]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/bge/if_bge.c
Upgrade our copy of llvm/clang to 3.3 release.
[FreeBSD/FreeBSD.git] / sys / dev / bge / if_bge.c
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 /*
38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90
91 #include <net/bpf.h>
92
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120
121 #include <dev/bge/if_bgereg.h>
122
123 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
124 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140         uint16_t        bge_vid;
141         uint16_t        bge_did;
142 } bge_devs[] = {
143         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
144         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
145
146         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
147         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
148         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
149
150         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
151
152         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5717 },
173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5718 },
174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5719 },
175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5723 },
179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5756 },
194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761 },
195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761E },
196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761S },
197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761SE },
198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5764 },
199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
201         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
202         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
203         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5784 },
204         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785F },
205         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785G },
206         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
207         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
208         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787F },
209         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
210         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
211         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
212         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
213         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
214         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
215         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
216         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
217         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57760 },
218         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57761 },
219         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57762 },
220         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57765 },
221         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57766 },
222         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57780 },
223         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57781 },
224         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57785 },
225         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57788 },
226         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57790 },
227         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57791 },
228         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57795 },
229
230         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
231
232         { TC_VENDORID,          TC_DEVICEID_3C996 },
233
234         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE4 },
235         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE5 },
236         { FJTSU_VENDORID,       FJTSU_DEVICEID_PP250450 },
237
238         { 0, 0 }
239 };
240
241 static const struct bge_vendor {
242         uint16_t        v_id;
243         const char      *v_name;
244 } bge_vendors[] = {
245         { ALTEON_VENDORID,      "Alteon" },
246         { ALTIMA_VENDORID,      "Altima" },
247         { APPLE_VENDORID,       "Apple" },
248         { BCOM_VENDORID,        "Broadcom" },
249         { SK_VENDORID,          "SysKonnect" },
250         { TC_VENDORID,          "3Com" },
251         { FJTSU_VENDORID,       "Fujitsu" },
252
253         { 0, NULL }
254 };
255
256 static const struct bge_revision {
257         uint32_t        br_chipid;
258         const char      *br_name;
259 } bge_revisions[] = {
260         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
261         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
262         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
263         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
264         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
265         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
266         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
267         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
268         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
269         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
270         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
271         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
272         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
273         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
274         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
275         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
276         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
277         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
278         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
279         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
280         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
281         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
282         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
283         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
284         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
285         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
286         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
287         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
288         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
289         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
290         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
291         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
292         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
293         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
294         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
295         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
296         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
297         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
298         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
299         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
300         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
301         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
302         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
303         { BGE_CHIPID_BCM5717_A0,        "BCM5717 A0" },
304         { BGE_CHIPID_BCM5717_B0,        "BCM5717 B0" },
305         { BGE_CHIPID_BCM5719_A0,        "BCM5719 A0" },
306         { BGE_CHIPID_BCM5720_A0,        "BCM5720 A0" },
307         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
308         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
309         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
310         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
311         { BGE_CHIPID_BCM5761_A0,        "BCM5761 A0" },
312         { BGE_CHIPID_BCM5761_A1,        "BCM5761 A1" },
313         { BGE_CHIPID_BCM5784_A0,        "BCM5784 A0" },
314         { BGE_CHIPID_BCM5784_A1,        "BCM5784 A1" },
315         /* 5754 and 5787 share the same ASIC ID */
316         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" },
317         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
318         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
319         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
320         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
321         { BGE_CHIPID_BCM57765_A0,       "BCM57765 A0" },
322         { BGE_CHIPID_BCM57765_B0,       "BCM57765 B0" },
323         { BGE_CHIPID_BCM57780_A0,       "BCM57780 A0" },
324         { BGE_CHIPID_BCM57780_A1,       "BCM57780 A1" },
325
326         { 0, NULL }
327 };
328
329 /*
330  * Some defaults for major revisions, so that newer steppings
331  * that we don't know about have a shot at working.
332  */
333 static const struct bge_revision bge_majorrevs[] = {
334         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
335         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
336         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
337         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
338         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
339         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
340         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
341         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
342         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
343         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
344         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
345         { BGE_ASICREV_BCM5761,          "unknown BCM5761" },
346         { BGE_ASICREV_BCM5784,          "unknown BCM5784" },
347         { BGE_ASICREV_BCM5785,          "unknown BCM5785" },
348         /* 5754 and 5787 share the same ASIC ID */
349         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
350         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
351         { BGE_ASICREV_BCM57765,         "unknown BCM57765" },
352         { BGE_ASICREV_BCM57766,         "unknown BCM57766" },
353         { BGE_ASICREV_BCM57780,         "unknown BCM57780" },
354         { BGE_ASICREV_BCM5717,          "unknown BCM5717" },
355         { BGE_ASICREV_BCM5719,          "unknown BCM5719" },
356         { BGE_ASICREV_BCM5720,          "unknown BCM5720" },
357
358         { 0, NULL }
359 };
360
361 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
362 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
363 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
364 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
365 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
366 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
367 #define BGE_IS_5717_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
368 #define BGE_IS_57765_PLUS(sc)           ((sc)->bge_flags & BGE_FLAG_57765_PLUS)
369
370 static uint32_t bge_chipid(device_t);
371 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
372 static const struct bge_revision * bge_lookup_rev(uint32_t);
373
374 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
375
376 static int bge_probe(device_t);
377 static int bge_attach(device_t);
378 static int bge_detach(device_t);
379 static int bge_suspend(device_t);
380 static int bge_resume(device_t);
381 static void bge_release_resources(struct bge_softc *);
382 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
383 static int bge_dma_alloc(struct bge_softc *);
384 static void bge_dma_free(struct bge_softc *);
385 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
386     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
387
388 static void bge_devinfo(struct bge_softc *);
389 static int bge_mbox_reorder(struct bge_softc *);
390
391 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
392 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
393 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
394 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
395 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
396
397 static void bge_txeof(struct bge_softc *, uint16_t);
398 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
399 static int bge_rxeof(struct bge_softc *, uint16_t, int);
400
401 static void bge_asf_driver_up (struct bge_softc *);
402 static void bge_tick(void *);
403 static void bge_stats_clear_regs(struct bge_softc *);
404 static void bge_stats_update(struct bge_softc *);
405 static void bge_stats_update_regs(struct bge_softc *);
406 static struct mbuf *bge_check_short_dma(struct mbuf *);
407 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
408     uint16_t *, uint16_t *);
409 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
410
411 static void bge_intr(void *);
412 static int bge_msi_intr(void *);
413 static void bge_intr_task(void *, int);
414 static void bge_start_locked(struct ifnet *);
415 static void bge_start(struct ifnet *);
416 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
417 static void bge_init_locked(struct bge_softc *);
418 static void bge_init(void *);
419 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
420 static void bge_stop(struct bge_softc *);
421 static void bge_watchdog(struct bge_softc *);
422 static int bge_shutdown(device_t);
423 static int bge_ifmedia_upd_locked(struct ifnet *);
424 static int bge_ifmedia_upd(struct ifnet *);
425 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
426
427 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
428 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
429
430 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
431 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
432
433 static void bge_setpromisc(struct bge_softc *);
434 static void bge_setmulti(struct bge_softc *);
435 static void bge_setvlan(struct bge_softc *);
436
437 static __inline void bge_rxreuse_std(struct bge_softc *, int);
438 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
439 static int bge_newbuf_std(struct bge_softc *, int);
440 static int bge_newbuf_jumbo(struct bge_softc *, int);
441 static int bge_init_rx_ring_std(struct bge_softc *);
442 static void bge_free_rx_ring_std(struct bge_softc *);
443 static int bge_init_rx_ring_jumbo(struct bge_softc *);
444 static void bge_free_rx_ring_jumbo(struct bge_softc *);
445 static void bge_free_tx_ring(struct bge_softc *);
446 static int bge_init_tx_ring(struct bge_softc *);
447
448 static int bge_chipinit(struct bge_softc *);
449 static int bge_blockinit(struct bge_softc *);
450 static uint32_t bge_dma_swap_options(struct bge_softc *);
451
452 static int bge_has_eaddr(struct bge_softc *);
453 static uint32_t bge_readmem_ind(struct bge_softc *, int);
454 static void bge_writemem_ind(struct bge_softc *, int, int);
455 static void bge_writembx(struct bge_softc *, int, int);
456 #ifdef notdef
457 static uint32_t bge_readreg_ind(struct bge_softc *, int);
458 #endif
459 static void bge_writemem_direct(struct bge_softc *, int, int);
460 static void bge_writereg_ind(struct bge_softc *, int, int);
461
462 static int bge_miibus_readreg(device_t, int, int);
463 static int bge_miibus_writereg(device_t, int, int, int);
464 static void bge_miibus_statchg(device_t);
465 #ifdef DEVICE_POLLING
466 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
467 #endif
468
469 #define BGE_RESET_SHUTDOWN      0
470 #define BGE_RESET_START         1
471 #define BGE_RESET_SUSPEND       2
472 static void bge_sig_post_reset(struct bge_softc *, int);
473 static void bge_sig_legacy(struct bge_softc *, int);
474 static void bge_sig_pre_reset(struct bge_softc *, int);
475 static void bge_stop_fw(struct bge_softc *);
476 static int bge_reset(struct bge_softc *);
477 static void bge_link_upd(struct bge_softc *);
478
479 static void bge_ape_lock_init(struct bge_softc *);
480 static void bge_ape_read_fw_ver(struct bge_softc *);
481 static int bge_ape_lock(struct bge_softc *, int);
482 static void bge_ape_unlock(struct bge_softc *, int);
483 static void bge_ape_send_event(struct bge_softc *, uint32_t);
484 static void bge_ape_driver_state_change(struct bge_softc *, int);
485
486 /*
487  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
488  * leak information to untrusted users.  It is also known to cause alignment
489  * traps on certain architectures.
490  */
491 #ifdef BGE_REGISTER_DEBUG
492 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
493 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
494 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
495 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
496 #endif
497 static void bge_add_sysctls(struct bge_softc *);
498 static void bge_add_sysctl_stats_regs(struct bge_softc *,
499     struct sysctl_ctx_list *, struct sysctl_oid_list *);
500 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
501     struct sysctl_oid_list *);
502 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
503
504 static device_method_t bge_methods[] = {
505         /* Device interface */
506         DEVMETHOD(device_probe,         bge_probe),
507         DEVMETHOD(device_attach,        bge_attach),
508         DEVMETHOD(device_detach,        bge_detach),
509         DEVMETHOD(device_shutdown,      bge_shutdown),
510         DEVMETHOD(device_suspend,       bge_suspend),
511         DEVMETHOD(device_resume,        bge_resume),
512
513         /* MII interface */
514         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
515         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
516         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
517
518         DEVMETHOD_END
519 };
520
521 static driver_t bge_driver = {
522         "bge",
523         bge_methods,
524         sizeof(struct bge_softc)
525 };
526
527 static devclass_t bge_devclass;
528
529 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
530 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
531
532 static int bge_allow_asf = 1;
533
534 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
535
536 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
537 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
538         "Allow ASF mode if available");
539
540 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
541 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
542 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
543 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
544 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
545
546 static int
547 bge_has_eaddr(struct bge_softc *sc)
548 {
549 #ifdef __sparc64__
550         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
551         device_t dev;
552         uint32_t subvendor;
553
554         dev = sc->bge_dev;
555
556         /*
557          * The on-board BGEs found in sun4u machines aren't fitted with
558          * an EEPROM which means that we have to obtain the MAC address
559          * via OFW and that some tests will always fail.  We distinguish
560          * such BGEs by the subvendor ID, which also has to be obtained
561          * from OFW instead of the PCI configuration space as the latter
562          * indicates Broadcom as the subvendor of the netboot interface.
563          * For early Blade 1500 and 2500 we even have to check the OFW
564          * device path as the subvendor ID always defaults to Broadcom
565          * there.
566          */
567         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
568             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
569             (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
570                 return (0);
571         memset(buf, 0, sizeof(buf));
572         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
573                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
574                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
575                         return (0);
576                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
577                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
578                         return (0);
579         }
580 #endif
581         return (1);
582 }
583
584 static uint32_t
585 bge_readmem_ind(struct bge_softc *sc, int off)
586 {
587         device_t dev;
588         uint32_t val;
589
590         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
591             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
592                 return (0);
593
594         dev = sc->bge_dev;
595
596         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
597         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
598         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
599         return (val);
600 }
601
602 static void
603 bge_writemem_ind(struct bge_softc *sc, int off, int val)
604 {
605         device_t dev;
606
607         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
608             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
609                 return;
610
611         dev = sc->bge_dev;
612
613         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
614         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
615         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
616 }
617
618 #ifdef notdef
619 static uint32_t
620 bge_readreg_ind(struct bge_softc *sc, int off)
621 {
622         device_t dev;
623
624         dev = sc->bge_dev;
625
626         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
627         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
628 }
629 #endif
630
631 static void
632 bge_writereg_ind(struct bge_softc *sc, int off, int val)
633 {
634         device_t dev;
635
636         dev = sc->bge_dev;
637
638         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
639         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
640 }
641
642 static void
643 bge_writemem_direct(struct bge_softc *sc, int off, int val)
644 {
645         CSR_WRITE_4(sc, off, val);
646 }
647
648 static void
649 bge_writembx(struct bge_softc *sc, int off, int val)
650 {
651         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
652                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
653
654         CSR_WRITE_4(sc, off, val);
655         if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
656                 CSR_READ_4(sc, off);
657 }
658
659 /*
660  * Clear all stale locks and select the lock for this driver instance.
661  */
662 static void
663 bge_ape_lock_init(struct bge_softc *sc)
664 {
665         uint32_t bit, regbase;
666         int i;
667
668         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
669                 regbase = BGE_APE_LOCK_GRANT;
670         else
671                 regbase = BGE_APE_PER_LOCK_GRANT;
672
673         /* Clear any stale locks. */
674         for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
675                 switch (i) {
676                 case BGE_APE_LOCK_PHY0:
677                 case BGE_APE_LOCK_PHY1:
678                 case BGE_APE_LOCK_PHY2:
679                 case BGE_APE_LOCK_PHY3:
680                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
681                         break;
682                 default:
683                         if (sc->bge_func_addr == 0)
684                                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
685                         else
686                                 bit = (1 << sc->bge_func_addr);
687                 }
688                 APE_WRITE_4(sc, regbase + 4 * i, bit);
689         }
690
691         /* Select the PHY lock based on the device's function number. */
692         switch (sc->bge_func_addr) {
693         case 0:
694                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
695                 break;
696         case 1:
697                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
698                 break;
699         case 2:
700                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
701                 break;
702         case 3:
703                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
704                 break;
705         default:
706                 device_printf(sc->bge_dev,
707                     "PHY lock not supported on this function\n");
708         }
709 }
710
711 /*
712  * Check for APE firmware, set flags, and print version info.
713  */
714 static void
715 bge_ape_read_fw_ver(struct bge_softc *sc)
716 {
717         const char *fwtype;
718         uint32_t apedata, features;
719
720         /* Check for a valid APE signature in shared memory. */
721         apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
722         if (apedata != BGE_APE_SEG_SIG_MAGIC) {
723                 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
724                 return;
725         }
726
727         /* Check if APE firmware is running. */
728         apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
729         if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
730                 device_printf(sc->bge_dev, "APE signature found "
731                     "but FW status not ready! 0x%08x\n", apedata);
732                 return;
733         }
734
735         sc->bge_mfw_flags |= BGE_MFW_ON_APE;
736
737         /* Fetch the APE firwmare type and version. */
738         apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
739         features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
740         if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
741                 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
742                 fwtype = "NCSI";
743         } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
744                 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
745                 fwtype = "DASH";
746         } else
747                 fwtype = "UNKN";
748
749         /* Print the APE firmware version. */
750         device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
751             fwtype,
752             (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
753             (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
754             (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
755             (apedata & BGE_APE_FW_VERSION_BLDMSK));
756 }
757
758 static int
759 bge_ape_lock(struct bge_softc *sc, int locknum)
760 {
761         uint32_t bit, gnt, req, status;
762         int i, off;
763
764         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
765                 return (0);
766
767         /* Lock request/grant registers have different bases. */
768         if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
769                 req = BGE_APE_LOCK_REQ;
770                 gnt = BGE_APE_LOCK_GRANT;
771         } else {
772                 req = BGE_APE_PER_LOCK_REQ;
773                 gnt = BGE_APE_PER_LOCK_GRANT;
774         }
775
776         off = 4 * locknum;
777
778         switch (locknum) {
779         case BGE_APE_LOCK_GPIO:
780                 /* Lock required when using GPIO. */
781                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
782                         return (0);
783                 if (sc->bge_func_addr == 0)
784                         bit = BGE_APE_LOCK_REQ_DRIVER0;
785                 else
786                         bit = (1 << sc->bge_func_addr);
787                 break;
788         case BGE_APE_LOCK_GRC:
789                 /* Lock required to reset the device. */
790                 if (sc->bge_func_addr == 0)
791                         bit = BGE_APE_LOCK_REQ_DRIVER0;
792                 else
793                         bit = (1 << sc->bge_func_addr);
794                 break;
795         case BGE_APE_LOCK_MEM:
796                 /* Lock required when accessing certain APE memory. */
797                 if (sc->bge_func_addr == 0)
798                         bit = BGE_APE_LOCK_REQ_DRIVER0;
799                 else
800                         bit = (1 << sc->bge_func_addr);
801                 break;
802         case BGE_APE_LOCK_PHY0:
803         case BGE_APE_LOCK_PHY1:
804         case BGE_APE_LOCK_PHY2:
805         case BGE_APE_LOCK_PHY3:
806                 /* Lock required when accessing PHYs. */
807                 bit = BGE_APE_LOCK_REQ_DRIVER0;
808                 break;
809         default:
810                 return (EINVAL);
811         }
812
813         /* Request a lock. */
814         APE_WRITE_4(sc, req + off, bit);
815
816         /* Wait up to 1 second to acquire lock. */
817         for (i = 0; i < 20000; i++) {
818                 status = APE_READ_4(sc, gnt + off);
819                 if (status == bit)
820                         break;
821                 DELAY(50);
822         }
823
824         /* Handle any errors. */
825         if (status != bit) {
826                 device_printf(sc->bge_dev, "APE lock %d request failed! "
827                     "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
828                     locknum, req + off, bit & 0xFFFF, gnt + off,
829                     status & 0xFFFF);
830                 /* Revoke the lock request. */
831                 APE_WRITE_4(sc, gnt + off, bit);
832                 return (EBUSY);
833         }
834
835         return (0);
836 }
837
838 static void
839 bge_ape_unlock(struct bge_softc *sc, int locknum)
840 {
841         uint32_t bit, gnt;
842         int off;
843
844         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
845                 return;
846
847         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
848                 gnt = BGE_APE_LOCK_GRANT;
849         else
850                 gnt = BGE_APE_PER_LOCK_GRANT;
851
852         off = 4 * locknum;
853
854         switch (locknum) {
855         case BGE_APE_LOCK_GPIO:
856                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
857                         return;
858                 if (sc->bge_func_addr == 0)
859                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
860                 else
861                         bit = (1 << sc->bge_func_addr);
862                 break;
863         case BGE_APE_LOCK_GRC:
864                 if (sc->bge_func_addr == 0)
865                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
866                 else
867                         bit = (1 << sc->bge_func_addr);
868                 break;
869         case BGE_APE_LOCK_MEM:
870                 if (sc->bge_func_addr == 0)
871                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
872                 else
873                         bit = (1 << sc->bge_func_addr);
874                 break;
875         case BGE_APE_LOCK_PHY0:
876         case BGE_APE_LOCK_PHY1:
877         case BGE_APE_LOCK_PHY2:
878         case BGE_APE_LOCK_PHY3:
879                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
880                 break;
881         default:
882                 return;
883         }
884
885         APE_WRITE_4(sc, gnt + off, bit);
886 }
887
888 /*
889  * Send an event to the APE firmware.
890  */
891 static void
892 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
893 {
894         uint32_t apedata;
895         int i;
896
897         /* NCSI does not support APE events. */
898         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
899                 return;
900
901         /* Wait up to 1ms for APE to service previous event. */
902         for (i = 10; i > 0; i--) {
903                 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
904                         break;
905                 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
906                 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
907                         APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
908                             BGE_APE_EVENT_STATUS_EVENT_PENDING);
909                         bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
910                         APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
911                         break;
912                 }
913                 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
914                 DELAY(100);
915         }
916         if (i == 0)
917                 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
918                     event);
919 }
920
921 static void
922 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
923 {
924         uint32_t apedata, event;
925
926         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
927                 return;
928
929         switch (kind) {
930         case BGE_RESET_START:
931                 /* If this is the first load, clear the load counter. */
932                 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
933                 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
934                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
935                 else {
936                         apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
937                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
938                 }
939                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
940                     BGE_APE_HOST_SEG_SIG_MAGIC);
941                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
942                     BGE_APE_HOST_SEG_LEN_MAGIC);
943
944                 /* Add some version info if bge(4) supports it. */
945                 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
946                     BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
947                 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
948                     BGE_APE_HOST_BEHAV_NO_PHYLOCK);
949                 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
950                     BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
951                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
952                     BGE_APE_HOST_DRVR_STATE_START);
953                 event = BGE_APE_EVENT_STATUS_STATE_START;
954                 break;
955         case BGE_RESET_SHUTDOWN:
956                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
957                     BGE_APE_HOST_DRVR_STATE_UNLOAD);
958                 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
959                 break;
960         case BGE_RESET_SUSPEND:
961                 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
962                 break;
963         default:
964                 return;
965         }
966
967         bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
968             BGE_APE_EVENT_STATUS_STATE_CHNGE);
969 }
970
971 /*
972  * Map a single buffer address.
973  */
974
975 static void
976 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
977 {
978         struct bge_dmamap_arg *ctx;
979
980         if (error)
981                 return;
982
983         KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
984
985         ctx = arg;
986         ctx->bge_busaddr = segs->ds_addr;
987 }
988
989 static uint8_t
990 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
991 {
992         uint32_t access, byte = 0;
993         int i;
994
995         /* Lock. */
996         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
997         for (i = 0; i < 8000; i++) {
998                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
999                         break;
1000                 DELAY(20);
1001         }
1002         if (i == 8000)
1003                 return (1);
1004
1005         /* Enable access. */
1006         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1007         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1008
1009         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1010         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1011         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1012                 DELAY(10);
1013                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1014                         DELAY(10);
1015                         break;
1016                 }
1017         }
1018
1019         if (i == BGE_TIMEOUT * 10) {
1020                 if_printf(sc->bge_ifp, "nvram read timed out\n");
1021                 return (1);
1022         }
1023
1024         /* Get result. */
1025         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1026
1027         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1028
1029         /* Disable access. */
1030         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1031
1032         /* Unlock. */
1033         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1034         CSR_READ_4(sc, BGE_NVRAM_SWARB);
1035
1036         return (0);
1037 }
1038
1039 /*
1040  * Read a sequence of bytes from NVRAM.
1041  */
1042 static int
1043 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1044 {
1045         int err = 0, i;
1046         uint8_t byte = 0;
1047
1048         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1049                 return (1);
1050
1051         for (i = 0; i < cnt; i++) {
1052                 err = bge_nvram_getbyte(sc, off + i, &byte);
1053                 if (err)
1054                         break;
1055                 *(dest + i) = byte;
1056         }
1057
1058         return (err ? 1 : 0);
1059 }
1060
1061 /*
1062  * Read a byte of data stored in the EEPROM at address 'addr.' The
1063  * BCM570x supports both the traditional bitbang interface and an
1064  * auto access interface for reading the EEPROM. We use the auto
1065  * access method.
1066  */
1067 static uint8_t
1068 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1069 {
1070         int i;
1071         uint32_t byte = 0;
1072
1073         /*
1074          * Enable use of auto EEPROM access so we can avoid
1075          * having to use the bitbang method.
1076          */
1077         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1078
1079         /* Reset the EEPROM, load the clock period. */
1080         CSR_WRITE_4(sc, BGE_EE_ADDR,
1081             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1082         DELAY(20);
1083
1084         /* Issue the read EEPROM command. */
1085         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1086
1087         /* Wait for completion */
1088         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1089                 DELAY(10);
1090                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1091                         break;
1092         }
1093
1094         if (i == BGE_TIMEOUT * 10) {
1095                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
1096                 return (1);
1097         }
1098
1099         /* Get result. */
1100         byte = CSR_READ_4(sc, BGE_EE_DATA);
1101
1102         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1103
1104         return (0);
1105 }
1106
1107 /*
1108  * Read a sequence of bytes from the EEPROM.
1109  */
1110 static int
1111 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1112 {
1113         int i, error = 0;
1114         uint8_t byte = 0;
1115
1116         for (i = 0; i < cnt; i++) {
1117                 error = bge_eeprom_getbyte(sc, off + i, &byte);
1118                 if (error)
1119                         break;
1120                 *(dest + i) = byte;
1121         }
1122
1123         return (error ? 1 : 0);
1124 }
1125
1126 static int
1127 bge_miibus_readreg(device_t dev, int phy, int reg)
1128 {
1129         struct bge_softc *sc;
1130         uint32_t val;
1131         int i;
1132
1133         sc = device_get_softc(dev);
1134
1135         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1136                 return (0);
1137
1138         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1139         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1140                 CSR_WRITE_4(sc, BGE_MI_MODE,
1141                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1142                 DELAY(80);
1143         }
1144
1145         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1146             BGE_MIPHY(phy) | BGE_MIREG(reg));
1147
1148         /* Poll for the PHY register access to complete. */
1149         for (i = 0; i < BGE_TIMEOUT; i++) {
1150                 DELAY(10);
1151                 val = CSR_READ_4(sc, BGE_MI_COMM);
1152                 if ((val & BGE_MICOMM_BUSY) == 0) {
1153                         DELAY(5);
1154                         val = CSR_READ_4(sc, BGE_MI_COMM);
1155                         break;
1156                 }
1157         }
1158
1159         if (i == BGE_TIMEOUT) {
1160                 device_printf(sc->bge_dev,
1161                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1162                     phy, reg, val);
1163                 val = 0;
1164         }
1165
1166         /* Restore the autopoll bit if necessary. */
1167         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1168                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1169                 DELAY(80);
1170         }
1171
1172         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1173
1174         if (val & BGE_MICOMM_READFAIL)
1175                 return (0);
1176
1177         return (val & 0xFFFF);
1178 }
1179
1180 static int
1181 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1182 {
1183         struct bge_softc *sc;
1184         int i;
1185
1186         sc = device_get_softc(dev);
1187
1188         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1189             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1190                 return (0);
1191
1192         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1193                 return (0);
1194
1195         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1196         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1197                 CSR_WRITE_4(sc, BGE_MI_MODE,
1198                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1199                 DELAY(80);
1200         }
1201
1202         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1203             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1204
1205         for (i = 0; i < BGE_TIMEOUT; i++) {
1206                 DELAY(10);
1207                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1208                         DELAY(5);
1209                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1210                         break;
1211                 }
1212         }
1213
1214         /* Restore the autopoll bit if necessary. */
1215         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1216                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1217                 DELAY(80);
1218         }
1219
1220         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1221
1222         if (i == BGE_TIMEOUT)
1223                 device_printf(sc->bge_dev,
1224                     "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1225                     phy, reg, val);
1226
1227         return (0);
1228 }
1229
1230 static void
1231 bge_miibus_statchg(device_t dev)
1232 {
1233         struct bge_softc *sc;
1234         struct mii_data *mii;
1235         uint32_t mac_mode, rx_mode, tx_mode;
1236
1237         sc = device_get_softc(dev);
1238         if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1239                 return;
1240         mii = device_get_softc(sc->bge_miibus);
1241
1242         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1243             (IFM_ACTIVE | IFM_AVALID)) {
1244                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1245                 case IFM_10_T:
1246                 case IFM_100_TX:
1247                         sc->bge_link = 1;
1248                         break;
1249                 case IFM_1000_T:
1250                 case IFM_1000_SX:
1251                 case IFM_2500_SX:
1252                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1253                                 sc->bge_link = 1;
1254                         else
1255                                 sc->bge_link = 0;
1256                         break;
1257                 default:
1258                         sc->bge_link = 0;
1259                         break;
1260                 }
1261         } else
1262                 sc->bge_link = 0;
1263         if (sc->bge_link == 0)
1264                 return;
1265
1266         /*
1267          * APE firmware touches these registers to keep the MAC
1268          * connected to the outside world.  Try to keep the
1269          * accesses atomic.
1270          */
1271
1272         /* Set the port mode (MII/GMII) to match the link speed. */
1273         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1274             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1275         tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1276         rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1277
1278         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1279             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1280                 mac_mode |= BGE_PORTMODE_GMII;
1281         else
1282                 mac_mode |= BGE_PORTMODE_MII;
1283
1284         /* Set MAC flow control behavior to match link flow control settings. */
1285         tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1286         rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1287         if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
1288                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1289                         tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1290                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1291                         rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1292         } else
1293                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1294
1295         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1296         DELAY(40);
1297         CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1298         CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1299 }
1300
1301 /*
1302  * Intialize a standard receive ring descriptor.
1303  */
1304 static int
1305 bge_newbuf_std(struct bge_softc *sc, int i)
1306 {
1307         struct mbuf *m;
1308         struct bge_rx_bd *r;
1309         bus_dma_segment_t segs[1];
1310         bus_dmamap_t map;
1311         int error, nsegs;
1312
1313         if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1314             (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1315             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1316                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1317                 if (m == NULL)
1318                         return (ENOBUFS);
1319                 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1320         } else {
1321                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1322                 if (m == NULL)
1323                         return (ENOBUFS);
1324                 m->m_len = m->m_pkthdr.len = MCLBYTES;
1325         }
1326         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1327                 m_adj(m, ETHER_ALIGN);
1328
1329         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1330             sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1331         if (error != 0) {
1332                 m_freem(m);
1333                 return (error);
1334         }
1335         if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1336                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1337                     sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1338                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1339                     sc->bge_cdata.bge_rx_std_dmamap[i]);
1340         }
1341         map = sc->bge_cdata.bge_rx_std_dmamap[i];
1342         sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1343         sc->bge_cdata.bge_rx_std_sparemap = map;
1344         sc->bge_cdata.bge_rx_std_chain[i] = m;
1345         sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1346         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1347         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1348         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1349         r->bge_flags = BGE_RXBDFLAG_END;
1350         r->bge_len = segs[0].ds_len;
1351         r->bge_idx = i;
1352
1353         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1354             sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1355
1356         return (0);
1357 }
1358
1359 /*
1360  * Initialize a jumbo receive ring descriptor. This allocates
1361  * a jumbo buffer from the pool managed internally by the driver.
1362  */
1363 static int
1364 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1365 {
1366         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1367         bus_dmamap_t map;
1368         struct bge_extrx_bd *r;
1369         struct mbuf *m;
1370         int error, nsegs;
1371
1372         MGETHDR(m, M_NOWAIT, MT_DATA);
1373         if (m == NULL)
1374                 return (ENOBUFS);
1375
1376         m_cljget(m, M_NOWAIT, MJUM9BYTES);
1377         if (!(m->m_flags & M_EXT)) {
1378                 m_freem(m);
1379                 return (ENOBUFS);
1380         }
1381         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1382         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1383                 m_adj(m, ETHER_ALIGN);
1384
1385         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1386             sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1387         if (error != 0) {
1388                 m_freem(m);
1389                 return (error);
1390         }
1391
1392         if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1393                 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1394                     sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1395                 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1396                     sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1397         }
1398         map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1399         sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1400             sc->bge_cdata.bge_rx_jumbo_sparemap;
1401         sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1402         sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1403         sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1404         sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1405         sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1406         sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1407
1408         /*
1409          * Fill in the extended RX buffer descriptor.
1410          */
1411         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1412         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1413         r->bge_idx = i;
1414         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1415         switch (nsegs) {
1416         case 4:
1417                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1418                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1419                 r->bge_len3 = segs[3].ds_len;
1420                 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1421         case 3:
1422                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1423                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1424                 r->bge_len2 = segs[2].ds_len;
1425                 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1426         case 2:
1427                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1428                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1429                 r->bge_len1 = segs[1].ds_len;
1430                 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1431         case 1:
1432                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1433                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1434                 r->bge_len0 = segs[0].ds_len;
1435                 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1436                 break;
1437         default:
1438                 panic("%s: %d segments\n", __func__, nsegs);
1439         }
1440
1441         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1442             sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1443
1444         return (0);
1445 }
1446
1447 static int
1448 bge_init_rx_ring_std(struct bge_softc *sc)
1449 {
1450         int error, i;
1451
1452         bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1453         sc->bge_std = 0;
1454         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1455                 if ((error = bge_newbuf_std(sc, i)) != 0)
1456                         return (error);
1457                 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1458         }
1459
1460         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1461             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1462
1463         sc->bge_std = 0;
1464         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1465
1466         return (0);
1467 }
1468
1469 static void
1470 bge_free_rx_ring_std(struct bge_softc *sc)
1471 {
1472         int i;
1473
1474         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1475                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1476                         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1477                             sc->bge_cdata.bge_rx_std_dmamap[i],
1478                             BUS_DMASYNC_POSTREAD);
1479                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1480                             sc->bge_cdata.bge_rx_std_dmamap[i]);
1481                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1482                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1483                 }
1484                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1485                     sizeof(struct bge_rx_bd));
1486         }
1487 }
1488
1489 static int
1490 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1491 {
1492         struct bge_rcb *rcb;
1493         int error, i;
1494
1495         bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1496         sc->bge_jumbo = 0;
1497         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1498                 if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1499                         return (error);
1500                 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1501         }
1502
1503         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1504             sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1505
1506         sc->bge_jumbo = 0;
1507
1508         /* Enable the jumbo receive producer ring. */
1509         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1510         rcb->bge_maxlen_flags =
1511             BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1512         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1513
1514         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1515
1516         return (0);
1517 }
1518
1519 static void
1520 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1521 {
1522         int i;
1523
1524         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1525                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1526                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1527                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1528                             BUS_DMASYNC_POSTREAD);
1529                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1530                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1531                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1532                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1533                 }
1534                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1535                     sizeof(struct bge_extrx_bd));
1536         }
1537 }
1538
1539 static void
1540 bge_free_tx_ring(struct bge_softc *sc)
1541 {
1542         int i;
1543
1544         if (sc->bge_ldata.bge_tx_ring == NULL)
1545                 return;
1546
1547         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1548                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1549                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1550                             sc->bge_cdata.bge_tx_dmamap[i],
1551                             BUS_DMASYNC_POSTWRITE);
1552                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1553                             sc->bge_cdata.bge_tx_dmamap[i]);
1554                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1555                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1556                 }
1557                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1558                     sizeof(struct bge_tx_bd));
1559         }
1560 }
1561
1562 static int
1563 bge_init_tx_ring(struct bge_softc *sc)
1564 {
1565         sc->bge_txcnt = 0;
1566         sc->bge_tx_saved_considx = 0;
1567
1568         bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1569         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1570             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1571
1572         /* Initialize transmit producer index for host-memory send ring. */
1573         sc->bge_tx_prodidx = 0;
1574         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1575
1576         /* 5700 b2 errata */
1577         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1578                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1579
1580         /* NIC-memory send ring not used; initialize to zero. */
1581         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1582         /* 5700 b2 errata */
1583         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1584                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1585
1586         return (0);
1587 }
1588
1589 static void
1590 bge_setpromisc(struct bge_softc *sc)
1591 {
1592         struct ifnet *ifp;
1593
1594         BGE_LOCK_ASSERT(sc);
1595
1596         ifp = sc->bge_ifp;
1597
1598         /* Enable or disable promiscuous mode as needed. */
1599         if (ifp->if_flags & IFF_PROMISC)
1600                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1601         else
1602                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1603 }
1604
1605 static void
1606 bge_setmulti(struct bge_softc *sc)
1607 {
1608         struct ifnet *ifp;
1609         struct ifmultiaddr *ifma;
1610         uint32_t hashes[4] = { 0, 0, 0, 0 };
1611         int h, i;
1612
1613         BGE_LOCK_ASSERT(sc);
1614
1615         ifp = sc->bge_ifp;
1616
1617         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1618                 for (i = 0; i < 4; i++)
1619                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1620                 return;
1621         }
1622
1623         /* First, zot all the existing filters. */
1624         for (i = 0; i < 4; i++)
1625                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1626
1627         /* Now program new ones. */
1628         if_maddr_rlock(ifp);
1629         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1630                 if (ifma->ifma_addr->sa_family != AF_LINK)
1631                         continue;
1632                 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1633                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1634                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1635         }
1636         if_maddr_runlock(ifp);
1637
1638         for (i = 0; i < 4; i++)
1639                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1640 }
1641
1642 static void
1643 bge_setvlan(struct bge_softc *sc)
1644 {
1645         struct ifnet *ifp;
1646
1647         BGE_LOCK_ASSERT(sc);
1648
1649         ifp = sc->bge_ifp;
1650
1651         /* Enable or disable VLAN tag stripping as needed. */
1652         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1653                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1654         else
1655                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1656 }
1657
1658 static void
1659 bge_sig_pre_reset(struct bge_softc *sc, int type)
1660 {
1661
1662         /*
1663          * Some chips don't like this so only do this if ASF is enabled
1664          */
1665         if (sc->bge_asf_mode)
1666                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1667
1668         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1669                 switch (type) {
1670                 case BGE_RESET_START:
1671                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1672                             BGE_FW_DRV_STATE_START);
1673                         break;
1674                 case BGE_RESET_SHUTDOWN:
1675                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1676                             BGE_FW_DRV_STATE_UNLOAD);
1677                         break;
1678                 case BGE_RESET_SUSPEND:
1679                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1680                             BGE_FW_DRV_STATE_SUSPEND);
1681                         break;
1682                 }
1683         }
1684
1685         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1686                 bge_ape_driver_state_change(sc, type);
1687 }
1688
1689 static void
1690 bge_sig_post_reset(struct bge_softc *sc, int type)
1691 {
1692
1693         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1694                 switch (type) {
1695                 case BGE_RESET_START:
1696                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1697                             BGE_FW_DRV_STATE_START_DONE);
1698                         /* START DONE */
1699                         break;
1700                 case BGE_RESET_SHUTDOWN:
1701                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1702                             BGE_FW_DRV_STATE_UNLOAD_DONE);
1703                         break;
1704                 }
1705         }
1706         if (type == BGE_RESET_SHUTDOWN)
1707                 bge_ape_driver_state_change(sc, type);
1708 }
1709
1710 static void
1711 bge_sig_legacy(struct bge_softc *sc, int type)
1712 {
1713
1714         if (sc->bge_asf_mode) {
1715                 switch (type) {
1716                 case BGE_RESET_START:
1717                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1718                             BGE_FW_DRV_STATE_START);
1719                         break;
1720                 case BGE_RESET_SHUTDOWN:
1721                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1722                             BGE_FW_DRV_STATE_UNLOAD);
1723                         break;
1724                 }
1725         }
1726 }
1727
1728 static void
1729 bge_stop_fw(struct bge_softc *sc)
1730 {
1731         int i;
1732
1733         if (sc->bge_asf_mode) {
1734                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1735                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1736                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1737
1738                 for (i = 0; i < 100; i++ ) {
1739                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1740                             BGE_RX_CPU_DRV_EVENT))
1741                                 break;
1742                         DELAY(10);
1743                 }
1744         }
1745 }
1746
1747 static uint32_t
1748 bge_dma_swap_options(struct bge_softc *sc)
1749 {
1750         uint32_t dma_options;
1751
1752         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1753             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1754 #if BYTE_ORDER == BIG_ENDIAN
1755         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1756 #endif
1757         return (dma_options);
1758 }
1759
1760 /*
1761  * Do endian, PCI and DMA initialization.
1762  */
1763 static int
1764 bge_chipinit(struct bge_softc *sc)
1765 {
1766         uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1767         uint16_t val;
1768         int i;
1769
1770         /* Set endianness before we access any non-PCI registers. */
1771         misc_ctl = BGE_INIT;
1772         if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1773                 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1774         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1775
1776         /*
1777          * Clear the MAC statistics block in the NIC's
1778          * internal memory.
1779          */
1780         for (i = BGE_STATS_BLOCK;
1781             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1782                 BGE_MEMWIN_WRITE(sc, i, 0);
1783
1784         for (i = BGE_STATUS_BLOCK;
1785             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1786                 BGE_MEMWIN_WRITE(sc, i, 0);
1787
1788         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1789                 /*
1790                  *  Fix data corruption caused by non-qword write with WB.
1791                  *  Fix master abort in PCI mode.
1792                  *  Fix PCI latency timer.
1793                  */
1794                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1795                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1796                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1797         }
1798
1799         /*
1800          * Set up the PCI DMA control register.
1801          */
1802         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1803             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1804         if (sc->bge_flags & BGE_FLAG_PCIE) {
1805                 if (sc->bge_mps >= 256)
1806                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1807                 else
1808                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1809         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1810                 if (BGE_IS_5714_FAMILY(sc)) {
1811                         /* 256 bytes for read and write. */
1812                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1813                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1814                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1815                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1816                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1817                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1818                         /*
1819                          * In the BCM5703, the DMA read watermark should
1820                          * be set to less than or equal to the maximum
1821                          * memory read byte count of the PCI-X command
1822                          * register.
1823                          */
1824                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1825                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1826                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1827                         /* 1536 bytes for read, 384 bytes for write. */
1828                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1829                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1830                 } else {
1831                         /* 384 bytes for read and write. */
1832                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1833                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1834                             0x0F;
1835                 }
1836                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1837                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1838                         uint32_t tmp;
1839
1840                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
1841                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1842                         if (tmp == 6 || tmp == 7)
1843                                 dma_rw_ctl |=
1844                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1845
1846                         /* Set PCI-X DMA write workaround. */
1847                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1848                 }
1849         } else {
1850                 /* Conventional PCI bus: 256 bytes for read and write. */
1851                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1852                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1853
1854                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1855                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1856                         dma_rw_ctl |= 0x0F;
1857         }
1858         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1859             sc->bge_asicrev == BGE_ASICREV_BCM5701)
1860                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1861                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1862         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1863             sc->bge_asicrev == BGE_ASICREV_BCM5704)
1864                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1865         if (BGE_IS_5717_PLUS(sc)) {
1866                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1867                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1868                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1869                 /*
1870                  * Enable HW workaround for controllers that misinterpret
1871                  * a status tag update and leave interrupts permanently
1872                  * disabled.
1873                  */
1874                 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1875                     sc->bge_asicrev != BGE_ASICREV_BCM57765)
1876                         dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1877         }
1878         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1879
1880         /*
1881          * Set up general mode register.
1882          */
1883         mode_ctl = bge_dma_swap_options(sc);
1884         if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
1885                 /* Retain Host-2-BMC settings written by APE firmware. */
1886                 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1887                     (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1888                     BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1889                     BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1890         }
1891         mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1892             BGE_MODECTL_TX_NO_PHDR_CSUM;
1893
1894         /*
1895          * BCM5701 B5 have a bug causing data corruption when using
1896          * 64-bit DMA reads, which can be terminated early and then
1897          * completed later as 32-bit accesses, in combination with
1898          * certain bridges.
1899          */
1900         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1901             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1902                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1903
1904         /*
1905          * Tell the firmware the driver is running
1906          */
1907         if (sc->bge_asf_mode & ASF_STACKUP)
1908                 mode_ctl |= BGE_MODECTL_STACKUP;
1909
1910         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1911
1912         /*
1913          * Disable memory write invalidate.  Apparently it is not supported
1914          * properly by these devices.  Also ensure that INTx isn't disabled,
1915          * as these chips need it even when using MSI.
1916          */
1917         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1918             PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1919
1920         /* Set the timer prescaler (always 66 MHz). */
1921         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1922
1923         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1924         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1925                 DELAY(40);      /* XXX */
1926
1927                 /* Put PHY into ready state */
1928                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1929                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1930                 DELAY(40);
1931         }
1932
1933         return (0);
1934 }
1935
1936 static int
1937 bge_blockinit(struct bge_softc *sc)
1938 {
1939         struct bge_rcb *rcb;
1940         bus_size_t vrcb;
1941         bge_hostaddr taddr;
1942         uint32_t dmactl, val;
1943         int i, limit;
1944
1945         /*
1946          * Initialize the memory window pointer register so that
1947          * we can access the first 32K of internal NIC RAM. This will
1948          * allow us to set up the TX send ring RCBs and the RX return
1949          * ring RCBs, plus other things which live in NIC memory.
1950          */
1951         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1952
1953         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1954
1955         if (!(BGE_IS_5705_PLUS(sc))) {
1956                 /* Configure mbuf memory pool */
1957                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1958                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1959                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1960                 else
1961                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1962
1963                 /* Configure DMA resource pool */
1964                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1965                     BGE_DMA_DESCRIPTORS);
1966                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1967         }
1968
1969         /* Configure mbuf pool watermarks */
1970         if (BGE_IS_5717_PLUS(sc)) {
1971                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1972                 if (sc->bge_ifp->if_mtu > ETHERMTU) {
1973                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1974                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1975                 } else {
1976                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1977                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1978                 }
1979         } else if (!BGE_IS_5705_PLUS(sc)) {
1980                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1981                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1982                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1983         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1984                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1985                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1986                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1987         } else {
1988                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1989                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1990                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1991         }
1992
1993         /* Configure DMA resource watermarks */
1994         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1995         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1996
1997         /* Enable buffer manager */
1998         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1999         /*
2000          * Change the arbitration algorithm of TXMBUF read request to
2001          * round-robin instead of priority based for BCM5719.  When
2002          * TXFIFO is almost empty, RDMA will hold its request until
2003          * TXFIFO is not almost empty.
2004          */
2005         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2006                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2007         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2008
2009         /* Poll for buffer manager start indication */
2010         for (i = 0; i < BGE_TIMEOUT; i++) {
2011                 DELAY(10);
2012                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2013                         break;
2014         }
2015
2016         if (i == BGE_TIMEOUT) {
2017                 device_printf(sc->bge_dev, "buffer manager failed to start\n");
2018                 return (ENXIO);
2019         }
2020
2021         /* Enable flow-through queues */
2022         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2023         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2024
2025         /* Wait until queue initialization is complete */
2026         for (i = 0; i < BGE_TIMEOUT; i++) {
2027                 DELAY(10);
2028                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2029                         break;
2030         }
2031
2032         if (i == BGE_TIMEOUT) {
2033                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
2034                 return (ENXIO);
2035         }
2036
2037         /*
2038          * Summary of rings supported by the controller:
2039          *
2040          * Standard Receive Producer Ring
2041          * - This ring is used to feed receive buffers for "standard"
2042          *   sized frames (typically 1536 bytes) to the controller.
2043          *
2044          * Jumbo Receive Producer Ring
2045          * - This ring is used to feed receive buffers for jumbo sized
2046          *   frames (i.e. anything bigger than the "standard" frames)
2047          *   to the controller.
2048          *
2049          * Mini Receive Producer Ring
2050          * - This ring is used to feed receive buffers for "mini"
2051          *   sized frames to the controller.
2052          * - This feature required external memory for the controller
2053          *   but was never used in a production system.  Should always
2054          *   be disabled.
2055          *
2056          * Receive Return Ring
2057          * - After the controller has placed an incoming frame into a
2058          *   receive buffer that buffer is moved into a receive return
2059          *   ring.  The driver is then responsible to passing the
2060          *   buffer up to the stack.  Many versions of the controller
2061          *   support multiple RR rings.
2062          *
2063          * Send Ring
2064          * - This ring is used for outgoing frames.  Many versions of
2065          *   the controller support multiple send rings.
2066          */
2067
2068         /* Initialize the standard receive producer ring control block. */
2069         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2070         rcb->bge_hostaddr.bge_addr_lo =
2071             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2072         rcb->bge_hostaddr.bge_addr_hi =
2073             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2074         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2075             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2076         if (BGE_IS_5717_PLUS(sc)) {
2077                 /*
2078                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2079                  * Bits 15-2 : Maximum RX frame size
2080                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2081                  * Bit 0     : Reserved
2082                  */
2083                 rcb->bge_maxlen_flags =
2084                     BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2085         } else if (BGE_IS_5705_PLUS(sc)) {
2086                 /*
2087                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2088                  * Bits 15-2 : Reserved (should be 0)
2089                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2090                  * Bit 0     : Reserved
2091                  */
2092                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2093         } else {
2094                 /*
2095                  * Ring size is always XXX entries
2096                  * Bits 31-16: Maximum RX frame size
2097                  * Bits 15-2 : Reserved (should be 0)
2098                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2099                  * Bit 0     : Reserved
2100                  */
2101                 rcb->bge_maxlen_flags =
2102                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2103         }
2104         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2105             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2106             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2107                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2108         else
2109                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2110         /* Write the standard receive producer ring control block. */
2111         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2112         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2113         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2114         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2115
2116         /* Reset the standard receive producer ring producer index. */
2117         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2118
2119         /*
2120          * Initialize the jumbo RX producer ring control
2121          * block.  We set the 'ring disabled' bit in the
2122          * flags field until we're actually ready to start
2123          * using this ring (i.e. once we set the MTU
2124          * high enough to require it).
2125          */
2126         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2127                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2128                 /* Get the jumbo receive producer ring RCB parameters. */
2129                 rcb->bge_hostaddr.bge_addr_lo =
2130                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2131                 rcb->bge_hostaddr.bge_addr_hi =
2132                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2133                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2134                     sc->bge_cdata.bge_rx_jumbo_ring_map,
2135                     BUS_DMASYNC_PREREAD);
2136                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2137                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2138                 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2139                     sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2140                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
2141                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2142                 else
2143                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2144                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2145                     rcb->bge_hostaddr.bge_addr_hi);
2146                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2147                     rcb->bge_hostaddr.bge_addr_lo);
2148                 /* Program the jumbo receive producer ring RCB parameters. */
2149                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2150                     rcb->bge_maxlen_flags);
2151                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2152                 /* Reset the jumbo receive producer ring producer index. */
2153                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2154         }
2155
2156         /* Disable the mini receive producer ring RCB. */
2157         if (BGE_IS_5700_FAMILY(sc)) {
2158                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2159                 rcb->bge_maxlen_flags =
2160                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2161                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2162                     rcb->bge_maxlen_flags);
2163                 /* Reset the mini receive producer ring producer index. */
2164                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2165         }
2166
2167         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2168         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2169                 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2170                     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2171                     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2172                         CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2173                             (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2174         }
2175         /*
2176          * The BD ring replenish thresholds control how often the
2177          * hardware fetches new BD's from the producer rings in host
2178          * memory.  Setting the value too low on a busy system can
2179          * starve the hardware and recue the throughpout.
2180          *
2181          * Set the BD ring replentish thresholds. The recommended
2182          * values are 1/8th the number of descriptors allocated to
2183          * each ring.
2184          * XXX The 5754 requires a lower threshold, so it might be a
2185          * requirement of all 575x family chips.  The Linux driver sets
2186          * the lower threshold for all 5705 family chips as well, but there
2187          * are reports that it might not need to be so strict.
2188          *
2189          * XXX Linux does some extra fiddling here for the 5906 parts as
2190          * well.
2191          */
2192         if (BGE_IS_5705_PLUS(sc))
2193                 val = 8;
2194         else
2195                 val = BGE_STD_RX_RING_CNT / 8;
2196         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2197         if (BGE_IS_JUMBO_CAPABLE(sc))
2198                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2199                     BGE_JUMBO_RX_RING_CNT/8);
2200         if (BGE_IS_5717_PLUS(sc)) {
2201                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2202                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2203         }
2204
2205         /*
2206          * Disable all send rings by setting the 'ring disabled' bit
2207          * in the flags field of all the TX send ring control blocks,
2208          * located in NIC memory.
2209          */
2210         if (!BGE_IS_5705_PLUS(sc))
2211                 /* 5700 to 5704 had 16 send rings. */
2212                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2213         else
2214                 limit = 1;
2215         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2216         for (i = 0; i < limit; i++) {
2217                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2218                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2219                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2220                 vrcb += sizeof(struct bge_rcb);
2221         }
2222
2223         /* Configure send ring RCB 0 (we use only the first ring) */
2224         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2225         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2226         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2227         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2228         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2229             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2230             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2231                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2232         else
2233                 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2234                     BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2235         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2236             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2237
2238         /*
2239          * Disable all receive return rings by setting the
2240          * 'ring diabled' bit in the flags field of all the receive
2241          * return ring control blocks, located in NIC memory.
2242          */
2243         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2244             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2245             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2246                 /* Should be 17, use 16 until we get an SRAM map. */
2247                 limit = 16;
2248         } else if (!BGE_IS_5705_PLUS(sc))
2249                 limit = BGE_RX_RINGS_MAX;
2250         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2251             BGE_IS_57765_PLUS(sc))
2252                 limit = 4;
2253         else
2254                 limit = 1;
2255         /* Disable all receive return rings. */
2256         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2257         for (i = 0; i < limit; i++) {
2258                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2259                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2260                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2261                     BGE_RCB_FLAG_RING_DISABLED);
2262                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2263                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2264                     (i * (sizeof(uint64_t))), 0);
2265                 vrcb += sizeof(struct bge_rcb);
2266         }
2267
2268         /*
2269          * Set up receive return ring 0.  Note that the NIC address
2270          * for RX return rings is 0x0.  The return rings live entirely
2271          * within the host, so the nicaddr field in the RCB isn't used.
2272          */
2273         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2274         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2275         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2276         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2277         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2278         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2279             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2280
2281         /* Set random backoff seed for TX */
2282         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2283             (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2284             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2285             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2286             BGE_TX_BACKOFF_SEED_MASK);
2287
2288         /* Set inter-packet gap */
2289         val = 0x2620;
2290         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
2291                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2292                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2293         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2294
2295         /*
2296          * Specify which ring to use for packets that don't match
2297          * any RX rules.
2298          */
2299         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2300
2301         /*
2302          * Configure number of RX lists. One interrupt distribution
2303          * list, sixteen active lists, one bad frames class.
2304          */
2305         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2306
2307         /* Inialize RX list placement stats mask. */
2308         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2309         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2310
2311         /* Disable host coalescing until we get it set up */
2312         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2313
2314         /* Poll to make sure it's shut down. */
2315         for (i = 0; i < BGE_TIMEOUT; i++) {
2316                 DELAY(10);
2317                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2318                         break;
2319         }
2320
2321         if (i == BGE_TIMEOUT) {
2322                 device_printf(sc->bge_dev,
2323                     "host coalescing engine failed to idle\n");
2324                 return (ENXIO);
2325         }
2326
2327         /* Set up host coalescing defaults */
2328         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2329         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2330         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2331         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2332         if (!(BGE_IS_5705_PLUS(sc))) {
2333                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2334                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2335         }
2336         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2337         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2338
2339         /* Set up address of statistics block */
2340         if (!(BGE_IS_5705_PLUS(sc))) {
2341                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2342                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2343                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2344                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2345                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2346                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2347                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2348         }
2349
2350         /* Set up address of status block */
2351         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2352             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2353         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2354             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2355
2356         /* Set up status block size. */
2357         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2358             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2359                 val = BGE_STATBLKSZ_FULL;
2360                 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2361         } else {
2362                 val = BGE_STATBLKSZ_32BYTE;
2363                 bzero(sc->bge_ldata.bge_status_block, 32);
2364         }
2365         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2366             sc->bge_cdata.bge_status_map,
2367             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2368
2369         /* Turn on host coalescing state machine */
2370         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2371
2372         /* Turn on RX BD completion state machine and enable attentions */
2373         CSR_WRITE_4(sc, BGE_RBDC_MODE,
2374             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2375
2376         /* Turn on RX list placement state machine */
2377         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2378
2379         /* Turn on RX list selector state machine. */
2380         if (!(BGE_IS_5705_PLUS(sc)))
2381                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2382
2383         /* Turn on DMA, clear stats. */
2384         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2385             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2386             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2387             BGE_MACMODE_FRMHDR_DMA_ENB;
2388
2389         if (sc->bge_flags & BGE_FLAG_TBI)
2390                 val |= BGE_PORTMODE_TBI;
2391         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2392                 val |= BGE_PORTMODE_GMII;
2393         else
2394                 val |= BGE_PORTMODE_MII;
2395
2396         /* Allow APE to send/receive frames. */
2397         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2398                 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2399
2400         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2401         DELAY(40);
2402
2403         /* Set misc. local control, enable interrupts on attentions */
2404         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2405
2406 #ifdef notdef
2407         /* Assert GPIO pins for PHY reset */
2408         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2409             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2410         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2411             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2412 #endif
2413
2414         /* Turn on DMA completion state machine */
2415         if (!(BGE_IS_5705_PLUS(sc)))
2416                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2417
2418         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2419
2420         /* Enable host coalescing bug fix. */
2421         if (BGE_IS_5755_PLUS(sc))
2422                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2423
2424         /* Request larger DMA burst size to get better performance. */
2425         if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2426                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2427
2428         /* Turn on write DMA state machine */
2429         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2430         DELAY(40);
2431
2432         /* Turn on read DMA state machine */
2433         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2434
2435         if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2436                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2437
2438         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2439             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2440             sc->bge_asicrev == BGE_ASICREV_BCM57780)
2441                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2442                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2443                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2444         if (sc->bge_flags & BGE_FLAG_PCIE)
2445                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2446         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2447                 val |= BGE_RDMAMODE_TSO4_ENABLE;
2448                 if (sc->bge_flags & BGE_FLAG_TSO3 ||
2449                     sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2450                     sc->bge_asicrev == BGE_ASICREV_BCM57780)
2451                         val |= BGE_RDMAMODE_TSO6_ENABLE;
2452         }
2453
2454         if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2455                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2456                         BGE_RDMAMODE_H2BNC_VLAN_DET;
2457                 /*
2458                  * Allow multiple outstanding read requests from
2459                  * non-LSO read DMA engine.
2460                  */
2461                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2462         }
2463
2464         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2465             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2466             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2467             sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2468             BGE_IS_5717_PLUS(sc)) {
2469                 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2470                 /*
2471                  * Adjust tx margin to prevent TX data corruption and
2472                  * fix internal FIFO overflow.
2473                  */
2474                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2475                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2476                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2477                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2478                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2479                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2480                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2481                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2482                 }
2483                 /*
2484                  * Enable fix for read DMA FIFO overruns.
2485                  * The fix is to limit the number of RX BDs
2486                  * the hardware would fetch at a fime.
2487                  */
2488                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2489                     BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2490         }
2491
2492         if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2493                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2494                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2495                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2496                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2497         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2498                 /*
2499                  * Allow 4KB burst length reads for non-LSO frames.
2500                  * Enable 512B burst length reads for buffer descriptors.
2501                  */
2502                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2503                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2504                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2505                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2506         }
2507
2508         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2509         DELAY(40);
2510
2511         /* Turn on RX data completion state machine */
2512         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2513
2514         /* Turn on RX BD initiator state machine */
2515         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2516
2517         /* Turn on RX data and RX BD initiator state machine */
2518         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2519
2520         /* Turn on Mbuf cluster free state machine */
2521         if (!(BGE_IS_5705_PLUS(sc)))
2522                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2523
2524         /* Turn on send BD completion state machine */
2525         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2526
2527         /* Turn on send data completion state machine */
2528         val = BGE_SDCMODE_ENABLE;
2529         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2530                 val |= BGE_SDCMODE_CDELAY;
2531         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2532
2533         /* Turn on send data initiator state machine */
2534         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2535                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2536                     BGE_SDIMODE_HW_LSO_PRE_DMA);
2537         else
2538                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2539
2540         /* Turn on send BD initiator state machine */
2541         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2542
2543         /* Turn on send BD selector state machine */
2544         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2545
2546         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2547         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2548             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2549
2550         /* ack/clear link change events */
2551         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2552             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2553             BGE_MACSTAT_LINK_CHANGED);
2554         CSR_WRITE_4(sc, BGE_MI_STS, 0);
2555
2556         /*
2557          * Enable attention when the link has changed state for
2558          * devices that use auto polling.
2559          */
2560         if (sc->bge_flags & BGE_FLAG_TBI) {
2561                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2562         } else {
2563                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2564                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2565                         DELAY(80);
2566                 }
2567                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2568                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2569                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2570                             BGE_EVTENB_MI_INTERRUPT);
2571         }
2572
2573         /*
2574          * Clear any pending link state attention.
2575          * Otherwise some link state change events may be lost until attention
2576          * is cleared by bge_intr() -> bge_link_upd() sequence.
2577          * It's not necessary on newer BCM chips - perhaps enabling link
2578          * state change attentions implies clearing pending attention.
2579          */
2580         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2581             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2582             BGE_MACSTAT_LINK_CHANGED);
2583
2584         /* Enable link state change attentions. */
2585         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2586
2587         return (0);
2588 }
2589
2590 static const struct bge_revision *
2591 bge_lookup_rev(uint32_t chipid)
2592 {
2593         const struct bge_revision *br;
2594
2595         for (br = bge_revisions; br->br_name != NULL; br++) {
2596                 if (br->br_chipid == chipid)
2597                         return (br);
2598         }
2599
2600         for (br = bge_majorrevs; br->br_name != NULL; br++) {
2601                 if (br->br_chipid == BGE_ASICREV(chipid))
2602                         return (br);
2603         }
2604
2605         return (NULL);
2606 }
2607
2608 static const struct bge_vendor *
2609 bge_lookup_vendor(uint16_t vid)
2610 {
2611         const struct bge_vendor *v;
2612
2613         for (v = bge_vendors; v->v_name != NULL; v++)
2614                 if (v->v_id == vid)
2615                         return (v);
2616
2617         return (NULL);
2618 }
2619
2620 static uint32_t
2621 bge_chipid(device_t dev)
2622 {
2623         uint32_t id;
2624
2625         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2626             BGE_PCIMISCCTL_ASICREV_SHIFT;
2627         if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2628                 /*
2629                  * Find the ASCI revision.  Different chips use different
2630                  * registers.
2631                  */
2632                 switch (pci_get_device(dev)) {
2633                 case BCOM_DEVICEID_BCM5717:
2634                 case BCOM_DEVICEID_BCM5718:
2635                 case BCOM_DEVICEID_BCM5719:
2636                 case BCOM_DEVICEID_BCM5720:
2637                         id = pci_read_config(dev,
2638                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
2639                         break;
2640                 case BCOM_DEVICEID_BCM57761:
2641                 case BCOM_DEVICEID_BCM57762:
2642                 case BCOM_DEVICEID_BCM57765:
2643                 case BCOM_DEVICEID_BCM57766:
2644                 case BCOM_DEVICEID_BCM57781:
2645                 case BCOM_DEVICEID_BCM57785:
2646                 case BCOM_DEVICEID_BCM57791:
2647                 case BCOM_DEVICEID_BCM57795:
2648                         id = pci_read_config(dev,
2649                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
2650                         break;
2651                 default:
2652                         id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2653                 }
2654         }
2655         return (id);
2656 }
2657
2658 /*
2659  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2660  * against our list and return its name if we find a match.
2661  *
2662  * Note that since the Broadcom controller contains VPD support, we
2663  * try to get the device name string from the controller itself instead
2664  * of the compiled-in string. It guarantees we'll always announce the
2665  * right product name. We fall back to the compiled-in string when
2666  * VPD is unavailable or corrupt.
2667  */
2668 static int
2669 bge_probe(device_t dev)
2670 {
2671         char buf[96];
2672         char model[64];
2673         const struct bge_revision *br;
2674         const char *pname;
2675         struct bge_softc *sc;
2676         const struct bge_type *t = bge_devs;
2677         const struct bge_vendor *v;
2678         uint32_t id;
2679         uint16_t did, vid;
2680
2681         sc = device_get_softc(dev);
2682         sc->bge_dev = dev;
2683         vid = pci_get_vendor(dev);
2684         did = pci_get_device(dev);
2685         while(t->bge_vid != 0) {
2686                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
2687                         id = bge_chipid(dev);
2688                         br = bge_lookup_rev(id);
2689                         if (bge_has_eaddr(sc) &&
2690                             pci_get_vpd_ident(dev, &pname) == 0)
2691                                 snprintf(model, sizeof(model), "%s", pname);
2692                         else {
2693                                 v = bge_lookup_vendor(vid);
2694                                 snprintf(model, sizeof(model), "%s %s",
2695                                     v != NULL ? v->v_name : "Unknown",
2696                                     br != NULL ? br->br_name :
2697                                     "NetXtreme/NetLink Ethernet Controller");
2698                         }
2699                         snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2700                             model, br != NULL ? "" : "unknown ", id);
2701                         device_set_desc_copy(dev, buf);
2702                         return (BUS_PROBE_DEFAULT);
2703                 }
2704                 t++;
2705         }
2706
2707         return (ENXIO);
2708 }
2709
2710 static void
2711 bge_dma_free(struct bge_softc *sc)
2712 {
2713         int i;
2714
2715         /* Destroy DMA maps for RX buffers. */
2716         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2717                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
2718                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2719                             sc->bge_cdata.bge_rx_std_dmamap[i]);
2720         }
2721         if (sc->bge_cdata.bge_rx_std_sparemap)
2722                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2723                     sc->bge_cdata.bge_rx_std_sparemap);
2724
2725         /* Destroy DMA maps for jumbo RX buffers. */
2726         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2727                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2728                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2729                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2730         }
2731         if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2732                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2733                     sc->bge_cdata.bge_rx_jumbo_sparemap);
2734
2735         /* Destroy DMA maps for TX buffers. */
2736         for (i = 0; i < BGE_TX_RING_CNT; i++) {
2737                 if (sc->bge_cdata.bge_tx_dmamap[i])
2738                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2739                             sc->bge_cdata.bge_tx_dmamap[i]);
2740         }
2741
2742         if (sc->bge_cdata.bge_rx_mtag)
2743                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2744         if (sc->bge_cdata.bge_mtag_jumbo)
2745                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2746         if (sc->bge_cdata.bge_tx_mtag)
2747                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2748
2749         /* Destroy standard RX ring. */
2750         if (sc->bge_cdata.bge_rx_std_ring_map)
2751                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2752                     sc->bge_cdata.bge_rx_std_ring_map);
2753         if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2754                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2755                     sc->bge_ldata.bge_rx_std_ring,
2756                     sc->bge_cdata.bge_rx_std_ring_map);
2757
2758         if (sc->bge_cdata.bge_rx_std_ring_tag)
2759                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2760
2761         /* Destroy jumbo RX ring. */
2762         if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2763                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2764                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2765
2766         if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2767             sc->bge_ldata.bge_rx_jumbo_ring)
2768                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2769                     sc->bge_ldata.bge_rx_jumbo_ring,
2770                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2771
2772         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2773                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2774
2775         /* Destroy RX return ring. */
2776         if (sc->bge_cdata.bge_rx_return_ring_map)
2777                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2778                     sc->bge_cdata.bge_rx_return_ring_map);
2779
2780         if (sc->bge_cdata.bge_rx_return_ring_map &&
2781             sc->bge_ldata.bge_rx_return_ring)
2782                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2783                     sc->bge_ldata.bge_rx_return_ring,
2784                     sc->bge_cdata.bge_rx_return_ring_map);
2785
2786         if (sc->bge_cdata.bge_rx_return_ring_tag)
2787                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2788
2789         /* Destroy TX ring. */
2790         if (sc->bge_cdata.bge_tx_ring_map)
2791                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2792                     sc->bge_cdata.bge_tx_ring_map);
2793
2794         if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2795                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2796                     sc->bge_ldata.bge_tx_ring,
2797                     sc->bge_cdata.bge_tx_ring_map);
2798
2799         if (sc->bge_cdata.bge_tx_ring_tag)
2800                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2801
2802         /* Destroy status block. */
2803         if (sc->bge_cdata.bge_status_map)
2804                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2805                     sc->bge_cdata.bge_status_map);
2806
2807         if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2808                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2809                     sc->bge_ldata.bge_status_block,
2810                     sc->bge_cdata.bge_status_map);
2811
2812         if (sc->bge_cdata.bge_status_tag)
2813                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2814
2815         /* Destroy statistics block. */
2816         if (sc->bge_cdata.bge_stats_map)
2817                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2818                     sc->bge_cdata.bge_stats_map);
2819
2820         if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2821                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2822                     sc->bge_ldata.bge_stats,
2823                     sc->bge_cdata.bge_stats_map);
2824
2825         if (sc->bge_cdata.bge_stats_tag)
2826                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2827
2828         if (sc->bge_cdata.bge_buffer_tag)
2829                 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2830
2831         /* Destroy the parent tag. */
2832         if (sc->bge_cdata.bge_parent_tag)
2833                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2834 }
2835
2836 static int
2837 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2838     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2839     bus_addr_t *paddr, const char *msg)
2840 {
2841         struct bge_dmamap_arg ctx;
2842         int error;
2843
2844         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2845             alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2846             NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2847         if (error != 0) {
2848                 device_printf(sc->bge_dev,
2849                     "could not create %s dma tag\n", msg);
2850                 return (ENOMEM);
2851         }
2852         /* Allocate DMA'able memory for ring. */
2853         error = bus_dmamem_alloc(*tag, (void **)ring,
2854             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2855         if (error != 0) {
2856                 device_printf(sc->bge_dev,
2857                     "could not allocate DMA'able memory for %s\n", msg);
2858                 return (ENOMEM);
2859         }
2860         /* Load the address of the ring. */
2861         ctx.bge_busaddr = 0;
2862         error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2863             &ctx, BUS_DMA_NOWAIT);
2864         if (error != 0) {
2865                 device_printf(sc->bge_dev,
2866                     "could not load DMA'able memory for %s\n", msg);
2867                 return (ENOMEM);
2868         }
2869         *paddr = ctx.bge_busaddr;
2870         return (0);
2871 }
2872
2873 static int
2874 bge_dma_alloc(struct bge_softc *sc)
2875 {
2876         bus_addr_t lowaddr;
2877         bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2878         int i, error;
2879
2880         lowaddr = BUS_SPACE_MAXADDR;
2881         if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2882                 lowaddr = BGE_DMA_MAXADDR;
2883         /*
2884          * Allocate the parent bus DMA tag appropriate for PCI.
2885          */
2886         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2887             1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2888             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2889             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2890         if (error != 0) {
2891                 device_printf(sc->bge_dev,
2892                     "could not allocate parent dma tag\n");
2893                 return (ENOMEM);
2894         }
2895
2896         /* Create tag for standard RX ring. */
2897         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2898             &sc->bge_cdata.bge_rx_std_ring_tag,
2899             (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2900             &sc->bge_cdata.bge_rx_std_ring_map,
2901             &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2902         if (error)
2903                 return (error);
2904
2905         /* Create tag for RX return ring. */
2906         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2907             &sc->bge_cdata.bge_rx_return_ring_tag,
2908             (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2909             &sc->bge_cdata.bge_rx_return_ring_map,
2910             &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2911         if (error)
2912                 return (error);
2913
2914         /* Create tag for TX ring. */
2915         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2916             &sc->bge_cdata.bge_tx_ring_tag,
2917             (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2918             &sc->bge_cdata.bge_tx_ring_map,
2919             &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2920         if (error)
2921                 return (error);
2922
2923         /*
2924          * Create tag for status block.
2925          * Because we only use single Tx/Rx/Rx return ring, use
2926          * minimum status block size except BCM5700 AX/BX which
2927          * seems to want to see full status block size regardless
2928          * of configured number of ring.
2929          */
2930         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2931             sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2932                 sbsz = BGE_STATUS_BLK_SZ;
2933         else
2934                 sbsz = 32;
2935         error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2936             &sc->bge_cdata.bge_status_tag,
2937             (uint8_t **)&sc->bge_ldata.bge_status_block,
2938             &sc->bge_cdata.bge_status_map,
2939             &sc->bge_ldata.bge_status_block_paddr, "status block");
2940         if (error)
2941                 return (error);
2942
2943         /* Create tag for statistics block. */
2944         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2945             &sc->bge_cdata.bge_stats_tag,
2946             (uint8_t **)&sc->bge_ldata.bge_stats,
2947             &sc->bge_cdata.bge_stats_map,
2948             &sc->bge_ldata.bge_stats_paddr, "statistics block");
2949         if (error)
2950                 return (error);
2951
2952         /* Create tag for jumbo RX ring. */
2953         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2954                 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
2955                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
2956                     (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
2957                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
2958                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
2959                 if (error)
2960                         return (error);
2961         }
2962
2963         /* Create parent tag for buffers. */
2964         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
2965                 /*
2966                  * XXX
2967                  * watchdog timeout issue was observed on BCM5704 which
2968                  * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
2969                  * Both limiting DMA address space to 32bits and flushing
2970                  * mailbox write seem to address the issue.
2971                  */
2972                 if (sc->bge_pcixcap != 0)
2973                         lowaddr = BUS_SPACE_MAXADDR_32BIT;
2974         }
2975         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
2976             BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
2977             BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
2978             &sc->bge_cdata.bge_buffer_tag);
2979         if (error != 0) {
2980                 device_printf(sc->bge_dev,
2981                     "could not allocate buffer dma tag\n");
2982                 return (ENOMEM);
2983         }
2984         /* Create tag for Tx mbufs. */
2985         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2986                 txsegsz = BGE_TSOSEG_SZ;
2987                 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2988         } else {
2989                 txsegsz = MCLBYTES;
2990                 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2991         }
2992         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
2993             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2994             txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2995             &sc->bge_cdata.bge_tx_mtag);
2996
2997         if (error) {
2998                 device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2999                 return (ENOMEM);
3000         }
3001
3002         /* Create tag for Rx mbufs. */
3003         if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3004                 rxmaxsegsz = MJUM9BYTES;
3005         else
3006                 rxmaxsegsz = MCLBYTES;
3007         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3008             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3009             rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3010
3011         if (error) {
3012                 device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3013                 return (ENOMEM);
3014         }
3015
3016         /* Create DMA maps for RX buffers. */
3017         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3018             &sc->bge_cdata.bge_rx_std_sparemap);
3019         if (error) {
3020                 device_printf(sc->bge_dev,
3021                     "can't create spare DMA map for RX\n");
3022                 return (ENOMEM);
3023         }
3024         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3025                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3026                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
3027                 if (error) {
3028                         device_printf(sc->bge_dev,
3029                             "can't create DMA map for RX\n");
3030                         return (ENOMEM);
3031                 }
3032         }
3033
3034         /* Create DMA maps for TX buffers. */
3035         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3036                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3037                             &sc->bge_cdata.bge_tx_dmamap[i]);
3038                 if (error) {
3039                         device_printf(sc->bge_dev,
3040                             "can't create DMA map for TX\n");
3041                         return (ENOMEM);
3042                 }
3043         }
3044
3045         /* Create tags for jumbo RX buffers. */
3046         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3047                 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3048                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3049                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3050                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3051                 if (error) {
3052                         device_printf(sc->bge_dev,
3053                             "could not allocate jumbo dma tag\n");
3054                         return (ENOMEM);
3055                 }
3056                 /* Create DMA maps for jumbo RX buffers. */
3057                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3058                     0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3059                 if (error) {
3060                         device_printf(sc->bge_dev,
3061                             "can't create spare DMA map for jumbo RX\n");
3062                         return (ENOMEM);
3063                 }
3064                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3065                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3066                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3067                         if (error) {
3068                                 device_printf(sc->bge_dev,
3069                                     "can't create DMA map for jumbo RX\n");
3070                                 return (ENOMEM);
3071                         }
3072                 }
3073         }
3074
3075         return (0);
3076 }
3077
3078 /*
3079  * Return true if this device has more than one port.
3080  */
3081 static int
3082 bge_has_multiple_ports(struct bge_softc *sc)
3083 {
3084         device_t dev = sc->bge_dev;
3085         u_int b, d, f, fscan, s;
3086
3087         d = pci_get_domain(dev);
3088         b = pci_get_bus(dev);
3089         s = pci_get_slot(dev);
3090         f = pci_get_function(dev);
3091         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3092                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3093                         return (1);
3094         return (0);
3095 }
3096
3097 /*
3098  * Return true if MSI can be used with this device.
3099  */
3100 static int
3101 bge_can_use_msi(struct bge_softc *sc)
3102 {
3103         int can_use_msi = 0;
3104
3105         if (sc->bge_msi == 0)
3106                 return (0);
3107
3108         /* Disable MSI for polling(4). */
3109 #ifdef DEVICE_POLLING
3110         return (0);
3111 #endif
3112         switch (sc->bge_asicrev) {
3113         case BGE_ASICREV_BCM5714_A0:
3114         case BGE_ASICREV_BCM5714:
3115                 /*
3116                  * Apparently, MSI doesn't work when these chips are
3117                  * configured in single-port mode.
3118                  */
3119                 if (bge_has_multiple_ports(sc))
3120                         can_use_msi = 1;
3121                 break;
3122         case BGE_ASICREV_BCM5750:
3123                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3124                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3125                         can_use_msi = 1;
3126                 break;
3127         default:
3128                 if (BGE_IS_575X_PLUS(sc))
3129                         can_use_msi = 1;
3130         }
3131         return (can_use_msi);
3132 }
3133
3134 static int
3135 bge_mbox_reorder(struct bge_softc *sc)
3136 {
3137         /* Lists of PCI bridges that are known to reorder mailbox writes. */
3138         static const struct mbox_reorder {
3139                 const uint16_t vendor;
3140                 const uint16_t device;
3141                 const char *desc;
3142         } mbox_reorder_lists[] = {
3143                 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3144         };
3145         devclass_t pci, pcib;
3146         device_t bus, dev;
3147         int i;
3148
3149         pci = devclass_find("pci");
3150         pcib = devclass_find("pcib");
3151         dev = sc->bge_dev;
3152         bus = device_get_parent(dev);
3153         for (;;) {
3154                 dev = device_get_parent(bus);
3155                 bus = device_get_parent(dev);
3156                 if (device_get_devclass(dev) != pcib)
3157                         break;
3158                 for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3159                         if (pci_get_vendor(dev) ==
3160                             mbox_reorder_lists[i].vendor &&
3161                             pci_get_device(dev) ==
3162                             mbox_reorder_lists[i].device) {
3163                                 device_printf(sc->bge_dev,
3164                                     "enabling MBOX workaround for %s\n",
3165                                     mbox_reorder_lists[i].desc);
3166                                 return (1);
3167                         }
3168                 }
3169                 if (device_get_devclass(bus) != pci)
3170                         break;
3171         }
3172         return (0);
3173 }
3174
3175 static void
3176 bge_devinfo(struct bge_softc *sc)
3177 {
3178         uint32_t cfg, clk;
3179
3180         device_printf(sc->bge_dev,
3181             "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3182             sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3183         if (sc->bge_flags & BGE_FLAG_PCIE)
3184                 printf("PCI-E\n");
3185         else if (sc->bge_flags & BGE_FLAG_PCIX) {
3186                 printf("PCI-X ");
3187                 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3188                 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3189                         clk = 133;
3190                 else {
3191                         clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3192                         switch (clk) {
3193                         case 0:
3194                                 clk = 33;
3195                                 break;
3196                         case 2:
3197                                 clk = 50;
3198                                 break;
3199                         case 4:
3200                                 clk = 66;
3201                                 break;
3202                         case 6:
3203                                 clk = 100;
3204                                 break;
3205                         case 7:
3206                                 clk = 133;
3207                                 break;
3208                         }
3209                 }
3210                 printf("%u MHz\n", clk);
3211         } else {
3212                 if (sc->bge_pcixcap != 0)
3213                         printf("PCI on PCI-X ");
3214                 else
3215                         printf("PCI ");
3216                 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3217                 if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3218                         clk = 66;
3219                 else
3220                         clk = 33;
3221                 if (cfg & BGE_PCISTATE_32BIT_BUS)
3222                         printf("%u MHz; 32bit\n", clk);
3223                 else
3224                         printf("%u MHz; 64bit\n", clk);
3225         }
3226 }
3227
3228 static int
3229 bge_attach(device_t dev)
3230 {
3231         struct ifnet *ifp;
3232         struct bge_softc *sc;
3233         uint32_t hwcfg = 0, misccfg, pcistate;
3234         u_char eaddr[ETHER_ADDR_LEN];
3235         int capmask, error, msicount, reg, rid, trys;
3236
3237         sc = device_get_softc(dev);
3238         sc->bge_dev = dev;
3239
3240         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3241         TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3242         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3243
3244         /*
3245          * Map control/status registers.
3246          */
3247         pci_enable_busmaster(dev);
3248
3249         rid = PCIR_BAR(0);
3250         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3251             RF_ACTIVE);
3252
3253         if (sc->bge_res == NULL) {
3254                 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3255                 error = ENXIO;
3256                 goto fail;
3257         }
3258
3259         /* Save various chip information. */
3260         sc->bge_func_addr = pci_get_function(dev);
3261         sc->bge_chipid = bge_chipid(dev);
3262         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3263         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3264
3265         /* Set default PHY address. */
3266         sc->bge_phy_addr = 1;
3267          /*
3268           * PHY address mapping for various devices.
3269           *
3270           *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3271           * ---------+-------+-------+-------+-------+
3272           * BCM57XX  |   1   |   X   |   X   |   X   |
3273           * BCM5704  |   1   |   X   |   1   |   X   |
3274           * BCM5717  |   1   |   8   |   2   |   9   |
3275           * BCM5719  |   1   |   8   |   2   |   9   |
3276           * BCM5720  |   1   |   8   |   2   |   9   |
3277           *
3278           *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3279           * ---------+-------+-------+-------+-------+
3280           * BCM57XX  |   X   |   X   |   X   |   X   |
3281           * BCM5704  |   X   |   X   |   X   |   X   |
3282           * BCM5717  |   X   |   X   |   X   |   X   |
3283           * BCM5719  |   3   |   10  |   4   |   11  |
3284           * BCM5720  |   X   |   X   |   X   |   X   |
3285           *
3286           * Other addresses may respond but they are not
3287           * IEEE compliant PHYs and should be ignored.
3288           */
3289         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3290             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3291             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3292                 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3293                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3294                             BGE_SGDIGSTS_IS_SERDES)
3295                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3296                         else
3297                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3298                 } else {
3299                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3300                             BGE_CPMU_PHY_STRAP_IS_SERDES)
3301                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3302                         else
3303                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3304                 }
3305         }
3306
3307         if (bge_has_eaddr(sc))
3308                 sc->bge_flags |= BGE_FLAG_EADDR;
3309
3310         /* Save chipset family. */
3311         switch (sc->bge_asicrev) {
3312         case BGE_ASICREV_BCM57765:
3313         case BGE_ASICREV_BCM57766:
3314                 sc->bge_flags |= BGE_FLAG_57765_PLUS;
3315                 /* FALLTHROUGH */
3316         case BGE_ASICREV_BCM5717:
3317         case BGE_ASICREV_BCM5719:
3318         case BGE_ASICREV_BCM5720:
3319                 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3320                     BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3321                     BGE_FLAG_JUMBO_FRAME;
3322                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3323                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3324                         /* Jumbo frame on BCM5719 A0 does not work. */
3325                         sc->bge_flags &= ~BGE_FLAG_JUMBO;
3326                 }
3327                 break;
3328         case BGE_ASICREV_BCM5755:
3329         case BGE_ASICREV_BCM5761:
3330         case BGE_ASICREV_BCM5784:
3331         case BGE_ASICREV_BCM5785:
3332         case BGE_ASICREV_BCM5787:
3333         case BGE_ASICREV_BCM57780:
3334                 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3335                     BGE_FLAG_5705_PLUS;
3336                 break;
3337         case BGE_ASICREV_BCM5700:
3338         case BGE_ASICREV_BCM5701:
3339         case BGE_ASICREV_BCM5703:
3340         case BGE_ASICREV_BCM5704:
3341                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3342                 break;
3343         case BGE_ASICREV_BCM5714_A0:
3344         case BGE_ASICREV_BCM5780:
3345         case BGE_ASICREV_BCM5714:
3346                 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3347                 /* FALLTHROUGH */
3348         case BGE_ASICREV_BCM5750:
3349         case BGE_ASICREV_BCM5752:
3350         case BGE_ASICREV_BCM5906:
3351                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
3352                 /* FALLTHROUGH */
3353         case BGE_ASICREV_BCM5705:
3354                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
3355                 break;
3356         }
3357
3358         /* Identify chips with APE processor. */
3359         switch (sc->bge_asicrev) {
3360         case BGE_ASICREV_BCM5717:
3361         case BGE_ASICREV_BCM5719:
3362         case BGE_ASICREV_BCM5720:
3363         case BGE_ASICREV_BCM5761:
3364                 sc->bge_flags |= BGE_FLAG_APE;
3365                 break;
3366         }
3367
3368         /* Chips with APE need BAR2 access for APE registers/memory. */
3369         if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3370                 rid = PCIR_BAR(2);
3371                 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3372                     RF_ACTIVE);
3373                 if (sc->bge_res2 == NULL) {
3374                         device_printf (sc->bge_dev,
3375                             "couldn't map BAR2 memory\n");
3376                         error = ENXIO;
3377                         goto fail;
3378                 }
3379
3380                 /* Enable APE register/memory access by host driver. */
3381                 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3382                 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3383                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3384                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3385                 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3386
3387                 bge_ape_lock_init(sc);
3388                 bge_ape_read_fw_ver(sc);
3389         }
3390
3391         /* Add SYSCTLs, requires the chipset family to be set. */
3392         bge_add_sysctls(sc);
3393
3394         /* Identify the chips that use an CPMU. */
3395         if (BGE_IS_5717_PLUS(sc) ||
3396             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3397             sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3398             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3399             sc->bge_asicrev == BGE_ASICREV_BCM57780)
3400                 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3401         if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3402                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3403         else
3404                 sc->bge_mi_mode = BGE_MIMODE_BASE;
3405         /* Enable auto polling for BCM570[0-5]. */
3406         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3407                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3408
3409         /*
3410          * All Broadcom controllers have 4GB boundary DMA bug.
3411          * Whenever an address crosses a multiple of the 4GB boundary
3412          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3413          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3414          * state machine will lockup and cause the device to hang.
3415          */
3416         sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3417
3418         /* BCM5755 or higher and BCM5906 have short DMA bug. */
3419         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3420                 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3421
3422         /*
3423          * BCM5719 cannot handle DMA requests for DMA segments that
3424          * have larger than 4KB in size.  However the maximum DMA
3425          * segment size created in DMA tag is 4KB for TSO, so we
3426          * wouldn't encounter the issue here.
3427          */
3428         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3429                 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3430
3431         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3432         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3433                 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3434                     misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3435                         sc->bge_flags |= BGE_FLAG_5788;
3436         }
3437
3438         capmask = BMSR_DEFCAPMASK;
3439         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3440             (misccfg == 0x4000 || misccfg == 0x8000)) ||
3441             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3442             pci_get_vendor(dev) == BCOM_VENDORID &&
3443             (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3444             pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3445             pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3446             (pci_get_vendor(dev) == BCOM_VENDORID &&
3447             (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3448             pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3449             pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3450             pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3451             pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3452             pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3453             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3454                 /* These chips are 10/100 only. */
3455                 capmask &= ~BMSR_EXTSTAT;
3456                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3457         }
3458
3459         /*
3460          * Some controllers seem to require a special firmware to use
3461          * TSO. But the firmware is not available to FreeBSD and Linux
3462          * claims that the TSO performed by the firmware is slower than
3463          * hardware based TSO. Moreover the firmware based TSO has one
3464          * known bug which can't handle TSO if Ethernet header + IP/TCP
3465          * header is greater than 80 bytes. A workaround for the TSO
3466          * bug exist but it seems it's too expensive than not using
3467          * TSO at all. Some hardwares also have the TSO bug so limit
3468          * the TSO to the controllers that are not affected TSO issues
3469          * (e.g. 5755 or higher).
3470          */
3471         if (BGE_IS_5717_PLUS(sc)) {
3472                 /* BCM5717 requires different TSO configuration. */
3473                 sc->bge_flags |= BGE_FLAG_TSO3;
3474                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3475                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3476                         /* TSO on BCM5719 A0 does not work. */
3477                         sc->bge_flags &= ~BGE_FLAG_TSO3;
3478                 }
3479         } else if (BGE_IS_5755_PLUS(sc)) {
3480                 /*
3481                  * BCM5754 and BCM5787 shares the same ASIC id so
3482                  * explicit device id check is required.
3483                  * Due to unknown reason TSO does not work on BCM5755M.
3484                  */
3485                 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3486                     pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3487                     pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3488                         sc->bge_flags |= BGE_FLAG_TSO;
3489         }
3490
3491         /*
3492          * Check if this is a PCI-X or PCI Express device.
3493          */
3494         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3495                 /*
3496                  * Found a PCI Express capabilities register, this
3497                  * must be a PCI Express device.
3498                  */
3499                 sc->bge_flags |= BGE_FLAG_PCIE;
3500                 sc->bge_expcap = reg;
3501                 /* Extract supported maximum payload size. */
3502                 sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3503                     PCIER_DEVICE_CAP, 2);
3504                 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3505                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3506                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
3507                         sc->bge_expmrq = 2048;
3508                 else
3509                         sc->bge_expmrq = 4096;
3510                 pci_set_max_read_req(dev, sc->bge_expmrq);
3511         } else {
3512                 /*
3513                  * Check if the device is in PCI-X Mode.
3514                  * (This bit is not valid on PCI Express controllers.)
3515                  */
3516                 if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3517                         sc->bge_pcixcap = reg;
3518                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3519                     BGE_PCISTATE_PCI_BUSMODE) == 0)
3520                         sc->bge_flags |= BGE_FLAG_PCIX;
3521         }
3522
3523         /*
3524          * The 40bit DMA bug applies to the 5714/5715 controllers and is
3525          * not actually a MAC controller bug but an issue with the embedded
3526          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3527          */
3528         if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3529                 sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3530         /*
3531          * Some PCI-X bridges are known to trigger write reordering to
3532          * the mailbox registers. Typical phenomena is watchdog timeouts
3533          * caused by out-of-order TX completions.  Enable workaround for
3534          * PCI-X devices that live behind these bridges.
3535          * Note, PCI-X controllers can run in PCI mode so we can't use
3536          * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3537          */
3538         if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3539                 sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3540         /*
3541          * Allocate the interrupt, using MSI if possible.  These devices
3542          * support 8 MSI messages, but only the first one is used in
3543          * normal operation.
3544          */
3545         rid = 0;
3546         if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3547                 sc->bge_msicap = reg;
3548                 if (bge_can_use_msi(sc)) {
3549                         msicount = pci_msi_count(dev);
3550                         if (msicount > 1)
3551                                 msicount = 1;
3552                 } else
3553                         msicount = 0;
3554                 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
3555                         rid = 1;
3556                         sc->bge_flags |= BGE_FLAG_MSI;
3557                 }
3558         }
3559
3560         /*
3561          * All controllers except BCM5700 supports tagged status but
3562          * we use tagged status only for MSI case on BCM5717. Otherwise
3563          * MSI on BCM5717 does not work.
3564          */
3565 #ifndef DEVICE_POLLING
3566         if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3567                 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3568 #endif
3569
3570         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3571             RF_SHAREABLE | RF_ACTIVE);
3572
3573         if (sc->bge_irq == NULL) {
3574                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
3575                 error = ENXIO;
3576                 goto fail;
3577         }
3578
3579         bge_devinfo(sc);
3580
3581         sc->bge_asf_mode = 0;
3582         /* No ASF if APE present. */
3583         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3584                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3585                     BGE_SRAM_DATA_SIG_MAGIC)) {
3586                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3587                             BGE_HWCFG_ASF) {
3588                                 sc->bge_asf_mode |= ASF_ENABLE;
3589                                 sc->bge_asf_mode |= ASF_STACKUP;
3590                                 if (BGE_IS_575X_PLUS(sc))
3591                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3592                         }
3593                 }
3594         }
3595
3596         bge_stop_fw(sc);
3597         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3598         if (bge_reset(sc)) {
3599                 device_printf(sc->bge_dev, "chip reset failed\n");
3600                 error = ENXIO;
3601                 goto fail;
3602         }
3603
3604         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3605         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3606
3607         if (bge_chipinit(sc)) {
3608                 device_printf(sc->bge_dev, "chip initialization failed\n");
3609                 error = ENXIO;
3610                 goto fail;
3611         }
3612
3613         error = bge_get_eaddr(sc, eaddr);
3614         if (error) {
3615                 device_printf(sc->bge_dev,
3616                     "failed to read station address\n");
3617                 error = ENXIO;
3618                 goto fail;
3619         }
3620
3621         /* 5705 limits RX return ring to 512 entries. */
3622         if (BGE_IS_5717_PLUS(sc))
3623                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3624         else if (BGE_IS_5705_PLUS(sc))
3625                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3626         else
3627                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3628
3629         if (bge_dma_alloc(sc)) {
3630                 device_printf(sc->bge_dev,
3631                     "failed to allocate DMA resources\n");
3632                 error = ENXIO;
3633                 goto fail;
3634         }
3635
3636         /* Set default tuneable values. */
3637         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3638         sc->bge_rx_coal_ticks = 150;
3639         sc->bge_tx_coal_ticks = 150;
3640         sc->bge_rx_max_coal_bds = 10;
3641         sc->bge_tx_max_coal_bds = 10;
3642
3643         /* Initialize checksum features to use. */
3644         sc->bge_csum_features = BGE_CSUM_FEATURES;
3645         if (sc->bge_forced_udpcsum != 0)
3646                 sc->bge_csum_features |= CSUM_UDP;
3647
3648         /* Set up ifnet structure */
3649         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3650         if (ifp == NULL) {
3651                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
3652                 error = ENXIO;
3653                 goto fail;
3654         }
3655         ifp->if_softc = sc;
3656         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3657         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3658         ifp->if_ioctl = bge_ioctl;
3659         ifp->if_start = bge_start;
3660         ifp->if_init = bge_init;
3661         ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3662         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3663         IFQ_SET_READY(&ifp->if_snd);
3664         ifp->if_hwassist = sc->bge_csum_features;
3665         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3666             IFCAP_VLAN_MTU;
3667         if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3668                 ifp->if_hwassist |= CSUM_TSO;
3669                 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3670         }
3671 #ifdef IFCAP_VLAN_HWCSUM
3672         ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3673 #endif
3674         ifp->if_capenable = ifp->if_capabilities;
3675 #ifdef DEVICE_POLLING
3676         ifp->if_capabilities |= IFCAP_POLLING;
3677 #endif
3678
3679         /*
3680          * 5700 B0 chips do not support checksumming correctly due
3681          * to hardware bugs.
3682          */
3683         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3684                 ifp->if_capabilities &= ~IFCAP_HWCSUM;
3685                 ifp->if_capenable &= ~IFCAP_HWCSUM;
3686                 ifp->if_hwassist = 0;
3687         }
3688
3689         /*
3690          * Figure out what sort of media we have by checking the
3691          * hardware config word in the first 32k of NIC internal memory,
3692          * or fall back to examining the EEPROM if necessary.
3693          * Note: on some BCM5700 cards, this value appears to be unset.
3694          * If that's the case, we have to rely on identifying the NIC
3695          * by its PCI subsystem ID, as we do below for the SysKonnect
3696          * SK-9D41.
3697          */
3698         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3699                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3700         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3701             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3702                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3703                     sizeof(hwcfg))) {
3704                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
3705                         error = ENXIO;
3706                         goto fail;
3707                 }
3708                 hwcfg = ntohl(hwcfg);
3709         }
3710
3711         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3712         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3713             SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3714                 if (BGE_IS_5705_PLUS(sc)) {
3715                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
3716                         sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3717                 } else
3718                         sc->bge_flags |= BGE_FLAG_TBI;
3719         }
3720
3721         /* Set various PHY bug flags. */
3722         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3723             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3724                 sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3725         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3726             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3727                 sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3728         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3729                 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3730         if (pci_get_subvendor(dev) == DELL_VENDORID)
3731                 sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3732         if ((BGE_IS_5705_PLUS(sc)) &&
3733             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3734             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3735             sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3736             !BGE_IS_5717_PLUS(sc)) {
3737                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3738                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3739                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3740                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3741                         if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3742                             pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3743                                 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3744                         if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3745                                 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3746                 } else
3747                         sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3748         }
3749
3750         /*
3751          * Don't enable Ethernet@WireSpeed for the 5700 or the
3752          * 5705 A0 and A1 chips.
3753          */
3754         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3755             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3756             (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3757             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3758                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3759
3760         if (sc->bge_flags & BGE_FLAG_TBI) {
3761                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3762                     bge_ifmedia_sts);
3763                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3764                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3765                     0, NULL);
3766                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3767                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3768                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3769         } else {
3770                 /*
3771                  * Do transceiver setup and tell the firmware the
3772                  * driver is down so we can try to get access the
3773                  * probe if ASF is running.  Retry a couple of times
3774                  * if we get a conflict with the ASF firmware accessing
3775                  * the PHY.
3776                  */
3777                 trys = 0;
3778                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3779 again:
3780                 bge_asf_driver_up(sc);
3781
3782                 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3783                     bge_ifmedia_sts, capmask, sc->bge_phy_addr, MII_OFFSET_ANY,
3784                     MIIF_DOPAUSE);
3785                 if (error != 0) {
3786                         if (trys++ < 4) {
3787                                 device_printf(sc->bge_dev, "Try again\n");
3788                                 bge_miibus_writereg(sc->bge_dev,
3789                                     sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3790                                 goto again;
3791                         }
3792                         device_printf(sc->bge_dev, "attaching PHYs failed\n");
3793                         goto fail;
3794                 }
3795
3796                 /*
3797                  * Now tell the firmware we are going up after probing the PHY
3798                  */
3799                 if (sc->bge_asf_mode & ASF_STACKUP)
3800                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3801         }
3802
3803         /*
3804          * When using the BCM5701 in PCI-X mode, data corruption has
3805          * been observed in the first few bytes of some received packets.
3806          * Aligning the packet buffer in memory eliminates the corruption.
3807          * Unfortunately, this misaligns the packet payloads.  On platforms
3808          * which do not support unaligned accesses, we will realign the
3809          * payloads by copying the received packets.
3810          */
3811         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3812             sc->bge_flags & BGE_FLAG_PCIX)
3813                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3814
3815         /*
3816          * Call MI attach routine.
3817          */
3818         ether_ifattach(ifp, eaddr);
3819
3820         /* Tell upper layer we support long frames. */
3821         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3822
3823         /*
3824          * Hookup IRQ last.
3825          */
3826         if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3827                 /* Take advantage of single-shot MSI. */
3828                 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3829                     ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3830                 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3831                     taskqueue_thread_enqueue, &sc->bge_tq);
3832                 if (sc->bge_tq == NULL) {
3833                         device_printf(dev, "could not create taskqueue.\n");
3834                         ether_ifdetach(ifp);
3835                         error = ENOMEM;
3836                         goto fail;
3837                 }
3838                 error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3839                     "%s taskq", device_get_nameunit(sc->bge_dev));
3840                 if (error != 0) {
3841                         device_printf(dev, "could not start threads.\n");
3842                         ether_ifdetach(ifp);
3843                         goto fail;
3844                 }
3845                 error = bus_setup_intr(dev, sc->bge_irq,
3846                     INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3847                     &sc->bge_intrhand);
3848         } else
3849                 error = bus_setup_intr(dev, sc->bge_irq,
3850                     INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3851                     &sc->bge_intrhand);
3852
3853         if (error) {
3854                 ether_ifdetach(ifp);
3855                 device_printf(sc->bge_dev, "couldn't set up irq\n");
3856         }
3857
3858 fail:
3859         if (error)
3860                 bge_detach(dev);
3861         return (error);
3862 }
3863
3864 static int
3865 bge_detach(device_t dev)
3866 {
3867         struct bge_softc *sc;
3868         struct ifnet *ifp;
3869
3870         sc = device_get_softc(dev);
3871         ifp = sc->bge_ifp;
3872
3873 #ifdef DEVICE_POLLING
3874         if (ifp->if_capenable & IFCAP_POLLING)
3875                 ether_poll_deregister(ifp);
3876 #endif
3877
3878         if (device_is_attached(dev)) {
3879                 ether_ifdetach(ifp);
3880                 BGE_LOCK(sc);
3881                 bge_stop(sc);
3882                 BGE_UNLOCK(sc);
3883                 callout_drain(&sc->bge_stat_ch);
3884         }
3885
3886         if (sc->bge_tq)
3887                 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3888
3889         if (sc->bge_flags & BGE_FLAG_TBI)
3890                 ifmedia_removeall(&sc->bge_ifmedia);
3891         else if (sc->bge_miibus != NULL) {
3892                 bus_generic_detach(dev);
3893                 device_delete_child(dev, sc->bge_miibus);
3894         }
3895
3896         bge_release_resources(sc);
3897
3898         return (0);
3899 }
3900
3901 static void
3902 bge_release_resources(struct bge_softc *sc)
3903 {
3904         device_t dev;
3905
3906         dev = sc->bge_dev;
3907
3908         if (sc->bge_tq != NULL)
3909                 taskqueue_free(sc->bge_tq);
3910
3911         if (sc->bge_intrhand != NULL)
3912                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3913
3914         if (sc->bge_irq != NULL)
3915                 bus_release_resource(dev, SYS_RES_IRQ,
3916                     sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3917
3918         if (sc->bge_flags & BGE_FLAG_MSI)
3919                 pci_release_msi(dev);
3920
3921         if (sc->bge_res != NULL)
3922                 bus_release_resource(dev, SYS_RES_MEMORY,
3923                     PCIR_BAR(0), sc->bge_res);
3924
3925         if (sc->bge_res2 != NULL)
3926                 bus_release_resource(dev, SYS_RES_MEMORY,
3927                     PCIR_BAR(2), sc->bge_res2);
3928
3929         if (sc->bge_ifp != NULL)
3930                 if_free(sc->bge_ifp);
3931
3932         bge_dma_free(sc);
3933
3934         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
3935                 BGE_LOCK_DESTROY(sc);
3936 }
3937
3938 static int
3939 bge_reset(struct bge_softc *sc)
3940 {
3941         device_t dev;
3942         uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
3943         void (*write_op)(struct bge_softc *, int, int);
3944         uint16_t devctl;
3945         int i;
3946
3947         dev = sc->bge_dev;
3948
3949         mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3950         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3951                 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3952         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3953
3954         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3955             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3956                 if (sc->bge_flags & BGE_FLAG_PCIE)
3957                         write_op = bge_writemem_direct;
3958                 else
3959                         write_op = bge_writemem_ind;
3960         } else
3961                 write_op = bge_writereg_ind;
3962
3963         if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
3964             sc->bge_asicrev != BGE_ASICREV_BCM5701) {
3965                 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
3966                 for (i = 0; i < 8000; i++) {
3967                         if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
3968                             BGE_NVRAMSWARB_GNT1)
3969                                 break;
3970                         DELAY(20);
3971                 }
3972                 if (i == 8000) {
3973                         if (bootverbose)
3974                                 device_printf(dev, "NVRAM lock timedout!\n");
3975                 }
3976         }
3977         /* Take APE lock when performing reset. */
3978         bge_ape_lock(sc, BGE_APE_LOCK_GRC);
3979
3980         /* Save some important PCI state. */
3981         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3982         command = pci_read_config(dev, BGE_PCI_CMD, 4);
3983
3984         pci_write_config(dev, BGE_PCI_MISC_CTL,
3985             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3986             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3987
3988         /* Disable fastboot on controllers that support it. */
3989         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3990             BGE_IS_5755_PLUS(sc)) {
3991                 if (bootverbose)
3992                         device_printf(dev, "Disabling fastboot\n");
3993                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3994         }
3995
3996         /*
3997          * Write the magic number to SRAM at offset 0xB50.
3998          * When firmware finishes its initialization it will
3999          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4000          */
4001         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4002
4003         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4004
4005         /* XXX: Broadcom Linux driver. */
4006         if (sc->bge_flags & BGE_FLAG_PCIE) {
4007                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4008                     (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4009                         if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
4010                                 CSR_WRITE_4(sc, 0x7E2C, 0x20);
4011                 }
4012                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4013                         /* Prevent PCIE link training during global reset */
4014                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4015                         reset |= 1 << 29;
4016                 }
4017         }
4018
4019         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4020                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4021                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4022                     val | BGE_VCPU_STATUS_DRV_RESET);
4023                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4024                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4025                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4026         }
4027
4028         /*
4029          * Set GPHY Power Down Override to leave GPHY
4030          * powered up in D0 uninitialized.
4031          */
4032         if (BGE_IS_5705_PLUS(sc) &&
4033             (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4034                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4035
4036         /* Issue global reset */
4037         write_op(sc, BGE_MISC_CFG, reset);
4038
4039         if (sc->bge_flags & BGE_FLAG_PCIE)
4040                 DELAY(100 * 1000);
4041         else
4042                 DELAY(1000);
4043
4044         /* XXX: Broadcom Linux driver. */
4045         if (sc->bge_flags & BGE_FLAG_PCIE) {
4046                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4047                         DELAY(500000); /* wait for link training to complete */
4048                         val = pci_read_config(dev, 0xC4, 4);
4049                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4050                 }
4051                 devctl = pci_read_config(dev,
4052                     sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4053                 /* Clear enable no snoop and disable relaxed ordering. */
4054                 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4055                     PCIEM_CTL_NOSNOOP_ENABLE);
4056                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4057                     devctl, 2);
4058                 pci_set_max_read_req(dev, sc->bge_expmrq);
4059                 /* Clear error status. */
4060                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4061                     PCIEM_STA_CORRECTABLE_ERROR |
4062                     PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4063                     PCIEM_STA_UNSUPPORTED_REQ, 2);
4064         }
4065
4066         /* Reset some of the PCI state that got zapped by reset. */
4067         pci_write_config(dev, BGE_PCI_MISC_CTL,
4068             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4069             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4070         val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4071         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4072             (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4073                 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4074         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4075                 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4076                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4077                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4078         pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4079         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4080         pci_write_config(dev, BGE_PCI_CMD, command, 4);
4081         /*
4082          * Disable PCI-X relaxed ordering to ensure status block update
4083          * comes first then packet buffer DMA. Otherwise driver may
4084          * read stale status block.
4085          */
4086         if (sc->bge_flags & BGE_FLAG_PCIX) {
4087                 devctl = pci_read_config(dev,
4088                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
4089                 devctl &= ~PCIXM_COMMAND_ERO;
4090                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4091                         devctl &= ~PCIXM_COMMAND_MAX_READ;
4092                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4093                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4094                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4095                             PCIXM_COMMAND_MAX_READ);
4096                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4097                 }
4098                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4099                     devctl, 2);
4100         }
4101         /* Re-enable MSI, if necessary, and enable the memory arbiter. */
4102         if (BGE_IS_5714_FAMILY(sc)) {
4103                 /* This chip disables MSI on reset. */
4104                 if (sc->bge_flags & BGE_FLAG_MSI) {
4105                         val = pci_read_config(dev,
4106                             sc->bge_msicap + PCIR_MSI_CTRL, 2);
4107                         pci_write_config(dev,
4108                             sc->bge_msicap + PCIR_MSI_CTRL,
4109                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
4110                         val = CSR_READ_4(sc, BGE_MSI_MODE);
4111                         CSR_WRITE_4(sc, BGE_MSI_MODE,
4112                             val | BGE_MSIMODE_ENABLE);
4113                 }
4114                 val = CSR_READ_4(sc, BGE_MARB_MODE);
4115                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4116         } else
4117                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4118
4119         /* Fix up byte swapping. */
4120         CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4121
4122         val = CSR_READ_4(sc, BGE_MAC_MODE);
4123         val = (val & ~mac_mode_mask) | mac_mode;
4124         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4125         DELAY(40);
4126
4127         bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4128
4129         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4130                 for (i = 0; i < BGE_TIMEOUT; i++) {
4131                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4132                         if (val & BGE_VCPU_STATUS_INIT_DONE)
4133                                 break;
4134                         DELAY(100);
4135                 }
4136                 if (i == BGE_TIMEOUT) {
4137                         device_printf(dev, "reset timed out\n");
4138                         return (1);
4139                 }
4140         } else {
4141                 /*
4142                  * Poll until we see the 1's complement of the magic number.
4143                  * This indicates that the firmware initialization is complete.
4144                  * We expect this to fail if no chip containing the Ethernet
4145                  * address is fitted though.
4146                  */
4147                 for (i = 0; i < BGE_TIMEOUT; i++) {
4148                         DELAY(10);
4149                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4150                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
4151                                 break;
4152                 }
4153
4154                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4155                         device_printf(dev,
4156                             "firmware handshake timed out, found 0x%08x\n",
4157                             val);
4158                 /* BCM57765 A0 needs additional time before accessing. */
4159                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4160                         DELAY(10 * 1000);       /* XXX */
4161         }
4162
4163         /*
4164          * The 5704 in TBI mode apparently needs some special
4165          * adjustment to insure the SERDES drive level is set
4166          * to 1.2V.
4167          */
4168         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4169             sc->bge_flags & BGE_FLAG_TBI) {
4170                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
4171                 val = (val & ~0xFFF) | 0x880;
4172                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4173         }
4174
4175         /* XXX: Broadcom Linux driver. */
4176         if (sc->bge_flags & BGE_FLAG_PCIE &&
4177             !BGE_IS_5717_PLUS(sc) &&
4178             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4179             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4180                 /* Enable Data FIFO protection. */
4181                 val = CSR_READ_4(sc, 0x7C00);
4182                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4183         }
4184
4185         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4186                 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4187                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4188
4189         return (0);
4190 }
4191
4192 static __inline void
4193 bge_rxreuse_std(struct bge_softc *sc, int i)
4194 {
4195         struct bge_rx_bd *r;
4196
4197         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4198         r->bge_flags = BGE_RXBDFLAG_END;
4199         r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4200         r->bge_idx = i;
4201         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4202 }
4203
4204 static __inline void
4205 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4206 {
4207         struct bge_extrx_bd *r;
4208
4209         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4210         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4211         r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4212         r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4213         r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4214         r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4215         r->bge_idx = i;
4216         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4217 }
4218
4219 /*
4220  * Frame reception handling. This is called if there's a frame
4221  * on the receive return list.
4222  *
4223  * Note: we have to be able to handle two possibilities here:
4224  * 1) the frame is from the jumbo receive ring
4225  * 2) the frame is from the standard receive ring
4226  */
4227
4228 static int
4229 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4230 {
4231         struct ifnet *ifp;
4232         int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4233         uint16_t rx_cons;
4234
4235         rx_cons = sc->bge_rx_saved_considx;
4236
4237         /* Nothing to do. */
4238         if (rx_cons == rx_prod)
4239                 return (rx_npkts);
4240
4241         ifp = sc->bge_ifp;
4242
4243         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4244             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4245         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4246             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4247         if (BGE_IS_JUMBO_CAPABLE(sc) &&
4248             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4249             (MCLBYTES - ETHER_ALIGN))
4250                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4251                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4252
4253         while (rx_cons != rx_prod) {
4254                 struct bge_rx_bd        *cur_rx;
4255                 uint32_t                rxidx;
4256                 struct mbuf             *m = NULL;
4257                 uint16_t                vlan_tag = 0;
4258                 int                     have_tag = 0;
4259
4260 #ifdef DEVICE_POLLING
4261                 if (ifp->if_capenable & IFCAP_POLLING) {
4262                         if (sc->rxcycles <= 0)
4263                                 break;
4264                         sc->rxcycles--;
4265                 }
4266 #endif
4267
4268                 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4269
4270                 rxidx = cur_rx->bge_idx;
4271                 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4272
4273                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
4274                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4275                         have_tag = 1;
4276                         vlan_tag = cur_rx->bge_vlan_tag;
4277                 }
4278
4279                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4280                         jumbocnt++;
4281                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4282                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4283                                 bge_rxreuse_jumbo(sc, rxidx);
4284                                 continue;
4285                         }
4286                         if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4287                                 bge_rxreuse_jumbo(sc, rxidx);
4288                                 ifp->if_iqdrops++;
4289                                 continue;
4290                         }
4291                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4292                 } else {
4293                         stdcnt++;
4294                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4295                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4296                                 bge_rxreuse_std(sc, rxidx);
4297                                 continue;
4298                         }
4299                         if (bge_newbuf_std(sc, rxidx) != 0) {
4300                                 bge_rxreuse_std(sc, rxidx);
4301                                 ifp->if_iqdrops++;
4302                                 continue;
4303                         }
4304                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4305                 }
4306
4307                 ifp->if_ipackets++;
4308 #ifndef __NO_STRICT_ALIGNMENT
4309                 /*
4310                  * For architectures with strict alignment we must make sure
4311                  * the payload is aligned.
4312                  */
4313                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4314                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4315                             cur_rx->bge_len);
4316                         m->m_data += ETHER_ALIGN;
4317                 }
4318 #endif
4319                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4320                 m->m_pkthdr.rcvif = ifp;
4321
4322                 if (ifp->if_capenable & IFCAP_RXCSUM)
4323                         bge_rxcsum(sc, cur_rx, m);
4324
4325                 /*
4326                  * If we received a packet with a vlan tag,
4327                  * attach that information to the packet.
4328                  */
4329                 if (have_tag) {
4330                         m->m_pkthdr.ether_vtag = vlan_tag;
4331                         m->m_flags |= M_VLANTAG;
4332                 }
4333
4334                 if (holdlck != 0) {
4335                         BGE_UNLOCK(sc);
4336                         (*ifp->if_input)(ifp, m);
4337                         BGE_LOCK(sc);
4338                 } else
4339                         (*ifp->if_input)(ifp, m);
4340                 rx_npkts++;
4341
4342                 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
4343                         return (rx_npkts);
4344         }
4345
4346         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4347             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4348         if (stdcnt > 0)
4349                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4350                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4351
4352         if (jumbocnt > 0)
4353                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4354                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4355
4356         sc->bge_rx_saved_considx = rx_cons;
4357         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4358         if (stdcnt)
4359                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4360                     BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4361         if (jumbocnt)
4362                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4363                     BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4364 #ifdef notyet
4365         /*
4366          * This register wraps very quickly under heavy packet drops.
4367          * If you need correct statistics, you can enable this check.
4368          */
4369         if (BGE_IS_5705_PLUS(sc))
4370                 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4371 #endif
4372         return (rx_npkts);
4373 }
4374
4375 static void
4376 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4377 {
4378
4379         if (BGE_IS_5717_PLUS(sc)) {
4380                 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4381                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4382                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4383                                 if ((cur_rx->bge_error_flag &
4384                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4385                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4386                         }
4387                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4388                                 m->m_pkthdr.csum_data =
4389                                     cur_rx->bge_tcp_udp_csum;
4390                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4391                                     CSUM_PSEUDO_HDR;
4392                         }
4393                 }
4394         } else {
4395                 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4396                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4397                         if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4398                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4399                 }
4400                 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4401                     m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4402                         m->m_pkthdr.csum_data =
4403                             cur_rx->bge_tcp_udp_csum;
4404                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4405                             CSUM_PSEUDO_HDR;
4406                 }
4407         }
4408 }
4409
4410 static void
4411 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4412 {
4413         struct bge_tx_bd *cur_tx;
4414         struct ifnet *ifp;
4415
4416         BGE_LOCK_ASSERT(sc);
4417
4418         /* Nothing to do. */
4419         if (sc->bge_tx_saved_considx == tx_cons)
4420                 return;
4421
4422         ifp = sc->bge_ifp;
4423
4424         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4425             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4426         /*
4427          * Go through our tx ring and free mbufs for those
4428          * frames that have been sent.
4429          */
4430         while (sc->bge_tx_saved_considx != tx_cons) {
4431                 uint32_t                idx;
4432
4433                 idx = sc->bge_tx_saved_considx;
4434                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4435                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4436                         ifp->if_opackets++;
4437                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4438                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4439                             sc->bge_cdata.bge_tx_dmamap[idx],
4440                             BUS_DMASYNC_POSTWRITE);
4441                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4442                             sc->bge_cdata.bge_tx_dmamap[idx]);
4443                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4444                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
4445                 }
4446                 sc->bge_txcnt--;
4447                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4448         }
4449
4450         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4451         if (sc->bge_txcnt == 0)
4452                 sc->bge_timer = 0;
4453 }
4454
4455 #ifdef DEVICE_POLLING
4456 static int
4457 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4458 {
4459         struct bge_softc *sc = ifp->if_softc;
4460         uint16_t rx_prod, tx_cons;
4461         uint32_t statusword;
4462         int rx_npkts = 0;
4463
4464         BGE_LOCK(sc);
4465         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4466                 BGE_UNLOCK(sc);
4467                 return (rx_npkts);
4468         }
4469
4470         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4471             sc->bge_cdata.bge_status_map,
4472             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4473         /* Fetch updates from the status block. */
4474         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4475         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4476
4477         statusword = sc->bge_ldata.bge_status_block->bge_status;
4478         /* Clear the status so the next pass only sees the changes. */
4479         sc->bge_ldata.bge_status_block->bge_status = 0;
4480
4481         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4482             sc->bge_cdata.bge_status_map,
4483             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4484
4485         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4486         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4487                 sc->bge_link_evt++;
4488
4489         if (cmd == POLL_AND_CHECK_STATUS)
4490                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4491                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4492                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4493                         bge_link_upd(sc);
4494
4495         sc->rxcycles = count;
4496         rx_npkts = bge_rxeof(sc, rx_prod, 1);
4497         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4498                 BGE_UNLOCK(sc);
4499                 return (rx_npkts);
4500         }
4501         bge_txeof(sc, tx_cons);
4502         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4503                 bge_start_locked(ifp);
4504
4505         BGE_UNLOCK(sc);
4506         return (rx_npkts);
4507 }
4508 #endif /* DEVICE_POLLING */
4509
4510 static int
4511 bge_msi_intr(void *arg)
4512 {
4513         struct bge_softc *sc;
4514
4515         sc = (struct bge_softc *)arg;
4516         /*
4517          * This interrupt is not shared and controller already
4518          * disabled further interrupt.
4519          */
4520         taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4521         return (FILTER_HANDLED);
4522 }
4523
4524 static void
4525 bge_intr_task(void *arg, int pending)
4526 {
4527         struct bge_softc *sc;
4528         struct ifnet *ifp;
4529         uint32_t status, status_tag;
4530         uint16_t rx_prod, tx_cons;
4531
4532         sc = (struct bge_softc *)arg;
4533         ifp = sc->bge_ifp;
4534
4535         BGE_LOCK(sc);
4536         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4537                 BGE_UNLOCK(sc);
4538                 return;
4539         }
4540
4541         /* Get updated status block. */
4542         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4543             sc->bge_cdata.bge_status_map,
4544             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4545
4546         /* Save producer/consumer indices. */
4547         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4548         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4549         status = sc->bge_ldata.bge_status_block->bge_status;
4550         status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4551         /* Dirty the status flag. */
4552         sc->bge_ldata.bge_status_block->bge_status = 0;
4553         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4554             sc->bge_cdata.bge_status_map,
4555             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4556         if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4557                 status_tag = 0;
4558
4559         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4560                 bge_link_upd(sc);
4561
4562         /* Let controller work. */
4563         bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4564
4565         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4566             sc->bge_rx_saved_considx != rx_prod) {
4567                 /* Check RX return ring producer/consumer. */
4568                 BGE_UNLOCK(sc);
4569                 bge_rxeof(sc, rx_prod, 0);
4570                 BGE_LOCK(sc);
4571         }
4572         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4573                 /* Check TX ring producer/consumer. */
4574                 bge_txeof(sc, tx_cons);
4575                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4576                         bge_start_locked(ifp);
4577         }
4578         BGE_UNLOCK(sc);
4579 }
4580
4581 static void
4582 bge_intr(void *xsc)
4583 {
4584         struct bge_softc *sc;
4585         struct ifnet *ifp;
4586         uint32_t statusword;
4587         uint16_t rx_prod, tx_cons;
4588
4589         sc = xsc;
4590
4591         BGE_LOCK(sc);
4592
4593         ifp = sc->bge_ifp;
4594
4595 #ifdef DEVICE_POLLING
4596         if (ifp->if_capenable & IFCAP_POLLING) {
4597                 BGE_UNLOCK(sc);
4598                 return;
4599         }
4600 #endif
4601
4602         /*
4603          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4604          * disable interrupts by writing nonzero like we used to, since with
4605          * our current organization this just gives complications and
4606          * pessimizations for re-enabling interrupts.  We used to have races
4607          * instead of the necessary complications.  Disabling interrupts
4608          * would just reduce the chance of a status update while we are
4609          * running (by switching to the interrupt-mode coalescence
4610          * parameters), but this chance is already very low so it is more
4611          * efficient to get another interrupt than prevent it.
4612          *
4613          * We do the ack first to ensure another interrupt if there is a
4614          * status update after the ack.  We don't check for the status
4615          * changing later because it is more efficient to get another
4616          * interrupt than prevent it, not quite as above (not checking is
4617          * a smaller optimization than not toggling the interrupt enable,
4618          * since checking doesn't involve PCI accesses and toggling require
4619          * the status check).  So toggling would probably be a pessimization
4620          * even with MSI.  It would only be needed for using a task queue.
4621          */
4622         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4623
4624         /*
4625          * Do the mandatory PCI flush as well as get the link status.
4626          */
4627         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4628
4629         /* Make sure the descriptor ring indexes are coherent. */
4630         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4631             sc->bge_cdata.bge_status_map,
4632             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4633         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4634         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4635         sc->bge_ldata.bge_status_block->bge_status = 0;
4636         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4637             sc->bge_cdata.bge_status_map,
4638             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4639
4640         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4641             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4642             statusword || sc->bge_link_evt)
4643                 bge_link_upd(sc);
4644
4645         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4646                 /* Check RX return ring producer/consumer. */
4647                 bge_rxeof(sc, rx_prod, 1);
4648         }
4649
4650         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4651                 /* Check TX ring producer/consumer. */
4652                 bge_txeof(sc, tx_cons);
4653         }
4654
4655         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4656             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4657                 bge_start_locked(ifp);
4658
4659         BGE_UNLOCK(sc);
4660 }
4661
4662 static void
4663 bge_asf_driver_up(struct bge_softc *sc)
4664 {
4665         if (sc->bge_asf_mode & ASF_STACKUP) {
4666                 /* Send ASF heartbeat aprox. every 2s */
4667                 if (sc->bge_asf_count)
4668                         sc->bge_asf_count --;
4669                 else {
4670                         sc->bge_asf_count = 2;
4671                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4672                             BGE_FW_CMD_DRV_ALIVE);
4673                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4674                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4675                             BGE_FW_HB_TIMEOUT_SEC);
4676                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4677                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4678                             BGE_RX_CPU_DRV_EVENT);
4679                 }
4680         }
4681 }
4682
4683 static void
4684 bge_tick(void *xsc)
4685 {
4686         struct bge_softc *sc = xsc;
4687         struct mii_data *mii = NULL;
4688
4689         BGE_LOCK_ASSERT(sc);
4690
4691         /* Synchronize with possible callout reset/stop. */
4692         if (callout_pending(&sc->bge_stat_ch) ||
4693             !callout_active(&sc->bge_stat_ch))
4694                 return;
4695
4696         if (BGE_IS_5705_PLUS(sc))
4697                 bge_stats_update_regs(sc);
4698         else
4699                 bge_stats_update(sc);
4700
4701         /* XXX Add APE heartbeat check here? */
4702
4703         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4704                 mii = device_get_softc(sc->bge_miibus);
4705                 /*
4706                  * Do not touch PHY if we have link up. This could break
4707                  * IPMI/ASF mode or produce extra input errors
4708                  * (extra errors was reported for bcm5701 & bcm5704).
4709                  */
4710                 if (!sc->bge_link)
4711                         mii_tick(mii);
4712         } else {
4713                 /*
4714                  * Since in TBI mode auto-polling can't be used we should poll
4715                  * link status manually. Here we register pending link event
4716                  * and trigger interrupt.
4717                  */
4718 #ifdef DEVICE_POLLING
4719                 /* In polling mode we poll link state in bge_poll(). */
4720                 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4721 #endif
4722                 {
4723                 sc->bge_link_evt++;
4724                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4725                     sc->bge_flags & BGE_FLAG_5788)
4726                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4727                 else
4728                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4729                 }
4730         }
4731
4732         bge_asf_driver_up(sc);
4733         bge_watchdog(sc);
4734
4735         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4736 }
4737
4738 static void
4739 bge_stats_update_regs(struct bge_softc *sc)
4740 {
4741         struct ifnet *ifp;
4742         struct bge_mac_stats *stats;
4743
4744         ifp = sc->bge_ifp;
4745         stats = &sc->bge_mac_stats;
4746
4747         stats->ifHCOutOctets +=
4748             CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4749         stats->etherStatsCollisions +=
4750             CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4751         stats->outXonSent +=
4752             CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4753         stats->outXoffSent +=
4754             CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4755         stats->dot3StatsInternalMacTransmitErrors +=
4756             CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4757         stats->dot3StatsSingleCollisionFrames +=
4758             CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4759         stats->dot3StatsMultipleCollisionFrames +=
4760             CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4761         stats->dot3StatsDeferredTransmissions +=
4762             CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4763         stats->dot3StatsExcessiveCollisions +=
4764             CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4765         stats->dot3StatsLateCollisions +=
4766             CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4767         stats->ifHCOutUcastPkts +=
4768             CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4769         stats->ifHCOutMulticastPkts +=
4770             CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4771         stats->ifHCOutBroadcastPkts +=
4772             CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4773
4774         stats->ifHCInOctets +=
4775             CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4776         stats->etherStatsFragments +=
4777             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4778         stats->ifHCInUcastPkts +=
4779             CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4780         stats->ifHCInMulticastPkts +=
4781             CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4782         stats->ifHCInBroadcastPkts +=
4783             CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4784         stats->dot3StatsFCSErrors +=
4785             CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4786         stats->dot3StatsAlignmentErrors +=
4787             CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4788         stats->xonPauseFramesReceived +=
4789             CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4790         stats->xoffPauseFramesReceived +=
4791             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4792         stats->macControlFramesReceived +=
4793             CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4794         stats->xoffStateEntered +=
4795             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4796         stats->dot3StatsFramesTooLong +=
4797             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4798         stats->etherStatsJabbers +=
4799             CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4800         stats->etherStatsUndersizePkts +=
4801             CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4802
4803         stats->FramesDroppedDueToFilters +=
4804             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4805         stats->DmaWriteQueueFull +=
4806             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4807         stats->DmaWriteHighPriQueueFull +=
4808             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4809         stats->NoMoreRxBDs +=
4810             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4811         /*
4812          * XXX
4813          * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4814          * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4815          * includes number of unwanted multicast frames.  This comes
4816          * from silicon bug and known workaround to get rough(not
4817          * exact) counter is to enable interrupt on MBUF low water
4818          * attention.  This can be accomplished by setting
4819          * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4820          * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4821          * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4822          * However that change would generate more interrupts and
4823          * there are still possibilities of losing multiple frames
4824          * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4825          * Given that the workaround still would not get correct
4826          * counter I don't think it's worth to implement it.  So
4827          * ignore reading the counter on controllers that have the
4828          * silicon bug.
4829          */
4830         if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4831             sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4832             sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4833                 stats->InputDiscards +=
4834                     CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4835         stats->InputErrors +=
4836             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4837         stats->RecvThresholdHit +=
4838             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4839
4840         ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4841         ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4842             stats->InputErrors);
4843 }
4844
4845 static void
4846 bge_stats_clear_regs(struct bge_softc *sc)
4847 {
4848
4849         CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4850         CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4851         CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4852         CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4853         CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4854         CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4855         CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4856         CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4857         CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4858         CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4859         CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4860         CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4861         CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4862
4863         CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4864         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4865         CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4866         CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4867         CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4868         CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4869         CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4870         CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4871         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4872         CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4873         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4874         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4875         CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4876         CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4877
4878         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4879         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4880         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4881         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4882         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4883         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4884         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4885 }
4886
4887 static void
4888 bge_stats_update(struct bge_softc *sc)
4889 {
4890         struct ifnet *ifp;
4891         bus_size_t stats;
4892         uint32_t cnt;   /* current register value */
4893
4894         ifp = sc->bge_ifp;
4895
4896         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4897
4898 #define READ_STAT(sc, stats, stat) \
4899         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4900
4901         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4902         ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4903         sc->bge_tx_collisions = cnt;
4904
4905         cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4906         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4907         sc->bge_rx_nobds = cnt;
4908         cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4909         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
4910         sc->bge_rx_inerrs = cnt;
4911         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4912         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
4913         sc->bge_rx_discards = cnt;
4914
4915         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4916         ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
4917         sc->bge_tx_discards = cnt;
4918
4919 #undef  READ_STAT
4920 }
4921
4922 /*
4923  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4924  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4925  * but when such padded frames employ the bge IP/TCP checksum offload,
4926  * the hardware checksum assist gives incorrect results (possibly
4927  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4928  * If we pad such runts with zeros, the onboard checksum comes out correct.
4929  */
4930 static __inline int
4931 bge_cksum_pad(struct mbuf *m)
4932 {
4933         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
4934         struct mbuf *last;
4935
4936         /* If there's only the packet-header and we can pad there, use it. */
4937         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
4938             M_TRAILINGSPACE(m) >= padlen) {
4939                 last = m;
4940         } else {
4941                 /*
4942                  * Walk packet chain to find last mbuf. We will either
4943                  * pad there, or append a new mbuf and pad it.
4944                  */
4945                 for (last = m; last->m_next != NULL; last = last->m_next);
4946                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
4947                         /* Allocate new empty mbuf, pad it. Compact later. */
4948                         struct mbuf *n;
4949
4950                         MGET(n, M_NOWAIT, MT_DATA);
4951                         if (n == NULL)
4952                                 return (ENOBUFS);
4953                         n->m_len = 0;
4954                         last->m_next = n;
4955                         last = n;
4956                 }
4957         }
4958
4959         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
4960         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
4961         last->m_len += padlen;
4962         m->m_pkthdr.len += padlen;
4963
4964         return (0);
4965 }
4966
4967 static struct mbuf *
4968 bge_check_short_dma(struct mbuf *m)
4969 {
4970         struct mbuf *n;
4971         int found;
4972
4973         /*
4974          * If device receive two back-to-back send BDs with less than
4975          * or equal to 8 total bytes then the device may hang.  The two
4976          * back-to-back send BDs must in the same frame for this failure
4977          * to occur.  Scan mbuf chains and see whether two back-to-back
4978          * send BDs are there. If this is the case, allocate new mbuf
4979          * and copy the frame to workaround the silicon bug.
4980          */
4981         for (n = m, found = 0; n != NULL; n = n->m_next) {
4982                 if (n->m_len < 8) {
4983                         found++;
4984                         if (found > 1)
4985                                 break;
4986                         continue;
4987                 }
4988                 found = 0;
4989         }
4990
4991         if (found > 1) {
4992                 n = m_defrag(m, M_NOWAIT);
4993                 if (n == NULL)
4994                         m_freem(m);
4995         } else
4996                 n = m;
4997         return (n);
4998 }
4999
5000 static struct mbuf *
5001 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5002     uint16_t *flags)
5003 {
5004         struct ip *ip;
5005         struct tcphdr *tcp;
5006         struct mbuf *n;
5007         uint16_t hlen;
5008         uint32_t poff;
5009
5010         if (M_WRITABLE(m) == 0) {
5011                 /* Get a writable copy. */
5012                 n = m_dup(m, M_NOWAIT);
5013                 m_freem(m);
5014                 if (n == NULL)
5015                         return (NULL);
5016                 m = n;
5017         }
5018         m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5019         if (m == NULL)
5020                 return (NULL);
5021         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5022         poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5023         m = m_pullup(m, poff + sizeof(struct tcphdr));
5024         if (m == NULL)
5025                 return (NULL);
5026         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5027         m = m_pullup(m, poff + (tcp->th_off << 2));
5028         if (m == NULL)
5029                 return (NULL);
5030         /*
5031          * It seems controller doesn't modify IP length and TCP pseudo
5032          * checksum. These checksum computed by upper stack should be 0.
5033          */
5034         *mss = m->m_pkthdr.tso_segsz;
5035         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5036         ip->ip_sum = 0;
5037         ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5038         /* Clear pseudo checksum computed by TCP stack. */
5039         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5040         tcp->th_sum = 0;
5041         /*
5042          * Broadcom controllers uses different descriptor format for
5043          * TSO depending on ASIC revision. Due to TSO-capable firmware
5044          * license issue and lower performance of firmware based TSO
5045          * we only support hardware based TSO.
5046          */
5047         /* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5048         hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5049         if (sc->bge_flags & BGE_FLAG_TSO3) {
5050                 /*
5051                  * For BCM5717 and newer controllers, hardware based TSO
5052                  * uses the 14 lower bits of the bge_mss field to store the
5053                  * MSS and the upper 2 bits to store the lowest 2 bits of
5054                  * the IP/TCP header length.  The upper 6 bits of the header
5055                  * length are stored in the bge_flags[14:10,4] field.  Jumbo
5056                  * frames are supported.
5057                  */
5058                 *mss |= ((hlen & 0x3) << 14);
5059                 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5060         } else {
5061                 /*
5062                  * For BCM5755 and newer controllers, hardware based TSO uses
5063                  * the lower 11 bits to store the MSS and the upper 5 bits to
5064                  * store the IP/TCP header length. Jumbo frames are not
5065                  * supported.
5066                  */
5067                 *mss |= (hlen << 11);
5068         }
5069         return (m);
5070 }
5071
5072 /*
5073  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5074  * pointers to descriptors.
5075  */
5076 static int
5077 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5078 {
5079         bus_dma_segment_t       segs[BGE_NSEG_NEW];
5080         bus_dmamap_t            map;
5081         struct bge_tx_bd        *d;
5082         struct mbuf             *m = *m_head;
5083         uint32_t                idx = *txidx;
5084         uint16_t                csum_flags, mss, vlan_tag;
5085         int                     nsegs, i, error;
5086
5087         csum_flags = 0;
5088         mss = 0;
5089         vlan_tag = 0;
5090         if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5091             m->m_next != NULL) {
5092                 *m_head = bge_check_short_dma(m);
5093                 if (*m_head == NULL)
5094                         return (ENOBUFS);
5095                 m = *m_head;
5096         }
5097         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5098                 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5099                 if (*m_head == NULL)
5100                         return (ENOBUFS);
5101                 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5102                     BGE_TXBDFLAG_CPU_POST_DMA;
5103         } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5104                 if (m->m_pkthdr.csum_flags & CSUM_IP)
5105                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5106                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5107                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5108                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5109                             (error = bge_cksum_pad(m)) != 0) {
5110                                 m_freem(m);
5111                                 *m_head = NULL;
5112                                 return (error);
5113                         }
5114                 }
5115         }
5116
5117         if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5118                 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5119                     m->m_pkthdr.len > ETHER_MAX_LEN)
5120                         csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5121                 if (sc->bge_forced_collapse > 0 &&
5122                     (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5123                         /*
5124                          * Forcedly collapse mbuf chains to overcome hardware
5125                          * limitation which only support a single outstanding
5126                          * DMA read operation.
5127                          */
5128                         if (sc->bge_forced_collapse == 1)
5129                                 m = m_defrag(m, M_NOWAIT);
5130                         else
5131                                 m = m_collapse(m, M_NOWAIT,
5132                                     sc->bge_forced_collapse);
5133                         if (m == NULL)
5134                                 m = *m_head;
5135                         *m_head = m;
5136                 }
5137         }
5138
5139         map = sc->bge_cdata.bge_tx_dmamap[idx];
5140         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5141             &nsegs, BUS_DMA_NOWAIT);
5142         if (error == EFBIG) {
5143                 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5144                 if (m == NULL) {
5145                         m_freem(*m_head);
5146                         *m_head = NULL;
5147                         return (ENOBUFS);
5148                 }
5149                 *m_head = m;
5150                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5151                     m, segs, &nsegs, BUS_DMA_NOWAIT);
5152                 if (error) {
5153                         m_freem(m);
5154                         *m_head = NULL;
5155                         return (error);
5156                 }
5157         } else if (error != 0)
5158                 return (error);
5159
5160         /* Check if we have enough free send BDs. */
5161         if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5162                 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5163                 return (ENOBUFS);
5164         }
5165
5166         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5167
5168         if (m->m_flags & M_VLANTAG) {
5169                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5170                 vlan_tag = m->m_pkthdr.ether_vtag;
5171         }
5172         for (i = 0; ; i++) {
5173                 d = &sc->bge_ldata.bge_tx_ring[idx];
5174                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5175                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5176                 d->bge_len = segs[i].ds_len;
5177                 d->bge_flags = csum_flags;
5178                 d->bge_vlan_tag = vlan_tag;
5179                 d->bge_mss = mss;
5180                 if (i == nsegs - 1)
5181                         break;
5182                 BGE_INC(idx, BGE_TX_RING_CNT);
5183         }
5184
5185         /* Mark the last segment as end of packet... */
5186         d->bge_flags |= BGE_TXBDFLAG_END;
5187
5188         /*
5189          * Insure that the map for this transmission
5190          * is placed at the array index of the last descriptor
5191          * in this chain.
5192          */
5193         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5194         sc->bge_cdata.bge_tx_dmamap[idx] = map;
5195         sc->bge_cdata.bge_tx_chain[idx] = m;
5196         sc->bge_txcnt += nsegs;
5197
5198         BGE_INC(idx, BGE_TX_RING_CNT);
5199         *txidx = idx;
5200
5201         return (0);
5202 }
5203
5204 /*
5205  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5206  * to the mbuf data regions directly in the transmit descriptors.
5207  */
5208 static void
5209 bge_start_locked(struct ifnet *ifp)
5210 {
5211         struct bge_softc *sc;
5212         struct mbuf *m_head;
5213         uint32_t prodidx;
5214         int count;
5215
5216         sc = ifp->if_softc;
5217         BGE_LOCK_ASSERT(sc);
5218
5219         if (!sc->bge_link ||
5220             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5221             IFF_DRV_RUNNING)
5222                 return;
5223
5224         prodidx = sc->bge_tx_prodidx;
5225
5226         for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
5227                 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5228                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5229                         break;
5230                 }
5231                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
5232                 if (m_head == NULL)
5233                         break;
5234
5235                 /*
5236                  * Pack the data into the transmit ring. If we
5237                  * don't have room, set the OACTIVE flag and wait
5238                  * for the NIC to drain the ring.
5239                  */
5240                 if (bge_encap(sc, &m_head, &prodidx)) {
5241                         if (m_head == NULL)
5242                                 break;
5243                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
5244                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5245                         break;
5246                 }
5247                 ++count;
5248
5249                 /*
5250                  * If there's a BPF listener, bounce a copy of this frame
5251                  * to him.
5252                  */
5253 #ifdef ETHER_BPF_MTAP
5254                 ETHER_BPF_MTAP(ifp, m_head);
5255 #else
5256                 BPF_MTAP(ifp, m_head);
5257 #endif
5258         }
5259
5260         if (count > 0) {
5261                 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5262                     sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5263                 /* Transmit. */
5264                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5265                 /* 5700 b2 errata */
5266                 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5267                         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5268
5269                 sc->bge_tx_prodidx = prodidx;
5270
5271                 /*
5272                  * Set a timeout in case the chip goes out to lunch.
5273                  */
5274                 sc->bge_timer = 5;
5275         }
5276 }
5277
5278 /*
5279  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5280  * to the mbuf data regions directly in the transmit descriptors.
5281  */
5282 static void
5283 bge_start(struct ifnet *ifp)
5284 {
5285         struct bge_softc *sc;
5286
5287         sc = ifp->if_softc;
5288         BGE_LOCK(sc);
5289         bge_start_locked(ifp);
5290         BGE_UNLOCK(sc);
5291 }
5292
5293 static void
5294 bge_init_locked(struct bge_softc *sc)
5295 {
5296         struct ifnet *ifp;
5297         uint16_t *m;
5298         uint32_t mode;
5299
5300         BGE_LOCK_ASSERT(sc);
5301
5302         ifp = sc->bge_ifp;
5303
5304         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5305                 return;
5306
5307         /* Cancel pending I/O and flush buffers. */
5308         bge_stop(sc);
5309
5310         bge_stop_fw(sc);
5311         bge_sig_pre_reset(sc, BGE_RESET_START);
5312         bge_reset(sc);
5313         bge_sig_legacy(sc, BGE_RESET_START);
5314         bge_sig_post_reset(sc, BGE_RESET_START);
5315
5316         bge_chipinit(sc);
5317
5318         /*
5319          * Init the various state machines, ring
5320          * control blocks and firmware.
5321          */
5322         if (bge_blockinit(sc)) {
5323                 device_printf(sc->bge_dev, "initialization failure\n");
5324                 return;
5325         }
5326
5327         ifp = sc->bge_ifp;
5328
5329         /* Specify MTU. */
5330         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5331             ETHER_HDR_LEN + ETHER_CRC_LEN +
5332             (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5333
5334         /* Load our MAC address. */
5335         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5336         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5337         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5338
5339         /* Program promiscuous mode. */
5340         bge_setpromisc(sc);
5341
5342         /* Program multicast filter. */
5343         bge_setmulti(sc);
5344
5345         /* Program VLAN tag stripping. */
5346         bge_setvlan(sc);
5347
5348         /* Override UDP checksum offloading. */
5349         if (sc->bge_forced_udpcsum == 0)
5350                 sc->bge_csum_features &= ~CSUM_UDP;
5351         else
5352                 sc->bge_csum_features |= CSUM_UDP;
5353         if (ifp->if_capabilities & IFCAP_TXCSUM &&
5354             ifp->if_capenable & IFCAP_TXCSUM) {
5355                 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
5356                 ifp->if_hwassist |= sc->bge_csum_features;
5357         }
5358
5359         /* Init RX ring. */
5360         if (bge_init_rx_ring_std(sc) != 0) {
5361                 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5362                 bge_stop(sc);
5363                 return;
5364         }
5365
5366         /*
5367          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5368          * memory to insure that the chip has in fact read the first
5369          * entry of the ring.
5370          */
5371         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5372                 uint32_t                v, i;
5373                 for (i = 0; i < 10; i++) {
5374                         DELAY(20);
5375                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5376                         if (v == (MCLBYTES - ETHER_ALIGN))
5377                                 break;
5378                 }
5379                 if (i == 10)
5380                         device_printf (sc->bge_dev,
5381                             "5705 A0 chip failed to load RX ring\n");
5382         }
5383
5384         /* Init jumbo RX ring. */
5385         if (BGE_IS_JUMBO_CAPABLE(sc) &&
5386             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5387             (MCLBYTES - ETHER_ALIGN)) {
5388                 if (bge_init_rx_ring_jumbo(sc) != 0) {
5389                         device_printf(sc->bge_dev,
5390                             "no memory for jumbo Rx buffers.\n");
5391                         bge_stop(sc);
5392                         return;
5393                 }
5394         }
5395
5396         /* Init our RX return ring index. */
5397         sc->bge_rx_saved_considx = 0;
5398
5399         /* Init our RX/TX stat counters. */
5400         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5401
5402         /* Init TX ring. */
5403         bge_init_tx_ring(sc);
5404
5405         /* Enable TX MAC state machine lockup fix. */
5406         mode = CSR_READ_4(sc, BGE_TX_MODE);
5407         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5408                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5409         if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
5410                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5411                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5412                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5413         }
5414         /* Turn on transmitter. */
5415         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5416         DELAY(100);
5417
5418         /* Turn on receiver. */
5419         mode = CSR_READ_4(sc, BGE_RX_MODE);
5420         if (BGE_IS_5755_PLUS(sc))
5421                 mode |= BGE_RXMODE_IPV6_ENABLE;
5422         CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5423         DELAY(10);
5424
5425         /*
5426          * Set the number of good frames to receive after RX MBUF
5427          * Low Watermark has been reached. After the RX MAC receives
5428          * this number of frames, it will drop subsequent incoming
5429          * frames until the MBUF High Watermark is reached.
5430          */
5431         if (BGE_IS_57765_PLUS(sc))
5432                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5433         else
5434                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5435
5436         /* Clear MAC statistics. */
5437         if (BGE_IS_5705_PLUS(sc))
5438                 bge_stats_clear_regs(sc);
5439
5440         /* Tell firmware we're alive. */
5441         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5442
5443 #ifdef DEVICE_POLLING
5444         /* Disable interrupts if we are polling. */
5445         if (ifp->if_capenable & IFCAP_POLLING) {
5446                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5447                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5448                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5449         } else
5450 #endif
5451
5452         /* Enable host interrupts. */
5453         {
5454         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5455         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5456         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5457         }
5458
5459         ifp->if_drv_flags |= IFF_DRV_RUNNING;
5460         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5461
5462         bge_ifmedia_upd_locked(ifp);
5463
5464         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5465 }
5466
5467 static void
5468 bge_init(void *xsc)
5469 {
5470         struct bge_softc *sc = xsc;
5471
5472         BGE_LOCK(sc);
5473         bge_init_locked(sc);
5474         BGE_UNLOCK(sc);
5475 }
5476
5477 /*
5478  * Set media options.
5479  */
5480 static int
5481 bge_ifmedia_upd(struct ifnet *ifp)
5482 {
5483         struct bge_softc *sc = ifp->if_softc;
5484         int res;
5485
5486         BGE_LOCK(sc);
5487         res = bge_ifmedia_upd_locked(ifp);
5488         BGE_UNLOCK(sc);
5489
5490         return (res);
5491 }
5492
5493 static int
5494 bge_ifmedia_upd_locked(struct ifnet *ifp)
5495 {
5496         struct bge_softc *sc = ifp->if_softc;
5497         struct mii_data *mii;
5498         struct mii_softc *miisc;
5499         struct ifmedia *ifm;
5500
5501         BGE_LOCK_ASSERT(sc);
5502
5503         ifm = &sc->bge_ifmedia;
5504
5505         /* If this is a 1000baseX NIC, enable the TBI port. */
5506         if (sc->bge_flags & BGE_FLAG_TBI) {
5507                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5508                         return (EINVAL);
5509                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
5510                 case IFM_AUTO:
5511                         /*
5512                          * The BCM5704 ASIC appears to have a special
5513                          * mechanism for programming the autoneg
5514                          * advertisement registers in TBI mode.
5515                          */
5516                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5517                                 uint32_t sgdig;
5518                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5519                                 if (sgdig & BGE_SGDIGSTS_DONE) {
5520                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5521                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5522                                         sgdig |= BGE_SGDIGCFG_AUTO |
5523                                             BGE_SGDIGCFG_PAUSE_CAP |
5524                                             BGE_SGDIGCFG_ASYM_PAUSE;
5525                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5526                                             sgdig | BGE_SGDIGCFG_SEND);
5527                                         DELAY(5);
5528                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5529                                 }
5530                         }
5531                         break;
5532                 case IFM_1000_SX:
5533                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5534                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
5535                                     BGE_MACMODE_HALF_DUPLEX);
5536                         } else {
5537                                 BGE_SETBIT(sc, BGE_MAC_MODE,
5538                                     BGE_MACMODE_HALF_DUPLEX);
5539                         }
5540                         DELAY(40);
5541                         break;
5542                 default:
5543                         return (EINVAL);
5544                 }
5545                 return (0);
5546         }
5547
5548         sc->bge_link_evt++;
5549         mii = device_get_softc(sc->bge_miibus);
5550         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5551                 PHY_RESET(miisc);
5552         mii_mediachg(mii);
5553
5554         /*
5555          * Force an interrupt so that we will call bge_link_upd
5556          * if needed and clear any pending link state attention.
5557          * Without this we are not getting any further interrupts
5558          * for link state changes and thus will not UP the link and
5559          * not be able to send in bge_start_locked. The only
5560          * way to get things working was to receive a packet and
5561          * get an RX intr.
5562          * bge_tick should help for fiber cards and we might not
5563          * need to do this here if BGE_FLAG_TBI is set but as
5564          * we poll for fiber anyway it should not harm.
5565          */
5566         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5567             sc->bge_flags & BGE_FLAG_5788)
5568                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5569         else
5570                 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5571
5572         return (0);
5573 }
5574
5575 /*
5576  * Report current media status.
5577  */
5578 static void
5579 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5580 {
5581         struct bge_softc *sc = ifp->if_softc;
5582         struct mii_data *mii;
5583
5584         BGE_LOCK(sc);
5585
5586         if ((ifp->if_flags & IFF_UP) == 0) {
5587                 BGE_UNLOCK(sc);
5588                 return;
5589         }
5590         if (sc->bge_flags & BGE_FLAG_TBI) {
5591                 ifmr->ifm_status = IFM_AVALID;
5592                 ifmr->ifm_active = IFM_ETHER;
5593                 if (CSR_READ_4(sc, BGE_MAC_STS) &
5594                     BGE_MACSTAT_TBI_PCS_SYNCHED)
5595                         ifmr->ifm_status |= IFM_ACTIVE;
5596                 else {
5597                         ifmr->ifm_active |= IFM_NONE;
5598                         BGE_UNLOCK(sc);
5599                         return;
5600                 }
5601                 ifmr->ifm_active |= IFM_1000_SX;
5602                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5603                         ifmr->ifm_active |= IFM_HDX;
5604                 else
5605                         ifmr->ifm_active |= IFM_FDX;
5606                 BGE_UNLOCK(sc);
5607                 return;
5608         }
5609
5610         mii = device_get_softc(sc->bge_miibus);
5611         mii_pollstat(mii);
5612         ifmr->ifm_active = mii->mii_media_active;
5613         ifmr->ifm_status = mii->mii_media_status;
5614
5615         BGE_UNLOCK(sc);
5616 }
5617
5618 static int
5619 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5620 {
5621         struct bge_softc *sc = ifp->if_softc;
5622         struct ifreq *ifr = (struct ifreq *) data;
5623         struct mii_data *mii;
5624         int flags, mask, error = 0;
5625
5626         switch (command) {
5627         case SIOCSIFMTU:
5628                 if (BGE_IS_JUMBO_CAPABLE(sc) ||
5629                     (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5630                         if (ifr->ifr_mtu < ETHERMIN ||
5631                             ifr->ifr_mtu > BGE_JUMBO_MTU) {
5632                                 error = EINVAL;
5633                                 break;
5634                         }
5635                 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5636                         error = EINVAL;
5637                         break;
5638                 }
5639                 BGE_LOCK(sc);
5640                 if (ifp->if_mtu != ifr->ifr_mtu) {
5641                         ifp->if_mtu = ifr->ifr_mtu;
5642                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5643                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5644                                 bge_init_locked(sc);
5645                         }
5646                 }
5647                 BGE_UNLOCK(sc);
5648                 break;
5649         case SIOCSIFFLAGS:
5650                 BGE_LOCK(sc);
5651                 if (ifp->if_flags & IFF_UP) {
5652                         /*
5653                          * If only the state of the PROMISC flag changed,
5654                          * then just use the 'set promisc mode' command
5655                          * instead of reinitializing the entire NIC. Doing
5656                          * a full re-init means reloading the firmware and
5657                          * waiting for it to start up, which may take a
5658                          * second or two.  Similarly for ALLMULTI.
5659                          */
5660                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5661                                 flags = ifp->if_flags ^ sc->bge_if_flags;
5662                                 if (flags & IFF_PROMISC)
5663                                         bge_setpromisc(sc);
5664                                 if (flags & IFF_ALLMULTI)
5665                                         bge_setmulti(sc);
5666                         } else
5667                                 bge_init_locked(sc);
5668                 } else {
5669                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5670                                 bge_stop(sc);
5671                         }
5672                 }
5673                 sc->bge_if_flags = ifp->if_flags;
5674                 BGE_UNLOCK(sc);
5675                 error = 0;
5676                 break;
5677         case SIOCADDMULTI:
5678         case SIOCDELMULTI:
5679                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5680                         BGE_LOCK(sc);
5681                         bge_setmulti(sc);
5682                         BGE_UNLOCK(sc);
5683                         error = 0;
5684                 }
5685                 break;
5686         case SIOCSIFMEDIA:
5687         case SIOCGIFMEDIA:
5688                 if (sc->bge_flags & BGE_FLAG_TBI) {
5689                         error = ifmedia_ioctl(ifp, ifr,
5690                             &sc->bge_ifmedia, command);
5691                 } else {
5692                         mii = device_get_softc(sc->bge_miibus);
5693                         error = ifmedia_ioctl(ifp, ifr,
5694                             &mii->mii_media, command);
5695                 }
5696                 break;
5697         case SIOCSIFCAP:
5698                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5699 #ifdef DEVICE_POLLING
5700                 if (mask & IFCAP_POLLING) {
5701                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
5702                                 error = ether_poll_register(bge_poll, ifp);
5703                                 if (error)
5704                                         return (error);
5705                                 BGE_LOCK(sc);
5706                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5707                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5708                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5709                                 ifp->if_capenable |= IFCAP_POLLING;
5710                                 BGE_UNLOCK(sc);
5711                         } else {
5712                                 error = ether_poll_deregister(ifp);
5713                                 /* Enable interrupt even in error case */
5714                                 BGE_LOCK(sc);
5715                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5716                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5717                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5718                                 ifp->if_capenable &= ~IFCAP_POLLING;
5719                                 BGE_UNLOCK(sc);
5720                         }
5721                 }
5722 #endif
5723                 if ((mask & IFCAP_TXCSUM) != 0 &&
5724                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5725                         ifp->if_capenable ^= IFCAP_TXCSUM;
5726                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5727                                 ifp->if_hwassist |= sc->bge_csum_features;
5728                         else
5729                                 ifp->if_hwassist &= ~sc->bge_csum_features;
5730                 }
5731
5732                 if ((mask & IFCAP_RXCSUM) != 0 &&
5733                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5734                         ifp->if_capenable ^= IFCAP_RXCSUM;
5735
5736                 if ((mask & IFCAP_TSO4) != 0 &&
5737                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5738                         ifp->if_capenable ^= IFCAP_TSO4;
5739                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5740                                 ifp->if_hwassist |= CSUM_TSO;
5741                         else
5742                                 ifp->if_hwassist &= ~CSUM_TSO;
5743                 }
5744
5745                 if (mask & IFCAP_VLAN_MTU) {
5746                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
5747                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5748                         bge_init(sc);
5749                 }
5750
5751                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5752                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5753                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5754                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5755                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5756                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5757                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5758                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5759                         BGE_LOCK(sc);
5760                         bge_setvlan(sc);
5761                         BGE_UNLOCK(sc);
5762                 }
5763 #ifdef VLAN_CAPABILITIES
5764                 VLAN_CAPABILITIES(ifp);
5765 #endif
5766                 break;
5767         default:
5768                 error = ether_ioctl(ifp, command, data);
5769                 break;
5770         }
5771
5772         return (error);
5773 }
5774
5775 static void
5776 bge_watchdog(struct bge_softc *sc)
5777 {
5778         struct ifnet *ifp;
5779
5780         BGE_LOCK_ASSERT(sc);
5781
5782         if (sc->bge_timer == 0 || --sc->bge_timer)
5783                 return;
5784
5785         ifp = sc->bge_ifp;
5786
5787         if_printf(ifp, "watchdog timeout -- resetting\n");
5788
5789         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5790         bge_init_locked(sc);
5791
5792         ifp->if_oerrors++;
5793 }
5794
5795 static void
5796 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5797 {
5798         int i;
5799
5800         BGE_CLRBIT(sc, reg, bit);
5801
5802         for (i = 0; i < BGE_TIMEOUT; i++) {
5803                 if ((CSR_READ_4(sc, reg) & bit) == 0)
5804                         return;
5805                 DELAY(100);
5806         }
5807 }
5808
5809 /*
5810  * Stop the adapter and free any mbufs allocated to the
5811  * RX and TX lists.
5812  */
5813 static void
5814 bge_stop(struct bge_softc *sc)
5815 {
5816         struct ifnet *ifp;
5817
5818         BGE_LOCK_ASSERT(sc);
5819
5820         ifp = sc->bge_ifp;
5821
5822         callout_stop(&sc->bge_stat_ch);
5823
5824         /* Disable host interrupts. */
5825         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5826         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5827
5828         /*
5829          * Tell firmware we're shutting down.
5830          */
5831         bge_stop_fw(sc);
5832         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5833
5834         /*
5835          * Disable all of the receiver blocks.
5836          */
5837         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5838         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5839         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5840         if (BGE_IS_5700_FAMILY(sc))
5841                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5842         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5843         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5844         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5845
5846         /*
5847          * Disable all of the transmit blocks.
5848          */
5849         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5850         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5851         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5852         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5853         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5854         if (BGE_IS_5700_FAMILY(sc))
5855                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5856         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5857
5858         /*
5859          * Shut down all of the memory managers and related
5860          * state machines.
5861          */
5862         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5863         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5864         if (BGE_IS_5700_FAMILY(sc))
5865                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5866
5867         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5868         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5869         if (!(BGE_IS_5705_PLUS(sc))) {
5870                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5871                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5872         }
5873         /* Update MAC statistics. */
5874         if (BGE_IS_5705_PLUS(sc))
5875                 bge_stats_update_regs(sc);
5876
5877         bge_reset(sc);
5878         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5879         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5880
5881         /*
5882          * Keep the ASF firmware running if up.
5883          */
5884         if (sc->bge_asf_mode & ASF_STACKUP)
5885                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5886         else
5887                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5888
5889         /* Free the RX lists. */
5890         bge_free_rx_ring_std(sc);
5891
5892         /* Free jumbo RX list. */
5893         if (BGE_IS_JUMBO_CAPABLE(sc))
5894                 bge_free_rx_ring_jumbo(sc);
5895
5896         /* Free TX buffers. */
5897         bge_free_tx_ring(sc);
5898
5899         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5900
5901         /* Clear MAC's link state (PHY may still have link UP). */
5902         if (bootverbose && sc->bge_link)
5903                 if_printf(sc->bge_ifp, "link DOWN\n");
5904         sc->bge_link = 0;
5905
5906         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5907 }
5908
5909 /*
5910  * Stop all chip I/O so that the kernel's probe routines don't
5911  * get confused by errant DMAs when rebooting.
5912  */
5913 static int
5914 bge_shutdown(device_t dev)
5915 {
5916         struct bge_softc *sc;
5917
5918         sc = device_get_softc(dev);
5919         BGE_LOCK(sc);
5920         bge_stop(sc);
5921         BGE_UNLOCK(sc);
5922
5923         return (0);
5924 }
5925
5926 static int
5927 bge_suspend(device_t dev)
5928 {
5929         struct bge_softc *sc;
5930
5931         sc = device_get_softc(dev);
5932         BGE_LOCK(sc);
5933         bge_stop(sc);
5934         BGE_UNLOCK(sc);
5935
5936         return (0);
5937 }
5938
5939 static int
5940 bge_resume(device_t dev)
5941 {
5942         struct bge_softc *sc;
5943         struct ifnet *ifp;
5944
5945         sc = device_get_softc(dev);
5946         BGE_LOCK(sc);
5947         ifp = sc->bge_ifp;
5948         if (ifp->if_flags & IFF_UP) {
5949                 bge_init_locked(sc);
5950                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5951                         bge_start_locked(ifp);
5952         }
5953         BGE_UNLOCK(sc);
5954
5955         return (0);
5956 }
5957
5958 static void
5959 bge_link_upd(struct bge_softc *sc)
5960 {
5961         struct mii_data *mii;
5962         uint32_t link, status;
5963
5964         BGE_LOCK_ASSERT(sc);
5965
5966         /* Clear 'pending link event' flag. */
5967         sc->bge_link_evt = 0;
5968
5969         /*
5970          * Process link state changes.
5971          * Grrr. The link status word in the status block does
5972          * not work correctly on the BCM5700 rev AX and BX chips,
5973          * according to all available information. Hence, we have
5974          * to enable MII interrupts in order to properly obtain
5975          * async link changes. Unfortunately, this also means that
5976          * we have to read the MAC status register to detect link
5977          * changes, thereby adding an additional register access to
5978          * the interrupt handler.
5979          *
5980          * XXX: perhaps link state detection procedure used for
5981          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
5982          */
5983
5984         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
5985             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
5986                 status = CSR_READ_4(sc, BGE_MAC_STS);
5987                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5988                         mii = device_get_softc(sc->bge_miibus);
5989                         mii_pollstat(mii);
5990                         if (!sc->bge_link &&
5991                             mii->mii_media_status & IFM_ACTIVE &&
5992                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5993                                 sc->bge_link++;
5994                                 if (bootverbose)
5995                                         if_printf(sc->bge_ifp, "link UP\n");
5996                         } else if (sc->bge_link &&
5997                             (!(mii->mii_media_status & IFM_ACTIVE) ||
5998                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5999                                 sc->bge_link = 0;
6000                                 if (bootverbose)
6001                                         if_printf(sc->bge_ifp, "link DOWN\n");
6002                         }
6003
6004                         /* Clear the interrupt. */
6005                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6006                             BGE_EVTENB_MI_INTERRUPT);
6007                         bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6008                             BRGPHY_MII_ISR);
6009                         bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6010                             BRGPHY_MII_IMR, BRGPHY_INTRS);
6011                 }
6012                 return;
6013         }
6014
6015         if (sc->bge_flags & BGE_FLAG_TBI) {
6016                 status = CSR_READ_4(sc, BGE_MAC_STS);
6017                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6018                         if (!sc->bge_link) {
6019                                 sc->bge_link++;
6020                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6021                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
6022                                             BGE_MACMODE_TBI_SEND_CFGS);
6023                                         DELAY(40);
6024                                 }
6025                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6026                                 if (bootverbose)
6027                                         if_printf(sc->bge_ifp, "link UP\n");
6028                                 if_link_state_change(sc->bge_ifp,
6029                                     LINK_STATE_UP);
6030                         }
6031                 } else if (sc->bge_link) {
6032                         sc->bge_link = 0;
6033                         if (bootverbose)
6034                                 if_printf(sc->bge_ifp, "link DOWN\n");
6035                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6036                 }
6037         } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6038                 /*
6039                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6040                  * in status word always set. Workaround this bug by reading
6041                  * PHY link status directly.
6042                  */
6043                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6044
6045                 if (link != sc->bge_link ||
6046                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6047                         mii = device_get_softc(sc->bge_miibus);
6048                         mii_pollstat(mii);
6049                         if (!sc->bge_link &&
6050                             mii->mii_media_status & IFM_ACTIVE &&
6051                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6052                                 sc->bge_link++;
6053                                 if (bootverbose)
6054                                         if_printf(sc->bge_ifp, "link UP\n");
6055                         } else if (sc->bge_link &&
6056                             (!(mii->mii_media_status & IFM_ACTIVE) ||
6057                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6058                                 sc->bge_link = 0;
6059                                 if (bootverbose)
6060                                         if_printf(sc->bge_ifp, "link DOWN\n");
6061                         }
6062                 }
6063         } else {
6064                 /*
6065                  * For controllers that call mii_tick, we have to poll
6066                  * link status.
6067                  */
6068                 mii = device_get_softc(sc->bge_miibus);
6069                 mii_pollstat(mii);
6070                 bge_miibus_statchg(sc->bge_dev);
6071         }
6072
6073         /* Disable MAC attention when link is up. */
6074         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6075             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6076             BGE_MACSTAT_LINK_CHANGED);
6077 }
6078
6079 static void
6080 bge_add_sysctls(struct bge_softc *sc)
6081 {
6082         struct sysctl_ctx_list *ctx;
6083         struct sysctl_oid_list *children;
6084         char tn[32];
6085         int unit;
6086
6087         ctx = device_get_sysctl_ctx(sc->bge_dev);
6088         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6089
6090 #ifdef BGE_REGISTER_DEBUG
6091         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6092             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6093             "Debug Information");
6094
6095         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6096             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6097             "MAC Register Read");
6098
6099         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6100             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6101             "APE Register Read");
6102
6103         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6104             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6105             "Memory Read");
6106
6107 #endif
6108
6109         unit = device_get_unit(sc->bge_dev);
6110         /*
6111          * A common design characteristic for many Broadcom client controllers
6112          * is that they only support a single outstanding DMA read operation
6113          * on the PCIe bus. This means that it will take twice as long to fetch
6114          * a TX frame that is split into header and payload buffers as it does
6115          * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6116          * these controllers, coalescing buffers to reduce the number of memory
6117          * reads is effective way to get maximum performance(about 940Mbps).
6118          * Without collapsing TX buffers the maximum TCP bulk transfer
6119          * performance is about 850Mbps. However forcing coalescing mbufs
6120          * consumes a lot of CPU cycles, so leave it off by default.
6121          */
6122         sc->bge_forced_collapse = 0;
6123         snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
6124         TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
6125         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6126             CTLFLAG_RW, &sc->bge_forced_collapse, 0,
6127             "Number of fragmented TX buffers of a frame allowed before "
6128             "forced collapsing");
6129
6130         sc->bge_msi = 1;
6131         snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
6132         TUNABLE_INT_FETCH(tn, &sc->bge_msi);
6133         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6134             CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
6135
6136         /*
6137          * It seems all Broadcom controllers have a bug that can generate UDP
6138          * datagrams with checksum value 0 when TX UDP checksum offloading is
6139          * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6140          * Even though the probability of generating such UDP datagrams is
6141          * low, I don't want to see FreeBSD boxes to inject such datagrams
6142          * into network so disable UDP checksum offloading by default.  Users
6143          * still override this behavior by setting a sysctl variable,
6144          * dev.bge.0.forced_udpcsum.
6145          */
6146         sc->bge_forced_udpcsum = 0;
6147         snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
6148         TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
6149         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6150             CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
6151             "Enable UDP checksum offloading even if controller can "
6152             "generate UDP checksum value 0");
6153
6154         if (BGE_IS_5705_PLUS(sc))
6155                 bge_add_sysctl_stats_regs(sc, ctx, children);
6156         else
6157                 bge_add_sysctl_stats(sc, ctx, children);
6158 }
6159
6160 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6161         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6162             sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6163             desc)
6164
6165 static void
6166 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6167     struct sysctl_oid_list *parent)
6168 {
6169         struct sysctl_oid *tree;
6170         struct sysctl_oid_list *children, *schildren;
6171
6172         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6173             NULL, "BGE Statistics");
6174         schildren = children = SYSCTL_CHILDREN(tree);
6175         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6176             children, COSFramesDroppedDueToFilters,
6177             "FramesDroppedDueToFilters");
6178         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6179             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6180         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6181             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6182         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6183             children, nicNoMoreRxBDs, "NoMoreRxBDs");
6184         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6185             children, ifInDiscards, "InputDiscards");
6186         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6187             children, ifInErrors, "InputErrors");
6188         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6189             children, nicRecvThresholdHit, "RecvThresholdHit");
6190         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6191             children, nicDmaReadQueueFull, "DmaReadQueueFull");
6192         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6193             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6194         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6195             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6196         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6197             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6198         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6199             children, nicRingStatusUpdate, "RingStatusUpdate");
6200         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6201             children, nicInterrupts, "Interrupts");
6202         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6203             children, nicAvoidedInterrupts, "AvoidedInterrupts");
6204         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6205             children, nicSendThresholdHit, "SendThresholdHit");
6206
6207         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6208             NULL, "BGE RX Statistics");
6209         children = SYSCTL_CHILDREN(tree);
6210         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6211             children, rxstats.ifHCInOctets, "ifHCInOctets");
6212         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6213             children, rxstats.etherStatsFragments, "Fragments");
6214         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6215             children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6216         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6217             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6218         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6219             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6220         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6221             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6222         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6223             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6224         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6225             children, rxstats.xoffPauseFramesReceived,
6226             "xoffPauseFramesReceived");
6227         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6228             children, rxstats.macControlFramesReceived,
6229             "ControlFramesReceived");
6230         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6231             children, rxstats.xoffStateEntered, "xoffStateEntered");
6232         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6233             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6234         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6235             children, rxstats.etherStatsJabbers, "Jabbers");
6236         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6237             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6238         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6239             children, rxstats.inRangeLengthError, "inRangeLengthError");
6240         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6241             children, rxstats.outRangeLengthError, "outRangeLengthError");
6242
6243         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6244             NULL, "BGE TX Statistics");
6245         children = SYSCTL_CHILDREN(tree);
6246         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6247             children, txstats.ifHCOutOctets, "ifHCOutOctets");
6248         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6249             children, txstats.etherStatsCollisions, "Collisions");
6250         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6251             children, txstats.outXonSent, "XonSent");
6252         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6253             children, txstats.outXoffSent, "XoffSent");
6254         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6255             children, txstats.flowControlDone, "flowControlDone");
6256         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6257             children, txstats.dot3StatsInternalMacTransmitErrors,
6258             "InternalMacTransmitErrors");
6259         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6260             children, txstats.dot3StatsSingleCollisionFrames,
6261             "SingleCollisionFrames");
6262         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6263             children, txstats.dot3StatsMultipleCollisionFrames,
6264             "MultipleCollisionFrames");
6265         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6266             children, txstats.dot3StatsDeferredTransmissions,
6267             "DeferredTransmissions");
6268         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6269             children, txstats.dot3StatsExcessiveCollisions,
6270             "ExcessiveCollisions");
6271         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6272             children, txstats.dot3StatsLateCollisions,
6273             "LateCollisions");
6274         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6275             children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6276         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6277             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6278         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6279             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6280         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6281             children, txstats.dot3StatsCarrierSenseErrors,
6282             "CarrierSenseErrors");
6283         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6284             children, txstats.ifOutDiscards, "Discards");
6285         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6286             children, txstats.ifOutErrors, "Errors");
6287 }
6288
6289 #undef BGE_SYSCTL_STAT
6290
6291 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
6292             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6293
6294 static void
6295 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6296     struct sysctl_oid_list *parent)
6297 {
6298         struct sysctl_oid *tree;
6299         struct sysctl_oid_list *child, *schild;
6300         struct bge_mac_stats *stats;
6301
6302         stats = &sc->bge_mac_stats;
6303         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6304             NULL, "BGE Statistics");
6305         schild = child = SYSCTL_CHILDREN(tree);
6306         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6307             &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6308         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6309             &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6310         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6311             &stats->DmaWriteHighPriQueueFull,
6312             "NIC DMA Write High Priority Queue Full");
6313         BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6314             &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6315         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6316             &stats->InputDiscards, "Discarded Input Frames");
6317         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6318             &stats->InputErrors, "Input Errors");
6319         BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6320             &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6321
6322         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6323             NULL, "BGE RX Statistics");
6324         child = SYSCTL_CHILDREN(tree);
6325         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6326             &stats->ifHCInOctets, "Inbound Octets");
6327         BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6328             &stats->etherStatsFragments, "Fragments");
6329         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6330             &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6331         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6332             &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6333         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6334             &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6335         BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6336             &stats->dot3StatsFCSErrors, "FCS Errors");
6337         BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6338             &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6339         BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6340             &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6341         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6342             &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6343         BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6344             &stats->macControlFramesReceived, "MAC Control Frames Received");
6345         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6346             &stats->xoffStateEntered, "XOFF State Entered");
6347         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6348             &stats->dot3StatsFramesTooLong, "Frames Too Long");
6349         BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6350             &stats->etherStatsJabbers, "Jabbers");
6351         BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6352             &stats->etherStatsUndersizePkts, "Undersized Packets");
6353
6354         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6355             NULL, "BGE TX Statistics");
6356         child = SYSCTL_CHILDREN(tree);
6357         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6358             &stats->ifHCOutOctets, "Outbound Octets");
6359         BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6360             &stats->etherStatsCollisions, "TX Collisions");
6361         BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6362             &stats->outXonSent, "XON Sent");
6363         BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6364             &stats->outXoffSent, "XOFF Sent");
6365         BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6366             &stats->dot3StatsInternalMacTransmitErrors,
6367             "Internal MAC TX Errors");
6368         BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6369             &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6370         BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6371             &stats->dot3StatsMultipleCollisionFrames,
6372             "Multiple Collision Frames");
6373         BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6374             &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6375         BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6376             &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6377         BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6378             &stats->dot3StatsLateCollisions, "Late Collisions");
6379         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6380             &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6381         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6382             &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6383         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6384             &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6385 }
6386
6387 #undef  BGE_SYSCTL_STAT_ADD64
6388
6389 static int
6390 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6391 {
6392         struct bge_softc *sc;
6393         uint32_t result;
6394         int offset;
6395
6396         sc = (struct bge_softc *)arg1;
6397         offset = arg2;
6398         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6399             offsetof(bge_hostaddr, bge_addr_lo));
6400         return (sysctl_handle_int(oidp, &result, 0, req));
6401 }
6402
6403 #ifdef BGE_REGISTER_DEBUG
6404 static int
6405 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6406 {
6407         struct bge_softc *sc;
6408         uint16_t *sbdata;
6409         int error, result, sbsz;
6410         int i, j;
6411
6412         result = -1;
6413         error = sysctl_handle_int(oidp, &result, 0, req);
6414         if (error || (req->newptr == NULL))
6415                 return (error);
6416
6417         if (result == 1) {
6418                 sc = (struct bge_softc *)arg1;
6419
6420                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6421                     sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6422                         sbsz = BGE_STATUS_BLK_SZ;
6423                 else
6424                         sbsz = 32;
6425                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6426                 printf("Status Block:\n");
6427                 BGE_LOCK(sc);
6428                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6429                     sc->bge_cdata.bge_status_map,
6430                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6431                 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6432                         printf("%06x:", i);
6433                         for (j = 0; j < 8; j++)
6434                                 printf(" %04x", sbdata[i++]);
6435                         printf("\n");
6436                 }
6437
6438                 printf("Registers:\n");
6439                 for (i = 0x800; i < 0xA00; ) {
6440                         printf("%06x:", i);
6441                         for (j = 0; j < 8; j++) {
6442                                 printf(" %08x", CSR_READ_4(sc, i));
6443                                 i += 4;
6444                         }
6445                         printf("\n");
6446                 }
6447                 BGE_UNLOCK(sc);
6448
6449                 printf("Hardware Flags:\n");
6450                 if (BGE_IS_5717_PLUS(sc))
6451                         printf(" - 5717 Plus\n");
6452                 if (BGE_IS_5755_PLUS(sc))
6453                         printf(" - 5755 Plus\n");
6454                 if (BGE_IS_575X_PLUS(sc))
6455                         printf(" - 575X Plus\n");
6456                 if (BGE_IS_5705_PLUS(sc))
6457                         printf(" - 5705 Plus\n");
6458                 if (BGE_IS_5714_FAMILY(sc))
6459                         printf(" - 5714 Family\n");
6460                 if (BGE_IS_5700_FAMILY(sc))
6461                         printf(" - 5700 Family\n");
6462                 if (sc->bge_flags & BGE_FLAG_JUMBO)
6463                         printf(" - Supports Jumbo Frames\n");
6464                 if (sc->bge_flags & BGE_FLAG_PCIX)
6465                         printf(" - PCI-X Bus\n");
6466                 if (sc->bge_flags & BGE_FLAG_PCIE)
6467                         printf(" - PCI Express Bus\n");
6468                 if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6469                         printf(" - No 3 LEDs\n");
6470                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6471                         printf(" - RX Alignment Bug\n");
6472         }
6473
6474         return (error);
6475 }
6476
6477 static int
6478 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6479 {
6480         struct bge_softc *sc;
6481         int error;
6482         uint16_t result;
6483         uint32_t val;
6484
6485         result = -1;
6486         error = sysctl_handle_int(oidp, &result, 0, req);
6487         if (error || (req->newptr == NULL))
6488                 return (error);
6489
6490         if (result < 0x8000) {
6491                 sc = (struct bge_softc *)arg1;
6492                 val = CSR_READ_4(sc, result);
6493                 printf("reg 0x%06X = 0x%08X\n", result, val);
6494         }
6495
6496         return (error);
6497 }
6498
6499 static int
6500 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6501 {
6502         struct bge_softc *sc;
6503         int error;
6504         uint16_t result;
6505         uint32_t val;
6506
6507         result = -1;
6508         error = sysctl_handle_int(oidp, &result, 0, req);
6509         if (error || (req->newptr == NULL))
6510                 return (error);
6511
6512         if (result < 0x8000) {
6513                 sc = (struct bge_softc *)arg1;
6514                 val = APE_READ_4(sc, result);
6515                 printf("reg 0x%06X = 0x%08X\n", result, val);
6516         }
6517
6518         return (error);
6519 }
6520
6521 static int
6522 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6523 {
6524         struct bge_softc *sc;
6525         int error;
6526         uint16_t result;
6527         uint32_t val;
6528
6529         result = -1;
6530         error = sysctl_handle_int(oidp, &result, 0, req);
6531         if (error || (req->newptr == NULL))
6532                 return (error);
6533
6534         if (result < 0x8000) {
6535                 sc = (struct bge_softc *)arg1;
6536                 val = bge_readmem_ind(sc, result);
6537                 printf("mem 0x%06X = 0x%08X\n", result, val);
6538         }
6539
6540         return (error);
6541 }
6542 #endif
6543
6544 static int
6545 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6546 {
6547
6548         if (sc->bge_flags & BGE_FLAG_EADDR)
6549                 return (1);
6550
6551 #ifdef __sparc64__
6552         OF_getetheraddr(sc->bge_dev, ether_addr);
6553         return (0);
6554 #endif
6555         return (1);
6556 }
6557
6558 static int
6559 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6560 {
6561         uint32_t mac_addr;
6562
6563         mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6564         if ((mac_addr >> 16) == 0x484b) {
6565                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6566                 ether_addr[1] = (uint8_t)mac_addr;
6567                 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6568                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6569                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6570                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6571                 ether_addr[5] = (uint8_t)mac_addr;
6572                 return (0);
6573         }
6574         return (1);
6575 }
6576
6577 static int
6578 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6579 {
6580         int mac_offset = BGE_EE_MAC_OFFSET;
6581
6582         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6583                 mac_offset = BGE_EE_MAC_OFFSET_5906;
6584
6585         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6586             ETHER_ADDR_LEN));
6587 }
6588
6589 static int
6590 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6591 {
6592
6593         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6594                 return (1);
6595
6596         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6597            ETHER_ADDR_LEN));
6598 }
6599
6600 static int
6601 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6602 {
6603         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6604                 /* NOTE: Order is critical */
6605                 bge_get_eaddr_fw,
6606                 bge_get_eaddr_mem,
6607                 bge_get_eaddr_nvram,
6608                 bge_get_eaddr_eeprom,
6609                 NULL
6610         };
6611         const bge_eaddr_fcn_t *func;
6612
6613         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6614                 if ((*func)(sc, eaddr) == 0)
6615                         break;
6616         }
6617         return (*func == NULL ? ENXIO : 0);
6618 }