]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/bge/if_bge.c
As non-sparc64 undconditionally returns 1, simplify #ifdefs.
[FreeBSD/FreeBSD.git] / sys / dev / bge / if_bge.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38
39 /*
40  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
41  *
42  * The Broadcom BCM5700 is based on technology originally developed by
43  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
44  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
45  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
46  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
47  * frames, highly configurable RX filtering, and 16 RX and TX queues
48  * (which, along with RX filter rules, can be used for QOS applications).
49  * Other features, such as TCP segmentation, may be available as part
50  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
51  * firmware images can be stored in hardware and need not be compiled
52  * into the driver.
53  *
54  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
55  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
56  *
57  * The BCM5701 is a single-chip solution incorporating both the BCM5700
58  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
59  * does not support external SSRAM.
60  *
61  * Broadcom also produces a variation of the BCM5700 under the "Altima"
62  * brand name, which is functionally similar but lacks PCI-X support.
63  *
64  * Without external SSRAM, you can only have at most 4 TX rings,
65  * and the use of the mini RX ring is disabled. This seems to imply
66  * that these features are simply not available on the BCM5701. As a
67  * result, this driver does not implement any support for the mini RX
68  * ring.
69  */
70
71 #ifdef HAVE_KERNEL_OPTION_HEADERS
72 #include "opt_device_polling.h"
73 #endif
74
75 #include <sys/param.h>
76 #include <sys/endian.h>
77 #include <sys/systm.h>
78 #include <sys/sockio.h>
79 #include <sys/mbuf.h>
80 #include <sys/malloc.h>
81 #include <sys/kernel.h>
82 #include <sys/module.h>
83 #include <sys/socket.h>
84 #include <sys/sysctl.h>
85 #include <sys/taskqueue.h>
86
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93
94 #include <net/bpf.h>
95
96 #include <net/if_types.h>
97 #include <net/if_vlan_var.h>
98
99 #include <netinet/in_systm.h>
100 #include <netinet/in.h>
101 #include <netinet/ip.h>
102 #include <netinet/tcp.h>
103 #include <netinet/netdump/netdump.h>
104
105 #include <machine/bus.h>
106 #include <machine/resource.h>
107 #include <sys/bus.h>
108 #include <sys/rman.h>
109
110 #include <dev/mii/mii.h>
111 #include <dev/mii/miivar.h>
112 #include "miidevs.h"
113 #include <dev/mii/brgphyreg.h>
114
115 #ifdef __sparc64__
116 #include <dev/ofw/ofw_bus.h>
117 #include <dev/ofw/openfirm.h>
118 #include <machine/ofw_machdep.h>
119 #include <machine/ver.h>
120 #endif
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124
125 #include <dev/bge/if_bgereg.h>
126
127 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
128 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
129
130 MODULE_DEPEND(bge, pci, 1, 1, 1);
131 MODULE_DEPEND(bge, ether, 1, 1, 1);
132 MODULE_DEPEND(bge, miibus, 1, 1, 1);
133
134 /* "device miibus" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136
137 /*
138  * Various supported device vendors/types and their names. Note: the
139  * spec seems to indicate that the hardware still has Alteon's vendor
140  * ID burned into it, though it will always be overriden by the vendor
141  * ID in the EEPROM. Just to be safe, we cover all possibilities.
142  */
143 static const struct bge_type {
144         uint16_t        bge_vid;
145         uint16_t        bge_did;
146 } bge_devs[] = {
147         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
148         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
149
150         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
151         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
152         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
153
154         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
155
156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5717 },
177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5717C },
178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5718 },
179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5719 },
180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5723 },
184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5725 },
185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5727 },
186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5756 },
201         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761 },
202         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761E },
203         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761S },
204         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761SE },
205         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5762 },
206         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5764 },
207         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
208         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
209         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
210         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
211         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5784 },
212         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785F },
213         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785G },
214         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
215         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
216         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787F },
217         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
218         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
219         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
220         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
221         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
222         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
223         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
224         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
225         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57760 },
226         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57761 },
227         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57762 },
228         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57764 },
229         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57765 },
230         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57766 },
231         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57767 },
232         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57780 },
233         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57781 },
234         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57782 },
235         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57785 },
236         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57786 },
237         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57787 },
238         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57788 },
239         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57790 },
240         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57791 },
241         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57795 },
242
243         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
244
245         { TC_VENDORID,          TC_DEVICEID_3C996 },
246
247         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE4 },
248         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE5 },
249         { FJTSU_VENDORID,       FJTSU_DEVICEID_PP250450 },
250
251         { 0, 0 }
252 };
253
254 static const struct bge_vendor {
255         uint16_t        v_id;
256         const char      *v_name;
257 } bge_vendors[] = {
258         { ALTEON_VENDORID,      "Alteon" },
259         { ALTIMA_VENDORID,      "Altima" },
260         { APPLE_VENDORID,       "Apple" },
261         { BCOM_VENDORID,        "Broadcom" },
262         { SK_VENDORID,          "SysKonnect" },
263         { TC_VENDORID,          "3Com" },
264         { FJTSU_VENDORID,       "Fujitsu" },
265
266         { 0, NULL }
267 };
268
269 static const struct bge_revision {
270         uint32_t        br_chipid;
271         const char      *br_name;
272 } bge_revisions[] = {
273         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
274         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
275         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
276         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
277         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
278         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
279         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
280         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
281         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
282         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
283         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
284         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
285         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
286         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
287         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
288         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
289         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
290         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
291         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
292         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
293         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
294         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
295         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
296         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
297         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
298         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
299         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
300         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
301         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
302         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
303         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
304         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
305         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
306         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
307         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
308         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
309         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
310         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
311         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
312         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
313         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
314         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
315         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
316         { BGE_CHIPID_BCM5717_A0,        "BCM5717 A0" },
317         { BGE_CHIPID_BCM5717_B0,        "BCM5717 B0" },
318         { BGE_CHIPID_BCM5717_C0,        "BCM5717 C0" },
319         { BGE_CHIPID_BCM5719_A0,        "BCM5719 A0" },
320         { BGE_CHIPID_BCM5720_A0,        "BCM5720 A0" },
321         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
322         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
323         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
324         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
325         { BGE_CHIPID_BCM5761_A0,        "BCM5761 A0" },
326         { BGE_CHIPID_BCM5761_A1,        "BCM5761 A1" },
327         { BGE_CHIPID_BCM5762_A0,        "BCM5762 A0" },
328         { BGE_CHIPID_BCM5784_A0,        "BCM5784 A0" },
329         { BGE_CHIPID_BCM5784_A1,        "BCM5784 A1" },
330         /* 5754 and 5787 share the same ASIC ID */
331         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" },
332         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
333         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
334         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
335         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
336         { BGE_CHIPID_BCM57765_A0,       "BCM57765 A0" },
337         { BGE_CHIPID_BCM57765_B0,       "BCM57765 B0" },
338         { BGE_CHIPID_BCM57780_A0,       "BCM57780 A0" },
339         { BGE_CHIPID_BCM57780_A1,       "BCM57780 A1" },
340
341         { 0, NULL }
342 };
343
344 /*
345  * Some defaults for major revisions, so that newer steppings
346  * that we don't know about have a shot at working.
347  */
348 static const struct bge_revision bge_majorrevs[] = {
349         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
350         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
351         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
352         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
353         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
354         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
355         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
356         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
357         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
358         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
359         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
360         { BGE_ASICREV_BCM5761,          "unknown BCM5761" },
361         { BGE_ASICREV_BCM5784,          "unknown BCM5784" },
362         { BGE_ASICREV_BCM5785,          "unknown BCM5785" },
363         /* 5754 and 5787 share the same ASIC ID */
364         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
365         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
366         { BGE_ASICREV_BCM57765,         "unknown BCM57765" },
367         { BGE_ASICREV_BCM57766,         "unknown BCM57766" },
368         { BGE_ASICREV_BCM57780,         "unknown BCM57780" },
369         { BGE_ASICREV_BCM5717,          "unknown BCM5717" },
370         { BGE_ASICREV_BCM5719,          "unknown BCM5719" },
371         { BGE_ASICREV_BCM5720,          "unknown BCM5720" },
372         { BGE_ASICREV_BCM5762,          "unknown BCM5762" },
373
374         { 0, NULL }
375 };
376
377 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
378 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
379 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
380 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
381 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
382 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
383 #define BGE_IS_5717_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
384 #define BGE_IS_57765_PLUS(sc)           ((sc)->bge_flags & BGE_FLAG_57765_PLUS)
385
386 static uint32_t bge_chipid(device_t);
387 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
388 static const struct bge_revision * bge_lookup_rev(uint32_t);
389
390 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
391
392 static int bge_probe(device_t);
393 static int bge_attach(device_t);
394 static int bge_detach(device_t);
395 static int bge_suspend(device_t);
396 static int bge_resume(device_t);
397 static void bge_release_resources(struct bge_softc *);
398 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
399 static int bge_dma_alloc(struct bge_softc *);
400 static void bge_dma_free(struct bge_softc *);
401 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
402     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
403
404 static void bge_devinfo(struct bge_softc *);
405 static int bge_mbox_reorder(struct bge_softc *);
406
407 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
408 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
409 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
410 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
411 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
412
413 static void bge_txeof(struct bge_softc *, uint16_t);
414 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
415 static int bge_rxeof(struct bge_softc *, uint16_t, int);
416
417 static void bge_asf_driver_up (struct bge_softc *);
418 static void bge_tick(void *);
419 static void bge_stats_clear_regs(struct bge_softc *);
420 static void bge_stats_update(struct bge_softc *);
421 static void bge_stats_update_regs(struct bge_softc *);
422 static struct mbuf *bge_check_short_dma(struct mbuf *);
423 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
424     uint16_t *, uint16_t *);
425 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
426
427 static void bge_intr(void *);
428 static int bge_msi_intr(void *);
429 static void bge_intr_task(void *, int);
430 static void bge_start(if_t);
431 static void bge_start_locked(if_t);
432 static void bge_start_tx(struct bge_softc *, uint32_t);
433 static int bge_ioctl(if_t, u_long, caddr_t);
434 static void bge_init_locked(struct bge_softc *);
435 static void bge_init(void *);
436 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
437 static void bge_stop(struct bge_softc *);
438 static void bge_watchdog(struct bge_softc *);
439 static int bge_shutdown(device_t);
440 static int bge_ifmedia_upd_locked(if_t);
441 static int bge_ifmedia_upd(if_t);
442 static void bge_ifmedia_sts(if_t, struct ifmediareq *);
443 static uint64_t bge_get_counter(if_t, ift_counter);
444
445 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
446 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
447
448 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
449 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
450
451 static void bge_setpromisc(struct bge_softc *);
452 static void bge_setmulti(struct bge_softc *);
453 static void bge_setvlan(struct bge_softc *);
454
455 static __inline void bge_rxreuse_std(struct bge_softc *, int);
456 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
457 static int bge_newbuf_std(struct bge_softc *, int);
458 static int bge_newbuf_jumbo(struct bge_softc *, int);
459 static int bge_init_rx_ring_std(struct bge_softc *);
460 static void bge_free_rx_ring_std(struct bge_softc *);
461 static int bge_init_rx_ring_jumbo(struct bge_softc *);
462 static void bge_free_rx_ring_jumbo(struct bge_softc *);
463 static void bge_free_tx_ring(struct bge_softc *);
464 static int bge_init_tx_ring(struct bge_softc *);
465
466 static int bge_chipinit(struct bge_softc *);
467 static int bge_blockinit(struct bge_softc *);
468 static uint32_t bge_dma_swap_options(struct bge_softc *);
469
470 static int bge_has_eaddr(struct bge_softc *);
471 static uint32_t bge_readmem_ind(struct bge_softc *, int);
472 static void bge_writemem_ind(struct bge_softc *, int, int);
473 static void bge_writembx(struct bge_softc *, int, int);
474 #ifdef notdef
475 static uint32_t bge_readreg_ind(struct bge_softc *, int);
476 #endif
477 static void bge_writemem_direct(struct bge_softc *, int, int);
478 static void bge_writereg_ind(struct bge_softc *, int, int);
479
480 static int bge_miibus_readreg(device_t, int, int);
481 static int bge_miibus_writereg(device_t, int, int, int);
482 static void bge_miibus_statchg(device_t);
483 #ifdef DEVICE_POLLING
484 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
485 #endif
486
487 #define BGE_RESET_SHUTDOWN      0
488 #define BGE_RESET_START         1
489 #define BGE_RESET_SUSPEND       2
490 static void bge_sig_post_reset(struct bge_softc *, int);
491 static void bge_sig_legacy(struct bge_softc *, int);
492 static void bge_sig_pre_reset(struct bge_softc *, int);
493 static void bge_stop_fw(struct bge_softc *);
494 static int bge_reset(struct bge_softc *);
495 static void bge_link_upd(struct bge_softc *);
496
497 static void bge_ape_lock_init(struct bge_softc *);
498 static void bge_ape_read_fw_ver(struct bge_softc *);
499 static int bge_ape_lock(struct bge_softc *, int);
500 static void bge_ape_unlock(struct bge_softc *, int);
501 static void bge_ape_send_event(struct bge_softc *, uint32_t);
502 static void bge_ape_driver_state_change(struct bge_softc *, int);
503
504 /*
505  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
506  * leak information to untrusted users.  It is also known to cause alignment
507  * traps on certain architectures.
508  */
509 #ifdef BGE_REGISTER_DEBUG
510 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
511 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
512 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
513 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
514 #endif
515 static void bge_add_sysctls(struct bge_softc *);
516 static void bge_add_sysctl_stats_regs(struct bge_softc *,
517     struct sysctl_ctx_list *, struct sysctl_oid_list *);
518 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
519     struct sysctl_oid_list *);
520 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
521
522 NETDUMP_DEFINE(bge);
523
524 static device_method_t bge_methods[] = {
525         /* Device interface */
526         DEVMETHOD(device_probe,         bge_probe),
527         DEVMETHOD(device_attach,        bge_attach),
528         DEVMETHOD(device_detach,        bge_detach),
529         DEVMETHOD(device_shutdown,      bge_shutdown),
530         DEVMETHOD(device_suspend,       bge_suspend),
531         DEVMETHOD(device_resume,        bge_resume),
532
533         /* MII interface */
534         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
535         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
536         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
537
538         DEVMETHOD_END
539 };
540
541 static driver_t bge_driver = {
542         "bge",
543         bge_methods,
544         sizeof(struct bge_softc)
545 };
546
547 static devclass_t bge_devclass;
548
549 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
550 MODULE_PNP_INFO("U16:vendor;U16:device", pci, bge, bge_devs,
551     sizeof(bge_devs), nitems(bge_devs) - 1);
552 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
553
554 static int bge_allow_asf = 1;
555
556 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
557 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
558         "Allow ASF mode if available");
559
560 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
561 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
562 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
563 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
564 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
565
566 static int
567 bge_has_eaddr(struct bge_softc *sc)
568 {
569 #ifdef __sparc64__
570         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
571         device_t dev;
572         uint32_t subvendor;
573
574         dev = sc->bge_dev;
575
576         /*
577          * The on-board BGEs found in sun4u machines aren't fitted with
578          * an EEPROM which means that we have to obtain the MAC address
579          * via OFW and that some tests will always fail.  We distinguish
580          * such BGEs by the subvendor ID, which also has to be obtained
581          * from OFW instead of the PCI configuration space as the latter
582          * indicates Broadcom as the subvendor of the netboot interface.
583          * For early Blade 1500 and 2500 we even have to check the OFW
584          * device path as the subvendor ID always defaults to Broadcom
585          * there.
586          */
587         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
588             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
589             (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
590                 return (0);
591         memset(buf, 0, sizeof(buf));
592         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
593                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
594                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
595                         return (0);
596                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
597                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
598                         return (0);
599         }
600 #endif
601         return (1);
602 }
603
604 static uint32_t
605 bge_readmem_ind(struct bge_softc *sc, int off)
606 {
607         device_t dev;
608         uint32_t val;
609
610         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
611             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
612                 return (0);
613
614         dev = sc->bge_dev;
615
616         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
617         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
618         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
619         return (val);
620 }
621
622 static void
623 bge_writemem_ind(struct bge_softc *sc, int off, int val)
624 {
625         device_t dev;
626
627         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
628             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
629                 return;
630
631         dev = sc->bge_dev;
632
633         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
634         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
635         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
636 }
637
638 #ifdef notdef
639 static uint32_t
640 bge_readreg_ind(struct bge_softc *sc, int off)
641 {
642         device_t dev;
643
644         dev = sc->bge_dev;
645
646         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
647         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
648 }
649 #endif
650
651 static void
652 bge_writereg_ind(struct bge_softc *sc, int off, int val)
653 {
654         device_t dev;
655
656         dev = sc->bge_dev;
657
658         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
659         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
660 }
661
662 static void
663 bge_writemem_direct(struct bge_softc *sc, int off, int val)
664 {
665         CSR_WRITE_4(sc, off, val);
666 }
667
668 static void
669 bge_writembx(struct bge_softc *sc, int off, int val)
670 {
671         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
672                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
673
674         CSR_WRITE_4(sc, off, val);
675         if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
676                 CSR_READ_4(sc, off);
677 }
678
679 /*
680  * Clear all stale locks and select the lock for this driver instance.
681  */
682 static void
683 bge_ape_lock_init(struct bge_softc *sc)
684 {
685         uint32_t bit, regbase;
686         int i;
687
688         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
689                 regbase = BGE_APE_LOCK_GRANT;
690         else
691                 regbase = BGE_APE_PER_LOCK_GRANT;
692
693         /* Clear any stale locks. */
694         for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
695                 switch (i) {
696                 case BGE_APE_LOCK_PHY0:
697                 case BGE_APE_LOCK_PHY1:
698                 case BGE_APE_LOCK_PHY2:
699                 case BGE_APE_LOCK_PHY3:
700                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
701                         break;
702                 default:
703                         if (sc->bge_func_addr == 0)
704                                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
705                         else
706                                 bit = (1 << sc->bge_func_addr);
707                 }
708                 APE_WRITE_4(sc, regbase + 4 * i, bit);
709         }
710
711         /* Select the PHY lock based on the device's function number. */
712         switch (sc->bge_func_addr) {
713         case 0:
714                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
715                 break;
716         case 1:
717                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
718                 break;
719         case 2:
720                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
721                 break;
722         case 3:
723                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
724                 break;
725         default:
726                 device_printf(sc->bge_dev,
727                     "PHY lock not supported on this function\n");
728         }
729 }
730
731 /*
732  * Check for APE firmware, set flags, and print version info.
733  */
734 static void
735 bge_ape_read_fw_ver(struct bge_softc *sc)
736 {
737         const char *fwtype;
738         uint32_t apedata, features;
739
740         /* Check for a valid APE signature in shared memory. */
741         apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
742         if (apedata != BGE_APE_SEG_SIG_MAGIC) {
743                 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
744                 return;
745         }
746
747         /* Check if APE firmware is running. */
748         apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
749         if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
750                 device_printf(sc->bge_dev, "APE signature found "
751                     "but FW status not ready! 0x%08x\n", apedata);
752                 return;
753         }
754
755         sc->bge_mfw_flags |= BGE_MFW_ON_APE;
756
757         /* Fetch the APE firwmare type and version. */
758         apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
759         features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
760         if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
761                 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
762                 fwtype = "NCSI";
763         } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
764                 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
765                 fwtype = "DASH";
766         } else
767                 fwtype = "UNKN";
768
769         /* Print the APE firmware version. */
770         device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
771             fwtype,
772             (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
773             (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
774             (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
775             (apedata & BGE_APE_FW_VERSION_BLDMSK));
776 }
777
778 static int
779 bge_ape_lock(struct bge_softc *sc, int locknum)
780 {
781         uint32_t bit, gnt, req, status;
782         int i, off;
783
784         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
785                 return (0);
786
787         /* Lock request/grant registers have different bases. */
788         if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
789                 req = BGE_APE_LOCK_REQ;
790                 gnt = BGE_APE_LOCK_GRANT;
791         } else {
792                 req = BGE_APE_PER_LOCK_REQ;
793                 gnt = BGE_APE_PER_LOCK_GRANT;
794         }
795
796         off = 4 * locknum;
797
798         switch (locknum) {
799         case BGE_APE_LOCK_GPIO:
800                 /* Lock required when using GPIO. */
801                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
802                         return (0);
803                 if (sc->bge_func_addr == 0)
804                         bit = BGE_APE_LOCK_REQ_DRIVER0;
805                 else
806                         bit = (1 << sc->bge_func_addr);
807                 break;
808         case BGE_APE_LOCK_GRC:
809                 /* Lock required to reset the device. */
810                 if (sc->bge_func_addr == 0)
811                         bit = BGE_APE_LOCK_REQ_DRIVER0;
812                 else
813                         bit = (1 << sc->bge_func_addr);
814                 break;
815         case BGE_APE_LOCK_MEM:
816                 /* Lock required when accessing certain APE memory. */
817                 if (sc->bge_func_addr == 0)
818                         bit = BGE_APE_LOCK_REQ_DRIVER0;
819                 else
820                         bit = (1 << sc->bge_func_addr);
821                 break;
822         case BGE_APE_LOCK_PHY0:
823         case BGE_APE_LOCK_PHY1:
824         case BGE_APE_LOCK_PHY2:
825         case BGE_APE_LOCK_PHY3:
826                 /* Lock required when accessing PHYs. */
827                 bit = BGE_APE_LOCK_REQ_DRIVER0;
828                 break;
829         default:
830                 return (EINVAL);
831         }
832
833         /* Request a lock. */
834         APE_WRITE_4(sc, req + off, bit);
835
836         /* Wait up to 1 second to acquire lock. */
837         for (i = 0; i < 20000; i++) {
838                 status = APE_READ_4(sc, gnt + off);
839                 if (status == bit)
840                         break;
841                 DELAY(50);
842         }
843
844         /* Handle any errors. */
845         if (status != bit) {
846                 device_printf(sc->bge_dev, "APE lock %d request failed! "
847                     "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
848                     locknum, req + off, bit & 0xFFFF, gnt + off,
849                     status & 0xFFFF);
850                 /* Revoke the lock request. */
851                 APE_WRITE_4(sc, gnt + off, bit);
852                 return (EBUSY);
853         }
854
855         return (0);
856 }
857
858 static void
859 bge_ape_unlock(struct bge_softc *sc, int locknum)
860 {
861         uint32_t bit, gnt;
862         int off;
863
864         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
865                 return;
866
867         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
868                 gnt = BGE_APE_LOCK_GRANT;
869         else
870                 gnt = BGE_APE_PER_LOCK_GRANT;
871
872         off = 4 * locknum;
873
874         switch (locknum) {
875         case BGE_APE_LOCK_GPIO:
876                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
877                         return;
878                 if (sc->bge_func_addr == 0)
879                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
880                 else
881                         bit = (1 << sc->bge_func_addr);
882                 break;
883         case BGE_APE_LOCK_GRC:
884                 if (sc->bge_func_addr == 0)
885                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
886                 else
887                         bit = (1 << sc->bge_func_addr);
888                 break;
889         case BGE_APE_LOCK_MEM:
890                 if (sc->bge_func_addr == 0)
891                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
892                 else
893                         bit = (1 << sc->bge_func_addr);
894                 break;
895         case BGE_APE_LOCK_PHY0:
896         case BGE_APE_LOCK_PHY1:
897         case BGE_APE_LOCK_PHY2:
898         case BGE_APE_LOCK_PHY3:
899                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
900                 break;
901         default:
902                 return;
903         }
904
905         APE_WRITE_4(sc, gnt + off, bit);
906 }
907
908 /*
909  * Send an event to the APE firmware.
910  */
911 static void
912 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
913 {
914         uint32_t apedata;
915         int i;
916
917         /* NCSI does not support APE events. */
918         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
919                 return;
920
921         /* Wait up to 1ms for APE to service previous event. */
922         for (i = 10; i > 0; i--) {
923                 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
924                         break;
925                 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
926                 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
927                         APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
928                             BGE_APE_EVENT_STATUS_EVENT_PENDING);
929                         bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
930                         APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
931                         break;
932                 }
933                 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
934                 DELAY(100);
935         }
936         if (i == 0)
937                 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
938                     event);
939 }
940
941 static void
942 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
943 {
944         uint32_t apedata, event;
945
946         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
947                 return;
948
949         switch (kind) {
950         case BGE_RESET_START:
951                 /* If this is the first load, clear the load counter. */
952                 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
953                 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
954                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
955                 else {
956                         apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
957                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
958                 }
959                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
960                     BGE_APE_HOST_SEG_SIG_MAGIC);
961                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
962                     BGE_APE_HOST_SEG_LEN_MAGIC);
963
964                 /* Add some version info if bge(4) supports it. */
965                 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
966                     BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
967                 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
968                     BGE_APE_HOST_BEHAV_NO_PHYLOCK);
969                 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
970                     BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
971                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
972                     BGE_APE_HOST_DRVR_STATE_START);
973                 event = BGE_APE_EVENT_STATUS_STATE_START;
974                 break;
975         case BGE_RESET_SHUTDOWN:
976                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
977                     BGE_APE_HOST_DRVR_STATE_UNLOAD);
978                 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
979                 break;
980         case BGE_RESET_SUSPEND:
981                 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
982                 break;
983         default:
984                 return;
985         }
986
987         bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
988             BGE_APE_EVENT_STATUS_STATE_CHNGE);
989 }
990
991 /*
992  * Map a single buffer address.
993  */
994
995 static void
996 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
997 {
998         struct bge_dmamap_arg *ctx;
999
1000         if (error)
1001                 return;
1002
1003         KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
1004
1005         ctx = arg;
1006         ctx->bge_busaddr = segs->ds_addr;
1007 }
1008
1009 static uint8_t
1010 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1011 {
1012         uint32_t access, byte = 0;
1013         int i;
1014
1015         /* Lock. */
1016         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1017         for (i = 0; i < 8000; i++) {
1018                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1019                         break;
1020                 DELAY(20);
1021         }
1022         if (i == 8000)
1023                 return (1);
1024
1025         /* Enable access. */
1026         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1027         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1028
1029         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1030         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1031         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1032                 DELAY(10);
1033                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1034                         DELAY(10);
1035                         break;
1036                 }
1037         }
1038
1039         if (i == BGE_TIMEOUT * 10) {
1040                 if_printf(sc->bge_ifp, "nvram read timed out\n");
1041                 return (1);
1042         }
1043
1044         /* Get result. */
1045         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1046
1047         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1048
1049         /* Disable access. */
1050         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1051
1052         /* Unlock. */
1053         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1054         CSR_READ_4(sc, BGE_NVRAM_SWARB);
1055
1056         return (0);
1057 }
1058
1059 /*
1060  * Read a sequence of bytes from NVRAM.
1061  */
1062 static int
1063 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1064 {
1065         int err = 0, i;
1066         uint8_t byte = 0;
1067
1068         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1069                 return (1);
1070
1071         for (i = 0; i < cnt; i++) {
1072                 err = bge_nvram_getbyte(sc, off + i, &byte);
1073                 if (err)
1074                         break;
1075                 *(dest + i) = byte;
1076         }
1077
1078         return (err ? 1 : 0);
1079 }
1080
1081 /*
1082  * Read a byte of data stored in the EEPROM at address 'addr.' The
1083  * BCM570x supports both the traditional bitbang interface and an
1084  * auto access interface for reading the EEPROM. We use the auto
1085  * access method.
1086  */
1087 static uint8_t
1088 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1089 {
1090         int i;
1091         uint32_t byte = 0;
1092
1093         /*
1094          * Enable use of auto EEPROM access so we can avoid
1095          * having to use the bitbang method.
1096          */
1097         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1098
1099         /* Reset the EEPROM, load the clock period. */
1100         CSR_WRITE_4(sc, BGE_EE_ADDR,
1101             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1102         DELAY(20);
1103
1104         /* Issue the read EEPROM command. */
1105         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1106
1107         /* Wait for completion */
1108         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1109                 DELAY(10);
1110                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1111                         break;
1112         }
1113
1114         if (i == BGE_TIMEOUT * 10) {
1115                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
1116                 return (1);
1117         }
1118
1119         /* Get result. */
1120         byte = CSR_READ_4(sc, BGE_EE_DATA);
1121
1122         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1123
1124         return (0);
1125 }
1126
1127 /*
1128  * Read a sequence of bytes from the EEPROM.
1129  */
1130 static int
1131 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1132 {
1133         int i, error = 0;
1134         uint8_t byte = 0;
1135
1136         for (i = 0; i < cnt; i++) {
1137                 error = bge_eeprom_getbyte(sc, off + i, &byte);
1138                 if (error)
1139                         break;
1140                 *(dest + i) = byte;
1141         }
1142
1143         return (error ? 1 : 0);
1144 }
1145
1146 static int
1147 bge_miibus_readreg(device_t dev, int phy, int reg)
1148 {
1149         struct bge_softc *sc;
1150         uint32_t val;
1151         int i;
1152
1153         sc = device_get_softc(dev);
1154
1155         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1156                 return (0);
1157
1158         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1159         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1160                 CSR_WRITE_4(sc, BGE_MI_MODE,
1161                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1162                 DELAY(80);
1163         }
1164
1165         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1166             BGE_MIPHY(phy) | BGE_MIREG(reg));
1167
1168         /* Poll for the PHY register access to complete. */
1169         for (i = 0; i < BGE_TIMEOUT; i++) {
1170                 DELAY(10);
1171                 val = CSR_READ_4(sc, BGE_MI_COMM);
1172                 if ((val & BGE_MICOMM_BUSY) == 0) {
1173                         DELAY(5);
1174                         val = CSR_READ_4(sc, BGE_MI_COMM);
1175                         break;
1176                 }
1177         }
1178
1179         if (i == BGE_TIMEOUT) {
1180                 device_printf(sc->bge_dev,
1181                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1182                     phy, reg, val);
1183                 val = 0;
1184         }
1185
1186         /* Restore the autopoll bit if necessary. */
1187         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1188                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1189                 DELAY(80);
1190         }
1191
1192         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1193
1194         if (val & BGE_MICOMM_READFAIL)
1195                 return (0);
1196
1197         return (val & 0xFFFF);
1198 }
1199
1200 static int
1201 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1202 {
1203         struct bge_softc *sc;
1204         int i;
1205
1206         sc = device_get_softc(dev);
1207
1208         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1209             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1210                 return (0);
1211
1212         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1213                 return (0);
1214
1215         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1216         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1217                 CSR_WRITE_4(sc, BGE_MI_MODE,
1218                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1219                 DELAY(80);
1220         }
1221
1222         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1223             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1224
1225         for (i = 0; i < BGE_TIMEOUT; i++) {
1226                 DELAY(10);
1227                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1228                         DELAY(5);
1229                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1230                         break;
1231                 }
1232         }
1233
1234         /* Restore the autopoll bit if necessary. */
1235         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1236                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1237                 DELAY(80);
1238         }
1239
1240         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1241
1242         if (i == BGE_TIMEOUT)
1243                 device_printf(sc->bge_dev,
1244                     "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1245                     phy, reg, val);
1246
1247         return (0);
1248 }
1249
1250 static void
1251 bge_miibus_statchg(device_t dev)
1252 {
1253         struct bge_softc *sc;
1254         struct mii_data *mii;
1255         uint32_t mac_mode, rx_mode, tx_mode;
1256
1257         sc = device_get_softc(dev);
1258         if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
1259                 return;
1260         mii = device_get_softc(sc->bge_miibus);
1261
1262         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1263             (IFM_ACTIVE | IFM_AVALID)) {
1264                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1265                 case IFM_10_T:
1266                 case IFM_100_TX:
1267                         sc->bge_link = 1;
1268                         break;
1269                 case IFM_1000_T:
1270                 case IFM_1000_SX:
1271                 case IFM_2500_SX:
1272                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1273                                 sc->bge_link = 1;
1274                         else
1275                                 sc->bge_link = 0;
1276                         break;
1277                 default:
1278                         sc->bge_link = 0;
1279                         break;
1280                 }
1281         } else
1282                 sc->bge_link = 0;
1283         if (sc->bge_link == 0)
1284                 return;
1285
1286         /*
1287          * APE firmware touches these registers to keep the MAC
1288          * connected to the outside world.  Try to keep the
1289          * accesses atomic.
1290          */
1291
1292         /* Set the port mode (MII/GMII) to match the link speed. */
1293         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1294             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1295         tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1296         rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1297
1298         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1299             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1300                 mac_mode |= BGE_PORTMODE_GMII;
1301         else
1302                 mac_mode |= BGE_PORTMODE_MII;
1303
1304         /* Set MAC flow control behavior to match link flow control settings. */
1305         tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1306         rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1307         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1308                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1309                         tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1310                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1311                         rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1312         } else
1313                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1314
1315         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1316         DELAY(40);
1317         CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1318         CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1319 }
1320
1321 /*
1322  * Intialize a standard receive ring descriptor.
1323  */
1324 static int
1325 bge_newbuf_std(struct bge_softc *sc, int i)
1326 {
1327         struct mbuf *m;
1328         struct bge_rx_bd *r;
1329         bus_dma_segment_t segs[1];
1330         bus_dmamap_t map;
1331         int error, nsegs;
1332
1333         if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1334             (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
1335             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1336                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1337                 if (m == NULL)
1338                         return (ENOBUFS);
1339                 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1340         } else {
1341                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1342                 if (m == NULL)
1343                         return (ENOBUFS);
1344                 m->m_len = m->m_pkthdr.len = MCLBYTES;
1345         }
1346         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1347                 m_adj(m, ETHER_ALIGN);
1348
1349         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1350             sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1351         if (error != 0) {
1352                 m_freem(m);
1353                 return (error);
1354         }
1355         if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1356                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1357                     sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1358                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1359                     sc->bge_cdata.bge_rx_std_dmamap[i]);
1360         }
1361         map = sc->bge_cdata.bge_rx_std_dmamap[i];
1362         sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1363         sc->bge_cdata.bge_rx_std_sparemap = map;
1364         sc->bge_cdata.bge_rx_std_chain[i] = m;
1365         sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1366         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1367         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1368         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1369         r->bge_flags = BGE_RXBDFLAG_END;
1370         r->bge_len = segs[0].ds_len;
1371         r->bge_idx = i;
1372
1373         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1374             sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1375
1376         return (0);
1377 }
1378
1379 /*
1380  * Initialize a jumbo receive ring descriptor. This allocates
1381  * a jumbo buffer from the pool managed internally by the driver.
1382  */
1383 static int
1384 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1385 {
1386         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1387         bus_dmamap_t map;
1388         struct bge_extrx_bd *r;
1389         struct mbuf *m;
1390         int error, nsegs;
1391
1392         MGETHDR(m, M_NOWAIT, MT_DATA);
1393         if (m == NULL)
1394                 return (ENOBUFS);
1395
1396         if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
1397                 m_freem(m);
1398                 return (ENOBUFS);
1399         }
1400         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1401         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1402                 m_adj(m, ETHER_ALIGN);
1403
1404         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1405             sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1406         if (error != 0) {
1407                 m_freem(m);
1408                 return (error);
1409         }
1410
1411         if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1412                 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1413                     sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1414                 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1415                     sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1416         }
1417         map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1418         sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1419             sc->bge_cdata.bge_rx_jumbo_sparemap;
1420         sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1421         sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1422         sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1423         sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1424         sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1425         sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1426
1427         /*
1428          * Fill in the extended RX buffer descriptor.
1429          */
1430         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1431         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1432         r->bge_idx = i;
1433         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1434         switch (nsegs) {
1435         case 4:
1436                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1437                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1438                 r->bge_len3 = segs[3].ds_len;
1439                 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1440         case 3:
1441                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1442                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1443                 r->bge_len2 = segs[2].ds_len;
1444                 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1445         case 2:
1446                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1447                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1448                 r->bge_len1 = segs[1].ds_len;
1449                 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1450         case 1:
1451                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1452                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1453                 r->bge_len0 = segs[0].ds_len;
1454                 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1455                 break;
1456         default:
1457                 panic("%s: %d segments\n", __func__, nsegs);
1458         }
1459
1460         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1461             sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1462
1463         return (0);
1464 }
1465
1466 static int
1467 bge_init_rx_ring_std(struct bge_softc *sc)
1468 {
1469         int error, i;
1470
1471         bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1472         sc->bge_std = 0;
1473         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1474                 if ((error = bge_newbuf_std(sc, i)) != 0)
1475                         return (error);
1476                 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1477         }
1478
1479         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1480             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1481
1482         sc->bge_std = 0;
1483         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1484
1485         return (0);
1486 }
1487
1488 static void
1489 bge_free_rx_ring_std(struct bge_softc *sc)
1490 {
1491         int i;
1492
1493         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1494                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1495                         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1496                             sc->bge_cdata.bge_rx_std_dmamap[i],
1497                             BUS_DMASYNC_POSTREAD);
1498                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1499                             sc->bge_cdata.bge_rx_std_dmamap[i]);
1500                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1501                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1502                 }
1503                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1504                     sizeof(struct bge_rx_bd));
1505         }
1506 }
1507
1508 static int
1509 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1510 {
1511         struct bge_rcb *rcb;
1512         int error, i;
1513
1514         bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1515         sc->bge_jumbo = 0;
1516         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1517                 if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1518                         return (error);
1519                 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1520         }
1521
1522         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1523             sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1524
1525         sc->bge_jumbo = 0;
1526
1527         /* Enable the jumbo receive producer ring. */
1528         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1529         rcb->bge_maxlen_flags =
1530             BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1531         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1532
1533         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1534
1535         return (0);
1536 }
1537
1538 static void
1539 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1540 {
1541         int i;
1542
1543         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1544                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1545                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1546                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1547                             BUS_DMASYNC_POSTREAD);
1548                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1549                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1550                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1551                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1552                 }
1553                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1554                     sizeof(struct bge_extrx_bd));
1555         }
1556 }
1557
1558 static void
1559 bge_free_tx_ring(struct bge_softc *sc)
1560 {
1561         int i;
1562
1563         if (sc->bge_ldata.bge_tx_ring == NULL)
1564                 return;
1565
1566         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1567                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1568                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1569                             sc->bge_cdata.bge_tx_dmamap[i],
1570                             BUS_DMASYNC_POSTWRITE);
1571                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1572                             sc->bge_cdata.bge_tx_dmamap[i]);
1573                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1574                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1575                 }
1576                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1577                     sizeof(struct bge_tx_bd));
1578         }
1579 }
1580
1581 static int
1582 bge_init_tx_ring(struct bge_softc *sc)
1583 {
1584         sc->bge_txcnt = 0;
1585         sc->bge_tx_saved_considx = 0;
1586
1587         bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1588         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1589             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1590
1591         /* Initialize transmit producer index for host-memory send ring. */
1592         sc->bge_tx_prodidx = 0;
1593         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1594
1595         /* 5700 b2 errata */
1596         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1597                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1598
1599         /* NIC-memory send ring not used; initialize to zero. */
1600         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1601         /* 5700 b2 errata */
1602         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1603                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1604
1605         return (0);
1606 }
1607
1608 static void
1609 bge_setpromisc(struct bge_softc *sc)
1610 {
1611         if_t ifp;
1612
1613         BGE_LOCK_ASSERT(sc);
1614
1615         ifp = sc->bge_ifp;
1616
1617         /* Enable or disable promiscuous mode as needed. */
1618         if (if_getflags(ifp) & IFF_PROMISC)
1619                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1620         else
1621                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1622 }
1623
1624 static void
1625 bge_setmulti(struct bge_softc *sc)
1626 {
1627         if_t ifp;
1628         int mc_count = 0;
1629         uint32_t hashes[4] = { 0, 0, 0, 0 };
1630         int h, i, mcnt;
1631         unsigned char *mta;
1632
1633         BGE_LOCK_ASSERT(sc);
1634
1635         ifp = sc->bge_ifp;
1636
1637         mc_count = if_multiaddr_count(ifp, -1);
1638         mta = malloc(sizeof(unsigned char) *  ETHER_ADDR_LEN *
1639             mc_count, M_DEVBUF, M_NOWAIT);
1640
1641         if(mta == NULL) {
1642                 device_printf(sc->bge_dev, 
1643                     "Failed to allocated temp mcast list\n");
1644                 return;
1645         }
1646
1647         if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
1648                 for (i = 0; i < 4; i++)
1649                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1650                 free(mta, M_DEVBUF);
1651                 return;
1652         }
1653
1654         /* First, zot all the existing filters. */
1655         for (i = 0; i < 4; i++)
1656                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1657
1658         if_multiaddr_array(ifp, mta, &mcnt, mc_count);
1659         for(i = 0; i < mcnt; i++) {
1660                 h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
1661                     ETHER_ADDR_LEN) & 0x7F;
1662                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1663         }
1664
1665         for (i = 0; i < 4; i++)
1666                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1667
1668         free(mta, M_DEVBUF);
1669 }
1670
1671 static void
1672 bge_setvlan(struct bge_softc *sc)
1673 {
1674         if_t ifp;
1675
1676         BGE_LOCK_ASSERT(sc);
1677
1678         ifp = sc->bge_ifp;
1679
1680         /* Enable or disable VLAN tag stripping as needed. */
1681         if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
1682                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1683         else
1684                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1685 }
1686
1687 static void
1688 bge_sig_pre_reset(struct bge_softc *sc, int type)
1689 {
1690
1691         /*
1692          * Some chips don't like this so only do this if ASF is enabled
1693          */
1694         if (sc->bge_asf_mode)
1695                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1696
1697         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1698                 switch (type) {
1699                 case BGE_RESET_START:
1700                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1701                             BGE_FW_DRV_STATE_START);
1702                         break;
1703                 case BGE_RESET_SHUTDOWN:
1704                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1705                             BGE_FW_DRV_STATE_UNLOAD);
1706                         break;
1707                 case BGE_RESET_SUSPEND:
1708                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1709                             BGE_FW_DRV_STATE_SUSPEND);
1710                         break;
1711                 }
1712         }
1713
1714         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1715                 bge_ape_driver_state_change(sc, type);
1716 }
1717
1718 static void
1719 bge_sig_post_reset(struct bge_softc *sc, int type)
1720 {
1721
1722         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1723                 switch (type) {
1724                 case BGE_RESET_START:
1725                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1726                             BGE_FW_DRV_STATE_START_DONE);
1727                         /* START DONE */
1728                         break;
1729                 case BGE_RESET_SHUTDOWN:
1730                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1731                             BGE_FW_DRV_STATE_UNLOAD_DONE);
1732                         break;
1733                 }
1734         }
1735         if (type == BGE_RESET_SHUTDOWN)
1736                 bge_ape_driver_state_change(sc, type);
1737 }
1738
1739 static void
1740 bge_sig_legacy(struct bge_softc *sc, int type)
1741 {
1742
1743         if (sc->bge_asf_mode) {
1744                 switch (type) {
1745                 case BGE_RESET_START:
1746                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1747                             BGE_FW_DRV_STATE_START);
1748                         break;
1749                 case BGE_RESET_SHUTDOWN:
1750                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1751                             BGE_FW_DRV_STATE_UNLOAD);
1752                         break;
1753                 }
1754         }
1755 }
1756
1757 static void
1758 bge_stop_fw(struct bge_softc *sc)
1759 {
1760         int i;
1761
1762         if (sc->bge_asf_mode) {
1763                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1764                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1765                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1766
1767                 for (i = 0; i < 100; i++ ) {
1768                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1769                             BGE_RX_CPU_DRV_EVENT))
1770                                 break;
1771                         DELAY(10);
1772                 }
1773         }
1774 }
1775
1776 static uint32_t
1777 bge_dma_swap_options(struct bge_softc *sc)
1778 {
1779         uint32_t dma_options;
1780
1781         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1782             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1783 #if BYTE_ORDER == BIG_ENDIAN
1784         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1785 #endif
1786         return (dma_options);
1787 }
1788
1789 /*
1790  * Do endian, PCI and DMA initialization.
1791  */
1792 static int
1793 bge_chipinit(struct bge_softc *sc)
1794 {
1795         uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1796         uint16_t val;
1797         int i;
1798
1799         /* Set endianness before we access any non-PCI registers. */
1800         misc_ctl = BGE_INIT;
1801         if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1802                 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1803         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1804
1805         /*
1806          * Clear the MAC statistics block in the NIC's
1807          * internal memory.
1808          */
1809         for (i = BGE_STATS_BLOCK;
1810             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1811                 BGE_MEMWIN_WRITE(sc, i, 0);
1812
1813         for (i = BGE_STATUS_BLOCK;
1814             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1815                 BGE_MEMWIN_WRITE(sc, i, 0);
1816
1817         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1818                 /*
1819                  *  Fix data corruption caused by non-qword write with WB.
1820                  *  Fix master abort in PCI mode.
1821                  *  Fix PCI latency timer.
1822                  */
1823                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1824                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1825                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1826         }
1827
1828         if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1829             sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1830                 /*
1831                  * For the 57766 and non Ax versions of 57765, bootcode
1832                  * needs to setup the PCIE Fast Training Sequence (FTS)
1833                  * value to prevent transmit hangs.
1834                  */
1835                 if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1836                         CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1837                             CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1838                             BGE_CPMU_PADRNG_CTL_RDIV2);
1839                 }
1840         }
1841
1842         /*
1843          * Set up the PCI DMA control register.
1844          */
1845         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1846             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1847         if (sc->bge_flags & BGE_FLAG_PCIE) {
1848                 if (sc->bge_mps >= 256)
1849                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1850                 else
1851                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1852         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1853                 if (BGE_IS_5714_FAMILY(sc)) {
1854                         /* 256 bytes for read and write. */
1855                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1856                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1857                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1858                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1859                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1860                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1861                         /*
1862                          * In the BCM5703, the DMA read watermark should
1863                          * be set to less than or equal to the maximum
1864                          * memory read byte count of the PCI-X command
1865                          * register.
1866                          */
1867                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1868                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1869                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1870                         /* 1536 bytes for read, 384 bytes for write. */
1871                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1872                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1873                 } else {
1874                         /* 384 bytes for read and write. */
1875                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1876                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1877                             0x0F;
1878                 }
1879                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1880                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1881                         uint32_t tmp;
1882
1883                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
1884                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1885                         if (tmp == 6 || tmp == 7)
1886                                 dma_rw_ctl |=
1887                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1888
1889                         /* Set PCI-X DMA write workaround. */
1890                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1891                 }
1892         } else {
1893                 /* Conventional PCI bus: 256 bytes for read and write. */
1894                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1895                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1896
1897                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1898                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1899                         dma_rw_ctl |= 0x0F;
1900         }
1901         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1902             sc->bge_asicrev == BGE_ASICREV_BCM5701)
1903                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1904                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1905         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1906             sc->bge_asicrev == BGE_ASICREV_BCM5704)
1907                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1908         if (BGE_IS_5717_PLUS(sc)) {
1909                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1910                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1911                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1912                 /*
1913                  * Enable HW workaround for controllers that misinterpret
1914                  * a status tag update and leave interrupts permanently
1915                  * disabled.
1916                  */
1917                 if (!BGE_IS_57765_PLUS(sc) &&
1918                     sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1919                     sc->bge_asicrev != BGE_ASICREV_BCM5762)
1920                         dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1921         }
1922         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1923
1924         /*
1925          * Set up general mode register.
1926          */
1927         mode_ctl = bge_dma_swap_options(sc);
1928         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1929             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1930                 /* Retain Host-2-BMC settings written by APE firmware. */
1931                 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1932                     (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1933                     BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1934                     BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1935         }
1936         mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1937             BGE_MODECTL_TX_NO_PHDR_CSUM;
1938
1939         /*
1940          * BCM5701 B5 have a bug causing data corruption when using
1941          * 64-bit DMA reads, which can be terminated early and then
1942          * completed later as 32-bit accesses, in combination with
1943          * certain bridges.
1944          */
1945         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1946             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1947                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1948
1949         /*
1950          * Tell the firmware the driver is running
1951          */
1952         if (sc->bge_asf_mode & ASF_STACKUP)
1953                 mode_ctl |= BGE_MODECTL_STACKUP;
1954
1955         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1956
1957         /*
1958          * Disable memory write invalidate.  Apparently it is not supported
1959          * properly by these devices.
1960          */
1961         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1962
1963         /* Set the timer prescaler (always 66 MHz). */
1964         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1965
1966         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1967         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1968                 DELAY(40);      /* XXX */
1969
1970                 /* Put PHY into ready state */
1971                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1972                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1973                 DELAY(40);
1974         }
1975
1976         return (0);
1977 }
1978
1979 static int
1980 bge_blockinit(struct bge_softc *sc)
1981 {
1982         struct bge_rcb *rcb;
1983         bus_size_t vrcb;
1984         bge_hostaddr taddr;
1985         uint32_t dmactl, rdmareg, val;
1986         int i, limit;
1987
1988         /*
1989          * Initialize the memory window pointer register so that
1990          * we can access the first 32K of internal NIC RAM. This will
1991          * allow us to set up the TX send ring RCBs and the RX return
1992          * ring RCBs, plus other things which live in NIC memory.
1993          */
1994         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1995
1996         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1997
1998         if (!(BGE_IS_5705_PLUS(sc))) {
1999                 /* Configure mbuf memory pool */
2000                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2001                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
2002                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2003                 else
2004                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2005
2006                 /* Configure DMA resource pool */
2007                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2008                     BGE_DMA_DESCRIPTORS);
2009                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2010         }
2011
2012         /* Configure mbuf pool watermarks */
2013         if (BGE_IS_5717_PLUS(sc)) {
2014                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2015                 if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
2016                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2017                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2018                 } else {
2019                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2020                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2021                 }
2022         } else if (!BGE_IS_5705_PLUS(sc)) {
2023                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2024                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2025                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2026         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2027                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2028                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2029                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2030         } else {
2031                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2032                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2033                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2034         }
2035
2036         /* Configure DMA resource watermarks */
2037         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2038         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2039
2040         /* Enable buffer manager */
2041         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2042         /*
2043          * Change the arbitration algorithm of TXMBUF read request to
2044          * round-robin instead of priority based for BCM5719.  When
2045          * TXFIFO is almost empty, RDMA will hold its request until
2046          * TXFIFO is not almost empty.
2047          */
2048         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2049                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2050         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2051
2052         /* Poll for buffer manager start indication */
2053         for (i = 0; i < BGE_TIMEOUT; i++) {
2054                 DELAY(10);
2055                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2056                         break;
2057         }
2058
2059         if (i == BGE_TIMEOUT) {
2060                 device_printf(sc->bge_dev, "buffer manager failed to start\n");
2061                 return (ENXIO);
2062         }
2063
2064         /* Enable flow-through queues */
2065         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2066         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2067
2068         /* Wait until queue initialization is complete */
2069         for (i = 0; i < BGE_TIMEOUT; i++) {
2070                 DELAY(10);
2071                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2072                         break;
2073         }
2074
2075         if (i == BGE_TIMEOUT) {
2076                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
2077                 return (ENXIO);
2078         }
2079
2080         /*
2081          * Summary of rings supported by the controller:
2082          *
2083          * Standard Receive Producer Ring
2084          * - This ring is used to feed receive buffers for "standard"
2085          *   sized frames (typically 1536 bytes) to the controller.
2086          *
2087          * Jumbo Receive Producer Ring
2088          * - This ring is used to feed receive buffers for jumbo sized
2089          *   frames (i.e. anything bigger than the "standard" frames)
2090          *   to the controller.
2091          *
2092          * Mini Receive Producer Ring
2093          * - This ring is used to feed receive buffers for "mini"
2094          *   sized frames to the controller.
2095          * - This feature required external memory for the controller
2096          *   but was never used in a production system.  Should always
2097          *   be disabled.
2098          *
2099          * Receive Return Ring
2100          * - After the controller has placed an incoming frame into a
2101          *   receive buffer that buffer is moved into a receive return
2102          *   ring.  The driver is then responsible to passing the
2103          *   buffer up to the stack.  Many versions of the controller
2104          *   support multiple RR rings.
2105          *
2106          * Send Ring
2107          * - This ring is used for outgoing frames.  Many versions of
2108          *   the controller support multiple send rings.
2109          */
2110
2111         /* Initialize the standard receive producer ring control block. */
2112         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2113         rcb->bge_hostaddr.bge_addr_lo =
2114             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2115         rcb->bge_hostaddr.bge_addr_hi =
2116             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2117         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2118             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2119         if (BGE_IS_5717_PLUS(sc)) {
2120                 /*
2121                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2122                  * Bits 15-2 : Maximum RX frame size
2123                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2124                  * Bit 0     : Reserved
2125                  */
2126                 rcb->bge_maxlen_flags =
2127                     BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2128         } else if (BGE_IS_5705_PLUS(sc)) {
2129                 /*
2130                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2131                  * Bits 15-2 : Reserved (should be 0)
2132                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2133                  * Bit 0     : Reserved
2134                  */
2135                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2136         } else {
2137                 /*
2138                  * Ring size is always XXX entries
2139                  * Bits 31-16: Maximum RX frame size
2140                  * Bits 15-2 : Reserved (should be 0)
2141                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2142                  * Bit 0     : Reserved
2143                  */
2144                 rcb->bge_maxlen_flags =
2145                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2146         }
2147         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2148             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2149             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2150                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2151         else
2152                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2153         /* Write the standard receive producer ring control block. */
2154         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2155         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2156         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2157         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2158
2159         /* Reset the standard receive producer ring producer index. */
2160         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2161
2162         /*
2163          * Initialize the jumbo RX producer ring control
2164          * block.  We set the 'ring disabled' bit in the
2165          * flags field until we're actually ready to start
2166          * using this ring (i.e. once we set the MTU
2167          * high enough to require it).
2168          */
2169         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2170                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2171                 /* Get the jumbo receive producer ring RCB parameters. */
2172                 rcb->bge_hostaddr.bge_addr_lo =
2173                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2174                 rcb->bge_hostaddr.bge_addr_hi =
2175                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2176                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2177                     sc->bge_cdata.bge_rx_jumbo_ring_map,
2178                     BUS_DMASYNC_PREREAD);
2179                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2180                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2181                 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2182                     sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2183                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
2184                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2185                 else
2186                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2187                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2188                     rcb->bge_hostaddr.bge_addr_hi);
2189                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2190                     rcb->bge_hostaddr.bge_addr_lo);
2191                 /* Program the jumbo receive producer ring RCB parameters. */
2192                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2193                     rcb->bge_maxlen_flags);
2194                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2195                 /* Reset the jumbo receive producer ring producer index. */
2196                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2197         }
2198
2199         /* Disable the mini receive producer ring RCB. */
2200         if (BGE_IS_5700_FAMILY(sc)) {
2201                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2202                 rcb->bge_maxlen_flags =
2203                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2204                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2205                     rcb->bge_maxlen_flags);
2206                 /* Reset the mini receive producer ring producer index. */
2207                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2208         }
2209
2210         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2211         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2212                 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2213                     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2214                     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2215                         CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2216                             (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2217         }
2218         /*
2219          * The BD ring replenish thresholds control how often the
2220          * hardware fetches new BD's from the producer rings in host
2221          * memory.  Setting the value too low on a busy system can
2222          * starve the hardware and recue the throughpout.
2223          *
2224          * Set the BD ring replentish thresholds. The recommended
2225          * values are 1/8th the number of descriptors allocated to
2226          * each ring.
2227          * XXX The 5754 requires a lower threshold, so it might be a
2228          * requirement of all 575x family chips.  The Linux driver sets
2229          * the lower threshold for all 5705 family chips as well, but there
2230          * are reports that it might not need to be so strict.
2231          *
2232          * XXX Linux does some extra fiddling here for the 5906 parts as
2233          * well.
2234          */
2235         if (BGE_IS_5705_PLUS(sc))
2236                 val = 8;
2237         else
2238                 val = BGE_STD_RX_RING_CNT / 8;
2239         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2240         if (BGE_IS_JUMBO_CAPABLE(sc))
2241                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2242                     BGE_JUMBO_RX_RING_CNT/8);
2243         if (BGE_IS_5717_PLUS(sc)) {
2244                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2245                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2246         }
2247
2248         /*
2249          * Disable all send rings by setting the 'ring disabled' bit
2250          * in the flags field of all the TX send ring control blocks,
2251          * located in NIC memory.
2252          */
2253         if (!BGE_IS_5705_PLUS(sc))
2254                 /* 5700 to 5704 had 16 send rings. */
2255                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2256         else if (BGE_IS_57765_PLUS(sc) ||
2257             sc->bge_asicrev == BGE_ASICREV_BCM5762)
2258                 limit = 2;
2259         else if (BGE_IS_5717_PLUS(sc))
2260                 limit = 4;
2261         else
2262                 limit = 1;
2263         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2264         for (i = 0; i < limit; i++) {
2265                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2266                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2267                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2268                 vrcb += sizeof(struct bge_rcb);
2269         }
2270
2271         /* Configure send ring RCB 0 (we use only the first ring) */
2272         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2273         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2274         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2275         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2276         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2277             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2278             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2279                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2280         else
2281                 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2282                     BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2283         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2284             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2285
2286         /*
2287          * Disable all receive return rings by setting the
2288          * 'ring diabled' bit in the flags field of all the receive
2289          * return ring control blocks, located in NIC memory.
2290          */
2291         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2292             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2293             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2294                 /* Should be 17, use 16 until we get an SRAM map. */
2295                 limit = 16;
2296         } else if (!BGE_IS_5705_PLUS(sc))
2297                 limit = BGE_RX_RINGS_MAX;
2298         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2299             sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2300             BGE_IS_57765_PLUS(sc))
2301                 limit = 4;
2302         else
2303                 limit = 1;
2304         /* Disable all receive return rings. */
2305         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2306         for (i = 0; i < limit; i++) {
2307                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2308                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2309                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2310                     BGE_RCB_FLAG_RING_DISABLED);
2311                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2312                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2313                     (i * (sizeof(uint64_t))), 0);
2314                 vrcb += sizeof(struct bge_rcb);
2315         }
2316
2317         /*
2318          * Set up receive return ring 0.  Note that the NIC address
2319          * for RX return rings is 0x0.  The return rings live entirely
2320          * within the host, so the nicaddr field in the RCB isn't used.
2321          */
2322         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2323         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2324         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2325         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2326         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2327         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2328             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2329
2330         /* Set random backoff seed for TX */
2331         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2332             (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2333             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2334             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2335             BGE_TX_BACKOFF_SEED_MASK);
2336
2337         /* Set inter-packet gap */
2338         val = 0x2620;
2339         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2340             sc->bge_asicrev == BGE_ASICREV_BCM5762)
2341                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2342                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2343         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2344
2345         /*
2346          * Specify which ring to use for packets that don't match
2347          * any RX rules.
2348          */
2349         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2350
2351         /*
2352          * Configure number of RX lists. One interrupt distribution
2353          * list, sixteen active lists, one bad frames class.
2354          */
2355         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2356
2357         /* Inialize RX list placement stats mask. */
2358         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2359         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2360
2361         /* Disable host coalescing until we get it set up */
2362         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2363
2364         /* Poll to make sure it's shut down. */
2365         for (i = 0; i < BGE_TIMEOUT; i++) {
2366                 DELAY(10);
2367                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2368                         break;
2369         }
2370
2371         if (i == BGE_TIMEOUT) {
2372                 device_printf(sc->bge_dev,
2373                     "host coalescing engine failed to idle\n");
2374                 return (ENXIO);
2375         }
2376
2377         /* Set up host coalescing defaults */
2378         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2379         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2380         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2381         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2382         if (!(BGE_IS_5705_PLUS(sc))) {
2383                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2384                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2385         }
2386         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2387         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2388
2389         /* Set up address of statistics block */
2390         if (!(BGE_IS_5705_PLUS(sc))) {
2391                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2392                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2393                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2394                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2395                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2396                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2397                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2398         }
2399
2400         /* Set up address of status block */
2401         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2402             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2403         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2404             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2405
2406         /* Set up status block size. */
2407         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2408             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2409                 val = BGE_STATBLKSZ_FULL;
2410                 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2411         } else {
2412                 val = BGE_STATBLKSZ_32BYTE;
2413                 bzero(sc->bge_ldata.bge_status_block, 32);
2414         }
2415         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2416             sc->bge_cdata.bge_status_map,
2417             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2418
2419         /* Turn on host coalescing state machine */
2420         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2421
2422         /* Turn on RX BD completion state machine and enable attentions */
2423         CSR_WRITE_4(sc, BGE_RBDC_MODE,
2424             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2425
2426         /* Turn on RX list placement state machine */
2427         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2428
2429         /* Turn on RX list selector state machine. */
2430         if (!(BGE_IS_5705_PLUS(sc)))
2431                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2432
2433         /* Turn on DMA, clear stats. */
2434         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2435             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2436             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2437             BGE_MACMODE_FRMHDR_DMA_ENB;
2438
2439         if (sc->bge_flags & BGE_FLAG_TBI)
2440                 val |= BGE_PORTMODE_TBI;
2441         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2442                 val |= BGE_PORTMODE_GMII;
2443         else
2444                 val |= BGE_PORTMODE_MII;
2445
2446         /* Allow APE to send/receive frames. */
2447         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2448                 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2449
2450         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2451         DELAY(40);
2452
2453         /* Set misc. local control, enable interrupts on attentions */
2454         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2455
2456 #ifdef notdef
2457         /* Assert GPIO pins for PHY reset */
2458         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2459             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2460         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2461             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2462 #endif
2463
2464         /* Turn on DMA completion state machine */
2465         if (!(BGE_IS_5705_PLUS(sc)))
2466                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2467
2468         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2469
2470         /* Enable host coalescing bug fix. */
2471         if (BGE_IS_5755_PLUS(sc))
2472                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2473
2474         /* Request larger DMA burst size to get better performance. */
2475         if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2476                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2477
2478         /* Turn on write DMA state machine */
2479         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2480         DELAY(40);
2481
2482         /* Turn on read DMA state machine */
2483         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2484
2485         if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2486                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2487
2488         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2489             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2490             sc->bge_asicrev == BGE_ASICREV_BCM57780)
2491                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2492                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2493                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2494         if (sc->bge_flags & BGE_FLAG_PCIE)
2495                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2496         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2497                 val |= BGE_RDMAMODE_TSO4_ENABLE;
2498                 if (sc->bge_flags & BGE_FLAG_TSO3 ||
2499                     sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2500                     sc->bge_asicrev == BGE_ASICREV_BCM57780)
2501                         val |= BGE_RDMAMODE_TSO6_ENABLE;
2502         }
2503
2504         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2505             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2506                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2507                         BGE_RDMAMODE_H2BNC_VLAN_DET;
2508                 /*
2509                  * Allow multiple outstanding read requests from
2510                  * non-LSO read DMA engine.
2511                  */
2512                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2513         }
2514
2515         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2516             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2517             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2518             sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2519             BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2520                 if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2521                         rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2522                 else
2523                         rdmareg = BGE_RDMA_RSRVCTRL;
2524                 dmactl = CSR_READ_4(sc, rdmareg);
2525                 /*
2526                  * Adjust tx margin to prevent TX data corruption and
2527                  * fix internal FIFO overflow.
2528                  */
2529                 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2530                     sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2531                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2532                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2533                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2534                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2535                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2536                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2537                 }
2538                 /*
2539                  * Enable fix for read DMA FIFO overruns.
2540                  * The fix is to limit the number of RX BDs
2541                  * the hardware would fetch at a fime.
2542                  */
2543                 CSR_WRITE_4(sc, rdmareg, dmactl |
2544                     BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2545         }
2546
2547         if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2548                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2549                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2550                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2551                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2552         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2553                 /*
2554                  * Allow 4KB burst length reads for non-LSO frames.
2555                  * Enable 512B burst length reads for buffer descriptors.
2556                  */
2557                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2558                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2559                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2560                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2561         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2562                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2563                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2564                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2565                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2566         }
2567
2568         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2569         DELAY(40);
2570
2571         if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2572                 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2573                         val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2574                         if ((val & 0xFFFF) > BGE_FRAMELEN)
2575                                 break;
2576                         if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2577                                 break;
2578                 }
2579                 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2580                         val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2581                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2582                                 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2583                         else
2584                                 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2585                         CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2586                 }
2587         }
2588
2589         /* Turn on RX data completion state machine */
2590         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2591
2592         /* Turn on RX BD initiator state machine */
2593         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2594
2595         /* Turn on RX data and RX BD initiator state machine */
2596         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2597
2598         /* Turn on Mbuf cluster free state machine */
2599         if (!(BGE_IS_5705_PLUS(sc)))
2600                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2601
2602         /* Turn on send BD completion state machine */
2603         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2604
2605         /* Turn on send data completion state machine */
2606         val = BGE_SDCMODE_ENABLE;
2607         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2608                 val |= BGE_SDCMODE_CDELAY;
2609         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2610
2611         /* Turn on send data initiator state machine */
2612         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2613                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2614                     BGE_SDIMODE_HW_LSO_PRE_DMA);
2615         else
2616                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2617
2618         /* Turn on send BD initiator state machine */
2619         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2620
2621         /* Turn on send BD selector state machine */
2622         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2623
2624         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2625         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2626             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2627
2628         /* ack/clear link change events */
2629         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2630             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2631             BGE_MACSTAT_LINK_CHANGED);
2632         CSR_WRITE_4(sc, BGE_MI_STS, 0);
2633
2634         /*
2635          * Enable attention when the link has changed state for
2636          * devices that use auto polling.
2637          */
2638         if (sc->bge_flags & BGE_FLAG_TBI) {
2639                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2640         } else {
2641                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2642                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2643                         DELAY(80);
2644                 }
2645                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2646                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2647                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2648                             BGE_EVTENB_MI_INTERRUPT);
2649         }
2650
2651         /*
2652          * Clear any pending link state attention.
2653          * Otherwise some link state change events may be lost until attention
2654          * is cleared by bge_intr() -> bge_link_upd() sequence.
2655          * It's not necessary on newer BCM chips - perhaps enabling link
2656          * state change attentions implies clearing pending attention.
2657          */
2658         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2659             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2660             BGE_MACSTAT_LINK_CHANGED);
2661
2662         /* Enable link state change attentions. */
2663         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2664
2665         return (0);
2666 }
2667
2668 static const struct bge_revision *
2669 bge_lookup_rev(uint32_t chipid)
2670 {
2671         const struct bge_revision *br;
2672
2673         for (br = bge_revisions; br->br_name != NULL; br++) {
2674                 if (br->br_chipid == chipid)
2675                         return (br);
2676         }
2677
2678         for (br = bge_majorrevs; br->br_name != NULL; br++) {
2679                 if (br->br_chipid == BGE_ASICREV(chipid))
2680                         return (br);
2681         }
2682
2683         return (NULL);
2684 }
2685
2686 static const struct bge_vendor *
2687 bge_lookup_vendor(uint16_t vid)
2688 {
2689         const struct bge_vendor *v;
2690
2691         for (v = bge_vendors; v->v_name != NULL; v++)
2692                 if (v->v_id == vid)
2693                         return (v);
2694
2695         return (NULL);
2696 }
2697
2698 static uint32_t
2699 bge_chipid(device_t dev)
2700 {
2701         uint32_t id;
2702
2703         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2704             BGE_PCIMISCCTL_ASICREV_SHIFT;
2705         if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2706                 /*
2707                  * Find the ASCI revision.  Different chips use different
2708                  * registers.
2709                  */
2710                 switch (pci_get_device(dev)) {
2711                 case BCOM_DEVICEID_BCM5717C:
2712                         /* 5717 C0 seems to belong to 5720 line. */
2713                         id = BGE_CHIPID_BCM5720_A0;
2714                         break;
2715                 case BCOM_DEVICEID_BCM5717:
2716                 case BCOM_DEVICEID_BCM5718:
2717                 case BCOM_DEVICEID_BCM5719:
2718                 case BCOM_DEVICEID_BCM5720:
2719                 case BCOM_DEVICEID_BCM5725:
2720                 case BCOM_DEVICEID_BCM5727:
2721                 case BCOM_DEVICEID_BCM5762:
2722                 case BCOM_DEVICEID_BCM57764:
2723                 case BCOM_DEVICEID_BCM57767:
2724                 case BCOM_DEVICEID_BCM57787:
2725                         id = pci_read_config(dev,
2726                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
2727                         break;
2728                 case BCOM_DEVICEID_BCM57761:
2729                 case BCOM_DEVICEID_BCM57762:
2730                 case BCOM_DEVICEID_BCM57765:
2731                 case BCOM_DEVICEID_BCM57766:
2732                 case BCOM_DEVICEID_BCM57781:
2733                 case BCOM_DEVICEID_BCM57782:
2734                 case BCOM_DEVICEID_BCM57785:
2735                 case BCOM_DEVICEID_BCM57786:
2736                 case BCOM_DEVICEID_BCM57791:
2737                 case BCOM_DEVICEID_BCM57795:
2738                         id = pci_read_config(dev,
2739                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
2740                         break;
2741                 default:
2742                         id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2743                 }
2744         }
2745         return (id);
2746 }
2747
2748 /*
2749  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2750  * against our list and return its name if we find a match.
2751  *
2752  * Note that since the Broadcom controller contains VPD support, we
2753  * try to get the device name string from the controller itself instead
2754  * of the compiled-in string. It guarantees we'll always announce the
2755  * right product name. We fall back to the compiled-in string when
2756  * VPD is unavailable or corrupt.
2757  */
2758 static int
2759 bge_probe(device_t dev)
2760 {
2761         char buf[96];
2762         char model[64];
2763         const struct bge_revision *br;
2764         const char *pname;
2765         struct bge_softc *sc;
2766         const struct bge_type *t = bge_devs;
2767         const struct bge_vendor *v;
2768         uint32_t id;
2769         uint16_t did, vid;
2770
2771         sc = device_get_softc(dev);
2772         sc->bge_dev = dev;
2773         vid = pci_get_vendor(dev);
2774         did = pci_get_device(dev);
2775         while(t->bge_vid != 0) {
2776                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
2777                         id = bge_chipid(dev);
2778                         br = bge_lookup_rev(id);
2779                         if (bge_has_eaddr(sc) &&
2780                             pci_get_vpd_ident(dev, &pname) == 0)
2781                                 snprintf(model, sizeof(model), "%s", pname);
2782                         else {
2783                                 v = bge_lookup_vendor(vid);
2784                                 snprintf(model, sizeof(model), "%s %s",
2785                                     v != NULL ? v->v_name : "Unknown",
2786                                     br != NULL ? br->br_name :
2787                                     "NetXtreme/NetLink Ethernet Controller");
2788                         }
2789                         snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2790                             model, br != NULL ? "" : "unknown ", id);
2791                         device_set_desc_copy(dev, buf);
2792                         return (BUS_PROBE_DEFAULT);
2793                 }
2794                 t++;
2795         }
2796
2797         return (ENXIO);
2798 }
2799
2800 static void
2801 bge_dma_free(struct bge_softc *sc)
2802 {
2803         int i;
2804
2805         /* Destroy DMA maps for RX buffers. */
2806         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2807                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
2808                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2809                             sc->bge_cdata.bge_rx_std_dmamap[i]);
2810         }
2811         if (sc->bge_cdata.bge_rx_std_sparemap)
2812                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2813                     sc->bge_cdata.bge_rx_std_sparemap);
2814
2815         /* Destroy DMA maps for jumbo RX buffers. */
2816         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2817                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2818                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2819                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2820         }
2821         if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2822                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2823                     sc->bge_cdata.bge_rx_jumbo_sparemap);
2824
2825         /* Destroy DMA maps for TX buffers. */
2826         for (i = 0; i < BGE_TX_RING_CNT; i++) {
2827                 if (sc->bge_cdata.bge_tx_dmamap[i])
2828                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2829                             sc->bge_cdata.bge_tx_dmamap[i]);
2830         }
2831
2832         if (sc->bge_cdata.bge_rx_mtag)
2833                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2834         if (sc->bge_cdata.bge_mtag_jumbo)
2835                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2836         if (sc->bge_cdata.bge_tx_mtag)
2837                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2838
2839         /* Destroy standard RX ring. */
2840         if (sc->bge_ldata.bge_rx_std_ring_paddr)
2841                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2842                     sc->bge_cdata.bge_rx_std_ring_map);
2843         if (sc->bge_ldata.bge_rx_std_ring)
2844                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2845                     sc->bge_ldata.bge_rx_std_ring,
2846                     sc->bge_cdata.bge_rx_std_ring_map);
2847
2848         if (sc->bge_cdata.bge_rx_std_ring_tag)
2849                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2850
2851         /* Destroy jumbo RX ring. */
2852         if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2853                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2854                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2855
2856         if (sc->bge_ldata.bge_rx_jumbo_ring)
2857                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2858                     sc->bge_ldata.bge_rx_jumbo_ring,
2859                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2860
2861         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2862                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2863
2864         /* Destroy RX return ring. */
2865         if (sc->bge_ldata.bge_rx_return_ring_paddr)
2866                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2867                     sc->bge_cdata.bge_rx_return_ring_map);
2868
2869         if (sc->bge_ldata.bge_rx_return_ring)
2870                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2871                     sc->bge_ldata.bge_rx_return_ring,
2872                     sc->bge_cdata.bge_rx_return_ring_map);
2873
2874         if (sc->bge_cdata.bge_rx_return_ring_tag)
2875                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2876
2877         /* Destroy TX ring. */
2878         if (sc->bge_ldata.bge_tx_ring_paddr)
2879                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2880                     sc->bge_cdata.bge_tx_ring_map);
2881
2882         if (sc->bge_ldata.bge_tx_ring)
2883                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2884                     sc->bge_ldata.bge_tx_ring,
2885                     sc->bge_cdata.bge_tx_ring_map);
2886
2887         if (sc->bge_cdata.bge_tx_ring_tag)
2888                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2889
2890         /* Destroy status block. */
2891         if (sc->bge_ldata.bge_status_block_paddr)
2892                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2893                     sc->bge_cdata.bge_status_map);
2894
2895         if (sc->bge_ldata.bge_status_block)
2896                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2897                     sc->bge_ldata.bge_status_block,
2898                     sc->bge_cdata.bge_status_map);
2899
2900         if (sc->bge_cdata.bge_status_tag)
2901                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2902
2903         /* Destroy statistics block. */
2904         if (sc->bge_ldata.bge_stats_paddr)
2905                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2906                     sc->bge_cdata.bge_stats_map);
2907
2908         if (sc->bge_ldata.bge_stats)
2909                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2910                     sc->bge_ldata.bge_stats,
2911                     sc->bge_cdata.bge_stats_map);
2912
2913         if (sc->bge_cdata.bge_stats_tag)
2914                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2915
2916         if (sc->bge_cdata.bge_buffer_tag)
2917                 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2918
2919         /* Destroy the parent tag. */
2920         if (sc->bge_cdata.bge_parent_tag)
2921                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2922 }
2923
2924 static int
2925 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2926     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2927     bus_addr_t *paddr, const char *msg)
2928 {
2929         struct bge_dmamap_arg ctx;
2930         int error;
2931
2932         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2933             alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2934             NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2935         if (error != 0) {
2936                 device_printf(sc->bge_dev,
2937                     "could not create %s dma tag\n", msg);
2938                 return (ENOMEM);
2939         }
2940         /* Allocate DMA'able memory for ring. */
2941         error = bus_dmamem_alloc(*tag, (void **)ring,
2942             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2943         if (error != 0) {
2944                 device_printf(sc->bge_dev,
2945                     "could not allocate DMA'able memory for %s\n", msg);
2946                 return (ENOMEM);
2947         }
2948         /* Load the address of the ring. */
2949         ctx.bge_busaddr = 0;
2950         error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2951             &ctx, BUS_DMA_NOWAIT);
2952         if (error != 0) {
2953                 device_printf(sc->bge_dev,
2954                     "could not load DMA'able memory for %s\n", msg);
2955                 return (ENOMEM);
2956         }
2957         *paddr = ctx.bge_busaddr;
2958         return (0);
2959 }
2960
2961 static int
2962 bge_dma_alloc(struct bge_softc *sc)
2963 {
2964         bus_addr_t lowaddr;
2965         bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2966         int i, error;
2967
2968         lowaddr = BUS_SPACE_MAXADDR;
2969         if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2970                 lowaddr = BGE_DMA_MAXADDR;
2971         /*
2972          * Allocate the parent bus DMA tag appropriate for PCI.
2973          */
2974         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2975             1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2976             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2977             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2978         if (error != 0) {
2979                 device_printf(sc->bge_dev,
2980                     "could not allocate parent dma tag\n");
2981                 return (ENOMEM);
2982         }
2983
2984         /* Create tag for standard RX ring. */
2985         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2986             &sc->bge_cdata.bge_rx_std_ring_tag,
2987             (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2988             &sc->bge_cdata.bge_rx_std_ring_map,
2989             &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2990         if (error)
2991                 return (error);
2992
2993         /* Create tag for RX return ring. */
2994         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2995             &sc->bge_cdata.bge_rx_return_ring_tag,
2996             (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2997             &sc->bge_cdata.bge_rx_return_ring_map,
2998             &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2999         if (error)
3000                 return (error);
3001
3002         /* Create tag for TX ring. */
3003         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
3004             &sc->bge_cdata.bge_tx_ring_tag,
3005             (uint8_t **)&sc->bge_ldata.bge_tx_ring,
3006             &sc->bge_cdata.bge_tx_ring_map,
3007             &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
3008         if (error)
3009                 return (error);
3010
3011         /*
3012          * Create tag for status block.
3013          * Because we only use single Tx/Rx/Rx return ring, use
3014          * minimum status block size except BCM5700 AX/BX which
3015          * seems to want to see full status block size regardless
3016          * of configured number of ring.
3017          */
3018         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3019             sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3020                 sbsz = BGE_STATUS_BLK_SZ;
3021         else
3022                 sbsz = 32;
3023         error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3024             &sc->bge_cdata.bge_status_tag,
3025             (uint8_t **)&sc->bge_ldata.bge_status_block,
3026             &sc->bge_cdata.bge_status_map,
3027             &sc->bge_ldata.bge_status_block_paddr, "status block");
3028         if (error)
3029                 return (error);
3030
3031         /* Create tag for statistics block. */
3032         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3033             &sc->bge_cdata.bge_stats_tag,
3034             (uint8_t **)&sc->bge_ldata.bge_stats,
3035             &sc->bge_cdata.bge_stats_map,
3036             &sc->bge_ldata.bge_stats_paddr, "statistics block");
3037         if (error)
3038                 return (error);
3039
3040         /* Create tag for jumbo RX ring. */
3041         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3042                 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3043                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3044                     (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3045                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
3046                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3047                 if (error)
3048                         return (error);
3049         }
3050
3051         /* Create parent tag for buffers. */
3052         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3053                 /*
3054                  * XXX
3055                  * watchdog timeout issue was observed on BCM5704 which
3056                  * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3057                  * Both limiting DMA address space to 32bits and flushing
3058                  * mailbox write seem to address the issue.
3059                  */
3060                 if (sc->bge_pcixcap != 0)
3061                         lowaddr = BUS_SPACE_MAXADDR_32BIT;
3062         }
3063         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3064             BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3065             BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3066             &sc->bge_cdata.bge_buffer_tag);
3067         if (error != 0) {
3068                 device_printf(sc->bge_dev,
3069                     "could not allocate buffer dma tag\n");
3070                 return (ENOMEM);
3071         }
3072         /* Create tag for Tx mbufs. */
3073         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3074                 txsegsz = BGE_TSOSEG_SZ;
3075                 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3076         } else {
3077                 txsegsz = MCLBYTES;
3078                 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3079         }
3080         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3081             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3082             txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3083             &sc->bge_cdata.bge_tx_mtag);
3084
3085         if (error) {
3086                 device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3087                 return (ENOMEM);
3088         }
3089
3090         /* Create tag for Rx mbufs. */
3091         if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3092                 rxmaxsegsz = MJUM9BYTES;
3093         else
3094                 rxmaxsegsz = MCLBYTES;
3095         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3096             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3097             rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3098
3099         if (error) {
3100                 device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3101                 return (ENOMEM);
3102         }
3103
3104         /* Create DMA maps for RX buffers. */
3105         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3106             &sc->bge_cdata.bge_rx_std_sparemap);
3107         if (error) {
3108                 device_printf(sc->bge_dev,
3109                     "can't create spare DMA map for RX\n");
3110                 return (ENOMEM);
3111         }
3112         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3113                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3114                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
3115                 if (error) {
3116                         device_printf(sc->bge_dev,
3117                             "can't create DMA map for RX\n");
3118                         return (ENOMEM);
3119                 }
3120         }
3121
3122         /* Create DMA maps for TX buffers. */
3123         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3124                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3125                             &sc->bge_cdata.bge_tx_dmamap[i]);
3126                 if (error) {
3127                         device_printf(sc->bge_dev,
3128                             "can't create DMA map for TX\n");
3129                         return (ENOMEM);
3130                 }
3131         }
3132
3133         /* Create tags for jumbo RX buffers. */
3134         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3135                 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3136                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3137                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3138                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3139                 if (error) {
3140                         device_printf(sc->bge_dev,
3141                             "could not allocate jumbo dma tag\n");
3142                         return (ENOMEM);
3143                 }
3144                 /* Create DMA maps for jumbo RX buffers. */
3145                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3146                     0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3147                 if (error) {
3148                         device_printf(sc->bge_dev,
3149                             "can't create spare DMA map for jumbo RX\n");
3150                         return (ENOMEM);
3151                 }
3152                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3153                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3154                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3155                         if (error) {
3156                                 device_printf(sc->bge_dev,
3157                                     "can't create DMA map for jumbo RX\n");
3158                                 return (ENOMEM);
3159                         }
3160                 }
3161         }
3162
3163         return (0);
3164 }
3165
3166 /*
3167  * Return true if this device has more than one port.
3168  */
3169 static int
3170 bge_has_multiple_ports(struct bge_softc *sc)
3171 {
3172         device_t dev = sc->bge_dev;
3173         u_int b, d, f, fscan, s;
3174
3175         d = pci_get_domain(dev);
3176         b = pci_get_bus(dev);
3177         s = pci_get_slot(dev);
3178         f = pci_get_function(dev);
3179         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3180                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3181                         return (1);
3182         return (0);
3183 }
3184
3185 /*
3186  * Return true if MSI can be used with this device.
3187  */
3188 static int
3189 bge_can_use_msi(struct bge_softc *sc)
3190 {
3191         int can_use_msi = 0;
3192
3193         if (sc->bge_msi == 0)
3194                 return (0);
3195
3196         /* Disable MSI for polling(4). */
3197 #ifdef DEVICE_POLLING
3198         return (0);
3199 #endif
3200         switch (sc->bge_asicrev) {
3201         case BGE_ASICREV_BCM5714_A0:
3202         case BGE_ASICREV_BCM5714:
3203                 /*
3204                  * Apparently, MSI doesn't work when these chips are
3205                  * configured in single-port mode.
3206                  */
3207                 if (bge_has_multiple_ports(sc))
3208                         can_use_msi = 1;
3209                 break;
3210         case BGE_ASICREV_BCM5750:
3211                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3212                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3213                         can_use_msi = 1;
3214                 break;
3215         case BGE_ASICREV_BCM5784:
3216                 /*
3217                  * Prevent infinite "watchdog timeout" errors
3218                  * in some MacBook Pro and make it work out-of-the-box.
3219                  */
3220                 if (sc->bge_chiprev == BGE_CHIPREV_5784_AX)
3221                         break;
3222                 /* FALLTHROUGH */
3223         default:
3224                 if (BGE_IS_575X_PLUS(sc))
3225                         can_use_msi = 1;
3226         }
3227         return (can_use_msi);
3228 }
3229
3230 static int
3231 bge_mbox_reorder(struct bge_softc *sc)
3232 {
3233         /* Lists of PCI bridges that are known to reorder mailbox writes. */
3234         static const struct mbox_reorder {
3235                 const uint16_t vendor;
3236                 const uint16_t device;
3237                 const char *desc;
3238         } mbox_reorder_lists[] = {
3239                 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3240         };
3241         devclass_t pci, pcib;
3242         device_t bus, dev;
3243         int i;
3244
3245         pci = devclass_find("pci");
3246         pcib = devclass_find("pcib");
3247         dev = sc->bge_dev;
3248         bus = device_get_parent(dev);
3249         for (;;) {
3250                 dev = device_get_parent(bus);
3251                 bus = device_get_parent(dev);
3252                 if (device_get_devclass(dev) != pcib)
3253                         break;
3254                 for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3255                         if (pci_get_vendor(dev) ==
3256                             mbox_reorder_lists[i].vendor &&
3257                             pci_get_device(dev) ==
3258                             mbox_reorder_lists[i].device) {
3259                                 device_printf(sc->bge_dev,
3260                                     "enabling MBOX workaround for %s\n",
3261                                     mbox_reorder_lists[i].desc);
3262                                 return (1);
3263                         }
3264                 }
3265                 if (device_get_devclass(bus) != pci)
3266                         break;
3267         }
3268         return (0);
3269 }
3270
3271 static void
3272 bge_devinfo(struct bge_softc *sc)
3273 {
3274         uint32_t cfg, clk;
3275
3276         device_printf(sc->bge_dev,
3277             "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3278             sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3279         if (sc->bge_flags & BGE_FLAG_PCIE)
3280                 printf("PCI-E\n");
3281         else if (sc->bge_flags & BGE_FLAG_PCIX) {
3282                 printf("PCI-X ");
3283                 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3284                 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3285                         clk = 133;
3286                 else {
3287                         clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3288                         switch (clk) {
3289                         case 0:
3290                                 clk = 33;
3291                                 break;
3292                         case 2:
3293                                 clk = 50;
3294                                 break;
3295                         case 4:
3296                                 clk = 66;
3297                                 break;
3298                         case 6:
3299                                 clk = 100;
3300                                 break;
3301                         case 7:
3302                                 clk = 133;
3303                                 break;
3304                         }
3305                 }
3306                 printf("%u MHz\n", clk);
3307         } else {
3308                 if (sc->bge_pcixcap != 0)
3309                         printf("PCI on PCI-X ");
3310                 else
3311                         printf("PCI ");
3312                 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3313                 if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3314                         clk = 66;
3315                 else
3316                         clk = 33;
3317                 if (cfg & BGE_PCISTATE_32BIT_BUS)
3318                         printf("%u MHz; 32bit\n", clk);
3319                 else
3320                         printf("%u MHz; 64bit\n", clk);
3321         }
3322 }
3323
3324 static int
3325 bge_attach(device_t dev)
3326 {
3327         if_t ifp;
3328         struct bge_softc *sc;
3329         uint32_t hwcfg = 0, misccfg, pcistate;
3330         u_char eaddr[ETHER_ADDR_LEN];
3331         int capmask, error, reg, rid, trys;
3332
3333         sc = device_get_softc(dev);
3334         sc->bge_dev = dev;
3335
3336         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3337         TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3338         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3339
3340         pci_enable_busmaster(dev);
3341
3342         /*
3343          * Allocate control/status registers.
3344          */
3345         rid = PCIR_BAR(0);
3346         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3347             RF_ACTIVE);
3348
3349         if (sc->bge_res == NULL) {
3350                 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3351                 error = ENXIO;
3352                 goto fail;
3353         }
3354
3355         /* Save various chip information. */
3356         sc->bge_func_addr = pci_get_function(dev);
3357         sc->bge_chipid = bge_chipid(dev);
3358         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3359         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3360
3361         /* Set default PHY address. */
3362         sc->bge_phy_addr = 1;
3363          /*
3364           * PHY address mapping for various devices.
3365           *
3366           *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3367           * ---------+-------+-------+-------+-------+
3368           * BCM57XX  |   1   |   X   |   X   |   X   |
3369           * BCM5704  |   1   |   X   |   1   |   X   |
3370           * BCM5717  |   1   |   8   |   2   |   9   |
3371           * BCM5719  |   1   |   8   |   2   |   9   |
3372           * BCM5720  |   1   |   8   |   2   |   9   |
3373           *
3374           *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3375           * ---------+-------+-------+-------+-------+
3376           * BCM57XX  |   X   |   X   |   X   |   X   |
3377           * BCM5704  |   X   |   X   |   X   |   X   |
3378           * BCM5717  |   X   |   X   |   X   |   X   |
3379           * BCM5719  |   3   |   10  |   4   |   11  |
3380           * BCM5720  |   X   |   X   |   X   |   X   |
3381           *
3382           * Other addresses may respond but they are not
3383           * IEEE compliant PHYs and should be ignored.
3384           */
3385         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3386             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3387             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3388                 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3389                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3390                             BGE_SGDIGSTS_IS_SERDES)
3391                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3392                         else
3393                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3394                 } else {
3395                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3396                             BGE_CPMU_PHY_STRAP_IS_SERDES)
3397                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3398                         else
3399                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3400                 }
3401         }
3402
3403         if (bge_has_eaddr(sc))
3404                 sc->bge_flags |= BGE_FLAG_EADDR;
3405
3406         /* Save chipset family. */
3407         switch (sc->bge_asicrev) {
3408         case BGE_ASICREV_BCM5762:
3409         case BGE_ASICREV_BCM57765:
3410         case BGE_ASICREV_BCM57766:
3411                 sc->bge_flags |= BGE_FLAG_57765_PLUS;
3412                 /* FALLTHROUGH */
3413         case BGE_ASICREV_BCM5717:
3414         case BGE_ASICREV_BCM5719:
3415         case BGE_ASICREV_BCM5720:
3416                 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3417                     BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3418                     BGE_FLAG_JUMBO_FRAME;
3419                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3420                     sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3421                         /*
3422                          * Enable work around for DMA engine miscalculation
3423                          * of TXMBUF available space.
3424                          */
3425                         sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3426                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3427                             sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3428                                 /* Jumbo frame on BCM5719 A0 does not work. */
3429                                 sc->bge_flags &= ~BGE_FLAG_JUMBO;
3430                         }
3431                 }
3432                 break;
3433         case BGE_ASICREV_BCM5755:
3434         case BGE_ASICREV_BCM5761:
3435         case BGE_ASICREV_BCM5784:
3436         case BGE_ASICREV_BCM5785:
3437         case BGE_ASICREV_BCM5787:
3438         case BGE_ASICREV_BCM57780:
3439                 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3440                     BGE_FLAG_5705_PLUS;
3441                 break;
3442         case BGE_ASICREV_BCM5700:
3443         case BGE_ASICREV_BCM5701:
3444         case BGE_ASICREV_BCM5703:
3445         case BGE_ASICREV_BCM5704:
3446                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3447                 break;
3448         case BGE_ASICREV_BCM5714_A0:
3449         case BGE_ASICREV_BCM5780:
3450         case BGE_ASICREV_BCM5714:
3451                 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3452                 /* FALLTHROUGH */
3453         case BGE_ASICREV_BCM5750:
3454         case BGE_ASICREV_BCM5752:
3455         case BGE_ASICREV_BCM5906:
3456                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
3457                 /* FALLTHROUGH */
3458         case BGE_ASICREV_BCM5705:
3459                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
3460                 break;
3461         }
3462
3463         /* Identify chips with APE processor. */
3464         switch (sc->bge_asicrev) {
3465         case BGE_ASICREV_BCM5717:
3466         case BGE_ASICREV_BCM5719:
3467         case BGE_ASICREV_BCM5720:
3468         case BGE_ASICREV_BCM5761:
3469         case BGE_ASICREV_BCM5762:
3470                 sc->bge_flags |= BGE_FLAG_APE;
3471                 break;
3472         }
3473
3474         /* Chips with APE need BAR2 access for APE registers/memory. */
3475         if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3476                 rid = PCIR_BAR(2);
3477                 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3478                     RF_ACTIVE);
3479                 if (sc->bge_res2 == NULL) {
3480                         device_printf (sc->bge_dev,
3481                             "couldn't map BAR2 memory\n");
3482                         error = ENXIO;
3483                         goto fail;
3484                 }
3485
3486                 /* Enable APE register/memory access by host driver. */
3487                 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3488                 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3489                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3490                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3491                 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3492
3493                 bge_ape_lock_init(sc);
3494                 bge_ape_read_fw_ver(sc);
3495         }
3496
3497         /* Add SYSCTLs, requires the chipset family to be set. */
3498         bge_add_sysctls(sc);
3499
3500         /* Identify the chips that use an CPMU. */
3501         if (BGE_IS_5717_PLUS(sc) ||
3502             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3503             sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3504             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3505             sc->bge_asicrev == BGE_ASICREV_BCM57780)
3506                 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3507         if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3508                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3509         else
3510                 sc->bge_mi_mode = BGE_MIMODE_BASE;
3511         /* Enable auto polling for BCM570[0-5]. */
3512         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3513                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3514
3515         /*
3516          * All Broadcom controllers have 4GB boundary DMA bug.
3517          * Whenever an address crosses a multiple of the 4GB boundary
3518          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3519          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3520          * state machine will lockup and cause the device to hang.
3521          */
3522         sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3523
3524         /* BCM5755 or higher and BCM5906 have short DMA bug. */
3525         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3526                 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3527
3528         /*
3529          * BCM5719 cannot handle DMA requests for DMA segments that
3530          * have larger than 4KB in size.  However the maximum DMA
3531          * segment size created in DMA tag is 4KB for TSO, so we
3532          * wouldn't encounter the issue here.
3533          */
3534         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3535                 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3536
3537         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3538         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3539                 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3540                     misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3541                         sc->bge_flags |= BGE_FLAG_5788;
3542         }
3543
3544         capmask = BMSR_DEFCAPMASK;
3545         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3546             (misccfg == 0x4000 || misccfg == 0x8000)) ||
3547             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3548             pci_get_vendor(dev) == BCOM_VENDORID &&
3549             (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3550             pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3551             pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3552             (pci_get_vendor(dev) == BCOM_VENDORID &&
3553             (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3554             pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3555             pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3556             pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3557             pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3558             pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3559             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3560                 /* These chips are 10/100 only. */
3561                 capmask &= ~BMSR_EXTSTAT;
3562                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3563         }
3564
3565         /*
3566          * Some controllers seem to require a special firmware to use
3567          * TSO. But the firmware is not available to FreeBSD and Linux
3568          * claims that the TSO performed by the firmware is slower than
3569          * hardware based TSO. Moreover the firmware based TSO has one
3570          * known bug which can't handle TSO if Ethernet header + IP/TCP
3571          * header is greater than 80 bytes. A workaround for the TSO
3572          * bug exist but it seems it's too expensive than not using
3573          * TSO at all. Some hardwares also have the TSO bug so limit
3574          * the TSO to the controllers that are not affected TSO issues
3575          * (e.g. 5755 or higher).
3576          */
3577         if (BGE_IS_5717_PLUS(sc)) {
3578                 /* BCM5717 requires different TSO configuration. */
3579                 sc->bge_flags |= BGE_FLAG_TSO3;
3580                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3581                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3582                         /* TSO on BCM5719 A0 does not work. */
3583                         sc->bge_flags &= ~BGE_FLAG_TSO3;
3584                 }
3585         } else if (BGE_IS_5755_PLUS(sc)) {
3586                 /*
3587                  * BCM5754 and BCM5787 shares the same ASIC id so
3588                  * explicit device id check is required.
3589                  * Due to unknown reason TSO does not work on BCM5755M.
3590                  */
3591                 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3592                     pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3593                     pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3594                         sc->bge_flags |= BGE_FLAG_TSO;
3595         }
3596
3597         /*
3598          * Check if this is a PCI-X or PCI Express device.
3599          */
3600         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3601                 /*
3602                  * Found a PCI Express capabilities register, this
3603                  * must be a PCI Express device.
3604                  */
3605                 sc->bge_flags |= BGE_FLAG_PCIE;
3606                 sc->bge_expcap = reg;
3607                 /* Extract supported maximum payload size. */
3608                 sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3609                     PCIER_DEVICE_CAP, 2);
3610                 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3611                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3612                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
3613                         sc->bge_expmrq = 2048;
3614                 else
3615                         sc->bge_expmrq = 4096;
3616                 pci_set_max_read_req(dev, sc->bge_expmrq);
3617         } else {
3618                 /*
3619                  * Check if the device is in PCI-X Mode.
3620                  * (This bit is not valid on PCI Express controllers.)
3621                  */
3622                 if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3623                         sc->bge_pcixcap = reg;
3624                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3625                     BGE_PCISTATE_PCI_BUSMODE) == 0)
3626                         sc->bge_flags |= BGE_FLAG_PCIX;
3627         }
3628
3629         /*
3630          * The 40bit DMA bug applies to the 5714/5715 controllers and is
3631          * not actually a MAC controller bug but an issue with the embedded
3632          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3633          */
3634         if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3635                 sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3636         /*
3637          * Some PCI-X bridges are known to trigger write reordering to
3638          * the mailbox registers. Typical phenomena is watchdog timeouts
3639          * caused by out-of-order TX completions.  Enable workaround for
3640          * PCI-X devices that live behind these bridges.
3641          * Note, PCI-X controllers can run in PCI mode so we can't use
3642          * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3643          */
3644         if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3645                 sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3646         /*
3647          * Allocate the interrupt, using MSI if possible.  These devices
3648          * support 8 MSI messages, but only the first one is used in
3649          * normal operation.
3650          */
3651         rid = 0;
3652         if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3653                 sc->bge_msicap = reg;
3654                 reg = 1;
3655                 if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3656                         rid = 1;
3657                         sc->bge_flags |= BGE_FLAG_MSI;
3658                 }
3659         }
3660
3661         /*
3662          * All controllers except BCM5700 supports tagged status but
3663          * we use tagged status only for MSI case on BCM5717. Otherwise
3664          * MSI on BCM5717 does not work.
3665          */
3666 #ifndef DEVICE_POLLING
3667         if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3668                 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3669 #endif
3670
3671         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3672             RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3673
3674         if (sc->bge_irq == NULL) {
3675                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
3676                 error = ENXIO;
3677                 goto fail;
3678         }
3679
3680         bge_devinfo(sc);
3681
3682         sc->bge_asf_mode = 0;
3683         /* No ASF if APE present. */
3684         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3685                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3686                     BGE_SRAM_DATA_SIG_MAGIC)) {
3687                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3688                             BGE_HWCFG_ASF) {
3689                                 sc->bge_asf_mode |= ASF_ENABLE;
3690                                 sc->bge_asf_mode |= ASF_STACKUP;
3691                                 if (BGE_IS_575X_PLUS(sc))
3692                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3693                         }
3694                 }
3695         }
3696
3697         bge_stop_fw(sc);
3698         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3699         if (bge_reset(sc)) {
3700                 device_printf(sc->bge_dev, "chip reset failed\n");
3701                 error = ENXIO;
3702                 goto fail;
3703         }
3704
3705         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3706         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3707
3708         if (bge_chipinit(sc)) {
3709                 device_printf(sc->bge_dev, "chip initialization failed\n");
3710                 error = ENXIO;
3711                 goto fail;
3712         }
3713
3714         error = bge_get_eaddr(sc, eaddr);
3715         if (error) {
3716                 device_printf(sc->bge_dev,
3717                     "failed to read station address\n");
3718                 error = ENXIO;
3719                 goto fail;
3720         }
3721
3722         /* 5705 limits RX return ring to 512 entries. */
3723         if (BGE_IS_5717_PLUS(sc))
3724                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3725         else if (BGE_IS_5705_PLUS(sc))
3726                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3727         else
3728                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3729
3730         if (bge_dma_alloc(sc)) {
3731                 device_printf(sc->bge_dev,
3732                     "failed to allocate DMA resources\n");
3733                 error = ENXIO;
3734                 goto fail;
3735         }
3736
3737         /* Set default tuneable values. */
3738         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3739         sc->bge_rx_coal_ticks = 150;
3740         sc->bge_tx_coal_ticks = 150;
3741         sc->bge_rx_max_coal_bds = 10;
3742         sc->bge_tx_max_coal_bds = 10;
3743
3744         /* Initialize checksum features to use. */
3745         sc->bge_csum_features = BGE_CSUM_FEATURES;
3746         if (sc->bge_forced_udpcsum != 0)
3747                 sc->bge_csum_features |= CSUM_UDP;
3748
3749         /* Set up ifnet structure */
3750         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3751         if (ifp == NULL) {
3752                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
3753                 error = ENXIO;
3754                 goto fail;
3755         }
3756         if_setsoftc(ifp, sc);
3757         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3758         if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
3759         if_setioctlfn(ifp, bge_ioctl);
3760         if_setstartfn(ifp, bge_start);
3761         if_setinitfn(ifp, bge_init);
3762         if_setgetcounterfn(ifp, bge_get_counter);
3763         if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
3764         if_setsendqready(ifp);
3765         if_sethwassist(ifp, sc->bge_csum_features);
3766         if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3767             IFCAP_VLAN_MTU);
3768         if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3769                 if_sethwassistbits(ifp, CSUM_TSO, 0);
3770                 if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
3771         }
3772 #ifdef IFCAP_VLAN_HWCSUM
3773         if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
3774 #endif
3775         if_setcapenable(ifp, if_getcapabilities(ifp));
3776 #ifdef DEVICE_POLLING
3777         if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
3778 #endif
3779
3780         /*
3781          * 5700 B0 chips do not support checksumming correctly due
3782          * to hardware bugs.
3783          */
3784         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3785                 if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
3786                 if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
3787                 if_sethwassist(ifp, 0);
3788         }
3789
3790         /*
3791          * Figure out what sort of media we have by checking the
3792          * hardware config word in the first 32k of NIC internal memory,
3793          * or fall back to examining the EEPROM if necessary.
3794          * Note: on some BCM5700 cards, this value appears to be unset.
3795          * If that's the case, we have to rely on identifying the NIC
3796          * by its PCI subsystem ID, as we do below for the SysKonnect
3797          * SK-9D41.
3798          */
3799         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3800                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3801         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3802             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3803                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3804                     sizeof(hwcfg))) {
3805                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
3806                         error = ENXIO;
3807                         goto fail;
3808                 }
3809                 hwcfg = ntohl(hwcfg);
3810         }
3811
3812         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3813         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3814             SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3815                 if (BGE_IS_5705_PLUS(sc)) {
3816                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
3817                         sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3818                 } else
3819                         sc->bge_flags |= BGE_FLAG_TBI;
3820         }
3821
3822         /* Set various PHY bug flags. */
3823         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3824             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3825                 sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3826         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3827             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3828                 sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3829         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3830                 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3831         if (pci_get_subvendor(dev) == DELL_VENDORID)
3832                 sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3833         if ((BGE_IS_5705_PLUS(sc)) &&
3834             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3835             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3836             sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3837             !BGE_IS_5717_PLUS(sc)) {
3838                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3839                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3840                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3841                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3842                         if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3843                             pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3844                                 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3845                         if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3846                                 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3847                 } else
3848                         sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3849         }
3850
3851         /*
3852          * Don't enable Ethernet@WireSpeed for the 5700 or the
3853          * 5705 A0 and A1 chips.
3854          */
3855         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3856             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3857             (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3858             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3859                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3860
3861         if (sc->bge_flags & BGE_FLAG_TBI) {
3862                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3863                     bge_ifmedia_sts);
3864                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3865                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3866                     0, NULL);
3867                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3868                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3869                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3870         } else {
3871                 /*
3872                  * Do transceiver setup and tell the firmware the
3873                  * driver is down so we can try to get access the
3874                  * probe if ASF is running.  Retry a couple of times
3875                  * if we get a conflict with the ASF firmware accessing
3876                  * the PHY.
3877                  */
3878                 trys = 0;
3879                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3880 again:
3881                 bge_asf_driver_up(sc);
3882
3883                 error = mii_attach(dev, &sc->bge_miibus, ifp, 
3884                     (ifm_change_cb_t)bge_ifmedia_upd,
3885                     (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr, 
3886                     MII_OFFSET_ANY, MIIF_DOPAUSE);
3887                 if (error != 0) {
3888                         if (trys++ < 4) {
3889                                 device_printf(sc->bge_dev, "Try again\n");
3890                                 bge_miibus_writereg(sc->bge_dev,
3891                                     sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3892                                 goto again;
3893                         }
3894                         device_printf(sc->bge_dev, "attaching PHYs failed\n");
3895                         goto fail;
3896                 }
3897
3898                 /*
3899                  * Now tell the firmware we are going up after probing the PHY
3900                  */
3901                 if (sc->bge_asf_mode & ASF_STACKUP)
3902                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3903         }
3904
3905         /*
3906          * When using the BCM5701 in PCI-X mode, data corruption has
3907          * been observed in the first few bytes of some received packets.
3908          * Aligning the packet buffer in memory eliminates the corruption.
3909          * Unfortunately, this misaligns the packet payloads.  On platforms
3910          * which do not support unaligned accesses, we will realign the
3911          * payloads by copying the received packets.
3912          */
3913         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3914             sc->bge_flags & BGE_FLAG_PCIX)
3915                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3916
3917         /*
3918          * Call MI attach routine.
3919          */
3920         ether_ifattach(ifp, eaddr);
3921
3922         /* Tell upper layer we support long frames. */
3923         if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
3924
3925         /*
3926          * Hookup IRQ last.
3927          */
3928         if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3929                 /* Take advantage of single-shot MSI. */
3930                 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3931                     ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3932                 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3933                     taskqueue_thread_enqueue, &sc->bge_tq);
3934                 if (sc->bge_tq == NULL) {
3935                         device_printf(dev, "could not create taskqueue.\n");
3936                         ether_ifdetach(ifp);
3937                         error = ENOMEM;
3938                         goto fail;
3939                 }
3940                 error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3941                     "%s taskq", device_get_nameunit(sc->bge_dev));
3942                 if (error != 0) {
3943                         device_printf(dev, "could not start threads.\n");
3944                         ether_ifdetach(ifp);
3945                         goto fail;
3946                 }
3947                 error = bus_setup_intr(dev, sc->bge_irq,
3948                     INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3949                     &sc->bge_intrhand);
3950         } else
3951                 error = bus_setup_intr(dev, sc->bge_irq,
3952                     INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3953                     &sc->bge_intrhand);
3954
3955         if (error) {
3956                 ether_ifdetach(ifp);
3957                 device_printf(sc->bge_dev, "couldn't set up irq\n");
3958                 goto fail;
3959         }
3960
3961         /* Attach driver netdump methods. */
3962         NETDUMP_SET(ifp, bge);
3963
3964 fail:
3965         if (error)
3966                 bge_detach(dev);
3967         return (error);
3968 }
3969
3970 static int
3971 bge_detach(device_t dev)
3972 {
3973         struct bge_softc *sc;
3974         if_t ifp;
3975
3976         sc = device_get_softc(dev);
3977         ifp = sc->bge_ifp;
3978
3979 #ifdef DEVICE_POLLING
3980         if (if_getcapenable(ifp) & IFCAP_POLLING)
3981                 ether_poll_deregister(ifp);
3982 #endif
3983
3984         if (device_is_attached(dev)) {
3985                 ether_ifdetach(ifp);
3986                 BGE_LOCK(sc);
3987                 bge_stop(sc);
3988                 BGE_UNLOCK(sc);
3989                 callout_drain(&sc->bge_stat_ch);
3990         }
3991
3992         if (sc->bge_tq)
3993                 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3994
3995         if (sc->bge_flags & BGE_FLAG_TBI)
3996                 ifmedia_removeall(&sc->bge_ifmedia);
3997         else if (sc->bge_miibus != NULL) {
3998                 bus_generic_detach(dev);
3999                 device_delete_child(dev, sc->bge_miibus);
4000         }
4001
4002         bge_release_resources(sc);
4003
4004         return (0);
4005 }
4006
4007 static void
4008 bge_release_resources(struct bge_softc *sc)
4009 {
4010         device_t dev;
4011
4012         dev = sc->bge_dev;
4013
4014         if (sc->bge_tq != NULL)
4015                 taskqueue_free(sc->bge_tq);
4016
4017         if (sc->bge_intrhand != NULL)
4018                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
4019
4020         if (sc->bge_irq != NULL) {
4021                 bus_release_resource(dev, SYS_RES_IRQ,
4022                     rman_get_rid(sc->bge_irq), sc->bge_irq);
4023                 pci_release_msi(dev);
4024         }
4025
4026         if (sc->bge_res != NULL)
4027                 bus_release_resource(dev, SYS_RES_MEMORY,
4028                     rman_get_rid(sc->bge_res), sc->bge_res);
4029
4030         if (sc->bge_res2 != NULL)
4031                 bus_release_resource(dev, SYS_RES_MEMORY,
4032                     rman_get_rid(sc->bge_res2), sc->bge_res2);
4033
4034         if (sc->bge_ifp != NULL)
4035                 if_free(sc->bge_ifp);
4036
4037         bge_dma_free(sc);
4038
4039         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
4040                 BGE_LOCK_DESTROY(sc);
4041 }
4042
4043 static int
4044 bge_reset(struct bge_softc *sc)
4045 {
4046         device_t dev;
4047         uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4048         void (*write_op)(struct bge_softc *, int, int);
4049         uint16_t devctl;
4050         int i;
4051
4052         dev = sc->bge_dev;
4053
4054         mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4055         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4056                 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4057         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4058
4059         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4060             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4061                 if (sc->bge_flags & BGE_FLAG_PCIE)
4062                         write_op = bge_writemem_direct;
4063                 else
4064                         write_op = bge_writemem_ind;
4065         } else
4066                 write_op = bge_writereg_ind;
4067
4068         if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4069             sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4070                 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4071                 for (i = 0; i < 8000; i++) {
4072                         if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4073                             BGE_NVRAMSWARB_GNT1)
4074                                 break;
4075                         DELAY(20);
4076                 }
4077                 if (i == 8000) {
4078                         if (bootverbose)
4079                                 device_printf(dev, "NVRAM lock timedout!\n");
4080                 }
4081         }
4082         /* Take APE lock when performing reset. */
4083         bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4084
4085         /* Save some important PCI state. */
4086         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4087         command = pci_read_config(dev, BGE_PCI_CMD, 4);
4088
4089         pci_write_config(dev, BGE_PCI_MISC_CTL,
4090             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4091             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4092
4093         /* Disable fastboot on controllers that support it. */
4094         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4095             BGE_IS_5755_PLUS(sc)) {
4096                 if (bootverbose)
4097                         device_printf(dev, "Disabling fastboot\n");
4098                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4099         }
4100
4101         /*
4102          * Write the magic number to SRAM at offset 0xB50.
4103          * When firmware finishes its initialization it will
4104          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4105          */
4106         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4107
4108         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4109
4110         /* XXX: Broadcom Linux driver. */
4111         if (sc->bge_flags & BGE_FLAG_PCIE) {
4112                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4113                     (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4114                         if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
4115                                 CSR_WRITE_4(sc, 0x7E2C, 0x20);
4116                 }
4117                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4118                         /* Prevent PCIE link training during global reset */
4119                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4120                         reset |= 1 << 29;
4121                 }
4122         }
4123
4124         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4125                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4126                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4127                     val | BGE_VCPU_STATUS_DRV_RESET);
4128                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4129                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4130                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4131         }
4132
4133         /*
4134          * Set GPHY Power Down Override to leave GPHY
4135          * powered up in D0 uninitialized.
4136          */
4137         if (BGE_IS_5705_PLUS(sc) &&
4138             (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4139                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4140
4141         /* Issue global reset */
4142         write_op(sc, BGE_MISC_CFG, reset);
4143
4144         if (sc->bge_flags & BGE_FLAG_PCIE)
4145                 DELAY(100 * 1000);
4146         else
4147                 DELAY(1000);
4148
4149         /* XXX: Broadcom Linux driver. */
4150         if (sc->bge_flags & BGE_FLAG_PCIE) {
4151                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4152                         DELAY(500000); /* wait for link training to complete */
4153                         val = pci_read_config(dev, 0xC4, 4);
4154                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4155                 }
4156                 devctl = pci_read_config(dev,
4157                     sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4158                 /* Clear enable no snoop and disable relaxed ordering. */
4159                 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4160                     PCIEM_CTL_NOSNOOP_ENABLE);
4161                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4162                     devctl, 2);
4163                 pci_set_max_read_req(dev, sc->bge_expmrq);
4164                 /* Clear error status. */
4165                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4166                     PCIEM_STA_CORRECTABLE_ERROR |
4167                     PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4168                     PCIEM_STA_UNSUPPORTED_REQ, 2);
4169         }
4170
4171         /* Reset some of the PCI state that got zapped by reset. */
4172         pci_write_config(dev, BGE_PCI_MISC_CTL,
4173             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4174             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4175         val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4176         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4177             (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4178                 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4179         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4180                 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4181                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4182                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4183         pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4184         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4185         pci_write_config(dev, BGE_PCI_CMD, command, 4);
4186         /*
4187          * Disable PCI-X relaxed ordering to ensure status block update
4188          * comes first then packet buffer DMA. Otherwise driver may
4189          * read stale status block.
4190          */
4191         if (sc->bge_flags & BGE_FLAG_PCIX) {
4192                 devctl = pci_read_config(dev,
4193                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
4194                 devctl &= ~PCIXM_COMMAND_ERO;
4195                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4196                         devctl &= ~PCIXM_COMMAND_MAX_READ;
4197                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4198                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4199                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4200                             PCIXM_COMMAND_MAX_READ);
4201                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4202                 }
4203                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4204                     devctl, 2);
4205         }
4206         /* Re-enable MSI, if necessary, and enable the memory arbiter. */
4207         if (BGE_IS_5714_FAMILY(sc)) {
4208                 /* This chip disables MSI on reset. */
4209                 if (sc->bge_flags & BGE_FLAG_MSI) {
4210                         val = pci_read_config(dev,
4211                             sc->bge_msicap + PCIR_MSI_CTRL, 2);
4212                         pci_write_config(dev,
4213                             sc->bge_msicap + PCIR_MSI_CTRL,
4214                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
4215                         val = CSR_READ_4(sc, BGE_MSI_MODE);
4216                         CSR_WRITE_4(sc, BGE_MSI_MODE,
4217                             val | BGE_MSIMODE_ENABLE);
4218                 }
4219                 val = CSR_READ_4(sc, BGE_MARB_MODE);
4220                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4221         } else
4222                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4223
4224         /* Fix up byte swapping. */
4225         CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4226
4227         val = CSR_READ_4(sc, BGE_MAC_MODE);
4228         val = (val & ~mac_mode_mask) | mac_mode;
4229         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4230         DELAY(40);
4231
4232         bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4233
4234         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4235                 for (i = 0; i < BGE_TIMEOUT; i++) {
4236                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4237                         if (val & BGE_VCPU_STATUS_INIT_DONE)
4238                                 break;
4239                         DELAY(100);
4240                 }
4241                 if (i == BGE_TIMEOUT) {
4242                         device_printf(dev, "reset timed out\n");
4243                         return (1);
4244                 }
4245         } else {
4246                 /*
4247                  * Poll until we see the 1's complement of the magic number.
4248                  * This indicates that the firmware initialization is complete.
4249                  * We expect this to fail if no chip containing the Ethernet
4250                  * address is fitted though.
4251                  */
4252                 for (i = 0; i < BGE_TIMEOUT; i++) {
4253                         DELAY(10);
4254                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4255                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
4256                                 break;
4257                 }
4258
4259                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4260                         device_printf(dev,
4261                             "firmware handshake timed out, found 0x%08x\n",
4262                             val);
4263                 /* BCM57765 A0 needs additional time before accessing. */
4264                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4265                         DELAY(10 * 1000);       /* XXX */
4266         }
4267
4268         /*
4269          * The 5704 in TBI mode apparently needs some special
4270          * adjustment to insure the SERDES drive level is set
4271          * to 1.2V.
4272          */
4273         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4274             sc->bge_flags & BGE_FLAG_TBI) {
4275                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
4276                 val = (val & ~0xFFF) | 0x880;
4277                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4278         }
4279
4280         /* XXX: Broadcom Linux driver. */
4281         if (sc->bge_flags & BGE_FLAG_PCIE &&
4282             !BGE_IS_5717_PLUS(sc) &&
4283             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4284             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4285                 /* Enable Data FIFO protection. */
4286                 val = CSR_READ_4(sc, 0x7C00);
4287                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4288         }
4289
4290         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4291                 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4292                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4293
4294         return (0);
4295 }
4296
4297 static __inline void
4298 bge_rxreuse_std(struct bge_softc *sc, int i)
4299 {
4300         struct bge_rx_bd *r;
4301
4302         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4303         r->bge_flags = BGE_RXBDFLAG_END;
4304         r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4305         r->bge_idx = i;
4306         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4307 }
4308
4309 static __inline void
4310 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4311 {
4312         struct bge_extrx_bd *r;
4313
4314         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4315         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4316         r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4317         r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4318         r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4319         r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4320         r->bge_idx = i;
4321         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4322 }
4323
4324 /*
4325  * Frame reception handling. This is called if there's a frame
4326  * on the receive return list.
4327  *
4328  * Note: we have to be able to handle two possibilities here:
4329  * 1) the frame is from the jumbo receive ring
4330  * 2) the frame is from the standard receive ring
4331  */
4332
4333 static int
4334 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4335 {
4336         if_t ifp;
4337         int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4338         uint16_t rx_cons;
4339
4340         rx_cons = sc->bge_rx_saved_considx;
4341
4342         /* Nothing to do. */
4343         if (rx_cons == rx_prod)
4344                 return (rx_npkts);
4345
4346         ifp = sc->bge_ifp;
4347
4348         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4349             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4350         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4351             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4352         if (BGE_IS_JUMBO_CAPABLE(sc) &&
4353             if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 
4354             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
4355                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4356                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4357
4358         while (rx_cons != rx_prod) {
4359                 struct bge_rx_bd        *cur_rx;
4360                 uint32_t                rxidx;
4361                 struct mbuf             *m = NULL;
4362                 uint16_t                vlan_tag = 0;
4363                 int                     have_tag = 0;
4364
4365 #ifdef DEVICE_POLLING
4366                 if (if_getcapenable(ifp) & IFCAP_POLLING) {
4367                         if (sc->rxcycles <= 0)
4368                                 break;
4369                         sc->rxcycles--;
4370                 }
4371 #endif
4372
4373                 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4374
4375                 rxidx = cur_rx->bge_idx;
4376                 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4377
4378                 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4379                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4380                         have_tag = 1;
4381                         vlan_tag = cur_rx->bge_vlan_tag;
4382                 }
4383
4384                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4385                         jumbocnt++;
4386                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4387                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4388                                 bge_rxreuse_jumbo(sc, rxidx);
4389                                 continue;
4390                         }
4391                         if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4392                                 bge_rxreuse_jumbo(sc, rxidx);
4393                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4394                                 continue;
4395                         }
4396                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4397                 } else {
4398                         stdcnt++;
4399                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4400                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4401                                 bge_rxreuse_std(sc, rxidx);
4402                                 continue;
4403                         }
4404                         if (bge_newbuf_std(sc, rxidx) != 0) {
4405                                 bge_rxreuse_std(sc, rxidx);
4406                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4407                                 continue;
4408                         }
4409                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4410                 }
4411
4412                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
4413 #ifndef __NO_STRICT_ALIGNMENT
4414                 /*
4415                  * For architectures with strict alignment we must make sure
4416                  * the payload is aligned.
4417                  */
4418                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4419                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4420                             cur_rx->bge_len);
4421                         m->m_data += ETHER_ALIGN;
4422                 }
4423 #endif
4424                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4425                 m->m_pkthdr.rcvif = ifp;
4426
4427                 if (if_getcapenable(ifp) & IFCAP_RXCSUM)
4428                         bge_rxcsum(sc, cur_rx, m);
4429
4430                 /*
4431                  * If we received a packet with a vlan tag,
4432                  * attach that information to the packet.
4433                  */
4434                 if (have_tag) {
4435                         m->m_pkthdr.ether_vtag = vlan_tag;
4436                         m->m_flags |= M_VLANTAG;
4437                 }
4438
4439                 if (holdlck != 0) {
4440                         BGE_UNLOCK(sc);
4441                         if_input(ifp, m);
4442                         BGE_LOCK(sc);
4443                 } else
4444                         if_input(ifp, m);
4445                 rx_npkts++;
4446
4447                 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4448                         return (rx_npkts);
4449         }
4450
4451         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4452             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4453         if (stdcnt > 0)
4454                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4455                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4456
4457         if (jumbocnt > 0)
4458                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4459                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4460
4461         sc->bge_rx_saved_considx = rx_cons;
4462         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4463         if (stdcnt)
4464                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4465                     BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4466         if (jumbocnt)
4467                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4468                     BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4469 #ifdef notyet
4470         /*
4471          * This register wraps very quickly under heavy packet drops.
4472          * If you need correct statistics, you can enable this check.
4473          */
4474         if (BGE_IS_5705_PLUS(sc))
4475                 if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4476 #endif
4477         return (rx_npkts);
4478 }
4479
4480 static void
4481 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4482 {
4483
4484         if (BGE_IS_5717_PLUS(sc)) {
4485                 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4486                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4487                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4488                                 if ((cur_rx->bge_error_flag &
4489                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4490                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4491                         }
4492                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4493                                 m->m_pkthdr.csum_data =
4494                                     cur_rx->bge_tcp_udp_csum;
4495                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4496                                     CSUM_PSEUDO_HDR;
4497                         }
4498                 }
4499         } else {
4500                 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4501                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4502                         if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4503                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4504                 }
4505                 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4506                     m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4507                         m->m_pkthdr.csum_data =
4508                             cur_rx->bge_tcp_udp_csum;
4509                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4510                             CSUM_PSEUDO_HDR;
4511                 }
4512         }
4513 }
4514
4515 static void
4516 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4517 {
4518         struct bge_tx_bd *cur_tx;
4519         if_t ifp;
4520
4521         BGE_LOCK_ASSERT(sc);
4522
4523         /* Nothing to do. */
4524         if (sc->bge_tx_saved_considx == tx_cons)
4525                 return;
4526
4527         ifp = sc->bge_ifp;
4528
4529         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4530             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4531         /*
4532          * Go through our tx ring and free mbufs for those
4533          * frames that have been sent.
4534          */
4535         while (sc->bge_tx_saved_considx != tx_cons) {
4536                 uint32_t                idx;
4537
4538                 idx = sc->bge_tx_saved_considx;
4539                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4540                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4541                         if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4542                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4543                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4544                             sc->bge_cdata.bge_tx_dmamap[idx],
4545                             BUS_DMASYNC_POSTWRITE);
4546                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4547                             sc->bge_cdata.bge_tx_dmamap[idx]);
4548                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4549                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
4550                 }
4551                 sc->bge_txcnt--;
4552                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4553         }
4554
4555         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4556         if (sc->bge_txcnt == 0)
4557                 sc->bge_timer = 0;
4558 }
4559
4560 #ifdef DEVICE_POLLING
4561 static int
4562 bge_poll(if_t ifp, enum poll_cmd cmd, int count)
4563 {
4564         struct bge_softc *sc = if_getsoftc(ifp);
4565         uint16_t rx_prod, tx_cons;
4566         uint32_t statusword;
4567         int rx_npkts = 0;
4568
4569         BGE_LOCK(sc);
4570         if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4571                 BGE_UNLOCK(sc);
4572                 return (rx_npkts);
4573         }
4574
4575         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4576             sc->bge_cdata.bge_status_map,
4577             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4578         /* Fetch updates from the status block. */
4579         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4580         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4581
4582         statusword = sc->bge_ldata.bge_status_block->bge_status;
4583         /* Clear the status so the next pass only sees the changes. */
4584         sc->bge_ldata.bge_status_block->bge_status = 0;
4585
4586         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4587             sc->bge_cdata.bge_status_map,
4588             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4589
4590         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4591         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4592                 sc->bge_link_evt++;
4593
4594         if (cmd == POLL_AND_CHECK_STATUS)
4595                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4596                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4597                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4598                         bge_link_upd(sc);
4599
4600         sc->rxcycles = count;
4601         rx_npkts = bge_rxeof(sc, rx_prod, 1);
4602         if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4603                 BGE_UNLOCK(sc);
4604                 return (rx_npkts);
4605         }
4606         bge_txeof(sc, tx_cons);
4607         if (!if_sendq_empty(ifp))
4608                 bge_start_locked(ifp);
4609
4610         BGE_UNLOCK(sc);
4611         return (rx_npkts);
4612 }
4613 #endif /* DEVICE_POLLING */
4614
4615 static int
4616 bge_msi_intr(void *arg)
4617 {
4618         struct bge_softc *sc;
4619
4620         sc = (struct bge_softc *)arg;
4621         /*
4622          * This interrupt is not shared and controller already
4623          * disabled further interrupt.
4624          */
4625         taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4626         return (FILTER_HANDLED);
4627 }
4628
4629 static void
4630 bge_intr_task(void *arg, int pending)
4631 {
4632         struct bge_softc *sc;
4633         if_t ifp;
4634         uint32_t status, status_tag;
4635         uint16_t rx_prod, tx_cons;
4636
4637         sc = (struct bge_softc *)arg;
4638         ifp = sc->bge_ifp;
4639
4640         BGE_LOCK(sc);
4641         if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4642                 BGE_UNLOCK(sc);
4643                 return;
4644         }
4645
4646         /* Get updated status block. */
4647         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4648             sc->bge_cdata.bge_status_map,
4649             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4650
4651         /* Save producer/consumer indices. */
4652         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4653         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4654         status = sc->bge_ldata.bge_status_block->bge_status;
4655         status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4656         /* Dirty the status flag. */
4657         sc->bge_ldata.bge_status_block->bge_status = 0;
4658         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4659             sc->bge_cdata.bge_status_map,
4660             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4661         if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4662                 status_tag = 0;
4663
4664         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4665                 bge_link_upd(sc);
4666
4667         /* Let controller work. */
4668         bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4669
4670         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4671             sc->bge_rx_saved_considx != rx_prod) {
4672                 /* Check RX return ring producer/consumer. */
4673                 BGE_UNLOCK(sc);
4674                 bge_rxeof(sc, rx_prod, 0);
4675                 BGE_LOCK(sc);
4676         }
4677         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4678                 /* Check TX ring producer/consumer. */
4679                 bge_txeof(sc, tx_cons);
4680                 if (!if_sendq_empty(ifp))
4681                         bge_start_locked(ifp);
4682         }
4683         BGE_UNLOCK(sc);
4684 }
4685
4686 static void
4687 bge_intr(void *xsc)
4688 {
4689         struct bge_softc *sc;
4690         if_t ifp;
4691         uint32_t statusword;
4692         uint16_t rx_prod, tx_cons;
4693
4694         sc = xsc;
4695
4696         BGE_LOCK(sc);
4697
4698         ifp = sc->bge_ifp;
4699
4700 #ifdef DEVICE_POLLING
4701         if (if_getcapenable(ifp) & IFCAP_POLLING) {
4702                 BGE_UNLOCK(sc);
4703                 return;
4704         }
4705 #endif
4706
4707         /*
4708          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4709          * disable interrupts by writing nonzero like we used to, since with
4710          * our current organization this just gives complications and
4711          * pessimizations for re-enabling interrupts.  We used to have races
4712          * instead of the necessary complications.  Disabling interrupts
4713          * would just reduce the chance of a status update while we are
4714          * running (by switching to the interrupt-mode coalescence
4715          * parameters), but this chance is already very low so it is more
4716          * efficient to get another interrupt than prevent it.
4717          *
4718          * We do the ack first to ensure another interrupt if there is a
4719          * status update after the ack.  We don't check for the status
4720          * changing later because it is more efficient to get another
4721          * interrupt than prevent it, not quite as above (not checking is
4722          * a smaller optimization than not toggling the interrupt enable,
4723          * since checking doesn't involve PCI accesses and toggling require
4724          * the status check).  So toggling would probably be a pessimization
4725          * even with MSI.  It would only be needed for using a task queue.
4726          */
4727         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4728
4729         /*
4730          * Do the mandatory PCI flush as well as get the link status.
4731          */
4732         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4733
4734         /* Make sure the descriptor ring indexes are coherent. */
4735         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4736             sc->bge_cdata.bge_status_map,
4737             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4738         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4739         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4740         sc->bge_ldata.bge_status_block->bge_status = 0;
4741         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4742             sc->bge_cdata.bge_status_map,
4743             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4744
4745         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4746             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4747             statusword || sc->bge_link_evt)
4748                 bge_link_upd(sc);
4749
4750         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4751                 /* Check RX return ring producer/consumer. */
4752                 bge_rxeof(sc, rx_prod, 1);
4753         }
4754
4755         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4756                 /* Check TX ring producer/consumer. */
4757                 bge_txeof(sc, tx_cons);
4758         }
4759
4760         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4761             !if_sendq_empty(ifp))
4762                 bge_start_locked(ifp);
4763
4764         BGE_UNLOCK(sc);
4765 }
4766
4767 static void
4768 bge_asf_driver_up(struct bge_softc *sc)
4769 {
4770         if (sc->bge_asf_mode & ASF_STACKUP) {
4771                 /* Send ASF heartbeat aprox. every 2s */
4772                 if (sc->bge_asf_count)
4773                         sc->bge_asf_count --;
4774                 else {
4775                         sc->bge_asf_count = 2;
4776                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4777                             BGE_FW_CMD_DRV_ALIVE);
4778                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4779                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4780                             BGE_FW_HB_TIMEOUT_SEC);
4781                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4782                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4783                             BGE_RX_CPU_DRV_EVENT);
4784                 }
4785         }
4786 }
4787
4788 static void
4789 bge_tick(void *xsc)
4790 {
4791         struct bge_softc *sc = xsc;
4792         struct mii_data *mii = NULL;
4793
4794         BGE_LOCK_ASSERT(sc);
4795
4796         /* Synchronize with possible callout reset/stop. */
4797         if (callout_pending(&sc->bge_stat_ch) ||
4798             !callout_active(&sc->bge_stat_ch))
4799                 return;
4800
4801         if (BGE_IS_5705_PLUS(sc))
4802                 bge_stats_update_regs(sc);
4803         else
4804                 bge_stats_update(sc);
4805
4806         /* XXX Add APE heartbeat check here? */
4807
4808         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4809                 mii = device_get_softc(sc->bge_miibus);
4810                 /*
4811                  * Do not touch PHY if we have link up. This could break
4812                  * IPMI/ASF mode or produce extra input errors
4813                  * (extra errors was reported for bcm5701 & bcm5704).
4814                  */
4815                 if (!sc->bge_link)
4816                         mii_tick(mii);
4817         } else {
4818                 /*
4819                  * Since in TBI mode auto-polling can't be used we should poll
4820                  * link status manually. Here we register pending link event
4821                  * and trigger interrupt.
4822                  */
4823 #ifdef DEVICE_POLLING
4824                 /* In polling mode we poll link state in bge_poll(). */
4825                 if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
4826 #endif
4827                 {
4828                 sc->bge_link_evt++;
4829                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4830                     sc->bge_flags & BGE_FLAG_5788)
4831                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4832                 else
4833                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4834                 }
4835         }
4836
4837         bge_asf_driver_up(sc);
4838         bge_watchdog(sc);
4839
4840         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4841 }
4842
4843 static void
4844 bge_stats_update_regs(struct bge_softc *sc)
4845 {
4846         if_t ifp;
4847         struct bge_mac_stats *stats;
4848         uint32_t val;
4849
4850         ifp = sc->bge_ifp;
4851         stats = &sc->bge_mac_stats;
4852
4853         stats->ifHCOutOctets +=
4854             CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4855         stats->etherStatsCollisions +=
4856             CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4857         stats->outXonSent +=
4858             CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4859         stats->outXoffSent +=
4860             CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4861         stats->dot3StatsInternalMacTransmitErrors +=
4862             CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4863         stats->dot3StatsSingleCollisionFrames +=
4864             CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4865         stats->dot3StatsMultipleCollisionFrames +=
4866             CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4867         stats->dot3StatsDeferredTransmissions +=
4868             CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4869         stats->dot3StatsExcessiveCollisions +=
4870             CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4871         stats->dot3StatsLateCollisions +=
4872             CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4873         stats->ifHCOutUcastPkts +=
4874             CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4875         stats->ifHCOutMulticastPkts +=
4876             CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4877         stats->ifHCOutBroadcastPkts +=
4878             CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4879
4880         stats->ifHCInOctets +=
4881             CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4882         stats->etherStatsFragments +=
4883             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4884         stats->ifHCInUcastPkts +=
4885             CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4886         stats->ifHCInMulticastPkts +=
4887             CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4888         stats->ifHCInBroadcastPkts +=
4889             CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4890         stats->dot3StatsFCSErrors +=
4891             CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4892         stats->dot3StatsAlignmentErrors +=
4893             CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4894         stats->xonPauseFramesReceived +=
4895             CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4896         stats->xoffPauseFramesReceived +=
4897             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4898         stats->macControlFramesReceived +=
4899             CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4900         stats->xoffStateEntered +=
4901             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4902         stats->dot3StatsFramesTooLong +=
4903             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4904         stats->etherStatsJabbers +=
4905             CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4906         stats->etherStatsUndersizePkts +=
4907             CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4908
4909         stats->FramesDroppedDueToFilters +=
4910             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4911         stats->DmaWriteQueueFull +=
4912             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4913         stats->DmaWriteHighPriQueueFull +=
4914             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4915         stats->NoMoreRxBDs +=
4916             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4917         /*
4918          * XXX
4919          * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4920          * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4921          * includes number of unwanted multicast frames.  This comes
4922          * from silicon bug and known workaround to get rough(not
4923          * exact) counter is to enable interrupt on MBUF low water
4924          * attention.  This can be accomplished by setting
4925          * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4926          * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4927          * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4928          * However that change would generate more interrupts and
4929          * there are still possibilities of losing multiple frames
4930          * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4931          * Given that the workaround still would not get correct
4932          * counter I don't think it's worth to implement it.  So
4933          * ignore reading the counter on controllers that have the
4934          * silicon bug.
4935          */
4936         if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4937             sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4938             sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4939                 stats->InputDiscards +=
4940                     CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4941         stats->InputErrors +=
4942             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4943         stats->RecvThresholdHit +=
4944             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4945
4946         if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4947                 /*
4948                  * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4949                  * frames, it's safe to disable workaround for DMA engine's
4950                  * miscalculation of TXMBUF space.
4951                  */
4952                 if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4953                     stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4954                         val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4955                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4956                                 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4957                         else
4958                                 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4959                         CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4960                         sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4961                 }
4962         }
4963 }
4964
4965 static void
4966 bge_stats_clear_regs(struct bge_softc *sc)
4967 {
4968
4969         CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4970         CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4971         CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4972         CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4973         CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4974         CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4975         CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4976         CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4977         CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4978         CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4979         CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4980         CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4981         CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4982
4983         CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4984         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4985         CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4986         CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4987         CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4988         CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4989         CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4990         CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4991         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4992         CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4993         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4994         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4995         CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4996         CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4997
4998         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4999         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
5000         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
5001         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
5002         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
5003         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
5004         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
5005 }
5006
5007 static void
5008 bge_stats_update(struct bge_softc *sc)
5009 {
5010         if_t ifp;
5011         bus_size_t stats;
5012         uint32_t cnt;   /* current register value */
5013
5014         ifp = sc->bge_ifp;
5015
5016         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
5017
5018 #define READ_STAT(sc, stats, stat) \
5019         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
5020
5021         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
5022         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
5023         sc->bge_tx_collisions = cnt;
5024
5025         cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
5026         if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
5027         sc->bge_rx_nobds = cnt;
5028         cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5029         if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
5030         sc->bge_rx_inerrs = cnt;
5031         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5032         if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
5033         sc->bge_rx_discards = cnt;
5034
5035         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5036         if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
5037         sc->bge_tx_discards = cnt;
5038
5039 #undef  READ_STAT
5040 }
5041
5042 /*
5043  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5044  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5045  * but when such padded frames employ the bge IP/TCP checksum offload,
5046  * the hardware checksum assist gives incorrect results (possibly
5047  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5048  * If we pad such runts with zeros, the onboard checksum comes out correct.
5049  */
5050 static __inline int
5051 bge_cksum_pad(struct mbuf *m)
5052 {
5053         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5054         struct mbuf *last;
5055
5056         /* If there's only the packet-header and we can pad there, use it. */
5057         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5058             M_TRAILINGSPACE(m) >= padlen) {
5059                 last = m;
5060         } else {
5061                 /*
5062                  * Walk packet chain to find last mbuf. We will either
5063                  * pad there, or append a new mbuf and pad it.
5064                  */
5065                 for (last = m; last->m_next != NULL; last = last->m_next);
5066                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5067                         /* Allocate new empty mbuf, pad it. Compact later. */
5068                         struct mbuf *n;
5069
5070                         MGET(n, M_NOWAIT, MT_DATA);
5071                         if (n == NULL)
5072                                 return (ENOBUFS);
5073                         n->m_len = 0;
5074                         last->m_next = n;
5075                         last = n;
5076                 }
5077         }
5078
5079         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
5080         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5081         last->m_len += padlen;
5082         m->m_pkthdr.len += padlen;
5083
5084         return (0);
5085 }
5086
5087 static struct mbuf *
5088 bge_check_short_dma(struct mbuf *m)
5089 {
5090         struct mbuf *n;
5091         int found;
5092
5093         /*
5094          * If device receive two back-to-back send BDs with less than
5095          * or equal to 8 total bytes then the device may hang.  The two
5096          * back-to-back send BDs must in the same frame for this failure
5097          * to occur.  Scan mbuf chains and see whether two back-to-back
5098          * send BDs are there. If this is the case, allocate new mbuf
5099          * and copy the frame to workaround the silicon bug.
5100          */
5101         for (n = m, found = 0; n != NULL; n = n->m_next) {
5102                 if (n->m_len < 8) {
5103                         found++;
5104                         if (found > 1)
5105                                 break;
5106                         continue;
5107                 }
5108                 found = 0;
5109         }
5110
5111         if (found > 1) {
5112                 n = m_defrag(m, M_NOWAIT);
5113                 if (n == NULL)
5114                         m_freem(m);
5115         } else
5116                 n = m;
5117         return (n);
5118 }
5119
5120 static struct mbuf *
5121 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5122     uint16_t *flags)
5123 {
5124         struct ip *ip;
5125         struct tcphdr *tcp;
5126         struct mbuf *n;
5127         uint16_t hlen;
5128         uint32_t poff;
5129
5130         if (M_WRITABLE(m) == 0) {
5131                 /* Get a writable copy. */
5132                 n = m_dup(m, M_NOWAIT);
5133                 m_freem(m);
5134                 if (n == NULL)
5135                         return (NULL);
5136                 m = n;
5137         }
5138         m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5139         if (m == NULL)
5140                 return (NULL);
5141         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5142         poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5143         m = m_pullup(m, poff + sizeof(struct tcphdr));
5144         if (m == NULL)
5145                 return (NULL);
5146         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5147         m = m_pullup(m, poff + (tcp->th_off << 2));
5148         if (m == NULL)
5149                 return (NULL);
5150         /*
5151          * It seems controller doesn't modify IP length and TCP pseudo
5152          * checksum. These checksum computed by upper stack should be 0.
5153          */
5154         *mss = m->m_pkthdr.tso_segsz;
5155         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5156         ip->ip_sum = 0;
5157         ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5158         /* Clear pseudo checksum computed by TCP stack. */
5159         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5160         tcp->th_sum = 0;
5161         /*
5162          * Broadcom controllers uses different descriptor format for
5163          * TSO depending on ASIC revision. Due to TSO-capable firmware
5164          * license issue and lower performance of firmware based TSO
5165          * we only support hardware based TSO.
5166          */
5167         /* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5168         hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5169         if (sc->bge_flags & BGE_FLAG_TSO3) {
5170                 /*
5171                  * For BCM5717 and newer controllers, hardware based TSO
5172                  * uses the 14 lower bits of the bge_mss field to store the
5173                  * MSS and the upper 2 bits to store the lowest 2 bits of
5174                  * the IP/TCP header length.  The upper 6 bits of the header
5175                  * length are stored in the bge_flags[14:10,4] field.  Jumbo
5176                  * frames are supported.
5177                  */
5178                 *mss |= ((hlen & 0x3) << 14);
5179                 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5180         } else {
5181                 /*
5182                  * For BCM5755 and newer controllers, hardware based TSO uses
5183                  * the lower 11 bits to store the MSS and the upper 5 bits to
5184                  * store the IP/TCP header length. Jumbo frames are not
5185                  * supported.
5186                  */
5187                 *mss |= (hlen << 11);
5188         }
5189         return (m);
5190 }
5191
5192 /*
5193  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5194  * pointers to descriptors.
5195  */
5196 static int
5197 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5198 {
5199         bus_dma_segment_t       segs[BGE_NSEG_NEW];
5200         bus_dmamap_t            map;
5201         struct bge_tx_bd        *d;
5202         struct mbuf             *m = *m_head;
5203         uint32_t                idx = *txidx;
5204         uint16_t                csum_flags, mss, vlan_tag;
5205         int                     nsegs, i, error;
5206
5207         csum_flags = 0;
5208         mss = 0;
5209         vlan_tag = 0;
5210         if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5211             m->m_next != NULL) {
5212                 *m_head = bge_check_short_dma(m);
5213                 if (*m_head == NULL)
5214                         return (ENOBUFS);
5215                 m = *m_head;
5216         }
5217         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5218                 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5219                 if (*m_head == NULL)
5220                         return (ENOBUFS);
5221                 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5222                     BGE_TXBDFLAG_CPU_POST_DMA;
5223         } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5224                 if (m->m_pkthdr.csum_flags & CSUM_IP)
5225                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5226                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5227                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5228                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5229                             (error = bge_cksum_pad(m)) != 0) {
5230                                 m_freem(m);
5231                                 *m_head = NULL;
5232                                 return (error);
5233                         }
5234                 }
5235         }
5236
5237         if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5238                 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5239                     m->m_pkthdr.len > ETHER_MAX_LEN)
5240                         csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5241                 if (sc->bge_forced_collapse > 0 &&
5242                     (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5243                         /*
5244                          * Forcedly collapse mbuf chains to overcome hardware
5245                          * limitation which only support a single outstanding
5246                          * DMA read operation.
5247                          */
5248                         if (sc->bge_forced_collapse == 1)
5249                                 m = m_defrag(m, M_NOWAIT);
5250                         else
5251                                 m = m_collapse(m, M_NOWAIT,
5252                                     sc->bge_forced_collapse);
5253                         if (m == NULL)
5254                                 m = *m_head;
5255                         *m_head = m;
5256                 }
5257         }
5258
5259         map = sc->bge_cdata.bge_tx_dmamap[idx];
5260         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5261             &nsegs, BUS_DMA_NOWAIT);
5262         if (error == EFBIG) {
5263                 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5264                 if (m == NULL) {
5265                         m_freem(*m_head);
5266                         *m_head = NULL;
5267                         return (ENOBUFS);
5268                 }
5269                 *m_head = m;
5270                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5271                     m, segs, &nsegs, BUS_DMA_NOWAIT);
5272                 if (error) {
5273                         m_freem(m);
5274                         *m_head = NULL;
5275                         return (error);
5276                 }
5277         } else if (error != 0)
5278                 return (error);
5279
5280         /* Check if we have enough free send BDs. */
5281         if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5282                 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5283                 return (ENOBUFS);
5284         }
5285
5286         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5287
5288         if (m->m_flags & M_VLANTAG) {
5289                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5290                 vlan_tag = m->m_pkthdr.ether_vtag;
5291         }
5292
5293         if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5294             (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5295                 /*
5296                  * 5725 family of devices corrupts TSO packets when TSO DMA
5297                  * buffers cross into regions which are within MSS bytes of
5298                  * a 4GB boundary.  If we encounter the condition, drop the
5299                  * packet.
5300                  */
5301                 for (i = 0; ; i++) {
5302                         d = &sc->bge_ldata.bge_tx_ring[idx];
5303                         d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5304                         d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5305                         d->bge_len = segs[i].ds_len;
5306                         if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5307                             d->bge_addr.bge_addr_lo)
5308                                 break;
5309                         d->bge_flags = csum_flags;
5310                         d->bge_vlan_tag = vlan_tag;
5311                         d->bge_mss = mss;
5312                         if (i == nsegs - 1)
5313                                 break;
5314                         BGE_INC(idx, BGE_TX_RING_CNT);
5315                 }
5316                 if (i != nsegs - 1) {
5317                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5318                             BUS_DMASYNC_POSTWRITE);
5319                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5320                         m_freem(*m_head);
5321                         *m_head = NULL;
5322                         return (EIO);
5323                 }
5324         } else {
5325                 for (i = 0; ; i++) {
5326                         d = &sc->bge_ldata.bge_tx_ring[idx];
5327                         d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5328                         d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5329                         d->bge_len = segs[i].ds_len;
5330                         d->bge_flags = csum_flags;
5331                         d->bge_vlan_tag = vlan_tag;
5332                         d->bge_mss = mss;
5333                         if (i == nsegs - 1)
5334                                 break;
5335                         BGE_INC(idx, BGE_TX_RING_CNT);
5336                 }
5337         }
5338
5339         /* Mark the last segment as end of packet... */
5340         d->bge_flags |= BGE_TXBDFLAG_END;
5341
5342         /*
5343          * Insure that the map for this transmission
5344          * is placed at the array index of the last descriptor
5345          * in this chain.
5346          */
5347         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5348         sc->bge_cdata.bge_tx_dmamap[idx] = map;
5349         sc->bge_cdata.bge_tx_chain[idx] = m;
5350         sc->bge_txcnt += nsegs;
5351
5352         BGE_INC(idx, BGE_TX_RING_CNT);
5353         *txidx = idx;
5354
5355         return (0);
5356 }
5357
5358 /*
5359  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5360  * to the mbuf data regions directly in the transmit descriptors.
5361  */
5362 static void
5363 bge_start_locked(if_t ifp)
5364 {
5365         struct bge_softc *sc;
5366         struct mbuf *m_head;
5367         uint32_t prodidx;
5368         int count;
5369
5370         sc = if_getsoftc(ifp);
5371         BGE_LOCK_ASSERT(sc);
5372
5373         if (!sc->bge_link ||
5374             (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5375             IFF_DRV_RUNNING)
5376                 return;
5377
5378         prodidx = sc->bge_tx_prodidx;
5379
5380         for (count = 0; !if_sendq_empty(ifp);) {
5381                 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5382                         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5383                         break;
5384                 }
5385                 m_head = if_dequeue(ifp);
5386                 if (m_head == NULL)
5387                         break;
5388
5389                 /*
5390                  * Pack the data into the transmit ring. If we
5391                  * don't have room, set the OACTIVE flag and wait
5392                  * for the NIC to drain the ring.
5393                  */
5394                 if (bge_encap(sc, &m_head, &prodidx)) {
5395                         if (m_head == NULL)
5396                                 break;
5397                         if_sendq_prepend(ifp, m_head);
5398                         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5399                         break;
5400                 }
5401                 ++count;
5402
5403                 /*
5404                  * If there's a BPF listener, bounce a copy of this frame
5405                  * to him.
5406                  */
5407                 if_bpfmtap(ifp, m_head);
5408         }
5409
5410         if (count > 0)
5411                 bge_start_tx(sc, prodidx);
5412 }
5413
5414 static void
5415 bge_start_tx(struct bge_softc *sc, uint32_t prodidx)
5416 {
5417
5418         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5419             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5420         /* Transmit. */
5421         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5422         /* 5700 b2 errata */
5423         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5424                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5425
5426         sc->bge_tx_prodidx = prodidx;
5427
5428         /* Set a timeout in case the chip goes out to lunch. */
5429         sc->bge_timer = BGE_TX_TIMEOUT;
5430 }
5431
5432 /*
5433  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5434  * to the mbuf data regions directly in the transmit descriptors.
5435  */
5436 static void
5437 bge_start(if_t ifp)
5438 {
5439         struct bge_softc *sc;
5440
5441         sc = if_getsoftc(ifp);
5442         BGE_LOCK(sc);
5443         bge_start_locked(ifp);
5444         BGE_UNLOCK(sc);
5445 }
5446
5447 static void
5448 bge_init_locked(struct bge_softc *sc)
5449 {
5450         if_t ifp;
5451         uint16_t *m;
5452         uint32_t mode;
5453
5454         BGE_LOCK_ASSERT(sc);
5455
5456         ifp = sc->bge_ifp;
5457
5458         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5459                 return;
5460
5461         /* Cancel pending I/O and flush buffers. */
5462         bge_stop(sc);
5463
5464         bge_stop_fw(sc);
5465         bge_sig_pre_reset(sc, BGE_RESET_START);
5466         bge_reset(sc);
5467         bge_sig_legacy(sc, BGE_RESET_START);
5468         bge_sig_post_reset(sc, BGE_RESET_START);
5469
5470         bge_chipinit(sc);
5471
5472         /*
5473          * Init the various state machines, ring
5474          * control blocks and firmware.
5475          */
5476         if (bge_blockinit(sc)) {
5477                 device_printf(sc->bge_dev, "initialization failure\n");
5478                 return;
5479         }
5480
5481         ifp = sc->bge_ifp;
5482
5483         /* Specify MTU. */
5484         CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
5485             ETHER_HDR_LEN + ETHER_CRC_LEN +
5486             (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5487
5488         /* Load our MAC address. */
5489         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5490         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5491         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5492
5493         /* Program promiscuous mode. */
5494         bge_setpromisc(sc);
5495
5496         /* Program multicast filter. */
5497         bge_setmulti(sc);
5498
5499         /* Program VLAN tag stripping. */
5500         bge_setvlan(sc);
5501
5502         /* Override UDP checksum offloading. */
5503         if (sc->bge_forced_udpcsum == 0)
5504                 sc->bge_csum_features &= ~CSUM_UDP;
5505         else
5506                 sc->bge_csum_features |= CSUM_UDP;
5507         if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
5508             if_getcapenable(ifp) & IFCAP_TXCSUM) {
5509                 if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
5510                 if_sethwassistbits(ifp, sc->bge_csum_features, 0);
5511         }
5512
5513         /* Init RX ring. */
5514         if (bge_init_rx_ring_std(sc) != 0) {
5515                 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5516                 bge_stop(sc);
5517                 return;
5518         }
5519
5520         /*
5521          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5522          * memory to insure that the chip has in fact read the first
5523          * entry of the ring.
5524          */
5525         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5526                 uint32_t                v, i;
5527                 for (i = 0; i < 10; i++) {
5528                         DELAY(20);
5529                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5530                         if (v == (MCLBYTES - ETHER_ALIGN))
5531                                 break;
5532                 }
5533                 if (i == 10)
5534                         device_printf (sc->bge_dev,
5535                             "5705 A0 chip failed to load RX ring\n");
5536         }
5537
5538         /* Init jumbo RX ring. */
5539         if (BGE_IS_JUMBO_CAPABLE(sc) &&
5540             if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 
5541             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
5542                 if (bge_init_rx_ring_jumbo(sc) != 0) {
5543                         device_printf(sc->bge_dev,
5544                             "no memory for jumbo Rx buffers.\n");
5545                         bge_stop(sc);
5546                         return;
5547                 }
5548         }
5549
5550         /* Init our RX return ring index. */
5551         sc->bge_rx_saved_considx = 0;
5552
5553         /* Init our RX/TX stat counters. */
5554         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5555
5556         /* Init TX ring. */
5557         bge_init_tx_ring(sc);
5558
5559         /* Enable TX MAC state machine lockup fix. */
5560         mode = CSR_READ_4(sc, BGE_TX_MODE);
5561         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5562                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5563         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5564             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5565                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5566                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5567                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5568         }
5569         /* Turn on transmitter. */
5570         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5571         DELAY(100);
5572
5573         /* Turn on receiver. */
5574         mode = CSR_READ_4(sc, BGE_RX_MODE);
5575         if (BGE_IS_5755_PLUS(sc))
5576                 mode |= BGE_RXMODE_IPV6_ENABLE;
5577         if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5578                 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5579         CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5580         DELAY(10);
5581
5582         /*
5583          * Set the number of good frames to receive after RX MBUF
5584          * Low Watermark has been reached. After the RX MAC receives
5585          * this number of frames, it will drop subsequent incoming
5586          * frames until the MBUF High Watermark is reached.
5587          */
5588         if (BGE_IS_57765_PLUS(sc))
5589                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5590         else
5591                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5592
5593         /* Clear MAC statistics. */
5594         if (BGE_IS_5705_PLUS(sc))
5595                 bge_stats_clear_regs(sc);
5596
5597         /* Tell firmware we're alive. */
5598         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5599
5600 #ifdef DEVICE_POLLING
5601         /* Disable interrupts if we are polling. */
5602         if (if_getcapenable(ifp) & IFCAP_POLLING) {
5603                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5604                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5605                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5606         } else
5607 #endif
5608
5609         /* Enable host interrupts. */
5610         {
5611         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5612         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5613         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5614         }
5615
5616         if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
5617         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5618
5619         bge_ifmedia_upd_locked(ifp);
5620
5621         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5622 }
5623
5624 static void
5625 bge_init(void *xsc)
5626 {
5627         struct bge_softc *sc = xsc;
5628
5629         BGE_LOCK(sc);
5630         bge_init_locked(sc);
5631         BGE_UNLOCK(sc);
5632 }
5633
5634 /*
5635  * Set media options.
5636  */
5637 static int
5638 bge_ifmedia_upd(if_t ifp)
5639 {
5640         struct bge_softc *sc = if_getsoftc(ifp);
5641         int res;
5642
5643         BGE_LOCK(sc);
5644         res = bge_ifmedia_upd_locked(ifp);
5645         BGE_UNLOCK(sc);
5646
5647         return (res);
5648 }
5649
5650 static int
5651 bge_ifmedia_upd_locked(if_t ifp)
5652 {
5653         struct bge_softc *sc = if_getsoftc(ifp);
5654         struct mii_data *mii;
5655         struct mii_softc *miisc;
5656         struct ifmedia *ifm;
5657
5658         BGE_LOCK_ASSERT(sc);
5659
5660         ifm = &sc->bge_ifmedia;
5661
5662         /* If this is a 1000baseX NIC, enable the TBI port. */
5663         if (sc->bge_flags & BGE_FLAG_TBI) {
5664                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5665                         return (EINVAL);
5666                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
5667                 case IFM_AUTO:
5668                         /*
5669                          * The BCM5704 ASIC appears to have a special
5670                          * mechanism for programming the autoneg
5671                          * advertisement registers in TBI mode.
5672                          */
5673                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5674                                 uint32_t sgdig;
5675                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5676                                 if (sgdig & BGE_SGDIGSTS_DONE) {
5677                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5678                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5679                                         sgdig |= BGE_SGDIGCFG_AUTO |
5680                                             BGE_SGDIGCFG_PAUSE_CAP |
5681                                             BGE_SGDIGCFG_ASYM_PAUSE;
5682                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5683                                             sgdig | BGE_SGDIGCFG_SEND);
5684                                         DELAY(5);
5685                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5686                                 }
5687                         }
5688                         break;
5689                 case IFM_1000_SX:
5690                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5691                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
5692                                     BGE_MACMODE_HALF_DUPLEX);
5693                         } else {
5694                                 BGE_SETBIT(sc, BGE_MAC_MODE,
5695                                     BGE_MACMODE_HALF_DUPLEX);
5696                         }
5697                         DELAY(40);
5698                         break;
5699                 default:
5700                         return (EINVAL);
5701                 }
5702                 return (0);
5703         }
5704
5705         sc->bge_link_evt++;
5706         mii = device_get_softc(sc->bge_miibus);
5707         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5708                 PHY_RESET(miisc);
5709         mii_mediachg(mii);
5710
5711         /*
5712          * Force an interrupt so that we will call bge_link_upd
5713          * if needed and clear any pending link state attention.
5714          * Without this we are not getting any further interrupts
5715          * for link state changes and thus will not UP the link and
5716          * not be able to send in bge_start_locked. The only
5717          * way to get things working was to receive a packet and
5718          * get an RX intr.
5719          * bge_tick should help for fiber cards and we might not
5720          * need to do this here if BGE_FLAG_TBI is set but as
5721          * we poll for fiber anyway it should not harm.
5722          */
5723         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5724             sc->bge_flags & BGE_FLAG_5788)
5725                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5726         else
5727                 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5728
5729         return (0);
5730 }
5731
5732 /*
5733  * Report current media status.
5734  */
5735 static void
5736 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
5737 {
5738         struct bge_softc *sc = if_getsoftc(ifp);
5739         struct mii_data *mii;
5740
5741         BGE_LOCK(sc);
5742
5743         if ((if_getflags(ifp) & IFF_UP) == 0) {
5744                 BGE_UNLOCK(sc);
5745                 return;
5746         }
5747         if (sc->bge_flags & BGE_FLAG_TBI) {
5748                 ifmr->ifm_status = IFM_AVALID;
5749                 ifmr->ifm_active = IFM_ETHER;
5750                 if (CSR_READ_4(sc, BGE_MAC_STS) &
5751                     BGE_MACSTAT_TBI_PCS_SYNCHED)
5752                         ifmr->ifm_status |= IFM_ACTIVE;
5753                 else {
5754                         ifmr->ifm_active |= IFM_NONE;
5755                         BGE_UNLOCK(sc);
5756                         return;
5757                 }
5758                 ifmr->ifm_active |= IFM_1000_SX;
5759                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5760                         ifmr->ifm_active |= IFM_HDX;
5761                 else
5762                         ifmr->ifm_active |= IFM_FDX;
5763                 BGE_UNLOCK(sc);
5764                 return;
5765         }
5766
5767         mii = device_get_softc(sc->bge_miibus);
5768         mii_pollstat(mii);
5769         ifmr->ifm_active = mii->mii_media_active;
5770         ifmr->ifm_status = mii->mii_media_status;
5771
5772         BGE_UNLOCK(sc);
5773 }
5774
5775 static int
5776 bge_ioctl(if_t ifp, u_long command, caddr_t data)
5777 {
5778         struct bge_softc *sc = if_getsoftc(ifp);
5779         struct ifreq *ifr = (struct ifreq *) data;
5780         struct mii_data *mii;
5781         int flags, mask, error = 0;
5782
5783         switch (command) {
5784         case SIOCSIFMTU:
5785                 if (BGE_IS_JUMBO_CAPABLE(sc) ||
5786                     (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5787                         if (ifr->ifr_mtu < ETHERMIN ||
5788                             ifr->ifr_mtu > BGE_JUMBO_MTU) {
5789                                 error = EINVAL;
5790                                 break;
5791                         }
5792                 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5793                         error = EINVAL;
5794                         break;
5795                 }
5796                 BGE_LOCK(sc);
5797                 if (if_getmtu(ifp) != ifr->ifr_mtu) {
5798                         if_setmtu(ifp, ifr->ifr_mtu);
5799                         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5800                                 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5801                                 bge_init_locked(sc);
5802                         }
5803                 }
5804                 BGE_UNLOCK(sc);
5805                 break;
5806         case SIOCSIFFLAGS:
5807                 BGE_LOCK(sc);
5808                 if (if_getflags(ifp) & IFF_UP) {
5809                         /*
5810                          * If only the state of the PROMISC flag changed,
5811                          * then just use the 'set promisc mode' command
5812                          * instead of reinitializing the entire NIC. Doing
5813                          * a full re-init means reloading the firmware and
5814                          * waiting for it to start up, which may take a
5815                          * second or two.  Similarly for ALLMULTI.
5816                          */
5817                         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5818                                 flags = if_getflags(ifp) ^ sc->bge_if_flags;
5819                                 if (flags & IFF_PROMISC)
5820                                         bge_setpromisc(sc);
5821                                 if (flags & IFF_ALLMULTI)
5822                                         bge_setmulti(sc);
5823                         } else
5824                                 bge_init_locked(sc);
5825                 } else {
5826                         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5827                                 bge_stop(sc);
5828                         }
5829                 }
5830                 sc->bge_if_flags = if_getflags(ifp);
5831                 BGE_UNLOCK(sc);
5832                 error = 0;
5833                 break;
5834         case SIOCADDMULTI:
5835         case SIOCDELMULTI:
5836                 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5837                         BGE_LOCK(sc);
5838                         bge_setmulti(sc);
5839                         BGE_UNLOCK(sc);
5840                         error = 0;
5841                 }
5842                 break;
5843         case SIOCSIFMEDIA:
5844         case SIOCGIFMEDIA:
5845                 if (sc->bge_flags & BGE_FLAG_TBI) {
5846                         error = ifmedia_ioctl(ifp, ifr,
5847                             &sc->bge_ifmedia, command);
5848                 } else {
5849                         mii = device_get_softc(sc->bge_miibus);
5850                         error = ifmedia_ioctl(ifp, ifr,
5851                             &mii->mii_media, command);
5852                 }
5853                 break;
5854         case SIOCSIFCAP:
5855                 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
5856 #ifdef DEVICE_POLLING
5857                 if (mask & IFCAP_POLLING) {
5858                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
5859                                 error = ether_poll_register(bge_poll, ifp);
5860                                 if (error)
5861                                         return (error);
5862                                 BGE_LOCK(sc);
5863                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5864                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5865                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5866                                 if_setcapenablebit(ifp, IFCAP_POLLING, 0);
5867                                 BGE_UNLOCK(sc);
5868                         } else {
5869                                 error = ether_poll_deregister(ifp);
5870                                 /* Enable interrupt even in error case */
5871                                 BGE_LOCK(sc);
5872                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5873                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5874                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5875                                 if_setcapenablebit(ifp, 0, IFCAP_POLLING);
5876                                 BGE_UNLOCK(sc);
5877                         }
5878                 }
5879 #endif
5880                 if ((mask & IFCAP_TXCSUM) != 0 &&
5881                     (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
5882                         if_togglecapenable(ifp, IFCAP_TXCSUM);
5883                         if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
5884                                 if_sethwassistbits(ifp,
5885                                     sc->bge_csum_features, 0);
5886                         else
5887                                 if_sethwassistbits(ifp, 0,
5888                                     sc->bge_csum_features);
5889                 }
5890
5891                 if ((mask & IFCAP_RXCSUM) != 0 &&
5892                     (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
5893                         if_togglecapenable(ifp, IFCAP_RXCSUM);
5894
5895                 if ((mask & IFCAP_TSO4) != 0 &&
5896                     (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
5897                         if_togglecapenable(ifp, IFCAP_TSO4);
5898                         if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
5899                                 if_sethwassistbits(ifp, CSUM_TSO, 0);
5900                         else
5901                                 if_sethwassistbits(ifp, 0, CSUM_TSO);
5902                 }
5903
5904                 if (mask & IFCAP_VLAN_MTU) {
5905                         if_togglecapenable(ifp, IFCAP_VLAN_MTU);
5906                         if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5907                         bge_init(sc);
5908                 }
5909
5910                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5911                     (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
5912                         if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
5913                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5914                     (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
5915                         if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
5916                         if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
5917                                 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
5918                         BGE_LOCK(sc);
5919                         bge_setvlan(sc);
5920                         BGE_UNLOCK(sc);
5921                 }
5922 #ifdef VLAN_CAPABILITIES
5923                 if_vlancap(ifp);
5924 #endif
5925                 break;
5926         default:
5927                 error = ether_ioctl(ifp, command, data);
5928                 break;
5929         }
5930
5931         return (error);
5932 }
5933
5934 static void
5935 bge_watchdog(struct bge_softc *sc)
5936 {
5937         if_t ifp;
5938         uint32_t status;
5939
5940         BGE_LOCK_ASSERT(sc);
5941
5942         if (sc->bge_timer == 0 || --sc->bge_timer)
5943                 return;
5944
5945         /* If pause frames are active then don't reset the hardware. */
5946         if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5947                 status = CSR_READ_4(sc, BGE_RX_STS);
5948                 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5949                         /*
5950                          * If link partner has us in XOFF state then wait for
5951                          * the condition to clear.
5952                          */
5953                         CSR_WRITE_4(sc, BGE_RX_STS, status);
5954                         sc->bge_timer = BGE_TX_TIMEOUT;
5955                         return;
5956                 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5957                     (status & BGE_RXSTAT_RCVD_XON) != 0) {
5958                         /*
5959                          * If link partner has us in XOFF state then wait for
5960                          * the condition to clear.
5961                          */
5962                         CSR_WRITE_4(sc, BGE_RX_STS, status);
5963                         sc->bge_timer = BGE_TX_TIMEOUT;
5964                         return;
5965                 }
5966                 /*
5967                  * Any other condition is unexpected and the controller
5968                  * should be reset.
5969                  */
5970         }
5971
5972         ifp = sc->bge_ifp;
5973
5974         if_printf(ifp, "watchdog timeout -- resetting\n");
5975
5976         if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5977         bge_init_locked(sc);
5978
5979         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5980 }
5981
5982 static void
5983 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5984 {
5985         int i;
5986
5987         BGE_CLRBIT(sc, reg, bit);
5988
5989         for (i = 0; i < BGE_TIMEOUT; i++) {
5990                 if ((CSR_READ_4(sc, reg) & bit) == 0)
5991                         return;
5992                 DELAY(100);
5993         }
5994 }
5995
5996 /*
5997  * Stop the adapter and free any mbufs allocated to the
5998  * RX and TX lists.
5999  */
6000 static void
6001 bge_stop(struct bge_softc *sc)
6002 {
6003         if_t ifp;
6004
6005         BGE_LOCK_ASSERT(sc);
6006
6007         ifp = sc->bge_ifp;
6008
6009         callout_stop(&sc->bge_stat_ch);
6010
6011         /* Disable host interrupts. */
6012         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6013         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
6014
6015         /*
6016          * Tell firmware we're shutting down.
6017          */
6018         bge_stop_fw(sc);
6019         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6020
6021         /*
6022          * Disable all of the receiver blocks.
6023          */
6024         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6025         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6026         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6027         if (BGE_IS_5700_FAMILY(sc))
6028                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6029         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6030         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6031         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6032
6033         /*
6034          * Disable all of the transmit blocks.
6035          */
6036         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6037         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6038         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6039         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6040         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6041         if (BGE_IS_5700_FAMILY(sc))
6042                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6043         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6044
6045         /*
6046          * Shut down all of the memory managers and related
6047          * state machines.
6048          */
6049         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6050         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6051         if (BGE_IS_5700_FAMILY(sc))
6052                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6053
6054         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6055         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6056         if (!(BGE_IS_5705_PLUS(sc))) {
6057                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6058                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6059         }
6060         /* Update MAC statistics. */
6061         if (BGE_IS_5705_PLUS(sc))
6062                 bge_stats_update_regs(sc);
6063
6064         bge_reset(sc);
6065         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6066         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6067
6068         /*
6069          * Keep the ASF firmware running if up.
6070          */
6071         if (sc->bge_asf_mode & ASF_STACKUP)
6072                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6073         else
6074                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6075
6076         /* Free the RX lists. */
6077         bge_free_rx_ring_std(sc);
6078
6079         /* Free jumbo RX list. */
6080         if (BGE_IS_JUMBO_CAPABLE(sc))
6081                 bge_free_rx_ring_jumbo(sc);
6082
6083         /* Free TX buffers. */
6084         bge_free_tx_ring(sc);
6085
6086         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6087
6088         /* Clear MAC's link state (PHY may still have link UP). */
6089         if (bootverbose && sc->bge_link)
6090                 if_printf(sc->bge_ifp, "link DOWN\n");
6091         sc->bge_link = 0;
6092
6093         if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
6094 }
6095
6096 /*
6097  * Stop all chip I/O so that the kernel's probe routines don't
6098  * get confused by errant DMAs when rebooting.
6099  */
6100 static int
6101 bge_shutdown(device_t dev)
6102 {
6103         struct bge_softc *sc;
6104
6105         sc = device_get_softc(dev);
6106         BGE_LOCK(sc);
6107         bge_stop(sc);
6108         BGE_UNLOCK(sc);
6109
6110         return (0);
6111 }
6112
6113 static int
6114 bge_suspend(device_t dev)
6115 {
6116         struct bge_softc *sc;
6117
6118         sc = device_get_softc(dev);
6119         BGE_LOCK(sc);
6120         bge_stop(sc);
6121         BGE_UNLOCK(sc);
6122
6123         return (0);
6124 }
6125
6126 static int
6127 bge_resume(device_t dev)
6128 {
6129         struct bge_softc *sc;
6130         if_t ifp;
6131
6132         sc = device_get_softc(dev);
6133         BGE_LOCK(sc);
6134         ifp = sc->bge_ifp;
6135         if (if_getflags(ifp) & IFF_UP) {
6136                 bge_init_locked(sc);
6137                 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6138                         bge_start_locked(ifp);
6139         }
6140         BGE_UNLOCK(sc);
6141
6142         return (0);
6143 }
6144
6145 static void
6146 bge_link_upd(struct bge_softc *sc)
6147 {
6148         struct mii_data *mii;
6149         uint32_t link, status;
6150
6151         BGE_LOCK_ASSERT(sc);
6152
6153         /* Clear 'pending link event' flag. */
6154         sc->bge_link_evt = 0;
6155
6156         /*
6157          * Process link state changes.
6158          * Grrr. The link status word in the status block does
6159          * not work correctly on the BCM5700 rev AX and BX chips,
6160          * according to all available information. Hence, we have
6161          * to enable MII interrupts in order to properly obtain
6162          * async link changes. Unfortunately, this also means that
6163          * we have to read the MAC status register to detect link
6164          * changes, thereby adding an additional register access to
6165          * the interrupt handler.
6166          *
6167          * XXX: perhaps link state detection procedure used for
6168          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6169          */
6170
6171         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6172             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6173                 status = CSR_READ_4(sc, BGE_MAC_STS);
6174                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6175                         mii = device_get_softc(sc->bge_miibus);
6176                         mii_pollstat(mii);
6177                         if (!sc->bge_link &&
6178                             mii->mii_media_status & IFM_ACTIVE &&
6179                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6180                                 sc->bge_link++;
6181                                 if (bootverbose)
6182                                         if_printf(sc->bge_ifp, "link UP\n");
6183                         } else if (sc->bge_link &&
6184                             (!(mii->mii_media_status & IFM_ACTIVE) ||
6185                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6186                                 sc->bge_link = 0;
6187                                 if (bootverbose)
6188                                         if_printf(sc->bge_ifp, "link DOWN\n");
6189                         }
6190
6191                         /* Clear the interrupt. */
6192                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6193                             BGE_EVTENB_MI_INTERRUPT);
6194                         bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6195                             BRGPHY_MII_ISR);
6196                         bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6197                             BRGPHY_MII_IMR, BRGPHY_INTRS);
6198                 }
6199                 return;
6200         }
6201
6202         if (sc->bge_flags & BGE_FLAG_TBI) {
6203                 status = CSR_READ_4(sc, BGE_MAC_STS);
6204                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6205                         if (!sc->bge_link) {
6206                                 sc->bge_link++;
6207                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6208                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
6209                                             BGE_MACMODE_TBI_SEND_CFGS);
6210                                         DELAY(40);
6211                                 }
6212                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6213                                 if (bootverbose)
6214                                         if_printf(sc->bge_ifp, "link UP\n");
6215                                 if_link_state_change(sc->bge_ifp,
6216                                     LINK_STATE_UP);
6217                         }
6218                 } else if (sc->bge_link) {
6219                         sc->bge_link = 0;
6220                         if (bootverbose)
6221                                 if_printf(sc->bge_ifp, "link DOWN\n");
6222                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6223                 }
6224         } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6225                 /*
6226                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6227                  * in status word always set. Workaround this bug by reading
6228                  * PHY link status directly.
6229                  */
6230                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6231
6232                 if (link != sc->bge_link ||
6233                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6234                         mii = device_get_softc(sc->bge_miibus);
6235                         mii_pollstat(mii);
6236                         if (!sc->bge_link &&
6237                             mii->mii_media_status & IFM_ACTIVE &&
6238                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6239                                 sc->bge_link++;
6240                                 if (bootverbose)
6241                                         if_printf(sc->bge_ifp, "link UP\n");
6242                         } else if (sc->bge_link &&
6243                             (!(mii->mii_media_status & IFM_ACTIVE) ||
6244                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6245                                 sc->bge_link = 0;
6246                                 if (bootverbose)
6247                                         if_printf(sc->bge_ifp, "link DOWN\n");
6248                         }
6249                 }
6250         } else {
6251                 /*
6252                  * For controllers that call mii_tick, we have to poll
6253                  * link status.
6254                  */
6255                 mii = device_get_softc(sc->bge_miibus);
6256                 mii_pollstat(mii);
6257                 bge_miibus_statchg(sc->bge_dev);
6258         }
6259
6260         /* Disable MAC attention when link is up. */
6261         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6262             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6263             BGE_MACSTAT_LINK_CHANGED);
6264 }
6265
6266 static void
6267 bge_add_sysctls(struct bge_softc *sc)
6268 {
6269         struct sysctl_ctx_list *ctx;
6270         struct sysctl_oid_list *children;
6271         int unit;
6272
6273         ctx = device_get_sysctl_ctx(sc->bge_dev);
6274         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6275
6276 #ifdef BGE_REGISTER_DEBUG
6277         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6278             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6279             "Debug Information");
6280
6281         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6282             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6283             "MAC Register Read");
6284
6285         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6286             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6287             "APE Register Read");
6288
6289         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6290             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6291             "Memory Read");
6292
6293 #endif
6294
6295         unit = device_get_unit(sc->bge_dev);
6296         /*
6297          * A common design characteristic for many Broadcom client controllers
6298          * is that they only support a single outstanding DMA read operation
6299          * on the PCIe bus. This means that it will take twice as long to fetch
6300          * a TX frame that is split into header and payload buffers as it does
6301          * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6302          * these controllers, coalescing buffers to reduce the number of memory
6303          * reads is effective way to get maximum performance(about 940Mbps).
6304          * Without collapsing TX buffers the maximum TCP bulk transfer
6305          * performance is about 850Mbps. However forcing coalescing mbufs
6306          * consumes a lot of CPU cycles, so leave it off by default.
6307          */
6308         sc->bge_forced_collapse = 0;
6309         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6310             CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
6311             "Number of fragmented TX buffers of a frame allowed before "
6312             "forced collapsing");
6313
6314         sc->bge_msi = 1;
6315         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6316             CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
6317
6318         /*
6319          * It seems all Broadcom controllers have a bug that can generate UDP
6320          * datagrams with checksum value 0 when TX UDP checksum offloading is
6321          * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6322          * Even though the probability of generating such UDP datagrams is
6323          * low, I don't want to see FreeBSD boxes to inject such datagrams
6324          * into network so disable UDP checksum offloading by default.  Users
6325          * still override this behavior by setting a sysctl variable,
6326          * dev.bge.0.forced_udpcsum.
6327          */
6328         sc->bge_forced_udpcsum = 0;
6329         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6330             CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
6331             "Enable UDP checksum offloading even if controller can "
6332             "generate UDP checksum value 0");
6333
6334         if (BGE_IS_5705_PLUS(sc))
6335                 bge_add_sysctl_stats_regs(sc, ctx, children);
6336         else
6337                 bge_add_sysctl_stats(sc, ctx, children);
6338 }
6339
6340 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6341         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6342             sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6343             desc)
6344
6345 static void
6346 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6347     struct sysctl_oid_list *parent)
6348 {
6349         struct sysctl_oid *tree;
6350         struct sysctl_oid_list *children, *schildren;
6351
6352         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6353             NULL, "BGE Statistics");
6354         schildren = children = SYSCTL_CHILDREN(tree);
6355         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6356             children, COSFramesDroppedDueToFilters,
6357             "FramesDroppedDueToFilters");
6358         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6359             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6360         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6361             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6362         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6363             children, nicNoMoreRxBDs, "NoMoreRxBDs");
6364         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6365             children, ifInDiscards, "InputDiscards");
6366         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6367             children, ifInErrors, "InputErrors");
6368         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6369             children, nicRecvThresholdHit, "RecvThresholdHit");
6370         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6371             children, nicDmaReadQueueFull, "DmaReadQueueFull");
6372         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6373             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6374         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6375             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6376         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6377             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6378         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6379             children, nicRingStatusUpdate, "RingStatusUpdate");
6380         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6381             children, nicInterrupts, "Interrupts");
6382         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6383             children, nicAvoidedInterrupts, "AvoidedInterrupts");
6384         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6385             children, nicSendThresholdHit, "SendThresholdHit");
6386
6387         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6388             NULL, "BGE RX Statistics");
6389         children = SYSCTL_CHILDREN(tree);
6390         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6391             children, rxstats.ifHCInOctets, "ifHCInOctets");
6392         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6393             children, rxstats.etherStatsFragments, "Fragments");
6394         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6395             children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6396         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6397             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6398         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6399             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6400         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6401             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6402         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6403             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6404         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6405             children, rxstats.xoffPauseFramesReceived,
6406             "xoffPauseFramesReceived");
6407         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6408             children, rxstats.macControlFramesReceived,
6409             "ControlFramesReceived");
6410         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6411             children, rxstats.xoffStateEntered, "xoffStateEntered");
6412         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6413             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6414         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6415             children, rxstats.etherStatsJabbers, "Jabbers");
6416         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6417             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6418         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6419             children, rxstats.inRangeLengthError, "inRangeLengthError");
6420         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6421             children, rxstats.outRangeLengthError, "outRangeLengthError");
6422
6423         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6424             NULL, "BGE TX Statistics");
6425         children = SYSCTL_CHILDREN(tree);
6426         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6427             children, txstats.ifHCOutOctets, "ifHCOutOctets");
6428         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6429             children, txstats.etherStatsCollisions, "Collisions");
6430         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6431             children, txstats.outXonSent, "XonSent");
6432         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6433             children, txstats.outXoffSent, "XoffSent");
6434         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6435             children, txstats.flowControlDone, "flowControlDone");
6436         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6437             children, txstats.dot3StatsInternalMacTransmitErrors,
6438             "InternalMacTransmitErrors");
6439         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6440             children, txstats.dot3StatsSingleCollisionFrames,
6441             "SingleCollisionFrames");
6442         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6443             children, txstats.dot3StatsMultipleCollisionFrames,
6444             "MultipleCollisionFrames");
6445         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6446             children, txstats.dot3StatsDeferredTransmissions,
6447             "DeferredTransmissions");
6448         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6449             children, txstats.dot3StatsExcessiveCollisions,
6450             "ExcessiveCollisions");
6451         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6452             children, txstats.dot3StatsLateCollisions,
6453             "LateCollisions");
6454         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6455             children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6456         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6457             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6458         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6459             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6460         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6461             children, txstats.dot3StatsCarrierSenseErrors,
6462             "CarrierSenseErrors");
6463         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6464             children, txstats.ifOutDiscards, "Discards");
6465         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6466             children, txstats.ifOutErrors, "Errors");
6467 }
6468
6469 #undef BGE_SYSCTL_STAT
6470
6471 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
6472             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6473
6474 static void
6475 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6476     struct sysctl_oid_list *parent)
6477 {
6478         struct sysctl_oid *tree;
6479         struct sysctl_oid_list *child, *schild;
6480         struct bge_mac_stats *stats;
6481
6482         stats = &sc->bge_mac_stats;
6483         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6484             NULL, "BGE Statistics");
6485         schild = child = SYSCTL_CHILDREN(tree);
6486         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6487             &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6488         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6489             &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6490         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6491             &stats->DmaWriteHighPriQueueFull,
6492             "NIC DMA Write High Priority Queue Full");
6493         BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6494             &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6495         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6496             &stats->InputDiscards, "Discarded Input Frames");
6497         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6498             &stats->InputErrors, "Input Errors");
6499         BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6500             &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6501
6502         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6503             NULL, "BGE RX Statistics");
6504         child = SYSCTL_CHILDREN(tree);
6505         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6506             &stats->ifHCInOctets, "Inbound Octets");
6507         BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6508             &stats->etherStatsFragments, "Fragments");
6509         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6510             &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6511         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6512             &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6513         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6514             &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6515         BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6516             &stats->dot3StatsFCSErrors, "FCS Errors");
6517         BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6518             &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6519         BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6520             &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6521         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6522             &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6523         BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6524             &stats->macControlFramesReceived, "MAC Control Frames Received");
6525         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6526             &stats->xoffStateEntered, "XOFF State Entered");
6527         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6528             &stats->dot3StatsFramesTooLong, "Frames Too Long");
6529         BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6530             &stats->etherStatsJabbers, "Jabbers");
6531         BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6532             &stats->etherStatsUndersizePkts, "Undersized Packets");
6533
6534         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6535             NULL, "BGE TX Statistics");
6536         child = SYSCTL_CHILDREN(tree);
6537         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6538             &stats->ifHCOutOctets, "Outbound Octets");
6539         BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6540             &stats->etherStatsCollisions, "TX Collisions");
6541         BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6542             &stats->outXonSent, "XON Sent");
6543         BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6544             &stats->outXoffSent, "XOFF Sent");
6545         BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6546             &stats->dot3StatsInternalMacTransmitErrors,
6547             "Internal MAC TX Errors");
6548         BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6549             &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6550         BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6551             &stats->dot3StatsMultipleCollisionFrames,
6552             "Multiple Collision Frames");
6553         BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6554             &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6555         BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6556             &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6557         BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6558             &stats->dot3StatsLateCollisions, "Late Collisions");
6559         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6560             &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6561         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6562             &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6563         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6564             &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6565 }
6566
6567 #undef  BGE_SYSCTL_STAT_ADD64
6568
6569 static int
6570 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6571 {
6572         struct bge_softc *sc;
6573         uint32_t result;
6574         int offset;
6575
6576         sc = (struct bge_softc *)arg1;
6577         offset = arg2;
6578         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6579             offsetof(bge_hostaddr, bge_addr_lo));
6580         return (sysctl_handle_int(oidp, &result, 0, req));
6581 }
6582
6583 #ifdef BGE_REGISTER_DEBUG
6584 static int
6585 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6586 {
6587         struct bge_softc *sc;
6588         uint16_t *sbdata;
6589         int error, result, sbsz;
6590         int i, j;
6591
6592         result = -1;
6593         error = sysctl_handle_int(oidp, &result, 0, req);
6594         if (error || (req->newptr == NULL))
6595                 return (error);
6596
6597         if (result == 1) {
6598                 sc = (struct bge_softc *)arg1;
6599
6600                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6601                     sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6602                         sbsz = BGE_STATUS_BLK_SZ;
6603                 else
6604                         sbsz = 32;
6605                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6606                 printf("Status Block:\n");
6607                 BGE_LOCK(sc);
6608                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6609                     sc->bge_cdata.bge_status_map,
6610                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6611                 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6612                         printf("%06x:", i);
6613                         for (j = 0; j < 8; j++)
6614                                 printf(" %04x", sbdata[i++]);
6615                         printf("\n");
6616                 }
6617
6618                 printf("Registers:\n");
6619                 for (i = 0x800; i < 0xA00; ) {
6620                         printf("%06x:", i);
6621                         for (j = 0; j < 8; j++) {
6622                                 printf(" %08x", CSR_READ_4(sc, i));
6623                                 i += 4;
6624                         }
6625                         printf("\n");
6626                 }
6627                 BGE_UNLOCK(sc);
6628
6629                 printf("Hardware Flags:\n");
6630                 if (BGE_IS_5717_PLUS(sc))
6631                         printf(" - 5717 Plus\n");
6632                 if (BGE_IS_5755_PLUS(sc))
6633                         printf(" - 5755 Plus\n");
6634                 if (BGE_IS_575X_PLUS(sc))
6635                         printf(" - 575X Plus\n");
6636                 if (BGE_IS_5705_PLUS(sc))
6637                         printf(" - 5705 Plus\n");
6638                 if (BGE_IS_5714_FAMILY(sc))
6639                         printf(" - 5714 Family\n");
6640                 if (BGE_IS_5700_FAMILY(sc))
6641                         printf(" - 5700 Family\n");
6642                 if (sc->bge_flags & BGE_FLAG_JUMBO)
6643                         printf(" - Supports Jumbo Frames\n");
6644                 if (sc->bge_flags & BGE_FLAG_PCIX)
6645                         printf(" - PCI-X Bus\n");
6646                 if (sc->bge_flags & BGE_FLAG_PCIE)
6647                         printf(" - PCI Express Bus\n");
6648                 if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6649                         printf(" - No 3 LEDs\n");
6650                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6651                         printf(" - RX Alignment Bug\n");
6652         }
6653
6654         return (error);
6655 }
6656
6657 static int
6658 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6659 {
6660         struct bge_softc *sc;
6661         int error;
6662         uint16_t result;
6663         uint32_t val;
6664
6665         result = -1;
6666         error = sysctl_handle_int(oidp, &result, 0, req);
6667         if (error || (req->newptr == NULL))
6668                 return (error);
6669
6670         if (result < 0x8000) {
6671                 sc = (struct bge_softc *)arg1;
6672                 val = CSR_READ_4(sc, result);
6673                 printf("reg 0x%06X = 0x%08X\n", result, val);
6674         }
6675
6676         return (error);
6677 }
6678
6679 static int
6680 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6681 {
6682         struct bge_softc *sc;
6683         int error;
6684         uint16_t result;
6685         uint32_t val;
6686
6687         result = -1;
6688         error = sysctl_handle_int(oidp, &result, 0, req);
6689         if (error || (req->newptr == NULL))
6690                 return (error);
6691
6692         if (result < 0x8000) {
6693                 sc = (struct bge_softc *)arg1;
6694                 val = APE_READ_4(sc, result);
6695                 printf("reg 0x%06X = 0x%08X\n", result, val);
6696         }
6697
6698         return (error);
6699 }
6700
6701 static int
6702 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6703 {
6704         struct bge_softc *sc;
6705         int error;
6706         uint16_t result;
6707         uint32_t val;
6708
6709         result = -1;
6710         error = sysctl_handle_int(oidp, &result, 0, req);
6711         if (error || (req->newptr == NULL))
6712                 return (error);
6713
6714         if (result < 0x8000) {
6715                 sc = (struct bge_softc *)arg1;
6716                 val = bge_readmem_ind(sc, result);
6717                 printf("mem 0x%06X = 0x%08X\n", result, val);
6718         }
6719
6720         return (error);
6721 }
6722 #endif
6723
6724 static int
6725 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6726 {
6727 #ifdef __sparc64__
6728         if (sc->bge_flags & BGE_FLAG_EADDR)
6729                 return (1);
6730
6731         OF_getetheraddr(sc->bge_dev, ether_addr);
6732         return (0);
6733 #else
6734         return (1);
6735 #endif
6736 }
6737
6738 static int
6739 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6740 {
6741         uint32_t mac_addr;
6742
6743         mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6744         if ((mac_addr >> 16) == 0x484b) {
6745                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6746                 ether_addr[1] = (uint8_t)mac_addr;
6747                 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6748                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6749                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6750                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6751                 ether_addr[5] = (uint8_t)mac_addr;
6752                 return (0);
6753         }
6754         return (1);
6755 }
6756
6757 static int
6758 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6759 {
6760         int mac_offset = BGE_EE_MAC_OFFSET;
6761
6762         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6763                 mac_offset = BGE_EE_MAC_OFFSET_5906;
6764
6765         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6766             ETHER_ADDR_LEN));
6767 }
6768
6769 static int
6770 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6771 {
6772
6773         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6774                 return (1);
6775
6776         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6777            ETHER_ADDR_LEN));
6778 }
6779
6780 static int
6781 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6782 {
6783         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6784                 /* NOTE: Order is critical */
6785                 bge_get_eaddr_fw,
6786                 bge_get_eaddr_mem,
6787                 bge_get_eaddr_nvram,
6788                 bge_get_eaddr_eeprom,
6789                 NULL
6790         };
6791         const bge_eaddr_fcn_t *func;
6792
6793         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6794                 if ((*func)(sc, eaddr) == 0)
6795                         break;
6796         }
6797         return (*func == NULL ? ENXIO : 0);
6798 }
6799
6800 static uint64_t
6801 bge_get_counter(if_t ifp, ift_counter cnt)
6802 {
6803         struct bge_softc *sc;
6804         struct bge_mac_stats *stats;
6805
6806         sc = if_getsoftc(ifp);
6807         if (!BGE_IS_5705_PLUS(sc))
6808                 return (if_get_counter_default(ifp, cnt));
6809         stats = &sc->bge_mac_stats;
6810
6811         switch (cnt) {
6812         case IFCOUNTER_IERRORS:
6813                 return (stats->NoMoreRxBDs + stats->InputDiscards +
6814                     stats->InputErrors);
6815         case IFCOUNTER_COLLISIONS:
6816                 return (stats->etherStatsCollisions);
6817         default:
6818                 return (if_get_counter_default(ifp, cnt));
6819         }
6820 }
6821
6822 #ifdef NETDUMP
6823 static void
6824 bge_netdump_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
6825 {
6826         struct bge_softc *sc;
6827
6828         sc = if_getsoftc(ifp);
6829         BGE_LOCK(sc);
6830         *nrxr = sc->bge_return_ring_cnt;
6831         *ncl = NETDUMP_MAX_IN_FLIGHT;
6832         if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 &&
6833             (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
6834             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)))
6835                 *clsize = MJUM9BYTES;
6836         else
6837                 *clsize = MCLBYTES;
6838         BGE_UNLOCK(sc);
6839 }
6840
6841 static void
6842 bge_netdump_event(if_t ifp __unused, enum netdump_ev event __unused)
6843 {
6844 }
6845
6846 static int
6847 bge_netdump_transmit(if_t ifp, struct mbuf *m)
6848 {
6849         struct bge_softc *sc;
6850         uint32_t prodidx;
6851         int error;
6852
6853         sc = if_getsoftc(ifp);
6854         if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6855             IFF_DRV_RUNNING)
6856                 return (1);
6857
6858         prodidx = sc->bge_tx_prodidx;
6859         error = bge_encap(sc, &m, &prodidx);
6860         if (error == 0)
6861                 bge_start_tx(sc, prodidx);
6862         return (error);
6863 }
6864
6865 static int
6866 bge_netdump_poll(if_t ifp, int count)
6867 {
6868         struct bge_softc *sc;
6869         uint32_t rx_prod, tx_cons;
6870
6871         sc = if_getsoftc(ifp);
6872         if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6873             IFF_DRV_RUNNING)
6874                 return (1);
6875
6876         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6877             sc->bge_cdata.bge_status_map,
6878             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6879
6880         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
6881         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
6882
6883         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6884             sc->bge_cdata.bge_status_map,
6885             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6886
6887         (void)bge_rxeof(sc, rx_prod, 0);
6888         bge_txeof(sc, tx_cons);
6889         return (0);
6890 }
6891 #endif /* NETDUMP */