             children, nicInterrupts, "Interrupts");
5602         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
5603             children, nicAvoidedInterrupts, "AvoidedInterrupts");
5604         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
5605             children, nicSendThresholdHit, "SendThresholdHit");
5606
5607         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
5608             NULL, "BGE RX Statistics");
5609         children = SYSCTL_CHILDREN(tree);
5610         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
5611             children, rxstats.ifHCInOctets, "ifHCInOctets");
5612         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
5613             children, rxstats.etherStatsFragments, "Fragments");
5614         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
5615             children, rxstats.ifHCInUcastPkts, "UnicastPkts");
5616         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
5617             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
5618         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
5619             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
5620         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
5621             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
5622         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
5623             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
5624         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
5625             children, rxstats.xoffPauseFramesReceived,
5626             "xoffPauseFramesReceived");
5627         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
5628             children, rxstats.macControlFramesReceived,
5629             "ControlFramesReceived");
5630         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
5631             children, rxstats.xoffStateEntered, "xoffStateEntered");
5632         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
5633             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
5634         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
5635             children, rxstats.etherStatsJabbers, "Jabbers");
5636         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
5637             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
5638         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
5639             children, rxstats.inRangeLengthError, "inRangeLengthError");
5640         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
5641             children, rxstats.outRangeLengthError, "outRangeLengthError");
5642
5643         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
5644             NULL, "BGE TX Statistics");
5645         children = SYSCTL_CHILDREN(tree);
5646         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
5647             children, txstats.ifHCOutOctets, "ifHCOutOctets");
5648         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
5649             children, txstats.etherStatsCollisions, "Collisions");
5650         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
5651             children, txstats.outXonSent, "XonSent");
5652         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
5653             children, txstats.outXoffSent, "XoffSent");
5654         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
5655             children, txstats.flowControlDone, "flowControlDone");
5656         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
5657             children, txstats.dot3StatsInternalMacTransmitErrors,
5658             "InternalMacTransmitErrors");
5659         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
5660             children, txstats.dot3StatsSingleCollisionFrames,
5661             "SingleCollisionFrames");
5662         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
5663             children, txstats.dot3StatsMultipleCollisionFrames,
5664             "MultipleCollisionFrames");
5665         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
5666             children, txstats.dot3StatsDeferredTransmissions,
5667             "DeferredTransmissions");
5668         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
5669             children, txstats.dot3StatsExcessiveCollisions,
5670             "ExcessiveCollisions");
5671         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
5672             children, txstats.dot3StatsLateCollisions,
5673             "LateCollisions");
5674         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
5675             children, txstats.ifHCOutUcastPkts, "UnicastPkts");
5676         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
5677             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
5678         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5679             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5680         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5681             children, txstats.dot3StatsCarrierSenseErrors,
5682             "CarrierSenseErrors");
5683         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5684             children, txstats.ifOutDiscards, "Discards");
5685         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5686             children, txstats.ifOutErrors, "Errors");
5687 }
5688
5689 #undef BGE_SYSCTL_STAT
5690
5691 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
5692             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
5693
5694 static void
5695 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5696     struct sysctl_oid_list *parent)
5697 {
5698         struct sysctl_oid *tree;
5699         struct sysctl_oid_list *child, *schild;
5700         struct bge_mac_stats *stats;
5701
5702         stats = &sc->bge_mac_stats;
5703         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5704             NULL, "BGE Statistics");
5705         schild = child = SYSCTL_CHILDREN(tree);
5706         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
5707             &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
5708         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
5709             &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
5710         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
5711             &stats->DmaWriteHighPriQueueFull,
5712             "NIC DMA Write High Priority Queue Full");
5713         BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
5714             &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
5715         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
5716             &stats->InputDiscards, "Discarded Input Frames");
5717         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
5718             &stats->InputErrors, "Input Errors");
5719         BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
5720             &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
5721
5722         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
5723             NULL, "BGE RX Statistics");
5724         child = SYSCTL_CHILDREN(tree);
5725         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
5726             &stats->ifHCInOctets, "Inbound Octets");
5727         BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
5728             &stats->etherStatsFragments, "Fragments");
5729         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5730             &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
5731         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5732             &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
5733         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5734             &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
5735         BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
5736             &stats->dot3StatsFCSErrors, "FCS Errors");
5737         BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
5738             &stats->dot3StatsAlignmentErrors, "Alignment Errors");
5739         BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
5740             &stats->xonPauseFramesReceived, "XON Pause Frames Received");
5741         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
5742             &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
5743         BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
5744             &stats->macControlFramesReceived, "MAC Control Frames Received");
5745         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
5746             &stats->xoffStateEntered, "XOFF State Entered");
5747         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
5748             &stats->dot3StatsFramesTooLong, "Frames Too Long");
5749         BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
5750             &stats->etherStatsJabbers, "Jabbers");
5751         BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
5752             &stats->etherStatsUndersizePkts, "Undersized Packets");
5753
5754         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
5755             NULL, "BGE TX Statistics");
5756         child = SYSCTL_CHILDREN(tree);
5757         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
5758             &stats->ifHCOutOctets, "Outbound Octets");
5759         BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
5760             &stats->etherStatsCollisions, "TX Collisions");
5761         BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
5762             &stats->outXonSent, "XON Sent");
5763         BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
5764             &stats->outXoffSent, "XOFF Sent");
5765         BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
5766             &stats->dot3StatsInternalMacTransmitErrors,
5767             "Internal MAC TX Errors");
5768         BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
5769             &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
5770         BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
5771             &stats->dot3StatsMultipleCollisionFrames,
5772             "Multiple Collision Frames");
5773         BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
5774             &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
5775         BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
5776             &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
5777         BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
5778             &stats->dot3StatsLateCollisions, "Late Collisions");
5779         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5780             &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
5781         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5782             &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
5783         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5784             &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
5785 }
5786
5787 #undef  BGE_SYSCTL_STAT_ADD64
5788
5789 static int
5790 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
5791 {
5792         struct bge_softc *sc;
5793         uint32_t result;
5794         int offset;
5795
5796         sc = (struct bge_softc *)arg1;
5797         offset = arg2;
5798         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
5799             offsetof(bge_hostaddr, bge_addr_lo));
5800         return (sysctl_handle_int(oidp, &result, 0, req));
5801 }
5802
5803 #ifdef BGE_REGISTER_DEBUG
5804 static int
5805 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5806 {
5807         struct bge_softc *sc;
5808         uint16_t *sbdata;
5809         int error, result, sbsz;
5810         int i, j;
5811
5812         result = -1;
5813         error = sysctl_handle_int(oidp, &result, 0, req);
5814         if (error || (req->newptr == NULL))
5815                 return (error);
5816
5817         if (result == 1) {
5818                 sc = (struct bge_softc *)arg1;
5819
5820                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
5821                     sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
5822                         sbsz = BGE_STATUS_BLK_SZ;
5823                 else
5824                         sbsz = 32;
5825                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
5826                 printf("Status Block:\n");
5827                 BGE_LOCK(sc);
5828                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
5829                     sc->bge_cdata.bge_status_map,
5830                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
5831                 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
5832                         printf("%06x:", i);
5833                         for (j = 0; j < 8; j++)
5834                                 printf(" %04x", sbdata[i++]);
5835                         printf("\n");
5836                 }
5837
5838                 printf("Registers:\n");
5839                 for (i = 0x800; i < 0xA00; ) {
5840                         printf("%06x:", i);
5841                         for (j = 0; j < 8; j++) {
5842                                 printf(" %08x", CSR_READ_4(sc, i));
5843                                 i += 4;
5844                         }
5845                         printf("\n");
5846                 }
5847                 BGE_UNLOCK(sc);
5848
5849                 printf("Hardware Flags:\n");
5850                 if (BGE_IS_5717_PLUS(sc))
5851                         printf(" - 5717 Plus\n");
5852                 if (BGE_IS_5755_PLUS(sc))
5853                         printf(" - 5755 Plus\n");
5854                 if (BGE_IS_575X_PLUS(sc))
5855                         printf(" - 575X Plus\n");
5856                 if (BGE_IS_5705_PLUS(sc))
5857                         printf(" - 5705 Plus\n");
5858                 if (BGE_IS_5714_FAMILY(sc))
5859                         printf(" - 5714 Family\n");
5860                 if (BGE_IS_5700_FAMILY(sc))
5861                         printf(" - 5700 Family\n");
5862                 if (sc->bge_flags & BGE_FLAG_JUMBO)
5863                         printf(" - Supports Jumbo Frames\n");
5864                 if (sc->bge_flags & BGE_FLAG_PCIX)
5865                         printf(" - PCI-X Bus\n");
5866                 if (sc->bge_flags & BGE_FLAG_PCIE)
5867                         printf(" - PCI Express Bus\n");
5868                 if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
5869                         printf(" - No 3 LEDs\n");
5870                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
5871                         printf(" - RX Alignment Bug\n");
5872         }
5873
5874         return (error);
5875 }
5876
5877 static int
5878 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
5879 {
5880         struct bge_softc *sc;
5881         int error;
5882         uint16_t result;
5883         uint32_t val;
5884
5885         result = -1;
5886         error = sysctl_handle_int(oidp, &result, 0, req);
5887         if (error || (req->newptr == NULL))
5888                 return (error);
5889
5890         if (result < 0x8000) {
5891                 sc = (struct bge_softc *)arg1;
5892                 val = CSR_READ_4(sc, result);
5893                 printf("reg 0x%06X = 0x%08X\n", result, val);
5894         }
5895
5896         return (error);
5897 }
5898
5899 static int
5900 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
5901 {
5902         struct bge_softc *sc;
5903         int error;
5904         uint16_t result;
5905         uint32_t val;
5906
5907         result = -1;
5908         error = sysctl_handle_int(oidp, &result, 0, req);
5909         if (error || (req->newptr == NULL))
5910                 return (error);
5911
5912         if (result < 0x8000) {
5913                 sc = (struct bge_softc *)arg1;
5914                 val = bge_readmem_ind(sc, result);
5915                 printf("mem 0x%06X = 0x%08X\n", result, val);
5916         }
5917
5918         return (error);
5919 }
5920 #endif
5921
5922 static int
5923 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5924 {
5925
5926         if (sc->bge_flags & BGE_FLAG_EADDR)
5927                 return (1);
5928
5929 #ifdef __sparc64__
5930         OF_getetheraddr(sc->bge_dev, ether_addr);
5931         return (0);
5932 #endif
5933         return (1);
5934 }
5935
5936 static int
5937 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5938 {
5939         uint32_t mac_addr;
5940
5941         mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5942         if ((mac_addr >> 16) == 0x484b) {
5943                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
5944                 ether_addr[1] = (uint8_t)mac_addr;
5945                 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5946                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5947                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5948                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5949                 ether_addr[5] = (uint8_t)mac_addr;
5950                 return (0);
5951         }
5952         return (1);
5953 }
5954
5955 static int
5956 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5957 {
5958         int mac_offset = BGE_EE_MAC_OFFSET;
5959
5960         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5961                 mac_offset = BGE_EE_MAC_OFFSET_5906;
5962
5963         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5964             ETHER_ADDR_LEN));
5965 }
5966
5967 static int
5968 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5969 {
5970
5971         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5972                 return (1);
5973
5974         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5975            ETHER_ADDR_LEN));
5976 }
5977
5978 static int
5979 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5980 {
5981         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5982                 /* NOTE: Order is critical */
5983                 bge_get_eaddr_fw,
5984                 bge_get_eaddr_mem,
5985                 bge_get_eaddr_nvram,
5986                 bge_get_eaddr_eeprom,
5987                 NULL
5988         };
5989         const bge_eaddr_fcn_t *func;
5990
5991         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5992                 if ((*func)(sc, eaddr) == 0)
5993                         break;
5994         }
5995         return (*func == NULL ? ENXIO : 0);
5996 }