]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/bge/if_bge.c
Symbolic bindings for the dts files...
[FreeBSD/FreeBSD.git] / sys / dev / bge / if_bge.c
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 /*
38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84
85 #include <net/if.h>
86 #include <net/if_var.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91
92 #include <net/bpf.h>
93
94 #include <net/if_types.h>
95 #include <net/if_vlan_var.h>
96
97 #include <netinet/in_systm.h>
98 #include <netinet/in.h>
99 #include <netinet/ip.h>
100 #include <netinet/tcp.h>
101
102 #include <machine/bus.h>
103 #include <machine/resource.h>
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include "miidevs.h"
110 #include <dev/mii/brgphyreg.h>
111
112 #ifdef __sparc64__
113 #include <dev/ofw/ofw_bus.h>
114 #include <dev/ofw/openfirm.h>
115 #include <machine/ofw_machdep.h>
116 #include <machine/ver.h>
117 #endif
118
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121
122 #include <dev/bge/if_bgereg.h>
123
124 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
125 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
126
127 MODULE_DEPEND(bge, pci, 1, 1, 1);
128 MODULE_DEPEND(bge, ether, 1, 1, 1);
129 MODULE_DEPEND(bge, miibus, 1, 1, 1);
130
131 /* "device miibus" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133
134 /*
135  * Various supported device vendors/types and their names. Note: the
136  * spec seems to indicate that the hardware still has Alteon's vendor
137  * ID burned into it, though it will always be overriden by the vendor
138  * ID in the EEPROM. Just to be safe, we cover all possibilities.
139  */
140 static const struct bge_type {
141         uint16_t        bge_vid;
142         uint16_t        bge_did;
143 } bge_devs[] = {
144         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
145         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
146
147         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
148         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
149         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
150
151         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
152
153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5717 },
174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5718 },
175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5719 },
176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5723 },
180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5725 },
181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5727 },
182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5756 },
197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761 },
198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761E },
199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761S },
200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761SE },
201         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5762 },
202         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5764 },
203         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
204         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
205         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
206         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
207         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5784 },
208         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785F },
209         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785G },
210         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
211         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
212         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787F },
213         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
214         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
215         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
216         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
217         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
218         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
219         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
220         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
221         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57760 },
222         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57761 },
223         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57762 },
224         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57764 },
225         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57765 },
226         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57766 },
227         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57767 },
228         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57780 },
229         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57781 },
230         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57782 },
231         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57785 },
232         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57786 },
233         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57787 },
234         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57788 },
235         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57790 },
236         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57791 },
237         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57795 },
238
239         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
240
241         { TC_VENDORID,          TC_DEVICEID_3C996 },
242
243         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE4 },
244         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE5 },
245         { FJTSU_VENDORID,       FJTSU_DEVICEID_PP250450 },
246
247         { 0, 0 }
248 };
249
250 static const struct bge_vendor {
251         uint16_t        v_id;
252         const char      *v_name;
253 } bge_vendors[] = {
254         { ALTEON_VENDORID,      "Alteon" },
255         { ALTIMA_VENDORID,      "Altima" },
256         { APPLE_VENDORID,       "Apple" },
257         { BCOM_VENDORID,        "Broadcom" },
258         { SK_VENDORID,          "SysKonnect" },
259         { TC_VENDORID,          "3Com" },
260         { FJTSU_VENDORID,       "Fujitsu" },
261
262         { 0, NULL }
263 };
264
265 static const struct bge_revision {
266         uint32_t        br_chipid;
267         const char      *br_name;
268 } bge_revisions[] = {
269         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
270         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
271         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
272         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
273         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
274         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
275         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
276         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
277         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
278         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
279         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
280         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
281         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
282         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
283         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
284         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
285         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
286         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
287         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
288         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
289         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
290         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
291         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
292         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
293         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
294         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
295         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
296         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
297         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
298         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
299         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
300         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
301         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
302         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
303         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
304         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
305         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
306         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
307         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
308         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
309         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
310         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
311         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
312         { BGE_CHIPID_BCM5717_A0,        "BCM5717 A0" },
313         { BGE_CHIPID_BCM5717_B0,        "BCM5717 B0" },
314         { BGE_CHIPID_BCM5719_A0,        "BCM5719 A0" },
315         { BGE_CHIPID_BCM5720_A0,        "BCM5720 A0" },
316         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
317         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
318         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
319         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
320         { BGE_CHIPID_BCM5761_A0,        "BCM5761 A0" },
321         { BGE_CHIPID_BCM5761_A1,        "BCM5761 A1" },
322         { BGE_CHIPID_BCM5762_A0,        "BCM5762 A0" },
323         { BGE_CHIPID_BCM5784_A0,        "BCM5784 A0" },
324         { BGE_CHIPID_BCM5784_A1,        "BCM5784 A1" },
325         /* 5754 and 5787 share the same ASIC ID */
326         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" },
327         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
328         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
329         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
330         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
331         { BGE_CHIPID_BCM57765_A0,       "BCM57765 A0" },
332         { BGE_CHIPID_BCM57765_B0,       "BCM57765 B0" },
333         { BGE_CHIPID_BCM57780_A0,       "BCM57780 A0" },
334         { BGE_CHIPID_BCM57780_A1,       "BCM57780 A1" },
335
336         { 0, NULL }
337 };
338
339 /*
340  * Some defaults for major revisions, so that newer steppings
341  * that we don't know about have a shot at working.
342  */
343 static const struct bge_revision bge_majorrevs[] = {
344         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
345         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
346         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
347         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
348         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
349         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
350         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
351         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
352         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
353         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
354         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
355         { BGE_ASICREV_BCM5761,          "unknown BCM5761" },
356         { BGE_ASICREV_BCM5784,          "unknown BCM5784" },
357         { BGE_ASICREV_BCM5785,          "unknown BCM5785" },
358         /* 5754 and 5787 share the same ASIC ID */
359         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
360         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
361         { BGE_ASICREV_BCM57765,         "unknown BCM57765" },
362         { BGE_ASICREV_BCM57766,         "unknown BCM57766" },
363         { BGE_ASICREV_BCM57780,         "unknown BCM57780" },
364         { BGE_ASICREV_BCM5717,          "unknown BCM5717" },
365         { BGE_ASICREV_BCM5719,          "unknown BCM5719" },
366         { BGE_ASICREV_BCM5720,          "unknown BCM5720" },
367         { BGE_ASICREV_BCM5762,          "unknown BCM5762" },
368
369         { 0, NULL }
370 };
371
372 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
373 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
374 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
375 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
376 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
377 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
378 #define BGE_IS_5717_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
379 #define BGE_IS_57765_PLUS(sc)           ((sc)->bge_flags & BGE_FLAG_57765_PLUS)
380
381 static uint32_t bge_chipid(device_t);
382 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
383 static const struct bge_revision * bge_lookup_rev(uint32_t);
384
385 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
386
387 static int bge_probe(device_t);
388 static int bge_attach(device_t);
389 static int bge_detach(device_t);
390 static int bge_suspend(device_t);
391 static int bge_resume(device_t);
392 static void bge_release_resources(struct bge_softc *);
393 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
394 static int bge_dma_alloc(struct bge_softc *);
395 static void bge_dma_free(struct bge_softc *);
396 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
397     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
398
399 static void bge_devinfo(struct bge_softc *);
400 static int bge_mbox_reorder(struct bge_softc *);
401
402 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
403 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
404 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
405 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
406 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
407
408 static void bge_txeof(struct bge_softc *, uint16_t);
409 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
410 static int bge_rxeof(struct bge_softc *, uint16_t, int);
411
412 static void bge_asf_driver_up (struct bge_softc *);
413 static void bge_tick(void *);
414 static void bge_stats_clear_regs(struct bge_softc *);
415 static void bge_stats_update(struct bge_softc *);
416 static void bge_stats_update_regs(struct bge_softc *);
417 static struct mbuf *bge_check_short_dma(struct mbuf *);
418 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
419     uint16_t *, uint16_t *);
420 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
421
422 static void bge_intr(void *);
423 static int bge_msi_intr(void *);
424 static void bge_intr_task(void *, int);
425 static void bge_start_locked(struct ifnet *);
426 static void bge_start(struct ifnet *);
427 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
428 static void bge_init_locked(struct bge_softc *);
429 static void bge_init(void *);
430 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
431 static void bge_stop(struct bge_softc *);
432 static void bge_watchdog(struct bge_softc *);
433 static int bge_shutdown(device_t);
434 static int bge_ifmedia_upd_locked(struct ifnet *);
435 static int bge_ifmedia_upd(struct ifnet *);
436 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
437
438 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
439 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
440
441 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
442 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
443
444 static void bge_setpromisc(struct bge_softc *);
445 static void bge_setmulti(struct bge_softc *);
446 static void bge_setvlan(struct bge_softc *);
447
448 static __inline void bge_rxreuse_std(struct bge_softc *, int);
449 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
450 static int bge_newbuf_std(struct bge_softc *, int);
451 static int bge_newbuf_jumbo(struct bge_softc *, int);
452 static int bge_init_rx_ring_std(struct bge_softc *);
453 static void bge_free_rx_ring_std(struct bge_softc *);
454 static int bge_init_rx_ring_jumbo(struct bge_softc *);
455 static void bge_free_rx_ring_jumbo(struct bge_softc *);
456 static void bge_free_tx_ring(struct bge_softc *);
457 static int bge_init_tx_ring(struct bge_softc *);
458
459 static int bge_chipinit(struct bge_softc *);
460 static int bge_blockinit(struct bge_softc *);
461 static uint32_t bge_dma_swap_options(struct bge_softc *);
462
463 static int bge_has_eaddr(struct bge_softc *);
464 static uint32_t bge_readmem_ind(struct bge_softc *, int);
465 static void bge_writemem_ind(struct bge_softc *, int, int);
466 static void bge_writembx(struct bge_softc *, int, int);
467 #ifdef notdef
468 static uint32_t bge_readreg_ind(struct bge_softc *, int);
469 #endif
470 static void bge_writemem_direct(struct bge_softc *, int, int);
471 static void bge_writereg_ind(struct bge_softc *, int, int);
472
473 static int bge_miibus_readreg(device_t, int, int);
474 static int bge_miibus_writereg(device_t, int, int, int);
475 static void bge_miibus_statchg(device_t);
476 #ifdef DEVICE_POLLING
477 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
478 #endif
479
480 #define BGE_RESET_SHUTDOWN      0
481 #define BGE_RESET_START         1
482 #define BGE_RESET_SUSPEND       2
483 static void bge_sig_post_reset(struct bge_softc *, int);
484 static void bge_sig_legacy(struct bge_softc *, int);
485 static void bge_sig_pre_reset(struct bge_softc *, int);
486 static void bge_stop_fw(struct bge_softc *);
487 static int bge_reset(struct bge_softc *);
488 static void bge_link_upd(struct bge_softc *);
489
490 static void bge_ape_lock_init(struct bge_softc *);
491 static void bge_ape_read_fw_ver(struct bge_softc *);
492 static int bge_ape_lock(struct bge_softc *, int);
493 static void bge_ape_unlock(struct bge_softc *, int);
494 static void bge_ape_send_event(struct bge_softc *, uint32_t);
495 static void bge_ape_driver_state_change(struct bge_softc *, int);
496
497 /*
498  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
499  * leak information to untrusted users.  It is also known to cause alignment
500  * traps on certain architectures.
501  */
502 #ifdef BGE_REGISTER_DEBUG
503 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
504 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
505 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
506 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
507 #endif
508 static void bge_add_sysctls(struct bge_softc *);
509 static void bge_add_sysctl_stats_regs(struct bge_softc *,
510     struct sysctl_ctx_list *, struct sysctl_oid_list *);
511 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
512     struct sysctl_oid_list *);
513 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
514
515 static device_method_t bge_methods[] = {
516         /* Device interface */
517         DEVMETHOD(device_probe,         bge_probe),
518         DEVMETHOD(device_attach,        bge_attach),
519         DEVMETHOD(device_detach,        bge_detach),
520         DEVMETHOD(device_shutdown,      bge_shutdown),
521         DEVMETHOD(device_suspend,       bge_suspend),
522         DEVMETHOD(device_resume,        bge_resume),
523
524         /* MII interface */
525         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
526         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
527         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
528
529         DEVMETHOD_END
530 };
531
532 static driver_t bge_driver = {
533         "bge",
534         bge_methods,
535         sizeof(struct bge_softc)
536 };
537
538 static devclass_t bge_devclass;
539
540 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
541 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
542
543 static int bge_allow_asf = 1;
544
545 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
546
547 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
548 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
549         "Allow ASF mode if available");
550
551 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
552 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
553 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
554 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
555 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
556
557 static int
558 bge_has_eaddr(struct bge_softc *sc)
559 {
560 #ifdef __sparc64__
561         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
562         device_t dev;
563         uint32_t subvendor;
564
565         dev = sc->bge_dev;
566
567         /*
568          * The on-board BGEs found in sun4u machines aren't fitted with
569          * an EEPROM which means that we have to obtain the MAC address
570          * via OFW and that some tests will always fail.  We distinguish
571          * such BGEs by the subvendor ID, which also has to be obtained
572          * from OFW instead of the PCI configuration space as the latter
573          * indicates Broadcom as the subvendor of the netboot interface.
574          * For early Blade 1500 and 2500 we even have to check the OFW
575          * device path as the subvendor ID always defaults to Broadcom
576          * there.
577          */
578         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
579             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
580             (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
581                 return (0);
582         memset(buf, 0, sizeof(buf));
583         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
584                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
585                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
586                         return (0);
587                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
588                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
589                         return (0);
590         }
591 #endif
592         return (1);
593 }
594
595 static uint32_t
596 bge_readmem_ind(struct bge_softc *sc, int off)
597 {
598         device_t dev;
599         uint32_t val;
600
601         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
602             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
603                 return (0);
604
605         dev = sc->bge_dev;
606
607         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
608         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
609         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
610         return (val);
611 }
612
613 static void
614 bge_writemem_ind(struct bge_softc *sc, int off, int val)
615 {
616         device_t dev;
617
618         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
619             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
620                 return;
621
622         dev = sc->bge_dev;
623
624         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
625         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
626         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
627 }
628
629 #ifdef notdef
630 static uint32_t
631 bge_readreg_ind(struct bge_softc *sc, int off)
632 {
633         device_t dev;
634
635         dev = sc->bge_dev;
636
637         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
638         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
639 }
640 #endif
641
642 static void
643 bge_writereg_ind(struct bge_softc *sc, int off, int val)
644 {
645         device_t dev;
646
647         dev = sc->bge_dev;
648
649         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
650         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
651 }
652
653 static void
654 bge_writemem_direct(struct bge_softc *sc, int off, int val)
655 {
656         CSR_WRITE_4(sc, off, val);
657 }
658
659 static void
660 bge_writembx(struct bge_softc *sc, int off, int val)
661 {
662         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
663                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
664
665         CSR_WRITE_4(sc, off, val);
666         if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
667                 CSR_READ_4(sc, off);
668 }
669
670 /*
671  * Clear all stale locks and select the lock for this driver instance.
672  */
673 static void
674 bge_ape_lock_init(struct bge_softc *sc)
675 {
676         uint32_t bit, regbase;
677         int i;
678
679         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
680                 regbase = BGE_APE_LOCK_GRANT;
681         else
682                 regbase = BGE_APE_PER_LOCK_GRANT;
683
684         /* Clear any stale locks. */
685         for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
686                 switch (i) {
687                 case BGE_APE_LOCK_PHY0:
688                 case BGE_APE_LOCK_PHY1:
689                 case BGE_APE_LOCK_PHY2:
690                 case BGE_APE_LOCK_PHY3:
691                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
692                         break;
693                 default:
694                         if (sc->bge_func_addr == 0)
695                                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
696                         else
697                                 bit = (1 << sc->bge_func_addr);
698                 }
699                 APE_WRITE_4(sc, regbase + 4 * i, bit);
700         }
701
702         /* Select the PHY lock based on the device's function number. */
703         switch (sc->bge_func_addr) {
704         case 0:
705                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
706                 break;
707         case 1:
708                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
709                 break;
710         case 2:
711                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
712                 break;
713         case 3:
714                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
715                 break;
716         default:
717                 device_printf(sc->bge_dev,
718                     "PHY lock not supported on this function\n");
719         }
720 }
721
722 /*
723  * Check for APE firmware, set flags, and print version info.
724  */
725 static void
726 bge_ape_read_fw_ver(struct bge_softc *sc)
727 {
728         const char *fwtype;
729         uint32_t apedata, features;
730
731         /* Check for a valid APE signature in shared memory. */
732         apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
733         if (apedata != BGE_APE_SEG_SIG_MAGIC) {
734                 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
735                 return;
736         }
737
738         /* Check if APE firmware is running. */
739         apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
740         if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
741                 device_printf(sc->bge_dev, "APE signature found "
742                     "but FW status not ready! 0x%08x\n", apedata);
743                 return;
744         }
745
746         sc->bge_mfw_flags |= BGE_MFW_ON_APE;
747
748         /* Fetch the APE firwmare type and version. */
749         apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
750         features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
751         if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
752                 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
753                 fwtype = "NCSI";
754         } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
755                 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
756                 fwtype = "DASH";
757         } else
758                 fwtype = "UNKN";
759
760         /* Print the APE firmware version. */
761         device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
762             fwtype,
763             (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
764             (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
765             (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
766             (apedata & BGE_APE_FW_VERSION_BLDMSK));
767 }
768
769 static int
770 bge_ape_lock(struct bge_softc *sc, int locknum)
771 {
772         uint32_t bit, gnt, req, status;
773         int i, off;
774
775         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
776                 return (0);
777
778         /* Lock request/grant registers have different bases. */
779         if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
780                 req = BGE_APE_LOCK_REQ;
781                 gnt = BGE_APE_LOCK_GRANT;
782         } else {
783                 req = BGE_APE_PER_LOCK_REQ;
784                 gnt = BGE_APE_PER_LOCK_GRANT;
785         }
786
787         off = 4 * locknum;
788
789         switch (locknum) {
790         case BGE_APE_LOCK_GPIO:
791                 /* Lock required when using GPIO. */
792                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
793                         return (0);
794                 if (sc->bge_func_addr == 0)
795                         bit = BGE_APE_LOCK_REQ_DRIVER0;
796                 else
797                         bit = (1 << sc->bge_func_addr);
798                 break;
799         case BGE_APE_LOCK_GRC:
800                 /* Lock required to reset the device. */
801                 if (sc->bge_func_addr == 0)
802                         bit = BGE_APE_LOCK_REQ_DRIVER0;
803                 else
804                         bit = (1 << sc->bge_func_addr);
805                 break;
806         case BGE_APE_LOCK_MEM:
807                 /* Lock required when accessing certain APE memory. */
808                 if (sc->bge_func_addr == 0)
809                         bit = BGE_APE_LOCK_REQ_DRIVER0;
810                 else
811                         bit = (1 << sc->bge_func_addr);
812                 break;
813         case BGE_APE_LOCK_PHY0:
814         case BGE_APE_LOCK_PHY1:
815         case BGE_APE_LOCK_PHY2:
816         case BGE_APE_LOCK_PHY3:
817                 /* Lock required when accessing PHYs. */
818                 bit = BGE_APE_LOCK_REQ_DRIVER0;
819                 break;
820         default:
821                 return (EINVAL);
822         }
823
824         /* Request a lock. */
825         APE_WRITE_4(sc, req + off, bit);
826
827         /* Wait up to 1 second to acquire lock. */
828         for (i = 0; i < 20000; i++) {
829                 status = APE_READ_4(sc, gnt + off);
830                 if (status == bit)
831                         break;
832                 DELAY(50);
833         }
834
835         /* Handle any errors. */
836         if (status != bit) {
837                 device_printf(sc->bge_dev, "APE lock %d request failed! "
838                     "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
839                     locknum, req + off, bit & 0xFFFF, gnt + off,
840                     status & 0xFFFF);
841                 /* Revoke the lock request. */
842                 APE_WRITE_4(sc, gnt + off, bit);
843                 return (EBUSY);
844         }
845
846         return (0);
847 }
848
849 static void
850 bge_ape_unlock(struct bge_softc *sc, int locknum)
851 {
852         uint32_t bit, gnt;
853         int off;
854
855         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
856                 return;
857
858         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
859                 gnt = BGE_APE_LOCK_GRANT;
860         else
861                 gnt = BGE_APE_PER_LOCK_GRANT;
862
863         off = 4 * locknum;
864
865         switch (locknum) {
866         case BGE_APE_LOCK_GPIO:
867                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
868                         return;
869                 if (sc->bge_func_addr == 0)
870                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
871                 else
872                         bit = (1 << sc->bge_func_addr);
873                 break;
874         case BGE_APE_LOCK_GRC:
875                 if (sc->bge_func_addr == 0)
876                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
877                 else
878                         bit = (1 << sc->bge_func_addr);
879                 break;
880         case BGE_APE_LOCK_MEM:
881                 if (sc->bge_func_addr == 0)
882                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
883                 else
884                         bit = (1 << sc->bge_func_addr);
885                 break;
886         case BGE_APE_LOCK_PHY0:
887         case BGE_APE_LOCK_PHY1:
888         case BGE_APE_LOCK_PHY2:
889         case BGE_APE_LOCK_PHY3:
890                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
891                 break;
892         default:
893                 return;
894         }
895
896         APE_WRITE_4(sc, gnt + off, bit);
897 }
898
899 /*
900  * Send an event to the APE firmware.
901  */
902 static void
903 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
904 {
905         uint32_t apedata;
906         int i;
907
908         /* NCSI does not support APE events. */
909         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
910                 return;
911
912         /* Wait up to 1ms for APE to service previous event. */
913         for (i = 10; i > 0; i--) {
914                 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
915                         break;
916                 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
917                 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
918                         APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
919                             BGE_APE_EVENT_STATUS_EVENT_PENDING);
920                         bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
921                         APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
922                         break;
923                 }
924                 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
925                 DELAY(100);
926         }
927         if (i == 0)
928                 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
929                     event);
930 }
931
932 static void
933 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
934 {
935         uint32_t apedata, event;
936
937         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
938                 return;
939
940         switch (kind) {
941         case BGE_RESET_START:
942                 /* If this is the first load, clear the load counter. */
943                 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
944                 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
945                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
946                 else {
947                         apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
948                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
949                 }
950                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
951                     BGE_APE_HOST_SEG_SIG_MAGIC);
952                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
953                     BGE_APE_HOST_SEG_LEN_MAGIC);
954
955                 /* Add some version info if bge(4) supports it. */
956                 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
957                     BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
958                 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
959                     BGE_APE_HOST_BEHAV_NO_PHYLOCK);
960                 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
961                     BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
962                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
963                     BGE_APE_HOST_DRVR_STATE_START);
964                 event = BGE_APE_EVENT_STATUS_STATE_START;
965                 break;
966         case BGE_RESET_SHUTDOWN:
967                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
968                     BGE_APE_HOST_DRVR_STATE_UNLOAD);
969                 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
970                 break;
971         case BGE_RESET_SUSPEND:
972                 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
973                 break;
974         default:
975                 return;
976         }
977
978         bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
979             BGE_APE_EVENT_STATUS_STATE_CHNGE);
980 }
981
982 /*
983  * Map a single buffer address.
984  */
985
986 static void
987 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
988 {
989         struct bge_dmamap_arg *ctx;
990
991         if (error)
992                 return;
993
994         KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
995
996         ctx = arg;
997         ctx->bge_busaddr = segs->ds_addr;
998 }
999
1000 static uint8_t
1001 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1002 {
1003         uint32_t access, byte = 0;
1004         int i;
1005
1006         /* Lock. */
1007         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1008         for (i = 0; i < 8000; i++) {
1009                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1010                         break;
1011                 DELAY(20);
1012         }
1013         if (i == 8000)
1014                 return (1);
1015
1016         /* Enable access. */
1017         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1018         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1019
1020         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1021         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1022         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1023                 DELAY(10);
1024                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1025                         DELAY(10);
1026                         break;
1027                 }
1028         }
1029
1030         if (i == BGE_TIMEOUT * 10) {
1031                 if_printf(sc->bge_ifp, "nvram read timed out\n");
1032                 return (1);
1033         }
1034
1035         /* Get result. */
1036         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1037
1038         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1039
1040         /* Disable access. */
1041         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1042
1043         /* Unlock. */
1044         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1045         CSR_READ_4(sc, BGE_NVRAM_SWARB);
1046
1047         return (0);
1048 }
1049
1050 /*
1051  * Read a sequence of bytes from NVRAM.
1052  */
1053 static int
1054 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1055 {
1056         int err = 0, i;
1057         uint8_t byte = 0;
1058
1059         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1060                 return (1);
1061
1062         for (i = 0; i < cnt; i++) {
1063                 err = bge_nvram_getbyte(sc, off + i, &byte);
1064                 if (err)
1065                         break;
1066                 *(dest + i) = byte;
1067         }
1068
1069         return (err ? 1 : 0);
1070 }
1071
1072 /*
1073  * Read a byte of data stored in the EEPROM at address 'addr.' The
1074  * BCM570x supports both the traditional bitbang interface and an
1075  * auto access interface for reading the EEPROM. We use the auto
1076  * access method.
1077  */
1078 static uint8_t
1079 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1080 {
1081         int i;
1082         uint32_t byte = 0;
1083
1084         /*
1085          * Enable use of auto EEPROM access so we can avoid
1086          * having to use the bitbang method.
1087          */
1088         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1089
1090         /* Reset the EEPROM, load the clock period. */
1091         CSR_WRITE_4(sc, BGE_EE_ADDR,
1092             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1093         DELAY(20);
1094
1095         /* Issue the read EEPROM command. */
1096         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1097
1098         /* Wait for completion */
1099         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1100                 DELAY(10);
1101                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1102                         break;
1103         }
1104
1105         if (i == BGE_TIMEOUT * 10) {
1106                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
1107                 return (1);
1108         }
1109
1110         /* Get result. */
1111         byte = CSR_READ_4(sc, BGE_EE_DATA);
1112
1113         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1114
1115         return (0);
1116 }
1117
1118 /*
1119  * Read a sequence of bytes from the EEPROM.
1120  */
1121 static int
1122 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1123 {
1124         int i, error = 0;
1125         uint8_t byte = 0;
1126
1127         for (i = 0; i < cnt; i++) {
1128                 error = bge_eeprom_getbyte(sc, off + i, &byte);
1129                 if (error)
1130                         break;
1131                 *(dest + i) = byte;
1132         }
1133
1134         return (error ? 1 : 0);
1135 }
1136
1137 static int
1138 bge_miibus_readreg(device_t dev, int phy, int reg)
1139 {
1140         struct bge_softc *sc;
1141         uint32_t val;
1142         int i;
1143
1144         sc = device_get_softc(dev);
1145
1146         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1147                 return (0);
1148
1149         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1150         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1151                 CSR_WRITE_4(sc, BGE_MI_MODE,
1152                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1153                 DELAY(80);
1154         }
1155
1156         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1157             BGE_MIPHY(phy) | BGE_MIREG(reg));
1158
1159         /* Poll for the PHY register access to complete. */
1160         for (i = 0; i < BGE_TIMEOUT; i++) {
1161                 DELAY(10);
1162                 val = CSR_READ_4(sc, BGE_MI_COMM);
1163                 if ((val & BGE_MICOMM_BUSY) == 0) {
1164                         DELAY(5);
1165                         val = CSR_READ_4(sc, BGE_MI_COMM);
1166                         break;
1167                 }
1168         }
1169
1170         if (i == BGE_TIMEOUT) {
1171                 device_printf(sc->bge_dev,
1172                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1173                     phy, reg, val);
1174                 val = 0;
1175         }
1176
1177         /* Restore the autopoll bit if necessary. */
1178         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1179                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1180                 DELAY(80);
1181         }
1182
1183         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1184
1185         if (val & BGE_MICOMM_READFAIL)
1186                 return (0);
1187
1188         return (val & 0xFFFF);
1189 }
1190
1191 static int
1192 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1193 {
1194         struct bge_softc *sc;
1195         int i;
1196
1197         sc = device_get_softc(dev);
1198
1199         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1200             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1201                 return (0);
1202
1203         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1204                 return (0);
1205
1206         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1207         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1208                 CSR_WRITE_4(sc, BGE_MI_MODE,
1209                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1210                 DELAY(80);
1211         }
1212
1213         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1214             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1215
1216         for (i = 0; i < BGE_TIMEOUT; i++) {
1217                 DELAY(10);
1218                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1219                         DELAY(5);
1220                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1221                         break;
1222                 }
1223         }
1224
1225         /* Restore the autopoll bit if necessary. */
1226         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1227                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1228                 DELAY(80);
1229         }
1230
1231         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1232
1233         if (i == BGE_TIMEOUT)
1234                 device_printf(sc->bge_dev,
1235                     "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1236                     phy, reg, val);
1237
1238         return (0);
1239 }
1240
1241 static void
1242 bge_miibus_statchg(device_t dev)
1243 {
1244         struct bge_softc *sc;
1245         struct mii_data *mii;
1246         uint32_t mac_mode, rx_mode, tx_mode;
1247
1248         sc = device_get_softc(dev);
1249         if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1250                 return;
1251         mii = device_get_softc(sc->bge_miibus);
1252
1253         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1254             (IFM_ACTIVE | IFM_AVALID)) {
1255                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1256                 case IFM_10_T:
1257                 case IFM_100_TX:
1258                         sc->bge_link = 1;
1259                         break;
1260                 case IFM_1000_T:
1261                 case IFM_1000_SX:
1262                 case IFM_2500_SX:
1263                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1264                                 sc->bge_link = 1;
1265                         else
1266                                 sc->bge_link = 0;
1267                         break;
1268                 default:
1269                         sc->bge_link = 0;
1270                         break;
1271                 }
1272         } else
1273                 sc->bge_link = 0;
1274         if (sc->bge_link == 0)
1275                 return;
1276
1277         /*
1278          * APE firmware touches these registers to keep the MAC
1279          * connected to the outside world.  Try to keep the
1280          * accesses atomic.
1281          */
1282
1283         /* Set the port mode (MII/GMII) to match the link speed. */
1284         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1285             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1286         tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1287         rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1288
1289         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1290             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1291                 mac_mode |= BGE_PORTMODE_GMII;
1292         else
1293                 mac_mode |= BGE_PORTMODE_MII;
1294
1295         /* Set MAC flow control behavior to match link flow control settings. */
1296         tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1297         rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1298         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1299                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1300                         tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1301                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1302                         rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1303         } else
1304                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1305
1306         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1307         DELAY(40);
1308         CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1309         CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1310 }
1311
1312 /*
1313  * Intialize a standard receive ring descriptor.
1314  */
1315 static int
1316 bge_newbuf_std(struct bge_softc *sc, int i)
1317 {
1318         struct mbuf *m;
1319         struct bge_rx_bd *r;
1320         bus_dma_segment_t segs[1];
1321         bus_dmamap_t map;
1322         int error, nsegs;
1323
1324         if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1325             (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1326             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1327                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1328                 if (m == NULL)
1329                         return (ENOBUFS);
1330                 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1331         } else {
1332                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1333                 if (m == NULL)
1334                         return (ENOBUFS);
1335                 m->m_len = m->m_pkthdr.len = MCLBYTES;
1336         }
1337         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1338                 m_adj(m, ETHER_ALIGN);
1339
1340         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1341             sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1342         if (error != 0) {
1343                 m_freem(m);
1344                 return (error);
1345         }
1346         if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1347                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1348                     sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1349                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1350                     sc->bge_cdata.bge_rx_std_dmamap[i]);
1351         }
1352         map = sc->bge_cdata.bge_rx_std_dmamap[i];
1353         sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1354         sc->bge_cdata.bge_rx_std_sparemap = map;
1355         sc->bge_cdata.bge_rx_std_chain[i] = m;
1356         sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1357         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1358         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1359         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1360         r->bge_flags = BGE_RXBDFLAG_END;
1361         r->bge_len = segs[0].ds_len;
1362         r->bge_idx = i;
1363
1364         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1365             sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1366
1367         return (0);
1368 }
1369
1370 /*
1371  * Initialize a jumbo receive ring descriptor. This allocates
1372  * a jumbo buffer from the pool managed internally by the driver.
1373  */
1374 static int
1375 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1376 {
1377         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1378         bus_dmamap_t map;
1379         struct bge_extrx_bd *r;
1380         struct mbuf *m;
1381         int error, nsegs;
1382
1383         MGETHDR(m, M_NOWAIT, MT_DATA);
1384         if (m == NULL)
1385                 return (ENOBUFS);
1386
1387         m_cljget(m, M_NOWAIT, MJUM9BYTES);
1388         if (!(m->m_flags & M_EXT)) {
1389                 m_freem(m);
1390                 return (ENOBUFS);
1391         }
1392         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1393         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1394                 m_adj(m, ETHER_ALIGN);
1395
1396         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1397             sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1398         if (error != 0) {
1399                 m_freem(m);
1400                 return (error);
1401         }
1402
1403         if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1404                 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1405                     sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1406                 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1407                     sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1408         }
1409         map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1410         sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1411             sc->bge_cdata.bge_rx_jumbo_sparemap;
1412         sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1413         sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1414         sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1415         sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1416         sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1417         sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1418
1419         /*
1420          * Fill in the extended RX buffer descriptor.
1421          */
1422         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1423         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1424         r->bge_idx = i;
1425         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1426         switch (nsegs) {
1427         case 4:
1428                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1429                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1430                 r->bge_len3 = segs[3].ds_len;
1431                 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1432         case 3:
1433                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1434                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1435                 r->bge_len2 = segs[2].ds_len;
1436                 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1437         case 2:
1438                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1439                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1440                 r->bge_len1 = segs[1].ds_len;
1441                 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1442         case 1:
1443                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1444                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1445                 r->bge_len0 = segs[0].ds_len;
1446                 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1447                 break;
1448         default:
1449                 panic("%s: %d segments\n", __func__, nsegs);
1450         }
1451
1452         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1453             sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1454
1455         return (0);
1456 }
1457
1458 static int
1459 bge_init_rx_ring_std(struct bge_softc *sc)
1460 {
1461         int error, i;
1462
1463         bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1464         sc->bge_std = 0;
1465         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1466                 if ((error = bge_newbuf_std(sc, i)) != 0)
1467                         return (error);
1468                 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1469         }
1470
1471         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1472             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1473
1474         sc->bge_std = 0;
1475         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1476
1477         return (0);
1478 }
1479
1480 static void
1481 bge_free_rx_ring_std(struct bge_softc *sc)
1482 {
1483         int i;
1484
1485         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1486                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1487                         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1488                             sc->bge_cdata.bge_rx_std_dmamap[i],
1489                             BUS_DMASYNC_POSTREAD);
1490                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1491                             sc->bge_cdata.bge_rx_std_dmamap[i]);
1492                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1493                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1494                 }
1495                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1496                     sizeof(struct bge_rx_bd));
1497         }
1498 }
1499
1500 static int
1501 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1502 {
1503         struct bge_rcb *rcb;
1504         int error, i;
1505
1506         bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1507         sc->bge_jumbo = 0;
1508         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1509                 if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1510                         return (error);
1511                 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1512         }
1513
1514         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1515             sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1516
1517         sc->bge_jumbo = 0;
1518
1519         /* Enable the jumbo receive producer ring. */
1520         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1521         rcb->bge_maxlen_flags =
1522             BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1523         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1524
1525         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1526
1527         return (0);
1528 }
1529
1530 static void
1531 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1532 {
1533         int i;
1534
1535         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1536                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1537                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1538                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1539                             BUS_DMASYNC_POSTREAD);
1540                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1541                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1542                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1543                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1544                 }
1545                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1546                     sizeof(struct bge_extrx_bd));
1547         }
1548 }
1549
1550 static void
1551 bge_free_tx_ring(struct bge_softc *sc)
1552 {
1553         int i;
1554
1555         if (sc->bge_ldata.bge_tx_ring == NULL)
1556                 return;
1557
1558         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1559                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1560                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1561                             sc->bge_cdata.bge_tx_dmamap[i],
1562                             BUS_DMASYNC_POSTWRITE);
1563                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1564                             sc->bge_cdata.bge_tx_dmamap[i]);
1565                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1566                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1567                 }
1568                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1569                     sizeof(struct bge_tx_bd));
1570         }
1571 }
1572
1573 static int
1574 bge_init_tx_ring(struct bge_softc *sc)
1575 {
1576         sc->bge_txcnt = 0;
1577         sc->bge_tx_saved_considx = 0;
1578
1579         bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1580         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1581             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1582
1583         /* Initialize transmit producer index for host-memory send ring. */
1584         sc->bge_tx_prodidx = 0;
1585         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1586
1587         /* 5700 b2 errata */
1588         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1589                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1590
1591         /* NIC-memory send ring not used; initialize to zero. */
1592         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1593         /* 5700 b2 errata */
1594         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1595                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1596
1597         return (0);
1598 }
1599
1600 static void
1601 bge_setpromisc(struct bge_softc *sc)
1602 {
1603         struct ifnet *ifp;
1604
1605         BGE_LOCK_ASSERT(sc);
1606
1607         ifp = sc->bge_ifp;
1608
1609         /* Enable or disable promiscuous mode as needed. */
1610         if (ifp->if_flags & IFF_PROMISC)
1611                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1612         else
1613                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1614 }
1615
1616 static void
1617 bge_setmulti(struct bge_softc *sc)
1618 {
1619         struct ifnet *ifp;
1620         struct ifmultiaddr *ifma;
1621         uint32_t hashes[4] = { 0, 0, 0, 0 };
1622         int h, i;
1623
1624         BGE_LOCK_ASSERT(sc);
1625
1626         ifp = sc->bge_ifp;
1627
1628         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1629                 for (i = 0; i < 4; i++)
1630                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1631                 return;
1632         }
1633
1634         /* First, zot all the existing filters. */
1635         for (i = 0; i < 4; i++)
1636                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1637
1638         /* Now program new ones. */
1639         if_maddr_rlock(ifp);
1640         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1641                 if (ifma->ifma_addr->sa_family != AF_LINK)
1642                         continue;
1643                 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1644                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1645                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1646         }
1647         if_maddr_runlock(ifp);
1648
1649         for (i = 0; i < 4; i++)
1650                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1651 }
1652
1653 static void
1654 bge_setvlan(struct bge_softc *sc)
1655 {
1656         struct ifnet *ifp;
1657
1658         BGE_LOCK_ASSERT(sc);
1659
1660         ifp = sc->bge_ifp;
1661
1662         /* Enable or disable VLAN tag stripping as needed. */
1663         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1664                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1665         else
1666                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1667 }
1668
1669 static void
1670 bge_sig_pre_reset(struct bge_softc *sc, int type)
1671 {
1672
1673         /*
1674          * Some chips don't like this so only do this if ASF is enabled
1675          */
1676         if (sc->bge_asf_mode)
1677                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1678
1679         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1680                 switch (type) {
1681                 case BGE_RESET_START:
1682                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1683                             BGE_FW_DRV_STATE_START);
1684                         break;
1685                 case BGE_RESET_SHUTDOWN:
1686                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1687                             BGE_FW_DRV_STATE_UNLOAD);
1688                         break;
1689                 case BGE_RESET_SUSPEND:
1690                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1691                             BGE_FW_DRV_STATE_SUSPEND);
1692                         break;
1693                 }
1694         }
1695
1696         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1697                 bge_ape_driver_state_change(sc, type);
1698 }
1699
1700 static void
1701 bge_sig_post_reset(struct bge_softc *sc, int type)
1702 {
1703
1704         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1705                 switch (type) {
1706                 case BGE_RESET_START:
1707                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1708                             BGE_FW_DRV_STATE_START_DONE);
1709                         /* START DONE */
1710                         break;
1711                 case BGE_RESET_SHUTDOWN:
1712                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1713                             BGE_FW_DRV_STATE_UNLOAD_DONE);
1714                         break;
1715                 }
1716         }
1717         if (type == BGE_RESET_SHUTDOWN)
1718                 bge_ape_driver_state_change(sc, type);
1719 }
1720
1721 static void
1722 bge_sig_legacy(struct bge_softc *sc, int type)
1723 {
1724
1725         if (sc->bge_asf_mode) {
1726                 switch (type) {
1727                 case BGE_RESET_START:
1728                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1729                             BGE_FW_DRV_STATE_START);
1730                         break;
1731                 case BGE_RESET_SHUTDOWN:
1732                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1733                             BGE_FW_DRV_STATE_UNLOAD);
1734                         break;
1735                 }
1736         }
1737 }
1738
1739 static void
1740 bge_stop_fw(struct bge_softc *sc)
1741 {
1742         int i;
1743
1744         if (sc->bge_asf_mode) {
1745                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1746                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1747                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1748
1749                 for (i = 0; i < 100; i++ ) {
1750                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1751                             BGE_RX_CPU_DRV_EVENT))
1752                                 break;
1753                         DELAY(10);
1754                 }
1755         }
1756 }
1757
1758 static uint32_t
1759 bge_dma_swap_options(struct bge_softc *sc)
1760 {
1761         uint32_t dma_options;
1762
1763         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1764             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1765 #if BYTE_ORDER == BIG_ENDIAN
1766         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1767 #endif
1768         return (dma_options);
1769 }
1770
1771 /*
1772  * Do endian, PCI and DMA initialization.
1773  */
1774 static int
1775 bge_chipinit(struct bge_softc *sc)
1776 {
1777         uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1778         uint16_t val;
1779         int i;
1780
1781         /* Set endianness before we access any non-PCI registers. */
1782         misc_ctl = BGE_INIT;
1783         if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1784                 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1785         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1786
1787         /*
1788          * Clear the MAC statistics block in the NIC's
1789          * internal memory.
1790          */
1791         for (i = BGE_STATS_BLOCK;
1792             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1793                 BGE_MEMWIN_WRITE(sc, i, 0);
1794
1795         for (i = BGE_STATUS_BLOCK;
1796             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1797                 BGE_MEMWIN_WRITE(sc, i, 0);
1798
1799         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1800                 /*
1801                  *  Fix data corruption caused by non-qword write with WB.
1802                  *  Fix master abort in PCI mode.
1803                  *  Fix PCI latency timer.
1804                  */
1805                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1806                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1807                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1808         }
1809
1810         if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1811             sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1812                 /*
1813                  * For the 57766 and non Ax versions of 57765, bootcode
1814                  * needs to setup the PCIE Fast Training Sequence (FTS)
1815                  * value to prevent transmit hangs.
1816                  */
1817                 if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1818                         CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1819                             CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1820                             BGE_CPMU_PADRNG_CTL_RDIV2);
1821                 }
1822         }
1823
1824         /*
1825          * Set up the PCI DMA control register.
1826          */
1827         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1828             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1829         if (sc->bge_flags & BGE_FLAG_PCIE) {
1830                 if (sc->bge_mps >= 256)
1831                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1832                 else
1833                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1834         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1835                 if (BGE_IS_5714_FAMILY(sc)) {
1836                         /* 256 bytes for read and write. */
1837                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1838                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1839                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1840                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1841                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1842                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1843                         /*
1844                          * In the BCM5703, the DMA read watermark should
1845                          * be set to less than or equal to the maximum
1846                          * memory read byte count of the PCI-X command
1847                          * register.
1848                          */
1849                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1850                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1851                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1852                         /* 1536 bytes for read, 384 bytes for write. */
1853                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1854                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1855                 } else {
1856                         /* 384 bytes for read and write. */
1857                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1858                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1859                             0x0F;
1860                 }
1861                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1862                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1863                         uint32_t tmp;
1864
1865                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
1866                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1867                         if (tmp == 6 || tmp == 7)
1868                                 dma_rw_ctl |=
1869                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1870
1871                         /* Set PCI-X DMA write workaround. */
1872                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1873                 }
1874         } else {
1875                 /* Conventional PCI bus: 256 bytes for read and write. */
1876                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1877                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1878
1879                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1880                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1881                         dma_rw_ctl |= 0x0F;
1882         }
1883         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1884             sc->bge_asicrev == BGE_ASICREV_BCM5701)
1885                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1886                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1887         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1888             sc->bge_asicrev == BGE_ASICREV_BCM5704)
1889                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1890         if (BGE_IS_5717_PLUS(sc)) {
1891                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1892                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1893                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1894                 /*
1895                  * Enable HW workaround for controllers that misinterpret
1896                  * a status tag update and leave interrupts permanently
1897                  * disabled.
1898                  */
1899                 if (!BGE_IS_57765_PLUS(sc) &&
1900                     sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1901                     sc->bge_asicrev != BGE_ASICREV_BCM5762)
1902                         dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1903         }
1904         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1905
1906         /*
1907          * Set up general mode register.
1908          */
1909         mode_ctl = bge_dma_swap_options(sc);
1910         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1911             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1912                 /* Retain Host-2-BMC settings written by APE firmware. */
1913                 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1914                     (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1915                     BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1916                     BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1917         }
1918         mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1919             BGE_MODECTL_TX_NO_PHDR_CSUM;
1920
1921         /*
1922          * BCM5701 B5 have a bug causing data corruption when using
1923          * 64-bit DMA reads, which can be terminated early and then
1924          * completed later as 32-bit accesses, in combination with
1925          * certain bridges.
1926          */
1927         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1928             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1929                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1930
1931         /*
1932          * Tell the firmware the driver is running
1933          */
1934         if (sc->bge_asf_mode & ASF_STACKUP)
1935                 mode_ctl |= BGE_MODECTL_STACKUP;
1936
1937         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1938
1939         /*
1940          * Disable memory write invalidate.  Apparently it is not supported
1941          * properly by these devices.  Also ensure that INTx isn't disabled,
1942          * as these chips need it even when using MSI.
1943          */
1944         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1945             PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1946
1947         /* Set the timer prescaler (always 66 MHz). */
1948         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1949
1950         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1951         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1952                 DELAY(40);      /* XXX */
1953
1954                 /* Put PHY into ready state */
1955                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1956                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1957                 DELAY(40);
1958         }
1959
1960         return (0);
1961 }
1962
1963 static int
1964 bge_blockinit(struct bge_softc *sc)
1965 {
1966         struct bge_rcb *rcb;
1967         bus_size_t vrcb;
1968         bge_hostaddr taddr;
1969         uint32_t dmactl, rdmareg, val;
1970         int i, limit;
1971
1972         /*
1973          * Initialize the memory window pointer register so that
1974          * we can access the first 32K of internal NIC RAM. This will
1975          * allow us to set up the TX send ring RCBs and the RX return
1976          * ring RCBs, plus other things which live in NIC memory.
1977          */
1978         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1979
1980         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1981
1982         if (!(BGE_IS_5705_PLUS(sc))) {
1983                 /* Configure mbuf memory pool */
1984                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1985                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1986                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1987                 else
1988                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1989
1990                 /* Configure DMA resource pool */
1991                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1992                     BGE_DMA_DESCRIPTORS);
1993                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1994         }
1995
1996         /* Configure mbuf pool watermarks */
1997         if (BGE_IS_5717_PLUS(sc)) {
1998                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1999                 if (sc->bge_ifp->if_mtu > ETHERMTU) {
2000                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2001                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2002                 } else {
2003                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2004                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2005                 }
2006         } else if (!BGE_IS_5705_PLUS(sc)) {
2007                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2008                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2009                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2010         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2011                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2012                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2013                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2014         } else {
2015                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2016                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2017                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2018         }
2019
2020         /* Configure DMA resource watermarks */
2021         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2022         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2023
2024         /* Enable buffer manager */
2025         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2026         /*
2027          * Change the arbitration algorithm of TXMBUF read request to
2028          * round-robin instead of priority based for BCM5719.  When
2029          * TXFIFO is almost empty, RDMA will hold its request until
2030          * TXFIFO is not almost empty.
2031          */
2032         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2033                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2034         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2035
2036         /* Poll for buffer manager start indication */
2037         for (i = 0; i < BGE_TIMEOUT; i++) {
2038                 DELAY(10);
2039                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2040                         break;
2041         }
2042
2043         if (i == BGE_TIMEOUT) {
2044                 device_printf(sc->bge_dev, "buffer manager failed to start\n");
2045                 return (ENXIO);
2046         }
2047
2048         /* Enable flow-through queues */
2049         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2050         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2051
2052         /* Wait until queue initialization is complete */
2053         for (i = 0; i < BGE_TIMEOUT; i++) {
2054                 DELAY(10);
2055                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2056                         break;
2057         }
2058
2059         if (i == BGE_TIMEOUT) {
2060                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
2061                 return (ENXIO);
2062         }
2063
2064         /*
2065          * Summary of rings supported by the controller:
2066          *
2067          * Standard Receive Producer Ring
2068          * - This ring is used to feed receive buffers for "standard"
2069          *   sized frames (typically 1536 bytes) to the controller.
2070          *
2071          * Jumbo Receive Producer Ring
2072          * - This ring is used to feed receive buffers for jumbo sized
2073          *   frames (i.e. anything bigger than the "standard" frames)
2074          *   to the controller.
2075          *
2076          * Mini Receive Producer Ring
2077          * - This ring is used to feed receive buffers for "mini"
2078          *   sized frames to the controller.
2079          * - This feature required external memory for the controller
2080          *   but was never used in a production system.  Should always
2081          *   be disabled.
2082          *
2083          * Receive Return Ring
2084          * - After the controller has placed an incoming frame into a
2085          *   receive buffer that buffer is moved into a receive return
2086          *   ring.  The driver is then responsible to passing the
2087          *   buffer up to the stack.  Many versions of the controller
2088          *   support multiple RR rings.
2089          *
2090          * Send Ring
2091          * - This ring is used for outgoing frames.  Many versions of
2092          *   the controller support multiple send rings.
2093          */
2094
2095         /* Initialize the standard receive producer ring control block. */
2096         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2097         rcb->bge_hostaddr.bge_addr_lo =
2098             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2099         rcb->bge_hostaddr.bge_addr_hi =
2100             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2101         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2102             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2103         if (BGE_IS_5717_PLUS(sc)) {
2104                 /*
2105                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2106                  * Bits 15-2 : Maximum RX frame size
2107                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2108                  * Bit 0     : Reserved
2109                  */
2110                 rcb->bge_maxlen_flags =
2111                     BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2112         } else if (BGE_IS_5705_PLUS(sc)) {
2113                 /*
2114                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2115                  * Bits 15-2 : Reserved (should be 0)
2116                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2117                  * Bit 0     : Reserved
2118                  */
2119                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2120         } else {
2121                 /*
2122                  * Ring size is always XXX entries
2123                  * Bits 31-16: Maximum RX frame size
2124                  * Bits 15-2 : Reserved (should be 0)
2125                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2126                  * Bit 0     : Reserved
2127                  */
2128                 rcb->bge_maxlen_flags =
2129                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2130         }
2131         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2132             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2133             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2134                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2135         else
2136                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2137         /* Write the standard receive producer ring control block. */
2138         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2139         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2140         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2141         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2142
2143         /* Reset the standard receive producer ring producer index. */
2144         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2145
2146         /*
2147          * Initialize the jumbo RX producer ring control
2148          * block.  We set the 'ring disabled' bit in the
2149          * flags field until we're actually ready to start
2150          * using this ring (i.e. once we set the MTU
2151          * high enough to require it).
2152          */
2153         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2154                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2155                 /* Get the jumbo receive producer ring RCB parameters. */
2156                 rcb->bge_hostaddr.bge_addr_lo =
2157                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2158                 rcb->bge_hostaddr.bge_addr_hi =
2159                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2160                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2161                     sc->bge_cdata.bge_rx_jumbo_ring_map,
2162                     BUS_DMASYNC_PREREAD);
2163                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2164                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2165                 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2166                     sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2167                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
2168                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2169                 else
2170                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2171                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2172                     rcb->bge_hostaddr.bge_addr_hi);
2173                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2174                     rcb->bge_hostaddr.bge_addr_lo);
2175                 /* Program the jumbo receive producer ring RCB parameters. */
2176                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2177                     rcb->bge_maxlen_flags);
2178                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2179                 /* Reset the jumbo receive producer ring producer index. */
2180                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2181         }
2182
2183         /* Disable the mini receive producer ring RCB. */
2184         if (BGE_IS_5700_FAMILY(sc)) {
2185                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2186                 rcb->bge_maxlen_flags =
2187                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2188                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2189                     rcb->bge_maxlen_flags);
2190                 /* Reset the mini receive producer ring producer index. */
2191                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2192         }
2193
2194         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2195         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2196                 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2197                     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2198                     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2199                         CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2200                             (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2201         }
2202         /*
2203          * The BD ring replenish thresholds control how often the
2204          * hardware fetches new BD's from the producer rings in host
2205          * memory.  Setting the value too low on a busy system can
2206          * starve the hardware and recue the throughpout.
2207          *
2208          * Set the BD ring replentish thresholds. The recommended
2209          * values are 1/8th the number of descriptors allocated to
2210          * each ring.
2211          * XXX The 5754 requires a lower threshold, so it might be a
2212          * requirement of all 575x family chips.  The Linux driver sets
2213          * the lower threshold for all 5705 family chips as well, but there
2214          * are reports that it might not need to be so strict.
2215          *
2216          * XXX Linux does some extra fiddling here for the 5906 parts as
2217          * well.
2218          */
2219         if (BGE_IS_5705_PLUS(sc))
2220                 val = 8;
2221         else
2222                 val = BGE_STD_RX_RING_CNT / 8;
2223         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2224         if (BGE_IS_JUMBO_CAPABLE(sc))
2225                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2226                     BGE_JUMBO_RX_RING_CNT/8);
2227         if (BGE_IS_5717_PLUS(sc)) {
2228                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2229                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2230         }
2231
2232         /*
2233          * Disable all send rings by setting the 'ring disabled' bit
2234          * in the flags field of all the TX send ring control blocks,
2235          * located in NIC memory.
2236          */
2237         if (!BGE_IS_5705_PLUS(sc))
2238                 /* 5700 to 5704 had 16 send rings. */
2239                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2240         else if (BGE_IS_57765_PLUS(sc) ||
2241             sc->bge_asicrev == BGE_ASICREV_BCM5762)
2242                 limit = 2;
2243         else if (BGE_IS_5717_PLUS(sc))
2244                 limit = 4;
2245         else
2246                 limit = 1;
2247         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2248         for (i = 0; i < limit; i++) {
2249                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2250                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2251                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2252                 vrcb += sizeof(struct bge_rcb);
2253         }
2254
2255         /* Configure send ring RCB 0 (we use only the first ring) */
2256         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2257         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2258         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2259         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2260         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2261             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2262             sc->bge_asicrev == BGE_ASICREV_BCM5720)
2263                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2264         else
2265                 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2266                     BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2267         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2268             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2269
2270         /*
2271          * Disable all receive return rings by setting the
2272          * 'ring diabled' bit in the flags field of all the receive
2273          * return ring control blocks, located in NIC memory.
2274          */
2275         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2276             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2277             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2278                 /* Should be 17, use 16 until we get an SRAM map. */
2279                 limit = 16;
2280         } else if (!BGE_IS_5705_PLUS(sc))
2281                 limit = BGE_RX_RINGS_MAX;
2282         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2283             sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2284             BGE_IS_57765_PLUS(sc))
2285                 limit = 4;
2286         else
2287                 limit = 1;
2288         /* Disable all receive return rings. */
2289         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2290         for (i = 0; i < limit; i++) {
2291                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2292                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2293                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2294                     BGE_RCB_FLAG_RING_DISABLED);
2295                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2296                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2297                     (i * (sizeof(uint64_t))), 0);
2298                 vrcb += sizeof(struct bge_rcb);
2299         }
2300
2301         /*
2302          * Set up receive return ring 0.  Note that the NIC address
2303          * for RX return rings is 0x0.  The return rings live entirely
2304          * within the host, so the nicaddr field in the RCB isn't used.
2305          */
2306         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2307         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2308         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2309         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2310         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2311         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2312             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2313
2314         /* Set random backoff seed for TX */
2315         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2316             (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2317             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2318             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2319             BGE_TX_BACKOFF_SEED_MASK);
2320
2321         /* Set inter-packet gap */
2322         val = 0x2620;
2323         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2324             sc->bge_asicrev == BGE_ASICREV_BCM5762)
2325                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2326                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2327         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2328
2329         /*
2330          * Specify which ring to use for packets that don't match
2331          * any RX rules.
2332          */
2333         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2334
2335         /*
2336          * Configure number of RX lists. One interrupt distribution
2337          * list, sixteen active lists, one bad frames class.
2338          */
2339         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2340
2341         /* Inialize RX list placement stats mask. */
2342         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2343         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2344
2345         /* Disable host coalescing until we get it set up */
2346         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2347
2348         /* Poll to make sure it's shut down. */
2349         for (i = 0; i < BGE_TIMEOUT; i++) {
2350                 DELAY(10);
2351                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2352                         break;
2353         }
2354
2355         if (i == BGE_TIMEOUT) {
2356                 device_printf(sc->bge_dev,
2357                     "host coalescing engine failed to idle\n");
2358                 return (ENXIO);
2359         }
2360
2361         /* Set up host coalescing defaults */
2362         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2363         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2364         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2365         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2366         if (!(BGE_IS_5705_PLUS(sc))) {
2367                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2368                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2369         }
2370         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2371         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2372
2373         /* Set up address of statistics block */
2374         if (!(BGE_IS_5705_PLUS(sc))) {
2375                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2376                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2377                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2378                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2379                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2380                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2381                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2382         }
2383
2384         /* Set up address of status block */
2385         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2386             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2387         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2388             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2389
2390         /* Set up status block size. */
2391         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2392             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2393                 val = BGE_STATBLKSZ_FULL;
2394                 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2395         } else {
2396                 val = BGE_STATBLKSZ_32BYTE;
2397                 bzero(sc->bge_ldata.bge_status_block, 32);
2398         }
2399         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2400             sc->bge_cdata.bge_status_map,
2401             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2402
2403         /* Turn on host coalescing state machine */
2404         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2405
2406         /* Turn on RX BD completion state machine and enable attentions */
2407         CSR_WRITE_4(sc, BGE_RBDC_MODE,
2408             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2409
2410         /* Turn on RX list placement state machine */
2411         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2412
2413         /* Turn on RX list selector state machine. */
2414         if (!(BGE_IS_5705_PLUS(sc)))
2415                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2416
2417         /* Turn on DMA, clear stats. */
2418         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2419             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2420             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2421             BGE_MACMODE_FRMHDR_DMA_ENB;
2422
2423         if (sc->bge_flags & BGE_FLAG_TBI)
2424                 val |= BGE_PORTMODE_TBI;
2425         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2426                 val |= BGE_PORTMODE_GMII;
2427         else
2428                 val |= BGE_PORTMODE_MII;
2429
2430         /* Allow APE to send/receive frames. */
2431         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2432                 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2433
2434         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2435         DELAY(40);
2436
2437         /* Set misc. local control, enable interrupts on attentions */
2438         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2439
2440 #ifdef notdef
2441         /* Assert GPIO pins for PHY reset */
2442         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2443             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2444         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2445             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2446 #endif
2447
2448         /* Turn on DMA completion state machine */
2449         if (!(BGE_IS_5705_PLUS(sc)))
2450                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2451
2452         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2453
2454         /* Enable host coalescing bug fix. */
2455         if (BGE_IS_5755_PLUS(sc))
2456                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2457
2458         /* Request larger DMA burst size to get better performance. */
2459         if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2460                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2461
2462         /* Turn on write DMA state machine */
2463         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2464         DELAY(40);
2465
2466         /* Turn on read DMA state machine */
2467         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2468
2469         if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2470                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2471
2472         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2473             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2474             sc->bge_asicrev == BGE_ASICREV_BCM57780)
2475                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2476                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2477                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2478         if (sc->bge_flags & BGE_FLAG_PCIE)
2479                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2480         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2481                 val |= BGE_RDMAMODE_TSO4_ENABLE;
2482                 if (sc->bge_flags & BGE_FLAG_TSO3 ||
2483                     sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2484                     sc->bge_asicrev == BGE_ASICREV_BCM57780)
2485                         val |= BGE_RDMAMODE_TSO6_ENABLE;
2486         }
2487
2488         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2489             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2490                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2491                         BGE_RDMAMODE_H2BNC_VLAN_DET;
2492                 /*
2493                  * Allow multiple outstanding read requests from
2494                  * non-LSO read DMA engine.
2495                  */
2496                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2497         }
2498
2499         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2500             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2501             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2502             sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2503             BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2504                 if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2505                         rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2506                 else
2507                         rdmareg = BGE_RDMA_RSRVCTRL;
2508                 dmactl = CSR_READ_4(sc, rdmareg);
2509                 /*
2510                  * Adjust tx margin to prevent TX data corruption and
2511                  * fix internal FIFO overflow.
2512                  */
2513                 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2514                     sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2515                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2516                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2517                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2518                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2519                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2520                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2521                 }
2522                 /*
2523                  * Enable fix for read DMA FIFO overruns.
2524                  * The fix is to limit the number of RX BDs
2525                  * the hardware would fetch at a fime.
2526                  */
2527                 CSR_WRITE_4(sc, rdmareg, dmactl |
2528                     BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2529         }
2530
2531         if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2532                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2533                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2534                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2535                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2536         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2537                 /*
2538                  * Allow 4KB burst length reads for non-LSO frames.
2539                  * Enable 512B burst length reads for buffer descriptors.
2540                  */
2541                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2542                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2543                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2544                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2545         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2546                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2547                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2548                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2549                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2550         }
2551
2552         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2553         DELAY(40);
2554
2555         if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2556                 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2557                         val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2558                         if ((val & 0xFFFF) > BGE_FRAMELEN)
2559                                 break;
2560                         if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2561                                 break;
2562                 }
2563                 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2564                         val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2565                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2566                                 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2567                         else
2568                                 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2569                         CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2570                 }
2571         }
2572
2573         /* Turn on RX data completion state machine */
2574         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2575
2576         /* Turn on RX BD initiator state machine */
2577         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2578
2579         /* Turn on RX data and RX BD initiator state machine */
2580         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2581
2582         /* Turn on Mbuf cluster free state machine */
2583         if (!(BGE_IS_5705_PLUS(sc)))
2584                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2585
2586         /* Turn on send BD completion state machine */
2587         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2588
2589         /* Turn on send data completion state machine */
2590         val = BGE_SDCMODE_ENABLE;
2591         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2592                 val |= BGE_SDCMODE_CDELAY;
2593         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2594
2595         /* Turn on send data initiator state machine */
2596         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2597                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2598                     BGE_SDIMODE_HW_LSO_PRE_DMA);
2599         else
2600                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2601
2602         /* Turn on send BD initiator state machine */
2603         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2604
2605         /* Turn on send BD selector state machine */
2606         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2607
2608         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2609         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2610             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2611
2612         /* ack/clear link change events */
2613         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2614             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2615             BGE_MACSTAT_LINK_CHANGED);
2616         CSR_WRITE_4(sc, BGE_MI_STS, 0);
2617
2618         /*
2619          * Enable attention when the link has changed state for
2620          * devices that use auto polling.
2621          */
2622         if (sc->bge_flags & BGE_FLAG_TBI) {
2623                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2624         } else {
2625                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2626                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2627                         DELAY(80);
2628                 }
2629                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2630                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2631                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2632                             BGE_EVTENB_MI_INTERRUPT);
2633         }
2634
2635         /*
2636          * Clear any pending link state attention.
2637          * Otherwise some link state change events may be lost until attention
2638          * is cleared by bge_intr() -> bge_link_upd() sequence.
2639          * It's not necessary on newer BCM chips - perhaps enabling link
2640          * state change attentions implies clearing pending attention.
2641          */
2642         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2643             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2644             BGE_MACSTAT_LINK_CHANGED);
2645
2646         /* Enable link state change attentions. */
2647         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2648
2649         return (0);
2650 }
2651
2652 static const struct bge_revision *
2653 bge_lookup_rev(uint32_t chipid)
2654 {
2655         const struct bge_revision *br;
2656
2657         for (br = bge_revisions; br->br_name != NULL; br++) {
2658                 if (br->br_chipid == chipid)
2659                         return (br);
2660         }
2661
2662         for (br = bge_majorrevs; br->br_name != NULL; br++) {
2663                 if (br->br_chipid == BGE_ASICREV(chipid))
2664                         return (br);
2665         }
2666
2667         return (NULL);
2668 }
2669
2670 static const struct bge_vendor *
2671 bge_lookup_vendor(uint16_t vid)
2672 {
2673         const struct bge_vendor *v;
2674
2675         for (v = bge_vendors; v->v_name != NULL; v++)
2676                 if (v->v_id == vid)
2677                         return (v);
2678
2679         return (NULL);
2680 }
2681
2682 static uint32_t
2683 bge_chipid(device_t dev)
2684 {
2685         uint32_t id;
2686
2687         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2688             BGE_PCIMISCCTL_ASICREV_SHIFT;
2689         if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2690                 /*
2691                  * Find the ASCI revision.  Different chips use different
2692                  * registers.
2693                  */
2694                 switch (pci_get_device(dev)) {
2695                 case BCOM_DEVICEID_BCM5717:
2696                 case BCOM_DEVICEID_BCM5718:
2697                 case BCOM_DEVICEID_BCM5719:
2698                 case BCOM_DEVICEID_BCM5720:
2699                 case BCOM_DEVICEID_BCM5725:
2700                 case BCOM_DEVICEID_BCM5727:
2701                 case BCOM_DEVICEID_BCM5762:
2702                 case BCOM_DEVICEID_BCM57764:
2703                 case BCOM_DEVICEID_BCM57767:
2704                 case BCOM_DEVICEID_BCM57787:
2705                         id = pci_read_config(dev,
2706                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
2707                         break;
2708                 case BCOM_DEVICEID_BCM57761:
2709                 case BCOM_DEVICEID_BCM57762:
2710                 case BCOM_DEVICEID_BCM57765:
2711                 case BCOM_DEVICEID_BCM57766:
2712                 case BCOM_DEVICEID_BCM57781:
2713                 case BCOM_DEVICEID_BCM57782:
2714                 case BCOM_DEVICEID_BCM57785:
2715                 case BCOM_DEVICEID_BCM57786:
2716                 case BCOM_DEVICEID_BCM57791:
2717                 case BCOM_DEVICEID_BCM57795:
2718                         id = pci_read_config(dev,
2719                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
2720                         break;
2721                 default:
2722                         id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2723                 }
2724         }
2725         return (id);
2726 }
2727
2728 /*
2729  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2730  * against our list and return its name if we find a match.
2731  *
2732  * Note that since the Broadcom controller contains VPD support, we
2733  * try to get the device name string from the controller itself instead
2734  * of the compiled-in string. It guarantees we'll always announce the
2735  * right product name. We fall back to the compiled-in string when
2736  * VPD is unavailable or corrupt.
2737  */
2738 static int
2739 bge_probe(device_t dev)
2740 {
2741         char buf[96];
2742         char model[64];
2743         const struct bge_revision *br;
2744         const char *pname;
2745         struct bge_softc *sc;
2746         const struct bge_type *t = bge_devs;
2747         const struct bge_vendor *v;
2748         uint32_t id;
2749         uint16_t did, vid;
2750
2751         sc = device_get_softc(dev);
2752         sc->bge_dev = dev;
2753         vid = pci_get_vendor(dev);
2754         did = pci_get_device(dev);
2755         while(t->bge_vid != 0) {
2756                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
2757                         id = bge_chipid(dev);
2758                         br = bge_lookup_rev(id);
2759                         if (bge_has_eaddr(sc) &&
2760                             pci_get_vpd_ident(dev, &pname) == 0)
2761                                 snprintf(model, sizeof(model), "%s", pname);
2762                         else {
2763                                 v = bge_lookup_vendor(vid);
2764                                 snprintf(model, sizeof(model), "%s %s",
2765                                     v != NULL ? v->v_name : "Unknown",
2766                                     br != NULL ? br->br_name :
2767                                     "NetXtreme/NetLink Ethernet Controller");
2768                         }
2769                         snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2770                             model, br != NULL ? "" : "unknown ", id);
2771                         device_set_desc_copy(dev, buf);
2772                         return (BUS_PROBE_DEFAULT);
2773                 }
2774                 t++;
2775         }
2776
2777         return (ENXIO);
2778 }
2779
2780 static void
2781 bge_dma_free(struct bge_softc *sc)
2782 {
2783         int i;
2784
2785         /* Destroy DMA maps for RX buffers. */
2786         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2787                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
2788                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2789                             sc->bge_cdata.bge_rx_std_dmamap[i]);
2790         }
2791         if (sc->bge_cdata.bge_rx_std_sparemap)
2792                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2793                     sc->bge_cdata.bge_rx_std_sparemap);
2794
2795         /* Destroy DMA maps for jumbo RX buffers. */
2796         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2797                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2798                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2799                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2800         }
2801         if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2802                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2803                     sc->bge_cdata.bge_rx_jumbo_sparemap);
2804
2805         /* Destroy DMA maps for TX buffers. */
2806         for (i = 0; i < BGE_TX_RING_CNT; i++) {
2807                 if (sc->bge_cdata.bge_tx_dmamap[i])
2808                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2809                             sc->bge_cdata.bge_tx_dmamap[i]);
2810         }
2811
2812         if (sc->bge_cdata.bge_rx_mtag)
2813                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2814         if (sc->bge_cdata.bge_mtag_jumbo)
2815                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2816         if (sc->bge_cdata.bge_tx_mtag)
2817                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2818
2819         /* Destroy standard RX ring. */
2820         if (sc->bge_cdata.bge_rx_std_ring_map)
2821                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2822                     sc->bge_cdata.bge_rx_std_ring_map);
2823         if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2824                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2825                     sc->bge_ldata.bge_rx_std_ring,
2826                     sc->bge_cdata.bge_rx_std_ring_map);
2827
2828         if (sc->bge_cdata.bge_rx_std_ring_tag)
2829                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2830
2831         /* Destroy jumbo RX ring. */
2832         if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2833                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2834                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2835
2836         if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2837             sc->bge_ldata.bge_rx_jumbo_ring)
2838                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2839                     sc->bge_ldata.bge_rx_jumbo_ring,
2840                     sc->bge_cdata.bge_rx_jumbo_ring_map);
2841
2842         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2843                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2844
2845         /* Destroy RX return ring. */
2846         if (sc->bge_cdata.bge_rx_return_ring_map)
2847                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2848                     sc->bge_cdata.bge_rx_return_ring_map);
2849
2850         if (sc->bge_cdata.bge_rx_return_ring_map &&
2851             sc->bge_ldata.bge_rx_return_ring)
2852                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2853                     sc->bge_ldata.bge_rx_return_ring,
2854                     sc->bge_cdata.bge_rx_return_ring_map);
2855
2856         if (sc->bge_cdata.bge_rx_return_ring_tag)
2857                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2858
2859         /* Destroy TX ring. */
2860         if (sc->bge_cdata.bge_tx_ring_map)
2861                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2862                     sc->bge_cdata.bge_tx_ring_map);
2863
2864         if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2865                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2866                     sc->bge_ldata.bge_tx_ring,
2867                     sc->bge_cdata.bge_tx_ring_map);
2868
2869         if (sc->bge_cdata.bge_tx_ring_tag)
2870                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2871
2872         /* Destroy status block. */
2873         if (sc->bge_cdata.bge_status_map)
2874                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2875                     sc->bge_cdata.bge_status_map);
2876
2877         if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2878                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2879                     sc->bge_ldata.bge_status_block,
2880                     sc->bge_cdata.bge_status_map);
2881
2882         if (sc->bge_cdata.bge_status_tag)
2883                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2884
2885         /* Destroy statistics block. */
2886         if (sc->bge_cdata.bge_stats_map)
2887                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2888                     sc->bge_cdata.bge_stats_map);
2889
2890         if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2891                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2892                     sc->bge_ldata.bge_stats,
2893                     sc->bge_cdata.bge_stats_map);
2894
2895         if (sc->bge_cdata.bge_stats_tag)
2896                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2897
2898         if (sc->bge_cdata.bge_buffer_tag)
2899                 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2900
2901         /* Destroy the parent tag. */
2902         if (sc->bge_cdata.bge_parent_tag)
2903                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2904 }
2905
2906 static int
2907 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2908     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2909     bus_addr_t *paddr, const char *msg)
2910 {
2911         struct bge_dmamap_arg ctx;
2912         int error;
2913
2914         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2915             alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2916             NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2917         if (error != 0) {
2918                 device_printf(sc->bge_dev,
2919                     "could not create %s dma tag\n", msg);
2920                 return (ENOMEM);
2921         }
2922         /* Allocate DMA'able memory for ring. */
2923         error = bus_dmamem_alloc(*tag, (void **)ring,
2924             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2925         if (error != 0) {
2926                 device_printf(sc->bge_dev,
2927                     "could not allocate DMA'able memory for %s\n", msg);
2928                 return (ENOMEM);
2929         }
2930         /* Load the address of the ring. */
2931         ctx.bge_busaddr = 0;
2932         error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2933             &ctx, BUS_DMA_NOWAIT);
2934         if (error != 0) {
2935                 device_printf(sc->bge_dev,
2936                     "could not load DMA'able memory for %s\n", msg);
2937                 return (ENOMEM);
2938         }
2939         *paddr = ctx.bge_busaddr;
2940         return (0);
2941 }
2942
2943 static int
2944 bge_dma_alloc(struct bge_softc *sc)
2945 {
2946         bus_addr_t lowaddr;
2947         bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2948         int i, error;
2949
2950         lowaddr = BUS_SPACE_MAXADDR;
2951         if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2952                 lowaddr = BGE_DMA_MAXADDR;
2953         /*
2954          * Allocate the parent bus DMA tag appropriate for PCI.
2955          */
2956         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2957             1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2958             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2959             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2960         if (error != 0) {
2961                 device_printf(sc->bge_dev,
2962                     "could not allocate parent dma tag\n");
2963                 return (ENOMEM);
2964         }
2965
2966         /* Create tag for standard RX ring. */
2967         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2968             &sc->bge_cdata.bge_rx_std_ring_tag,
2969             (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2970             &sc->bge_cdata.bge_rx_std_ring_map,
2971             &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2972         if (error)
2973                 return (error);
2974
2975         /* Create tag for RX return ring. */
2976         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2977             &sc->bge_cdata.bge_rx_return_ring_tag,
2978             (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2979             &sc->bge_cdata.bge_rx_return_ring_map,
2980             &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2981         if (error)
2982                 return (error);
2983
2984         /* Create tag for TX ring. */
2985         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2986             &sc->bge_cdata.bge_tx_ring_tag,
2987             (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2988             &sc->bge_cdata.bge_tx_ring_map,
2989             &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2990         if (error)
2991                 return (error);
2992
2993         /*
2994          * Create tag for status block.
2995          * Because we only use single Tx/Rx/Rx return ring, use
2996          * minimum status block size except BCM5700 AX/BX which
2997          * seems to want to see full status block size regardless
2998          * of configured number of ring.
2999          */
3000         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3001             sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3002                 sbsz = BGE_STATUS_BLK_SZ;
3003         else
3004                 sbsz = 32;
3005         error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3006             &sc->bge_cdata.bge_status_tag,
3007             (uint8_t **)&sc->bge_ldata.bge_status_block,
3008             &sc->bge_cdata.bge_status_map,
3009             &sc->bge_ldata.bge_status_block_paddr, "status block");
3010         if (error)
3011                 return (error);
3012
3013         /* Create tag for statistics block. */
3014         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3015             &sc->bge_cdata.bge_stats_tag,
3016             (uint8_t **)&sc->bge_ldata.bge_stats,
3017             &sc->bge_cdata.bge_stats_map,
3018             &sc->bge_ldata.bge_stats_paddr, "statistics block");
3019         if (error)
3020                 return (error);
3021
3022         /* Create tag for jumbo RX ring. */
3023         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3024                 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3025                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3026                     (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3027                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
3028                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3029                 if (error)
3030                         return (error);
3031         }
3032
3033         /* Create parent tag for buffers. */
3034         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3035                 /*
3036                  * XXX
3037                  * watchdog timeout issue was observed on BCM5704 which
3038                  * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3039                  * Both limiting DMA address space to 32bits and flushing
3040                  * mailbox write seem to address the issue.
3041                  */
3042                 if (sc->bge_pcixcap != 0)
3043                         lowaddr = BUS_SPACE_MAXADDR_32BIT;
3044         }
3045         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3046             BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3047             BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3048             &sc->bge_cdata.bge_buffer_tag);
3049         if (error != 0) {
3050                 device_printf(sc->bge_dev,
3051                     "could not allocate buffer dma tag\n");
3052                 return (ENOMEM);
3053         }
3054         /* Create tag for Tx mbufs. */
3055         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3056                 txsegsz = BGE_TSOSEG_SZ;
3057                 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3058         } else {
3059                 txsegsz = MCLBYTES;
3060                 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3061         }
3062         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3063             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3064             txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3065             &sc->bge_cdata.bge_tx_mtag);
3066
3067         if (error) {
3068                 device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3069                 return (ENOMEM);
3070         }
3071
3072         /* Create tag for Rx mbufs. */
3073         if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3074                 rxmaxsegsz = MJUM9BYTES;
3075         else
3076                 rxmaxsegsz = MCLBYTES;
3077         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3078             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3079             rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3080
3081         if (error) {
3082                 device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3083                 return (ENOMEM);
3084         }
3085
3086         /* Create DMA maps for RX buffers. */
3087         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3088             &sc->bge_cdata.bge_rx_std_sparemap);
3089         if (error) {
3090                 device_printf(sc->bge_dev,
3091                     "can't create spare DMA map for RX\n");
3092                 return (ENOMEM);
3093         }
3094         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3095                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3096                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
3097                 if (error) {
3098                         device_printf(sc->bge_dev,
3099                             "can't create DMA map for RX\n");
3100                         return (ENOMEM);
3101                 }
3102         }
3103
3104         /* Create DMA maps for TX buffers. */
3105         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3106                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3107                             &sc->bge_cdata.bge_tx_dmamap[i]);
3108                 if (error) {
3109                         device_printf(sc->bge_dev,
3110                             "can't create DMA map for TX\n");
3111                         return (ENOMEM);
3112                 }
3113         }
3114
3115         /* Create tags for jumbo RX buffers. */
3116         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3117                 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3118                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3119                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3120                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3121                 if (error) {
3122                         device_printf(sc->bge_dev,
3123                             "could not allocate jumbo dma tag\n");
3124                         return (ENOMEM);
3125                 }
3126                 /* Create DMA maps for jumbo RX buffers. */
3127                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3128                     0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3129                 if (error) {
3130                         device_printf(sc->bge_dev,
3131                             "can't create spare DMA map for jumbo RX\n");
3132                         return (ENOMEM);
3133                 }
3134                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3135                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3136                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3137                         if (error) {
3138                                 device_printf(sc->bge_dev,
3139                                     "can't create DMA map for jumbo RX\n");
3140                                 return (ENOMEM);
3141                         }
3142                 }
3143         }
3144
3145         return (0);
3146 }
3147
3148 /*
3149  * Return true if this device has more than one port.
3150  */
3151 static int
3152 bge_has_multiple_ports(struct bge_softc *sc)
3153 {
3154         device_t dev = sc->bge_dev;
3155         u_int b, d, f, fscan, s;
3156
3157         d = pci_get_domain(dev);
3158         b = pci_get_bus(dev);
3159         s = pci_get_slot(dev);
3160         f = pci_get_function(dev);
3161         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3162                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3163                         return (1);
3164         return (0);
3165 }
3166
3167 /*
3168  * Return true if MSI can be used with this device.
3169  */
3170 static int
3171 bge_can_use_msi(struct bge_softc *sc)
3172 {
3173         int can_use_msi = 0;
3174
3175         if (sc->bge_msi == 0)
3176                 return (0);
3177
3178         /* Disable MSI for polling(4). */
3179 #ifdef DEVICE_POLLING
3180         return (0);
3181 #endif
3182         switch (sc->bge_asicrev) {
3183         case BGE_ASICREV_BCM5714_A0:
3184         case BGE_ASICREV_BCM5714:
3185                 /*
3186                  * Apparently, MSI doesn't work when these chips are
3187                  * configured in single-port mode.
3188                  */
3189                 if (bge_has_multiple_ports(sc))
3190                         can_use_msi = 1;
3191                 break;
3192         case BGE_ASICREV_BCM5750:
3193                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3194                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3195                         can_use_msi = 1;
3196                 break;
3197         default:
3198                 if (BGE_IS_575X_PLUS(sc))
3199                         can_use_msi = 1;
3200         }
3201         return (can_use_msi);
3202 }
3203
3204 static int
3205 bge_mbox_reorder(struct bge_softc *sc)
3206 {
3207         /* Lists of PCI bridges that are known to reorder mailbox writes. */
3208         static const struct mbox_reorder {
3209                 const uint16_t vendor;
3210                 const uint16_t device;
3211                 const char *desc;
3212         } mbox_reorder_lists[] = {
3213                 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3214         };
3215         devclass_t pci, pcib;
3216         device_t bus, dev;
3217         int i;
3218
3219         pci = devclass_find("pci");
3220         pcib = devclass_find("pcib");
3221         dev = sc->bge_dev;
3222         bus = device_get_parent(dev);
3223         for (;;) {
3224                 dev = device_get_parent(bus);
3225                 bus = device_get_parent(dev);
3226                 if (device_get_devclass(dev) != pcib)
3227                         break;
3228                 for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3229                         if (pci_get_vendor(dev) ==
3230                             mbox_reorder_lists[i].vendor &&
3231                             pci_get_device(dev) ==
3232                             mbox_reorder_lists[i].device) {
3233                                 device_printf(sc->bge_dev,
3234                                     "enabling MBOX workaround for %s\n",
3235                                     mbox_reorder_lists[i].desc);
3236                                 return (1);
3237                         }
3238                 }
3239                 if (device_get_devclass(bus) != pci)
3240                         break;
3241         }
3242         return (0);
3243 }
3244
3245 static void
3246 bge_devinfo(struct bge_softc *sc)
3247 {
3248         uint32_t cfg, clk;
3249
3250         device_printf(sc->bge_dev,
3251             "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3252             sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3253         if (sc->bge_flags & BGE_FLAG_PCIE)
3254                 printf("PCI-E\n");
3255         else if (sc->bge_flags & BGE_FLAG_PCIX) {
3256                 printf("PCI-X ");
3257                 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3258                 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3259                         clk = 133;
3260                 else {
3261                         clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3262                         switch (clk) {
3263                         case 0:
3264                                 clk = 33;
3265                                 break;
3266                         case 2:
3267                                 clk = 50;
3268                                 break;
3269                         case 4:
3270                                 clk = 66;
3271                                 break;
3272                         case 6:
3273                                 clk = 100;
3274                                 break;
3275                         case 7:
3276                                 clk = 133;
3277                                 break;
3278                         }
3279                 }
3280                 printf("%u MHz\n", clk);
3281         } else {
3282                 if (sc->bge_pcixcap != 0)
3283                         printf("PCI on PCI-X ");
3284                 else
3285                         printf("PCI ");
3286                 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3287                 if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3288                         clk = 66;
3289                 else
3290                         clk = 33;
3291                 if (cfg & BGE_PCISTATE_32BIT_BUS)
3292                         printf("%u MHz; 32bit\n", clk);
3293                 else
3294                         printf("%u MHz; 64bit\n", clk);
3295         }
3296 }
3297
3298 static int
3299 bge_attach(device_t dev)
3300 {
3301         struct ifnet *ifp;
3302         struct bge_softc *sc;
3303         uint32_t hwcfg = 0, misccfg, pcistate;
3304         u_char eaddr[ETHER_ADDR_LEN];
3305         int capmask, error, reg, rid, trys;
3306
3307         sc = device_get_softc(dev);
3308         sc->bge_dev = dev;
3309
3310         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3311         TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3312         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3313
3314         pci_enable_busmaster(dev);
3315
3316         /*
3317          * Allocate control/status registers.
3318          */
3319         rid = PCIR_BAR(0);
3320         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3321             RF_ACTIVE);
3322
3323         if (sc->bge_res == NULL) {
3324                 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3325                 error = ENXIO;
3326                 goto fail;
3327         }
3328
3329         /* Save various chip information. */
3330         sc->bge_func_addr = pci_get_function(dev);
3331         sc->bge_chipid = bge_chipid(dev);
3332         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3333         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3334
3335         /* Set default PHY address. */
3336         sc->bge_phy_addr = 1;
3337          /*
3338           * PHY address mapping for various devices.
3339           *
3340           *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3341           * ---------+-------+-------+-------+-------+
3342           * BCM57XX  |   1   |   X   |   X   |   X   |
3343           * BCM5704  |   1   |   X   |   1   |   X   |
3344           * BCM5717  |   1   |   8   |   2   |   9   |
3345           * BCM5719  |   1   |   8   |   2   |   9   |
3346           * BCM5720  |   1   |   8   |   2   |   9   |
3347           *
3348           *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3349           * ---------+-------+-------+-------+-------+
3350           * BCM57XX  |   X   |   X   |   X   |   X   |
3351           * BCM5704  |   X   |   X   |   X   |   X   |
3352           * BCM5717  |   X   |   X   |   X   |   X   |
3353           * BCM5719  |   3   |   10  |   4   |   11  |
3354           * BCM5720  |   X   |   X   |   X   |   X   |
3355           *
3356           * Other addresses may respond but they are not
3357           * IEEE compliant PHYs and should be ignored.
3358           */
3359         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3360             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3361             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3362                 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3363                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3364                             BGE_SGDIGSTS_IS_SERDES)
3365                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3366                         else
3367                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3368                 } else {
3369                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3370                             BGE_CPMU_PHY_STRAP_IS_SERDES)
3371                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
3372                         else
3373                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
3374                 }
3375         }
3376
3377         if (bge_has_eaddr(sc))
3378                 sc->bge_flags |= BGE_FLAG_EADDR;
3379
3380         /* Save chipset family. */
3381         switch (sc->bge_asicrev) {
3382         case BGE_ASICREV_BCM5762:
3383         case BGE_ASICREV_BCM57765:
3384         case BGE_ASICREV_BCM57766:
3385                 sc->bge_flags |= BGE_FLAG_57765_PLUS;
3386                 /* FALLTHROUGH */
3387         case BGE_ASICREV_BCM5717:
3388         case BGE_ASICREV_BCM5719:
3389         case BGE_ASICREV_BCM5720:
3390                 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3391                     BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3392                     BGE_FLAG_JUMBO_FRAME;
3393                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3394                     sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3395                         /*
3396                          * Enable work around for DMA engine miscalculation
3397                          * of TXMBUF available space.
3398                          */
3399                         sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3400                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3401                             sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3402                                 /* Jumbo frame on BCM5719 A0 does not work. */
3403                                 sc->bge_flags &= ~BGE_FLAG_JUMBO;
3404                         }
3405                 }
3406                 break;
3407         case BGE_ASICREV_BCM5755:
3408         case BGE_ASICREV_BCM5761:
3409         case BGE_ASICREV_BCM5784:
3410         case BGE_ASICREV_BCM5785:
3411         case BGE_ASICREV_BCM5787:
3412         case BGE_ASICREV_BCM57780:
3413                 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3414                     BGE_FLAG_5705_PLUS;
3415                 break;
3416         case BGE_ASICREV_BCM5700:
3417         case BGE_ASICREV_BCM5701:
3418         case BGE_ASICREV_BCM5703:
3419         case BGE_ASICREV_BCM5704:
3420                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3421                 break;
3422         case BGE_ASICREV_BCM5714_A0:
3423         case BGE_ASICREV_BCM5780:
3424         case BGE_ASICREV_BCM5714:
3425                 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3426                 /* FALLTHROUGH */
3427         case BGE_ASICREV_BCM5750:
3428         case BGE_ASICREV_BCM5752:
3429         case BGE_ASICREV_BCM5906:
3430                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
3431                 /* FALLTHROUGH */
3432         case BGE_ASICREV_BCM5705:
3433                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
3434                 break;
3435         }
3436
3437         /* Identify chips with APE processor. */
3438         switch (sc->bge_asicrev) {
3439         case BGE_ASICREV_BCM5717:
3440         case BGE_ASICREV_BCM5719:
3441         case BGE_ASICREV_BCM5720:
3442         case BGE_ASICREV_BCM5761:
3443         case BGE_ASICREV_BCM5762:
3444                 sc->bge_flags |= BGE_FLAG_APE;
3445                 break;
3446         }
3447
3448         /* Chips with APE need BAR2 access for APE registers/memory. */
3449         if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3450                 rid = PCIR_BAR(2);
3451                 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3452                     RF_ACTIVE);
3453                 if (sc->bge_res2 == NULL) {
3454                         device_printf (sc->bge_dev,
3455                             "couldn't map BAR2 memory\n");
3456                         error = ENXIO;
3457                         goto fail;
3458                 }
3459
3460                 /* Enable APE register/memory access by host driver. */
3461                 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3462                 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3463                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3464                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3465                 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3466
3467                 bge_ape_lock_init(sc);
3468                 bge_ape_read_fw_ver(sc);
3469         }
3470
3471         /* Add SYSCTLs, requires the chipset family to be set. */
3472         bge_add_sysctls(sc);
3473
3474         /* Identify the chips that use an CPMU. */
3475         if (BGE_IS_5717_PLUS(sc) ||
3476             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3477             sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3478             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3479             sc->bge_asicrev == BGE_ASICREV_BCM57780)
3480                 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3481         if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3482                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3483         else
3484                 sc->bge_mi_mode = BGE_MIMODE_BASE;
3485         /* Enable auto polling for BCM570[0-5]. */
3486         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3487                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3488
3489         /*
3490          * All Broadcom controllers have 4GB boundary DMA bug.
3491          * Whenever an address crosses a multiple of the 4GB boundary
3492          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3493          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3494          * state machine will lockup and cause the device to hang.
3495          */
3496         sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3497
3498         /* BCM5755 or higher and BCM5906 have short DMA bug. */
3499         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3500                 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3501
3502         /*
3503          * BCM5719 cannot handle DMA requests for DMA segments that
3504          * have larger than 4KB in size.  However the maximum DMA
3505          * segment size created in DMA tag is 4KB for TSO, so we
3506          * wouldn't encounter the issue here.
3507          */
3508         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3509                 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3510
3511         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3512         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3513                 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3514                     misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3515                         sc->bge_flags |= BGE_FLAG_5788;
3516         }
3517
3518         capmask = BMSR_DEFCAPMASK;
3519         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3520             (misccfg == 0x4000 || misccfg == 0x8000)) ||
3521             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3522             pci_get_vendor(dev) == BCOM_VENDORID &&
3523             (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3524             pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3525             pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3526             (pci_get_vendor(dev) == BCOM_VENDORID &&
3527             (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3528             pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3529             pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3530             pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3531             pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3532             pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3533             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3534                 /* These chips are 10/100 only. */
3535                 capmask &= ~BMSR_EXTSTAT;
3536                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3537         }
3538
3539         /*
3540          * Some controllers seem to require a special firmware to use
3541          * TSO. But the firmware is not available to FreeBSD and Linux
3542          * claims that the TSO performed by the firmware is slower than
3543          * hardware based TSO. Moreover the firmware based TSO has one
3544          * known bug which can't handle TSO if Ethernet header + IP/TCP
3545          * header is greater than 80 bytes. A workaround for the TSO
3546          * bug exist but it seems it's too expensive than not using
3547          * TSO at all. Some hardwares also have the TSO bug so limit
3548          * the TSO to the controllers that are not affected TSO issues
3549          * (e.g. 5755 or higher).
3550          */
3551         if (BGE_IS_5717_PLUS(sc)) {
3552                 /* BCM5717 requires different TSO configuration. */
3553                 sc->bge_flags |= BGE_FLAG_TSO3;
3554                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3555                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3556                         /* TSO on BCM5719 A0 does not work. */
3557                         sc->bge_flags &= ~BGE_FLAG_TSO3;
3558                 }
3559         } else if (BGE_IS_5755_PLUS(sc)) {
3560                 /*
3561                  * BCM5754 and BCM5787 shares the same ASIC id so
3562                  * explicit device id check is required.
3563                  * Due to unknown reason TSO does not work on BCM5755M.
3564                  */
3565                 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3566                     pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3567                     pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3568                         sc->bge_flags |= BGE_FLAG_TSO;
3569         }
3570
3571         /*
3572          * Check if this is a PCI-X or PCI Express device.
3573          */
3574         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3575                 /*
3576                  * Found a PCI Express capabilities register, this
3577                  * must be a PCI Express device.
3578                  */
3579                 sc->bge_flags |= BGE_FLAG_PCIE;
3580                 sc->bge_expcap = reg;
3581                 /* Extract supported maximum payload size. */
3582                 sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3583                     PCIER_DEVICE_CAP, 2);
3584                 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3585                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3586                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
3587                         sc->bge_expmrq = 2048;
3588                 else
3589                         sc->bge_expmrq = 4096;
3590                 pci_set_max_read_req(dev, sc->bge_expmrq);
3591         } else {
3592                 /*
3593                  * Check if the device is in PCI-X Mode.
3594                  * (This bit is not valid on PCI Express controllers.)
3595                  */
3596                 if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3597                         sc->bge_pcixcap = reg;
3598                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3599                     BGE_PCISTATE_PCI_BUSMODE) == 0)
3600                         sc->bge_flags |= BGE_FLAG_PCIX;
3601         }
3602
3603         /*
3604          * The 40bit DMA bug applies to the 5714/5715 controllers and is
3605          * not actually a MAC controller bug but an issue with the embedded
3606          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3607          */
3608         if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3609                 sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3610         /*
3611          * Some PCI-X bridges are known to trigger write reordering to
3612          * the mailbox registers. Typical phenomena is watchdog timeouts
3613          * caused by out-of-order TX completions.  Enable workaround for
3614          * PCI-X devices that live behind these bridges.
3615          * Note, PCI-X controllers can run in PCI mode so we can't use
3616          * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3617          */
3618         if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3619                 sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3620         /*
3621          * Allocate the interrupt, using MSI if possible.  These devices
3622          * support 8 MSI messages, but only the first one is used in
3623          * normal operation.
3624          */
3625         rid = 0;
3626         if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3627                 sc->bge_msicap = reg;
3628                 reg = 1;
3629                 if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3630                         rid = 1;
3631                         sc->bge_flags |= BGE_FLAG_MSI;
3632                 }
3633         }
3634
3635         /*
3636          * All controllers except BCM5700 supports tagged status but
3637          * we use tagged status only for MSI case on BCM5717. Otherwise
3638          * MSI on BCM5717 does not work.
3639          */
3640 #ifndef DEVICE_POLLING
3641         if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3642                 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3643 #endif
3644
3645         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3646             RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3647
3648         if (sc->bge_irq == NULL) {
3649                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
3650                 error = ENXIO;
3651                 goto fail;
3652         }
3653
3654         bge_devinfo(sc);
3655
3656         sc->bge_asf_mode = 0;
3657         /* No ASF if APE present. */
3658         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3659                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3660                     BGE_SRAM_DATA_SIG_MAGIC)) {
3661                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3662                             BGE_HWCFG_ASF) {
3663                                 sc->bge_asf_mode |= ASF_ENABLE;
3664                                 sc->bge_asf_mode |= ASF_STACKUP;
3665                                 if (BGE_IS_575X_PLUS(sc))
3666                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3667                         }
3668                 }
3669         }
3670
3671         bge_stop_fw(sc);
3672         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3673         if (bge_reset(sc)) {
3674                 device_printf(sc->bge_dev, "chip reset failed\n");
3675                 error = ENXIO;
3676                 goto fail;
3677         }
3678
3679         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3680         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3681
3682         if (bge_chipinit(sc)) {
3683                 device_printf(sc->bge_dev, "chip initialization failed\n");
3684                 error = ENXIO;
3685                 goto fail;
3686         }
3687
3688         error = bge_get_eaddr(sc, eaddr);
3689         if (error) {
3690                 device_printf(sc->bge_dev,
3691                     "failed to read station address\n");
3692                 error = ENXIO;
3693                 goto fail;
3694         }
3695
3696         /* 5705 limits RX return ring to 512 entries. */
3697         if (BGE_IS_5717_PLUS(sc))
3698                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3699         else if (BGE_IS_5705_PLUS(sc))
3700                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3701         else
3702                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3703
3704         if (bge_dma_alloc(sc)) {
3705                 device_printf(sc->bge_dev,
3706                     "failed to allocate DMA resources\n");
3707                 error = ENXIO;
3708                 goto fail;
3709         }
3710
3711         /* Set default tuneable values. */
3712         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3713         sc->bge_rx_coal_ticks = 150;
3714         sc->bge_tx_coal_ticks = 150;
3715         sc->bge_rx_max_coal_bds = 10;
3716         sc->bge_tx_max_coal_bds = 10;
3717
3718         /* Initialize checksum features to use. */
3719         sc->bge_csum_features = BGE_CSUM_FEATURES;
3720         if (sc->bge_forced_udpcsum != 0)
3721                 sc->bge_csum_features |= CSUM_UDP;
3722
3723         /* Set up ifnet structure */
3724         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3725         if (ifp == NULL) {
3726                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
3727                 error = ENXIO;
3728                 goto fail;
3729         }
3730         ifp->if_softc = sc;
3731         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3732         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3733         ifp->if_ioctl = bge_ioctl;
3734         ifp->if_start = bge_start;
3735         ifp->if_init = bge_init;
3736         ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3737         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3738         IFQ_SET_READY(&ifp->if_snd);
3739         ifp->if_hwassist = sc->bge_csum_features;
3740         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3741             IFCAP_VLAN_MTU;
3742         if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3743                 ifp->if_hwassist |= CSUM_TSO;
3744                 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3745         }
3746 #ifdef IFCAP_VLAN_HWCSUM
3747         ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3748 #endif
3749         ifp->if_capenable = ifp->if_capabilities;
3750 #ifdef DEVICE_POLLING
3751         ifp->if_capabilities |= IFCAP_POLLING;
3752 #endif
3753
3754         /*
3755          * 5700 B0 chips do not support checksumming correctly due
3756          * to hardware bugs.
3757          */
3758         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3759                 ifp->if_capabilities &= ~IFCAP_HWCSUM;
3760                 ifp->if_capenable &= ~IFCAP_HWCSUM;
3761                 ifp->if_hwassist = 0;
3762         }
3763
3764         /*
3765          * Figure out what sort of media we have by checking the
3766          * hardware config word in the first 32k of NIC internal memory,
3767          * or fall back to examining the EEPROM if necessary.
3768          * Note: on some BCM5700 cards, this value appears to be unset.
3769          * If that's the case, we have to rely on identifying the NIC
3770          * by its PCI subsystem ID, as we do below for the SysKonnect
3771          * SK-9D41.
3772          */
3773         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3774                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3775         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3776             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3777                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3778                     sizeof(hwcfg))) {
3779                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
3780                         error = ENXIO;
3781                         goto fail;
3782                 }
3783                 hwcfg = ntohl(hwcfg);
3784         }
3785
3786         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3787         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3788             SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3789                 if (BGE_IS_5705_PLUS(sc)) {
3790                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
3791                         sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3792                 } else
3793                         sc->bge_flags |= BGE_FLAG_TBI;
3794         }
3795
3796         /* Set various PHY bug flags. */
3797         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3798             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3799                 sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3800         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3801             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3802                 sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3803         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3804                 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3805         if (pci_get_subvendor(dev) == DELL_VENDORID)
3806                 sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3807         if ((BGE_IS_5705_PLUS(sc)) &&
3808             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3809             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3810             sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3811             !BGE_IS_5717_PLUS(sc)) {
3812                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3813                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3814                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3815                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3816                         if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3817                             pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3818                                 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3819                         if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3820                                 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3821                 } else
3822                         sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3823         }
3824
3825         /*
3826          * Don't enable Ethernet@WireSpeed for the 5700 or the
3827          * 5705 A0 and A1 chips.
3828          */
3829         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3830             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3831             (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3832             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3833                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3834
3835         if (sc->bge_flags & BGE_FLAG_TBI) {
3836                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3837                     bge_ifmedia_sts);
3838                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3839                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3840                     0, NULL);
3841                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3842                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3843                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3844         } else {
3845                 /*
3846                  * Do transceiver setup and tell the firmware the
3847                  * driver is down so we can try to get access the
3848                  * probe if ASF is running.  Retry a couple of times
3849                  * if we get a conflict with the ASF firmware accessing
3850                  * the PHY.
3851                  */
3852                 trys = 0;
3853                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3854 again:
3855                 bge_asf_driver_up(sc);
3856
3857                 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3858                     bge_ifmedia_sts, capmask, sc->bge_phy_addr, MII_OFFSET_ANY,
3859                     MIIF_DOPAUSE);
3860                 if (error != 0) {
3861                         if (trys++ < 4) {
3862                                 device_printf(sc->bge_dev, "Try again\n");
3863                                 bge_miibus_writereg(sc->bge_dev,
3864                                     sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3865                                 goto again;
3866                         }
3867                         device_printf(sc->bge_dev, "attaching PHYs failed\n");
3868                         goto fail;
3869                 }
3870
3871                 /*
3872                  * Now tell the firmware we are going up after probing the PHY
3873                  */
3874                 if (sc->bge_asf_mode & ASF_STACKUP)
3875                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3876         }
3877
3878         /*
3879          * When using the BCM5701 in PCI-X mode, data corruption has
3880          * been observed in the first few bytes of some received packets.
3881          * Aligning the packet buffer in memory eliminates the corruption.
3882          * Unfortunately, this misaligns the packet payloads.  On platforms
3883          * which do not support unaligned accesses, we will realign the
3884          * payloads by copying the received packets.
3885          */
3886         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3887             sc->bge_flags & BGE_FLAG_PCIX)
3888                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3889
3890         /*
3891          * Call MI attach routine.
3892          */
3893         ether_ifattach(ifp, eaddr);
3894
3895         /* Tell upper layer we support long frames. */
3896         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3897
3898         /*
3899          * Hookup IRQ last.
3900          */
3901         if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3902                 /* Take advantage of single-shot MSI. */
3903                 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3904                     ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3905                 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3906                     taskqueue_thread_enqueue, &sc->bge_tq);
3907                 if (sc->bge_tq == NULL) {
3908                         device_printf(dev, "could not create taskqueue.\n");
3909                         ether_ifdetach(ifp);
3910                         error = ENOMEM;
3911                         goto fail;
3912                 }
3913                 error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3914                     "%s taskq", device_get_nameunit(sc->bge_dev));
3915                 if (error != 0) {
3916                         device_printf(dev, "could not start threads.\n");
3917                         ether_ifdetach(ifp);
3918                         goto fail;
3919                 }
3920                 error = bus_setup_intr(dev, sc->bge_irq,
3921                     INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3922                     &sc->bge_intrhand);
3923         } else
3924                 error = bus_setup_intr(dev, sc->bge_irq,
3925                     INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3926                     &sc->bge_intrhand);
3927
3928         if (error) {
3929                 ether_ifdetach(ifp);
3930                 device_printf(sc->bge_dev, "couldn't set up irq\n");
3931         }
3932
3933 fail:
3934         if (error)
3935                 bge_detach(dev);
3936         return (error);
3937 }
3938
3939 static int
3940 bge_detach(device_t dev)
3941 {
3942         struct bge_softc *sc;
3943         struct ifnet *ifp;
3944
3945         sc = device_get_softc(dev);
3946         ifp = sc->bge_ifp;
3947
3948 #ifdef DEVICE_POLLING
3949         if (ifp->if_capenable & IFCAP_POLLING)
3950                 ether_poll_deregister(ifp);
3951 #endif
3952
3953         if (device_is_attached(dev)) {
3954                 ether_ifdetach(ifp);
3955                 BGE_LOCK(sc);
3956                 bge_stop(sc);
3957                 BGE_UNLOCK(sc);
3958                 callout_drain(&sc->bge_stat_ch);
3959         }
3960
3961         if (sc->bge_tq)
3962                 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3963
3964         if (sc->bge_flags & BGE_FLAG_TBI)
3965                 ifmedia_removeall(&sc->bge_ifmedia);
3966         else if (sc->bge_miibus != NULL) {
3967                 bus_generic_detach(dev);
3968                 device_delete_child(dev, sc->bge_miibus);
3969         }
3970
3971         bge_release_resources(sc);
3972
3973         return (0);
3974 }
3975
3976 static void
3977 bge_release_resources(struct bge_softc *sc)
3978 {
3979         device_t dev;
3980
3981         dev = sc->bge_dev;
3982
3983         if (sc->bge_tq != NULL)
3984                 taskqueue_free(sc->bge_tq);
3985
3986         if (sc->bge_intrhand != NULL)
3987                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3988
3989         if (sc->bge_irq != NULL) {
3990                 bus_release_resource(dev, SYS_RES_IRQ,
3991                     rman_get_rid(sc->bge_irq), sc->bge_irq);
3992                 pci_release_msi(dev);
3993         }
3994
3995         if (sc->bge_res != NULL)
3996                 bus_release_resource(dev, SYS_RES_MEMORY,
3997                     rman_get_rid(sc->bge_res), sc->bge_res);
3998
3999         if (sc->bge_res2 != NULL)
4000                 bus_release_resource(dev, SYS_RES_MEMORY,
4001                     rman_get_rid(sc->bge_res2), sc->bge_res2);
4002
4003         if (sc->bge_ifp != NULL)
4004                 if_free(sc->bge_ifp);
4005
4006         bge_dma_free(sc);
4007
4008         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
4009                 BGE_LOCK_DESTROY(sc);
4010 }
4011
4012 static int
4013 bge_reset(struct bge_softc *sc)
4014 {
4015         device_t dev;
4016         uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4017         void (*write_op)(struct bge_softc *, int, int);
4018         uint16_t devctl;
4019         int i;
4020
4021         dev = sc->bge_dev;
4022
4023         mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4024         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4025                 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4026         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4027
4028         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4029             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4030                 if (sc->bge_flags & BGE_FLAG_PCIE)
4031                         write_op = bge_writemem_direct;
4032                 else
4033                         write_op = bge_writemem_ind;
4034         } else
4035                 write_op = bge_writereg_ind;
4036
4037         if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4038             sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4039                 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4040                 for (i = 0; i < 8000; i++) {
4041                         if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4042                             BGE_NVRAMSWARB_GNT1)
4043                                 break;
4044                         DELAY(20);
4045                 }
4046                 if (i == 8000) {
4047                         if (bootverbose)
4048                                 device_printf(dev, "NVRAM lock timedout!\n");
4049                 }
4050         }
4051         /* Take APE lock when performing reset. */
4052         bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4053
4054         /* Save some important PCI state. */
4055         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4056         command = pci_read_config(dev, BGE_PCI_CMD, 4);
4057
4058         pci_write_config(dev, BGE_PCI_MISC_CTL,
4059             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4060             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4061
4062         /* Disable fastboot on controllers that support it. */
4063         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4064             BGE_IS_5755_PLUS(sc)) {
4065                 if (bootverbose)
4066                         device_printf(dev, "Disabling fastboot\n");
4067                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4068         }
4069
4070         /*
4071          * Write the magic number to SRAM at offset 0xB50.
4072          * When firmware finishes its initialization it will
4073          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4074          */
4075         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4076
4077         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4078
4079         /* XXX: Broadcom Linux driver. */
4080         if (sc->bge_flags & BGE_FLAG_PCIE) {
4081                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4082                     (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4083                         if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
4084                                 CSR_WRITE_4(sc, 0x7E2C, 0x20);
4085                 }
4086                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4087                         /* Prevent PCIE link training during global reset */
4088                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4089                         reset |= 1 << 29;
4090                 }
4091         }
4092
4093         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4094                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4095                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4096                     val | BGE_VCPU_STATUS_DRV_RESET);
4097                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4098                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4099                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4100         }
4101
4102         /*
4103          * Set GPHY Power Down Override to leave GPHY
4104          * powered up in D0 uninitialized.
4105          */
4106         if (BGE_IS_5705_PLUS(sc) &&
4107             (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4108                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4109
4110         /* Issue global reset */
4111         write_op(sc, BGE_MISC_CFG, reset);
4112
4113         if (sc->bge_flags & BGE_FLAG_PCIE)
4114                 DELAY(100 * 1000);
4115         else
4116                 DELAY(1000);
4117
4118         /* XXX: Broadcom Linux driver. */
4119         if (sc->bge_flags & BGE_FLAG_PCIE) {
4120                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4121                         DELAY(500000); /* wait for link training to complete */
4122                         val = pci_read_config(dev, 0xC4, 4);
4123                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4124                 }
4125                 devctl = pci_read_config(dev,
4126                     sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4127                 /* Clear enable no snoop and disable relaxed ordering. */
4128                 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4129                     PCIEM_CTL_NOSNOOP_ENABLE);
4130                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4131                     devctl, 2);
4132                 pci_set_max_read_req(dev, sc->bge_expmrq);
4133                 /* Clear error status. */
4134                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4135                     PCIEM_STA_CORRECTABLE_ERROR |
4136                     PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4137                     PCIEM_STA_UNSUPPORTED_REQ, 2);
4138         }
4139
4140         /* Reset some of the PCI state that got zapped by reset. */
4141         pci_write_config(dev, BGE_PCI_MISC_CTL,
4142             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4143             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4144         val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4145         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4146             (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4147                 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4148         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4149                 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4150                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4151                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4152         pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4153         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4154         pci_write_config(dev, BGE_PCI_CMD, command, 4);
4155         /*
4156          * Disable PCI-X relaxed ordering to ensure status block update
4157          * comes first then packet buffer DMA. Otherwise driver may
4158          * read stale status block.
4159          */
4160         if (sc->bge_flags & BGE_FLAG_PCIX) {
4161                 devctl = pci_read_config(dev,
4162                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
4163                 devctl &= ~PCIXM_COMMAND_ERO;
4164                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4165                         devctl &= ~PCIXM_COMMAND_MAX_READ;
4166                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4167                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4168                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4169                             PCIXM_COMMAND_MAX_READ);
4170                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
4171                 }
4172                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4173                     devctl, 2);
4174         }
4175         /* Re-enable MSI, if necessary, and enable the memory arbiter. */
4176         if (BGE_IS_5714_FAMILY(sc)) {
4177                 /* This chip disables MSI on reset. */
4178                 if (sc->bge_flags & BGE_FLAG_MSI) {
4179                         val = pci_read_config(dev,
4180                             sc->bge_msicap + PCIR_MSI_CTRL, 2);
4181                         pci_write_config(dev,
4182                             sc->bge_msicap + PCIR_MSI_CTRL,
4183                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
4184                         val = CSR_READ_4(sc, BGE_MSI_MODE);
4185                         CSR_WRITE_4(sc, BGE_MSI_MODE,
4186                             val | BGE_MSIMODE_ENABLE);
4187                 }
4188                 val = CSR_READ_4(sc, BGE_MARB_MODE);
4189                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4190         } else
4191                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4192
4193         /* Fix up byte swapping. */
4194         CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4195
4196         val = CSR_READ_4(sc, BGE_MAC_MODE);
4197         val = (val & ~mac_mode_mask) | mac_mode;
4198         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4199         DELAY(40);
4200
4201         bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4202
4203         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4204                 for (i = 0; i < BGE_TIMEOUT; i++) {
4205                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4206                         if (val & BGE_VCPU_STATUS_INIT_DONE)
4207                                 break;
4208                         DELAY(100);
4209                 }
4210                 if (i == BGE_TIMEOUT) {
4211                         device_printf(dev, "reset timed out\n");
4212                         return (1);
4213                 }
4214         } else {
4215                 /*
4216                  * Poll until we see the 1's complement of the magic number.
4217                  * This indicates that the firmware initialization is complete.
4218                  * We expect this to fail if no chip containing the Ethernet
4219                  * address is fitted though.
4220                  */
4221                 for (i = 0; i < BGE_TIMEOUT; i++) {
4222                         DELAY(10);
4223                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4224                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
4225                                 break;
4226                 }
4227
4228                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4229                         device_printf(dev,
4230                             "firmware handshake timed out, found 0x%08x\n",
4231                             val);
4232                 /* BCM57765 A0 needs additional time before accessing. */
4233                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4234                         DELAY(10 * 1000);       /* XXX */
4235         }
4236
4237         /*
4238          * The 5704 in TBI mode apparently needs some special
4239          * adjustment to insure the SERDES drive level is set
4240          * to 1.2V.
4241          */
4242         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4243             sc->bge_flags & BGE_FLAG_TBI) {
4244                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
4245                 val = (val & ~0xFFF) | 0x880;
4246                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4247         }
4248
4249         /* XXX: Broadcom Linux driver. */
4250         if (sc->bge_flags & BGE_FLAG_PCIE &&
4251             !BGE_IS_5717_PLUS(sc) &&
4252             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4253             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4254                 /* Enable Data FIFO protection. */
4255                 val = CSR_READ_4(sc, 0x7C00);
4256                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4257         }
4258
4259         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4260                 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4261                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4262
4263         return (0);
4264 }
4265
4266 static __inline void
4267 bge_rxreuse_std(struct bge_softc *sc, int i)
4268 {
4269         struct bge_rx_bd *r;
4270
4271         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4272         r->bge_flags = BGE_RXBDFLAG_END;
4273         r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4274         r->bge_idx = i;
4275         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4276 }
4277
4278 static __inline void
4279 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4280 {
4281         struct bge_extrx_bd *r;
4282
4283         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4284         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4285         r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4286         r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4287         r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4288         r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4289         r->bge_idx = i;
4290         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4291 }
4292
4293 /*
4294  * Frame reception handling. This is called if there's a frame
4295  * on the receive return list.
4296  *
4297  * Note: we have to be able to handle two possibilities here:
4298  * 1) the frame is from the jumbo receive ring
4299  * 2) the frame is from the standard receive ring
4300  */
4301
4302 static int
4303 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4304 {
4305         struct ifnet *ifp;
4306         int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4307         uint16_t rx_cons;
4308
4309         rx_cons = sc->bge_rx_saved_considx;
4310
4311         /* Nothing to do. */
4312         if (rx_cons == rx_prod)
4313                 return (rx_npkts);
4314
4315         ifp = sc->bge_ifp;
4316
4317         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4318             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4319         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4320             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4321         if (BGE_IS_JUMBO_CAPABLE(sc) &&
4322             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4323             (MCLBYTES - ETHER_ALIGN))
4324                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4325                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4326
4327         while (rx_cons != rx_prod) {
4328                 struct bge_rx_bd        *cur_rx;
4329                 uint32_t                rxidx;
4330                 struct mbuf             *m = NULL;
4331                 uint16_t                vlan_tag = 0;
4332                 int                     have_tag = 0;
4333
4334 #ifdef DEVICE_POLLING
4335                 if (ifp->if_capenable & IFCAP_POLLING) {
4336                         if (sc->rxcycles <= 0)
4337                                 break;
4338                         sc->rxcycles--;
4339                 }
4340 #endif
4341
4342                 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4343
4344                 rxidx = cur_rx->bge_idx;
4345                 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4346
4347                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
4348                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4349                         have_tag = 1;
4350                         vlan_tag = cur_rx->bge_vlan_tag;
4351                 }
4352
4353                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4354                         jumbocnt++;
4355                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4356                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4357                                 bge_rxreuse_jumbo(sc, rxidx);
4358                                 continue;
4359                         }
4360                         if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4361                                 bge_rxreuse_jumbo(sc, rxidx);
4362                                 ifp->if_iqdrops++;
4363                                 continue;
4364                         }
4365                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4366                 } else {
4367                         stdcnt++;
4368                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4369                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4370                                 bge_rxreuse_std(sc, rxidx);
4371                                 continue;
4372                         }
4373                         if (bge_newbuf_std(sc, rxidx) != 0) {
4374                                 bge_rxreuse_std(sc, rxidx);
4375                                 ifp->if_iqdrops++;
4376                                 continue;
4377                         }
4378                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4379                 }
4380
4381                 ifp->if_ipackets++;
4382 #ifndef __NO_STRICT_ALIGNMENT
4383                 /*
4384                  * For architectures with strict alignment we must make sure
4385                  * the payload is aligned.
4386                  */
4387                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4388                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4389                             cur_rx->bge_len);
4390                         m->m_data += ETHER_ALIGN;
4391                 }
4392 #endif
4393                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4394                 m->m_pkthdr.rcvif = ifp;
4395
4396                 if (ifp->if_capenable & IFCAP_RXCSUM)
4397                         bge_rxcsum(sc, cur_rx, m);
4398
4399                 /*
4400                  * If we received a packet with a vlan tag,
4401                  * attach that information to the packet.
4402                  */
4403                 if (have_tag) {
4404                         m->m_pkthdr.ether_vtag = vlan_tag;
4405                         m->m_flags |= M_VLANTAG;
4406                 }
4407
4408                 if (holdlck != 0) {
4409                         BGE_UNLOCK(sc);
4410                         (*ifp->if_input)(ifp, m);
4411                         BGE_LOCK(sc);
4412                 } else
4413                         (*ifp->if_input)(ifp, m);
4414                 rx_npkts++;
4415
4416                 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
4417                         return (rx_npkts);
4418         }
4419
4420         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4421             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4422         if (stdcnt > 0)
4423                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4424                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4425
4426         if (jumbocnt > 0)
4427                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4428                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4429
4430         sc->bge_rx_saved_considx = rx_cons;
4431         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4432         if (stdcnt)
4433                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4434                     BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4435         if (jumbocnt)
4436                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4437                     BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4438 #ifdef notyet
4439         /*
4440          * This register wraps very quickly under heavy packet drops.
4441          * If you need correct statistics, you can enable this check.
4442          */
4443         if (BGE_IS_5705_PLUS(sc))
4444                 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4445 #endif
4446         return (rx_npkts);
4447 }
4448
4449 static void
4450 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4451 {
4452
4453         if (BGE_IS_5717_PLUS(sc)) {
4454                 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4455                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4456                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4457                                 if ((cur_rx->bge_error_flag &
4458                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4459                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4460                         }
4461                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4462                                 m->m_pkthdr.csum_data =
4463                                     cur_rx->bge_tcp_udp_csum;
4464                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4465                                     CSUM_PSEUDO_HDR;
4466                         }
4467                 }
4468         } else {
4469                 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4470                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4471                         if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4472                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4473                 }
4474                 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4475                     m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4476                         m->m_pkthdr.csum_data =
4477                             cur_rx->bge_tcp_udp_csum;
4478                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4479                             CSUM_PSEUDO_HDR;
4480                 }
4481         }
4482 }
4483
4484 static void
4485 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4486 {
4487         struct bge_tx_bd *cur_tx;
4488         struct ifnet *ifp;
4489
4490         BGE_LOCK_ASSERT(sc);
4491
4492         /* Nothing to do. */
4493         if (sc->bge_tx_saved_considx == tx_cons)
4494                 return;
4495
4496         ifp = sc->bge_ifp;
4497
4498         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4499             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4500         /*
4501          * Go through our tx ring and free mbufs for those
4502          * frames that have been sent.
4503          */
4504         while (sc->bge_tx_saved_considx != tx_cons) {
4505                 uint32_t                idx;
4506
4507                 idx = sc->bge_tx_saved_considx;
4508                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4509                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4510                         ifp->if_opackets++;
4511                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4512                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4513                             sc->bge_cdata.bge_tx_dmamap[idx],
4514                             BUS_DMASYNC_POSTWRITE);
4515                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4516                             sc->bge_cdata.bge_tx_dmamap[idx]);
4517                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4518                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
4519                 }
4520                 sc->bge_txcnt--;
4521                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4522         }
4523
4524         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4525         if (sc->bge_txcnt == 0)
4526                 sc->bge_timer = 0;
4527 }
4528
4529 #ifdef DEVICE_POLLING
4530 static int
4531 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4532 {
4533         struct bge_softc *sc = ifp->if_softc;
4534         uint16_t rx_prod, tx_cons;
4535         uint32_t statusword;
4536         int rx_npkts = 0;
4537
4538         BGE_LOCK(sc);
4539         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4540                 BGE_UNLOCK(sc);
4541                 return (rx_npkts);
4542         }
4543
4544         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4545             sc->bge_cdata.bge_status_map,
4546             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4547         /* Fetch updates from the status block. */
4548         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4549         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4550
4551         statusword = sc->bge_ldata.bge_status_block->bge_status;
4552         /* Clear the status so the next pass only sees the changes. */
4553         sc->bge_ldata.bge_status_block->bge_status = 0;
4554
4555         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4556             sc->bge_cdata.bge_status_map,
4557             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4558
4559         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4560         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4561                 sc->bge_link_evt++;
4562
4563         if (cmd == POLL_AND_CHECK_STATUS)
4564                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4565                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4566                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4567                         bge_link_upd(sc);
4568
4569         sc->rxcycles = count;
4570         rx_npkts = bge_rxeof(sc, rx_prod, 1);
4571         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4572                 BGE_UNLOCK(sc);
4573                 return (rx_npkts);
4574         }
4575         bge_txeof(sc, tx_cons);
4576         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4577                 bge_start_locked(ifp);
4578
4579         BGE_UNLOCK(sc);
4580         return (rx_npkts);
4581 }
4582 #endif /* DEVICE_POLLING */
4583
4584 static int
4585 bge_msi_intr(void *arg)
4586 {
4587         struct bge_softc *sc;
4588
4589         sc = (struct bge_softc *)arg;
4590         /*
4591          * This interrupt is not shared and controller already
4592          * disabled further interrupt.
4593          */
4594         taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4595         return (FILTER_HANDLED);
4596 }
4597
4598 static void
4599 bge_intr_task(void *arg, int pending)
4600 {
4601         struct bge_softc *sc;
4602         struct ifnet *ifp;
4603         uint32_t status, status_tag;
4604         uint16_t rx_prod, tx_cons;
4605
4606         sc = (struct bge_softc *)arg;
4607         ifp = sc->bge_ifp;
4608
4609         BGE_LOCK(sc);
4610         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4611                 BGE_UNLOCK(sc);
4612                 return;
4613         }
4614
4615         /* Get updated status block. */
4616         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4617             sc->bge_cdata.bge_status_map,
4618             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4619
4620         /* Save producer/consumer indices. */
4621         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4622         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4623         status = sc->bge_ldata.bge_status_block->bge_status;
4624         status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4625         /* Dirty the status flag. */
4626         sc->bge_ldata.bge_status_block->bge_status = 0;
4627         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4628             sc->bge_cdata.bge_status_map,
4629             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4630         if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4631                 status_tag = 0;
4632
4633         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4634                 bge_link_upd(sc);
4635
4636         /* Let controller work. */
4637         bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4638
4639         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4640             sc->bge_rx_saved_considx != rx_prod) {
4641                 /* Check RX return ring producer/consumer. */
4642                 BGE_UNLOCK(sc);
4643                 bge_rxeof(sc, rx_prod, 0);
4644                 BGE_LOCK(sc);
4645         }
4646         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4647                 /* Check TX ring producer/consumer. */
4648                 bge_txeof(sc, tx_cons);
4649                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4650                         bge_start_locked(ifp);
4651         }
4652         BGE_UNLOCK(sc);
4653 }
4654
4655 static void
4656 bge_intr(void *xsc)
4657 {
4658         struct bge_softc *sc;
4659         struct ifnet *ifp;
4660         uint32_t statusword;
4661         uint16_t rx_prod, tx_cons;
4662
4663         sc = xsc;
4664
4665         BGE_LOCK(sc);
4666
4667         ifp = sc->bge_ifp;
4668
4669 #ifdef DEVICE_POLLING
4670         if (ifp->if_capenable & IFCAP_POLLING) {
4671                 BGE_UNLOCK(sc);
4672                 return;
4673         }
4674 #endif
4675
4676         /*
4677          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4678          * disable interrupts by writing nonzero like we used to, since with
4679          * our current organization this just gives complications and
4680          * pessimizations for re-enabling interrupts.  We used to have races
4681          * instead of the necessary complications.  Disabling interrupts
4682          * would just reduce the chance of a status update while we are
4683          * running (by switching to the interrupt-mode coalescence
4684          * parameters), but this chance is already very low so it is more
4685          * efficient to get another interrupt than prevent it.
4686          *
4687          * We do the ack first to ensure another interrupt if there is a
4688          * status update after the ack.  We don't check for the status
4689          * changing later because it is more efficient to get another
4690          * interrupt than prevent it, not quite as above (not checking is
4691          * a smaller optimization than not toggling the interrupt enable,
4692          * since checking doesn't involve PCI accesses and toggling require
4693          * the status check).  So toggling would probably be a pessimization
4694          * even with MSI.  It would only be needed for using a task queue.
4695          */
4696         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4697
4698         /*
4699          * Do the mandatory PCI flush as well as get the link status.
4700          */
4701         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4702
4703         /* Make sure the descriptor ring indexes are coherent. */
4704         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4705             sc->bge_cdata.bge_status_map,
4706             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4707         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4708         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4709         sc->bge_ldata.bge_status_block->bge_status = 0;
4710         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4711             sc->bge_cdata.bge_status_map,
4712             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4713
4714         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4715             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4716             statusword || sc->bge_link_evt)
4717                 bge_link_upd(sc);
4718
4719         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4720                 /* Check RX return ring producer/consumer. */
4721                 bge_rxeof(sc, rx_prod, 1);
4722         }
4723
4724         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4725                 /* Check TX ring producer/consumer. */
4726                 bge_txeof(sc, tx_cons);
4727         }
4728
4729         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4730             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4731                 bge_start_locked(ifp);
4732
4733         BGE_UNLOCK(sc);
4734 }
4735
4736 static void
4737 bge_asf_driver_up(struct bge_softc *sc)
4738 {
4739         if (sc->bge_asf_mode & ASF_STACKUP) {
4740                 /* Send ASF heartbeat aprox. every 2s */
4741                 if (sc->bge_asf_count)
4742                         sc->bge_asf_count --;
4743                 else {
4744                         sc->bge_asf_count = 2;
4745                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4746                             BGE_FW_CMD_DRV_ALIVE);
4747                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4748                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4749                             BGE_FW_HB_TIMEOUT_SEC);
4750                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4751                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4752                             BGE_RX_CPU_DRV_EVENT);
4753                 }
4754         }
4755 }
4756
4757 static void
4758 bge_tick(void *xsc)
4759 {
4760         struct bge_softc *sc = xsc;
4761         struct mii_data *mii = NULL;
4762
4763         BGE_LOCK_ASSERT(sc);
4764
4765         /* Synchronize with possible callout reset/stop. */
4766         if (callout_pending(&sc->bge_stat_ch) ||
4767             !callout_active(&sc->bge_stat_ch))
4768                 return;
4769
4770         if (BGE_IS_5705_PLUS(sc))
4771                 bge_stats_update_regs(sc);
4772         else
4773                 bge_stats_update(sc);
4774
4775         /* XXX Add APE heartbeat check here? */
4776
4777         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4778                 mii = device_get_softc(sc->bge_miibus);
4779                 /*
4780                  * Do not touch PHY if we have link up. This could break
4781                  * IPMI/ASF mode or produce extra input errors
4782                  * (extra errors was reported for bcm5701 & bcm5704).
4783                  */
4784                 if (!sc->bge_link)
4785                         mii_tick(mii);
4786         } else {
4787                 /*
4788                  * Since in TBI mode auto-polling can't be used we should poll
4789                  * link status manually. Here we register pending link event
4790                  * and trigger interrupt.
4791                  */
4792 #ifdef DEVICE_POLLING
4793                 /* In polling mode we poll link state in bge_poll(). */
4794                 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4795 #endif
4796                 {
4797                 sc->bge_link_evt++;
4798                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4799                     sc->bge_flags & BGE_FLAG_5788)
4800                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4801                 else
4802                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4803                 }
4804         }
4805
4806         bge_asf_driver_up(sc);
4807         bge_watchdog(sc);
4808
4809         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4810 }
4811
4812 static void
4813 bge_stats_update_regs(struct bge_softc *sc)
4814 {
4815         struct ifnet *ifp;
4816         struct bge_mac_stats *stats;
4817         uint32_t val;
4818
4819         ifp = sc->bge_ifp;
4820         stats = &sc->bge_mac_stats;
4821
4822         stats->ifHCOutOctets +=
4823             CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4824         stats->etherStatsCollisions +=
4825             CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4826         stats->outXonSent +=
4827             CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4828         stats->outXoffSent +=
4829             CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4830         stats->dot3StatsInternalMacTransmitErrors +=
4831             CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4832         stats->dot3StatsSingleCollisionFrames +=
4833             CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4834         stats->dot3StatsMultipleCollisionFrames +=
4835             CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4836         stats->dot3StatsDeferredTransmissions +=
4837             CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4838         stats->dot3StatsExcessiveCollisions +=
4839             CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4840         stats->dot3StatsLateCollisions +=
4841             CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4842         stats->ifHCOutUcastPkts +=
4843             CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4844         stats->ifHCOutMulticastPkts +=
4845             CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4846         stats->ifHCOutBroadcastPkts +=
4847             CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4848
4849         stats->ifHCInOctets +=
4850             CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4851         stats->etherStatsFragments +=
4852             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4853         stats->ifHCInUcastPkts +=
4854             CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4855         stats->ifHCInMulticastPkts +=
4856             CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4857         stats->ifHCInBroadcastPkts +=
4858             CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4859         stats->dot3StatsFCSErrors +=
4860             CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4861         stats->dot3StatsAlignmentErrors +=
4862             CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4863         stats->xonPauseFramesReceived +=
4864             CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4865         stats->xoffPauseFramesReceived +=
4866             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4867         stats->macControlFramesReceived +=
4868             CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4869         stats->xoffStateEntered +=
4870             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4871         stats->dot3StatsFramesTooLong +=
4872             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4873         stats->etherStatsJabbers +=
4874             CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4875         stats->etherStatsUndersizePkts +=
4876             CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4877
4878         stats->FramesDroppedDueToFilters +=
4879             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4880         stats->DmaWriteQueueFull +=
4881             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4882         stats->DmaWriteHighPriQueueFull +=
4883             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4884         stats->NoMoreRxBDs +=
4885             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4886         /*
4887          * XXX
4888          * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4889          * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4890          * includes number of unwanted multicast frames.  This comes
4891          * from silicon bug and known workaround to get rough(not
4892          * exact) counter is to enable interrupt on MBUF low water
4893          * attention.  This can be accomplished by setting
4894          * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4895          * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4896          * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4897          * However that change would generate more interrupts and
4898          * there are still possibilities of losing multiple frames
4899          * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4900          * Given that the workaround still would not get correct
4901          * counter I don't think it's worth to implement it.  So
4902          * ignore reading the counter on controllers that have the
4903          * silicon bug.
4904          */
4905         if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4906             sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4907             sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4908                 stats->InputDiscards +=
4909                     CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4910         stats->InputErrors +=
4911             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4912         stats->RecvThresholdHit +=
4913             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4914
4915         ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4916         ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4917             stats->InputErrors);
4918
4919         if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4920                 /*
4921                  * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4922                  * frames, it's safe to disable workaround for DMA engine's
4923                  * miscalculation of TXMBUF space.
4924                  */
4925                 if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4926                     stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4927                         val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4928                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4929                                 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4930                         else
4931                                 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4932                         CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4933                         sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4934                 }
4935         }
4936 }
4937
4938 static void
4939 bge_stats_clear_regs(struct bge_softc *sc)
4940 {
4941
4942         CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4943         CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4944         CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4945         CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4946         CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4947         CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4948         CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4949         CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4950         CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4951         CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4952         CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4953         CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4954         CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4955
4956         CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4957         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4958         CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4959         CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4960         CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4961         CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4962         CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4963         CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4964         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4965         CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4966         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4967         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4968         CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4969         CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4970
4971         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4972         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4973         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4974         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4975         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4976         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4977         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4978 }
4979
4980 static void
4981 bge_stats_update(struct bge_softc *sc)
4982 {
4983         struct ifnet *ifp;
4984         bus_size_t stats;
4985         uint32_t cnt;   /* current register value */
4986
4987         ifp = sc->bge_ifp;
4988
4989         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4990
4991 #define READ_STAT(sc, stats, stat) \
4992         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4993
4994         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4995         ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4996         sc->bge_tx_collisions = cnt;
4997
4998         cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4999         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
5000         sc->bge_rx_nobds = cnt;
5001         cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5002         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
5003         sc->bge_rx_inerrs = cnt;
5004         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5005         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
5006         sc->bge_rx_discards = cnt;
5007
5008         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5009         ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
5010         sc->bge_tx_discards = cnt;
5011
5012 #undef  READ_STAT
5013 }
5014
5015 /*
5016  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5017  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5018  * but when such padded frames employ the bge IP/TCP checksum offload,
5019  * the hardware checksum assist gives incorrect results (possibly
5020  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5021  * If we pad such runts with zeros, the onboard checksum comes out correct.
5022  */
5023 static __inline int
5024 bge_cksum_pad(struct mbuf *m)
5025 {
5026         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5027         struct mbuf *last;
5028
5029         /* If there's only the packet-header and we can pad there, use it. */
5030         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5031             M_TRAILINGSPACE(m) >= padlen) {
5032                 last = m;
5033         } else {
5034                 /*
5035                  * Walk packet chain to find last mbuf. We will either
5036                  * pad there, or append a new mbuf and pad it.
5037                  */
5038                 for (last = m; last->m_next != NULL; last = last->m_next);
5039                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5040                         /* Allocate new empty mbuf, pad it. Compact later. */
5041                         struct mbuf *n;
5042
5043                         MGET(n, M_NOWAIT, MT_DATA);
5044                         if (n == NULL)
5045                                 return (ENOBUFS);
5046                         n->m_len = 0;
5047                         last->m_next = n;
5048                         last = n;
5049                 }
5050         }
5051
5052         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
5053         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5054         last->m_len += padlen;
5055         m->m_pkthdr.len += padlen;
5056
5057         return (0);
5058 }
5059
5060 static struct mbuf *
5061 bge_check_short_dma(struct mbuf *m)
5062 {
5063         struct mbuf *n;
5064         int found;
5065
5066         /*
5067          * If device receive two back-to-back send BDs with less than
5068          * or equal to 8 total bytes then the device may hang.  The two
5069          * back-to-back send BDs must in the same frame for this failure
5070          * to occur.  Scan mbuf chains and see whether two back-to-back
5071          * send BDs are there. If this is the case, allocate new mbuf
5072          * and copy the frame to workaround the silicon bug.
5073          */
5074         for (n = m, found = 0; n != NULL; n = n->m_next) {
5075                 if (n->m_len < 8) {
5076                         found++;
5077                         if (found > 1)
5078                                 break;
5079                         continue;
5080                 }
5081                 found = 0;
5082         }
5083
5084         if (found > 1) {
5085                 n = m_defrag(m, M_NOWAIT);
5086                 if (n == NULL)
5087                         m_freem(m);
5088         } else
5089                 n = m;
5090         return (n);
5091 }
5092
5093 static struct mbuf *
5094 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5095     uint16_t *flags)
5096 {
5097         struct ip *ip;
5098         struct tcphdr *tcp;
5099         struct mbuf *n;
5100         uint16_t hlen;
5101         uint32_t poff;
5102
5103         if (M_WRITABLE(m) == 0) {
5104                 /* Get a writable copy. */
5105                 n = m_dup(m, M_NOWAIT);
5106                 m_freem(m);
5107                 if (n == NULL)
5108                         return (NULL);
5109                 m = n;
5110         }
5111         m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5112         if (m == NULL)
5113                 return (NULL);
5114         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5115         poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5116         m = m_pullup(m, poff + sizeof(struct tcphdr));
5117         if (m == NULL)
5118                 return (NULL);
5119         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5120         m = m_pullup(m, poff + (tcp->th_off << 2));
5121         if (m == NULL)
5122                 return (NULL);
5123         /*
5124          * It seems controller doesn't modify IP length and TCP pseudo
5125          * checksum. These checksum computed by upper stack should be 0.
5126          */
5127         *mss = m->m_pkthdr.tso_segsz;
5128         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5129         ip->ip_sum = 0;
5130         ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5131         /* Clear pseudo checksum computed by TCP stack. */
5132         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5133         tcp->th_sum = 0;
5134         /*
5135          * Broadcom controllers uses different descriptor format for
5136          * TSO depending on ASIC revision. Due to TSO-capable firmware
5137          * license issue and lower performance of firmware based TSO
5138          * we only support hardware based TSO.
5139          */
5140         /* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5141         hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5142         if (sc->bge_flags & BGE_FLAG_TSO3) {
5143                 /*
5144                  * For BCM5717 and newer controllers, hardware based TSO
5145                  * uses the 14 lower bits of the bge_mss field to store the
5146                  * MSS and the upper 2 bits to store the lowest 2 bits of
5147                  * the IP/TCP header length.  The upper 6 bits of the header
5148                  * length are stored in the bge_flags[14:10,4] field.  Jumbo
5149                  * frames are supported.
5150                  */
5151                 *mss |= ((hlen & 0x3) << 14);
5152                 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5153         } else {
5154                 /*
5155                  * For BCM5755 and newer controllers, hardware based TSO uses
5156                  * the lower 11 bits to store the MSS and the upper 5 bits to
5157                  * store the IP/TCP header length. Jumbo frames are not
5158                  * supported.
5159                  */
5160                 *mss |= (hlen << 11);
5161         }
5162         return (m);
5163 }
5164
5165 /*
5166  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5167  * pointers to descriptors.
5168  */
5169 static int
5170 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5171 {
5172         bus_dma_segment_t       segs[BGE_NSEG_NEW];
5173         bus_dmamap_t            map;
5174         struct bge_tx_bd        *d;
5175         struct mbuf             *m = *m_head;
5176         uint32_t                idx = *txidx;
5177         uint16_t                csum_flags, mss, vlan_tag;
5178         int                     nsegs, i, error;
5179
5180         csum_flags = 0;
5181         mss = 0;
5182         vlan_tag = 0;
5183         if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5184             m->m_next != NULL) {
5185                 *m_head = bge_check_short_dma(m);
5186                 if (*m_head == NULL)
5187                         return (ENOBUFS);
5188                 m = *m_head;
5189         }
5190         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5191                 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5192                 if (*m_head == NULL)
5193                         return (ENOBUFS);
5194                 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5195                     BGE_TXBDFLAG_CPU_POST_DMA;
5196         } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5197                 if (m->m_pkthdr.csum_flags & CSUM_IP)
5198                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5199                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5200                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5201                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5202                             (error = bge_cksum_pad(m)) != 0) {
5203                                 m_freem(m);
5204                                 *m_head = NULL;
5205                                 return (error);
5206                         }
5207                 }
5208         }
5209
5210         if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5211                 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5212                     m->m_pkthdr.len > ETHER_MAX_LEN)
5213                         csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5214                 if (sc->bge_forced_collapse > 0 &&
5215                     (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5216                         /*
5217                          * Forcedly collapse mbuf chains to overcome hardware
5218                          * limitation which only support a single outstanding
5219                          * DMA read operation.
5220                          */
5221                         if (sc->bge_forced_collapse == 1)
5222                                 m = m_defrag(m, M_NOWAIT);
5223                         else
5224                                 m = m_collapse(m, M_NOWAIT,
5225                                     sc->bge_forced_collapse);
5226                         if (m == NULL)
5227                                 m = *m_head;
5228                         *m_head = m;
5229                 }
5230         }
5231
5232         map = sc->bge_cdata.bge_tx_dmamap[idx];
5233         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5234             &nsegs, BUS_DMA_NOWAIT);
5235         if (error == EFBIG) {
5236                 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5237                 if (m == NULL) {
5238                         m_freem(*m_head);
5239                         *m_head = NULL;
5240                         return (ENOBUFS);
5241                 }
5242                 *m_head = m;
5243                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5244                     m, segs, &nsegs, BUS_DMA_NOWAIT);
5245                 if (error) {
5246                         m_freem(m);
5247                         *m_head = NULL;
5248                         return (error);
5249                 }
5250         } else if (error != 0)
5251                 return (error);
5252
5253         /* Check if we have enough free send BDs. */
5254         if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5255                 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5256                 return (ENOBUFS);
5257         }
5258
5259         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5260
5261         if (m->m_flags & M_VLANTAG) {
5262                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5263                 vlan_tag = m->m_pkthdr.ether_vtag;
5264         }
5265
5266         if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5267             (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5268                 /*
5269                  * 5725 family of devices corrupts TSO packets when TSO DMA
5270                  * buffers cross into regions which are within MSS bytes of
5271                  * a 4GB boundary.  If we encounter the condition, drop the
5272                  * packet.
5273                  */
5274                 for (i = 0; ; i++) {
5275                         d = &sc->bge_ldata.bge_tx_ring[idx];
5276                         d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5277                         d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5278                         d->bge_len = segs[i].ds_len;
5279                         if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5280                             d->bge_addr.bge_addr_lo)
5281                                 break;
5282                         d->bge_flags = csum_flags;
5283                         d->bge_vlan_tag = vlan_tag;
5284                         d->bge_mss = mss;
5285                         if (i == nsegs - 1)
5286                                 break;
5287                         BGE_INC(idx, BGE_TX_RING_CNT);
5288                 }
5289                 if (i != nsegs - 1) {
5290                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5291                             BUS_DMASYNC_POSTWRITE);
5292                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5293                         m_freem(*m_head);
5294                         *m_head = NULL;
5295                         return (EIO);
5296                 }
5297         } else {
5298                 for (i = 0; ; i++) {
5299                         d = &sc->bge_ldata.bge_tx_ring[idx];
5300                         d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5301                         d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5302                         d->bge_len = segs[i].ds_len;
5303                         d->bge_flags = csum_flags;
5304                         d->bge_vlan_tag = vlan_tag;
5305                         d->bge_mss = mss;
5306                         if (i == nsegs - 1)
5307                                 break;
5308                         BGE_INC(idx, BGE_TX_RING_CNT);
5309                 }
5310         }
5311
5312         /* Mark the last segment as end of packet... */
5313         d->bge_flags |= BGE_TXBDFLAG_END;
5314
5315         /*
5316          * Insure that the map for this transmission
5317          * is placed at the array index of the last descriptor
5318          * in this chain.
5319          */
5320         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5321         sc->bge_cdata.bge_tx_dmamap[idx] = map;
5322         sc->bge_cdata.bge_tx_chain[idx] = m;
5323         sc->bge_txcnt += nsegs;
5324
5325         BGE_INC(idx, BGE_TX_RING_CNT);
5326         *txidx = idx;
5327
5328         return (0);
5329 }
5330
5331 /*
5332  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5333  * to the mbuf data regions directly in the transmit descriptors.
5334  */
5335 static void
5336 bge_start_locked(struct ifnet *ifp)
5337 {
5338         struct bge_softc *sc;
5339         struct mbuf *m_head;
5340         uint32_t prodidx;
5341         int count;
5342
5343         sc = ifp->if_softc;
5344         BGE_LOCK_ASSERT(sc);
5345
5346         if (!sc->bge_link ||
5347             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5348             IFF_DRV_RUNNING)
5349                 return;
5350
5351         prodidx = sc->bge_tx_prodidx;
5352
5353         for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
5354                 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5355                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5356                         break;
5357                 }
5358                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
5359                 if (m_head == NULL)
5360                         break;
5361
5362                 /*
5363                  * Pack the data into the transmit ring. If we
5364                  * don't have room, set the OACTIVE flag and wait
5365                  * for the NIC to drain the ring.
5366                  */
5367                 if (bge_encap(sc, &m_head, &prodidx)) {
5368                         if (m_head == NULL)
5369                                 break;
5370                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
5371                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5372                         break;
5373                 }
5374                 ++count;
5375
5376                 /*
5377                  * If there's a BPF listener, bounce a copy of this frame
5378                  * to him.
5379                  */
5380 #ifdef ETHER_BPF_MTAP
5381                 ETHER_BPF_MTAP(ifp, m_head);
5382 #else
5383                 BPF_MTAP(ifp, m_head);
5384 #endif
5385         }
5386
5387         if (count > 0) {
5388                 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5389                     sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5390                 /* Transmit. */
5391                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5392                 /* 5700 b2 errata */
5393                 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5394                         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5395
5396                 sc->bge_tx_prodidx = prodidx;
5397
5398                 /*
5399                  * Set a timeout in case the chip goes out to lunch.
5400                  */
5401                 sc->bge_timer = BGE_TX_TIMEOUT;
5402         }
5403 }
5404
5405 /*
5406  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5407  * to the mbuf data regions directly in the transmit descriptors.
5408  */
5409 static void
5410 bge_start(struct ifnet *ifp)
5411 {
5412         struct bge_softc *sc;
5413
5414         sc = ifp->if_softc;
5415         BGE_LOCK(sc);
5416         bge_start_locked(ifp);
5417         BGE_UNLOCK(sc);
5418 }
5419
5420 static void
5421 bge_init_locked(struct bge_softc *sc)
5422 {
5423         struct ifnet *ifp;
5424         uint16_t *m;
5425         uint32_t mode;
5426
5427         BGE_LOCK_ASSERT(sc);
5428
5429         ifp = sc->bge_ifp;
5430
5431         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5432                 return;
5433
5434         /* Cancel pending I/O and flush buffers. */
5435         bge_stop(sc);
5436
5437         bge_stop_fw(sc);
5438         bge_sig_pre_reset(sc, BGE_RESET_START);
5439         bge_reset(sc);
5440         bge_sig_legacy(sc, BGE_RESET_START);
5441         bge_sig_post_reset(sc, BGE_RESET_START);
5442
5443         bge_chipinit(sc);
5444
5445         /*
5446          * Init the various state machines, ring
5447          * control blocks and firmware.
5448          */
5449         if (bge_blockinit(sc)) {
5450                 device_printf(sc->bge_dev, "initialization failure\n");
5451                 return;
5452         }
5453
5454         ifp = sc->bge_ifp;
5455
5456         /* Specify MTU. */
5457         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5458             ETHER_HDR_LEN + ETHER_CRC_LEN +
5459             (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5460
5461         /* Load our MAC address. */
5462         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5463         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5464         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5465
5466         /* Program promiscuous mode. */
5467         bge_setpromisc(sc);
5468
5469         /* Program multicast filter. */
5470         bge_setmulti(sc);
5471
5472         /* Program VLAN tag stripping. */
5473         bge_setvlan(sc);
5474
5475         /* Override UDP checksum offloading. */
5476         if (sc->bge_forced_udpcsum == 0)
5477                 sc->bge_csum_features &= ~CSUM_UDP;
5478         else
5479                 sc->bge_csum_features |= CSUM_UDP;
5480         if (ifp->if_capabilities & IFCAP_TXCSUM &&
5481             ifp->if_capenable & IFCAP_TXCSUM) {
5482                 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
5483                 ifp->if_hwassist |= sc->bge_csum_features;
5484         }
5485
5486         /* Init RX ring. */
5487         if (bge_init_rx_ring_std(sc) != 0) {
5488                 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5489                 bge_stop(sc);
5490                 return;
5491         }
5492
5493         /*
5494          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5495          * memory to insure that the chip has in fact read the first
5496          * entry of the ring.
5497          */
5498         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5499                 uint32_t                v, i;
5500                 for (i = 0; i < 10; i++) {
5501                         DELAY(20);
5502                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5503                         if (v == (MCLBYTES - ETHER_ALIGN))
5504                                 break;
5505                 }
5506                 if (i == 10)
5507                         device_printf (sc->bge_dev,
5508                             "5705 A0 chip failed to load RX ring\n");
5509         }
5510
5511         /* Init jumbo RX ring. */
5512         if (BGE_IS_JUMBO_CAPABLE(sc) &&
5513             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5514             (MCLBYTES - ETHER_ALIGN)) {
5515                 if (bge_init_rx_ring_jumbo(sc) != 0) {
5516                         device_printf(sc->bge_dev,
5517                             "no memory for jumbo Rx buffers.\n");
5518                         bge_stop(sc);
5519                         return;
5520                 }
5521         }
5522
5523         /* Init our RX return ring index. */
5524         sc->bge_rx_saved_considx = 0;
5525
5526         /* Init our RX/TX stat counters. */
5527         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5528
5529         /* Init TX ring. */
5530         bge_init_tx_ring(sc);
5531
5532         /* Enable TX MAC state machine lockup fix. */
5533         mode = CSR_READ_4(sc, BGE_TX_MODE);
5534         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5535                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5536         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5537             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5538                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5539                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5540                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5541         }
5542         /* Turn on transmitter. */
5543         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5544         DELAY(100);
5545
5546         /* Turn on receiver. */
5547         mode = CSR_READ_4(sc, BGE_RX_MODE);
5548         if (BGE_IS_5755_PLUS(sc))
5549                 mode |= BGE_RXMODE_IPV6_ENABLE;
5550         if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5551                 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5552         CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5553         DELAY(10);
5554
5555         /*
5556          * Set the number of good frames to receive after RX MBUF
5557          * Low Watermark has been reached. After the RX MAC receives
5558          * this number of frames, it will drop subsequent incoming
5559          * frames until the MBUF High Watermark is reached.
5560          */
5561         if (BGE_IS_57765_PLUS(sc))
5562                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5563         else
5564                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5565
5566         /* Clear MAC statistics. */
5567         if (BGE_IS_5705_PLUS(sc))
5568                 bge_stats_clear_regs(sc);
5569
5570         /* Tell firmware we're alive. */
5571         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5572
5573 #ifdef DEVICE_POLLING
5574         /* Disable interrupts if we are polling. */
5575         if (ifp->if_capenable & IFCAP_POLLING) {
5576                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5577                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5578                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5579         } else
5580 #endif
5581
5582         /* Enable host interrupts. */
5583         {
5584         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5585         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5586         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5587         }
5588
5589         ifp->if_drv_flags |= IFF_DRV_RUNNING;
5590         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5591
5592         bge_ifmedia_upd_locked(ifp);
5593
5594         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5595 }
5596
5597 static void
5598 bge_init(void *xsc)
5599 {
5600         struct bge_softc *sc = xsc;
5601
5602         BGE_LOCK(sc);
5603         bge_init_locked(sc);
5604         BGE_UNLOCK(sc);
5605 }
5606
5607 /*
5608  * Set media options.
5609  */
5610 static int
5611 bge_ifmedia_upd(struct ifnet *ifp)
5612 {
5613         struct bge_softc *sc = ifp->if_softc;
5614         int res;
5615
5616         BGE_LOCK(sc);
5617         res = bge_ifmedia_upd_locked(ifp);
5618         BGE_UNLOCK(sc);
5619
5620         return (res);
5621 }
5622
5623 static int
5624 bge_ifmedia_upd_locked(struct ifnet *ifp)
5625 {
5626         struct bge_softc *sc = ifp->if_softc;
5627         struct mii_data *mii;
5628         struct mii_softc *miisc;
5629         struct ifmedia *ifm;
5630
5631         BGE_LOCK_ASSERT(sc);
5632
5633         ifm = &sc->bge_ifmedia;
5634
5635         /* If this is a 1000baseX NIC, enable the TBI port. */
5636         if (sc->bge_flags & BGE_FLAG_TBI) {
5637                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5638                         return (EINVAL);
5639                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
5640                 case IFM_AUTO:
5641                         /*
5642                          * The BCM5704 ASIC appears to have a special
5643                          * mechanism for programming the autoneg
5644                          * advertisement registers in TBI mode.
5645                          */
5646                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5647                                 uint32_t sgdig;
5648                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5649                                 if (sgdig & BGE_SGDIGSTS_DONE) {
5650                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5651                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5652                                         sgdig |= BGE_SGDIGCFG_AUTO |
5653                                             BGE_SGDIGCFG_PAUSE_CAP |
5654                                             BGE_SGDIGCFG_ASYM_PAUSE;
5655                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5656                                             sgdig | BGE_SGDIGCFG_SEND);
5657                                         DELAY(5);
5658                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5659                                 }
5660                         }
5661                         break;
5662                 case IFM_1000_SX:
5663                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5664                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
5665                                     BGE_MACMODE_HALF_DUPLEX);
5666                         } else {
5667                                 BGE_SETBIT(sc, BGE_MAC_MODE,
5668                                     BGE_MACMODE_HALF_DUPLEX);
5669                         }
5670                         DELAY(40);
5671                         break;
5672                 default:
5673                         return (EINVAL);
5674                 }
5675                 return (0);
5676         }
5677
5678         sc->bge_link_evt++;
5679         mii = device_get_softc(sc->bge_miibus);
5680         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5681                 PHY_RESET(miisc);
5682         mii_mediachg(mii);
5683
5684         /*
5685          * Force an interrupt so that we will call bge_link_upd
5686          * if needed and clear any pending link state attention.
5687          * Without this we are not getting any further interrupts
5688          * for link state changes and thus will not UP the link and
5689          * not be able to send in bge_start_locked. The only
5690          * way to get things working was to receive a packet and
5691          * get an RX intr.
5692          * bge_tick should help for fiber cards and we might not
5693          * need to do this here if BGE_FLAG_TBI is set but as
5694          * we poll for fiber anyway it should not harm.
5695          */
5696         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5697             sc->bge_flags & BGE_FLAG_5788)
5698                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5699         else
5700                 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5701
5702         return (0);
5703 }
5704
5705 /*
5706  * Report current media status.
5707  */
5708 static void
5709 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5710 {
5711         struct bge_softc *sc = ifp->if_softc;
5712         struct mii_data *mii;
5713
5714         BGE_LOCK(sc);
5715
5716         if ((ifp->if_flags & IFF_UP) == 0) {
5717                 BGE_UNLOCK(sc);
5718                 return;
5719         }
5720         if (sc->bge_flags & BGE_FLAG_TBI) {
5721                 ifmr->ifm_status = IFM_AVALID;
5722                 ifmr->ifm_active = IFM_ETHER;
5723                 if (CSR_READ_4(sc, BGE_MAC_STS) &
5724                     BGE_MACSTAT_TBI_PCS_SYNCHED)
5725                         ifmr->ifm_status |= IFM_ACTIVE;
5726                 else {
5727                         ifmr->ifm_active |= IFM_NONE;
5728                         BGE_UNLOCK(sc);
5729                         return;
5730                 }
5731                 ifmr->ifm_active |= IFM_1000_SX;
5732                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5733                         ifmr->ifm_active |= IFM_HDX;
5734                 else
5735                         ifmr->ifm_active |= IFM_FDX;
5736                 BGE_UNLOCK(sc);
5737                 return;
5738         }
5739
5740         mii = device_get_softc(sc->bge_miibus);
5741         mii_pollstat(mii);
5742         ifmr->ifm_active = mii->mii_media_active;
5743         ifmr->ifm_status = mii->mii_media_status;
5744
5745         BGE_UNLOCK(sc);
5746 }
5747
5748 static int
5749 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5750 {
5751         struct bge_softc *sc = ifp->if_softc;
5752         struct ifreq *ifr = (struct ifreq *) data;
5753         struct mii_data *mii;
5754         int flags, mask, error = 0;
5755
5756         switch (command) {
5757         case SIOCSIFMTU:
5758                 if (BGE_IS_JUMBO_CAPABLE(sc) ||
5759                     (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5760                         if (ifr->ifr_mtu < ETHERMIN ||
5761                             ifr->ifr_mtu > BGE_JUMBO_MTU) {
5762                                 error = EINVAL;
5763                                 break;
5764                         }
5765                 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5766                         error = EINVAL;
5767                         break;
5768                 }
5769                 BGE_LOCK(sc);
5770                 if (ifp->if_mtu != ifr->ifr_mtu) {
5771                         ifp->if_mtu = ifr->ifr_mtu;
5772                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5773                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5774                                 bge_init_locked(sc);
5775                         }
5776                 }
5777                 BGE_UNLOCK(sc);
5778                 break;
5779         case SIOCSIFFLAGS:
5780                 BGE_LOCK(sc);
5781                 if (ifp->if_flags & IFF_UP) {
5782                         /*
5783                          * If only the state of the PROMISC flag changed,
5784                          * then just use the 'set promisc mode' command
5785                          * instead of reinitializing the entire NIC. Doing
5786                          * a full re-init means reloading the firmware and
5787                          * waiting for it to start up, which may take a
5788                          * second or two.  Similarly for ALLMULTI.
5789                          */
5790                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5791                                 flags = ifp->if_flags ^ sc->bge_if_flags;
5792                                 if (flags & IFF_PROMISC)
5793                                         bge_setpromisc(sc);
5794                                 if (flags & IFF_ALLMULTI)
5795                                         bge_setmulti(sc);
5796                         } else
5797                                 bge_init_locked(sc);
5798                 } else {
5799                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5800                                 bge_stop(sc);
5801                         }
5802                 }
5803                 sc->bge_if_flags = ifp->if_flags;
5804                 BGE_UNLOCK(sc);
5805                 error = 0;
5806                 break;
5807         case SIOCADDMULTI:
5808         case SIOCDELMULTI:
5809                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5810                         BGE_LOCK(sc);
5811                         bge_setmulti(sc);
5812                         BGE_UNLOCK(sc);
5813                         error = 0;
5814                 }
5815                 break;
5816         case SIOCSIFMEDIA:
5817         case SIOCGIFMEDIA:
5818                 if (sc->bge_flags & BGE_FLAG_TBI) {
5819                         error = ifmedia_ioctl(ifp, ifr,
5820                             &sc->bge_ifmedia, command);
5821                 } else {
5822                         mii = device_get_softc(sc->bge_miibus);
5823                         error = ifmedia_ioctl(ifp, ifr,
5824                             &mii->mii_media, command);
5825                 }
5826                 break;
5827         case SIOCSIFCAP:
5828                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5829 #ifdef DEVICE_POLLING
5830                 if (mask & IFCAP_POLLING) {
5831                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
5832                                 error = ether_poll_register(bge_poll, ifp);
5833                                 if (error)
5834                                         return (error);
5835                                 BGE_LOCK(sc);
5836                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5837                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5838                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5839                                 ifp->if_capenable |= IFCAP_POLLING;
5840                                 BGE_UNLOCK(sc);
5841                         } else {
5842                                 error = ether_poll_deregister(ifp);
5843                                 /* Enable interrupt even in error case */
5844                                 BGE_LOCK(sc);
5845                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5846                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
5847                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5848                                 ifp->if_capenable &= ~IFCAP_POLLING;
5849                                 BGE_UNLOCK(sc);
5850                         }
5851                 }
5852 #endif
5853                 if ((mask & IFCAP_TXCSUM) != 0 &&
5854                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5855                         ifp->if_capenable ^= IFCAP_TXCSUM;
5856                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5857                                 ifp->if_hwassist |= sc->bge_csum_features;
5858                         else
5859                                 ifp->if_hwassist &= ~sc->bge_csum_features;
5860                 }
5861
5862                 if ((mask & IFCAP_RXCSUM) != 0 &&
5863                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5864                         ifp->if_capenable ^= IFCAP_RXCSUM;
5865
5866                 if ((mask & IFCAP_TSO4) != 0 &&
5867                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5868                         ifp->if_capenable ^= IFCAP_TSO4;
5869                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5870                                 ifp->if_hwassist |= CSUM_TSO;
5871                         else
5872                                 ifp->if_hwassist &= ~CSUM_TSO;
5873                 }
5874
5875                 if (mask & IFCAP_VLAN_MTU) {
5876                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
5877                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5878                         bge_init(sc);
5879                 }
5880
5881                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5882                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5883                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5884                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5885                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5886                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5887                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5888                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5889                         BGE_LOCK(sc);
5890                         bge_setvlan(sc);
5891                         BGE_UNLOCK(sc);
5892                 }
5893 #ifdef VLAN_CAPABILITIES
5894                 VLAN_CAPABILITIES(ifp);
5895 #endif
5896                 break;
5897         default:
5898                 error = ether_ioctl(ifp, command, data);
5899                 break;
5900         }
5901
5902         return (error);
5903 }
5904
5905 static void
5906 bge_watchdog(struct bge_softc *sc)
5907 {
5908         struct ifnet *ifp;
5909         uint32_t status;
5910
5911         BGE_LOCK_ASSERT(sc);
5912
5913         if (sc->bge_timer == 0 || --sc->bge_timer)
5914                 return;
5915
5916         /* If pause frames are active then don't reset the hardware. */
5917         if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5918                 status = CSR_READ_4(sc, BGE_RX_STS);
5919                 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5920                         /*
5921                          * If link partner has us in XOFF state then wait for
5922                          * the condition to clear.
5923                          */
5924                         CSR_WRITE_4(sc, BGE_RX_STS, status);
5925                         sc->bge_timer = BGE_TX_TIMEOUT;
5926                         return;
5927                 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5928                     (status & BGE_RXSTAT_RCVD_XON) != 0) {
5929                         /*
5930                          * If link partner has us in XOFF state then wait for
5931                          * the condition to clear.
5932                          */
5933                         CSR_WRITE_4(sc, BGE_RX_STS, status);
5934                         sc->bge_timer = BGE_TX_TIMEOUT;
5935                         return;
5936                 }
5937                 /*
5938                  * Any other condition is unexpected and the controller
5939                  * should be reset.
5940                  */
5941         }
5942
5943         ifp = sc->bge_ifp;
5944
5945         if_printf(ifp, "watchdog timeout -- resetting\n");
5946
5947         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5948         bge_init_locked(sc);
5949
5950         ifp->if_oerrors++;
5951 }
5952
5953 static void
5954 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5955 {
5956         int i;
5957
5958         BGE_CLRBIT(sc, reg, bit);
5959
5960         for (i = 0; i < BGE_TIMEOUT; i++) {
5961                 if ((CSR_READ_4(sc, reg) & bit) == 0)
5962                         return;
5963                 DELAY(100);
5964         }
5965 }
5966
5967 /*
5968  * Stop the adapter and free any mbufs allocated to the
5969  * RX and TX lists.
5970  */
5971 static void
5972 bge_stop(struct bge_softc *sc)
5973 {
5974         struct ifnet *ifp;
5975
5976         BGE_LOCK_ASSERT(sc);
5977
5978         ifp = sc->bge_ifp;
5979
5980         callout_stop(&sc->bge_stat_ch);
5981
5982         /* Disable host interrupts. */
5983         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5984         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5985
5986         /*
5987          * Tell firmware we're shutting down.
5988          */
5989         bge_stop_fw(sc);
5990         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5991
5992         /*
5993          * Disable all of the receiver blocks.
5994          */
5995         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5996         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5997         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5998         if (BGE_IS_5700_FAMILY(sc))
5999                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6000         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6001         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6002         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6003
6004         /*
6005          * Disable all of the transmit blocks.
6006          */
6007         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6008         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6009         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6010         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6011         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6012         if (BGE_IS_5700_FAMILY(sc))
6013                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6014         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6015
6016         /*
6017          * Shut down all of the memory managers and related
6018          * state machines.
6019          */
6020         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6021         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6022         if (BGE_IS_5700_FAMILY(sc))
6023                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6024
6025         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6026         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6027         if (!(BGE_IS_5705_PLUS(sc))) {
6028                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6029                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6030         }
6031         /* Update MAC statistics. */
6032         if (BGE_IS_5705_PLUS(sc))
6033                 bge_stats_update_regs(sc);
6034
6035         bge_reset(sc);
6036         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6037         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6038
6039         /*
6040          * Keep the ASF firmware running if up.
6041          */
6042         if (sc->bge_asf_mode & ASF_STACKUP)
6043                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6044         else
6045                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6046
6047         /* Free the RX lists. */
6048         bge_free_rx_ring_std(sc);
6049
6050         /* Free jumbo RX list. */
6051         if (BGE_IS_JUMBO_CAPABLE(sc))
6052                 bge_free_rx_ring_jumbo(sc);
6053
6054         /* Free TX buffers. */
6055         bge_free_tx_ring(sc);
6056
6057         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6058
6059         /* Clear MAC's link state (PHY may still have link UP). */
6060         if (bootverbose && sc->bge_link)
6061                 if_printf(sc->bge_ifp, "link DOWN\n");
6062         sc->bge_link = 0;
6063
6064         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6065 }
6066
6067 /*
6068  * Stop all chip I/O so that the kernel's probe routines don't
6069  * get confused by errant DMAs when rebooting.
6070  */
6071 static int
6072 bge_shutdown(device_t dev)
6073 {
6074         struct bge_softc *sc;
6075
6076         sc = device_get_softc(dev);
6077         BGE_LOCK(sc);
6078         bge_stop(sc);
6079         BGE_UNLOCK(sc);
6080
6081         return (0);
6082 }
6083
6084 static int
6085 bge_suspend(device_t dev)
6086 {
6087         struct bge_softc *sc;
6088
6089         sc = device_get_softc(dev);
6090         BGE_LOCK(sc);
6091         bge_stop(sc);
6092         BGE_UNLOCK(sc);
6093
6094         return (0);
6095 }
6096
6097 static int
6098 bge_resume(device_t dev)
6099 {
6100         struct bge_softc *sc;
6101         struct ifnet *ifp;
6102
6103         sc = device_get_softc(dev);
6104         BGE_LOCK(sc);
6105         ifp = sc->bge_ifp;
6106         if (ifp->if_flags & IFF_UP) {
6107                 bge_init_locked(sc);
6108                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6109                         bge_start_locked(ifp);
6110         }
6111         BGE_UNLOCK(sc);
6112
6113         return (0);
6114 }
6115
6116 static void
6117 bge_link_upd(struct bge_softc *sc)
6118 {
6119         struct mii_data *mii;
6120         uint32_t link, status;
6121
6122         BGE_LOCK_ASSERT(sc);
6123
6124         /* Clear 'pending link event' flag. */
6125         sc->bge_link_evt = 0;
6126
6127         /*
6128          * Process link state changes.
6129          * Grrr. The link status word in the status block does
6130          * not work correctly on the BCM5700 rev AX and BX chips,
6131          * according to all available information. Hence, we have
6132          * to enable MII interrupts in order to properly obtain
6133          * async link changes. Unfortunately, this also means that
6134          * we have to read the MAC status register to detect link
6135          * changes, thereby adding an additional register access to
6136          * the interrupt handler.
6137          *
6138          * XXX: perhaps link state detection procedure used for
6139          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6140          */
6141
6142         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6143             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6144                 status = CSR_READ_4(sc, BGE_MAC_STS);
6145                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6146                         mii = device_get_softc(sc->bge_miibus);
6147                         mii_pollstat(mii);
6148                         if (!sc->bge_link &&
6149                             mii->mii_media_status & IFM_ACTIVE &&
6150                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6151                                 sc->bge_link++;
6152                                 if (bootverbose)
6153                                         if_printf(sc->bge_ifp, "link UP\n");
6154                         } else if (sc->bge_link &&
6155                             (!(mii->mii_media_status & IFM_ACTIVE) ||
6156                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6157                                 sc->bge_link = 0;
6158                                 if (bootverbose)
6159                                         if_printf(sc->bge_ifp, "link DOWN\n");
6160                         }
6161
6162                         /* Clear the interrupt. */
6163                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6164                             BGE_EVTENB_MI_INTERRUPT);
6165                         bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6166                             BRGPHY_MII_ISR);
6167                         bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6168                             BRGPHY_MII_IMR, BRGPHY_INTRS);
6169                 }
6170                 return;
6171         }
6172
6173         if (sc->bge_flags & BGE_FLAG_TBI) {
6174                 status = CSR_READ_4(sc, BGE_MAC_STS);
6175                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6176                         if (!sc->bge_link) {
6177                                 sc->bge_link++;
6178                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6179                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
6180                                             BGE_MACMODE_TBI_SEND_CFGS);
6181                                         DELAY(40);
6182                                 }
6183                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6184                                 if (bootverbose)
6185                                         if_printf(sc->bge_ifp, "link UP\n");
6186                                 if_link_state_change(sc->bge_ifp,
6187                                     LINK_STATE_UP);
6188                         }
6189                 } else if (sc->bge_link) {
6190                         sc->bge_link = 0;
6191                         if (bootverbose)
6192                                 if_printf(sc->bge_ifp, "link DOWN\n");
6193                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6194                 }
6195         } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6196                 /*
6197                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6198                  * in status word always set. Workaround this bug by reading
6199                  * PHY link status directly.
6200                  */
6201                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6202
6203                 if (link != sc->bge_link ||
6204                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6205                         mii = device_get_softc(sc->bge_miibus);
6206                         mii_pollstat(mii);
6207                         if (!sc->bge_link &&
6208                             mii->mii_media_status & IFM_ACTIVE &&
6209                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6210                                 sc->bge_link++;
6211                                 if (bootverbose)
6212                                         if_printf(sc->bge_ifp, "link UP\n");
6213                         } else if (sc->bge_link &&
6214                             (!(mii->mii_media_status & IFM_ACTIVE) ||
6215                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6216                                 sc->bge_link = 0;
6217                                 if (bootverbose)
6218                                         if_printf(sc->bge_ifp, "link DOWN\n");
6219                         }
6220                 }
6221         } else {
6222                 /*
6223                  * For controllers that call mii_tick, we have to poll
6224                  * link status.
6225                  */
6226                 mii = device_get_softc(sc->bge_miibus);
6227                 mii_pollstat(mii);
6228                 bge_miibus_statchg(sc->bge_dev);
6229         }
6230
6231         /* Disable MAC attention when link is up. */
6232         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6233             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6234             BGE_MACSTAT_LINK_CHANGED);
6235 }
6236
6237 static void
6238 bge_add_sysctls(struct bge_softc *sc)
6239 {
6240         struct sysctl_ctx_list *ctx;
6241         struct sysctl_oid_list *children;
6242         char tn[32];
6243         int unit;
6244
6245         ctx = device_get_sysctl_ctx(sc->bge_dev);
6246         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6247
6248 #ifdef BGE_REGISTER_DEBUG
6249         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6250             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6251             "Debug Information");
6252
6253         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6254             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6255             "MAC Register Read");
6256
6257         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6258             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6259             "APE Register Read");
6260
6261         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6262             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6263             "Memory Read");
6264
6265 #endif
6266
6267         unit = device_get_unit(sc->bge_dev);
6268         /*
6269          * A common design characteristic for many Broadcom client controllers
6270          * is that they only support a single outstanding DMA read operation
6271          * on the PCIe bus. This means that it will take twice as long to fetch
6272          * a TX frame that is split into header and payload buffers as it does
6273          * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6274          * these controllers, coalescing buffers to reduce the number of memory
6275          * reads is effective way to get maximum performance(about 940Mbps).
6276          * Without collapsing TX buffers the maximum TCP bulk transfer
6277          * performance is about 850Mbps. However forcing coalescing mbufs
6278          * consumes a lot of CPU cycles, so leave it off by default.
6279          */
6280         sc->bge_forced_collapse = 0;
6281         snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
6282         TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
6283         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6284             CTLFLAG_RW, &sc->bge_forced_collapse, 0,
6285             "Number of fragmented TX buffers of a frame allowed before "
6286             "forced collapsing");
6287
6288         sc->bge_msi = 1;
6289         snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
6290         TUNABLE_INT_FETCH(tn, &sc->bge_msi);
6291         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6292             CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
6293
6294         /*
6295          * It seems all Broadcom controllers have a bug that can generate UDP
6296          * datagrams with checksum value 0 when TX UDP checksum offloading is
6297          * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6298          * Even though the probability of generating such UDP datagrams is
6299          * low, I don't want to see FreeBSD boxes to inject such datagrams
6300          * into network so disable UDP checksum offloading by default.  Users
6301          * still override this behavior by setting a sysctl variable,
6302          * dev.bge.0.forced_udpcsum.
6303          */
6304         sc->bge_forced_udpcsum = 0;
6305         snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
6306         TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
6307         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6308             CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
6309             "Enable UDP checksum offloading even if controller can "
6310             "generate UDP checksum value 0");
6311
6312         if (BGE_IS_5705_PLUS(sc))
6313                 bge_add_sysctl_stats_regs(sc, ctx, children);
6314         else
6315                 bge_add_sysctl_stats(sc, ctx, children);
6316 }
6317
6318 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6319         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6320             sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6321             desc)
6322
6323 static void
6324 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6325     struct sysctl_oid_list *parent)
6326 {
6327         struct sysctl_oid *tree;
6328         struct sysctl_oid_list *children, *schildren;
6329
6330         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6331             NULL, "BGE Statistics");
6332         schildren = children = SYSCTL_CHILDREN(tree);
6333         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6334             children, COSFramesDroppedDueToFilters,
6335             "FramesDroppedDueToFilters");
6336         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6337             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6338         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6339             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6340         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6341             children, nicNoMoreRxBDs, "NoMoreRxBDs");
6342         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6343             children, ifInDiscards, "InputDiscards");
6344         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6345             children, ifInErrors, "InputErrors");
6346         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6347             children, nicRecvThresholdHit, "RecvThresholdHit");
6348         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6349             children, nicDmaReadQueueFull, "DmaReadQueueFull");
6350         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6351             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6352         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6353             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6354         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6355             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6356         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6357             children, nicRingStatusUpdate, "RingStatusUpdate");
6358         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6359             children, nicInterrupts, "Interrupts");
6360         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6361             children, nicAvoidedInterrupts, "AvoidedInterrupts");
6362         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6363             children, nicSendThresholdHit, "SendThresholdHit");
6364
6365         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6366             NULL, "BGE RX Statistics");
6367         children = SYSCTL_CHILDREN(tree);
6368         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6369             children, rxstats.ifHCInOctets, "ifHCInOctets");
6370         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6371             children, rxstats.etherStatsFragments, "Fragments");
6372         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6373             children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6374         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6375             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6376         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6377             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6378         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6379             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6380         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6381             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6382         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6383             children, rxstats.xoffPauseFramesReceived,
6384             "xoffPauseFramesReceived");
6385         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6386             children, rxstats.macControlFramesReceived,
6387             "ControlFramesReceived");
6388         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6389             children, rxstats.xoffStateEntered, "xoffStateEntered");
6390         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6391             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6392         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6393             children, rxstats.etherStatsJabbers, "Jabbers");
6394         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6395             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6396         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6397             children, rxstats.inRangeLengthError, "inRangeLengthError");
6398         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6399             children, rxstats.outRangeLengthError, "outRangeLengthError");
6400
6401         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6402             NULL, "BGE TX Statistics");
6403         children = SYSCTL_CHILDREN(tree);
6404         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6405             children, txstats.ifHCOutOctets, "ifHCOutOctets");
6406         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6407             children, txstats.etherStatsCollisions, "Collisions");
6408         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6409             children, txstats.outXonSent, "XonSent");
6410         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6411             children, txstats.outXoffSent, "XoffSent");
6412         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6413             children, txstats.flowControlDone, "flowControlDone");
6414         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6415             children, txstats.dot3StatsInternalMacTransmitErrors,
6416             "InternalMacTransmitErrors");
6417         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6418             children, txstats.dot3StatsSingleCollisionFrames,
6419             "SingleCollisionFrames");
6420         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6421             children, txstats.dot3StatsMultipleCollisionFrames,
6422             "MultipleCollisionFrames");
6423         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6424             children, txstats.dot3StatsDeferredTransmissions,
6425             "DeferredTransmissions");
6426         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6427             children, txstats.dot3StatsExcessiveCollisions,
6428             "ExcessiveCollisions");
6429         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6430             children, txstats.dot3StatsLateCollisions,
6431             "LateCollisions");
6432         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6433             children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6434         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6435             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6436         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6437             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6438         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6439             children, txstats.dot3StatsCarrierSenseErrors,
6440             "CarrierSenseErrors");
6441         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6442             children, txstats.ifOutDiscards, "Discards");
6443         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6444             children, txstats.ifOutErrors, "Errors");
6445 }
6446
6447 #undef BGE_SYSCTL_STAT
6448
6449 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
6450             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6451
6452 static void
6453 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6454     struct sysctl_oid_list *parent)
6455 {
6456         struct sysctl_oid *tree;
6457         struct sysctl_oid_list *child, *schild;
6458         struct bge_mac_stats *stats;
6459
6460         stats = &sc->bge_mac_stats;
6461         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6462             NULL, "BGE Statistics");
6463         schild = child = SYSCTL_CHILDREN(tree);
6464         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6465             &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6466         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6467             &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6468         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6469             &stats->DmaWriteHighPriQueueFull,
6470             "NIC DMA Write High Priority Queue Full");
6471         BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6472             &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6473         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6474             &stats->InputDiscards, "Discarded Input Frames");
6475         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6476             &stats->InputErrors, "Input Errors");
6477         BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6478             &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6479
6480         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6481             NULL, "BGE RX Statistics");
6482         child = SYSCTL_CHILDREN(tree);
6483         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6484             &stats->ifHCInOctets, "Inbound Octets");
6485         BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6486             &stats->etherStatsFragments, "Fragments");
6487         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6488             &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6489         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6490             &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6491         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6492             &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6493         BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6494             &stats->dot3StatsFCSErrors, "FCS Errors");
6495         BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6496             &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6497         BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6498             &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6499         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6500             &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6501         BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6502             &stats->macControlFramesReceived, "MAC Control Frames Received");
6503         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6504             &stats->xoffStateEntered, "XOFF State Entered");
6505         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6506             &stats->dot3StatsFramesTooLong, "Frames Too Long");
6507         BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6508             &stats->etherStatsJabbers, "Jabbers");
6509         BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6510             &stats->etherStatsUndersizePkts, "Undersized Packets");
6511
6512         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6513             NULL, "BGE TX Statistics");
6514         child = SYSCTL_CHILDREN(tree);
6515         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6516             &stats->ifHCOutOctets, "Outbound Octets");
6517         BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6518             &stats->etherStatsCollisions, "TX Collisions");
6519         BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6520             &stats->outXonSent, "XON Sent");
6521         BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6522             &stats->outXoffSent, "XOFF Sent");
6523         BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6524             &stats->dot3StatsInternalMacTransmitErrors,
6525             "Internal MAC TX Errors");
6526         BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6527             &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6528         BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6529             &stats->dot3StatsMultipleCollisionFrames,
6530             "Multiple Collision Frames");
6531         BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6532             &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6533         BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6534             &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6535         BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6536             &stats->dot3StatsLateCollisions, "Late Collisions");
6537         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6538             &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6539         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6540             &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6541         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6542             &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6543 }
6544
6545 #undef  BGE_SYSCTL_STAT_ADD64
6546
6547 static int
6548 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6549 {
6550         struct bge_softc *sc;
6551         uint32_t result;
6552         int offset;
6553
6554         sc = (struct bge_softc *)arg1;
6555         offset = arg2;
6556         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6557             offsetof(bge_hostaddr, bge_addr_lo));
6558         return (sysctl_handle_int(oidp, &result, 0, req));
6559 }
6560
6561 #ifdef BGE_REGISTER_DEBUG
6562 static int
6563 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6564 {
6565         struct bge_softc *sc;
6566         uint16_t *sbdata;
6567         int error, result, sbsz;
6568         int i, j;
6569
6570         result = -1;
6571         error = sysctl_handle_int(oidp, &result, 0, req);
6572         if (error || (req->newptr == NULL))
6573                 return (error);
6574
6575         if (result == 1) {
6576                 sc = (struct bge_softc *)arg1;
6577
6578                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6579                     sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6580                         sbsz = BGE_STATUS_BLK_SZ;
6581                 else
6582                         sbsz = 32;
6583                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6584                 printf("Status Block:\n");
6585                 BGE_LOCK(sc);
6586                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6587                     sc->bge_cdata.bge_status_map,
6588                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6589                 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6590                         printf("%06x:", i);
6591                         for (j = 0; j < 8; j++)
6592                                 printf(" %04x", sbdata[i++]);
6593                         printf("\n");
6594                 }
6595
6596                 printf("Registers:\n");
6597                 for (i = 0x800; i < 0xA00; ) {
6598                         printf("%06x:", i);
6599                         for (j = 0; j < 8; j++) {
6600                                 printf(" %08x", CSR_READ_4(sc, i));
6601                                 i += 4;
6602                         }
6603                         printf("\n");
6604                 }
6605                 BGE_UNLOCK(sc);
6606
6607                 printf("Hardware Flags:\n");
6608                 if (BGE_IS_5717_PLUS(sc))
6609                         printf(" - 5717 Plus\n");
6610                 if (BGE_IS_5755_PLUS(sc))
6611                         printf(" - 5755 Plus\n");
6612                 if (BGE_IS_575X_PLUS(sc))
6613                         printf(" - 575X Plus\n");
6614                 if (BGE_IS_5705_PLUS(sc))
6615                         printf(" - 5705 Plus\n");
6616                 if (BGE_IS_5714_FAMILY(sc))
6617                         printf(" - 5714 Family\n");
6618                 if (BGE_IS_5700_FAMILY(sc))
6619                         printf(" - 5700 Family\n");
6620                 if (sc->bge_flags & BGE_FLAG_JUMBO)
6621                         printf(" - Supports Jumbo Frames\n");
6622                 if (sc->bge_flags & BGE_FLAG_PCIX)
6623                         printf(" - PCI-X Bus\n");
6624                 if (sc->bge_flags & BGE_FLAG_PCIE)
6625                         printf(" - PCI Express Bus\n");
6626                 if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6627                         printf(" - No 3 LEDs\n");
6628                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6629                         printf(" - RX Alignment Bug\n");
6630         }
6631
6632         return (error);
6633 }
6634
6635 static int
6636 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6637 {
6638         struct bge_softc *sc;
6639         int error;
6640         uint16_t result;
6641         uint32_t val;
6642
6643         result = -1;
6644         error = sysctl_handle_int(oidp, &result, 0, req);
6645         if (error || (req->newptr == NULL))
6646                 return (error);
6647
6648         if (result < 0x8000) {
6649                 sc = (struct bge_softc *)arg1;
6650                 val = CSR_READ_4(sc, result);
6651                 printf("reg 0x%06X = 0x%08X\n", result, val);
6652         }
6653
6654         return (error);
6655 }
6656
6657 static int
6658 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6659 {
6660         struct bge_softc *sc;
6661         int error;
6662         uint16_t result;
6663         uint32_t val;
6664
6665         result = -1;
6666         error = sysctl_handle_int(oidp, &result, 0, req);
6667         if (error || (req->newptr == NULL))
6668                 return (error);
6669
6670         if (result < 0x8000) {
6671                 sc = (struct bge_softc *)arg1;
6672                 val = APE_READ_4(sc, result);
6673                 printf("reg 0x%06X = 0x%08X\n", result, val);
6674         }
6675
6676         return (error);
6677 }
6678
6679 static int
6680 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6681 {
6682         struct bge_softc *sc;
6683         int error;
6684         uint16_t result;
6685         uint32_t val;
6686
6687         result = -1;
6688         error = sysctl_handle_int(oidp, &result, 0, req);
6689         if (error || (req->newptr == NULL))
6690                 return (error);
6691
6692         if (result < 0x8000) {
6693                 sc = (struct bge_softc *)arg1;
6694                 val = bge_readmem_ind(sc, result);
6695                 printf("mem 0x%06X = 0x%08X\n", result, val);
6696         }
6697
6698         return (error);
6699 }
6700 #endif
6701
6702 static int
6703 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6704 {
6705
6706         if (sc->bge_flags & BGE_FLAG_EADDR)
6707                 return (1);
6708
6709 #ifdef __sparc64__
6710         OF_getetheraddr(sc->bge_dev, ether_addr);
6711         return (0);
6712 #endif
6713         return (1);
6714 }
6715
6716 static int
6717 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6718 {
6719         uint32_t mac_addr;
6720
6721         mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6722         if ((mac_addr >> 16) == 0x484b) {
6723                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6724                 ether_addr[1] = (uint8_t)mac_addr;
6725                 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6726                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6727                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6728                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6729                 ether_addr[5] = (uint8_t)mac_addr;
6730                 return (0);
6731         }
6732         return (1);
6733 }
6734
6735 static int
6736 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6737 {
6738         int mac_offset = BGE_EE_MAC_OFFSET;
6739
6740         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6741                 mac_offset = BGE_EE_MAC_OFFSET_5906;
6742
6743         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6744             ETHER_ADDR_LEN));
6745 }
6746
6747 static int
6748 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6749 {
6750
6751         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6752                 return (1);
6753
6754         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6755            ETHER_ADDR_LEN));
6756 }
6757
6758 static int
6759 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6760 {
6761         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6762                 /* NOTE: Order is critical */
6763                 bge_get_eaddr_fw,
6764                 bge_get_eaddr_mem,
6765                 bge_get_eaddr_nvram,
6766                 bge_get_eaddr_eeprom,
6767                 NULL
6768         };
6769         const bge_eaddr_fcn_t *func;
6770
6771         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6772                 if ((*func)(sc, eaddr) == 0)
6773                         break;
6774         }
6775         return (*func == NULL ? ENXIO : 0);
6776 }