]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/bxe/bxe.c
MFV r309299:
[FreeBSD/FreeBSD.git] / sys / dev / bxe / bxe.c
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #define BXE_DRIVER_VERSION "1.78.89"
31
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40
41 /*
42  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43  * explicitly here for older kernels that don't include this changeset.
44  */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64      CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49
50 /*
51  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52  * here as zero(0) for older kernels that don't include this changeset
53  * thereby masking the functionality.
54  */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59
60 /*
61  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62  * for older kernels that don't include this changeset.
63  */
64 #if __FreeBSD_version < 900035
65 #define pci_find_cap pci_find_extcap
66 #endif
67
68 #define BXE_DEF_SB_ATT_IDX 0x0001
69 #define BXE_DEF_SB_IDX     0x0002
70
71 /*
72  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73  * function HW initialization.
74  */
75 #define FLR_WAIT_USEC     10000 /* 10 msecs */
76 #define FLR_WAIT_INTERVAL 50    /* usecs */
77 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78
79 struct pbf_pN_buf_regs {
80     int pN;
81     uint32_t init_crd;
82     uint32_t crd;
83     uint32_t crd_freed;
84 };
85
86 struct pbf_pN_cmd_regs {
87     int pN;
88     uint32_t lines_occup;
89     uint32_t lines_freed;
90 };
91
92 /*
93  * PCI Device ID Table used by bxe_probe().
94  */
95 #define BXE_DEVDESC_MAX 64
96 static struct bxe_device_type bxe_devs[] = {
97     {
98         BRCM_VENDORID,
99         CHIP_NUM_57710,
100         PCI_ANY_ID, PCI_ANY_ID,
101         "QLogic NetXtreme II BCM57710 10GbE"
102     },
103     {
104         BRCM_VENDORID,
105         CHIP_NUM_57711,
106         PCI_ANY_ID, PCI_ANY_ID,
107         "QLogic NetXtreme II BCM57711 10GbE"
108     },
109     {
110         BRCM_VENDORID,
111         CHIP_NUM_57711E,
112         PCI_ANY_ID, PCI_ANY_ID,
113         "QLogic NetXtreme II BCM57711E 10GbE"
114     },
115     {
116         BRCM_VENDORID,
117         CHIP_NUM_57712,
118         PCI_ANY_ID, PCI_ANY_ID,
119         "QLogic NetXtreme II BCM57712 10GbE"
120     },
121     {
122         BRCM_VENDORID,
123         CHIP_NUM_57712_MF,
124         PCI_ANY_ID, PCI_ANY_ID,
125         "QLogic NetXtreme II BCM57712 MF 10GbE"
126     },
127     {
128         BRCM_VENDORID,
129         CHIP_NUM_57800,
130         PCI_ANY_ID, PCI_ANY_ID,
131         "QLogic NetXtreme II BCM57800 10GbE"
132     },
133     {
134         BRCM_VENDORID,
135         CHIP_NUM_57800_MF,
136         PCI_ANY_ID, PCI_ANY_ID,
137         "QLogic NetXtreme II BCM57800 MF 10GbE"
138     },
139     {
140         BRCM_VENDORID,
141         CHIP_NUM_57810,
142         PCI_ANY_ID, PCI_ANY_ID,
143         "QLogic NetXtreme II BCM57810 10GbE"
144     },
145     {
146         BRCM_VENDORID,
147         CHIP_NUM_57810_MF,
148         PCI_ANY_ID, PCI_ANY_ID,
149         "QLogic NetXtreme II BCM57810 MF 10GbE"
150     },
151     {
152         BRCM_VENDORID,
153         CHIP_NUM_57811,
154         PCI_ANY_ID, PCI_ANY_ID,
155         "QLogic NetXtreme II BCM57811 10GbE"
156     },
157     {
158         BRCM_VENDORID,
159         CHIP_NUM_57811_MF,
160         PCI_ANY_ID, PCI_ANY_ID,
161         "QLogic NetXtreme II BCM57811 MF 10GbE"
162     },
163     {
164         BRCM_VENDORID,
165         CHIP_NUM_57840_4_10,
166         PCI_ANY_ID, PCI_ANY_ID,
167         "QLogic NetXtreme II BCM57840 4x10GbE"
168     },
169     {
170         BRCM_VENDORID,
171         CHIP_NUM_57840_MF,
172         PCI_ANY_ID, PCI_ANY_ID,
173         "QLogic NetXtreme II BCM57840 MF 10GbE"
174     },
175     {
176         0, 0, 0, 0, NULL
177     }
178 };
179
180 MALLOC_DECLARE(M_BXE_ILT);
181 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
182
183 /*
184  * FreeBSD device entry points.
185  */
186 static int bxe_probe(device_t);
187 static int bxe_attach(device_t);
188 static int bxe_detach(device_t);
189 static int bxe_shutdown(device_t);
190
191 /*
192  * FreeBSD KLD module/device interface event handler method.
193  */
194 static device_method_t bxe_methods[] = {
195     /* Device interface (device_if.h) */
196     DEVMETHOD(device_probe,     bxe_probe),
197     DEVMETHOD(device_attach,    bxe_attach),
198     DEVMETHOD(device_detach,    bxe_detach),
199     DEVMETHOD(device_shutdown,  bxe_shutdown),
200     /* Bus interface (bus_if.h) */
201     DEVMETHOD(bus_print_child,  bus_generic_print_child),
202     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
203     KOBJMETHOD_END
204 };
205
206 /*
207  * FreeBSD KLD Module data declaration
208  */
209 static driver_t bxe_driver = {
210     "bxe",                   /* module name */
211     bxe_methods,             /* event handler */
212     sizeof(struct bxe_softc) /* extra data */
213 };
214
215 /*
216  * FreeBSD dev class is needed to manage dev instances and
217  * to associate with a bus type
218  */
219 static devclass_t bxe_devclass;
220
221 MODULE_DEPEND(bxe, pci, 1, 1, 1);
222 MODULE_DEPEND(bxe, ether, 1, 1, 1);
223 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
224
225 /* resources needed for unloading a previously loaded device */
226
227 #define BXE_PREV_WAIT_NEEDED 1
228 struct mtx bxe_prev_mtx;
229 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
230 struct bxe_prev_list_node {
231     LIST_ENTRY(bxe_prev_list_node) node;
232     uint8_t bus;
233     uint8_t slot;
234     uint8_t path;
235     uint8_t aer; /* XXX automatic error recovery */
236     uint8_t undi;
237 };
238 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
239
240 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
241
242 /* Tunable device values... */
243
244 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
245
246 /* Debug */
247 unsigned long bxe_debug = 0;
248 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
249              &bxe_debug, 0, "Debug logging mode");
250
251 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
252 static int bxe_interrupt_mode = INTR_MODE_MSIX;
253 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
254            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
255
256 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
257 static int bxe_queue_count = 4;
258 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
259            &bxe_queue_count, 0, "Multi-Queue queue count");
260
261 /* max number of buffers per queue (default RX_BD_USABLE) */
262 static int bxe_max_rx_bufs = 0;
263 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
264            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
265
266 /* Host interrupt coalescing RX tick timer (usecs) */
267 static int bxe_hc_rx_ticks = 25;
268 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
269            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
270
271 /* Host interrupt coalescing TX tick timer (usecs) */
272 static int bxe_hc_tx_ticks = 50;
273 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
274            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
275
276 /* Maximum number of Rx packets to process at a time */
277 static int bxe_rx_budget = 0xffffffff;
278 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
279            &bxe_rx_budget, 0, "Rx processing budget");
280
281 /* Maximum LRO aggregation size */
282 static int bxe_max_aggregation_size = 0;
283 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
284            &bxe_max_aggregation_size, 0, "max aggregation size");
285
286 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
287 static int bxe_mrrs = -1;
288 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
289            &bxe_mrrs, 0, "PCIe maximum read request size");
290
291 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
292 static int bxe_autogreeen = 0;
293 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
294            &bxe_autogreeen, 0, "AutoGrEEEn support");
295
296 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
297 static int bxe_udp_rss = 0;
298 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
299            &bxe_udp_rss, 0, "UDP RSS support");
300
301
302 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
303
304 #define STATS_OFFSET32(stat_name)                   \
305     (offsetof(struct bxe_eth_stats, stat_name) / 4)
306
307 #define Q_STATS_OFFSET32(stat_name)                   \
308     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
309
310 static const struct {
311     uint32_t offset;
312     uint32_t size;
313     uint32_t flags;
314 #define STATS_FLAGS_PORT  1
315 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
316 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
317     char string[STAT_NAME_LEN];
318 } bxe_eth_stats_arr[] = {
319     { STATS_OFFSET32(total_bytes_received_hi),
320                 8, STATS_FLAGS_BOTH, "rx_bytes" },
321     { STATS_OFFSET32(error_bytes_received_hi),
322                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
323     { STATS_OFFSET32(total_unicast_packets_received_hi),
324                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
325     { STATS_OFFSET32(total_multicast_packets_received_hi),
326                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
327     { STATS_OFFSET32(total_broadcast_packets_received_hi),
328                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
329     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
330                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
331     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
332                 8, STATS_FLAGS_PORT, "rx_align_errors" },
333     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
334                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
335     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
336                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
337     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
338                 8, STATS_FLAGS_PORT, "rx_fragments" },
339     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
340                 8, STATS_FLAGS_PORT, "rx_jabbers" },
341     { STATS_OFFSET32(no_buff_discard_hi),
342                 8, STATS_FLAGS_BOTH, "rx_discards" },
343     { STATS_OFFSET32(mac_filter_discard),
344                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
345     { STATS_OFFSET32(mf_tag_discard),
346                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
347     { STATS_OFFSET32(pfc_frames_received_hi),
348                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
349     { STATS_OFFSET32(pfc_frames_sent_hi),
350                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
351     { STATS_OFFSET32(brb_drop_hi),
352                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
353     { STATS_OFFSET32(brb_truncate_hi),
354                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
355     { STATS_OFFSET32(pause_frames_received_hi),
356                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
357     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
358                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
359     { STATS_OFFSET32(nig_timer_max),
360                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
361     { STATS_OFFSET32(total_bytes_transmitted_hi),
362                 8, STATS_FLAGS_BOTH, "tx_bytes" },
363     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
364                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
365     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
366                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
367     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
368                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
369     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
370                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
371     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
372                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
373     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
374                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
375     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
376                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
377     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
378                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
379     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
380                 8, STATS_FLAGS_PORT, "tx_deferred" },
381     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
382                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
383     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
384                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
385     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
386                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
387     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
388                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
389     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
390                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
391     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
392                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
393     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
394                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
395     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
396                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
397     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
398                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
399     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
400                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
401     { STATS_OFFSET32(pause_frames_sent_hi),
402                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
403     { STATS_OFFSET32(total_tpa_aggregations_hi),
404                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
405     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
406                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
407     { STATS_OFFSET32(total_tpa_bytes_hi),
408                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
409     { STATS_OFFSET32(eee_tx_lpi),
410                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
411     { STATS_OFFSET32(rx_calls),
412                 4, STATS_FLAGS_FUNC, "rx_calls"},
413     { STATS_OFFSET32(rx_pkts),
414                 4, STATS_FLAGS_FUNC, "rx_pkts"},
415     { STATS_OFFSET32(rx_tpa_pkts),
416                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
417     { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
418                 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
419     { STATS_OFFSET32(rx_bxe_service_rxsgl),
420                 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
421     { STATS_OFFSET32(rx_jumbo_sge_pkts),
422                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
423     { STATS_OFFSET32(rx_soft_errors),
424                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
425     { STATS_OFFSET32(rx_hw_csum_errors),
426                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
427     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
428                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
429     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
430                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
431     { STATS_OFFSET32(rx_budget_reached),
432                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
433     { STATS_OFFSET32(tx_pkts),
434                 4, STATS_FLAGS_FUNC, "tx_pkts"},
435     { STATS_OFFSET32(tx_soft_errors),
436                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
437     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
438                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
439     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
440                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
441     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
442                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
443     { STATS_OFFSET32(tx_ofld_frames_lso),
444                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
445     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
446                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
447     { STATS_OFFSET32(tx_encap_failures),
448                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
449     { STATS_OFFSET32(tx_hw_queue_full),
450                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
451     { STATS_OFFSET32(tx_hw_max_queue_depth),
452                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
453     { STATS_OFFSET32(tx_dma_mapping_failure),
454                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
455     { STATS_OFFSET32(tx_max_drbr_queue_depth),
456                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
457     { STATS_OFFSET32(tx_window_violation_std),
458                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
459     { STATS_OFFSET32(tx_window_violation_tso),
460                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
461     { STATS_OFFSET32(tx_chain_lost_mbuf),
462                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
463     { STATS_OFFSET32(tx_frames_deferred),
464                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
465     { STATS_OFFSET32(tx_queue_xoff),
466                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
467     { STATS_OFFSET32(mbuf_defrag_attempts),
468                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
469     { STATS_OFFSET32(mbuf_defrag_failures),
470                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
471     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
472                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
473     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
474                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
475     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
476                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
477     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
478                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
479     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
480                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
481     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
482                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
483     { STATS_OFFSET32(mbuf_alloc_tx),
484                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
485     { STATS_OFFSET32(mbuf_alloc_rx),
486                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
487     { STATS_OFFSET32(mbuf_alloc_sge),
488                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
489     { STATS_OFFSET32(mbuf_alloc_tpa),
490                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
491     { STATS_OFFSET32(tx_queue_full_return),
492                 4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
493     { STATS_OFFSET32(tx_request_link_down_failures),
494                 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
495     { STATS_OFFSET32(bd_avail_too_less_failures),
496                 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
497     { STATS_OFFSET32(tx_mq_not_empty),
498                 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"}
499
500 };
501
502 static const struct {
503     uint32_t offset;
504     uint32_t size;
505     char string[STAT_NAME_LEN];
506 } bxe_eth_q_stats_arr[] = {
507     { Q_STATS_OFFSET32(total_bytes_received_hi),
508                 8, "rx_bytes" },
509     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
510                 8, "rx_ucast_packets" },
511     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
512                 8, "rx_mcast_packets" },
513     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
514                 8, "rx_bcast_packets" },
515     { Q_STATS_OFFSET32(no_buff_discard_hi),
516                 8, "rx_discards" },
517     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
518                 8, "tx_bytes" },
519     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
520                 8, "tx_ucast_packets" },
521     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
522                 8, "tx_mcast_packets" },
523     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
524                 8, "tx_bcast_packets" },
525     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
526                 8, "tpa_aggregations" },
527     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
528                 8, "tpa_aggregated_frames"},
529     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
530                 8, "tpa_bytes"},
531     { Q_STATS_OFFSET32(rx_calls),
532                 4, "rx_calls"},
533     { Q_STATS_OFFSET32(rx_pkts),
534                 4, "rx_pkts"},
535     { Q_STATS_OFFSET32(rx_tpa_pkts),
536                 4, "rx_tpa_pkts"},
537     { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
538                 4, "rx_erroneous_jumbo_sge_pkts"},
539     { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
540                 4, "rx_bxe_service_rxsgl"},
541     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
542                 4, "rx_jumbo_sge_pkts"},
543     { Q_STATS_OFFSET32(rx_soft_errors),
544                 4, "rx_soft_errors"},
545     { Q_STATS_OFFSET32(rx_hw_csum_errors),
546                 4, "rx_hw_csum_errors"},
547     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
548                 4, "rx_ofld_frames_csum_ip"},
549     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
550                 4, "rx_ofld_frames_csum_tcp_udp"},
551     { Q_STATS_OFFSET32(rx_budget_reached),
552                 4, "rx_budget_reached"},
553     { Q_STATS_OFFSET32(tx_pkts),
554                 4, "tx_pkts"},
555     { Q_STATS_OFFSET32(tx_soft_errors),
556                 4, "tx_soft_errors"},
557     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
558                 4, "tx_ofld_frames_csum_ip"},
559     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
560                 4, "tx_ofld_frames_csum_tcp"},
561     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
562                 4, "tx_ofld_frames_csum_udp"},
563     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
564                 4, "tx_ofld_frames_lso"},
565     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
566                 4, "tx_ofld_frames_lso_hdr_splits"},
567     { Q_STATS_OFFSET32(tx_encap_failures),
568                 4, "tx_encap_failures"},
569     { Q_STATS_OFFSET32(tx_hw_queue_full),
570                 4, "tx_hw_queue_full"},
571     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
572                 4, "tx_hw_max_queue_depth"},
573     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
574                 4, "tx_dma_mapping_failure"},
575     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
576                 4, "tx_max_drbr_queue_depth"},
577     { Q_STATS_OFFSET32(tx_window_violation_std),
578                 4, "tx_window_violation_std"},
579     { Q_STATS_OFFSET32(tx_window_violation_tso),
580                 4, "tx_window_violation_tso"},
581     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
582                 4, "tx_chain_lost_mbuf"},
583     { Q_STATS_OFFSET32(tx_frames_deferred),
584                 4, "tx_frames_deferred"},
585     { Q_STATS_OFFSET32(tx_queue_xoff),
586                 4, "tx_queue_xoff"},
587     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
588                 4, "mbuf_defrag_attempts"},
589     { Q_STATS_OFFSET32(mbuf_defrag_failures),
590                 4, "mbuf_defrag_failures"},
591     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
592                 4, "mbuf_rx_bd_alloc_failed"},
593     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
594                 4, "mbuf_rx_bd_mapping_failed"},
595     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
596                 4, "mbuf_rx_tpa_alloc_failed"},
597     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
598                 4, "mbuf_rx_tpa_mapping_failed"},
599     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
600                 4, "mbuf_rx_sge_alloc_failed"},
601     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
602                 4, "mbuf_rx_sge_mapping_failed"},
603     { Q_STATS_OFFSET32(mbuf_alloc_tx),
604                 4, "mbuf_alloc_tx"},
605     { Q_STATS_OFFSET32(mbuf_alloc_rx),
606                 4, "mbuf_alloc_rx"},
607     { Q_STATS_OFFSET32(mbuf_alloc_sge),
608                 4, "mbuf_alloc_sge"},
609     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
610                 4, "mbuf_alloc_tpa"},
611     { Q_STATS_OFFSET32(tx_queue_full_return),
612                 4, "tx_queue_full_return"},
613     { Q_STATS_OFFSET32(tx_request_link_down_failures),
614                 4, "tx_request_link_down_failures"},
615     { Q_STATS_OFFSET32(bd_avail_too_less_failures),
616                 4, "bd_avail_too_less_failures"},
617     { Q_STATS_OFFSET32(tx_mq_not_empty),
618                 4, "tx_mq_not_empty"}
619
620 };
621
622 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
623 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
624
625
626 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
627                                  uint8_t          read_cfg,
628                                  uint8_t          cmng_type);
629 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
630 static void    storm_memset_cmng(struct bxe_softc *sc,
631                                  struct cmng_init *cmng,
632                                  uint8_t          port);
633 static void    bxe_set_reset_global(struct bxe_softc *sc);
634 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
635 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
636                                  int              engine);
637 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
638 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
639                                    uint8_t          *global,
640                                    uint8_t          print);
641 static void    bxe_int_disable(struct bxe_softc *sc);
642 static int     bxe_release_leader_lock(struct bxe_softc *sc);
643 static void    bxe_pf_disable(struct bxe_softc *sc);
644 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
645 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
646                                       struct bxe_fastpath *fp,
647                                       uint16_t            rx_bd_prod,
648                                       uint16_t            rx_cq_prod,
649                                       uint16_t            rx_sge_prod);
650 static void    bxe_link_report_locked(struct bxe_softc *sc);
651 static void    bxe_link_report(struct bxe_softc *sc);
652 static void    bxe_link_status_update(struct bxe_softc *sc);
653 static void    bxe_periodic_callout_func(void *xsc);
654 static void    bxe_periodic_start(struct bxe_softc *sc);
655 static void    bxe_periodic_stop(struct bxe_softc *sc);
656 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
657                                     uint16_t prev_index,
658                                     uint16_t index);
659 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
660                                      int                 queue);
661 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
662                                      uint16_t            index);
663 static uint8_t bxe_txeof(struct bxe_softc *sc,
664                          struct bxe_fastpath *fp);
665 static void    bxe_task_fp(struct bxe_fastpath *fp);
666 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
667                                      struct mbuf      *m,
668                                      uint8_t          contents);
669 static int     bxe_alloc_mem(struct bxe_softc *sc);
670 static void    bxe_free_mem(struct bxe_softc *sc);
671 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
672 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
673 static int     bxe_interrupt_attach(struct bxe_softc *sc);
674 static void    bxe_interrupt_detach(struct bxe_softc *sc);
675 static void    bxe_set_rx_mode(struct bxe_softc *sc);
676 static int     bxe_init_locked(struct bxe_softc *sc);
677 static int     bxe_stop_locked(struct bxe_softc *sc);
678 static __noinline int bxe_nic_load(struct bxe_softc *sc,
679                                    int              load_mode);
680 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
681                                      uint32_t         unload_mode,
682                                      uint8_t          keep_link);
683
684 static void bxe_handle_sp_tq(void *context, int pending);
685 static void bxe_handle_fp_tq(void *context, int pending);
686
687 static int bxe_add_cdev(struct bxe_softc *sc);
688 static void bxe_del_cdev(struct bxe_softc *sc);
689 static int bxe_alloc_buf_rings(struct bxe_softc *sc);
690 static void bxe_free_buf_rings(struct bxe_softc *sc);
691
692 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
693 uint32_t
694 calc_crc32(uint8_t  *crc32_packet,
695            uint32_t crc32_length,
696            uint32_t crc32_seed,
697            uint8_t  complement)
698 {
699    uint32_t byte         = 0;
700    uint32_t bit          = 0;
701    uint8_t  msb          = 0;
702    uint32_t temp         = 0;
703    uint32_t shft         = 0;
704    uint8_t  current_byte = 0;
705    uint32_t crc32_result = crc32_seed;
706    const uint32_t CRC32_POLY = 0x1edc6f41;
707
708    if ((crc32_packet == NULL) ||
709        (crc32_length == 0) ||
710        ((crc32_length % 8) != 0))
711     {
712         return (crc32_result);
713     }
714
715     for (byte = 0; byte < crc32_length; byte = byte + 1)
716     {
717         current_byte = crc32_packet[byte];
718         for (bit = 0; bit < 8; bit = bit + 1)
719         {
720             /* msb = crc32_result[31]; */
721             msb = (uint8_t)(crc32_result >> 31);
722
723             crc32_result = crc32_result << 1;
724
725             /* it (msb != current_byte[bit]) */
726             if (msb != (0x1 & (current_byte >> bit)))
727             {
728                 crc32_result = crc32_result ^ CRC32_POLY;
729                 /* crc32_result[0] = 1 */
730                 crc32_result |= 1;
731             }
732         }
733     }
734
735     /* Last step is to:
736      * 1. "mirror" every bit
737      * 2. swap the 4 bytes
738      * 3. complement each bit
739      */
740
741     /* Mirror */
742     temp = crc32_result;
743     shft = sizeof(crc32_result) * 8 - 1;
744
745     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
746     {
747         temp <<= 1;
748         temp |= crc32_result & 1;
749         shft-- ;
750     }
751
752     /* temp[31-bit] = crc32_result[bit] */
753     temp <<= shft;
754
755     /* Swap */
756     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
757     {
758         uint32_t t0, t1, t2, t3;
759         t0 = (0x000000ff & (temp >> 24));
760         t1 = (0x0000ff00 & (temp >> 8));
761         t2 = (0x00ff0000 & (temp << 8));
762         t3 = (0xff000000 & (temp << 24));
763         crc32_result = t0 | t1 | t2 | t3;
764     }
765
766     /* Complement */
767     if (complement)
768     {
769         crc32_result = ~crc32_result;
770     }
771
772     return (crc32_result);
773 }
774
775 int
776 bxe_test_bit(int                    nr,
777              volatile unsigned long *addr)
778 {
779     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
780 }
781
782 void
783 bxe_set_bit(unsigned int           nr,
784             volatile unsigned long *addr)
785 {
786     atomic_set_acq_long(addr, (1 << nr));
787 }
788
789 void
790 bxe_clear_bit(int                    nr,
791               volatile unsigned long *addr)
792 {
793     atomic_clear_acq_long(addr, (1 << nr));
794 }
795
796 int
797 bxe_test_and_set_bit(int                    nr,
798                        volatile unsigned long *addr)
799 {
800     unsigned long x;
801     nr = (1 << nr);
802     do {
803         x = *addr;
804     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
805     // if (x & nr) bit_was_set; else bit_was_not_set;
806     return (x & nr);
807 }
808
809 int
810 bxe_test_and_clear_bit(int                    nr,
811                        volatile unsigned long *addr)
812 {
813     unsigned long x;
814     nr = (1 << nr);
815     do {
816         x = *addr;
817     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
818     // if (x & nr) bit_was_set; else bit_was_not_set;
819     return (x & nr);
820 }
821
822 int
823 bxe_cmpxchg(volatile int *addr,
824             int          old,
825             int          new)
826 {
827     int x;
828     do {
829         x = *addr;
830     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
831     return (x);
832 }
833
834 /*
835  * Get DMA memory from the OS.
836  *
837  * Validates that the OS has provided DMA buffers in response to a
838  * bus_dmamap_load call and saves the physical address of those buffers.
839  * When the callback is used the OS will return 0 for the mapping function
840  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
841  * failures back to the caller.
842  *
843  * Returns:
844  *   Nothing.
845  */
846 static void
847 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
848 {
849     struct bxe_dma *dma = arg;
850
851     if (error) {
852         dma->paddr = 0;
853         dma->nseg  = 0;
854         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
855     } else {
856         dma->paddr = segs->ds_addr;
857         dma->nseg  = nseg;
858     }
859 }
860
861 /*
862  * Allocate a block of memory and map it for DMA. No partial completions
863  * allowed and release any resources acquired if we can't acquire all
864  * resources.
865  *
866  * Returns:
867  *   0 = Success, !0 = Failure
868  */
869 int
870 bxe_dma_alloc(struct bxe_softc *sc,
871               bus_size_t       size,
872               struct bxe_dma   *dma,
873               const char       *msg)
874 {
875     int rc;
876
877     if (dma->size > 0) {
878         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
879               (unsigned long)dma->size);
880         return (1);
881     }
882
883     memset(dma, 0, sizeof(*dma)); /* sanity */
884     dma->sc   = sc;
885     dma->size = size;
886     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
887
888     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
889                             BCM_PAGE_SIZE,      /* alignment */
890                             0,                  /* boundary limit */
891                             BUS_SPACE_MAXADDR,  /* restricted low */
892                             BUS_SPACE_MAXADDR,  /* restricted hi */
893                             NULL,               /* addr filter() */
894                             NULL,               /* addr filter() arg */
895                             size,               /* max map size */
896                             1,                  /* num discontinuous */
897                             size,               /* max seg size */
898                             BUS_DMA_ALLOCNOW,   /* flags */
899                             NULL,               /* lock() */
900                             NULL,               /* lock() arg */
901                             &dma->tag);         /* returned dma tag */
902     if (rc != 0) {
903         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
904         memset(dma, 0, sizeof(*dma));
905         return (1);
906     }
907
908     rc = bus_dmamem_alloc(dma->tag,
909                           (void **)&dma->vaddr,
910                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
911                           &dma->map);
912     if (rc != 0) {
913         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
914         bus_dma_tag_destroy(dma->tag);
915         memset(dma, 0, sizeof(*dma));
916         return (1);
917     }
918
919     rc = bus_dmamap_load(dma->tag,
920                          dma->map,
921                          dma->vaddr,
922                          size,
923                          bxe_dma_map_addr, /* BLOGD in here */
924                          dma,
925                          BUS_DMA_NOWAIT);
926     if (rc != 0) {
927         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
928         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
929         bus_dma_tag_destroy(dma->tag);
930         memset(dma, 0, sizeof(*dma));
931         return (1);
932     }
933
934     return (0);
935 }
936
937 void
938 bxe_dma_free(struct bxe_softc *sc,
939              struct bxe_dma   *dma)
940 {
941     if (dma->size > 0) {
942         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
943
944         bus_dmamap_sync(dma->tag, dma->map,
945                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
946         bus_dmamap_unload(dma->tag, dma->map);
947         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
948         bus_dma_tag_destroy(dma->tag);
949     }
950
951     memset(dma, 0, sizeof(*dma));
952 }
953
954 /*
955  * These indirect read and write routines are only during init.
956  * The locking is handled by the MCP.
957  */
958
959 void
960 bxe_reg_wr_ind(struct bxe_softc *sc,
961                uint32_t         addr,
962                uint32_t         val)
963 {
964     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
965     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
966     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
967 }
968
969 uint32_t
970 bxe_reg_rd_ind(struct bxe_softc *sc,
971                uint32_t         addr)
972 {
973     uint32_t val;
974
975     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
976     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
977     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
978
979     return (val);
980 }
981
982 static int
983 bxe_acquire_hw_lock(struct bxe_softc *sc,
984                     uint32_t         resource)
985 {
986     uint32_t lock_status;
987     uint32_t resource_bit = (1 << resource);
988     int func = SC_FUNC(sc);
989     uint32_t hw_lock_control_reg;
990     int cnt;
991
992     /* validate the resource is within range */
993     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
994         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
995             " resource_bit 0x%x\n", resource, resource_bit);
996         return (-1);
997     }
998
999     if (func <= 5) {
1000         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1001     } else {
1002         hw_lock_control_reg =
1003                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1004     }
1005
1006     /* validate the resource is not already taken */
1007     lock_status = REG_RD(sc, hw_lock_control_reg);
1008     if (lock_status & resource_bit) {
1009         BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
1010               resource, lock_status, resource_bit);
1011         return (-1);
1012     }
1013
1014     /* try every 5ms for 5 seconds */
1015     for (cnt = 0; cnt < 1000; cnt++) {
1016         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1017         lock_status = REG_RD(sc, hw_lock_control_reg);
1018         if (lock_status & resource_bit) {
1019             return (0);
1020         }
1021         DELAY(5000);
1022     }
1023
1024     BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1025         resource, resource_bit);
1026     return (-1);
1027 }
1028
1029 static int
1030 bxe_release_hw_lock(struct bxe_softc *sc,
1031                     uint32_t         resource)
1032 {
1033     uint32_t lock_status;
1034     uint32_t resource_bit = (1 << resource);
1035     int func = SC_FUNC(sc);
1036     uint32_t hw_lock_control_reg;
1037
1038     /* validate the resource is within range */
1039     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1040         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1041             " resource_bit 0x%x\n", resource, resource_bit);
1042         return (-1);
1043     }
1044
1045     if (func <= 5) {
1046         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1047     } else {
1048         hw_lock_control_reg =
1049                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1050     }
1051
1052     /* validate the resource is currently taken */
1053     lock_status = REG_RD(sc, hw_lock_control_reg);
1054     if (!(lock_status & resource_bit)) {
1055         BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1056               resource, lock_status, resource_bit);
1057         return (-1);
1058     }
1059
1060     REG_WR(sc, hw_lock_control_reg, resource_bit);
1061     return (0);
1062 }
1063 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1064 {
1065         BXE_PHY_LOCK(sc);
1066         bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 
1067 }
1068
1069 static void bxe_release_phy_lock(struct bxe_softc *sc)
1070 {
1071         bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 
1072         BXE_PHY_UNLOCK(sc);
1073 }
1074 /*
1075  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1076  * had we done things the other way around, if two pfs from the same port
1077  * would attempt to access nvram at the same time, we could run into a
1078  * scenario such as:
1079  * pf A takes the port lock.
1080  * pf B succeeds in taking the same lock since they are from the same port.
1081  * pf A takes the per pf misc lock. Performs eeprom access.
1082  * pf A finishes. Unlocks the per pf misc lock.
1083  * Pf B takes the lock and proceeds to perform it's own access.
1084  * pf A unlocks the per port lock, while pf B is still working (!).
1085  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1086  * access corrupted by pf B).*
1087  */
1088 static int
1089 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1090 {
1091     int port = SC_PORT(sc);
1092     int count, i;
1093     uint32_t val = 0;
1094
1095     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1096     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1097
1098     /* adjust timeout for emulation/FPGA */
1099     count = NVRAM_TIMEOUT_COUNT;
1100     if (CHIP_REV_IS_SLOW(sc)) {
1101         count *= 100;
1102     }
1103
1104     /* request access to nvram interface */
1105     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1106            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1107
1108     for (i = 0; i < count*10; i++) {
1109         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1110         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1111             break;
1112         }
1113
1114         DELAY(5);
1115     }
1116
1117     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1118         BLOGE(sc, "Cannot get access to nvram interface "
1119             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1120             port, val);
1121         return (-1);
1122     }
1123
1124     return (0);
1125 }
1126
1127 static int
1128 bxe_release_nvram_lock(struct bxe_softc *sc)
1129 {
1130     int port = SC_PORT(sc);
1131     int count, i;
1132     uint32_t val = 0;
1133
1134     /* adjust timeout for emulation/FPGA */
1135     count = NVRAM_TIMEOUT_COUNT;
1136     if (CHIP_REV_IS_SLOW(sc)) {
1137         count *= 100;
1138     }
1139
1140     /* relinquish nvram interface */
1141     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1142            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1143
1144     for (i = 0; i < count*10; i++) {
1145         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1146         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1147             break;
1148         }
1149
1150         DELAY(5);
1151     }
1152
1153     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1154         BLOGE(sc, "Cannot free access to nvram interface "
1155             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1156             port, val);
1157         return (-1);
1158     }
1159
1160     /* release HW lock: protect against other PFs in PF Direct Assignment */
1161     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1162
1163     return (0);
1164 }
1165
1166 static void
1167 bxe_enable_nvram_access(struct bxe_softc *sc)
1168 {
1169     uint32_t val;
1170
1171     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1172
1173     /* enable both bits, even on read */
1174     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1175            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1176 }
1177
1178 static void
1179 bxe_disable_nvram_access(struct bxe_softc *sc)
1180 {
1181     uint32_t val;
1182
1183     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1184
1185     /* disable both bits, even after read */
1186     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1187            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1188                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1189 }
1190
1191 static int
1192 bxe_nvram_read_dword(struct bxe_softc *sc,
1193                      uint32_t         offset,
1194                      uint32_t         *ret_val,
1195                      uint32_t         cmd_flags)
1196 {
1197     int count, i, rc;
1198     uint32_t val;
1199
1200     /* build the command word */
1201     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1202
1203     /* need to clear DONE bit separately */
1204     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1205
1206     /* address of the NVRAM to read from */
1207     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1208            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1209
1210     /* issue a read command */
1211     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1212
1213     /* adjust timeout for emulation/FPGA */
1214     count = NVRAM_TIMEOUT_COUNT;
1215     if (CHIP_REV_IS_SLOW(sc)) {
1216         count *= 100;
1217     }
1218
1219     /* wait for completion */
1220     *ret_val = 0;
1221     rc = -1;
1222     for (i = 0; i < count; i++) {
1223         DELAY(5);
1224         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1225
1226         if (val & MCPR_NVM_COMMAND_DONE) {
1227             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1228             /* we read nvram data in cpu order
1229              * but ethtool sees it as an array of bytes
1230              * converting to big-endian will do the work
1231              */
1232             *ret_val = htobe32(val);
1233             rc = 0;
1234             break;
1235         }
1236     }
1237
1238     if (rc == -1) {
1239         BLOGE(sc, "nvram read timeout expired "
1240             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1241             offset, cmd_flags, val);
1242     }
1243
1244     return (rc);
1245 }
1246
1247 static int
1248 bxe_nvram_read(struct bxe_softc *sc,
1249                uint32_t         offset,
1250                uint8_t          *ret_buf,
1251                int              buf_size)
1252 {
1253     uint32_t cmd_flags;
1254     uint32_t val;
1255     int rc;
1256
1257     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1258         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1259               offset, buf_size);
1260         return (-1);
1261     }
1262
1263     if ((offset + buf_size) > sc->devinfo.flash_size) {
1264         BLOGE(sc, "Invalid parameter, "
1265                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1266               offset, buf_size, sc->devinfo.flash_size);
1267         return (-1);
1268     }
1269
1270     /* request access to nvram interface */
1271     rc = bxe_acquire_nvram_lock(sc);
1272     if (rc) {
1273         return (rc);
1274     }
1275
1276     /* enable access to nvram interface */
1277     bxe_enable_nvram_access(sc);
1278
1279     /* read the first word(s) */
1280     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1281     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1282         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1283         memcpy(ret_buf, &val, 4);
1284
1285         /* advance to the next dword */
1286         offset += sizeof(uint32_t);
1287         ret_buf += sizeof(uint32_t);
1288         buf_size -= sizeof(uint32_t);
1289         cmd_flags = 0;
1290     }
1291
1292     if (rc == 0) {
1293         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1294         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1295         memcpy(ret_buf, &val, 4);
1296     }
1297
1298     /* disable access to nvram interface */
1299     bxe_disable_nvram_access(sc);
1300     bxe_release_nvram_lock(sc);
1301
1302     return (rc);
1303 }
1304
1305 static int
1306 bxe_nvram_write_dword(struct bxe_softc *sc,
1307                       uint32_t         offset,
1308                       uint32_t         val,
1309                       uint32_t         cmd_flags)
1310 {
1311     int count, i, rc;
1312
1313     /* build the command word */
1314     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1315
1316     /* need to clear DONE bit separately */
1317     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1318
1319     /* write the data */
1320     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1321
1322     /* address of the NVRAM to write to */
1323     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1324            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1325
1326     /* issue the write command */
1327     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1328
1329     /* adjust timeout for emulation/FPGA */
1330     count = NVRAM_TIMEOUT_COUNT;
1331     if (CHIP_REV_IS_SLOW(sc)) {
1332         count *= 100;
1333     }
1334
1335     /* wait for completion */
1336     rc = -1;
1337     for (i = 0; i < count; i++) {
1338         DELAY(5);
1339         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1340         if (val & MCPR_NVM_COMMAND_DONE) {
1341             rc = 0;
1342             break;
1343         }
1344     }
1345
1346     if (rc == -1) {
1347         BLOGE(sc, "nvram write timeout expired "
1348             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1349             offset, cmd_flags, val);
1350     }
1351
1352     return (rc);
1353 }
1354
1355 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1356
1357 static int
1358 bxe_nvram_write1(struct bxe_softc *sc,
1359                  uint32_t         offset,
1360                  uint8_t          *data_buf,
1361                  int              buf_size)
1362 {
1363     uint32_t cmd_flags;
1364     uint32_t align_offset;
1365     uint32_t val;
1366     int rc;
1367
1368     if ((offset + buf_size) > sc->devinfo.flash_size) {
1369         BLOGE(sc, "Invalid parameter, "
1370                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1371               offset, buf_size, sc->devinfo.flash_size);
1372         return (-1);
1373     }
1374
1375     /* request access to nvram interface */
1376     rc = bxe_acquire_nvram_lock(sc);
1377     if (rc) {
1378         return (rc);
1379     }
1380
1381     /* enable access to nvram interface */
1382     bxe_enable_nvram_access(sc);
1383
1384     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1385     align_offset = (offset & ~0x03);
1386     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1387
1388     if (rc == 0) {
1389         val &= ~(0xff << BYTE_OFFSET(offset));
1390         val |= (*data_buf << BYTE_OFFSET(offset));
1391
1392         /* nvram data is returned as an array of bytes
1393          * convert it back to cpu order
1394          */
1395         val = be32toh(val);
1396
1397         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1398     }
1399
1400     /* disable access to nvram interface */
1401     bxe_disable_nvram_access(sc);
1402     bxe_release_nvram_lock(sc);
1403
1404     return (rc);
1405 }
1406
1407 static int
1408 bxe_nvram_write(struct bxe_softc *sc,
1409                 uint32_t         offset,
1410                 uint8_t          *data_buf,
1411                 int              buf_size)
1412 {
1413     uint32_t cmd_flags;
1414     uint32_t val;
1415     uint32_t written_so_far;
1416     int rc;
1417
1418     if (buf_size == 1) {
1419         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1420     }
1421
1422     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1423         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1424               offset, buf_size);
1425         return (-1);
1426     }
1427
1428     if (buf_size == 0) {
1429         return (0); /* nothing to do */
1430     }
1431
1432     if ((offset + buf_size) > sc->devinfo.flash_size) {
1433         BLOGE(sc, "Invalid parameter, "
1434                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1435               offset, buf_size, sc->devinfo.flash_size);
1436         return (-1);
1437     }
1438
1439     /* request access to nvram interface */
1440     rc = bxe_acquire_nvram_lock(sc);
1441     if (rc) {
1442         return (rc);
1443     }
1444
1445     /* enable access to nvram interface */
1446     bxe_enable_nvram_access(sc);
1447
1448     written_so_far = 0;
1449     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1450     while ((written_so_far < buf_size) && (rc == 0)) {
1451         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1452             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1453         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1454             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1455         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1456             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1457         }
1458
1459         memcpy(&val, data_buf, 4);
1460
1461         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1462
1463         /* advance to the next dword */
1464         offset += sizeof(uint32_t);
1465         data_buf += sizeof(uint32_t);
1466         written_so_far += sizeof(uint32_t);
1467         cmd_flags = 0;
1468     }
1469
1470     /* disable access to nvram interface */
1471     bxe_disable_nvram_access(sc);
1472     bxe_release_nvram_lock(sc);
1473
1474     return (rc);
1475 }
1476
1477 /* copy command into DMAE command memory and set DMAE command Go */
1478 void
1479 bxe_post_dmae(struct bxe_softc    *sc,
1480               struct dmae_cmd *dmae,
1481               int                 idx)
1482 {
1483     uint32_t cmd_offset;
1484     int i;
1485
1486     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1487     for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1488         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1489     }
1490
1491     REG_WR(sc, dmae_reg_go_c[idx], 1);
1492 }
1493
1494 uint32_t
1495 bxe_dmae_opcode_add_comp(uint32_t opcode,
1496                          uint8_t  comp_type)
1497 {
1498     return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1499                       DMAE_CMD_C_TYPE_ENABLE));
1500 }
1501
1502 uint32_t
1503 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1504 {
1505     return (opcode & ~DMAE_CMD_SRC_RESET);
1506 }
1507
1508 uint32_t
1509 bxe_dmae_opcode(struct bxe_softc *sc,
1510                 uint8_t          src_type,
1511                 uint8_t          dst_type,
1512                 uint8_t          with_comp,
1513                 uint8_t          comp_type)
1514 {
1515     uint32_t opcode = 0;
1516
1517     opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1518                (dst_type << DMAE_CMD_DST_SHIFT));
1519
1520     opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1521
1522     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1523
1524     opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1525                (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1526
1527     opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1528
1529 #ifdef __BIG_ENDIAN
1530     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1531 #else
1532     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1533 #endif
1534
1535     if (with_comp) {
1536         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1537     }
1538
1539     return (opcode);
1540 }
1541
1542 static void
1543 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1544                         struct dmae_cmd *dmae,
1545                         uint8_t             src_type,
1546                         uint8_t             dst_type)
1547 {
1548     memset(dmae, 0, sizeof(struct dmae_cmd));
1549
1550     /* set the opcode */
1551     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1552                                    TRUE, DMAE_COMP_PCI);
1553
1554     /* fill in the completion parameters */
1555     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1556     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1557     dmae->comp_val     = DMAE_COMP_VAL;
1558 }
1559
1560 /* issue a DMAE command over the init channel and wait for completion */
1561 static int
1562 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1563                          struct dmae_cmd *dmae)
1564 {
1565     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1566     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1567
1568     BXE_DMAE_LOCK(sc);
1569
1570     /* reset completion */
1571     *wb_comp = 0;
1572
1573     /* post the command on the channel used for initializations */
1574     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1575
1576     /* wait for completion */
1577     DELAY(5);
1578
1579     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1580         if (!timeout ||
1581             (sc->recovery_state != BXE_RECOVERY_DONE &&
1582              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1583             BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1584                 *wb_comp, sc->recovery_state);
1585             BXE_DMAE_UNLOCK(sc);
1586             return (DMAE_TIMEOUT);
1587         }
1588
1589         timeout--;
1590         DELAY(50);
1591     }
1592
1593     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1594         BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1595                 *wb_comp, sc->recovery_state);
1596         BXE_DMAE_UNLOCK(sc);
1597         return (DMAE_PCI_ERROR);
1598     }
1599
1600     BXE_DMAE_UNLOCK(sc);
1601     return (0);
1602 }
1603
1604 void
1605 bxe_read_dmae(struct bxe_softc *sc,
1606               uint32_t         src_addr,
1607               uint32_t         len32)
1608 {
1609     struct dmae_cmd dmae;
1610     uint32_t *data;
1611     int i, rc;
1612
1613     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1614
1615     if (!sc->dmae_ready) {
1616         data = BXE_SP(sc, wb_data[0]);
1617
1618         for (i = 0; i < len32; i++) {
1619             data[i] = (CHIP_IS_E1(sc)) ?
1620                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1621                           REG_RD(sc, (src_addr + (i * 4)));
1622         }
1623
1624         return;
1625     }
1626
1627     /* set opcode and fixed command fields */
1628     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1629
1630     /* fill in addresses and len */
1631     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1632     dmae.src_addr_hi = 0;
1633     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1634     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1635     dmae.len         = len32;
1636
1637     /* issue the command and wait for completion */
1638     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1639         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1640     }
1641 }
1642
1643 void
1644 bxe_write_dmae(struct bxe_softc *sc,
1645                bus_addr_t       dma_addr,
1646                uint32_t         dst_addr,
1647                uint32_t         len32)
1648 {
1649     struct dmae_cmd dmae;
1650     int rc;
1651
1652     if (!sc->dmae_ready) {
1653         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1654
1655         if (CHIP_IS_E1(sc)) {
1656             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1657         } else {
1658             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1659         }
1660
1661         return;
1662     }
1663
1664     /* set opcode and fixed command fields */
1665     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1666
1667     /* fill in addresses and len */
1668     dmae.src_addr_lo = U64_LO(dma_addr);
1669     dmae.src_addr_hi = U64_HI(dma_addr);
1670     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1671     dmae.dst_addr_hi = 0;
1672     dmae.len         = len32;
1673
1674     /* issue the command and wait for completion */
1675     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1676         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1677     }
1678 }
1679
1680 void
1681 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1682                         bus_addr_t       phys_addr,
1683                         uint32_t         addr,
1684                         uint32_t         len)
1685 {
1686     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1687     int offset = 0;
1688
1689     while (len > dmae_wr_max) {
1690         bxe_write_dmae(sc,
1691                        (phys_addr + offset), /* src DMA address */
1692                        (addr + offset),      /* dst GRC address */
1693                        dmae_wr_max);
1694         offset += (dmae_wr_max * 4);
1695         len -= dmae_wr_max;
1696     }
1697
1698     bxe_write_dmae(sc,
1699                    (phys_addr + offset), /* src DMA address */
1700                    (addr + offset),      /* dst GRC address */
1701                    len);
1702 }
1703
1704 void
1705 bxe_set_ctx_validation(struct bxe_softc   *sc,
1706                        struct eth_context *cxt,
1707                        uint32_t           cid)
1708 {
1709     /* ustorm cxt validation */
1710     cxt->ustorm_ag_context.cdu_usage =
1711         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1712             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1713     /* xcontext validation */
1714     cxt->xstorm_ag_context.cdu_reserved =
1715         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1716             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1717 }
1718
1719 static void
1720 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1721                             uint8_t          port,
1722                             uint8_t          fw_sb_id,
1723                             uint8_t          sb_index,
1724                             uint8_t          ticks)
1725 {
1726     uint32_t addr =
1727         (BAR_CSTRORM_INTMEM +
1728          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1729
1730     REG_WR8(sc, addr, ticks);
1731
1732     BLOGD(sc, DBG_LOAD,
1733           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1734           port, fw_sb_id, sb_index, ticks);
1735 }
1736
1737 static void
1738 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1739                             uint8_t          port,
1740                             uint16_t         fw_sb_id,
1741                             uint8_t          sb_index,
1742                             uint8_t          disable)
1743 {
1744     uint32_t enable_flag =
1745         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1746     uint32_t addr =
1747         (BAR_CSTRORM_INTMEM +
1748          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1749     uint8_t flags;
1750
1751     /* clear and set */
1752     flags = REG_RD8(sc, addr);
1753     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1754     flags |= enable_flag;
1755     REG_WR8(sc, addr, flags);
1756
1757     BLOGD(sc, DBG_LOAD,
1758           "port %d fw_sb_id %d sb_index %d disable %d\n",
1759           port, fw_sb_id, sb_index, disable);
1760 }
1761
1762 void
1763 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1764                              uint8_t          fw_sb_id,
1765                              uint8_t          sb_index,
1766                              uint8_t          disable,
1767                              uint16_t         usec)
1768 {
1769     int port = SC_PORT(sc);
1770     uint8_t ticks = (usec / 4); /* XXX ??? */
1771
1772     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1773
1774     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1775     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1776 }
1777
1778 void
1779 elink_cb_udelay(struct bxe_softc *sc,
1780                 uint32_t         usecs)
1781 {
1782     DELAY(usecs);
1783 }
1784
1785 uint32_t
1786 elink_cb_reg_read(struct bxe_softc *sc,
1787                   uint32_t         reg_addr)
1788 {
1789     return (REG_RD(sc, reg_addr));
1790 }
1791
1792 void
1793 elink_cb_reg_write(struct bxe_softc *sc,
1794                    uint32_t         reg_addr,
1795                    uint32_t         val)
1796 {
1797     REG_WR(sc, reg_addr, val);
1798 }
1799
1800 void
1801 elink_cb_reg_wb_write(struct bxe_softc *sc,
1802                       uint32_t         offset,
1803                       uint32_t         *wb_write,
1804                       uint16_t         len)
1805 {
1806     REG_WR_DMAE(sc, offset, wb_write, len);
1807 }
1808
1809 void
1810 elink_cb_reg_wb_read(struct bxe_softc *sc,
1811                      uint32_t         offset,
1812                      uint32_t         *wb_write,
1813                      uint16_t         len)
1814 {
1815     REG_RD_DMAE(sc, offset, wb_write, len);
1816 }
1817
1818 uint8_t
1819 elink_cb_path_id(struct bxe_softc *sc)
1820 {
1821     return (SC_PATH(sc));
1822 }
1823
1824 void
1825 elink_cb_event_log(struct bxe_softc     *sc,
1826                    const elink_log_id_t elink_log_id,
1827                    ...)
1828 {
1829     /* XXX */
1830     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1831 }
1832
1833 static int
1834 bxe_set_spio(struct bxe_softc *sc,
1835              int              spio,
1836              uint32_t         mode)
1837 {
1838     uint32_t spio_reg;
1839
1840     /* Only 2 SPIOs are configurable */
1841     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1842         BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1843         return (-1);
1844     }
1845
1846     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1847
1848     /* read SPIO and mask except the float bits */
1849     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1850
1851     switch (mode) {
1852     case MISC_SPIO_OUTPUT_LOW:
1853         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1854         /* clear FLOAT and set CLR */
1855         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1856         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1857         break;
1858
1859     case MISC_SPIO_OUTPUT_HIGH:
1860         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1861         /* clear FLOAT and set SET */
1862         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1863         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1864         break;
1865
1866     case MISC_SPIO_INPUT_HI_Z:
1867         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1868         /* set FLOAT */
1869         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1870         break;
1871
1872     default:
1873         break;
1874     }
1875
1876     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1877     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1878
1879     return (0);
1880 }
1881
1882 static int
1883 bxe_gpio_read(struct bxe_softc *sc,
1884               int              gpio_num,
1885               uint8_t          port)
1886 {
1887     /* The GPIO should be swapped if swap register is set and active */
1888     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1889                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1890     int gpio_shift = (gpio_num +
1891                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1892     uint32_t gpio_mask = (1 << gpio_shift);
1893     uint32_t gpio_reg;
1894
1895     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1896         BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1897             " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1898             gpio_mask);
1899         return (-1);
1900     }
1901
1902     /* read GPIO value */
1903     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1904
1905     /* get the requested pin value */
1906     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1907 }
1908
1909 static int
1910 bxe_gpio_write(struct bxe_softc *sc,
1911                int              gpio_num,
1912                uint32_t         mode,
1913                uint8_t          port)
1914 {
1915     /* The GPIO should be swapped if swap register is set and active */
1916     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1917                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1918     int gpio_shift = (gpio_num +
1919                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1920     uint32_t gpio_mask = (1 << gpio_shift);
1921     uint32_t gpio_reg;
1922
1923     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1924         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1925             " gpio_shift %d gpio_mask 0x%x\n",
1926             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1927         return (-1);
1928     }
1929
1930     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1931
1932     /* read GPIO and mask except the float bits */
1933     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1934
1935     switch (mode) {
1936     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1937         BLOGD(sc, DBG_PHY,
1938               "Set GPIO %d (shift %d) -> output low\n",
1939               gpio_num, gpio_shift);
1940         /* clear FLOAT and set CLR */
1941         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1942         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1943         break;
1944
1945     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1946         BLOGD(sc, DBG_PHY,
1947               "Set GPIO %d (shift %d) -> output high\n",
1948               gpio_num, gpio_shift);
1949         /* clear FLOAT and set SET */
1950         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1951         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1952         break;
1953
1954     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1955         BLOGD(sc, DBG_PHY,
1956               "Set GPIO %d (shift %d) -> input\n",
1957               gpio_num, gpio_shift);
1958         /* set FLOAT */
1959         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1960         break;
1961
1962     default:
1963         break;
1964     }
1965
1966     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1967     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1968
1969     return (0);
1970 }
1971
1972 static int
1973 bxe_gpio_mult_write(struct bxe_softc *sc,
1974                     uint8_t          pins,
1975                     uint32_t         mode)
1976 {
1977     uint32_t gpio_reg;
1978
1979     /* any port swapping should be handled by caller */
1980
1981     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1982
1983     /* read GPIO and mask except the float bits */
1984     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1985     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1986     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1987     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1988
1989     switch (mode) {
1990     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1991         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
1992         /* set CLR */
1993         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1994         break;
1995
1996     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1997         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
1998         /* set SET */
1999         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2000         break;
2001
2002     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2003         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2004         /* set FLOAT */
2005         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2006         break;
2007
2008     default:
2009         BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
2010             " gpio_reg 0x%x\n", pins, mode, gpio_reg);
2011         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2012         return (-1);
2013     }
2014
2015     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2016     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2017
2018     return (0);
2019 }
2020
2021 static int
2022 bxe_gpio_int_write(struct bxe_softc *sc,
2023                    int              gpio_num,
2024                    uint32_t         mode,
2025                    uint8_t          port)
2026 {
2027     /* The GPIO should be swapped if swap register is set and active */
2028     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2029                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2030     int gpio_shift = (gpio_num +
2031                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2032     uint32_t gpio_mask = (1 << gpio_shift);
2033     uint32_t gpio_reg;
2034
2035     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2036         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2037             " gpio_shift %d gpio_mask 0x%x\n",
2038             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2039         return (-1);
2040     }
2041
2042     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2043
2044     /* read GPIO int */
2045     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2046
2047     switch (mode) {
2048     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2049         BLOGD(sc, DBG_PHY,
2050               "Clear GPIO INT %d (shift %d) -> output low\n",
2051               gpio_num, gpio_shift);
2052         /* clear SET and set CLR */
2053         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2054         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2055         break;
2056
2057     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2058         BLOGD(sc, DBG_PHY,
2059               "Set GPIO INT %d (shift %d) -> output high\n",
2060               gpio_num, gpio_shift);
2061         /* clear CLR and set SET */
2062         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2063         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2064         break;
2065
2066     default:
2067         break;
2068     }
2069
2070     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2071     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2072
2073     return (0);
2074 }
2075
2076 uint32_t
2077 elink_cb_gpio_read(struct bxe_softc *sc,
2078                    uint16_t         gpio_num,
2079                    uint8_t          port)
2080 {
2081     return (bxe_gpio_read(sc, gpio_num, port));
2082 }
2083
2084 uint8_t
2085 elink_cb_gpio_write(struct bxe_softc *sc,
2086                     uint16_t         gpio_num,
2087                     uint8_t          mode, /* 0=low 1=high */
2088                     uint8_t          port)
2089 {
2090     return (bxe_gpio_write(sc, gpio_num, mode, port));
2091 }
2092
2093 uint8_t
2094 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2095                          uint8_t          pins,
2096                          uint8_t          mode) /* 0=low 1=high */
2097 {
2098     return (bxe_gpio_mult_write(sc, pins, mode));
2099 }
2100
2101 uint8_t
2102 elink_cb_gpio_int_write(struct bxe_softc *sc,
2103                         uint16_t         gpio_num,
2104                         uint8_t          mode, /* 0=low 1=high */
2105                         uint8_t          port)
2106 {
2107     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2108 }
2109
2110 void
2111 elink_cb_notify_link_changed(struct bxe_softc *sc)
2112 {
2113     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2114                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2115 }
2116
2117 /* send the MCP a request, block until there is a reply */
2118 uint32_t
2119 elink_cb_fw_command(struct bxe_softc *sc,
2120                     uint32_t         command,
2121                     uint32_t         param)
2122 {
2123     int mb_idx = SC_FW_MB_IDX(sc);
2124     uint32_t seq;
2125     uint32_t rc = 0;
2126     uint32_t cnt = 1;
2127     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2128
2129     BXE_FWMB_LOCK(sc);
2130
2131     seq = ++sc->fw_seq;
2132     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2133     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2134
2135     BLOGD(sc, DBG_PHY,
2136           "wrote command 0x%08x to FW MB param 0x%08x\n",
2137           (command | seq), param);
2138
2139     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2140     do {
2141         DELAY(delay * 1000);
2142         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2143     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2144
2145     BLOGD(sc, DBG_PHY,
2146           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2147           cnt*delay, rc, seq);
2148
2149     /* is this a reply to our command? */
2150     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2151         rc &= FW_MSG_CODE_MASK;
2152     } else {
2153         /* Ruh-roh! */
2154         BLOGE(sc, "FW failed to respond!\n");
2155         // XXX bxe_fw_dump(sc);
2156         rc = 0;
2157     }
2158
2159     BXE_FWMB_UNLOCK(sc);
2160     return (rc);
2161 }
2162
2163 static uint32_t
2164 bxe_fw_command(struct bxe_softc *sc,
2165                uint32_t         command,
2166                uint32_t         param)
2167 {
2168     return (elink_cb_fw_command(sc, command, param));
2169 }
2170
2171 static void
2172 __storm_memset_dma_mapping(struct bxe_softc *sc,
2173                            uint32_t         addr,
2174                            bus_addr_t       mapping)
2175 {
2176     REG_WR(sc, addr, U64_LO(mapping));
2177     REG_WR(sc, (addr + 4), U64_HI(mapping));
2178 }
2179
2180 static void
2181 storm_memset_spq_addr(struct bxe_softc *sc,
2182                       bus_addr_t       mapping,
2183                       uint16_t         abs_fid)
2184 {
2185     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2186                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2187     __storm_memset_dma_mapping(sc, addr, mapping);
2188 }
2189
2190 static void
2191 storm_memset_vf_to_pf(struct bxe_softc *sc,
2192                       uint16_t         abs_fid,
2193                       uint16_t         pf_id)
2194 {
2195     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2196     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2197     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2198     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2199 }
2200
2201 static void
2202 storm_memset_func_en(struct bxe_softc *sc,
2203                      uint16_t         abs_fid,
2204                      uint8_t          enable)
2205 {
2206     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2207     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2208     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2209     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2210 }
2211
2212 static void
2213 storm_memset_eq_data(struct bxe_softc       *sc,
2214                      struct event_ring_data *eq_data,
2215                      uint16_t               pfid)
2216 {
2217     uint32_t addr;
2218     size_t size;
2219
2220     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2221     size = sizeof(struct event_ring_data);
2222     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2223 }
2224
2225 static void
2226 storm_memset_eq_prod(struct bxe_softc *sc,
2227                      uint16_t         eq_prod,
2228                      uint16_t         pfid)
2229 {
2230     uint32_t addr = (BAR_CSTRORM_INTMEM +
2231                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2232     REG_WR16(sc, addr, eq_prod);
2233 }
2234
2235 /*
2236  * Post a slowpath command.
2237  *
2238  * A slowpath command is used to propagate a configuration change through
2239  * the controller in a controlled manner, allowing each STORM processor and
2240  * other H/W blocks to phase in the change.  The commands sent on the
2241  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2242  * completion of the ramrod will occur in different ways.  Here's a
2243  * breakdown of ramrods and how they complete:
2244  *
2245  * RAMROD_CMD_ID_ETH_PORT_SETUP
2246  *   Used to setup the leading connection on a port.  Completes on the
2247  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2248  *
2249  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2250  *   Used to setup an additional connection on a port.  Completes on the
2251  *   RCQ of the multi-queue/RSS connection being initialized.
2252  *
2253  * RAMROD_CMD_ID_ETH_STAT_QUERY
2254  *   Used to force the storm processors to update the statistics database
2255  *   in host memory.  This ramrod is send on the leading connection CID and
2256  *   completes as an index increment of the CSTORM on the default status
2257  *   block.
2258  *
2259  * RAMROD_CMD_ID_ETH_UPDATE
2260  *   Used to update the state of the leading connection, usually to udpate
2261  *   the RSS indirection table.  Completes on the RCQ of the leading
2262  *   connection. (Not currently used under FreeBSD until OS support becomes
2263  *   available.)
2264  *
2265  * RAMROD_CMD_ID_ETH_HALT
2266  *   Used when tearing down a connection prior to driver unload.  Completes
2267  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2268  *   use this on the leading connection.
2269  *
2270  * RAMROD_CMD_ID_ETH_SET_MAC
2271  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2272  *   the RCQ of the leading connection.
2273  *
2274  * RAMROD_CMD_ID_ETH_CFC_DEL
2275  *   Used when tearing down a conneciton prior to driver unload.  Completes
2276  *   on the RCQ of the leading connection (since the current connection
2277  *   has been completely removed from controller memory).
2278  *
2279  * RAMROD_CMD_ID_ETH_PORT_DEL
2280  *   Used to tear down the leading connection prior to driver unload,
2281  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2282  *   default status block.
2283  *
2284  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2285  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2286  *   RSS connection that is being offloaded.  (Not currently used under
2287  *   FreeBSD.)
2288  *
2289  * There can only be one command pending per function.
2290  *
2291  * Returns:
2292  *   0 = Success, !0 = Failure.
2293  */
2294
2295 /* must be called under the spq lock */
2296 static inline
2297 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2298 {
2299     struct eth_spe *next_spe = sc->spq_prod_bd;
2300
2301     if (sc->spq_prod_bd == sc->spq_last_bd) {
2302         /* wrap back to the first eth_spq */
2303         sc->spq_prod_bd = sc->spq;
2304         sc->spq_prod_idx = 0;
2305     } else {
2306         sc->spq_prod_bd++;
2307         sc->spq_prod_idx++;
2308     }
2309
2310     return (next_spe);
2311 }
2312
2313 /* must be called under the spq lock */
2314 static inline
2315 void bxe_sp_prod_update(struct bxe_softc *sc)
2316 {
2317     int func = SC_FUNC(sc);
2318
2319     /*
2320      * Make sure that BD data is updated before writing the producer.
2321      * BD data is written to the memory, the producer is read from the
2322      * memory, thus we need a full memory barrier to ensure the ordering.
2323      */
2324     mb();
2325
2326     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2327              sc->spq_prod_idx);
2328
2329     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2330                       BUS_SPACE_BARRIER_WRITE);
2331 }
2332
2333 /**
2334  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2335  *
2336  * @cmd:      command to check
2337  * @cmd_type: command type
2338  */
2339 static inline
2340 int bxe_is_contextless_ramrod(int cmd,
2341                               int cmd_type)
2342 {
2343     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2344         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2345         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2346         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2347         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2348         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2349         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2350         return (TRUE);
2351     } else {
2352         return (FALSE);
2353     }
2354 }
2355
2356 /**
2357  * bxe_sp_post - place a single command on an SP ring
2358  *
2359  * @sc:         driver handle
2360  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2361  * @cid:        SW CID the command is related to
2362  * @data_hi:    command private data address (high 32 bits)
2363  * @data_lo:    command private data address (low 32 bits)
2364  * @cmd_type:   command type (e.g. NONE, ETH)
2365  *
2366  * SP data is handled as if it's always an address pair, thus data fields are
2367  * not swapped to little endian in upper functions. Instead this function swaps
2368  * data as if it's two uint32 fields.
2369  */
2370 int
2371 bxe_sp_post(struct bxe_softc *sc,
2372             int              command,
2373             int              cid,
2374             uint32_t         data_hi,
2375             uint32_t         data_lo,
2376             int              cmd_type)
2377 {
2378     struct eth_spe *spe;
2379     uint16_t type;
2380     int common;
2381
2382     common = bxe_is_contextless_ramrod(command, cmd_type);
2383
2384     BXE_SP_LOCK(sc);
2385
2386     if (common) {
2387         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2388             BLOGE(sc, "EQ ring is full!\n");
2389             BXE_SP_UNLOCK(sc);
2390             return (-1);
2391         }
2392     } else {
2393         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2394             BLOGE(sc, "SPQ ring is full!\n");
2395             BXE_SP_UNLOCK(sc);
2396             return (-1);
2397         }
2398     }
2399
2400     spe = bxe_sp_get_next(sc);
2401
2402     /* CID needs port number to be encoded int it */
2403     spe->hdr.conn_and_cmd_data =
2404         htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2405
2406     type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2407
2408     /* TBD: Check if it works for VFs */
2409     type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2410              SPE_HDR_T_FUNCTION_ID);
2411
2412     spe->hdr.type = htole16(type);
2413
2414     spe->data.update_data_addr.hi = htole32(data_hi);
2415     spe->data.update_data_addr.lo = htole32(data_lo);
2416
2417     /*
2418      * It's ok if the actual decrement is issued towards the memory
2419      * somewhere between the lock and unlock. Thus no more explict
2420      * memory barrier is needed.
2421      */
2422     if (common) {
2423         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2424     } else {
2425         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2426     }
2427
2428     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2429     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2430           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2431     BLOGD(sc, DBG_SP,
2432           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2433           sc->spq_prod_idx,
2434           (uint32_t)U64_HI(sc->spq_dma.paddr),
2435           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2436           command,
2437           common,
2438           HW_CID(sc, cid),
2439           data_hi,
2440           data_lo,
2441           type,
2442           atomic_load_acq_long(&sc->cq_spq_left),
2443           atomic_load_acq_long(&sc->eq_spq_left));
2444
2445     bxe_sp_prod_update(sc);
2446
2447     BXE_SP_UNLOCK(sc);
2448     return (0);
2449 }
2450
2451 /**
2452  * bxe_debug_print_ind_table - prints the indirection table configuration.
2453  *
2454  * @sc: driver hanlde
2455  * @p:  pointer to rss configuration
2456  */
2457
2458 /*
2459  * FreeBSD Device probe function.
2460  *
2461  * Compares the device found to the driver's list of supported devices and
2462  * reports back to the bsd loader whether this is the right driver for the device.
2463  * This is the driver entry function called from the "kldload" command.
2464  *
2465  * Returns:
2466  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2467  */
2468 static int
2469 bxe_probe(device_t dev)
2470 {
2471     struct bxe_device_type *t;
2472     char *descbuf;
2473     uint16_t did, sdid, svid, vid;
2474
2475     /* Find our device structure */
2476     t = bxe_devs;
2477
2478     /* Get the data for the device to be probed. */
2479     vid  = pci_get_vendor(dev);
2480     did  = pci_get_device(dev);
2481     svid = pci_get_subvendor(dev);
2482     sdid = pci_get_subdevice(dev);
2483
2484     /* Look through the list of known devices for a match. */
2485     while (t->bxe_name != NULL) {
2486         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2487             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2488             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2489             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2490             if (descbuf == NULL)
2491                 return (ENOMEM);
2492
2493             /* Print out the device identity. */
2494             snprintf(descbuf, BXE_DEVDESC_MAX,
2495                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2496                      (((pci_read_config(dev, PCIR_REVID, 4) &
2497                         0xf0) >> 4) + 'A'),
2498                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2499                      BXE_DRIVER_VERSION);
2500
2501             device_set_desc_copy(dev, descbuf);
2502             free(descbuf, M_TEMP);
2503             return (BUS_PROBE_DEFAULT);
2504         }
2505         t++;
2506     }
2507
2508     return (ENXIO);
2509 }
2510
2511 static void
2512 bxe_init_mutexes(struct bxe_softc *sc)
2513 {
2514 #ifdef BXE_CORE_LOCK_SX
2515     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2516              "bxe%d_core_lock", sc->unit);
2517     sx_init(&sc->core_sx, sc->core_sx_name);
2518 #else
2519     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2520              "bxe%d_core_lock", sc->unit);
2521     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2522 #endif
2523
2524     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2525              "bxe%d_sp_lock", sc->unit);
2526     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2527
2528     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2529              "bxe%d_dmae_lock", sc->unit);
2530     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2531
2532     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2533              "bxe%d_phy_lock", sc->unit);
2534     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2535
2536     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2537              "bxe%d_fwmb_lock", sc->unit);
2538     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2539
2540     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2541              "bxe%d_print_lock", sc->unit);
2542     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2543
2544     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2545              "bxe%d_stats_lock", sc->unit);
2546     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2547
2548     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2549              "bxe%d_mcast_lock", sc->unit);
2550     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2551 }
2552
2553 static void
2554 bxe_release_mutexes(struct bxe_softc *sc)
2555 {
2556 #ifdef BXE_CORE_LOCK_SX
2557     sx_destroy(&sc->core_sx);
2558 #else
2559     if (mtx_initialized(&sc->core_mtx)) {
2560         mtx_destroy(&sc->core_mtx);
2561     }
2562 #endif
2563
2564     if (mtx_initialized(&sc->sp_mtx)) {
2565         mtx_destroy(&sc->sp_mtx);
2566     }
2567
2568     if (mtx_initialized(&sc->dmae_mtx)) {
2569         mtx_destroy(&sc->dmae_mtx);
2570     }
2571
2572     if (mtx_initialized(&sc->port.phy_mtx)) {
2573         mtx_destroy(&sc->port.phy_mtx);
2574     }
2575
2576     if (mtx_initialized(&sc->fwmb_mtx)) {
2577         mtx_destroy(&sc->fwmb_mtx);
2578     }
2579
2580     if (mtx_initialized(&sc->print_mtx)) {
2581         mtx_destroy(&sc->print_mtx);
2582     }
2583
2584     if (mtx_initialized(&sc->stats_mtx)) {
2585         mtx_destroy(&sc->stats_mtx);
2586     }
2587
2588     if (mtx_initialized(&sc->mcast_mtx)) {
2589         mtx_destroy(&sc->mcast_mtx);
2590     }
2591 }
2592
2593 static void
2594 bxe_tx_disable(struct bxe_softc* sc)
2595 {
2596     if_t ifp = sc->ifp;
2597
2598     /* tell the stack the driver is stopped and TX queue is full */
2599     if (ifp !=  NULL) {
2600         if_setdrvflags(ifp, 0);
2601     }
2602 }
2603
2604 static void
2605 bxe_drv_pulse(struct bxe_softc *sc)
2606 {
2607     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2608              sc->fw_drv_pulse_wr_seq);
2609 }
2610
2611 static inline uint16_t
2612 bxe_tx_avail(struct bxe_softc *sc,
2613              struct bxe_fastpath *fp)
2614 {
2615     int16_t  used;
2616     uint16_t prod;
2617     uint16_t cons;
2618
2619     prod = fp->tx_bd_prod;
2620     cons = fp->tx_bd_cons;
2621
2622     used = SUB_S16(prod, cons);
2623
2624     return (int16_t)(sc->tx_ring_size) - used;
2625 }
2626
2627 static inline int
2628 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2629 {
2630     uint16_t hw_cons;
2631
2632     mb(); /* status block fields can change */
2633     hw_cons = le16toh(*fp->tx_cons_sb);
2634     return (hw_cons != fp->tx_pkt_cons);
2635 }
2636
2637 static inline uint8_t
2638 bxe_has_tx_work(struct bxe_fastpath *fp)
2639 {
2640     /* expand this for multi-cos if ever supported */
2641     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2642 }
2643
2644 static inline int
2645 bxe_has_rx_work(struct bxe_fastpath *fp)
2646 {
2647     uint16_t rx_cq_cons_sb;
2648
2649     mb(); /* status block fields can change */
2650     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2651     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2652         rx_cq_cons_sb++;
2653     return (fp->rx_cq_cons != rx_cq_cons_sb);
2654 }
2655
2656 static void
2657 bxe_sp_event(struct bxe_softc    *sc,
2658              struct bxe_fastpath *fp,
2659              union eth_rx_cqe    *rr_cqe)
2660 {
2661     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2662     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2663     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2664     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2665
2666     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2667           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2668
2669     switch (command) {
2670     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2671         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2672         drv_cmd = ECORE_Q_CMD_UPDATE;
2673         break;
2674
2675     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2676         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2677         drv_cmd = ECORE_Q_CMD_SETUP;
2678         break;
2679
2680     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2681         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2682         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2683         break;
2684
2685     case (RAMROD_CMD_ID_ETH_HALT):
2686         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2687         drv_cmd = ECORE_Q_CMD_HALT;
2688         break;
2689
2690     case (RAMROD_CMD_ID_ETH_TERMINATE):
2691         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2692         drv_cmd = ECORE_Q_CMD_TERMINATE;
2693         break;
2694
2695     case (RAMROD_CMD_ID_ETH_EMPTY):
2696         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2697         drv_cmd = ECORE_Q_CMD_EMPTY;
2698         break;
2699
2700     default:
2701         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2702               command, fp->index);
2703         return;
2704     }
2705
2706     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2707         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2708         /*
2709          * q_obj->complete_cmd() failure means that this was
2710          * an unexpected completion.
2711          *
2712          * In this case we don't want to increase the sc->spq_left
2713          * because apparently we haven't sent this command the first
2714          * place.
2715          */
2716         // bxe_panic(sc, ("Unexpected SP completion\n"));
2717         return;
2718     }
2719
2720     atomic_add_acq_long(&sc->cq_spq_left, 1);
2721
2722     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2723           atomic_load_acq_long(&sc->cq_spq_left));
2724 }
2725
2726 /*
2727  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2728  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2729  * the current aggregation queue as in-progress.
2730  */
2731 static void
2732 bxe_tpa_start(struct bxe_softc            *sc,
2733               struct bxe_fastpath         *fp,
2734               uint16_t                    queue,
2735               uint16_t                    cons,
2736               uint16_t                    prod,
2737               struct eth_fast_path_rx_cqe *cqe)
2738 {
2739     struct bxe_sw_rx_bd tmp_bd;
2740     struct bxe_sw_rx_bd *rx_buf;
2741     struct eth_rx_bd *rx_bd;
2742     int max_agg_queues;
2743     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2744     uint16_t index;
2745
2746     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2747                        "cons=%d prod=%d\n",
2748           fp->index, queue, cons, prod);
2749
2750     max_agg_queues = MAX_AGG_QS(sc);
2751
2752     KASSERT((queue < max_agg_queues),
2753             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2754              fp->index, queue, max_agg_queues));
2755
2756     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2757             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2758              fp->index, queue));
2759
2760     /* copy the existing mbuf and mapping from the TPA pool */
2761     tmp_bd = tpa_info->bd;
2762
2763     if (tmp_bd.m == NULL) {
2764         uint32_t *tmp;
2765
2766         tmp = (uint32_t *)cqe;
2767
2768         BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2769               fp->index, queue, cons, prod);
2770         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2771             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 
2772             
2773         /* XXX Error handling? */
2774         return;
2775     }
2776
2777     /* change the TPA queue to the start state */
2778     tpa_info->state            = BXE_TPA_STATE_START;
2779     tpa_info->placement_offset = cqe->placement_offset;
2780     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2781     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2782     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2783
2784     fp->rx_tpa_queue_used |= (1 << queue);
2785
2786     /*
2787      * If all the buffer descriptors are filled with mbufs then fill in
2788      * the current consumer index with a new BD. Else if a maximum Rx
2789      * buffer limit is imposed then fill in the next producer index.
2790      */
2791     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2792                 prod : cons;
2793
2794     /* move the received mbuf and mapping to TPA pool */
2795     tpa_info->bd = fp->rx_mbuf_chain[cons];
2796
2797     /* release any existing RX BD mbuf mappings */
2798     if (cons != index) {
2799         rx_buf = &fp->rx_mbuf_chain[cons];
2800
2801         if (rx_buf->m_map != NULL) {
2802             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2803                             BUS_DMASYNC_POSTREAD);
2804             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2805         }
2806
2807         /*
2808          * We get here when the maximum number of rx buffers is less than
2809          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2810          * it out here without concern of a memory leak.
2811          */
2812         fp->rx_mbuf_chain[cons].m = NULL;
2813     }
2814
2815     /* update the Rx SW BD with the mbuf info from the TPA pool */
2816     fp->rx_mbuf_chain[index] = tmp_bd;
2817
2818     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2819     rx_bd = &fp->rx_chain[index];
2820     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2821     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2822 }
2823
2824 /*
2825  * When a TPA aggregation is completed, loop through the individual mbufs
2826  * of the aggregation, combining them into a single mbuf which will be sent
2827  * up the stack. Refill all freed SGEs with mbufs as we go along.
2828  */
2829 static int
2830 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2831                    struct bxe_fastpath       *fp,
2832                    struct bxe_sw_tpa_info    *tpa_info,
2833                    uint16_t                  queue,
2834                    uint16_t                  pages,
2835                    struct mbuf               *m,
2836                                struct eth_end_agg_rx_cqe *cqe,
2837                    uint16_t                  cqe_idx)
2838 {
2839     struct mbuf *m_frag;
2840     uint32_t frag_len, frag_size, i;
2841     uint16_t sge_idx;
2842     int rc = 0;
2843     int j;
2844
2845     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2846
2847     BLOGD(sc, DBG_LRO,
2848           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2849           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2850
2851     /* make sure the aggregated frame is not too big to handle */
2852     if (pages > 8 * PAGES_PER_SGE) {
2853
2854         uint32_t *tmp = (uint32_t *)cqe;
2855
2856         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2857                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2858               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2859               tpa_info->len_on_bd, frag_size);
2860
2861         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2862             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 
2863
2864         bxe_panic(sc, ("sge page count error\n"));
2865         return (EINVAL);
2866     }
2867
2868     /*
2869      * Scan through the scatter gather list pulling individual mbufs into a
2870      * single mbuf for the host stack.
2871      */
2872     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2873         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2874
2875         /*
2876          * Firmware gives the indices of the SGE as if the ring is an array
2877          * (meaning that the "next" element will consume 2 indices).
2878          */
2879         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2880
2881         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2882                            "sge_idx=%d frag_size=%d frag_len=%d\n",
2883               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2884
2885         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2886
2887         /* allocate a new mbuf for the SGE */
2888         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2889         if (rc) {
2890             /* Leave all remaining SGEs in the ring! */
2891             return (rc);
2892         }
2893
2894         /* update the fragment length */
2895         m_frag->m_len = frag_len;
2896
2897         /* concatenate the fragment to the head mbuf */
2898         m_cat(m, m_frag);
2899         fp->eth_q_stats.mbuf_alloc_sge--;
2900
2901         /* update the TPA mbuf size and remaining fragment size */
2902         m->m_pkthdr.len += frag_len;
2903         frag_size -= frag_len;
2904     }
2905
2906     BLOGD(sc, DBG_LRO,
2907           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2908           fp->index, queue, frag_size);
2909
2910     return (rc);
2911 }
2912
2913 static inline void
2914 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2915 {
2916     int i, j;
2917
2918     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2919         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2920
2921         for (j = 0; j < 2; j++) {
2922             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2923             idx--;
2924         }
2925     }
2926 }
2927
2928 static inline void
2929 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2930 {
2931     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2932     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2933
2934     /*
2935      * Clear the two last indices in the page to 1. These are the indices that
2936      * correspond to the "next" element, hence will never be indicated and
2937      * should be removed from the calculations.
2938      */
2939     bxe_clear_sge_mask_next_elems(fp);
2940 }
2941
2942 static inline void
2943 bxe_update_last_max_sge(struct bxe_fastpath *fp,
2944                         uint16_t            idx)
2945 {
2946     uint16_t last_max = fp->last_max_sge;
2947
2948     if (SUB_S16(idx, last_max) > 0) {
2949         fp->last_max_sge = idx;
2950     }
2951 }
2952
2953 static inline void
2954 bxe_update_sge_prod(struct bxe_softc          *sc,
2955                     struct bxe_fastpath       *fp,
2956                     uint16_t                  sge_len,
2957                     union eth_sgl_or_raw_data *cqe)
2958 {
2959     uint16_t last_max, last_elem, first_elem;
2960     uint16_t delta = 0;
2961     uint16_t i;
2962
2963     if (!sge_len) {
2964         return;
2965     }
2966
2967     /* first mark all used pages */
2968     for (i = 0; i < sge_len; i++) {
2969         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2970                             RX_SGE(le16toh(cqe->sgl[i])));
2971     }
2972
2973     BLOGD(sc, DBG_LRO,
2974           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
2975           fp->index, sge_len - 1,
2976           le16toh(cqe->sgl[sge_len - 1]));
2977
2978     /* assume that the last SGE index is the biggest */
2979     bxe_update_last_max_sge(fp,
2980                             le16toh(cqe->sgl[sge_len - 1]));
2981
2982     last_max = RX_SGE(fp->last_max_sge);
2983     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
2984     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
2985
2986     /* if ring is not full */
2987     if (last_elem + 1 != first_elem) {
2988         last_elem++;
2989     }
2990
2991     /* now update the prod */
2992     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
2993         if (__predict_true(fp->sge_mask[i])) {
2994             break;
2995         }
2996
2997         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
2998         delta += BIT_VEC64_ELEM_SZ;
2999     }
3000
3001     if (delta > 0) {
3002         fp->rx_sge_prod += delta;
3003         /* clear page-end entries */
3004         bxe_clear_sge_mask_next_elems(fp);
3005     }
3006
3007     BLOGD(sc, DBG_LRO,
3008           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3009           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3010 }
3011
3012 /*
3013  * The aggregation on the current TPA queue has completed. Pull the individual
3014  * mbuf fragments together into a single mbuf, perform all necessary checksum
3015  * calculations, and send the resuting mbuf to the stack.
3016  */
3017 static void
3018 bxe_tpa_stop(struct bxe_softc          *sc,
3019              struct bxe_fastpath       *fp,
3020              struct bxe_sw_tpa_info    *tpa_info,
3021              uint16_t                  queue,
3022              uint16_t                  pages,
3023                          struct eth_end_agg_rx_cqe *cqe,
3024              uint16_t                  cqe_idx)
3025 {
3026     if_t ifp = sc->ifp;
3027     struct mbuf *m;
3028     int rc = 0;
3029
3030     BLOGD(sc, DBG_LRO,
3031           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3032           fp->index, queue, tpa_info->placement_offset,
3033           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3034
3035     m = tpa_info->bd.m;
3036
3037     /* allocate a replacement before modifying existing mbuf */
3038     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3039     if (rc) {
3040         /* drop the frame and log an error */
3041         fp->eth_q_stats.rx_soft_errors++;
3042         goto bxe_tpa_stop_exit;
3043     }
3044
3045     /* we have a replacement, fixup the current mbuf */
3046     m_adj(m, tpa_info->placement_offset);
3047     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3048
3049     /* mark the checksums valid (taken care of by the firmware) */
3050     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3051     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3052     m->m_pkthdr.csum_data = 0xffff;
3053     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3054                                CSUM_IP_VALID   |
3055                                CSUM_DATA_VALID |
3056                                CSUM_PSEUDO_HDR);
3057
3058     /* aggregate all of the SGEs into a single mbuf */
3059     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3060     if (rc) {
3061         /* drop the packet and log an error */
3062         fp->eth_q_stats.rx_soft_errors++;
3063         m_freem(m);
3064     } else {
3065         if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3066             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3067             m->m_flags |= M_VLANTAG;
3068         }
3069
3070         /* assign packet to this interface interface */
3071         if_setrcvif(m, ifp);
3072
3073 #if __FreeBSD_version >= 800000
3074         /* specify what RSS queue was used for this flow */
3075         m->m_pkthdr.flowid = fp->index;
3076         BXE_SET_FLOWID(m);
3077 #endif
3078
3079         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3080         fp->eth_q_stats.rx_tpa_pkts++;
3081
3082         /* pass the frame to the stack */
3083         if_input(ifp, m);
3084     }
3085
3086     /* we passed an mbuf up the stack or dropped the frame */
3087     fp->eth_q_stats.mbuf_alloc_tpa--;
3088
3089 bxe_tpa_stop_exit:
3090
3091     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3092     fp->rx_tpa_queue_used &= ~(1 << queue);
3093 }
3094
3095 static uint8_t
3096 bxe_service_rxsgl(
3097                  struct bxe_fastpath *fp,
3098                  uint16_t len,
3099                  uint16_t lenonbd,
3100                  struct mbuf *m,
3101                  struct eth_fast_path_rx_cqe *cqe_fp)
3102 {
3103     struct mbuf *m_frag;
3104     uint16_t frags, frag_len;
3105     uint16_t sge_idx = 0;
3106     uint16_t j;
3107     uint8_t i, rc = 0;
3108     uint32_t frag_size;
3109
3110     /* adjust the mbuf */
3111     m->m_len = lenonbd;
3112
3113     frag_size =  len - lenonbd;
3114     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3115
3116     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3117         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3118
3119         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3120         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3121         m_frag->m_len = frag_len;
3122
3123        /* allocate a new mbuf for the SGE */
3124         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3125         if (rc) {
3126             /* Leave all remaining SGEs in the ring! */
3127             return (rc);
3128         }
3129         fp->eth_q_stats.mbuf_alloc_sge--;
3130
3131         /* concatenate the fragment to the head mbuf */
3132         m_cat(m, m_frag);
3133
3134         frag_size -= frag_len;
3135     }
3136
3137     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3138
3139     return rc;
3140 }
3141
3142 static uint8_t
3143 bxe_rxeof(struct bxe_softc    *sc,
3144           struct bxe_fastpath *fp)
3145 {
3146     if_t ifp = sc->ifp;
3147     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3148     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3149     int rx_pkts = 0;
3150     int rc = 0;
3151
3152     BXE_FP_RX_LOCK(fp);
3153
3154     /* CQ "next element" is of the size of the regular element */
3155     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3156     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3157         hw_cq_cons++;
3158     }
3159
3160     bd_cons = fp->rx_bd_cons;
3161     bd_prod = fp->rx_bd_prod;
3162     bd_prod_fw = bd_prod;
3163     sw_cq_cons = fp->rx_cq_cons;
3164     sw_cq_prod = fp->rx_cq_prod;
3165
3166     /*
3167      * Memory barrier necessary as speculative reads of the rx
3168      * buffer can be ahead of the index in the status block
3169      */
3170     rmb();
3171
3172     BLOGD(sc, DBG_RX,
3173           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3174           fp->index, hw_cq_cons, sw_cq_cons);
3175
3176     while (sw_cq_cons != hw_cq_cons) {
3177         struct bxe_sw_rx_bd *rx_buf = NULL;
3178         union eth_rx_cqe *cqe;
3179         struct eth_fast_path_rx_cqe *cqe_fp;
3180         uint8_t cqe_fp_flags;
3181         enum eth_rx_cqe_type cqe_fp_type;
3182         uint16_t len, lenonbd,  pad;
3183         struct mbuf *m = NULL;
3184
3185         comp_ring_cons = RCQ(sw_cq_cons);
3186         bd_prod = RX_BD(bd_prod);
3187         bd_cons = RX_BD(bd_cons);
3188
3189         cqe          = &fp->rcq_chain[comp_ring_cons];
3190         cqe_fp       = &cqe->fast_path_cqe;
3191         cqe_fp_flags = cqe_fp->type_error_flags;
3192         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3193
3194         BLOGD(sc, DBG_RX,
3195               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3196               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3197               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3198               fp->index,
3199               hw_cq_cons,
3200               sw_cq_cons,
3201               bd_prod,
3202               bd_cons,
3203               CQE_TYPE(cqe_fp_flags),
3204               cqe_fp_flags,
3205               cqe_fp->status_flags,
3206               le32toh(cqe_fp->rss_hash_result),
3207               le16toh(cqe_fp->vlan_tag),
3208               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3209               le16toh(cqe_fp->len_on_bd));
3210
3211         /* is this a slowpath msg? */
3212         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3213             bxe_sp_event(sc, fp, cqe);
3214             goto next_cqe;
3215         }
3216
3217         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3218
3219         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3220             struct bxe_sw_tpa_info *tpa_info;
3221             uint16_t frag_size, pages;
3222             uint8_t queue;
3223
3224             if (CQE_TYPE_START(cqe_fp_type)) {
3225                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3226                               bd_cons, bd_prod, cqe_fp);
3227                 m = NULL; /* packet not ready yet */
3228                 goto next_rx;
3229             }
3230
3231             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3232                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3233
3234             queue = cqe->end_agg_cqe.queue_index;
3235             tpa_info = &fp->rx_tpa_info[queue];
3236
3237             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3238                   fp->index, queue);
3239
3240             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3241                          tpa_info->len_on_bd);
3242             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3243
3244             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3245                          &cqe->end_agg_cqe, comp_ring_cons);
3246
3247             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3248
3249             goto next_cqe;
3250         }
3251
3252         /* non TPA */
3253
3254         /* is this an error packet? */
3255         if (__predict_false(cqe_fp_flags &
3256                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3257             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3258             fp->eth_q_stats.rx_soft_errors++;
3259             goto next_rx;
3260         }
3261
3262         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3263         lenonbd = le16toh(cqe_fp->len_on_bd);
3264         pad = cqe_fp->placement_offset;
3265
3266         m = rx_buf->m;
3267
3268         if (__predict_false(m == NULL)) {
3269             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3270                   bd_cons, fp->index);
3271             goto next_rx;
3272         }
3273
3274         /* XXX double copy if packet length under a threshold */
3275
3276         /*
3277          * If all the buffer descriptors are filled with mbufs then fill in
3278          * the current consumer index with a new BD. Else if a maximum Rx
3279          * buffer limit is imposed then fill in the next producer index.
3280          */
3281         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3282                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3283                                       bd_prod : bd_cons);
3284         if (rc != 0) {
3285
3286             /* we simply reuse the received mbuf and don't post it to the stack */
3287             m = NULL;
3288
3289             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3290                   fp->index, rc);
3291             fp->eth_q_stats.rx_soft_errors++;
3292
3293             if (sc->max_rx_bufs != RX_BD_USABLE) {
3294                 /* copy this consumer index to the producer index */
3295                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3296                        sizeof(struct bxe_sw_rx_bd));
3297                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3298             }
3299
3300             goto next_rx;
3301         }
3302
3303         /* current mbuf was detached from the bd */
3304         fp->eth_q_stats.mbuf_alloc_rx--;
3305
3306         /* we allocated a replacement mbuf, fixup the current one */
3307         m_adj(m, pad);
3308         m->m_pkthdr.len = m->m_len = len;
3309
3310         if ((len > 60) && (len > lenonbd)) {
3311             fp->eth_q_stats.rx_bxe_service_rxsgl++;
3312             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3313             if (rc)
3314                 break;
3315             fp->eth_q_stats.rx_jumbo_sge_pkts++;
3316         } else if (lenonbd < len) {
3317             fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3318         }
3319
3320         /* assign packet to this interface interface */
3321         if_setrcvif(m, ifp);
3322
3323         /* assume no hardware checksum has complated */
3324         m->m_pkthdr.csum_flags = 0;
3325
3326         /* validate checksum if offload enabled */
3327         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3328             /* check for a valid IP frame */
3329             if (!(cqe->fast_path_cqe.status_flags &
3330                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3331                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3332                 if (__predict_false(cqe_fp_flags &
3333                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3334                     fp->eth_q_stats.rx_hw_csum_errors++;
3335                 } else {
3336                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3337                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3338                 }
3339             }
3340
3341             /* check for a valid TCP/UDP frame */
3342             if (!(cqe->fast_path_cqe.status_flags &
3343                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3344                 if (__predict_false(cqe_fp_flags &
3345                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3346                     fp->eth_q_stats.rx_hw_csum_errors++;
3347                 } else {
3348                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3349                     m->m_pkthdr.csum_data = 0xFFFF;
3350                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3351                                                CSUM_PSEUDO_HDR);
3352                 }
3353             }
3354         }
3355
3356         /* if there is a VLAN tag then flag that info */
3357         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3358             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3359             m->m_flags |= M_VLANTAG;
3360         }
3361
3362 #if __FreeBSD_version >= 800000
3363         /* specify what RSS queue was used for this flow */
3364         m->m_pkthdr.flowid = fp->index;
3365         BXE_SET_FLOWID(m);
3366 #endif
3367
3368 next_rx:
3369
3370         bd_cons    = RX_BD_NEXT(bd_cons);
3371         bd_prod    = RX_BD_NEXT(bd_prod);
3372         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3373
3374         /* pass the frame to the stack */
3375         if (__predict_true(m != NULL)) {
3376             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3377             rx_pkts++;
3378             if_input(ifp, m);
3379         }
3380
3381 next_cqe:
3382
3383         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3384         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3385
3386         /* limit spinning on the queue */
3387         if (rc != 0)
3388             break;
3389
3390         if (rx_pkts == sc->rx_budget) {
3391             fp->eth_q_stats.rx_budget_reached++;
3392             break;
3393         }
3394     } /* while work to do */
3395
3396     fp->rx_bd_cons = bd_cons;
3397     fp->rx_bd_prod = bd_prod_fw;
3398     fp->rx_cq_cons = sw_cq_cons;
3399     fp->rx_cq_prod = sw_cq_prod;
3400
3401     /* Update producers */
3402     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3403
3404     fp->eth_q_stats.rx_pkts += rx_pkts;
3405     fp->eth_q_stats.rx_calls++;
3406
3407     BXE_FP_RX_UNLOCK(fp);
3408
3409     return (sw_cq_cons != hw_cq_cons);
3410 }
3411
3412 static uint16_t
3413 bxe_free_tx_pkt(struct bxe_softc    *sc,
3414                 struct bxe_fastpath *fp,
3415                 uint16_t            idx)
3416 {
3417     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3418     struct eth_tx_start_bd *tx_start_bd;
3419     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3420     uint16_t new_cons;
3421     int nbd;
3422
3423     /* unmap the mbuf from non-paged memory */
3424     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3425
3426     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3427     nbd = le16toh(tx_start_bd->nbd) - 1;
3428
3429     new_cons = (tx_buf->first_bd + nbd);
3430
3431     /* free the mbuf */
3432     if (__predict_true(tx_buf->m != NULL)) {
3433         m_freem(tx_buf->m);
3434         fp->eth_q_stats.mbuf_alloc_tx--;
3435     } else {
3436         fp->eth_q_stats.tx_chain_lost_mbuf++;
3437     }
3438
3439     tx_buf->m = NULL;
3440     tx_buf->first_bd = 0;
3441
3442     return (new_cons);
3443 }
3444
3445 /* transmit timeout watchdog */
3446 static int
3447 bxe_watchdog(struct bxe_softc    *sc,
3448              struct bxe_fastpath *fp)
3449 {
3450     BXE_FP_TX_LOCK(fp);
3451
3452     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3453         BXE_FP_TX_UNLOCK(fp);
3454         return (0);
3455     }
3456
3457     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3458     if(sc->trigger_grcdump) {
3459          /* taking grcdump */
3460          bxe_grc_dump(sc);
3461     }
3462
3463     BXE_FP_TX_UNLOCK(fp);
3464
3465     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3466     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3467
3468     return (-1);
3469 }
3470
3471 /* processes transmit completions */
3472 static uint8_t
3473 bxe_txeof(struct bxe_softc    *sc,
3474           struct bxe_fastpath *fp)
3475 {
3476     if_t ifp = sc->ifp;
3477     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3478     uint16_t tx_bd_avail;
3479
3480     BXE_FP_TX_LOCK_ASSERT(fp);
3481
3482     bd_cons = fp->tx_bd_cons;
3483     hw_cons = le16toh(*fp->tx_cons_sb);
3484     sw_cons = fp->tx_pkt_cons;
3485
3486     while (sw_cons != hw_cons) {
3487         pkt_cons = TX_BD(sw_cons);
3488
3489         BLOGD(sc, DBG_TX,
3490               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3491               fp->index, hw_cons, sw_cons, pkt_cons);
3492
3493         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3494
3495         sw_cons++;
3496     }
3497
3498     fp->tx_pkt_cons = sw_cons;
3499     fp->tx_bd_cons  = bd_cons;
3500
3501     BLOGD(sc, DBG_TX,
3502           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3503           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3504
3505     mb();
3506
3507     tx_bd_avail = bxe_tx_avail(sc, fp);
3508
3509     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3510         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3511     } else {
3512         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3513     }
3514
3515     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3516         /* reset the watchdog timer if there are pending transmits */
3517         fp->watchdog_timer = BXE_TX_TIMEOUT;
3518         return (TRUE);
3519     } else {
3520         /* clear watchdog when there are no pending transmits */
3521         fp->watchdog_timer = 0;
3522         return (FALSE);
3523     }
3524 }
3525
3526 static void
3527 bxe_drain_tx_queues(struct bxe_softc *sc)
3528 {
3529     struct bxe_fastpath *fp;
3530     int i, count;
3531
3532     /* wait until all TX fastpath tasks have completed */
3533     for (i = 0; i < sc->num_queues; i++) {
3534         fp = &sc->fp[i];
3535
3536         count = 1000;
3537
3538         while (bxe_has_tx_work(fp)) {
3539
3540             BXE_FP_TX_LOCK(fp);
3541             bxe_txeof(sc, fp);
3542             BXE_FP_TX_UNLOCK(fp);
3543
3544             if (count == 0) {
3545                 BLOGE(sc, "Timeout waiting for fp[%d] "
3546                           "transmits to complete!\n", i);
3547                 bxe_panic(sc, ("tx drain failure\n"));
3548                 return;
3549             }
3550
3551             count--;
3552             DELAY(1000);
3553             rmb();
3554         }
3555     }
3556
3557     return;
3558 }
3559
3560 static int
3561 bxe_del_all_macs(struct bxe_softc          *sc,
3562                  struct ecore_vlan_mac_obj *mac_obj,
3563                  int                       mac_type,
3564                  uint8_t                   wait_for_comp)
3565 {
3566     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3567     int rc;
3568
3569     /* wait for completion of requested */
3570     if (wait_for_comp) {
3571         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3572     }
3573
3574     /* Set the mac type of addresses we want to clear */
3575     bxe_set_bit(mac_type, &vlan_mac_flags);
3576
3577     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3578     if (rc < 0) {
3579         BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3580             rc, mac_type, wait_for_comp);
3581     }
3582
3583     return (rc);
3584 }
3585
3586 static int
3587 bxe_fill_accept_flags(struct bxe_softc *sc,
3588                       uint32_t         rx_mode,
3589                       unsigned long    *rx_accept_flags,
3590                       unsigned long    *tx_accept_flags)
3591 {
3592     /* Clear the flags first */
3593     *rx_accept_flags = 0;
3594     *tx_accept_flags = 0;
3595
3596     switch (rx_mode) {
3597     case BXE_RX_MODE_NONE:
3598         /*
3599          * 'drop all' supersedes any accept flags that may have been
3600          * passed to the function.
3601          */
3602         break;
3603
3604     case BXE_RX_MODE_NORMAL:
3605         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3606         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3607         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3608
3609         /* internal switching mode */
3610         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3611         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3612         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3613
3614         break;
3615
3616     case BXE_RX_MODE_ALLMULTI:
3617         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3618         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3619         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3620
3621         /* internal switching mode */
3622         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3623         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3624         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3625
3626         break;
3627
3628     case BXE_RX_MODE_PROMISC:
3629         /*
3630          * According to deffinition of SI mode, iface in promisc mode
3631          * should receive matched and unmatched (in resolution of port)
3632          * unicast packets.
3633          */
3634         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3635         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3636         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3637         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3638
3639         /* internal switching mode */
3640         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3641         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3642
3643         if (IS_MF_SI(sc)) {
3644             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3645         } else {
3646             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3647         }
3648
3649         break;
3650
3651     default:
3652         BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3653         return (-1);
3654     }
3655
3656     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3657     if (rx_mode != BXE_RX_MODE_NONE) {
3658         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3659         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3660     }
3661
3662     return (0);
3663 }
3664
3665 static int
3666 bxe_set_q_rx_mode(struct bxe_softc *sc,
3667                   uint8_t          cl_id,
3668                   unsigned long    rx_mode_flags,
3669                   unsigned long    rx_accept_flags,
3670                   unsigned long    tx_accept_flags,
3671                   unsigned long    ramrod_flags)
3672 {
3673     struct ecore_rx_mode_ramrod_params ramrod_param;
3674     int rc;
3675
3676     memset(&ramrod_param, 0, sizeof(ramrod_param));
3677
3678     /* Prepare ramrod parameters */
3679     ramrod_param.cid = 0;
3680     ramrod_param.cl_id = cl_id;
3681     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3682     ramrod_param.func_id = SC_FUNC(sc);
3683
3684     ramrod_param.pstate = &sc->sp_state;
3685     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3686
3687     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3688     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3689
3690     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3691
3692     ramrod_param.ramrod_flags = ramrod_flags;
3693     ramrod_param.rx_mode_flags = rx_mode_flags;
3694
3695     ramrod_param.rx_accept_flags = rx_accept_flags;
3696     ramrod_param.tx_accept_flags = tx_accept_flags;
3697
3698     rc = ecore_config_rx_mode(sc, &ramrod_param);
3699     if (rc < 0) {
3700         BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3701             "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3702             "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3703             (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3704             (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3705         return (rc);
3706     }
3707
3708     return (0);
3709 }
3710
3711 static int
3712 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3713 {
3714     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3715     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3716     int rc;
3717
3718     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3719                                &tx_accept_flags);
3720     if (rc) {
3721         return (rc);
3722     }
3723
3724     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3725     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3726
3727     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3728     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3729                               rx_accept_flags, tx_accept_flags,
3730                               ramrod_flags));
3731 }
3732
3733 /* returns the "mcp load_code" according to global load_count array */
3734 static int
3735 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3736 {
3737     int path = SC_PATH(sc);
3738     int port = SC_PORT(sc);
3739
3740     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3741           path, load_count[path][0], load_count[path][1],
3742           load_count[path][2]);
3743     load_count[path][0]++;
3744     load_count[path][1 + port]++;
3745     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3746           path, load_count[path][0], load_count[path][1],
3747           load_count[path][2]);
3748     if (load_count[path][0] == 1) {
3749         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3750     } else if (load_count[path][1 + port] == 1) {
3751         return (FW_MSG_CODE_DRV_LOAD_PORT);
3752     } else {
3753         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3754     }
3755 }
3756
3757 /* returns the "mcp load_code" according to global load_count array */
3758 static int
3759 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3760 {
3761     int port = SC_PORT(sc);
3762     int path = SC_PATH(sc);
3763
3764     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3765           path, load_count[path][0], load_count[path][1],
3766           load_count[path][2]);
3767     load_count[path][0]--;
3768     load_count[path][1 + port]--;
3769     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3770           path, load_count[path][0], load_count[path][1],
3771           load_count[path][2]);
3772     if (load_count[path][0] == 0) {
3773         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3774     } else if (load_count[path][1 + port] == 0) {
3775         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3776     } else {
3777         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3778     }
3779 }
3780
3781 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3782 static uint32_t
3783 bxe_send_unload_req(struct bxe_softc *sc,
3784                     int              unload_mode)
3785 {
3786     uint32_t reset_code = 0;
3787
3788     /* Select the UNLOAD request mode */
3789     if (unload_mode == UNLOAD_NORMAL) {
3790         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3791     } else {
3792         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3793     }
3794
3795     /* Send the request to the MCP */
3796     if (!BXE_NOMCP(sc)) {
3797         reset_code = bxe_fw_command(sc, reset_code, 0);
3798     } else {
3799         reset_code = bxe_nic_unload_no_mcp(sc);
3800     }
3801
3802     return (reset_code);
3803 }
3804
3805 /* send UNLOAD_DONE command to the MCP */
3806 static void
3807 bxe_send_unload_done(struct bxe_softc *sc,
3808                      uint8_t          keep_link)
3809 {
3810     uint32_t reset_param =
3811         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3812
3813     /* Report UNLOAD_DONE to MCP */
3814     if (!BXE_NOMCP(sc)) {
3815         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3816     }
3817 }
3818
3819 static int
3820 bxe_func_wait_started(struct bxe_softc *sc)
3821 {
3822     int tout = 50;
3823
3824     if (!sc->port.pmf) {
3825         return (0);
3826     }
3827
3828     /*
3829      * (assumption: No Attention from MCP at this stage)
3830      * PMF probably in the middle of TX disable/enable transaction
3831      * 1. Sync IRS for default SB
3832      * 2. Sync SP queue - this guarantees us that attention handling started
3833      * 3. Wait, that TX disable/enable transaction completes
3834      *
3835      * 1+2 guarantee that if DCBX attention was scheduled it already changed
3836      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3837      * received completion for the transaction the state is TX_STOPPED.
3838      * State will return to STARTED after completion of TX_STOPPED-->STARTED
3839      * transaction.
3840      */
3841
3842     /* XXX make sure default SB ISR is done */
3843     /* need a way to synchronize an irq (intr_mtx?) */
3844
3845     /* XXX flush any work queues */
3846
3847     while (ecore_func_get_state(sc, &sc->func_obj) !=
3848            ECORE_F_STATE_STARTED && tout--) {
3849         DELAY(20000);
3850     }
3851
3852     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3853         /*
3854          * Failed to complete the transaction in a "good way"
3855          * Force both transactions with CLR bit.
3856          */
3857         struct ecore_func_state_params func_params = { NULL };
3858
3859         BLOGE(sc, "Unexpected function state! "
3860                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3861
3862         func_params.f_obj = &sc->func_obj;
3863         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3864
3865         /* STARTED-->TX_STOPPED */
3866         func_params.cmd = ECORE_F_CMD_TX_STOP;
3867         ecore_func_state_change(sc, &func_params);
3868
3869         /* TX_STOPPED-->STARTED */
3870         func_params.cmd = ECORE_F_CMD_TX_START;
3871         return (ecore_func_state_change(sc, &func_params));
3872     }
3873
3874     return (0);
3875 }
3876
3877 static int
3878 bxe_stop_queue(struct bxe_softc *sc,
3879                int              index)
3880 {
3881     struct bxe_fastpath *fp = &sc->fp[index];
3882     struct ecore_queue_state_params q_params = { NULL };
3883     int rc;
3884
3885     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3886
3887     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3888     /* We want to wait for completion in this context */
3889     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3890
3891     /* Stop the primary connection: */
3892
3893     /* ...halt the connection */
3894     q_params.cmd = ECORE_Q_CMD_HALT;
3895     rc = ecore_queue_state_change(sc, &q_params);
3896     if (rc) {
3897         return (rc);
3898     }
3899
3900     /* ...terminate the connection */
3901     q_params.cmd = ECORE_Q_CMD_TERMINATE;
3902     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3903     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3904     rc = ecore_queue_state_change(sc, &q_params);
3905     if (rc) {
3906         return (rc);
3907     }
3908
3909     /* ...delete cfc entry */
3910     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3911     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3912     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3913     return (ecore_queue_state_change(sc, &q_params));
3914 }
3915
3916 /* wait for the outstanding SP commands */
3917 static inline uint8_t
3918 bxe_wait_sp_comp(struct bxe_softc *sc,
3919                  unsigned long    mask)
3920 {
3921     unsigned long tmp;
3922     int tout = 5000; /* wait for 5 secs tops */
3923
3924     while (tout--) {
3925         mb();
3926         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3927             return (TRUE);
3928         }
3929
3930         DELAY(1000);
3931     }
3932
3933     mb();
3934
3935     tmp = atomic_load_acq_long(&sc->sp_state);
3936     if (tmp & mask) {
3937         BLOGE(sc, "Filtering completion timed out: "
3938                   "sp_state 0x%lx, mask 0x%lx\n",
3939               tmp, mask);
3940         return (FALSE);
3941     }
3942
3943     return (FALSE);
3944 }
3945
3946 static int
3947 bxe_func_stop(struct bxe_softc *sc)
3948 {
3949     struct ecore_func_state_params func_params = { NULL };
3950     int rc;
3951
3952     /* prepare parameters for function state transitions */
3953     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3954     func_params.f_obj = &sc->func_obj;
3955     func_params.cmd = ECORE_F_CMD_STOP;
3956
3957     /*
3958      * Try to stop the function the 'good way'. If it fails (in case
3959      * of a parity error during bxe_chip_cleanup()) and we are
3960      * not in a debug mode, perform a state transaction in order to
3961      * enable further HW_RESET transaction.
3962      */
3963     rc = ecore_func_state_change(sc, &func_params);
3964     if (rc) {
3965         BLOGE(sc, "FUNC_STOP ramrod failed. "
3966                   "Running a dry transaction (%d)\n", rc);
3967         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3968         return (ecore_func_state_change(sc, &func_params));
3969     }
3970
3971     return (0);
3972 }
3973
3974 static int
3975 bxe_reset_hw(struct bxe_softc *sc,
3976              uint32_t         load_code)
3977 {
3978     struct ecore_func_state_params func_params = { NULL };
3979
3980     /* Prepare parameters for function state transitions */
3981     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3982
3983     func_params.f_obj = &sc->func_obj;
3984     func_params.cmd = ECORE_F_CMD_HW_RESET;
3985
3986     func_params.params.hw_init.load_phase = load_code;
3987
3988     return (ecore_func_state_change(sc, &func_params));
3989 }
3990
3991 static void
3992 bxe_int_disable_sync(struct bxe_softc *sc,
3993                      int              disable_hw)
3994 {
3995     if (disable_hw) {
3996         /* prevent the HW from sending interrupts */
3997         bxe_int_disable(sc);
3998     }
3999
4000     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4001     /* make sure all ISRs are done */
4002
4003     /* XXX make sure sp_task is not running */
4004     /* cancel and flush work queues */
4005 }
4006
4007 static void
4008 bxe_chip_cleanup(struct bxe_softc *sc,
4009                  uint32_t         unload_mode,
4010                  uint8_t          keep_link)
4011 {
4012     int port = SC_PORT(sc);
4013     struct ecore_mcast_ramrod_params rparam = { NULL };
4014     uint32_t reset_code;
4015     int i, rc = 0;
4016
4017     bxe_drain_tx_queues(sc);
4018
4019     /* give HW time to discard old tx messages */
4020     DELAY(1000);
4021
4022     /* Clean all ETH MACs */
4023     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4024     if (rc < 0) {
4025         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4026     }
4027
4028     /* Clean up UC list  */
4029     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4030     if (rc < 0) {
4031         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4032     }
4033
4034     /* Disable LLH */
4035     if (!CHIP_IS_E1(sc)) {
4036         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4037     }
4038
4039     /* Set "drop all" to stop Rx */
4040
4041     /*
4042      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4043      * a race between the completion code and this code.
4044      */
4045     BXE_MCAST_LOCK(sc);
4046
4047     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4048         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4049     } else {
4050         bxe_set_storm_rx_mode(sc);
4051     }
4052
4053     /* Clean up multicast configuration */
4054     rparam.mcast_obj = &sc->mcast_obj;
4055     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4056     if (rc < 0) {
4057         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4058     }
4059
4060     BXE_MCAST_UNLOCK(sc);
4061
4062     // XXX bxe_iov_chip_cleanup(sc);
4063
4064     /*
4065      * Send the UNLOAD_REQUEST to the MCP. This will return if
4066      * this function should perform FUNCTION, PORT, or COMMON HW
4067      * reset.
4068      */
4069     reset_code = bxe_send_unload_req(sc, unload_mode);
4070
4071     /*
4072      * (assumption: No Attention from MCP at this stage)
4073      * PMF probably in the middle of TX disable/enable transaction
4074      */
4075     rc = bxe_func_wait_started(sc);
4076     if (rc) {
4077         BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4078     }
4079
4080     /*
4081      * Close multi and leading connections
4082      * Completions for ramrods are collected in a synchronous way
4083      */
4084     for (i = 0; i < sc->num_queues; i++) {
4085         if (bxe_stop_queue(sc, i)) {
4086             goto unload_error;
4087         }
4088     }
4089
4090     /*
4091      * If SP settings didn't get completed so far - something
4092      * very wrong has happen.
4093      */
4094     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4095         BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4096     }
4097
4098 unload_error:
4099
4100     rc = bxe_func_stop(sc);
4101     if (rc) {
4102         BLOGE(sc, "Function stop failed!(%d)\n", rc);
4103     }
4104
4105     /* disable HW interrupts */
4106     bxe_int_disable_sync(sc, TRUE);
4107
4108     /* detach interrupts */
4109     bxe_interrupt_detach(sc);
4110
4111     /* Reset the chip */
4112     rc = bxe_reset_hw(sc, reset_code);
4113     if (rc) {
4114         BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4115     }
4116
4117     /* Report UNLOAD_DONE to MCP */
4118     bxe_send_unload_done(sc, keep_link);
4119 }
4120
4121 static void
4122 bxe_disable_close_the_gate(struct bxe_softc *sc)
4123 {
4124     uint32_t val;
4125     int port = SC_PORT(sc);
4126
4127     BLOGD(sc, DBG_LOAD,
4128           "Disabling 'close the gates'\n");
4129
4130     if (CHIP_IS_E1(sc)) {
4131         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4132                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4133         val = REG_RD(sc, addr);
4134         val &= ~(0x300);
4135         REG_WR(sc, addr, val);
4136     } else {
4137         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4138         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4139                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4140         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4141     }
4142 }
4143
4144 /*
4145  * Cleans the object that have internal lists without sending
4146  * ramrods. Should be run when interrutps are disabled.
4147  */
4148 static void
4149 bxe_squeeze_objects(struct bxe_softc *sc)
4150 {
4151     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4152     struct ecore_mcast_ramrod_params rparam = { NULL };
4153     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4154     int rc;
4155
4156     /* Cleanup MACs' object first... */
4157
4158     /* Wait for completion of requested */
4159     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4160     /* Perform a dry cleanup */
4161     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4162
4163     /* Clean ETH primary MAC */
4164     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4165     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4166                              &ramrod_flags);
4167     if (rc != 0) {
4168         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4169     }
4170
4171     /* Cleanup UC list */
4172     vlan_mac_flags = 0;
4173     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4174     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4175                              &ramrod_flags);
4176     if (rc != 0) {
4177         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4178     }
4179
4180     /* Now clean mcast object... */
4181
4182     rparam.mcast_obj = &sc->mcast_obj;
4183     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4184
4185     /* Add a DEL command... */
4186     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4187     if (rc < 0) {
4188         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4189     }
4190
4191     /* now wait until all pending commands are cleared */
4192
4193     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4194     while (rc != 0) {
4195         if (rc < 0) {
4196             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4197             return;
4198         }
4199
4200         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4201     }
4202 }
4203
4204 /* stop the controller */
4205 static __noinline int
4206 bxe_nic_unload(struct bxe_softc *sc,
4207                uint32_t         unload_mode,
4208                uint8_t          keep_link)
4209 {
4210     uint8_t global = FALSE;
4211     uint32_t val;
4212     int i;
4213
4214     BXE_CORE_LOCK_ASSERT(sc);
4215
4216     if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4217
4218     for (i = 0; i < sc->num_queues; i++) {
4219         struct bxe_fastpath *fp;
4220
4221         fp = &sc->fp[i];
4222         BXE_FP_TX_LOCK(fp);
4223         BXE_FP_TX_UNLOCK(fp);
4224     }
4225
4226     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4227
4228     /* mark driver as unloaded in shmem2 */
4229     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4230         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4231         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4232                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4233     }
4234
4235     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4236         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4237         /*
4238          * We can get here if the driver has been unloaded
4239          * during parity error recovery and is either waiting for a
4240          * leader to complete or for other functions to unload and
4241          * then ifconfig down has been issued. In this case we want to
4242          * unload and let other functions to complete a recovery
4243          * process.
4244          */
4245         sc->recovery_state = BXE_RECOVERY_DONE;
4246         sc->is_leader = 0;
4247         bxe_release_leader_lock(sc);
4248         mb();
4249
4250         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4251         BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4252             " state = 0x%x\n", sc->recovery_state, sc->state);
4253         return (-1);
4254     }
4255
4256     /*
4257      * Nothing to do during unload if previous bxe_nic_load()
4258      * did not completed successfully - all resourses are released.
4259      */
4260     if ((sc->state == BXE_STATE_CLOSED) ||
4261         (sc->state == BXE_STATE_ERROR)) {
4262         return (0);
4263     }
4264
4265     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4266     mb();
4267
4268     /* stop tx */
4269     bxe_tx_disable(sc);
4270
4271     sc->rx_mode = BXE_RX_MODE_NONE;
4272     /* XXX set rx mode ??? */
4273
4274     if (IS_PF(sc) && !sc->grcdump_done) {
4275         /* set ALWAYS_ALIVE bit in shmem */
4276         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4277
4278         bxe_drv_pulse(sc);
4279
4280         bxe_stats_handle(sc, STATS_EVENT_STOP);
4281         bxe_save_statistics(sc);
4282     }
4283
4284     /* wait till consumers catch up with producers in all queues */
4285     bxe_drain_tx_queues(sc);
4286
4287     /* if VF indicate to PF this function is going down (PF will delete sp
4288      * elements and clear initializations
4289      */
4290     if (IS_VF(sc)) {
4291         ; /* bxe_vfpf_close_vf(sc); */
4292     } else if (unload_mode != UNLOAD_RECOVERY) {
4293         /* if this is a normal/close unload need to clean up chip */
4294         if (!sc->grcdump_done)
4295             bxe_chip_cleanup(sc, unload_mode, keep_link);
4296     } else {
4297         /* Send the UNLOAD_REQUEST to the MCP */
4298         bxe_send_unload_req(sc, unload_mode);
4299
4300         /*
4301          * Prevent transactions to host from the functions on the
4302          * engine that doesn't reset global blocks in case of global
4303          * attention once gloabl blocks are reset and gates are opened
4304          * (the engine which leader will perform the recovery
4305          * last).
4306          */
4307         if (!CHIP_IS_E1x(sc)) {
4308             bxe_pf_disable(sc);
4309         }
4310
4311         /* disable HW interrupts */
4312         bxe_int_disable_sync(sc, TRUE);
4313
4314         /* detach interrupts */
4315         bxe_interrupt_detach(sc);
4316
4317         /* Report UNLOAD_DONE to MCP */
4318         bxe_send_unload_done(sc, FALSE);
4319     }
4320
4321     /*
4322      * At this stage no more interrupts will arrive so we may safely clean
4323      * the queue'able objects here in case they failed to get cleaned so far.
4324      */
4325     if (IS_PF(sc)) {
4326         bxe_squeeze_objects(sc);
4327     }
4328
4329     /* There should be no more pending SP commands at this stage */
4330     sc->sp_state = 0;
4331
4332     sc->port.pmf = 0;
4333
4334     bxe_free_fp_buffers(sc);
4335
4336     if (IS_PF(sc)) {
4337         bxe_free_mem(sc);
4338     }
4339
4340     bxe_free_fw_stats_mem(sc);
4341
4342     sc->state = BXE_STATE_CLOSED;
4343
4344     /*
4345      * Check if there are pending parity attentions. If there are - set
4346      * RECOVERY_IN_PROGRESS.
4347      */
4348     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4349         bxe_set_reset_in_progress(sc);
4350
4351         /* Set RESET_IS_GLOBAL if needed */
4352         if (global) {
4353             bxe_set_reset_global(sc);
4354         }
4355     }
4356
4357     /*
4358      * The last driver must disable a "close the gate" if there is no
4359      * parity attention or "process kill" pending.
4360      */
4361     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4362         bxe_reset_is_done(sc, SC_PATH(sc))) {
4363         bxe_disable_close_the_gate(sc);
4364     }
4365
4366     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4367
4368     return (0);
4369 }
4370
4371 /*
4372  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4373  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4374  */
4375 static int
4376 bxe_ifmedia_update(struct ifnet  *ifp)
4377 {
4378     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4379     struct ifmedia *ifm;
4380
4381     ifm = &sc->ifmedia;
4382
4383     /* We only support Ethernet media type. */
4384     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4385         return (EINVAL);
4386     }
4387
4388     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4389     case IFM_AUTO:
4390          break;
4391     case IFM_10G_CX4:
4392     case IFM_10G_SR:
4393     case IFM_10G_T:
4394     case IFM_10G_TWINAX:
4395     default:
4396         /* We don't support changing the media type. */
4397         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4398               IFM_SUBTYPE(ifm->ifm_media));
4399         return (EINVAL);
4400     }
4401
4402     return (0);
4403 }
4404
4405 /*
4406  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4407  */
4408 static void
4409 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4410 {
4411     struct bxe_softc *sc = if_getsoftc(ifp);
4412
4413     /* Report link down if the driver isn't running. */
4414     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4415         ifmr->ifm_active |= IFM_NONE;
4416         return;
4417     }
4418
4419     /* Setup the default interface info. */
4420     ifmr->ifm_status = IFM_AVALID;
4421     ifmr->ifm_active = IFM_ETHER;
4422
4423     if (sc->link_vars.link_up) {
4424         ifmr->ifm_status |= IFM_ACTIVE;
4425     } else {
4426         ifmr->ifm_active |= IFM_NONE;
4427         return;
4428     }
4429
4430     ifmr->ifm_active |= sc->media;
4431
4432     if (sc->link_vars.duplex == DUPLEX_FULL) {
4433         ifmr->ifm_active |= IFM_FDX;
4434     } else {
4435         ifmr->ifm_active |= IFM_HDX;
4436     }
4437 }
4438
4439 static void
4440 bxe_handle_chip_tq(void *context,
4441                    int  pending)
4442 {
4443     struct bxe_softc *sc = (struct bxe_softc *)context;
4444     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4445
4446     switch (work)
4447     {
4448
4449     case CHIP_TQ_REINIT:
4450         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4451             /* restart the interface */
4452             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4453             bxe_periodic_stop(sc);
4454             BXE_CORE_LOCK(sc);
4455             bxe_stop_locked(sc);
4456             bxe_init_locked(sc);
4457             BXE_CORE_UNLOCK(sc);
4458         }
4459         break;
4460
4461     default:
4462         break;
4463     }
4464 }
4465
4466 /*
4467  * Handles any IOCTL calls from the operating system.
4468  *
4469  * Returns:
4470  *   0 = Success, >0 Failure
4471  */
4472 static int
4473 bxe_ioctl(if_t ifp,
4474           u_long       command,
4475           caddr_t      data)
4476 {
4477     struct bxe_softc *sc = if_getsoftc(ifp);
4478     struct ifreq *ifr = (struct ifreq *)data;
4479     int mask = 0;
4480     int reinit = 0;
4481     int error = 0;
4482
4483     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4484     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4485
4486     switch (command)
4487     {
4488     case SIOCSIFMTU:
4489         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4490               ifr->ifr_mtu);
4491
4492         if (sc->mtu == ifr->ifr_mtu) {
4493             /* nothing to change */
4494             break;
4495         }
4496
4497         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4498             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4499                   ifr->ifr_mtu, mtu_min, mtu_max);
4500             error = EINVAL;
4501             break;
4502         }
4503
4504         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4505                              (unsigned long)ifr->ifr_mtu);
4506         /* 
4507         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4508                               (unsigned long)ifr->ifr_mtu);
4509         XXX - Not sure why it needs to be atomic
4510         */
4511         if_setmtu(ifp, ifr->ifr_mtu);
4512         reinit = 1;
4513         break;
4514
4515     case SIOCSIFFLAGS:
4516         /* toggle the interface state up or down */
4517         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4518
4519         BXE_CORE_LOCK(sc);
4520         /* check if the interface is up */
4521         if (if_getflags(ifp) & IFF_UP) {
4522             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4523                 /* set the receive mode flags */
4524                 bxe_set_rx_mode(sc);
4525             } else if(sc->state != BXE_STATE_DISABLED) {
4526                 bxe_init_locked(sc);
4527             }
4528         } else {
4529             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4530                 bxe_periodic_stop(sc);
4531                 bxe_stop_locked(sc);
4532             }
4533         }
4534         BXE_CORE_UNLOCK(sc);
4535
4536         break;
4537
4538     case SIOCADDMULTI:
4539     case SIOCDELMULTI:
4540         /* add/delete multicast addresses */
4541         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4542
4543         /* check if the interface is up */
4544         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4545             /* set the receive mode flags */
4546             BXE_CORE_LOCK(sc);
4547             bxe_set_rx_mode(sc);
4548             BXE_CORE_UNLOCK(sc); 
4549         }
4550
4551         break;
4552
4553     case SIOCSIFCAP:
4554         /* find out which capabilities have changed */
4555         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4556
4557         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4558               mask);
4559
4560         /* toggle the LRO capabilites enable flag */
4561         if (mask & IFCAP_LRO) {
4562             if_togglecapenable(ifp, IFCAP_LRO);
4563             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4564                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4565             reinit = 1;
4566         }
4567
4568         /* toggle the TXCSUM checksum capabilites enable flag */
4569         if (mask & IFCAP_TXCSUM) {
4570             if_togglecapenable(ifp, IFCAP_TXCSUM);
4571             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4572                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4573             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4574                 if_sethwassistbits(ifp, (CSUM_IP      | 
4575                                     CSUM_TCP      |
4576                                     CSUM_UDP      |
4577                                     CSUM_TSO      |
4578                                     CSUM_TCP_IPV6 |
4579                                     CSUM_UDP_IPV6), 0);
4580             } else {
4581                 if_clearhwassist(ifp); /* XXX */
4582             }
4583         }
4584
4585         /* toggle the RXCSUM checksum capabilities enable flag */
4586         if (mask & IFCAP_RXCSUM) {
4587             if_togglecapenable(ifp, IFCAP_RXCSUM);
4588             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4589                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4590             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4591                 if_sethwassistbits(ifp, (CSUM_IP      |
4592                                     CSUM_TCP      |
4593                                     CSUM_UDP      |
4594                                     CSUM_TSO      |
4595                                     CSUM_TCP_IPV6 |
4596                                     CSUM_UDP_IPV6), 0);
4597             } else {
4598                 if_clearhwassist(ifp); /* XXX */
4599             }
4600         }
4601
4602         /* toggle TSO4 capabilities enabled flag */
4603         if (mask & IFCAP_TSO4) {
4604             if_togglecapenable(ifp, IFCAP_TSO4);
4605             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4606                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4607         }
4608
4609         /* toggle TSO6 capabilities enabled flag */
4610         if (mask & IFCAP_TSO6) {
4611             if_togglecapenable(ifp, IFCAP_TSO6);
4612             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4613                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4614         }
4615
4616         /* toggle VLAN_HWTSO capabilities enabled flag */
4617         if (mask & IFCAP_VLAN_HWTSO) {
4618
4619             if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4620             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4621                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4622         }
4623
4624         /* toggle VLAN_HWCSUM capabilities enabled flag */
4625         if (mask & IFCAP_VLAN_HWCSUM) {
4626             /* XXX investigate this... */
4627             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4628             error = EINVAL;
4629         }
4630
4631         /* toggle VLAN_MTU capabilities enable flag */
4632         if (mask & IFCAP_VLAN_MTU) {
4633             /* XXX investigate this... */
4634             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4635             error = EINVAL;
4636         }
4637
4638         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4639         if (mask & IFCAP_VLAN_HWTAGGING) {
4640             /* XXX investigate this... */
4641             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4642             error = EINVAL;
4643         }
4644
4645         /* toggle VLAN_HWFILTER capabilities enabled flag */
4646         if (mask & IFCAP_VLAN_HWFILTER) {
4647             /* XXX investigate this... */
4648             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4649             error = EINVAL;
4650         }
4651
4652         /* XXX not yet...
4653          * IFCAP_WOL_MAGIC
4654          */
4655
4656         break;
4657
4658     case SIOCSIFMEDIA:
4659     case SIOCGIFMEDIA:
4660         /* set/get interface media */
4661         BLOGD(sc, DBG_IOCTL,
4662               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4663               (command & 0xff));
4664         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4665         break;
4666
4667     default:
4668         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4669               (command & 0xff));
4670         error = ether_ioctl(ifp, command, data);
4671         break;
4672     }
4673
4674     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4675         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4676               "Re-initializing hardware from IOCTL change\n");
4677         bxe_periodic_stop(sc);
4678         BXE_CORE_LOCK(sc);
4679         bxe_stop_locked(sc);
4680         bxe_init_locked(sc);
4681         BXE_CORE_UNLOCK(sc);
4682     }
4683
4684     return (error);
4685 }
4686
4687 static __noinline void
4688 bxe_dump_mbuf(struct bxe_softc *sc,
4689               struct mbuf      *m,
4690               uint8_t          contents)
4691 {
4692     char * type;
4693     int i = 0;
4694
4695     if (!(sc->debug & DBG_MBUF)) {
4696         return;
4697     }
4698
4699     if (m == NULL) {
4700         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4701         return;
4702     }
4703
4704     while (m) {
4705
4706 #if __FreeBSD_version >= 1000000
4707         BLOGD(sc, DBG_MBUF,
4708               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4709               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4710
4711         if (m->m_flags & M_PKTHDR) {
4712              BLOGD(sc, DBG_MBUF,
4713                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4714                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4715                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4716         }
4717 #else
4718         BLOGD(sc, DBG_MBUF,
4719               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4720               i, m, m->m_len, m->m_flags,
4721               "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
4722
4723         if (m->m_flags & M_PKTHDR) {
4724              BLOGD(sc, DBG_MBUF,
4725                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4726                    i, m->m_pkthdr.len, m->m_flags,
4727                    "\20\12M_BCAST\13M_MCAST\14M_FRAG"
4728                    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
4729                    "\22M_PROMISC\23M_NOFREE",
4730                    (int)m->m_pkthdr.csum_flags,
4731                    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
4732                    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
4733                    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
4734                    "\14CSUM_PSEUDO_HDR");
4735         }
4736 #endif /* #if __FreeBSD_version >= 1000000 */
4737
4738         if (m->m_flags & M_EXT) {
4739             switch (m->m_ext.ext_type) {
4740             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
4741             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
4742             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
4743             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
4744             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
4745             case EXT_PACKET:     type = "EXT_PACKET";     break;
4746             case EXT_MBUF:       type = "EXT_MBUF";       break;
4747             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
4748             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
4749             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4750             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
4751             default:             type = "UNKNOWN";        break;
4752             }
4753
4754             BLOGD(sc, DBG_MBUF,
4755                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
4756                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4757         }
4758
4759         if (contents) {
4760             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4761         }
4762
4763         m = m->m_next;
4764         i++;
4765     }
4766 }
4767
4768 /*
4769  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4770  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4771  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4772  * The headers comes in a separate bd in FreeBSD so 13-3=10.
4773  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4774  */
4775 static int
4776 bxe_chktso_window(struct bxe_softc  *sc,
4777                   int               nsegs,
4778                   bus_dma_segment_t *segs,
4779                   struct mbuf       *m)
4780 {
4781     uint32_t num_wnds, wnd_size, wnd_sum;
4782     int32_t frag_idx, wnd_idx;
4783     unsigned short lso_mss;
4784     int defrag;
4785
4786     defrag = 0;
4787     wnd_sum = 0;
4788     wnd_size = 10;
4789     num_wnds = nsegs - wnd_size;
4790     lso_mss = htole16(m->m_pkthdr.tso_segsz);
4791
4792     /*
4793      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4794      * first window sum of data while skipping the first assuming it is the
4795      * header in FreeBSD.
4796      */
4797     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4798         wnd_sum += htole16(segs[frag_idx].ds_len);
4799     }
4800
4801     /* check the first 10 bd window size */
4802     if (wnd_sum < lso_mss) {
4803         return (1);
4804     }
4805
4806     /* run through the windows */
4807     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4808         /* subtract the first mbuf->m_len of the last wndw(-header) */
4809         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4810         /* add the next mbuf len to the len of our new window */
4811         wnd_sum += htole16(segs[frag_idx].ds_len);
4812         if (wnd_sum < lso_mss) {
4813             return (1);
4814         }
4815     }
4816
4817     return (0);
4818 }
4819
4820 static uint8_t
4821 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4822                     struct mbuf         *m,
4823                     uint32_t            *parsing_data)
4824 {
4825     struct ether_vlan_header *eh = NULL;
4826     struct ip *ip4 = NULL;
4827     struct ip6_hdr *ip6 = NULL;
4828     caddr_t ip = NULL;
4829     struct tcphdr *th = NULL;
4830     int e_hlen, ip_hlen, l4_off;
4831     uint16_t proto;
4832
4833     if (m->m_pkthdr.csum_flags == CSUM_IP) {
4834         /* no L4 checksum offload needed */
4835         return (0);
4836     }
4837
4838     /* get the Ethernet header */
4839     eh = mtod(m, struct ether_vlan_header *);
4840
4841     /* handle VLAN encapsulation if present */
4842     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4843         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4844         proto  = ntohs(eh->evl_proto);
4845     } else {
4846         e_hlen = ETHER_HDR_LEN;
4847         proto  = ntohs(eh->evl_encap_proto);
4848     }
4849
4850     switch (proto) {
4851     case ETHERTYPE_IP:
4852         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4853         ip4 = (m->m_len < sizeof(struct ip)) ?
4854                   (struct ip *)m->m_next->m_data :
4855                   (struct ip *)(m->m_data + e_hlen);
4856         /* ip_hl is number of 32-bit words */
4857         ip_hlen = (ip4->ip_hl << 2);
4858         ip = (caddr_t)ip4;
4859         break;
4860     case ETHERTYPE_IPV6:
4861         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4862         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4863                   (struct ip6_hdr *)m->m_next->m_data :
4864                   (struct ip6_hdr *)(m->m_data + e_hlen);
4865         /* XXX cannot support offload with IPv6 extensions */
4866         ip_hlen = sizeof(struct ip6_hdr);
4867         ip = (caddr_t)ip6;
4868         break;
4869     default:
4870         /* We can't offload in this case... */
4871         /* XXX error stat ??? */
4872         return (0);
4873     }
4874
4875     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4876     l4_off = (e_hlen + ip_hlen);
4877
4878     *parsing_data |=
4879         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4880          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4881
4882     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4883                                   CSUM_TSO |
4884                                   CSUM_TCP_IPV6)) {
4885         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4886         th = (struct tcphdr *)(ip + ip_hlen);
4887         /* th_off is number of 32-bit words */
4888         *parsing_data |= ((th->th_off <<
4889                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4890                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4891         return (l4_off + (th->th_off << 2)); /* entire header length */
4892     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4893                                          CSUM_UDP_IPV6)) {
4894         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4895         return (l4_off + sizeof(struct udphdr)); /* entire header length */
4896     } else {
4897         /* XXX error stat ??? */
4898         return (0);
4899     }
4900 }
4901
4902 static uint8_t
4903 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
4904                  struct mbuf                *m,
4905                  struct eth_tx_parse_bd_e1x *pbd)
4906 {
4907     struct ether_vlan_header *eh = NULL;
4908     struct ip *ip4 = NULL;
4909     struct ip6_hdr *ip6 = NULL;
4910     caddr_t ip = NULL;
4911     struct tcphdr *th = NULL;
4912     struct udphdr *uh = NULL;
4913     int e_hlen, ip_hlen;
4914     uint16_t proto;
4915     uint8_t hlen;
4916     uint16_t tmp_csum;
4917     uint32_t *tmp_uh;
4918
4919     /* get the Ethernet header */
4920     eh = mtod(m, struct ether_vlan_header *);
4921
4922     /* handle VLAN encapsulation if present */
4923     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4924         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4925         proto  = ntohs(eh->evl_proto);
4926     } else {
4927         e_hlen = ETHER_HDR_LEN;
4928         proto  = ntohs(eh->evl_encap_proto);
4929     }
4930
4931     switch (proto) {
4932     case ETHERTYPE_IP:
4933         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4934         ip4 = (m->m_len < sizeof(struct ip)) ?
4935                   (struct ip *)m->m_next->m_data :
4936                   (struct ip *)(m->m_data + e_hlen);
4937         /* ip_hl is number of 32-bit words */
4938         ip_hlen = (ip4->ip_hl << 1);
4939         ip = (caddr_t)ip4;
4940         break;
4941     case ETHERTYPE_IPV6:
4942         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4943         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4944                   (struct ip6_hdr *)m->m_next->m_data :
4945                   (struct ip6_hdr *)(m->m_data + e_hlen);
4946         /* XXX cannot support offload with IPv6 extensions */
4947         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4948         ip = (caddr_t)ip6;
4949         break;
4950     default:
4951         /* We can't offload in this case... */
4952         /* XXX error stat ??? */
4953         return (0);
4954     }
4955
4956     hlen = (e_hlen >> 1);
4957
4958     /* note that rest of global_data is indirectly zeroed here */
4959     if (m->m_flags & M_VLANTAG) {
4960         pbd->global_data =
4961             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4962     } else {
4963         pbd->global_data = htole16(hlen);
4964     }
4965
4966     pbd->ip_hlen_w = ip_hlen;
4967
4968     hlen += pbd->ip_hlen_w;
4969
4970     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4971
4972     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4973                                   CSUM_TSO |
4974                                   CSUM_TCP_IPV6)) {
4975         th = (struct tcphdr *)(ip + (ip_hlen << 1));
4976         /* th_off is number of 32-bit words */
4977         hlen += (uint16_t)(th->th_off << 1);
4978     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4979                                          CSUM_UDP_IPV6)) {
4980         uh = (struct udphdr *)(ip + (ip_hlen << 1));
4981         hlen += (sizeof(struct udphdr) / 2);
4982     } else {
4983         /* valid case as only CSUM_IP was set */
4984         return (0);
4985     }
4986
4987     pbd->total_hlen_w = htole16(hlen);
4988
4989     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4990                                   CSUM_TSO |
4991                                   CSUM_TCP_IPV6)) {
4992         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4993         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
4994     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4995                                          CSUM_UDP_IPV6)) {
4996         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4997
4998         /*
4999          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5000          * checksums and does not know anything about the UDP header and where
5001          * the checksum field is located. It only knows about TCP. Therefore
5002          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5003          * offload. Since the checksum field offset for TCP is 16 bytes and
5004          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5005          * bytes less than the start of the UDP header. This allows the
5006          * hardware to write the checksum in the correct spot. But the
5007          * hardware will compute a checksum which includes the last 10 bytes
5008          * of the IP header. To correct this we tweak the stack computed
5009          * pseudo checksum by folding in the calculation of the inverse
5010          * checksum for those final 10 bytes of the IP header. This allows
5011          * the correct checksum to be computed by the hardware.
5012          */
5013
5014         /* set pointer 10 bytes before UDP header */
5015         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5016
5017         /* calculate a pseudo header checksum over the first 10 bytes */
5018         tmp_csum = in_pseudo(*tmp_uh,
5019                              *(tmp_uh + 1),
5020                              *(uint16_t *)(tmp_uh + 2));
5021
5022         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5023     }
5024
5025     return (hlen * 2); /* entire header length, number of bytes */
5026 }
5027
5028 static void
5029 bxe_set_pbd_lso_e2(struct mbuf *m,
5030                    uint32_t    *parsing_data)
5031 {
5032     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5033                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5034                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5035
5036     /* XXX test for IPv6 with extension header... */
5037 }
5038
5039 static void
5040 bxe_set_pbd_lso(struct mbuf                *m,
5041                 struct eth_tx_parse_bd_e1x *pbd)
5042 {
5043     struct ether_vlan_header *eh = NULL;
5044     struct ip *ip = NULL;
5045     struct tcphdr *th = NULL;
5046     int e_hlen;
5047
5048     /* get the Ethernet header */
5049     eh = mtod(m, struct ether_vlan_header *);
5050
5051     /* handle VLAN encapsulation if present */
5052     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5053                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5054
5055     /* get the IP and TCP header, with LSO entire header in first mbuf */
5056     /* XXX assuming IPv4 */
5057     ip = (struct ip *)(m->m_data + e_hlen);
5058     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5059
5060     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5061     pbd->tcp_send_seq = ntohl(th->th_seq);
5062     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5063
5064 #if 1
5065         /* XXX IPv4 */
5066         pbd->ip_id = ntohs(ip->ip_id);
5067         pbd->tcp_pseudo_csum =
5068             ntohs(in_pseudo(ip->ip_src.s_addr,
5069                             ip->ip_dst.s_addr,
5070                             htons(IPPROTO_TCP)));
5071 #else
5072         /* XXX IPv6 */
5073         pbd->tcp_pseudo_csum =
5074             ntohs(in_pseudo(&ip6->ip6_src,
5075                             &ip6->ip6_dst,
5076                             htons(IPPROTO_TCP)));
5077 #endif
5078
5079     pbd->global_data |=
5080         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5081 }
5082
5083 /*
5084  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5085  * visible to the controller.
5086  *
5087  * If an mbuf is submitted to this routine and cannot be given to the
5088  * controller (e.g. it has too many fragments) then the function may free
5089  * the mbuf and return to the caller.
5090  *
5091  * Returns:
5092  *   0 = Success, !0 = Failure
5093  *   Note the side effect that an mbuf may be freed if it causes a problem.
5094  */
5095 static int
5096 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5097 {
5098     bus_dma_segment_t segs[32];
5099     struct mbuf *m0;
5100     struct bxe_sw_tx_bd *tx_buf;
5101     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5102     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5103     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5104     struct eth_tx_bd *tx_data_bd;
5105     struct eth_tx_bd *tx_total_pkt_size_bd;
5106     struct eth_tx_start_bd *tx_start_bd;
5107     uint16_t bd_prod, pkt_prod, total_pkt_size;
5108     uint8_t mac_type;
5109     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5110     struct bxe_softc *sc;
5111     uint16_t tx_bd_avail;
5112     struct ether_vlan_header *eh;
5113     uint32_t pbd_e2_parsing_data = 0;
5114     uint8_t hlen = 0;
5115     int tmp_bd;
5116     int i;
5117
5118     sc = fp->sc;
5119
5120 #if __FreeBSD_version >= 800000
5121     M_ASSERTPKTHDR(*m_head);
5122 #endif /* #if __FreeBSD_version >= 800000 */
5123
5124     m0 = *m_head;
5125     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5126     tx_start_bd = NULL;
5127     tx_data_bd = NULL;
5128     tx_total_pkt_size_bd = NULL;
5129
5130     /* get the H/W pointer for packets and BDs */
5131     pkt_prod = fp->tx_pkt_prod;
5132     bd_prod = fp->tx_bd_prod;
5133
5134     mac_type = UNICAST_ADDRESS;
5135
5136     /* map the mbuf into the next open DMAable memory */
5137     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5138     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5139                                     tx_buf->m_map, m0,
5140                                     segs, &nsegs, BUS_DMA_NOWAIT);
5141
5142     /* mapping errors */
5143     if(__predict_false(error != 0)) {
5144         fp->eth_q_stats.tx_dma_mapping_failure++;
5145         if (error == ENOMEM) {
5146             /* resource issue, try again later */
5147             rc = ENOMEM;
5148         } else if (error == EFBIG) {
5149             /* possibly recoverable with defragmentation */
5150             fp->eth_q_stats.mbuf_defrag_attempts++;
5151             m0 = m_defrag(*m_head, M_NOWAIT);
5152             if (m0 == NULL) {
5153                 fp->eth_q_stats.mbuf_defrag_failures++;
5154                 rc = ENOBUFS;
5155             } else {
5156                 /* defrag successful, try mapping again */
5157                 *m_head = m0;
5158                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5159                                                 tx_buf->m_map, m0,
5160                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5161                 if (error) {
5162                     fp->eth_q_stats.tx_dma_mapping_failure++;
5163                     rc = error;
5164                 }
5165             }
5166         } else {
5167             /* unknown, unrecoverable mapping error */
5168             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5169             bxe_dump_mbuf(sc, m0, FALSE);
5170             rc = error;
5171         }
5172
5173         goto bxe_tx_encap_continue;
5174     }
5175
5176     tx_bd_avail = bxe_tx_avail(sc, fp);
5177
5178     /* make sure there is enough room in the send queue */
5179     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5180         /* Recoverable, try again later. */
5181         fp->eth_q_stats.tx_hw_queue_full++;
5182         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5183         rc = ENOMEM;
5184         goto bxe_tx_encap_continue;
5185     }
5186
5187     /* capture the current H/W TX chain high watermark */
5188     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5189                         (TX_BD_USABLE - tx_bd_avail))) {
5190         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5191     }
5192
5193     /* make sure it fits in the packet window */
5194     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5195         /*
5196          * The mbuf may be to big for the controller to handle. If the frame
5197          * is a TSO frame we'll need to do an additional check.
5198          */
5199         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5200             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5201                 goto bxe_tx_encap_continue; /* OK to send */
5202             } else {
5203                 fp->eth_q_stats.tx_window_violation_tso++;
5204             }
5205         } else {
5206             fp->eth_q_stats.tx_window_violation_std++;
5207         }
5208
5209         /* lets try to defragment this mbuf and remap it */
5210         fp->eth_q_stats.mbuf_defrag_attempts++;
5211         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5212
5213         m0 = m_defrag(*m_head, M_NOWAIT);
5214         if (m0 == NULL) {
5215             fp->eth_q_stats.mbuf_defrag_failures++;
5216             /* Ugh, just drop the frame... :( */
5217             rc = ENOBUFS;
5218         } else {
5219             /* defrag successful, try mapping again */
5220             *m_head = m0;
5221             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5222                                             tx_buf->m_map, m0,
5223                                             segs, &nsegs, BUS_DMA_NOWAIT);
5224             if (error) {
5225                 fp->eth_q_stats.tx_dma_mapping_failure++;
5226                 /* No sense in trying to defrag/copy chain, drop it. :( */
5227                 rc = error;
5228             }
5229             else {
5230                 /* if the chain is still too long then drop it */
5231                 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5232                     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5233                     rc = ENODEV;
5234                 }
5235             }
5236         }
5237     }
5238
5239 bxe_tx_encap_continue:
5240
5241     /* Check for errors */
5242     if (rc) {
5243         if (rc == ENOMEM) {
5244             /* recoverable try again later  */
5245         } else {
5246             fp->eth_q_stats.tx_soft_errors++;
5247             fp->eth_q_stats.mbuf_alloc_tx--;
5248             m_freem(*m_head);
5249             *m_head = NULL;
5250         }
5251
5252         return (rc);
5253     }
5254
5255     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5256     if (m0->m_flags & M_BCAST) {
5257         mac_type = BROADCAST_ADDRESS;
5258     } else if (m0->m_flags & M_MCAST) {
5259         mac_type = MULTICAST_ADDRESS;
5260     }
5261
5262     /* store the mbuf into the mbuf ring */
5263     tx_buf->m        = m0;
5264     tx_buf->first_bd = fp->tx_bd_prod;
5265     tx_buf->flags    = 0;
5266
5267     /* prepare the first transmit (start) BD for the mbuf */
5268     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5269
5270     BLOGD(sc, DBG_TX,
5271           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5272           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5273
5274     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5275     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5276     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5277     total_pkt_size += tx_start_bd->nbytes;
5278     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5279
5280     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5281
5282     /* all frames have at least Start BD + Parsing BD */
5283     nbds = nsegs + 1;
5284     tx_start_bd->nbd = htole16(nbds);
5285
5286     if (m0->m_flags & M_VLANTAG) {
5287         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5288         tx_start_bd->bd_flags.as_bitfield |=
5289             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5290     } else {
5291         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5292         if (IS_VF(sc)) {
5293             /* map ethernet header to find type and header length */
5294             eh = mtod(m0, struct ether_vlan_header *);
5295             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5296         } else {
5297             /* used by FW for packet accounting */
5298             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5299         }
5300     }
5301
5302     /*
5303      * add a parsing BD from the chain. The parsing BD is always added
5304      * though it is only used for TSO and chksum
5305      */
5306     bd_prod = TX_BD_NEXT(bd_prod);
5307
5308     if (m0->m_pkthdr.csum_flags) {
5309         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5310             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5311             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5312         }
5313
5314         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5315             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5316                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5317         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5318             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5319                                                   ETH_TX_BD_FLAGS_IS_UDP |
5320                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5321         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5322                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5323             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5324         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5325             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5326                                                   ETH_TX_BD_FLAGS_IS_UDP);
5327         }
5328     }
5329
5330     if (!CHIP_IS_E1x(sc)) {
5331         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5332         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5333
5334         if (m0->m_pkthdr.csum_flags) {
5335             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5336         }
5337
5338         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5339                  mac_type);
5340     } else {
5341         uint16_t global_data = 0;
5342
5343         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5344         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5345
5346         if (m0->m_pkthdr.csum_flags) {
5347             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5348         }
5349
5350         SET_FLAG(global_data,
5351                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5352         pbd_e1x->global_data |= htole16(global_data);
5353     }
5354
5355     /* setup the parsing BD with TSO specific info */
5356     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5357         fp->eth_q_stats.tx_ofld_frames_lso++;
5358         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5359
5360         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5361             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5362
5363             /* split the first BD into header/data making the fw job easy */
5364             nbds++;
5365             tx_start_bd->nbd = htole16(nbds);
5366             tx_start_bd->nbytes = htole16(hlen);
5367
5368             bd_prod = TX_BD_NEXT(bd_prod);
5369
5370             /* new transmit BD after the tx_parse_bd */
5371             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5372             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5373             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5374             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5375             if (tx_total_pkt_size_bd == NULL) {
5376                 tx_total_pkt_size_bd = tx_data_bd;
5377             }
5378
5379             BLOGD(sc, DBG_TX,
5380                   "TSO split header size is %d (%x:%x) nbds %d\n",
5381                   le16toh(tx_start_bd->nbytes),
5382                   le32toh(tx_start_bd->addr_hi),
5383                   le32toh(tx_start_bd->addr_lo),
5384                   nbds);
5385         }
5386
5387         if (!CHIP_IS_E1x(sc)) {
5388             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5389         } else {
5390             bxe_set_pbd_lso(m0, pbd_e1x);
5391         }
5392     }
5393
5394     if (pbd_e2_parsing_data) {
5395         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5396     }
5397
5398     /* prepare remaining BDs, start tx bd contains first seg/frag */
5399     for (i = 1; i < nsegs ; i++) {
5400         bd_prod = TX_BD_NEXT(bd_prod);
5401         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5402         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5403         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5404         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5405         if (tx_total_pkt_size_bd == NULL) {
5406             tx_total_pkt_size_bd = tx_data_bd;
5407         }
5408         total_pkt_size += tx_data_bd->nbytes;
5409     }
5410
5411     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5412
5413     if (tx_total_pkt_size_bd != NULL) {
5414         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5415     }
5416
5417     if (__predict_false(sc->debug & DBG_TX)) {
5418         tmp_bd = tx_buf->first_bd;
5419         for (i = 0; i < nbds; i++)
5420         {
5421             if (i == 0) {
5422                 BLOGD(sc, DBG_TX,
5423                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5424                       "bd_flags=0x%x hdr_nbds=%d\n",
5425                       tx_start_bd,
5426                       tmp_bd,
5427                       le16toh(tx_start_bd->nbd),
5428                       le16toh(tx_start_bd->vlan_or_ethertype),
5429                       tx_start_bd->bd_flags.as_bitfield,
5430                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5431             } else if (i == 1) {
5432                 if (pbd_e1x) {
5433                     BLOGD(sc, DBG_TX,
5434                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5435                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5436                           "tcp_seq=%u total_hlen_w=%u\n",
5437                           pbd_e1x,
5438                           tmp_bd,
5439                           pbd_e1x->global_data,
5440                           pbd_e1x->ip_hlen_w,
5441                           pbd_e1x->ip_id,
5442                           pbd_e1x->lso_mss,
5443                           pbd_e1x->tcp_flags,
5444                           pbd_e1x->tcp_pseudo_csum,
5445                           pbd_e1x->tcp_send_seq,
5446                           le16toh(pbd_e1x->total_hlen_w));
5447                 } else { /* if (pbd_e2) */
5448                     BLOGD(sc, DBG_TX,
5449                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5450                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5451                           pbd_e2,
5452                           tmp_bd,
5453                           pbd_e2->data.mac_addr.dst_hi,
5454                           pbd_e2->data.mac_addr.dst_mid,
5455                           pbd_e2->data.mac_addr.dst_lo,
5456                           pbd_e2->data.mac_addr.src_hi,
5457                           pbd_e2->data.mac_addr.src_mid,
5458                           pbd_e2->data.mac_addr.src_lo,
5459                           pbd_e2->parsing_data);
5460                 }
5461             }
5462
5463             if (i != 1) { /* skip parse db as it doesn't hold data */
5464                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5465                 BLOGD(sc, DBG_TX,
5466                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5467                       tx_data_bd,
5468                       tmp_bd,
5469                       le16toh(tx_data_bd->nbytes),
5470                       le32toh(tx_data_bd->addr_hi),
5471                       le32toh(tx_data_bd->addr_lo));
5472             }
5473
5474             tmp_bd = TX_BD_NEXT(tmp_bd);
5475         }
5476     }
5477
5478     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5479
5480     /* update TX BD producer index value for next TX */
5481     bd_prod = TX_BD_NEXT(bd_prod);
5482
5483     /*
5484      * If the chain of tx_bd's describing this frame is adjacent to or spans
5485      * an eth_tx_next_bd element then we need to increment the nbds value.
5486      */
5487     if (TX_BD_IDX(bd_prod) < nbds) {
5488         nbds++;
5489     }
5490
5491     /* don't allow reordering of writes for nbd and packets */
5492     mb();
5493
5494     fp->tx_db.data.prod += nbds;
5495
5496     /* producer points to the next free tx_bd at this point */
5497     fp->tx_pkt_prod++;
5498     fp->tx_bd_prod = bd_prod;
5499
5500     DOORBELL(sc, fp->index, fp->tx_db.raw);
5501
5502     fp->eth_q_stats.tx_pkts++;
5503
5504     /* Prevent speculative reads from getting ahead of the status block. */
5505     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5506                       0, 0, BUS_SPACE_BARRIER_READ);
5507
5508     /* Prevent speculative reads from getting ahead of the doorbell. */
5509     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5510                       0, 0, BUS_SPACE_BARRIER_READ);
5511
5512     return (0);
5513 }
5514
5515 static void
5516 bxe_tx_start_locked(struct bxe_softc *sc,
5517                     if_t ifp,
5518                     struct bxe_fastpath *fp)
5519 {
5520     struct mbuf *m = NULL;
5521     int tx_count = 0;
5522     uint16_t tx_bd_avail;
5523
5524     BXE_FP_TX_LOCK_ASSERT(fp);
5525
5526     /* keep adding entries while there are frames to send */
5527     while (!if_sendq_empty(ifp)) {
5528
5529         /*
5530          * check for any frames to send
5531          * dequeue can still be NULL even if queue is not empty
5532          */
5533         m = if_dequeue(ifp);
5534         if (__predict_false(m == NULL)) {
5535             break;
5536         }
5537
5538         /* the mbuf now belongs to us */
5539         fp->eth_q_stats.mbuf_alloc_tx++;
5540
5541         /*
5542          * Put the frame into the transmit ring. If we don't have room,
5543          * place the mbuf back at the head of the TX queue, set the
5544          * OACTIVE flag, and wait for the NIC to drain the chain.
5545          */
5546         if (__predict_false(bxe_tx_encap(fp, &m))) {
5547             fp->eth_q_stats.tx_encap_failures++;
5548             if (m != NULL) {
5549                 /* mark the TX queue as full and return the frame */
5550                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5551                 if_sendq_prepend(ifp, m);
5552                 fp->eth_q_stats.mbuf_alloc_tx--;
5553                 fp->eth_q_stats.tx_queue_xoff++;
5554             }
5555
5556             /* stop looking for more work */
5557             break;
5558         }
5559
5560         /* the frame was enqueued successfully */
5561         tx_count++;
5562
5563         /* send a copy of the frame to any BPF listeners. */
5564         if_etherbpfmtap(ifp, m);
5565
5566         tx_bd_avail = bxe_tx_avail(sc, fp);
5567
5568         /* handle any completions if we're running low */
5569         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5570             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5571             bxe_txeof(sc, fp);
5572             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5573                 break;
5574             }
5575         }
5576     }
5577
5578     /* all TX packets were dequeued and/or the tx ring is full */
5579     if (tx_count > 0) {
5580         /* reset the TX watchdog timeout timer */
5581         fp->watchdog_timer = BXE_TX_TIMEOUT;
5582     }
5583 }
5584
5585 /* Legacy (non-RSS) dispatch routine */
5586 static void
5587 bxe_tx_start(if_t ifp)
5588 {
5589     struct bxe_softc *sc;
5590     struct bxe_fastpath *fp;
5591
5592     sc = if_getsoftc(ifp);
5593
5594     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5595         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5596         return;
5597     }
5598
5599     if (!sc->link_vars.link_up) {
5600         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5601         return;
5602     }
5603
5604     fp = &sc->fp[0];
5605
5606     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5607         fp->eth_q_stats.tx_queue_full_return++;
5608         return;
5609     }
5610
5611     BXE_FP_TX_LOCK(fp);
5612     bxe_tx_start_locked(sc, ifp, fp);
5613     BXE_FP_TX_UNLOCK(fp);
5614 }
5615
5616 #if __FreeBSD_version >= 901504
5617
5618 static int
5619 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5620                        if_t                ifp,
5621                        struct bxe_fastpath *fp,
5622                        struct mbuf         *m)
5623 {
5624     struct buf_ring *tx_br = fp->tx_br;
5625     struct mbuf *next;
5626     int depth, rc, tx_count;
5627     uint16_t tx_bd_avail;
5628
5629     rc = tx_count = 0;
5630
5631     BXE_FP_TX_LOCK_ASSERT(fp);
5632
5633     if (!tx_br) {
5634         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5635         return (EINVAL);
5636     }
5637
5638     if (m != NULL) {
5639         rc = drbr_enqueue(ifp, tx_br, m);
5640         if (rc != 0) {
5641             fp->eth_q_stats.tx_soft_errors++;
5642             goto bxe_tx_mq_start_locked_exit;
5643         }
5644     }
5645
5646     if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5647         fp->eth_q_stats.tx_request_link_down_failures++;
5648         goto bxe_tx_mq_start_locked_exit;
5649     }
5650
5651     /* fetch the depth of the driver queue */
5652     depth = drbr_inuse_drv(ifp, tx_br);
5653     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5654         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5655     }
5656
5657     /* keep adding entries while there are frames to send */
5658     while ((next = drbr_peek(ifp, tx_br)) != NULL) {
5659         /* handle any completions if we're running low */
5660         tx_bd_avail = bxe_tx_avail(sc, fp);
5661         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5662             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5663             bxe_txeof(sc, fp);
5664             tx_bd_avail = bxe_tx_avail(sc, fp);
5665             if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
5666                 fp->eth_q_stats.bd_avail_too_less_failures++;
5667                 m_freem(next);
5668                 drbr_advance(ifp, tx_br);
5669                 rc = ENOBUFS;
5670                 break;
5671             }
5672         }
5673
5674         /* the mbuf now belongs to us */
5675         fp->eth_q_stats.mbuf_alloc_tx++;
5676
5677         /*
5678          * Put the frame into the transmit ring. If we don't have room,
5679          * place the mbuf back at the head of the TX queue, set the
5680          * OACTIVE flag, and wait for the NIC to drain the chain.
5681          */
5682         rc = bxe_tx_encap(fp, &next);
5683         if (__predict_false(rc != 0)) {
5684             fp->eth_q_stats.tx_encap_failures++;
5685             if (next != NULL) {
5686                 /* mark the TX queue as full and save the frame */
5687                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5688                 drbr_putback(ifp, tx_br, next);
5689                 fp->eth_q_stats.mbuf_alloc_tx--;
5690                 fp->eth_q_stats.tx_frames_deferred++;
5691             } else
5692                 drbr_advance(ifp, tx_br);
5693
5694             /* stop looking for more work */
5695             break;
5696         }
5697
5698         /* the transmit frame was enqueued successfully */
5699         tx_count++;
5700
5701         /* send a copy of the frame to any BPF listeners */
5702         if_etherbpfmtap(ifp, next);
5703
5704         drbr_advance(ifp, tx_br);
5705     }
5706
5707     /* all TX packets were dequeued and/or the tx ring is full */
5708     if (tx_count > 0) {
5709         /* reset the TX watchdog timeout timer */
5710         fp->watchdog_timer = BXE_TX_TIMEOUT;
5711     }
5712
5713 bxe_tx_mq_start_locked_exit:
5714     /* If we didn't drain the drbr, enqueue a task in the future to do it. */
5715     if (!drbr_empty(ifp, tx_br)) {
5716         fp->eth_q_stats.tx_mq_not_empty++;
5717         taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
5718     }
5719
5720     return (rc);
5721 }
5722
5723 static void
5724 bxe_tx_mq_start_deferred(void *arg,
5725                          int pending)
5726 {
5727     struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
5728     struct bxe_softc *sc = fp->sc;
5729     if_t ifp = sc->ifp;
5730
5731     BXE_FP_TX_LOCK(fp);
5732     bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
5733     BXE_FP_TX_UNLOCK(fp);
5734 }
5735
5736 /* Multiqueue (TSS) dispatch routine. */
5737 static int
5738 bxe_tx_mq_start(struct ifnet *ifp,
5739                 struct mbuf  *m)
5740 {
5741     struct bxe_softc *sc = if_getsoftc(ifp);
5742     struct bxe_fastpath *fp;
5743     int fp_index, rc;
5744
5745     fp_index = 0; /* default is the first queue */
5746
5747     /* check if flowid is set */
5748
5749     if (BXE_VALID_FLOWID(m))
5750         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5751
5752     fp = &sc->fp[fp_index];
5753
5754     if (BXE_FP_TX_TRYLOCK(fp)) {
5755         rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5756         BXE_FP_TX_UNLOCK(fp);
5757     } else {
5758         rc = drbr_enqueue(ifp, fp->tx_br, m);
5759         taskqueue_enqueue(fp->tq, &fp->tx_task);
5760     }
5761
5762     return (rc);
5763 }
5764
5765 static void
5766 bxe_mq_flush(struct ifnet *ifp)
5767 {
5768     struct bxe_softc *sc = if_getsoftc(ifp);
5769     struct bxe_fastpath *fp;
5770     struct mbuf *m;
5771     int i;
5772
5773     for (i = 0; i < sc->num_queues; i++) {
5774         fp = &sc->fp[i];
5775
5776         if (fp->state != BXE_FP_STATE_OPEN) {
5777             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5778                   fp->index, fp->state);
5779             continue;
5780         }
5781
5782         if (fp->tx_br != NULL) {
5783             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5784             BXE_FP_TX_LOCK(fp);
5785             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5786                 m_freem(m);
5787             }
5788             BXE_FP_TX_UNLOCK(fp);
5789         }
5790     }
5791
5792     if_qflush(ifp);
5793 }
5794
5795 #endif /* FreeBSD_version >= 901504 */
5796
5797 static uint16_t
5798 bxe_cid_ilt_lines(struct bxe_softc *sc)
5799 {
5800     if (IS_SRIOV(sc)) {
5801         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5802     }
5803     return (L2_ILT_LINES(sc));
5804 }
5805
5806 static void
5807 bxe_ilt_set_info(struct bxe_softc *sc)
5808 {
5809     struct ilt_client_info *ilt_client;
5810     struct ecore_ilt *ilt = sc->ilt;
5811     uint16_t line = 0;
5812
5813     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5814     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5815
5816     /* CDU */
5817     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5818     ilt_client->client_num = ILT_CLIENT_CDU;
5819     ilt_client->page_size = CDU_ILT_PAGE_SZ;
5820     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5821     ilt_client->start = line;
5822     line += bxe_cid_ilt_lines(sc);
5823
5824     if (CNIC_SUPPORT(sc)) {
5825         line += CNIC_ILT_LINES;
5826     }
5827
5828     ilt_client->end = (line - 1);
5829
5830     BLOGD(sc, DBG_LOAD,
5831           "ilt client[CDU]: start %d, end %d, "
5832           "psz 0x%x, flags 0x%x, hw psz %d\n",
5833           ilt_client->start, ilt_client->end,
5834           ilt_client->page_size,
5835           ilt_client->flags,
5836           ilog2(ilt_client->page_size >> 12));
5837
5838     /* QM */
5839     if (QM_INIT(sc->qm_cid_count)) {
5840         ilt_client = &ilt->clients[ILT_CLIENT_QM];
5841         ilt_client->client_num = ILT_CLIENT_QM;
5842         ilt_client->page_size = QM_ILT_PAGE_SZ;
5843         ilt_client->flags = 0;
5844         ilt_client->start = line;
5845
5846         /* 4 bytes for each cid */
5847         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5848                              QM_ILT_PAGE_SZ);
5849
5850         ilt_client->end = (line - 1);
5851
5852         BLOGD(sc, DBG_LOAD,
5853               "ilt client[QM]: start %d, end %d, "
5854               "psz 0x%x, flags 0x%x, hw psz %d\n",
5855               ilt_client->start, ilt_client->end,
5856               ilt_client->page_size, ilt_client->flags,
5857               ilog2(ilt_client->page_size >> 12));
5858     }
5859
5860     if (CNIC_SUPPORT(sc)) {
5861         /* SRC */
5862         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5863         ilt_client->client_num = ILT_CLIENT_SRC;
5864         ilt_client->page_size = SRC_ILT_PAGE_SZ;
5865         ilt_client->flags = 0;
5866         ilt_client->start = line;
5867         line += SRC_ILT_LINES;
5868         ilt_client->end = (line - 1);
5869
5870         BLOGD(sc, DBG_LOAD,
5871               "ilt client[SRC]: start %d, end %d, "
5872               "psz 0x%x, flags 0x%x, hw psz %d\n",
5873               ilt_client->start, ilt_client->end,
5874               ilt_client->page_size, ilt_client->flags,
5875               ilog2(ilt_client->page_size >> 12));
5876
5877         /* TM */
5878         ilt_client = &ilt->clients[ILT_CLIENT_TM];
5879         ilt_client->client_num = ILT_CLIENT_TM;
5880         ilt_client->page_size = TM_ILT_PAGE_SZ;
5881         ilt_client->flags = 0;
5882         ilt_client->start = line;
5883         line += TM_ILT_LINES;
5884         ilt_client->end = (line - 1);
5885
5886         BLOGD(sc, DBG_LOAD,
5887               "ilt client[TM]: start %d, end %d, "
5888               "psz 0x%x, flags 0x%x, hw psz %d\n",
5889               ilt_client->start, ilt_client->end,
5890               ilt_client->page_size, ilt_client->flags,
5891               ilog2(ilt_client->page_size >> 12));
5892     }
5893
5894     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5895 }
5896
5897 static void
5898 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5899 {
5900     int i;
5901     uint32_t rx_buf_size;
5902
5903     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5904
5905     for (i = 0; i < sc->num_queues; i++) {
5906         if(rx_buf_size <= MCLBYTES){
5907             sc->fp[i].rx_buf_size = rx_buf_size;
5908             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5909         }else if (rx_buf_size <= MJUMPAGESIZE){
5910             sc->fp[i].rx_buf_size = rx_buf_size;
5911             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5912         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5913             sc->fp[i].rx_buf_size = MCLBYTES;
5914             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5915         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5916             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5917             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5918         }else {
5919             sc->fp[i].rx_buf_size = MCLBYTES;
5920             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5921         }
5922     }
5923 }
5924
5925 static int
5926 bxe_alloc_ilt_mem(struct bxe_softc *sc)
5927 {
5928     int rc = 0;
5929
5930     if ((sc->ilt =
5931          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5932                                     M_BXE_ILT,
5933                                     (M_NOWAIT | M_ZERO))) == NULL) {
5934         rc = 1;
5935     }
5936
5937     return (rc);
5938 }
5939
5940 static int
5941 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5942 {
5943     int rc = 0;
5944
5945     if ((sc->ilt->lines =
5946          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5947                                     M_BXE_ILT,
5948                                     (M_NOWAIT | M_ZERO))) == NULL) {
5949         rc = 1;
5950     }
5951
5952     return (rc);
5953 }
5954
5955 static void
5956 bxe_free_ilt_mem(struct bxe_softc *sc)
5957 {
5958     if (sc->ilt != NULL) {
5959         free(sc->ilt, M_BXE_ILT);
5960         sc->ilt = NULL;
5961     }
5962 }
5963
5964 static void
5965 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
5966 {
5967     if (sc->ilt->lines != NULL) {
5968         free(sc->ilt->lines, M_BXE_ILT);
5969         sc->ilt->lines = NULL;
5970     }
5971 }
5972
5973 static void
5974 bxe_free_mem(struct bxe_softc *sc)
5975 {
5976     int i;
5977
5978     for (i = 0; i < L2_ILT_LINES(sc); i++) {
5979         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
5980         sc->context[i].vcxt = NULL;
5981         sc->context[i].size = 0;
5982     }
5983
5984     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
5985
5986     bxe_free_ilt_lines_mem(sc);
5987
5988 }
5989
5990 static int
5991 bxe_alloc_mem(struct bxe_softc *sc)
5992 {
5993     int context_size;
5994     int allocated;
5995     int i;
5996
5997     /*
5998      * Allocate memory for CDU context:
5999      * This memory is allocated separately and not in the generic ILT
6000      * functions because CDU differs in few aspects:
6001      * 1. There can be multiple entities allocating memory for context -
6002      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6003      * its own ILT lines.
6004      * 2. Since CDU page-size is not a single 4KB page (which is the case
6005      * for the other ILT clients), to be efficient we want to support
6006      * allocation of sub-page-size in the last entry.
6007      * 3. Context pointers are used by the driver to pass to FW / update
6008      * the context (for the other ILT clients the pointers are used just to
6009      * free the memory during unload).
6010      */
6011     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6012     for (i = 0, allocated = 0; allocated < context_size; i++) {
6013         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6014                                   (context_size - allocated));
6015
6016         if (bxe_dma_alloc(sc, sc->context[i].size,
6017                           &sc->context[i].vcxt_dma,
6018                           "cdu context") != 0) {
6019             bxe_free_mem(sc);
6020             return (-1);
6021         }
6022
6023         sc->context[i].vcxt =
6024             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6025
6026         allocated += sc->context[i].size;
6027     }
6028
6029     bxe_alloc_ilt_lines_mem(sc);
6030
6031     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6032           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6033     {
6034         for (i = 0; i < 4; i++) {
6035             BLOGD(sc, DBG_LOAD,
6036                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6037                   i,
6038                   sc->ilt->clients[i].page_size,
6039                   sc->ilt->clients[i].start,
6040                   sc->ilt->clients[i].end,
6041                   sc->ilt->clients[i].client_num,
6042                   sc->ilt->clients[i].flags);
6043         }
6044     }
6045     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6046         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6047         bxe_free_mem(sc);
6048         return (-1);
6049     }
6050
6051     return (0);
6052 }
6053
6054 static void
6055 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6056 {
6057     struct bxe_softc *sc;
6058     int i;
6059
6060     sc = fp->sc;
6061
6062     if (fp->rx_mbuf_tag == NULL) {
6063         return;
6064     }
6065
6066     /* free all mbufs and unload all maps */
6067     for (i = 0; i < RX_BD_TOTAL; i++) {
6068         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6069             bus_dmamap_sync(fp->rx_mbuf_tag,
6070                             fp->rx_mbuf_chain[i].m_map,
6071                             BUS_DMASYNC_POSTREAD);
6072             bus_dmamap_unload(fp->rx_mbuf_tag,
6073                               fp->rx_mbuf_chain[i].m_map);
6074         }
6075
6076         if (fp->rx_mbuf_chain[i].m != NULL) {
6077             m_freem(fp->rx_mbuf_chain[i].m);
6078             fp->rx_mbuf_chain[i].m = NULL;
6079             fp->eth_q_stats.mbuf_alloc_rx--;
6080         }
6081     }
6082 }
6083
6084 static void
6085 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6086 {
6087     struct bxe_softc *sc;
6088     int i, max_agg_queues;
6089
6090     sc = fp->sc;
6091
6092     if (fp->rx_mbuf_tag == NULL) {
6093         return;
6094     }
6095
6096     max_agg_queues = MAX_AGG_QS(sc);
6097
6098     /* release all mbufs and unload all DMA maps in the TPA pool */
6099     for (i = 0; i < max_agg_queues; i++) {
6100         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6101             bus_dmamap_sync(fp->rx_mbuf_tag,
6102                             fp->rx_tpa_info[i].bd.m_map,
6103                             BUS_DMASYNC_POSTREAD);
6104             bus_dmamap_unload(fp->rx_mbuf_tag,
6105                               fp->rx_tpa_info[i].bd.m_map);
6106         }
6107
6108         if (fp->rx_tpa_info[i].bd.m != NULL) {
6109             m_freem(fp->rx_tpa_info[i].bd.m);
6110             fp->rx_tpa_info[i].bd.m = NULL;
6111             fp->eth_q_stats.mbuf_alloc_tpa--;
6112         }
6113     }
6114 }
6115
6116 static void
6117 bxe_free_sge_chain(struct bxe_fastpath *fp)
6118 {
6119     struct bxe_softc *sc;
6120     int i;
6121
6122     sc = fp->sc;
6123
6124     if (fp->rx_sge_mbuf_tag == NULL) {
6125         return;
6126     }
6127
6128     /* rree all mbufs and unload all maps */
6129     for (i = 0; i < RX_SGE_TOTAL; i++) {
6130         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6131             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6132                             fp->rx_sge_mbuf_chain[i].m_map,
6133                             BUS_DMASYNC_POSTREAD);
6134             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6135                               fp->rx_sge_mbuf_chain[i].m_map);
6136         }
6137
6138         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6139             m_freem(fp->rx_sge_mbuf_chain[i].m);
6140             fp->rx_sge_mbuf_chain[i].m = NULL;
6141             fp->eth_q_stats.mbuf_alloc_sge--;
6142         }
6143     }
6144 }
6145
6146 static void
6147 bxe_free_fp_buffers(struct bxe_softc *sc)
6148 {
6149     struct bxe_fastpath *fp;
6150     int i;
6151
6152     for (i = 0; i < sc->num_queues; i++) {
6153         fp = &sc->fp[i];
6154
6155 #if __FreeBSD_version >= 901504
6156         if (fp->tx_br != NULL) {
6157             /* just in case bxe_mq_flush() wasn't called */
6158             if (mtx_initialized(&fp->tx_mtx)) {
6159                 struct mbuf *m;
6160
6161                 BXE_FP_TX_LOCK(fp);
6162                 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6163                     m_freem(m);
6164                 BXE_FP_TX_UNLOCK(fp);
6165             }
6166         }
6167 #endif
6168
6169         /* free all RX buffers */
6170         bxe_free_rx_bd_chain(fp);
6171         bxe_free_tpa_pool(fp);
6172         bxe_free_sge_chain(fp);
6173
6174         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6175             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6176                   fp->eth_q_stats.mbuf_alloc_rx);
6177         }
6178
6179         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6180             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6181                   fp->eth_q_stats.mbuf_alloc_sge);
6182         }
6183
6184         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6185             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6186                   fp->eth_q_stats.mbuf_alloc_tpa);
6187         }
6188
6189         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6190             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6191                   fp->eth_q_stats.mbuf_alloc_tx);
6192         }
6193
6194         /* XXX verify all mbufs were reclaimed */
6195     }
6196 }
6197
6198 static int
6199 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6200                      uint16_t            prev_index,
6201                      uint16_t            index)
6202 {
6203     struct bxe_sw_rx_bd *rx_buf;
6204     struct eth_rx_bd *rx_bd;
6205     bus_dma_segment_t segs[1];
6206     bus_dmamap_t map;
6207     struct mbuf *m;
6208     int nsegs, rc;
6209
6210     rc = 0;
6211
6212     /* allocate the new RX BD mbuf */
6213     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6214     if (__predict_false(m == NULL)) {
6215         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6216         return (ENOBUFS);
6217     }
6218
6219     fp->eth_q_stats.mbuf_alloc_rx++;
6220
6221     /* initialize the mbuf buffer length */
6222     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6223
6224     /* map the mbuf into non-paged pool */
6225     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6226                                  fp->rx_mbuf_spare_map,
6227                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6228     if (__predict_false(rc != 0)) {
6229         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6230         m_freem(m);
6231         fp->eth_q_stats.mbuf_alloc_rx--;
6232         return (rc);
6233     }
6234
6235     /* all mbufs must map to a single segment */
6236     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6237
6238     /* release any existing RX BD mbuf mappings */
6239
6240     if (prev_index != index) {
6241         rx_buf = &fp->rx_mbuf_chain[prev_index];
6242
6243         if (rx_buf->m_map != NULL) {
6244             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6245                             BUS_DMASYNC_POSTREAD);
6246             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6247         }
6248
6249         /*
6250          * We only get here from bxe_rxeof() when the maximum number
6251          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6252          * holds the mbuf in the prev_index so it's OK to NULL it out
6253          * here without concern of a memory leak.
6254          */
6255         fp->rx_mbuf_chain[prev_index].m = NULL;
6256     }
6257
6258     rx_buf = &fp->rx_mbuf_chain[index];
6259
6260     if (rx_buf->m_map != NULL) {
6261         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6262                         BUS_DMASYNC_POSTREAD);
6263         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6264     }
6265
6266     /* save the mbuf and mapping info for a future packet */
6267     map = (prev_index != index) ?
6268               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6269     rx_buf->m_map = fp->rx_mbuf_spare_map;
6270     fp->rx_mbuf_spare_map = map;
6271     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6272                     BUS_DMASYNC_PREREAD);
6273     rx_buf->m = m;
6274
6275     rx_bd = &fp->rx_chain[index];
6276     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6277     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6278
6279     return (rc);
6280 }
6281
6282 static int
6283 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6284                       int                 queue)
6285 {
6286     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6287     bus_dma_segment_t segs[1];
6288     bus_dmamap_t map;
6289     struct mbuf *m;
6290     int nsegs;
6291     int rc = 0;
6292
6293     /* allocate the new TPA mbuf */
6294     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6295     if (__predict_false(m == NULL)) {
6296         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6297         return (ENOBUFS);
6298     }
6299
6300     fp->eth_q_stats.mbuf_alloc_tpa++;
6301
6302     /* initialize the mbuf buffer length */
6303     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6304
6305     /* map the mbuf into non-paged pool */
6306     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6307                                  fp->rx_tpa_info_mbuf_spare_map,
6308                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6309     if (__predict_false(rc != 0)) {
6310         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6311         m_free(m);
6312         fp->eth_q_stats.mbuf_alloc_tpa--;
6313         return (rc);
6314     }
6315
6316     /* all mbufs must map to a single segment */
6317     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6318
6319     /* release any existing TPA mbuf mapping */
6320     if (tpa_info->bd.m_map != NULL) {
6321         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6322                         BUS_DMASYNC_POSTREAD);
6323         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6324     }
6325
6326     /* save the mbuf and mapping info for the TPA mbuf */
6327     map = tpa_info->bd.m_map;
6328     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6329     fp->rx_tpa_info_mbuf_spare_map = map;
6330     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6331                     BUS_DMASYNC_PREREAD);
6332     tpa_info->bd.m = m;
6333     tpa_info->seg = segs[0];
6334
6335     return (rc);
6336 }
6337
6338 /*
6339  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6340  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6341  * chain.
6342  */
6343 static int
6344 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6345                       uint16_t            index)
6346 {
6347     struct bxe_sw_rx_bd *sge_buf;
6348     struct eth_rx_sge *sge;
6349     bus_dma_segment_t segs[1];
6350     bus_dmamap_t map;
6351     struct mbuf *m;
6352     int nsegs;
6353     int rc = 0;
6354
6355     /* allocate a new SGE mbuf */
6356     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6357     if (__predict_false(m == NULL)) {
6358         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6359         return (ENOMEM);
6360     }
6361
6362     fp->eth_q_stats.mbuf_alloc_sge++;
6363
6364     /* initialize the mbuf buffer length */
6365     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6366
6367     /* map the SGE mbuf into non-paged pool */
6368     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6369                                  fp->rx_sge_mbuf_spare_map,
6370                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6371     if (__predict_false(rc != 0)) {
6372         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6373         m_freem(m);
6374         fp->eth_q_stats.mbuf_alloc_sge--;
6375         return (rc);
6376     }
6377
6378     /* all mbufs must map to a single segment */
6379     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6380
6381     sge_buf = &fp->rx_sge_mbuf_chain[index];
6382
6383     /* release any existing SGE mbuf mapping */
6384     if (sge_buf->m_map != NULL) {
6385         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6386                         BUS_DMASYNC_POSTREAD);
6387         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6388     }
6389
6390     /* save the mbuf and mapping info for a future packet */
6391     map = sge_buf->m_map;
6392     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6393     fp->rx_sge_mbuf_spare_map = map;
6394     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6395                     BUS_DMASYNC_PREREAD);
6396     sge_buf->m = m;
6397
6398     sge = &fp->rx_sge_chain[index];
6399     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6400     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6401
6402     return (rc);
6403 }
6404
6405 static __noinline int
6406 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6407 {
6408     struct bxe_fastpath *fp;
6409     int i, j, rc = 0;
6410     int ring_prod, cqe_ring_prod;
6411     int max_agg_queues;
6412
6413     for (i = 0; i < sc->num_queues; i++) {
6414         fp = &sc->fp[i];
6415
6416         ring_prod = cqe_ring_prod = 0;
6417         fp->rx_bd_cons = 0;
6418         fp->rx_cq_cons = 0;
6419
6420         /* allocate buffers for the RX BDs in RX BD chain */
6421         for (j = 0; j < sc->max_rx_bufs; j++) {
6422             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6423             if (rc != 0) {
6424                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6425                       i, rc);
6426                 goto bxe_alloc_fp_buffers_error;
6427             }
6428
6429             ring_prod     = RX_BD_NEXT(ring_prod);
6430             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6431         }
6432
6433         fp->rx_bd_prod = ring_prod;
6434         fp->rx_cq_prod = cqe_ring_prod;
6435         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6436
6437         max_agg_queues = MAX_AGG_QS(sc);
6438
6439         fp->tpa_enable = TRUE;
6440
6441         /* fill the TPA pool */
6442         for (j = 0; j < max_agg_queues; j++) {
6443             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6444             if (rc != 0) {
6445                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6446                           i, j);
6447                 fp->tpa_enable = FALSE;
6448                 goto bxe_alloc_fp_buffers_error;
6449             }
6450
6451             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6452         }
6453
6454         if (fp->tpa_enable) {
6455             /* fill the RX SGE chain */
6456             ring_prod = 0;
6457             for (j = 0; j < RX_SGE_USABLE; j++) {
6458                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6459                 if (rc != 0) {
6460                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6461                               i, ring_prod);
6462                     fp->tpa_enable = FALSE;
6463                     ring_prod = 0;
6464                     goto bxe_alloc_fp_buffers_error;
6465                 }
6466
6467                 ring_prod = RX_SGE_NEXT(ring_prod);
6468             }
6469
6470             fp->rx_sge_prod = ring_prod;
6471         }
6472     }
6473
6474     return (0);
6475
6476 bxe_alloc_fp_buffers_error:
6477
6478     /* unwind what was already allocated */
6479     bxe_free_rx_bd_chain(fp);
6480     bxe_free_tpa_pool(fp);
6481     bxe_free_sge_chain(fp);
6482
6483     return (ENOBUFS);
6484 }
6485
6486 static void
6487 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6488 {
6489     bxe_dma_free(sc, &sc->fw_stats_dma);
6490
6491     sc->fw_stats_num = 0;
6492
6493     sc->fw_stats_req_size = 0;
6494     sc->fw_stats_req = NULL;
6495     sc->fw_stats_req_mapping = 0;
6496
6497     sc->fw_stats_data_size = 0;
6498     sc->fw_stats_data = NULL;
6499     sc->fw_stats_data_mapping = 0;
6500 }
6501
6502 static int
6503 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6504 {
6505     uint8_t num_queue_stats;
6506     int num_groups;
6507
6508     /* number of queues for statistics is number of eth queues */
6509     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6510
6511     /*
6512      * Total number of FW statistics requests =
6513      *   1 for port stats + 1 for PF stats + num of queues
6514      */
6515     sc->fw_stats_num = (2 + num_queue_stats);
6516
6517     /*
6518      * Request is built from stats_query_header and an array of
6519      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6520      * rules. The real number or requests is configured in the
6521      * stats_query_header.
6522      */
6523     num_groups =
6524         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6525          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6526
6527     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6528           sc->fw_stats_num, num_groups);
6529
6530     sc->fw_stats_req_size =
6531         (sizeof(struct stats_query_header) +
6532          (num_groups * sizeof(struct stats_query_cmd_group)));
6533
6534     /*
6535      * Data for statistics requests + stats_counter.
6536      * stats_counter holds per-STORM counters that are incremented when
6537      * STORM has finished with the current request. Memory for FCoE
6538      * offloaded statistics are counted anyway, even if they will not be sent.
6539      * VF stats are not accounted for here as the data of VF stats is stored
6540      * in memory allocated by the VF, not here.
6541      */
6542     sc->fw_stats_data_size =
6543         (sizeof(struct stats_counter) +
6544          sizeof(struct per_port_stats) +
6545          sizeof(struct per_pf_stats) +
6546          /* sizeof(struct fcoe_statistics_params) + */
6547          (sizeof(struct per_queue_stats) * num_queue_stats));
6548
6549     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6550                       &sc->fw_stats_dma, "fw stats") != 0) {
6551         bxe_free_fw_stats_mem(sc);
6552         return (-1);
6553     }
6554
6555     /* set up the shortcuts */
6556
6557     sc->fw_stats_req =
6558         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6559     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6560
6561     sc->fw_stats_data =
6562         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6563                                      sc->fw_stats_req_size);
6564     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6565                                  sc->fw_stats_req_size);
6566
6567     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6568           (uintmax_t)sc->fw_stats_req_mapping);
6569
6570     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6571           (uintmax_t)sc->fw_stats_data_mapping);
6572
6573     return (0);
6574 }
6575
6576 /*
6577  * Bits map:
6578  * 0-7  - Engine0 load counter.
6579  * 8-15 - Engine1 load counter.
6580  * 16   - Engine0 RESET_IN_PROGRESS bit.
6581  * 17   - Engine1 RESET_IN_PROGRESS bit.
6582  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6583  *        function on the engine
6584  * 19   - Engine1 ONE_IS_LOADED.
6585  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6586  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6587  *        for just the one belonging to its engine).
6588  */
6589 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6590 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6591 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6592 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6593 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6594 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6595 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6596 #define BXE_GLOBAL_RESET_BIT      0x00040000
6597
6598 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6599 static void
6600 bxe_set_reset_global(struct bxe_softc *sc)
6601 {
6602     uint32_t val;
6603     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6604     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6605     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6606     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6607 }
6608
6609 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6610 static void
6611 bxe_clear_reset_global(struct bxe_softc *sc)
6612 {
6613     uint32_t val;
6614     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6615     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6616     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6617     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6618 }
6619
6620 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6621 static uint8_t
6622 bxe_reset_is_global(struct bxe_softc *sc)
6623 {
6624     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6625     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6626     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6627 }
6628
6629 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6630 static void
6631 bxe_set_reset_done(struct bxe_softc *sc)
6632 {
6633     uint32_t val;
6634     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6635                                  BXE_PATH0_RST_IN_PROG_BIT;
6636
6637     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6638
6639     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6640     /* Clear the bit */
6641     val &= ~bit;
6642     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6643
6644     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6645 }
6646
6647 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6648 static void
6649 bxe_set_reset_in_progress(struct bxe_softc *sc)
6650 {
6651     uint32_t val;
6652     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6653                                  BXE_PATH0_RST_IN_PROG_BIT;
6654
6655     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6656
6657     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6658     /* Set the bit */
6659     val |= bit;
6660     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6661
6662     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6663 }
6664
6665 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6666 static uint8_t
6667 bxe_reset_is_done(struct bxe_softc *sc,
6668                   int              engine)
6669 {
6670     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6671     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6672                             BXE_PATH0_RST_IN_PROG_BIT;
6673
6674     /* return false if bit is set */
6675     return (val & bit) ? FALSE : TRUE;
6676 }
6677
6678 /* get the load status for an engine, should be run under rtnl lock */
6679 static uint8_t
6680 bxe_get_load_status(struct bxe_softc *sc,
6681                     int              engine)
6682 {
6683     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6684                              BXE_PATH0_LOAD_CNT_MASK;
6685     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6686                               BXE_PATH0_LOAD_CNT_SHIFT;
6687     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6688
6689     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6690
6691     val = ((val & mask) >> shift);
6692
6693     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6694
6695     return (val != 0);
6696 }
6697
6698 /* set pf load mark */
6699 /* XXX needs to be under rtnl lock */
6700 static void
6701 bxe_set_pf_load(struct bxe_softc *sc)
6702 {
6703     uint32_t val;
6704     uint32_t val1;
6705     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6706                                   BXE_PATH0_LOAD_CNT_MASK;
6707     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6708                                    BXE_PATH0_LOAD_CNT_SHIFT;
6709
6710     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6711
6712     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6713     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6714
6715     /* get the current counter value */
6716     val1 = ((val & mask) >> shift);
6717
6718     /* set bit of this PF */
6719     val1 |= (1 << SC_ABS_FUNC(sc));
6720
6721     /* clear the old value */
6722     val &= ~mask;
6723
6724     /* set the new one */
6725     val |= ((val1 << shift) & mask);
6726
6727     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6728
6729     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6730 }
6731
6732 /* clear pf load mark */
6733 /* XXX needs to be under rtnl lock */
6734 static uint8_t
6735 bxe_clear_pf_load(struct bxe_softc *sc)
6736 {
6737     uint32_t val1, val;
6738     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6739                                   BXE_PATH0_LOAD_CNT_MASK;
6740     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6741                                    BXE_PATH0_LOAD_CNT_SHIFT;
6742
6743     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6744     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6745     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6746
6747     /* get the current counter value */
6748     val1 = (val & mask) >> shift;
6749
6750     /* clear bit of that PF */
6751     val1 &= ~(1 << SC_ABS_FUNC(sc));
6752
6753     /* clear the old value */
6754     val &= ~mask;
6755
6756     /* set the new one */
6757     val |= ((val1 << shift) & mask);
6758
6759     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6760     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6761     return (val1 != 0);
6762 }
6763
6764 /* send load requrest to mcp and analyze response */
6765 static int
6766 bxe_nic_load_request(struct bxe_softc *sc,
6767                      uint32_t         *load_code)
6768 {
6769     /* init fw_seq */
6770     sc->fw_seq =
6771         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6772          DRV_MSG_SEQ_NUMBER_MASK);
6773
6774     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6775
6776     /* get the current FW pulse sequence */
6777     sc->fw_drv_pulse_wr_seq =
6778         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6779          DRV_PULSE_SEQ_MASK);
6780
6781     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6782           sc->fw_drv_pulse_wr_seq);
6783
6784     /* load request */
6785     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6786                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6787
6788     /* if the MCP fails to respond we must abort */
6789     if (!(*load_code)) {
6790         BLOGE(sc, "MCP response failure!\n");
6791         return (-1);
6792     }
6793
6794     /* if MCP refused then must abort */
6795     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6796         BLOGE(sc, "MCP refused load request\n");
6797         return (-1);
6798     }
6799
6800     return (0);
6801 }
6802
6803 /*
6804  * Check whether another PF has already loaded FW to chip. In virtualized
6805  * environments a pf from anoth VM may have already initialized the device
6806  * including loading FW.
6807  */
6808 static int
6809 bxe_nic_load_analyze_req(struct bxe_softc *sc,
6810                          uint32_t         load_code)
6811 {
6812     uint32_t my_fw, loaded_fw;
6813
6814     /* is another pf loaded on this engine? */
6815     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6816         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6817         /* build my FW version dword */
6818         my_fw = (BCM_5710_FW_MAJOR_VERSION +
6819                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
6820                  (BCM_5710_FW_REVISION_VERSION << 16) +
6821                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
6822
6823         /* read loaded FW from chip */
6824         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6825         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6826               loaded_fw, my_fw);
6827
6828         /* abort nic load if version mismatch */
6829         if (my_fw != loaded_fw) {
6830             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6831                   loaded_fw, my_fw);
6832             return (-1);
6833         }
6834     }
6835
6836     return (0);
6837 }
6838
6839 /* mark PMF if applicable */
6840 static void
6841 bxe_nic_load_pmf(struct bxe_softc *sc,
6842                  uint32_t         load_code)
6843 {
6844     uint32_t ncsi_oem_data_addr;
6845
6846     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6847         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6848         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6849         /*
6850          * Barrier here for ordering between the writing to sc->port.pmf here
6851          * and reading it from the periodic task.
6852          */
6853         sc->port.pmf = 1;
6854         mb();
6855     } else {
6856         sc->port.pmf = 0;
6857     }
6858
6859     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6860
6861     /* XXX needed? */
6862     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6863         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6864             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6865             if (ncsi_oem_data_addr) {
6866                 REG_WR(sc,
6867                        (ncsi_oem_data_addr +
6868                         offsetof(struct glob_ncsi_oem_data, driver_version)),
6869                        0);
6870             }
6871         }
6872     }
6873 }
6874
6875 static void
6876 bxe_read_mf_cfg(struct bxe_softc *sc)
6877 {
6878     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6879     int abs_func;
6880     int vn;
6881
6882     if (BXE_NOMCP(sc)) {
6883         return; /* what should be the default bvalue in this case */
6884     }
6885
6886     /*
6887      * The formula for computing the absolute function number is...
6888      * For 2 port configuration (4 functions per port):
6889      *   abs_func = 2 * vn + SC_PORT + SC_PATH
6890      * For 4 port configuration (2 functions per port):
6891      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6892      */
6893     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6894         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6895         if (abs_func >= E1H_FUNC_MAX) {
6896             break;
6897         }
6898         sc->devinfo.mf_info.mf_config[vn] =
6899             MFCFG_RD(sc, func_mf_config[abs_func].config);
6900     }
6901
6902     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6903         FUNC_MF_CFG_FUNC_DISABLED) {
6904         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6905         sc->flags |= BXE_MF_FUNC_DIS;
6906     } else {
6907         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6908         sc->flags &= ~BXE_MF_FUNC_DIS;
6909     }
6910 }
6911
6912 /* acquire split MCP access lock register */
6913 static int bxe_acquire_alr(struct bxe_softc *sc)
6914 {
6915     uint32_t j, val;
6916
6917     for (j = 0; j < 1000; j++) {
6918         val = (1UL << 31);
6919         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6920         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6921         if (val & (1L << 31))
6922             break;
6923
6924         DELAY(5000);
6925     }
6926
6927     if (!(val & (1L << 31))) {
6928         BLOGE(sc, "Cannot acquire MCP access lock register\n");
6929         return (-1);
6930     }
6931
6932     return (0);
6933 }
6934
6935 /* release split MCP access lock register */
6936 static void bxe_release_alr(struct bxe_softc *sc)
6937 {
6938     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6939 }
6940
6941 static void
6942 bxe_fan_failure(struct bxe_softc *sc)
6943 {
6944     int port = SC_PORT(sc);
6945     uint32_t ext_phy_config;
6946
6947     /* mark the failure */
6948     ext_phy_config =
6949         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
6950
6951     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
6952     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
6953     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
6954              ext_phy_config);
6955
6956     /* log the failure */
6957     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
6958               "the card to prevent permanent damage. "
6959               "Please contact OEM Support for assistance\n");
6960
6961     /* XXX */
6962 #if 1
6963     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
6964 #else
6965     /*
6966      * Schedule device reset (unload)
6967      * This is due to some boards consuming sufficient power when driver is
6968      * up to overheat if fan fails.
6969      */
6970     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
6971     schedule_delayed_work(&sc->sp_rtnl_task, 0);
6972 #endif
6973 }
6974
6975 /* this function is called upon a link interrupt */
6976 static void
6977 bxe_link_attn(struct bxe_softc *sc)
6978 {
6979     uint32_t pause_enabled = 0;
6980     struct host_port_stats *pstats;
6981     int cmng_fns;
6982     struct bxe_fastpath *fp;
6983     int i;
6984
6985     /* Make sure that we are synced with the current statistics */
6986     bxe_stats_handle(sc, STATS_EVENT_STOP);
6987
6988     elink_link_update(&sc->link_params, &sc->link_vars);
6989
6990     if (sc->link_vars.link_up) {
6991
6992         /* dropless flow control */
6993         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
6994             pause_enabled = 0;
6995
6996             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6997                 pause_enabled = 1;
6998             }
6999
7000             REG_WR(sc,
7001                    (BAR_USTRORM_INTMEM +
7002                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7003                    pause_enabled);
7004         }
7005
7006         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7007             pstats = BXE_SP(sc, port_stats);
7008             /* reset old mac stats */
7009             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7010         }
7011
7012         if (sc->state == BXE_STATE_OPEN) {
7013             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7014         }
7015
7016         /* Restart tx when the link comes back. */
7017         FOR_EACH_ETH_QUEUE(sc, i) {
7018             fp = &sc->fp[i];
7019             taskqueue_enqueue(fp->tq, &fp->tx_task);
7020         }
7021     }
7022
7023     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7024         cmng_fns = bxe_get_cmng_fns_mode(sc);
7025
7026         if (cmng_fns != CMNG_FNS_NONE) {
7027             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7028             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7029         } else {
7030             /* rate shaping and fairness are disabled */
7031             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7032         }
7033     }
7034
7035     bxe_link_report_locked(sc);
7036
7037     if (IS_MF(sc)) {
7038         ; // XXX bxe_link_sync_notify(sc);
7039     }
7040 }
7041
7042 static void
7043 bxe_attn_int_asserted(struct bxe_softc *sc,
7044                       uint32_t         asserted)
7045 {
7046     int port = SC_PORT(sc);
7047     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7048                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7049     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7050                                         NIG_REG_MASK_INTERRUPT_PORT0;
7051     uint32_t aeu_mask;
7052     uint32_t nig_mask = 0;
7053     uint32_t reg_addr;
7054     uint32_t igu_acked;
7055     uint32_t cnt;
7056
7057     if (sc->attn_state & asserted) {
7058         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7059     }
7060
7061     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7062
7063     aeu_mask = REG_RD(sc, aeu_addr);
7064
7065     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7066           aeu_mask, asserted);
7067
7068     aeu_mask &= ~(asserted & 0x3ff);
7069
7070     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7071
7072     REG_WR(sc, aeu_addr, aeu_mask);
7073
7074     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7075
7076     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7077     sc->attn_state |= asserted;
7078     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7079
7080     if (asserted & ATTN_HARD_WIRED_MASK) {
7081         if (asserted & ATTN_NIG_FOR_FUNC) {
7082
7083             bxe_acquire_phy_lock(sc);
7084             /* save nig interrupt mask */
7085             nig_mask = REG_RD(sc, nig_int_mask_addr);
7086
7087             /* If nig_mask is not set, no need to call the update function */
7088             if (nig_mask) {
7089                 REG_WR(sc, nig_int_mask_addr, 0);
7090
7091                 bxe_link_attn(sc);
7092             }
7093
7094             /* handle unicore attn? */
7095         }
7096
7097         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7098             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7099         }
7100
7101         if (asserted & GPIO_2_FUNC) {
7102             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7103         }
7104
7105         if (asserted & GPIO_3_FUNC) {
7106             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7107         }
7108
7109         if (asserted & GPIO_4_FUNC) {
7110             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7111         }
7112
7113         if (port == 0) {
7114             if (asserted & ATTN_GENERAL_ATTN_1) {
7115                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7116                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7117             }
7118             if (asserted & ATTN_GENERAL_ATTN_2) {
7119                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7120                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7121             }
7122             if (asserted & ATTN_GENERAL_ATTN_3) {
7123                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7124                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7125             }
7126         } else {
7127             if (asserted & ATTN_GENERAL_ATTN_4) {
7128                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7129                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7130             }
7131             if (asserted & ATTN_GENERAL_ATTN_5) {
7132                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7133                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7134             }
7135             if (asserted & ATTN_GENERAL_ATTN_6) {
7136                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7137                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7138             }
7139         }
7140     } /* hardwired */
7141
7142     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7143         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7144     } else {
7145         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7146     }
7147
7148     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7149           asserted,
7150           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7151     REG_WR(sc, reg_addr, asserted);
7152
7153     /* now set back the mask */
7154     if (asserted & ATTN_NIG_FOR_FUNC) {
7155         /*
7156          * Verify that IGU ack through BAR was written before restoring
7157          * NIG mask. This loop should exit after 2-3 iterations max.
7158          */
7159         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7160             cnt = 0;
7161
7162             do {
7163                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7164             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7165                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7166
7167             if (!igu_acked) {
7168                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7169             }
7170
7171             mb();
7172         }
7173
7174         REG_WR(sc, nig_int_mask_addr, nig_mask);
7175
7176         bxe_release_phy_lock(sc);
7177     }
7178 }
7179
7180 static void
7181 bxe_print_next_block(struct bxe_softc *sc,
7182                      int              idx,
7183                      const char       *blk)
7184 {
7185     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7186 }
7187
7188 static int
7189 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7190                               uint32_t         sig,
7191                               int              par_num,
7192                               uint8_t          print)
7193 {
7194     uint32_t cur_bit = 0;
7195     int i = 0;
7196
7197     for (i = 0; sig; i++) {
7198         cur_bit = ((uint32_t)0x1 << i);
7199         if (sig & cur_bit) {
7200             switch (cur_bit) {
7201             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7202                 if (print)
7203                     bxe_print_next_block(sc, par_num++, "BRB");
7204                 break;
7205             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7206                 if (print)
7207                     bxe_print_next_block(sc, par_num++, "PARSER");
7208                 break;
7209             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7210                 if (print)
7211                     bxe_print_next_block(sc, par_num++, "TSDM");
7212                 break;
7213             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7214                 if (print)
7215                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7216                 break;
7217             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7218                 if (print)
7219                     bxe_print_next_block(sc, par_num++, "TCM");
7220                 break;
7221             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7222                 if (print)
7223                     bxe_print_next_block(sc, par_num++, "TSEMI");
7224                 break;
7225             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7226                 if (print)
7227                     bxe_print_next_block(sc, par_num++, "XPB");
7228                 break;
7229             }
7230
7231             /* Clear the bit */
7232             sig &= ~cur_bit;
7233         }
7234     }
7235
7236     return (par_num);
7237 }
7238
7239 static int
7240 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7241                               uint32_t         sig,
7242                               int              par_num,
7243                               uint8_t          *global,
7244                               uint8_t          print)
7245 {
7246     int i = 0;
7247     uint32_t cur_bit = 0;
7248     for (i = 0; sig; i++) {
7249         cur_bit = ((uint32_t)0x1 << i);
7250         if (sig & cur_bit) {
7251             switch (cur_bit) {
7252             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7253                 if (print)
7254                     bxe_print_next_block(sc, par_num++, "PBF");
7255                 break;
7256             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7257                 if (print)
7258                     bxe_print_next_block(sc, par_num++, "QM");
7259                 break;
7260             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7261                 if (print)
7262                     bxe_print_next_block(sc, par_num++, "TM");
7263                 break;
7264             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7265                 if (print)
7266                     bxe_print_next_block(sc, par_num++, "XSDM");
7267                 break;
7268             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7269                 if (print)
7270                     bxe_print_next_block(sc, par_num++, "XCM");
7271                 break;
7272             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7273                 if (print)
7274                     bxe_print_next_block(sc, par_num++, "XSEMI");
7275                 break;
7276             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7277                 if (print)
7278                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7279                 break;
7280             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7281                 if (print)
7282                     bxe_print_next_block(sc, par_num++, "NIG");
7283                 break;
7284             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7285                 if (print)
7286                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7287                 *global = TRUE;
7288                 break;
7289             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7290                 if (print)
7291                     bxe_print_next_block(sc, par_num++, "DEBUG");
7292                 break;
7293             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7294                 if (print)
7295                     bxe_print_next_block(sc, par_num++, "USDM");
7296                 break;
7297             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7298                 if (print)
7299                     bxe_print_next_block(sc, par_num++, "UCM");
7300                 break;
7301             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7302                 if (print)
7303                     bxe_print_next_block(sc, par_num++, "USEMI");
7304                 break;
7305             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7306                 if (print)
7307                     bxe_print_next_block(sc, par_num++, "UPB");
7308                 break;
7309             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7310                 if (print)
7311                     bxe_print_next_block(sc, par_num++, "CSDM");
7312                 break;
7313             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7314                 if (print)
7315                     bxe_print_next_block(sc, par_num++, "CCM");
7316                 break;
7317             }
7318
7319             /* Clear the bit */
7320             sig &= ~cur_bit;
7321         }
7322     }
7323
7324     return (par_num);
7325 }
7326
7327 static int
7328 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7329                               uint32_t         sig,
7330                               int              par_num,
7331                               uint8_t          print)
7332 {
7333     uint32_t cur_bit = 0;
7334     int i = 0;
7335
7336     for (i = 0; sig; i++) {
7337         cur_bit = ((uint32_t)0x1 << i);
7338         if (sig & cur_bit) {
7339             switch (cur_bit) {
7340             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7341                 if (print)
7342                     bxe_print_next_block(sc, par_num++, "CSEMI");
7343                 break;
7344             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7345                 if (print)
7346                     bxe_print_next_block(sc, par_num++, "PXP");
7347                 break;
7348             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7349                 if (print)
7350                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7351                 break;
7352             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7353                 if (print)
7354                     bxe_print_next_block(sc, par_num++, "CFC");
7355                 break;
7356             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7357                 if (print)
7358                     bxe_print_next_block(sc, par_num++, "CDU");
7359                 break;
7360             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7361                 if (print)
7362                     bxe_print_next_block(sc, par_num++, "DMAE");
7363                 break;
7364             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7365                 if (print)
7366                     bxe_print_next_block(sc, par_num++, "IGU");
7367                 break;
7368             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7369                 if (print)
7370                     bxe_print_next_block(sc, par_num++, "MISC");
7371                 break;
7372             }
7373
7374             /* Clear the bit */
7375             sig &= ~cur_bit;
7376         }
7377     }
7378
7379     return (par_num);
7380 }
7381
7382 static int
7383 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7384                               uint32_t         sig,
7385                               int              par_num,
7386                               uint8_t          *global,
7387                               uint8_t          print)
7388 {
7389     uint32_t cur_bit = 0;
7390     int i = 0;
7391
7392     for (i = 0; sig; i++) {
7393         cur_bit = ((uint32_t)0x1 << i);
7394         if (sig & cur_bit) {
7395             switch (cur_bit) {
7396             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7397                 if (print)
7398                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7399                 *global = TRUE;
7400                 break;
7401             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7402                 if (print)
7403                     bxe_print_next_block(sc, par_num++,
7404                               "MCP UMP RX");
7405                 *global = TRUE;
7406                 break;
7407             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7408                 if (print)
7409                     bxe_print_next_block(sc, par_num++,
7410                               "MCP UMP TX");
7411                 *global = TRUE;
7412                 break;
7413             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7414                 if (print)
7415                     bxe_print_next_block(sc, par_num++,
7416                               "MCP SCPAD");
7417                 *global = TRUE;
7418                 break;
7419             }
7420
7421             /* Clear the bit */
7422             sig &= ~cur_bit;
7423         }
7424     }
7425
7426     return (par_num);
7427 }
7428
7429 static int
7430 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7431                               uint32_t         sig,
7432                               int              par_num,
7433                               uint8_t          print)
7434 {
7435     uint32_t cur_bit = 0;
7436     int i = 0;
7437
7438     for (i = 0; sig; i++) {
7439         cur_bit = ((uint32_t)0x1 << i);
7440         if (sig & cur_bit) {
7441             switch (cur_bit) {
7442             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7443                 if (print)
7444                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7445                 break;
7446             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7447                 if (print)
7448                     bxe_print_next_block(sc, par_num++, "ATC");
7449                 break;
7450             }
7451
7452             /* Clear the bit */
7453             sig &= ~cur_bit;
7454         }
7455     }
7456
7457     return (par_num);
7458 }
7459
7460 static uint8_t
7461 bxe_parity_attn(struct bxe_softc *sc,
7462                 uint8_t          *global,
7463                 uint8_t          print,
7464                 uint32_t         *sig)
7465 {
7466     int par_num = 0;
7467
7468     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7469         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7470         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7471         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7472         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7473         BLOGE(sc, "Parity error: HW block parity attention:\n"
7474                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7475               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7476               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7477               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7478               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7479               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7480
7481         if (print)
7482             BLOGI(sc, "Parity errors detected in blocks: ");
7483
7484         par_num =
7485             bxe_check_blocks_with_parity0(sc, sig[0] &
7486                                           HW_PRTY_ASSERT_SET_0,
7487                                           par_num, print);
7488         par_num =
7489             bxe_check_blocks_with_parity1(sc, sig[1] &
7490                                           HW_PRTY_ASSERT_SET_1,
7491                                           par_num, global, print);
7492         par_num =
7493             bxe_check_blocks_with_parity2(sc, sig[2] &
7494                                           HW_PRTY_ASSERT_SET_2,
7495                                           par_num, print);
7496         par_num =
7497             bxe_check_blocks_with_parity3(sc, sig[3] &
7498                                           HW_PRTY_ASSERT_SET_3,
7499                                           par_num, global, print);
7500         par_num =
7501             bxe_check_blocks_with_parity4(sc, sig[4] &
7502                                           HW_PRTY_ASSERT_SET_4,
7503                                           par_num, print);
7504
7505         if (print)
7506             BLOGI(sc, "\n");
7507
7508         return (TRUE);
7509     }
7510
7511     return (FALSE);
7512 }
7513
7514 static uint8_t
7515 bxe_chk_parity_attn(struct bxe_softc *sc,
7516                     uint8_t          *global,
7517                     uint8_t          print)
7518 {
7519     struct attn_route attn = { {0} };
7520     int port = SC_PORT(sc);
7521
7522     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7523     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7524     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7525     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7526
7527     /*
7528      * Since MCP attentions can't be disabled inside the block, we need to
7529      * read AEU registers to see whether they're currently disabled
7530      */
7531     attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7532                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7533                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7534                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7535
7536
7537     if (!CHIP_IS_E1x(sc))
7538         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7539
7540     return (bxe_parity_attn(sc, global, print, attn.sig));
7541 }
7542
7543 static void
7544 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7545                          uint32_t         attn)
7546 {
7547     uint32_t val;
7548
7549     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7550         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7551         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7552         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7553             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7554         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7555             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7556         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7557             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7558         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7559             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7560         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7561             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7562         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7563             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7564         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7565             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7566         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7567             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7568         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7569             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7570     }
7571
7572     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7573         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7574         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7575         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7576             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7577         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7578             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7579         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7580             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7581         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7582             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7583         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7584             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7585         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7586             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7587     }
7588
7589     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7590                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7591         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7592               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7593                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7594     }
7595 }
7596
7597 static void
7598 bxe_e1h_disable(struct bxe_softc *sc)
7599 {
7600     int port = SC_PORT(sc);
7601
7602     bxe_tx_disable(sc);
7603
7604     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7605 }
7606
7607 static void
7608 bxe_e1h_enable(struct bxe_softc *sc)
7609 {
7610     int port = SC_PORT(sc);
7611
7612     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7613
7614     // XXX bxe_tx_enable(sc);
7615 }
7616
7617 /*
7618  * called due to MCP event (on pmf):
7619  *   reread new bandwidth configuration
7620  *   configure FW
7621  *   notify others function about the change
7622  */
7623 static void
7624 bxe_config_mf_bw(struct bxe_softc *sc)
7625 {
7626     if (sc->link_vars.link_up) {
7627         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7628         // XXX bxe_link_sync_notify(sc);
7629     }
7630
7631     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7632 }
7633
7634 static void
7635 bxe_set_mf_bw(struct bxe_softc *sc)
7636 {
7637     bxe_config_mf_bw(sc);
7638     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7639 }
7640
7641 static void
7642 bxe_handle_eee_event(struct bxe_softc *sc)
7643 {
7644     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7645     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7646 }
7647
7648 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7649
7650 static void
7651 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7652 {
7653     struct eth_stats_info *ether_stat =
7654         &sc->sp->drv_info_to_mcp.ether_stat;
7655
7656     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7657             ETH_STAT_INFO_VERSION_LEN);
7658
7659     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7660     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7661                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7662                                           ether_stat->mac_local + MAC_PAD,
7663                                           MAC_PAD, ETH_ALEN);
7664
7665     ether_stat->mtu_size = sc->mtu;
7666
7667     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7668     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7669         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7670     }
7671
7672     // XXX ether_stat->feature_flags |= ???;
7673
7674     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7675
7676     ether_stat->txq_size = sc->tx_ring_size;
7677     ether_stat->rxq_size = sc->rx_ring_size;
7678 }
7679
7680 static void
7681 bxe_handle_drv_info_req(struct bxe_softc *sc)
7682 {
7683     enum drv_info_opcode op_code;
7684     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7685
7686     /* if drv_info version supported by MFW doesn't match - send NACK */
7687     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7688         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7689         return;
7690     }
7691
7692     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7693                DRV_INFO_CONTROL_OP_CODE_SHIFT);
7694
7695     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7696
7697     switch (op_code) {
7698     case ETH_STATS_OPCODE:
7699         bxe_drv_info_ether_stat(sc);
7700         break;
7701     case FCOE_STATS_OPCODE:
7702     case ISCSI_STATS_OPCODE:
7703     default:
7704         /* if op code isn't supported - send NACK */
7705         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7706         return;
7707     }
7708
7709     /*
7710      * If we got drv_info attn from MFW then these fields are defined in
7711      * shmem2 for sure
7712      */
7713     SHMEM2_WR(sc, drv_info_host_addr_lo,
7714               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7715     SHMEM2_WR(sc, drv_info_host_addr_hi,
7716               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7717
7718     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7719 }
7720
7721 static void
7722 bxe_dcc_event(struct bxe_softc *sc,
7723               uint32_t         dcc_event)
7724 {
7725     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7726
7727     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7728         /*
7729          * This is the only place besides the function initialization
7730          * where the sc->flags can change so it is done without any
7731          * locks
7732          */
7733         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7734             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7735             sc->flags |= BXE_MF_FUNC_DIS;
7736             bxe_e1h_disable(sc);
7737         } else {
7738             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7739             sc->flags &= ~BXE_MF_FUNC_DIS;
7740             bxe_e1h_enable(sc);
7741         }
7742         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7743     }
7744
7745     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7746         bxe_config_mf_bw(sc);
7747         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7748     }
7749
7750     /* Report results to MCP */
7751     if (dcc_event)
7752         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7753     else
7754         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7755 }
7756
7757 static void
7758 bxe_pmf_update(struct bxe_softc *sc)
7759 {
7760     int port = SC_PORT(sc);
7761     uint32_t val;
7762
7763     sc->port.pmf = 1;
7764     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7765
7766     /*
7767      * We need the mb() to ensure the ordering between the writing to
7768      * sc->port.pmf here and reading it from the bxe_periodic_task().
7769      */
7770     mb();
7771
7772     /* queue a periodic task */
7773     // XXX schedule task...
7774
7775     // XXX bxe_dcbx_pmf_update(sc);
7776
7777     /* enable nig attention */
7778     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7779     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7780         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7781         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7782     } else if (!CHIP_IS_E1x(sc)) {
7783         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7784         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7785     }
7786
7787     bxe_stats_handle(sc, STATS_EVENT_PMF);
7788 }
7789
7790 static int
7791 bxe_mc_assert(struct bxe_softc *sc)
7792 {
7793     char last_idx;
7794     int i, rc = 0;
7795     uint32_t row0, row1, row2, row3;
7796
7797     /* XSTORM */
7798     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7799     if (last_idx)
7800         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7801
7802     /* print the asserts */
7803     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7804
7805         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7806         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7807         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7808         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7809
7810         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7811             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7812                   i, row3, row2, row1, row0);
7813             rc++;
7814         } else {
7815             break;
7816         }
7817     }
7818
7819     /* TSTORM */
7820     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7821     if (last_idx) {
7822         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7823     }
7824
7825     /* print the asserts */
7826     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7827
7828         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7829         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7830         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7831         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7832
7833         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7834             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7835                   i, row3, row2, row1, row0);
7836             rc++;
7837         } else {
7838             break;
7839         }
7840     }
7841
7842     /* CSTORM */
7843     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7844     if (last_idx) {
7845         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7846     }
7847
7848     /* print the asserts */
7849     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7850
7851         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7852         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7853         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7854         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7855
7856         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7857             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7858                   i, row3, row2, row1, row0);
7859             rc++;
7860         } else {
7861             break;
7862         }
7863     }
7864
7865     /* USTORM */
7866     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7867     if (last_idx) {
7868         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7869     }
7870
7871     /* print the asserts */
7872     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7873
7874         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7875         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7876         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7877         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7878
7879         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7880             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7881                   i, row3, row2, row1, row0);
7882             rc++;
7883         } else {
7884             break;
7885         }
7886     }
7887
7888     return (rc);
7889 }
7890
7891 static void
7892 bxe_attn_int_deasserted3(struct bxe_softc *sc,
7893                          uint32_t         attn)
7894 {
7895     int func = SC_FUNC(sc);
7896     uint32_t val;
7897
7898     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7899
7900         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7901
7902             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7903             bxe_read_mf_cfg(sc);
7904             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7905                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7906             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7907
7908             if (val & DRV_STATUS_DCC_EVENT_MASK)
7909                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7910
7911             if (val & DRV_STATUS_SET_MF_BW)
7912                 bxe_set_mf_bw(sc);
7913
7914             if (val & DRV_STATUS_DRV_INFO_REQ)
7915                 bxe_handle_drv_info_req(sc);
7916
7917             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7918                 bxe_pmf_update(sc);
7919
7920             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7921                 bxe_handle_eee_event(sc);
7922
7923             if (sc->link_vars.periodic_flags &
7924                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7925                 /* sync with link */
7926                 bxe_acquire_phy_lock(sc);
7927                 sc->link_vars.periodic_flags &=
7928                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7929                 bxe_release_phy_lock(sc);
7930                 if (IS_MF(sc))
7931                     ; // XXX bxe_link_sync_notify(sc);
7932                 bxe_link_report(sc);
7933             }
7934
7935             /*
7936              * Always call it here: bxe_link_report() will
7937              * prevent the link indication duplication.
7938              */
7939             bxe_link_status_update(sc);
7940
7941         } else if (attn & BXE_MC_ASSERT_BITS) {
7942
7943             BLOGE(sc, "MC assert!\n");
7944             bxe_mc_assert(sc);
7945             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7946             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7947             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
7948             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
7949             bxe_panic(sc, ("MC assert!\n"));
7950
7951         } else if (attn & BXE_MCP_ASSERT) {
7952
7953             BLOGE(sc, "MCP assert!\n");
7954             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
7955             // XXX bxe_fw_dump(sc);
7956
7957         } else {
7958             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
7959         }
7960     }
7961
7962     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
7963         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
7964         if (attn & BXE_GRC_TIMEOUT) {
7965             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
7966             BLOGE(sc, "GRC time-out 0x%08x\n", val);
7967         }
7968         if (attn & BXE_GRC_RSV) {
7969             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
7970             BLOGE(sc, "GRC reserved 0x%08x\n", val);
7971         }
7972         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
7973     }
7974 }
7975
7976 static void
7977 bxe_attn_int_deasserted2(struct bxe_softc *sc,
7978                          uint32_t         attn)
7979 {
7980     int port = SC_PORT(sc);
7981     int reg_offset;
7982     uint32_t val0, mask0, val1, mask1;
7983     uint32_t val;
7984
7985     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
7986         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
7987         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
7988         /* CFC error attention */
7989         if (val & 0x2) {
7990             BLOGE(sc, "FATAL error from CFC\n");
7991         }
7992     }
7993
7994     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
7995         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
7996         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
7997         /* RQ_USDMDP_FIFO_OVERFLOW */
7998         if (val & 0x18000) {
7999             BLOGE(sc, "FATAL error from PXP\n");
8000         }
8001
8002         if (!CHIP_IS_E1x(sc)) {
8003             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8004             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8005         }
8006     }
8007
8008 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8009 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8010
8011     if (attn & AEU_PXP2_HW_INT_BIT) {
8012         /*  CQ47854 workaround do not panic on
8013          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8014          */
8015         if (!CHIP_IS_E1x(sc)) {
8016             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8017             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8018             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8019             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8020             /*
8021              * If the only PXP2_EOP_ERROR_BIT is set in
8022              * STS0 and STS1 - clear it
8023              *
8024              * probably we lose additional attentions between
8025              * STS0 and STS_CLR0, in this case user will not
8026              * be notified about them
8027              */
8028             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8029                 !(val1 & mask1))
8030                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8031
8032             /* print the register, since no one can restore it */
8033             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8034
8035             /*
8036              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8037              * then notify
8038              */
8039             if (val0 & PXP2_EOP_ERROR_BIT) {
8040                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8041
8042                 /*
8043                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8044                  * set then clear attention from PXP2 block without panic
8045                  */
8046                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8047                     ((val1 & mask1) == 0))
8048                     attn &= ~AEU_PXP2_HW_INT_BIT;
8049             }
8050         }
8051     }
8052
8053     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8054         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8055                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8056
8057         val = REG_RD(sc, reg_offset);
8058         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8059         REG_WR(sc, reg_offset, val);
8060
8061         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8062               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8063         bxe_panic(sc, ("HW block attention set2\n"));
8064     }
8065 }
8066
8067 static void
8068 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8069                          uint32_t         attn)
8070 {
8071     int port = SC_PORT(sc);
8072     int reg_offset;
8073     uint32_t val;
8074
8075     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8076         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8077         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8078         /* DORQ discard attention */
8079         if (val & 0x2) {
8080             BLOGE(sc, "FATAL error from DORQ\n");
8081         }
8082     }
8083
8084     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8085         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8086                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8087
8088         val = REG_RD(sc, reg_offset);
8089         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8090         REG_WR(sc, reg_offset, val);
8091
8092         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8093               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8094         bxe_panic(sc, ("HW block attention set1\n"));
8095     }
8096 }
8097
8098 static void
8099 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8100                          uint32_t         attn)
8101 {
8102     int port = SC_PORT(sc);
8103     int reg_offset;
8104     uint32_t val;
8105
8106     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8107                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8108
8109     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8110         val = REG_RD(sc, reg_offset);
8111         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8112         REG_WR(sc, reg_offset, val);
8113
8114         BLOGW(sc, "SPIO5 hw attention\n");
8115
8116         /* Fan failure attention */
8117         elink_hw_reset_phy(&sc->link_params);
8118         bxe_fan_failure(sc);
8119     }
8120
8121     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8122         bxe_acquire_phy_lock(sc);
8123         elink_handle_module_detect_int(&sc->link_params);
8124         bxe_release_phy_lock(sc);
8125     }
8126
8127     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8128         val = REG_RD(sc, reg_offset);
8129         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8130         REG_WR(sc, reg_offset, val);
8131
8132         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8133                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8134     }
8135 }
8136
8137 static void
8138 bxe_attn_int_deasserted(struct bxe_softc *sc,
8139                         uint32_t         deasserted)
8140 {
8141     struct attn_route attn;
8142     struct attn_route *group_mask;
8143     int port = SC_PORT(sc);
8144     int index;
8145     uint32_t reg_addr;
8146     uint32_t val;
8147     uint32_t aeu_mask;
8148     uint8_t global = FALSE;
8149
8150     /*
8151      * Need to take HW lock because MCP or other port might also
8152      * try to handle this event.
8153      */
8154     bxe_acquire_alr(sc);
8155
8156     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8157         /* XXX
8158          * In case of parity errors don't handle attentions so that
8159          * other function would "see" parity errors.
8160          */
8161         sc->recovery_state = BXE_RECOVERY_INIT;
8162         // XXX schedule a recovery task...
8163         /* disable HW interrupts */
8164         bxe_int_disable(sc);
8165         bxe_release_alr(sc);
8166         return;
8167     }
8168
8169     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8170     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8171     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8172     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8173     if (!CHIP_IS_E1x(sc)) {
8174         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8175     } else {
8176         attn.sig[4] = 0;
8177     }
8178
8179     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8180           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8181
8182     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8183         if (deasserted & (1 << index)) {
8184             group_mask = &sc->attn_group[index];
8185
8186             BLOGD(sc, DBG_INTR,
8187                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8188                   group_mask->sig[0], group_mask->sig[1],
8189                   group_mask->sig[2], group_mask->sig[3],
8190                   group_mask->sig[4]);
8191
8192             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8193             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8194             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8195             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8196             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8197         }
8198     }
8199
8200     bxe_release_alr(sc);
8201
8202     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8203         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8204                     COMMAND_REG_ATTN_BITS_CLR);
8205     } else {
8206         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8207     }
8208
8209     val = ~deasserted;
8210     BLOGD(sc, DBG_INTR,
8211           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8212           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8213     REG_WR(sc, reg_addr, val);
8214
8215     if (~sc->attn_state & deasserted) {
8216         BLOGE(sc, "IGU error\n");
8217     }
8218
8219     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8220                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8221
8222     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8223
8224     aeu_mask = REG_RD(sc, reg_addr);
8225
8226     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8227           aeu_mask, deasserted);
8228     aeu_mask |= (deasserted & 0x3ff);
8229     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8230
8231     REG_WR(sc, reg_addr, aeu_mask);
8232     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8233
8234     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8235     sc->attn_state &= ~deasserted;
8236     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8237 }
8238
8239 static void
8240 bxe_attn_int(struct bxe_softc *sc)
8241 {
8242     /* read local copy of bits */
8243     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8244     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8245     uint32_t attn_state = sc->attn_state;
8246
8247     /* look for changed bits */
8248     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8249     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8250
8251     BLOGD(sc, DBG_INTR,
8252           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8253           attn_bits, attn_ack, asserted, deasserted);
8254
8255     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8256         BLOGE(sc, "BAD attention state\n");
8257     }
8258
8259     /* handle bits that were raised */
8260     if (asserted) {
8261         bxe_attn_int_asserted(sc, asserted);
8262     }
8263
8264     if (deasserted) {
8265         bxe_attn_int_deasserted(sc, deasserted);
8266     }
8267 }
8268
8269 static uint16_t
8270 bxe_update_dsb_idx(struct bxe_softc *sc)
8271 {
8272     struct host_sp_status_block *def_sb = sc->def_sb;
8273     uint16_t rc = 0;
8274
8275     mb(); /* status block is written to by the chip */
8276
8277     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8278         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8279         rc |= BXE_DEF_SB_ATT_IDX;
8280     }
8281
8282     if (sc->def_idx != def_sb->sp_sb.running_index) {
8283         sc->def_idx = def_sb->sp_sb.running_index;
8284         rc |= BXE_DEF_SB_IDX;
8285     }
8286
8287     mb();
8288
8289     return (rc);
8290 }
8291
8292 static inline struct ecore_queue_sp_obj *
8293 bxe_cid_to_q_obj(struct bxe_softc *sc,
8294                  uint32_t         cid)
8295 {
8296     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8297     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8298 }
8299
8300 static void
8301 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8302 {
8303     struct ecore_mcast_ramrod_params rparam;
8304     int rc;
8305
8306     memset(&rparam, 0, sizeof(rparam));
8307
8308     rparam.mcast_obj = &sc->mcast_obj;
8309
8310     BXE_MCAST_LOCK(sc);
8311
8312     /* clear pending state for the last command */
8313     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8314
8315     /* if there are pending mcast commands - send them */
8316     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8317         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8318         if (rc < 0) {
8319             BLOGD(sc, DBG_SP,
8320                 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8321         }
8322     }
8323
8324     BXE_MCAST_UNLOCK(sc);
8325 }
8326
8327 static void
8328 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8329                               union event_ring_elem *elem)
8330 {
8331     unsigned long ramrod_flags = 0;
8332     int rc = 0;
8333     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8334     struct ecore_vlan_mac_obj *vlan_mac_obj;
8335
8336     /* always push next commands out, don't wait here */
8337     bit_set(&ramrod_flags, RAMROD_CONT);
8338
8339     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8340     case ECORE_FILTER_MAC_PENDING:
8341         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8342         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8343         break;
8344
8345     case ECORE_FILTER_MCAST_PENDING:
8346         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8347         /*
8348          * This is only relevant for 57710 where multicast MACs are
8349          * configured as unicast MACs using the same ramrod.
8350          */
8351         bxe_handle_mcast_eqe(sc);
8352         return;
8353
8354     default:
8355         BLOGE(sc, "Unsupported classification command: %d\n",
8356               elem->message.data.eth_event.echo);
8357         return;
8358     }
8359
8360     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8361
8362     if (rc < 0) {
8363         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8364     } else if (rc > 0) {
8365         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8366     }
8367 }
8368
8369 static void
8370 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8371                        union event_ring_elem *elem)
8372 {
8373     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8374
8375     /* send rx_mode command again if was requested */
8376     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8377                                &sc->sp_state)) {
8378         bxe_set_storm_rx_mode(sc);
8379     }
8380 }
8381
8382 static void
8383 bxe_update_eq_prod(struct bxe_softc *sc,
8384                    uint16_t         prod)
8385 {
8386     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8387     wmb(); /* keep prod updates ordered */
8388 }
8389
8390 static void
8391 bxe_eq_int(struct bxe_softc *sc)
8392 {
8393     uint16_t hw_cons, sw_cons, sw_prod;
8394     union event_ring_elem *elem;
8395     uint8_t echo;
8396     uint32_t cid;
8397     uint8_t opcode;
8398     int spqe_cnt = 0;
8399     struct ecore_queue_sp_obj *q_obj;
8400     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8401     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8402
8403     hw_cons = le16toh(*sc->eq_cons_sb);
8404
8405     /*
8406      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8407      * when we get to the next-page we need to adjust so the loop
8408      * condition below will be met. The next element is the size of a
8409      * regular element and hence incrementing by 1
8410      */
8411     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8412         hw_cons++;
8413     }
8414
8415     /*
8416      * This function may never run in parallel with itself for a
8417      * specific sc and no need for a read memory barrier here.
8418      */
8419     sw_cons = sc->eq_cons;
8420     sw_prod = sc->eq_prod;
8421
8422     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8423           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8424
8425     for (;
8426          sw_cons != hw_cons;
8427          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8428
8429         elem = &sc->eq[EQ_DESC(sw_cons)];
8430
8431         /* elem CID originates from FW, actually LE */
8432         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8433         opcode = elem->message.opcode;
8434
8435         /* handle eq element */
8436         switch (opcode) {
8437
8438         case EVENT_RING_OPCODE_STAT_QUERY:
8439             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8440                   sc->stats_comp++);
8441             /* nothing to do with stats comp */
8442             goto next_spqe;
8443
8444         case EVENT_RING_OPCODE_CFC_DEL:
8445             /* handle according to cid range */
8446             /* we may want to verify here that the sc state is HALTING */
8447             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8448             q_obj = bxe_cid_to_q_obj(sc, cid);
8449             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8450                 break;
8451             }
8452             goto next_spqe;
8453
8454         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8455             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8456             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8457                 break;
8458             }
8459             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8460             goto next_spqe;
8461
8462         case EVENT_RING_OPCODE_START_TRAFFIC:
8463             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8464             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8465                 break;
8466             }
8467             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8468             goto next_spqe;
8469
8470         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8471             echo = elem->message.data.function_update_event.echo;
8472             if (echo == SWITCH_UPDATE) {
8473                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8474                 if (f_obj->complete_cmd(sc, f_obj,
8475                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8476                     break;
8477                 }
8478             }
8479             else {
8480                 BLOGD(sc, DBG_SP,
8481                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8482             }
8483             goto next_spqe;
8484
8485         case EVENT_RING_OPCODE_FORWARD_SETUP:
8486             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8487             if (q_obj->complete_cmd(sc, q_obj,
8488                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8489                 break;
8490             }
8491             goto next_spqe;
8492
8493         case EVENT_RING_OPCODE_FUNCTION_START:
8494             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8495             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8496                 break;
8497             }
8498             goto next_spqe;
8499
8500         case EVENT_RING_OPCODE_FUNCTION_STOP:
8501             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8502             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8503                 break;
8504             }
8505             goto next_spqe;
8506         }
8507
8508         switch (opcode | sc->state) {
8509         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8510         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8511             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8512             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8513             rss_raw->clear_pending(rss_raw);
8514             break;
8515
8516         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8517         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8518         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8519         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8520         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8521         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8522             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8523             bxe_handle_classification_eqe(sc, elem);
8524             break;
8525
8526         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8527         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8528         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8529             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8530             bxe_handle_mcast_eqe(sc);
8531             break;
8532
8533         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8534         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8535         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8536             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8537             bxe_handle_rx_mode_eqe(sc, elem);
8538             break;
8539
8540         default:
8541             /* unknown event log error and continue */
8542             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8543                   elem->message.opcode, sc->state);
8544         }
8545
8546 next_spqe:
8547         spqe_cnt++;
8548     } /* for */
8549
8550     mb();
8551     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8552
8553     sc->eq_cons = sw_cons;
8554     sc->eq_prod = sw_prod;
8555
8556     /* make sure that above mem writes were issued towards the memory */
8557     wmb();
8558
8559     /* update producer */
8560     bxe_update_eq_prod(sc, sc->eq_prod);
8561 }
8562
8563 static void
8564 bxe_handle_sp_tq(void *context,
8565                  int  pending)
8566 {
8567     struct bxe_softc *sc = (struct bxe_softc *)context;
8568     uint16_t status;
8569
8570     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8571
8572     /* what work needs to be performed? */
8573     status = bxe_update_dsb_idx(sc);
8574
8575     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8576
8577     /* HW attentions */
8578     if (status & BXE_DEF_SB_ATT_IDX) {
8579         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8580         bxe_attn_int(sc);
8581         status &= ~BXE_DEF_SB_ATT_IDX;
8582     }
8583
8584     /* SP events: STAT_QUERY and others */
8585     if (status & BXE_DEF_SB_IDX) {
8586         /* handle EQ completions */
8587         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8588         bxe_eq_int(sc);
8589         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8590                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8591         status &= ~BXE_DEF_SB_IDX;
8592     }
8593
8594     /* if status is non zero then something went wrong */
8595     if (__predict_false(status)) {
8596         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8597     }
8598
8599     /* ack status block only if something was actually handled */
8600     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8601                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8602
8603     /*
8604      * Must be called after the EQ processing (since eq leads to sriov
8605      * ramrod completion flows).
8606      * This flow may have been scheduled by the arrival of a ramrod
8607      * completion, or by the sriov code rescheduling itself.
8608      */
8609     // XXX bxe_iov_sp_task(sc);
8610
8611 }
8612
8613 static void
8614 bxe_handle_fp_tq(void *context,
8615                  int  pending)
8616 {
8617     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8618     struct bxe_softc *sc = fp->sc;
8619     uint8_t more_tx = FALSE;
8620     uint8_t more_rx = FALSE;
8621
8622     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8623
8624     /* XXX
8625      * IFF_DRV_RUNNING state can't be checked here since we process
8626      * slowpath events on a client queue during setup. Instead
8627      * we need to add a "process/continue" flag here that the driver
8628      * can use to tell the task here not to do anything.
8629      */
8630 #if 0
8631     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8632         return;
8633     }
8634 #endif
8635
8636     /* update the fastpath index */
8637     bxe_update_fp_sb_idx(fp);
8638
8639     /* XXX add loop here if ever support multiple tx CoS */
8640     /* fp->txdata[cos] */
8641     if (bxe_has_tx_work(fp)) {
8642         BXE_FP_TX_LOCK(fp);
8643         more_tx = bxe_txeof(sc, fp);
8644         BXE_FP_TX_UNLOCK(fp);
8645     }
8646
8647     if (bxe_has_rx_work(fp)) {
8648         more_rx = bxe_rxeof(sc, fp);
8649     }
8650
8651     if (more_rx /*|| more_tx*/) {
8652         /* still more work to do */
8653         taskqueue_enqueue(fp->tq, &fp->tq_task);
8654         return;
8655     }
8656
8657     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8658                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8659 }
8660
8661 static void
8662 bxe_task_fp(struct bxe_fastpath *fp)
8663 {
8664     struct bxe_softc *sc = fp->sc;
8665     uint8_t more_tx = FALSE;
8666     uint8_t more_rx = FALSE;
8667
8668     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8669
8670     /* update the fastpath index */
8671     bxe_update_fp_sb_idx(fp);
8672
8673     /* XXX add loop here if ever support multiple tx CoS */
8674     /* fp->txdata[cos] */
8675     if (bxe_has_tx_work(fp)) {
8676         BXE_FP_TX_LOCK(fp);
8677         more_tx = bxe_txeof(sc, fp);
8678         BXE_FP_TX_UNLOCK(fp);
8679     }
8680
8681     if (bxe_has_rx_work(fp)) {
8682         more_rx = bxe_rxeof(sc, fp);
8683     }
8684
8685     if (more_rx /*|| more_tx*/) {
8686         /* still more work to do, bail out if this ISR and process later */
8687         taskqueue_enqueue(fp->tq, &fp->tq_task);
8688         return;
8689     }
8690
8691     /*
8692      * Here we write the fastpath index taken before doing any tx or rx work.
8693      * It is very well possible other hw events occurred up to this point and
8694      * they were actually processed accordingly above. Since we're going to
8695      * write an older fastpath index, an interrupt is coming which we might
8696      * not do any work in.
8697      */
8698     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8699                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8700 }
8701
8702 /*
8703  * Legacy interrupt entry point.
8704  *
8705  * Verifies that the controller generated the interrupt and
8706  * then calls a separate routine to handle the various
8707  * interrupt causes: link, RX, and TX.
8708  */
8709 static void
8710 bxe_intr_legacy(void *xsc)
8711 {
8712     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8713     struct bxe_fastpath *fp;
8714     uint16_t status, mask;
8715     int i;
8716
8717     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8718
8719     /*
8720      * 0 for ustorm, 1 for cstorm
8721      * the bits returned from ack_int() are 0-15
8722      * bit 0 = attention status block
8723      * bit 1 = fast path status block
8724      * a mask of 0x2 or more = tx/rx event
8725      * a mask of 1 = slow path event
8726      */
8727
8728     status = bxe_ack_int(sc);
8729
8730     /* the interrupt is not for us */
8731     if (__predict_false(status == 0)) {
8732         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8733         return;
8734     }
8735
8736     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8737
8738     FOR_EACH_ETH_QUEUE(sc, i) {
8739         fp = &sc->fp[i];
8740         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8741         if (status & mask) {
8742             /* acknowledge and disable further fastpath interrupts */
8743             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8744             bxe_task_fp(fp);
8745             status &= ~mask;
8746         }
8747     }
8748
8749     if (__predict_false(status & 0x1)) {
8750         /* acknowledge and disable further slowpath interrupts */
8751         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8752
8753         /* schedule slowpath handler */
8754         taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8755
8756         status &= ~0x1;
8757     }
8758
8759     if (__predict_false(status)) {
8760         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8761     }
8762 }
8763
8764 /* slowpath interrupt entry point */
8765 static void
8766 bxe_intr_sp(void *xsc)
8767 {
8768     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8769
8770     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8771
8772     /* acknowledge and disable further slowpath interrupts */
8773     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8774
8775     /* schedule slowpath handler */
8776     taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8777 }
8778
8779 /* fastpath interrupt entry point */
8780 static void
8781 bxe_intr_fp(void *xfp)
8782 {
8783     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8784     struct bxe_softc *sc = fp->sc;
8785
8786     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8787
8788     BLOGD(sc, DBG_INTR,
8789           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8790           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8791
8792     /* acknowledge and disable further fastpath interrupts */
8793     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8794
8795     bxe_task_fp(fp);
8796 }
8797
8798 /* Release all interrupts allocated by the driver. */
8799 static void
8800 bxe_interrupt_free(struct bxe_softc *sc)
8801 {
8802     int i;
8803
8804     switch (sc->interrupt_mode) {
8805     case INTR_MODE_INTX:
8806         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8807         if (sc->intr[0].resource != NULL) {
8808             bus_release_resource(sc->dev,
8809                                  SYS_RES_IRQ,
8810                                  sc->intr[0].rid,
8811                                  sc->intr[0].resource);
8812         }
8813         break;
8814     case INTR_MODE_MSI:
8815         for (i = 0; i < sc->intr_count; i++) {
8816             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8817             if (sc->intr[i].resource && sc->intr[i].rid) {
8818                 bus_release_resource(sc->dev,
8819                                      SYS_RES_IRQ,
8820                                      sc->intr[i].rid,
8821                                      sc->intr[i].resource);
8822             }
8823         }
8824         pci_release_msi(sc->dev);
8825         break;
8826     case INTR_MODE_MSIX:
8827         for (i = 0; i < sc->intr_count; i++) {
8828             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8829             if (sc->intr[i].resource && sc->intr[i].rid) {
8830                 bus_release_resource(sc->dev,
8831                                      SYS_RES_IRQ,
8832                                      sc->intr[i].rid,
8833                                      sc->intr[i].resource);
8834             }
8835         }
8836         pci_release_msi(sc->dev);
8837         break;
8838     default:
8839         /* nothing to do as initial allocation failed */
8840         break;
8841     }
8842 }
8843
8844 /*
8845  * This function determines and allocates the appropriate
8846  * interrupt based on system capabilites and user request.
8847  *
8848  * The user may force a particular interrupt mode, specify
8849  * the number of receive queues, specify the method for
8850  * distribuitng received frames to receive queues, or use
8851  * the default settings which will automatically select the
8852  * best supported combination.  In addition, the OS may or
8853  * may not support certain combinations of these settings.
8854  * This routine attempts to reconcile the settings requested
8855  * by the user with the capabilites available from the system
8856  * to select the optimal combination of features.
8857  *
8858  * Returns:
8859  *   0 = Success, !0 = Failure.
8860  */
8861 static int
8862 bxe_interrupt_alloc(struct bxe_softc *sc)
8863 {
8864     int msix_count = 0;
8865     int msi_count = 0;
8866     int num_requested = 0;
8867     int num_allocated = 0;
8868     int rid, i, j;
8869     int rc;
8870
8871     /* get the number of available MSI/MSI-X interrupts from the OS */
8872     if (sc->interrupt_mode > 0) {
8873         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8874             msix_count = pci_msix_count(sc->dev);
8875         }
8876
8877         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8878             msi_count = pci_msi_count(sc->dev);
8879         }
8880
8881         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8882               msi_count, msix_count);
8883     }
8884
8885     do { /* try allocating MSI-X interrupt resources (at least 2) */
8886         if (sc->interrupt_mode != INTR_MODE_MSIX) {
8887             break;
8888         }
8889
8890         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8891             (msix_count < 2)) {
8892             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8893             break;
8894         }
8895
8896         /* ask for the necessary number of MSI-X vectors */
8897         num_requested = min((sc->num_queues + 1), msix_count);
8898
8899         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8900
8901         num_allocated = num_requested;
8902         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8903             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8904             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8905             break;
8906         }
8907
8908         if (num_allocated < 2) { /* possible? */
8909             BLOGE(sc, "MSI-X allocation less than 2!\n");
8910             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8911             pci_release_msi(sc->dev);
8912             break;
8913         }
8914
8915         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8916               num_requested, num_allocated);
8917
8918         /* best effort so use the number of vectors allocated to us */
8919         sc->intr_count = num_allocated;
8920         sc->num_queues = num_allocated - 1;
8921
8922         rid = 1; /* initial resource identifier */
8923
8924         /* allocate the MSI-X vectors */
8925         for (i = 0; i < num_allocated; i++) {
8926             sc->intr[i].rid = (rid + i);
8927
8928             if ((sc->intr[i].resource =
8929                  bus_alloc_resource_any(sc->dev,
8930                                         SYS_RES_IRQ,
8931                                         &sc->intr[i].rid,
8932                                         RF_ACTIVE)) == NULL) {
8933                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
8934                       i, (rid + i));
8935
8936                 for (j = (i - 1); j >= 0; j--) {
8937                     bus_release_resource(sc->dev,
8938                                          SYS_RES_IRQ,
8939                                          sc->intr[j].rid,
8940                                          sc->intr[j].resource);
8941                 }
8942
8943                 sc->intr_count = 0;
8944                 sc->num_queues = 0;
8945                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8946                 pci_release_msi(sc->dev);
8947                 break;
8948             }
8949
8950             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
8951         }
8952     } while (0);
8953
8954     do { /* try allocating MSI vector resources (at least 2) */
8955         if (sc->interrupt_mode != INTR_MODE_MSI) {
8956             break;
8957         }
8958
8959         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
8960             (msi_count < 1)) {
8961             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8962             break;
8963         }
8964
8965         /* ask for a single MSI vector */
8966         num_requested = 1;
8967
8968         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
8969
8970         num_allocated = num_requested;
8971         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
8972             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
8973             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8974             break;
8975         }
8976
8977         if (num_allocated != 1) { /* possible? */
8978             BLOGE(sc, "MSI allocation is not 1!\n");
8979             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
8980             pci_release_msi(sc->dev);
8981             break;
8982         }
8983
8984         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
8985               num_requested, num_allocated);
8986
8987         /* best effort so use the number of vectors allocated to us */
8988         sc->intr_count = num_allocated;
8989         sc->num_queues = num_allocated;
8990
8991         rid = 1; /* initial resource identifier */
8992
8993         sc->intr[0].rid = rid;
8994
8995         if ((sc->intr[0].resource =
8996              bus_alloc_resource_any(sc->dev,
8997                                     SYS_RES_IRQ,
8998                                     &sc->intr[0].rid,
8999                                     RF_ACTIVE)) == NULL) {
9000             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9001             sc->intr_count = 0;
9002             sc->num_queues = 0;
9003             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9004             pci_release_msi(sc->dev);
9005             break;
9006         }
9007
9008         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9009     } while (0);
9010
9011     do { /* try allocating INTx vector resources */
9012         if (sc->interrupt_mode != INTR_MODE_INTX) {
9013             break;
9014         }
9015
9016         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9017
9018         /* only one vector for INTx */
9019         sc->intr_count = 1;
9020         sc->num_queues = 1;
9021
9022         rid = 0; /* initial resource identifier */
9023
9024         sc->intr[0].rid = rid;
9025
9026         if ((sc->intr[0].resource =
9027              bus_alloc_resource_any(sc->dev,
9028                                     SYS_RES_IRQ,
9029                                     &sc->intr[0].rid,
9030                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9031             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9032             sc->intr_count = 0;
9033             sc->num_queues = 0;
9034             sc->interrupt_mode = -1; /* Failed! */
9035             break;
9036         }
9037
9038         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9039     } while (0);
9040
9041     if (sc->interrupt_mode == -1) {
9042         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9043         rc = 1;
9044     } else {
9045         BLOGD(sc, DBG_LOAD,
9046               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9047               sc->interrupt_mode, sc->num_queues);
9048         rc = 0;
9049     }
9050
9051     return (rc);
9052 }
9053
9054 static void
9055 bxe_interrupt_detach(struct bxe_softc *sc)
9056 {
9057     struct bxe_fastpath *fp;
9058     int i;
9059
9060     /* release interrupt resources */
9061     for (i = 0; i < sc->intr_count; i++) {
9062         if (sc->intr[i].resource && sc->intr[i].tag) {
9063             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9064             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9065         }
9066     }
9067
9068     for (i = 0; i < sc->num_queues; i++) {
9069         fp = &sc->fp[i];
9070         if (fp->tq) {
9071             taskqueue_drain(fp->tq, &fp->tq_task);
9072             taskqueue_drain(fp->tq, &fp->tx_task);
9073             while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
9074                 NULL))
9075                 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
9076             taskqueue_free(fp->tq);
9077             fp->tq = NULL;
9078         }
9079     }
9080
9081
9082     if (sc->sp_tq) {
9083         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9084         taskqueue_free(sc->sp_tq);
9085         sc->sp_tq = NULL;
9086     }
9087 }
9088
9089 /*
9090  * Enables interrupts and attach to the ISR.
9091  *
9092  * When using multiple MSI/MSI-X vectors the first vector
9093  * is used for slowpath operations while all remaining
9094  * vectors are used for fastpath operations.  If only a
9095  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9096  * ISR must look for both slowpath and fastpath completions.
9097  */
9098 static int
9099 bxe_interrupt_attach(struct bxe_softc *sc)
9100 {
9101     struct bxe_fastpath *fp;
9102     int rc = 0;
9103     int i;
9104
9105     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9106              "bxe%d_sp_tq", sc->unit);
9107     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9108     sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
9109                                  taskqueue_thread_enqueue,
9110                                  &sc->sp_tq);
9111     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9112                             "%s", sc->sp_tq_name);
9113
9114
9115     for (i = 0; i < sc->num_queues; i++) {
9116         fp = &sc->fp[i];
9117         snprintf(fp->tq_name, sizeof(fp->tq_name),
9118                  "bxe%d_fp%d_tq", sc->unit, i);
9119         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9120         TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
9121         fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
9122                                   taskqueue_thread_enqueue,
9123                                   &fp->tq);
9124         TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
9125                           bxe_tx_mq_start_deferred, fp);
9126         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9127                                 "%s", fp->tq_name);
9128     }
9129
9130     /* setup interrupt handlers */
9131     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9132         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9133
9134         /*
9135          * Setup the interrupt handler. Note that we pass the driver instance
9136          * to the interrupt handler for the slowpath.
9137          */
9138         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9139                                  (INTR_TYPE_NET | INTR_MPSAFE),
9140                                  NULL, bxe_intr_sp, sc,
9141                                  &sc->intr[0].tag)) != 0) {
9142             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9143             goto bxe_interrupt_attach_exit;
9144         }
9145
9146         bus_describe_intr(sc->dev, sc->intr[0].resource,
9147                           sc->intr[0].tag, "sp");
9148
9149         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9150
9151         /* initialize the fastpath vectors (note the first was used for sp) */
9152         for (i = 0; i < sc->num_queues; i++) {
9153             fp = &sc->fp[i];
9154             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9155
9156             /*
9157              * Setup the interrupt handler. Note that we pass the
9158              * fastpath context to the interrupt handler in this
9159              * case.
9160              */
9161             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9162                                      (INTR_TYPE_NET | INTR_MPSAFE),
9163                                      NULL, bxe_intr_fp, fp,
9164                                      &sc->intr[i + 1].tag)) != 0) {
9165                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9166                       (i + 1), rc);
9167                 goto bxe_interrupt_attach_exit;
9168             }
9169
9170             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9171                               sc->intr[i + 1].tag, "fp%02d", i);
9172
9173             /* bind the fastpath instance to a cpu */
9174             if (sc->num_queues > 1) {
9175                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9176             }
9177
9178             fp->state = BXE_FP_STATE_IRQ;
9179         }
9180     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9181         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9182
9183         /*
9184          * Setup the interrupt handler. Note that we pass the
9185          * driver instance to the interrupt handler which
9186          * will handle both the slowpath and fastpath.
9187          */
9188         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9189                                  (INTR_TYPE_NET | INTR_MPSAFE),
9190                                  NULL, bxe_intr_legacy, sc,
9191                                  &sc->intr[0].tag)) != 0) {
9192             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9193             goto bxe_interrupt_attach_exit;
9194         }
9195
9196     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9197         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9198
9199         /*
9200          * Setup the interrupt handler. Note that we pass the
9201          * driver instance to the interrupt handler which
9202          * will handle both the slowpath and fastpath.
9203          */
9204         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9205                                  (INTR_TYPE_NET | INTR_MPSAFE),
9206                                  NULL, bxe_intr_legacy, sc,
9207                                  &sc->intr[0].tag)) != 0) {
9208             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9209             goto bxe_interrupt_attach_exit;
9210         }
9211     }
9212
9213 bxe_interrupt_attach_exit:
9214
9215     return (rc);
9216 }
9217
9218 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9219 static int  bxe_init_hw_common(struct bxe_softc *sc);
9220 static int  bxe_init_hw_port(struct bxe_softc *sc);
9221 static int  bxe_init_hw_func(struct bxe_softc *sc);
9222 static void bxe_reset_common(struct bxe_softc *sc);
9223 static void bxe_reset_port(struct bxe_softc *sc);
9224 static void bxe_reset_func(struct bxe_softc *sc);
9225 static int  bxe_gunzip_init(struct bxe_softc *sc);
9226 static void bxe_gunzip_end(struct bxe_softc *sc);
9227 static int  bxe_init_firmware(struct bxe_softc *sc);
9228 static void bxe_release_firmware(struct bxe_softc *sc);
9229
9230 static struct
9231 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9232     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9233     .init_hw_cmn      = bxe_init_hw_common,
9234     .init_hw_port     = bxe_init_hw_port,
9235     .init_hw_func     = bxe_init_hw_func,
9236
9237     .reset_hw_cmn     = bxe_reset_common,
9238     .reset_hw_port    = bxe_reset_port,
9239     .reset_hw_func    = bxe_reset_func,
9240
9241     .gunzip_init      = bxe_gunzip_init,
9242     .gunzip_end       = bxe_gunzip_end,
9243
9244     .init_fw          = bxe_init_firmware,
9245     .release_fw       = bxe_release_firmware,
9246 };
9247
9248 static void
9249 bxe_init_func_obj(struct bxe_softc *sc)
9250 {
9251     sc->dmae_ready = 0;
9252
9253     ecore_init_func_obj(sc,
9254                         &sc->func_obj,
9255                         BXE_SP(sc, func_rdata),
9256                         BXE_SP_MAPPING(sc, func_rdata),
9257                         BXE_SP(sc, func_afex_rdata),
9258                         BXE_SP_MAPPING(sc, func_afex_rdata),
9259                         &bxe_func_sp_drv);
9260 }
9261
9262 static int
9263 bxe_init_hw(struct bxe_softc *sc,
9264             uint32_t         load_code)
9265 {
9266     struct ecore_func_state_params func_params = { NULL };
9267     int rc;
9268
9269     /* prepare the parameters for function state transitions */
9270     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9271
9272     func_params.f_obj = &sc->func_obj;
9273     func_params.cmd = ECORE_F_CMD_HW_INIT;
9274
9275     func_params.params.hw_init.load_phase = load_code;
9276
9277     /*
9278      * Via a plethora of function pointers, we will eventually reach
9279      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9280      */
9281     rc = ecore_func_state_change(sc, &func_params);
9282
9283     return (rc);
9284 }
9285
9286 static void
9287 bxe_fill(struct bxe_softc *sc,
9288          uint32_t         addr,
9289          int              fill,
9290          uint32_t         len)
9291 {
9292     uint32_t i;
9293
9294     if (!(len % 4) && !(addr % 4)) {
9295         for (i = 0; i < len; i += 4) {
9296             REG_WR(sc, (addr + i), fill);
9297         }
9298     } else {
9299         for (i = 0; i < len; i++) {
9300             REG_WR8(sc, (addr + i), fill);
9301         }
9302     }
9303 }
9304
9305 /* writes FP SP data to FW - data_size in dwords */
9306 static void
9307 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9308                   int              fw_sb_id,
9309                   uint32_t         *sb_data_p,
9310                   uint32_t         data_size)
9311 {
9312     int index;
9313
9314     for (index = 0; index < data_size; index++) {
9315         REG_WR(sc,
9316                (BAR_CSTRORM_INTMEM +
9317                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9318                 (sizeof(uint32_t) * index)),
9319                *(sb_data_p + index));
9320     }
9321 }
9322
9323 static void
9324 bxe_zero_fp_sb(struct bxe_softc *sc,
9325                int              fw_sb_id)
9326 {
9327     struct hc_status_block_data_e2 sb_data_e2;
9328     struct hc_status_block_data_e1x sb_data_e1x;
9329     uint32_t *sb_data_p;
9330     uint32_t data_size = 0;
9331
9332     if (!CHIP_IS_E1x(sc)) {
9333         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9334         sb_data_e2.common.state = SB_DISABLED;
9335         sb_data_e2.common.p_func.vf_valid = FALSE;
9336         sb_data_p = (uint32_t *)&sb_data_e2;
9337         data_size = (sizeof(struct hc_status_block_data_e2) /
9338                      sizeof(uint32_t));
9339     } else {
9340         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9341         sb_data_e1x.common.state = SB_DISABLED;
9342         sb_data_e1x.common.p_func.vf_valid = FALSE;
9343         sb_data_p = (uint32_t *)&sb_data_e1x;
9344         data_size = (sizeof(struct hc_status_block_data_e1x) /
9345                      sizeof(uint32_t));
9346     }
9347
9348     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9349
9350     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9351              0, CSTORM_STATUS_BLOCK_SIZE);
9352     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9353              0, CSTORM_SYNC_BLOCK_SIZE);
9354 }
9355
9356 static void
9357 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9358                   struct hc_sp_status_block_data *sp_sb_data)
9359 {
9360     int i;
9361
9362     for (i = 0;
9363          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9364          i++) {
9365         REG_WR(sc,
9366                (BAR_CSTRORM_INTMEM +
9367                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9368                 (i * sizeof(uint32_t))),
9369                *((uint32_t *)sp_sb_data + i));
9370     }
9371 }
9372
9373 static void
9374 bxe_zero_sp_sb(struct bxe_softc *sc)
9375 {
9376     struct hc_sp_status_block_data sp_sb_data;
9377
9378     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9379
9380     sp_sb_data.state           = SB_DISABLED;
9381     sp_sb_data.p_func.vf_valid = FALSE;
9382
9383     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9384
9385     bxe_fill(sc,
9386              (BAR_CSTRORM_INTMEM +
9387               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9388               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9389     bxe_fill(sc,
9390              (BAR_CSTRORM_INTMEM +
9391               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9392               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9393 }
9394
9395 static void
9396 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9397                              int                       igu_sb_id,
9398                              int                       igu_seg_id)
9399 {
9400     hc_sm->igu_sb_id      = igu_sb_id;
9401     hc_sm->igu_seg_id     = igu_seg_id;
9402     hc_sm->timer_value    = 0xFF;
9403     hc_sm->time_to_expire = 0xFFFFFFFF;
9404 }
9405
9406 static void
9407 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9408 {
9409     /* zero out state machine indices */
9410
9411     /* rx indices */
9412     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9413
9414     /* tx indices */
9415     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9416     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9417     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9418     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9419
9420     /* map indices */
9421
9422     /* rx indices */
9423     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9424         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9425
9426     /* tx indices */
9427     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9428         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9429     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9430         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9431     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9432         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9433     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9434         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9435 }
9436
9437 static void
9438 bxe_init_sb(struct bxe_softc *sc,
9439             bus_addr_t       busaddr,
9440             int              vfid,
9441             uint8_t          vf_valid,
9442             int              fw_sb_id,
9443             int              igu_sb_id)
9444 {
9445     struct hc_status_block_data_e2  sb_data_e2;
9446     struct hc_status_block_data_e1x sb_data_e1x;
9447     struct hc_status_block_sm       *hc_sm_p;
9448     uint32_t *sb_data_p;
9449     int igu_seg_id;
9450     int data_size;
9451
9452     if (CHIP_INT_MODE_IS_BC(sc)) {
9453         igu_seg_id = HC_SEG_ACCESS_NORM;
9454     } else {
9455         igu_seg_id = IGU_SEG_ACCESS_NORM;
9456     }
9457
9458     bxe_zero_fp_sb(sc, fw_sb_id);
9459
9460     if (!CHIP_IS_E1x(sc)) {
9461         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9462         sb_data_e2.common.state = SB_ENABLED;
9463         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9464         sb_data_e2.common.p_func.vf_id = vfid;
9465         sb_data_e2.common.p_func.vf_valid = vf_valid;
9466         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9467         sb_data_e2.common.same_igu_sb_1b = TRUE;
9468         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9469         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9470         hc_sm_p = sb_data_e2.common.state_machine;
9471         sb_data_p = (uint32_t *)&sb_data_e2;
9472         data_size = (sizeof(struct hc_status_block_data_e2) /
9473                      sizeof(uint32_t));
9474         bxe_map_sb_state_machines(sb_data_e2.index_data);
9475     } else {
9476         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9477         sb_data_e1x.common.state = SB_ENABLED;
9478         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9479         sb_data_e1x.common.p_func.vf_id = 0xff;
9480         sb_data_e1x.common.p_func.vf_valid = FALSE;
9481         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9482         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9483         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9484         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9485         hc_sm_p = sb_data_e1x.common.state_machine;
9486         sb_data_p = (uint32_t *)&sb_data_e1x;
9487         data_size = (sizeof(struct hc_status_block_data_e1x) /
9488                      sizeof(uint32_t));
9489         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9490     }
9491
9492     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9493     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9494
9495     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9496
9497     /* write indices to HW - PCI guarantees endianity of regpairs */
9498     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9499 }
9500
9501 static inline uint8_t
9502 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9503 {
9504     if (CHIP_IS_E1x(fp->sc)) {
9505         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9506     } else {
9507         return (fp->cl_id);
9508     }
9509 }
9510
9511 static inline uint32_t
9512 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9513                            struct bxe_fastpath *fp)
9514 {
9515     uint32_t offset = BAR_USTRORM_INTMEM;
9516
9517     if (!CHIP_IS_E1x(sc)) {
9518         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9519     } else {
9520         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9521     }
9522
9523     return (offset);
9524 }
9525
9526 static void
9527 bxe_init_eth_fp(struct bxe_softc *sc,
9528                 int              idx)
9529 {
9530     struct bxe_fastpath *fp = &sc->fp[idx];
9531     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9532     unsigned long q_type = 0;
9533     int cos;
9534
9535     fp->sc    = sc;
9536     fp->index = idx;
9537
9538     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9539     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9540
9541     fp->cl_id = (CHIP_IS_E1x(sc)) ?
9542                     (SC_L_ID(sc) + idx) :
9543                     /* want client ID same as IGU SB ID for non-E1 */
9544                     fp->igu_sb_id;
9545     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9546
9547     /* setup sb indices */
9548     if (!CHIP_IS_E1x(sc)) {
9549         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
9550         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9551     } else {
9552         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
9553         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9554     }
9555
9556     /* init shortcut */
9557     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9558
9559     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9560
9561     /*
9562      * XXX If multiple CoS is ever supported then each fastpath structure
9563      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9564      */
9565     for (cos = 0; cos < sc->max_cos; cos++) {
9566         cids[cos] = idx;
9567     }
9568     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9569
9570     /* nothing more for a VF to do */
9571     if (IS_VF(sc)) {
9572         return;
9573     }
9574
9575     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9576                 fp->fw_sb_id, fp->igu_sb_id);
9577
9578     bxe_update_fp_sb_idx(fp);
9579
9580     /* Configure Queue State object */
9581     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9582     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9583
9584     ecore_init_queue_obj(sc,
9585                          &sc->sp_objs[idx].q_obj,
9586                          fp->cl_id,
9587                          cids,
9588                          sc->max_cos,
9589                          SC_FUNC(sc),
9590                          BXE_SP(sc, q_rdata),
9591                          BXE_SP_MAPPING(sc, q_rdata),
9592                          q_type);
9593
9594     /* configure classification DBs */
9595     ecore_init_mac_obj(sc,
9596                        &sc->sp_objs[idx].mac_obj,
9597                        fp->cl_id,
9598                        idx,
9599                        SC_FUNC(sc),
9600                        BXE_SP(sc, mac_rdata),
9601                        BXE_SP_MAPPING(sc, mac_rdata),
9602                        ECORE_FILTER_MAC_PENDING,
9603                        &sc->sp_state,
9604                        ECORE_OBJ_TYPE_RX_TX,
9605                        &sc->macs_pool);
9606
9607     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9608           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9609 }
9610
9611 static inline void
9612 bxe_update_rx_prod(struct bxe_softc    *sc,
9613                    struct bxe_fastpath *fp,
9614                    uint16_t            rx_bd_prod,
9615                    uint16_t            rx_cq_prod,
9616                    uint16_t            rx_sge_prod)
9617 {
9618     struct ustorm_eth_rx_producers rx_prods = { 0 };
9619     uint32_t i;
9620
9621     /* update producers */
9622     rx_prods.bd_prod  = rx_bd_prod;
9623     rx_prods.cqe_prod = rx_cq_prod;
9624     rx_prods.sge_prod = rx_sge_prod;
9625
9626     /*
9627      * Make sure that the BD and SGE data is updated before updating the
9628      * producers since FW might read the BD/SGE right after the producer
9629      * is updated.
9630      * This is only applicable for weak-ordered memory model archs such
9631      * as IA-64. The following barrier is also mandatory since FW will
9632      * assumes BDs must have buffers.
9633      */
9634     wmb();
9635
9636     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9637         REG_WR(sc,
9638                (fp->ustorm_rx_prods_offset + (i * 4)),
9639                ((uint32_t *)&rx_prods)[i]);
9640     }
9641
9642     wmb(); /* keep prod updates ordered */
9643
9644     BLOGD(sc, DBG_RX,
9645           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9646           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9647 }
9648
9649 static void
9650 bxe_init_rx_rings(struct bxe_softc *sc)
9651 {
9652     struct bxe_fastpath *fp;
9653     int i;
9654
9655     for (i = 0; i < sc->num_queues; i++) {
9656         fp = &sc->fp[i];
9657
9658         fp->rx_bd_cons = 0;
9659
9660         /*
9661          * Activate the BD ring...
9662          * Warning, this will generate an interrupt (to the TSTORM)
9663          * so this can only be done after the chip is initialized
9664          */
9665         bxe_update_rx_prod(sc, fp,
9666                            fp->rx_bd_prod,
9667                            fp->rx_cq_prod,
9668                            fp->rx_sge_prod);
9669
9670         if (i != 0) {
9671             continue;
9672         }
9673
9674         if (CHIP_IS_E1(sc)) {
9675             REG_WR(sc,
9676                    (BAR_USTRORM_INTMEM +
9677                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9678                    U64_LO(fp->rcq_dma.paddr));
9679             REG_WR(sc,
9680                    (BAR_USTRORM_INTMEM +
9681                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9682                    U64_HI(fp->rcq_dma.paddr));
9683         }
9684     }
9685 }
9686
9687 static void
9688 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9689 {
9690     SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9691     fp->tx_db.data.zero_fill1 = 0;
9692     fp->tx_db.data.prod = 0;
9693
9694     fp->tx_pkt_prod = 0;
9695     fp->tx_pkt_cons = 0;
9696     fp->tx_bd_prod = 0;
9697     fp->tx_bd_cons = 0;
9698     fp->eth_q_stats.tx_pkts = 0;
9699 }
9700
9701 static inline void
9702 bxe_init_tx_rings(struct bxe_softc *sc)
9703 {
9704     int i;
9705
9706     for (i = 0; i < sc->num_queues; i++) {
9707         bxe_init_tx_ring_one(&sc->fp[i]);
9708     }
9709 }
9710
9711 static void
9712 bxe_init_def_sb(struct bxe_softc *sc)
9713 {
9714     struct host_sp_status_block *def_sb = sc->def_sb;
9715     bus_addr_t mapping = sc->def_sb_dma.paddr;
9716     int igu_sp_sb_index;
9717     int igu_seg_id;
9718     int port = SC_PORT(sc);
9719     int func = SC_FUNC(sc);
9720     int reg_offset, reg_offset_en5;
9721     uint64_t section;
9722     int index, sindex;
9723     struct hc_sp_status_block_data sp_sb_data;
9724
9725     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9726
9727     if (CHIP_INT_MODE_IS_BC(sc)) {
9728         igu_sp_sb_index = DEF_SB_IGU_ID;
9729         igu_seg_id = HC_SEG_ACCESS_DEF;
9730     } else {
9731         igu_sp_sb_index = sc->igu_dsb_id;
9732         igu_seg_id = IGU_SEG_ACCESS_DEF;
9733     }
9734
9735     /* attentions */
9736     section = ((uint64_t)mapping +
9737                offsetof(struct host_sp_status_block, atten_status_block));
9738     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9739     sc->attn_state = 0;
9740
9741     reg_offset = (port) ?
9742                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9743                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9744     reg_offset_en5 = (port) ?
9745                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9746                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9747
9748     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9749         /* take care of sig[0]..sig[4] */
9750         for (sindex = 0; sindex < 4; sindex++) {
9751             sc->attn_group[index].sig[sindex] =
9752                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9753         }
9754
9755         if (!CHIP_IS_E1x(sc)) {
9756             /*
9757              * enable5 is separate from the rest of the registers,
9758              * and the address skip is 4 and not 16 between the
9759              * different groups
9760              */
9761             sc->attn_group[index].sig[4] =
9762                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9763         } else {
9764             sc->attn_group[index].sig[4] = 0;
9765         }
9766     }
9767
9768     if (sc->devinfo.int_block == INT_BLOCK_HC) {
9769         reg_offset = (port) ?
9770                          HC_REG_ATTN_MSG1_ADDR_L :
9771                          HC_REG_ATTN_MSG0_ADDR_L;
9772         REG_WR(sc, reg_offset, U64_LO(section));
9773         REG_WR(sc, (reg_offset + 4), U64_HI(section));
9774     } else if (!CHIP_IS_E1x(sc)) {
9775         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9776         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9777     }
9778
9779     section = ((uint64_t)mapping +
9780                offsetof(struct host_sp_status_block, sp_sb));
9781
9782     bxe_zero_sp_sb(sc);
9783
9784     /* PCI guarantees endianity of regpair */
9785     sp_sb_data.state           = SB_ENABLED;
9786     sp_sb_data.host_sb_addr.lo = U64_LO(section);
9787     sp_sb_data.host_sb_addr.hi = U64_HI(section);
9788     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
9789     sp_sb_data.igu_seg_id      = igu_seg_id;
9790     sp_sb_data.p_func.pf_id    = func;
9791     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
9792     sp_sb_data.p_func.vf_id    = 0xff;
9793
9794     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9795
9796     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9797 }
9798
9799 static void
9800 bxe_init_sp_ring(struct bxe_softc *sc)
9801 {
9802     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9803     sc->spq_prod_idx = 0;
9804     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9805     sc->spq_prod_bd = sc->spq;
9806     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9807 }
9808
9809 static void
9810 bxe_init_eq_ring(struct bxe_softc *sc)
9811 {
9812     union event_ring_elem *elem;
9813     int i;
9814
9815     for (i = 1; i <= NUM_EQ_PAGES; i++) {
9816         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9817
9818         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9819                                                  BCM_PAGE_SIZE *
9820                                                  (i % NUM_EQ_PAGES)));
9821         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9822                                                  BCM_PAGE_SIZE *
9823                                                  (i % NUM_EQ_PAGES)));
9824     }
9825
9826     sc->eq_cons    = 0;
9827     sc->eq_prod    = NUM_EQ_DESC;
9828     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9829
9830     atomic_store_rel_long(&sc->eq_spq_left,
9831                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9832                                NUM_EQ_DESC) - 1));
9833 }
9834
9835 static void
9836 bxe_init_internal_common(struct bxe_softc *sc)
9837 {
9838     int i;
9839
9840     /*
9841      * Zero this manually as its initialization is currently missing
9842      * in the initTool.
9843      */
9844     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9845         REG_WR(sc,
9846                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9847                0);
9848     }
9849
9850     if (!CHIP_IS_E1x(sc)) {
9851         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9852                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9853     }
9854 }
9855
9856 static void
9857 bxe_init_internal(struct bxe_softc *sc,
9858                   uint32_t         load_code)
9859 {
9860     switch (load_code) {
9861     case FW_MSG_CODE_DRV_LOAD_COMMON:
9862     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9863         bxe_init_internal_common(sc);
9864         /* no break */
9865
9866     case FW_MSG_CODE_DRV_LOAD_PORT:
9867         /* nothing to do */
9868         /* no break */
9869
9870     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9871         /* internal memory per function is initialized inside bxe_pf_init */
9872         break;
9873
9874     default:
9875         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9876         break;
9877     }
9878 }
9879
9880 static void
9881 storm_memset_func_cfg(struct bxe_softc                         *sc,
9882                       struct tstorm_eth_function_common_config *tcfg,
9883                       uint16_t                                  abs_fid)
9884 {
9885     uint32_t addr;
9886     size_t size;
9887
9888     addr = (BAR_TSTRORM_INTMEM +
9889             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9890     size = sizeof(struct tstorm_eth_function_common_config);
9891     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9892 }
9893
9894 static void
9895 bxe_func_init(struct bxe_softc            *sc,
9896               struct bxe_func_init_params *p)
9897 {
9898     struct tstorm_eth_function_common_config tcfg = { 0 };
9899
9900     if (CHIP_IS_E1x(sc)) {
9901         storm_memset_func_cfg(sc, &tcfg, p->func_id);
9902     }
9903
9904     /* Enable the function in the FW */
9905     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9906     storm_memset_func_en(sc, p->func_id, 1);
9907
9908     /* spq */
9909     if (p->func_flgs & FUNC_FLG_SPQ) {
9910         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9911         REG_WR(sc,
9912                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9913                p->spq_prod);
9914     }
9915 }
9916
9917 /*
9918  * Calculates the sum of vn_min_rates.
9919  * It's needed for further normalizing of the min_rates.
9920  * Returns:
9921  *   sum of vn_min_rates.
9922  *     or
9923  *   0 - if all the min_rates are 0.
9924  * In the later case fainess algorithm should be deactivated.
9925  * If all min rates are not zero then those that are zeroes will be set to 1.
9926  */
9927 static void
9928 bxe_calc_vn_min(struct bxe_softc       *sc,
9929                 struct cmng_init_input *input)
9930 {
9931     uint32_t vn_cfg;
9932     uint32_t vn_min_rate;
9933     int all_zero = 1;
9934     int vn;
9935
9936     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9937         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9938         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
9939                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
9940
9941         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
9942             /* skip hidden VNs */
9943             vn_min_rate = 0;
9944         } else if (!vn_min_rate) {
9945             /* If min rate is zero - set it to 100 */
9946             vn_min_rate = DEF_MIN_RATE;
9947         } else {
9948             all_zero = 0;
9949         }
9950
9951         input->vnic_min_rate[vn] = vn_min_rate;
9952     }
9953
9954     /* if ETS or all min rates are zeros - disable fairness */
9955     if (BXE_IS_ETS_ENABLED(sc)) {
9956         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9957         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
9958     } else if (all_zero) {
9959         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9960         BLOGD(sc, DBG_LOAD,
9961               "Fariness disabled (all MIN values are zeroes)\n");
9962     } else {
9963         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
9964     }
9965 }
9966
9967 static inline uint16_t
9968 bxe_extract_max_cfg(struct bxe_softc *sc,
9969                     uint32_t         mf_cfg)
9970 {
9971     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
9972                         FUNC_MF_CFG_MAX_BW_SHIFT);
9973
9974     if (!max_cfg) {
9975         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
9976         max_cfg = 100;
9977     }
9978
9979     return (max_cfg);
9980 }
9981
9982 static void
9983 bxe_calc_vn_max(struct bxe_softc       *sc,
9984                 int                    vn,
9985                 struct cmng_init_input *input)
9986 {
9987     uint16_t vn_max_rate;
9988     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9989     uint32_t max_cfg;
9990
9991     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
9992         vn_max_rate = 0;
9993     } else {
9994         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
9995
9996         if (IS_MF_SI(sc)) {
9997             /* max_cfg in percents of linkspeed */
9998             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
9999         } else { /* SD modes */
10000             /* max_cfg is absolute in 100Mb units */
10001             vn_max_rate = (max_cfg * 100);
10002         }
10003     }
10004
10005     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10006
10007     input->vnic_max_rate[vn] = vn_max_rate;
10008 }
10009
10010 static void
10011 bxe_cmng_fns_init(struct bxe_softc *sc,
10012                   uint8_t          read_cfg,
10013                   uint8_t          cmng_type)
10014 {
10015     struct cmng_init_input input;
10016     int vn;
10017
10018     memset(&input, 0, sizeof(struct cmng_init_input));
10019
10020     input.port_rate = sc->link_vars.line_speed;
10021
10022     if (cmng_type == CMNG_FNS_MINMAX) {
10023         /* read mf conf from shmem */
10024         if (read_cfg) {
10025             bxe_read_mf_cfg(sc);
10026         }
10027
10028         /* get VN min rate and enable fairness if not 0 */
10029         bxe_calc_vn_min(sc, &input);
10030
10031         /* get VN max rate */
10032         if (sc->port.pmf) {
10033             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10034                 bxe_calc_vn_max(sc, vn, &input);
10035             }
10036         }
10037
10038         /* always enable rate shaping and fairness */
10039         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10040
10041         ecore_init_cmng(&input, &sc->cmng);
10042         return;
10043     }
10044
10045     /* rate shaping and fairness are disabled */
10046     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10047 }
10048
10049 static int
10050 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10051 {
10052     if (CHIP_REV_IS_SLOW(sc)) {
10053         return (CMNG_FNS_NONE);
10054     }
10055
10056     if (IS_MF(sc)) {
10057         return (CMNG_FNS_MINMAX);
10058     }
10059
10060     return (CMNG_FNS_NONE);
10061 }
10062
10063 static void
10064 storm_memset_cmng(struct bxe_softc *sc,
10065                   struct cmng_init *cmng,
10066                   uint8_t          port)
10067 {
10068     int vn;
10069     int func;
10070     uint32_t addr;
10071     size_t size;
10072
10073     addr = (BAR_XSTRORM_INTMEM +
10074             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10075     size = sizeof(struct cmng_struct_per_port);
10076     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10077
10078     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10079         func = func_by_vn(sc, vn);
10080
10081         addr = (BAR_XSTRORM_INTMEM +
10082                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10083         size = sizeof(struct rate_shaping_vars_per_vn);
10084         ecore_storm_memset_struct(sc, addr, size,
10085                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10086
10087         addr = (BAR_XSTRORM_INTMEM +
10088                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10089         size = sizeof(struct fairness_vars_per_vn);
10090         ecore_storm_memset_struct(sc, addr, size,
10091                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10092     }
10093 }
10094
10095 static void
10096 bxe_pf_init(struct bxe_softc *sc)
10097 {
10098     struct bxe_func_init_params func_init = { 0 };
10099     struct event_ring_data eq_data = { { 0 } };
10100     uint16_t flags;
10101
10102     if (!CHIP_IS_E1x(sc)) {
10103         /* reset IGU PF statistics: MSIX + ATTN */
10104         /* PF */
10105         REG_WR(sc,
10106                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10107                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10108                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10109                0);
10110         /* ATTN */
10111         REG_WR(sc,
10112                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10113                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10114                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10115                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10116                0);
10117     }
10118
10119     /* function setup flags */
10120     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10121
10122     /*
10123      * This flag is relevant for E1x only.
10124      * E2 doesn't have a TPA configuration in a function level.
10125      */
10126     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10127
10128     func_init.func_flgs = flags;
10129     func_init.pf_id     = SC_FUNC(sc);
10130     func_init.func_id   = SC_FUNC(sc);
10131     func_init.spq_map   = sc->spq_dma.paddr;
10132     func_init.spq_prod  = sc->spq_prod_idx;
10133
10134     bxe_func_init(sc, &func_init);
10135
10136     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10137
10138     /*
10139      * Congestion management values depend on the link rate.
10140      * There is no active link so initial link rate is set to 10Gbps.
10141      * When the link comes up the congestion management values are
10142      * re-calculated according to the actual link rate.
10143      */
10144     sc->link_vars.line_speed = SPEED_10000;
10145     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10146
10147     /* Only the PMF sets the HW */
10148     if (sc->port.pmf) {
10149         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10150     }
10151
10152     /* init Event Queue - PCI bus guarantees correct endainity */
10153     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10154     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10155     eq_data.producer     = sc->eq_prod;
10156     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10157     eq_data.sb_id        = DEF_SB_ID;
10158     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10159 }
10160
10161 static void
10162 bxe_hc_int_enable(struct bxe_softc *sc)
10163 {
10164     int port = SC_PORT(sc);
10165     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10166     uint32_t val = REG_RD(sc, addr);
10167     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10168     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10169                            (sc->intr_count == 1)) ? TRUE : FALSE;
10170     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10171
10172     if (msix) {
10173         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10174                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10175         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10176                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10177         if (single_msix) {
10178             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10179         }
10180     } else if (msi) {
10181         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10182         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10183                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10184                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10185     } else {
10186         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10187                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10188                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10189                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10190
10191         if (!CHIP_IS_E1(sc)) {
10192             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10193                   val, port, addr);
10194
10195             REG_WR(sc, addr, val);
10196
10197             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10198         }
10199     }
10200
10201     if (CHIP_IS_E1(sc)) {
10202         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10203     }
10204
10205     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10206           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10207
10208     REG_WR(sc, addr, val);
10209
10210     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10211     mb();
10212
10213     if (!CHIP_IS_E1(sc)) {
10214         /* init leading/trailing edge */
10215         if (IS_MF(sc)) {
10216             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10217             if (sc->port.pmf) {
10218                 /* enable nig and gpio3 attention */
10219                 val |= 0x1100;
10220             }
10221         } else {
10222             val = 0xffff;
10223         }
10224
10225         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10226         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10227     }
10228
10229     /* make sure that interrupts are indeed enabled from here on */
10230     mb();
10231 }
10232
10233 static void
10234 bxe_igu_int_enable(struct bxe_softc *sc)
10235 {
10236     uint32_t val;
10237     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10238     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10239                            (sc->intr_count == 1)) ? TRUE : FALSE;
10240     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10241
10242     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10243
10244     if (msix) {
10245         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10246                  IGU_PF_CONF_SINGLE_ISR_EN);
10247         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10248                 IGU_PF_CONF_ATTN_BIT_EN);
10249         if (single_msix) {
10250             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10251         }
10252     } else if (msi) {
10253         val &= ~IGU_PF_CONF_INT_LINE_EN;
10254         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10255                 IGU_PF_CONF_ATTN_BIT_EN |
10256                 IGU_PF_CONF_SINGLE_ISR_EN);
10257     } else {
10258         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10259         val |= (IGU_PF_CONF_INT_LINE_EN |
10260                 IGU_PF_CONF_ATTN_BIT_EN |
10261                 IGU_PF_CONF_SINGLE_ISR_EN);
10262     }
10263
10264     /* clean previous status - need to configure igu prior to ack*/
10265     if ((!msix) || single_msix) {
10266         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10267         bxe_ack_int(sc);
10268     }
10269
10270     val |= IGU_PF_CONF_FUNC_EN;
10271
10272     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10273           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10274
10275     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10276
10277     mb();
10278
10279     /* init leading/trailing edge */
10280     if (IS_MF(sc)) {
10281         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10282         if (sc->port.pmf) {
10283             /* enable nig and gpio3 attention */
10284             val |= 0x1100;
10285         }
10286     } else {
10287         val = 0xffff;
10288     }
10289
10290     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10291     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10292
10293     /* make sure that interrupts are indeed enabled from here on */
10294     mb();
10295 }
10296
10297 static void
10298 bxe_int_enable(struct bxe_softc *sc)
10299 {
10300     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10301         bxe_hc_int_enable(sc);
10302     } else {
10303         bxe_igu_int_enable(sc);
10304     }
10305 }
10306
10307 static void
10308 bxe_hc_int_disable(struct bxe_softc *sc)
10309 {
10310     int port = SC_PORT(sc);
10311     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10312     uint32_t val = REG_RD(sc, addr);
10313
10314     /*
10315      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10316      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10317      * block
10318      */
10319     if (CHIP_IS_E1(sc)) {
10320         /*
10321          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10322          * to prevent from HC sending interrupts after we exit the function
10323          */
10324         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10325
10326         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10327                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10328                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10329     } else {
10330         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10331                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10332                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10333                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10334     }
10335
10336     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10337
10338     /* flush all outstanding writes */
10339     mb();
10340
10341     REG_WR(sc, addr, val);
10342     if (REG_RD(sc, addr) != val) {
10343         BLOGE(sc, "proper val not read from HC IGU!\n");
10344     }
10345 }
10346
10347 static void
10348 bxe_igu_int_disable(struct bxe_softc *sc)
10349 {
10350     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10351
10352     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10353              IGU_PF_CONF_INT_LINE_EN |
10354              IGU_PF_CONF_ATTN_BIT_EN);
10355
10356     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10357
10358     /* flush all outstanding writes */
10359     mb();
10360
10361     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10362     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10363         BLOGE(sc, "proper val not read from IGU!\n");
10364     }
10365 }
10366
10367 static void
10368 bxe_int_disable(struct bxe_softc *sc)
10369 {
10370     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10371         bxe_hc_int_disable(sc);
10372     } else {
10373         bxe_igu_int_disable(sc);
10374     }
10375 }
10376
10377 static void
10378 bxe_nic_init(struct bxe_softc *sc,
10379              int              load_code)
10380 {
10381     int i;
10382
10383     for (i = 0; i < sc->num_queues; i++) {
10384         bxe_init_eth_fp(sc, i);
10385     }
10386
10387     rmb(); /* ensure status block indices were read */
10388
10389     bxe_init_rx_rings(sc);
10390     bxe_init_tx_rings(sc);
10391
10392     if (IS_VF(sc)) {
10393         return;
10394     }
10395
10396     /* initialize MOD_ABS interrupts */
10397     elink_init_mod_abs_int(sc, &sc->link_vars,
10398                            sc->devinfo.chip_id,
10399                            sc->devinfo.shmem_base,
10400                            sc->devinfo.shmem2_base,
10401                            SC_PORT(sc));
10402
10403     bxe_init_def_sb(sc);
10404     bxe_update_dsb_idx(sc);
10405     bxe_init_sp_ring(sc);
10406     bxe_init_eq_ring(sc);
10407     bxe_init_internal(sc, load_code);
10408     bxe_pf_init(sc);
10409     bxe_stats_init(sc);
10410
10411     /* flush all before enabling interrupts */
10412     mb();
10413
10414     bxe_int_enable(sc);
10415
10416     /* check for SPIO5 */
10417     bxe_attn_int_deasserted0(sc,
10418                              REG_RD(sc,
10419                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10420                                      SC_PORT(sc)*4)) &
10421                              AEU_INPUTS_ATTN_BITS_SPIO5);
10422 }
10423
10424 static inline void
10425 bxe_init_objs(struct bxe_softc *sc)
10426 {
10427     /* mcast rules must be added to tx if tx switching is enabled */
10428     ecore_obj_type o_type =
10429         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10430                                          ECORE_OBJ_TYPE_RX;
10431
10432     /* RX_MODE controlling object */
10433     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10434
10435     /* multicast configuration controlling object */
10436     ecore_init_mcast_obj(sc,
10437                          &sc->mcast_obj,
10438                          sc->fp[0].cl_id,
10439                          sc->fp[0].index,
10440                          SC_FUNC(sc),
10441                          SC_FUNC(sc),
10442                          BXE_SP(sc, mcast_rdata),
10443                          BXE_SP_MAPPING(sc, mcast_rdata),
10444                          ECORE_FILTER_MCAST_PENDING,
10445                          &sc->sp_state,
10446                          o_type);
10447
10448     /* Setup CAM credit pools */
10449     ecore_init_mac_credit_pool(sc,
10450                                &sc->macs_pool,
10451                                SC_FUNC(sc),
10452                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10453                                                  VNICS_PER_PATH(sc));
10454
10455     ecore_init_vlan_credit_pool(sc,
10456                                 &sc->vlans_pool,
10457                                 SC_ABS_FUNC(sc) >> 1,
10458                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10459                                                   VNICS_PER_PATH(sc));
10460
10461     /* RSS configuration object */
10462     ecore_init_rss_config_obj(sc,
10463                               &sc->rss_conf_obj,
10464                               sc->fp[0].cl_id,
10465                               sc->fp[0].index,
10466                               SC_FUNC(sc),
10467                               SC_FUNC(sc),
10468                               BXE_SP(sc, rss_rdata),
10469                               BXE_SP_MAPPING(sc, rss_rdata),
10470                               ECORE_FILTER_RSS_CONF_PENDING,
10471                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10472 }
10473
10474 /*
10475  * Initialize the function. This must be called before sending CLIENT_SETUP
10476  * for the first client.
10477  */
10478 static inline int
10479 bxe_func_start(struct bxe_softc *sc)
10480 {
10481     struct ecore_func_state_params func_params = { NULL };
10482     struct ecore_func_start_params *start_params = &func_params.params.start;
10483
10484     /* Prepare parameters for function state transitions */
10485     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10486
10487     func_params.f_obj = &sc->func_obj;
10488     func_params.cmd = ECORE_F_CMD_START;
10489
10490     /* Function parameters */
10491     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10492     start_params->sd_vlan_tag = OVLAN(sc);
10493
10494     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10495         start_params->network_cos_mode = STATIC_COS;
10496     } else { /* CHIP_IS_E1X */
10497         start_params->network_cos_mode = FW_WRR;
10498     }
10499
10500     //start_params->gre_tunnel_mode = 0;
10501     //start_params->gre_tunnel_rss  = 0;
10502
10503     return (ecore_func_state_change(sc, &func_params));
10504 }
10505
10506 static int
10507 bxe_set_power_state(struct bxe_softc *sc,
10508                     uint8_t          state)
10509 {
10510     uint16_t pmcsr;
10511
10512     /* If there is no power capability, silently succeed */
10513     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10514         BLOGW(sc, "No power capability\n");
10515         return (0);
10516     }
10517
10518     pmcsr = pci_read_config(sc->dev,
10519                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10520                             2);
10521
10522     switch (state) {
10523     case PCI_PM_D0:
10524         pci_write_config(sc->dev,
10525                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10526                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10527
10528         if (pmcsr & PCIM_PSTAT_DMASK) {
10529             /* delay required during transition out of D3hot */
10530             DELAY(20000);
10531         }
10532
10533         break;
10534
10535     case PCI_PM_D3hot:
10536         /* XXX if there are other clients above don't shut down the power */
10537
10538         /* don't shut down the power for emulation and FPGA */
10539         if (CHIP_REV_IS_SLOW(sc)) {
10540             return (0);
10541         }
10542
10543         pmcsr &= ~PCIM_PSTAT_DMASK;
10544         pmcsr |= PCIM_PSTAT_D3;
10545
10546         if (sc->wol) {
10547             pmcsr |= PCIM_PSTAT_PMEENABLE;
10548         }
10549
10550         pci_write_config(sc->dev,
10551                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10552                          pmcsr, 4);
10553
10554         /*
10555          * No more memory access after this point until device is brought back
10556          * to D0 state.
10557          */
10558         break;
10559
10560     default:
10561         BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10562             state, pmcsr);
10563         return (-1);
10564     }
10565
10566     return (0);
10567 }
10568
10569
10570 /* return true if succeeded to acquire the lock */
10571 static uint8_t
10572 bxe_trylock_hw_lock(struct bxe_softc *sc,
10573                     uint32_t         resource)
10574 {
10575     uint32_t lock_status;
10576     uint32_t resource_bit = (1 << resource);
10577     int func = SC_FUNC(sc);
10578     uint32_t hw_lock_control_reg;
10579
10580     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10581
10582     /* Validating that the resource is within range */
10583     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10584         BLOGD(sc, DBG_LOAD,
10585               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10586               resource, HW_LOCK_MAX_RESOURCE_VALUE);
10587         return (FALSE);
10588     }
10589
10590     if (func <= 5) {
10591         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10592     } else {
10593         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10594     }
10595
10596     /* try to acquire the lock */
10597     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10598     lock_status = REG_RD(sc, hw_lock_control_reg);
10599     if (lock_status & resource_bit) {
10600         return (TRUE);
10601     }
10602
10603     BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10604         "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10605         lock_status, resource_bit);
10606
10607     return (FALSE);
10608 }
10609
10610 /*
10611  * Get the recovery leader resource id according to the engine this function
10612  * belongs to. Currently only only 2 engines is supported.
10613  */
10614 static int
10615 bxe_get_leader_lock_resource(struct bxe_softc *sc)
10616 {
10617     if (SC_PATH(sc)) {
10618         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10619     } else {
10620         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10621     }
10622 }
10623
10624 /* try to acquire a leader lock for current engine */
10625 static uint8_t
10626 bxe_trylock_leader_lock(struct bxe_softc *sc)
10627 {
10628     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10629 }
10630
10631 static int
10632 bxe_release_leader_lock(struct bxe_softc *sc)
10633 {
10634     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10635 }
10636
10637 /* close gates #2, #3 and #4 */
10638 static void
10639 bxe_set_234_gates(struct bxe_softc *sc,
10640                   uint8_t          close)
10641 {
10642     uint32_t val;
10643
10644     /* gates #2 and #4a are closed/opened for "not E1" only */
10645     if (!CHIP_IS_E1(sc)) {
10646         /* #4 */
10647         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10648         /* #2 */
10649         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10650     }
10651
10652     /* #3 */
10653     if (CHIP_IS_E1x(sc)) {
10654         /* prevent interrupts from HC on both ports */
10655         val = REG_RD(sc, HC_REG_CONFIG_1);
10656         REG_WR(sc, HC_REG_CONFIG_1,
10657                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10658                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10659
10660         val = REG_RD(sc, HC_REG_CONFIG_0);
10661         REG_WR(sc, HC_REG_CONFIG_0,
10662                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10663                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10664     } else {
10665         /* Prevent incoming interrupts in IGU */
10666         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10667
10668         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10669                (!close) ?
10670                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10671                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10672     }
10673
10674     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10675           close ? "closing" : "opening");
10676
10677     wmb();
10678 }
10679
10680 /* poll for pending writes bit, it should get cleared in no more than 1s */
10681 static int
10682 bxe_er_poll_igu_vq(struct bxe_softc *sc)
10683 {
10684     uint32_t cnt = 1000;
10685     uint32_t pend_bits = 0;
10686
10687     do {
10688         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10689
10690         if (pend_bits == 0) {
10691             break;
10692         }
10693
10694         DELAY(1000);
10695     } while (--cnt > 0);
10696
10697     if (cnt == 0) {
10698         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10699         return (-1);
10700     }
10701
10702     return (0);
10703 }
10704
10705 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
10706
10707 static void
10708 bxe_clp_reset_prep(struct bxe_softc *sc,
10709                    uint32_t         *magic_val)
10710 {
10711     /* Do some magic... */
10712     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10713     *magic_val = val & SHARED_MF_CLP_MAGIC;
10714     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10715 }
10716
10717 /* restore the value of the 'magic' bit */
10718 static void
10719 bxe_clp_reset_done(struct bxe_softc *sc,
10720                    uint32_t         magic_val)
10721 {
10722     /* Restore the 'magic' bit value... */
10723     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10724     MFCFG_WR(sc, shared_mf_config.clp_mb,
10725               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10726 }
10727
10728 /* prepare for MCP reset, takes care of CLP configurations */
10729 static void
10730 bxe_reset_mcp_prep(struct bxe_softc *sc,
10731                    uint32_t         *magic_val)
10732 {
10733     uint32_t shmem;
10734     uint32_t validity_offset;
10735
10736     /* set `magic' bit in order to save MF config */
10737     if (!CHIP_IS_E1(sc)) {
10738         bxe_clp_reset_prep(sc, magic_val);
10739     }
10740
10741     /* get shmem offset */
10742     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10743     validity_offset =
10744         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10745
10746     /* Clear validity map flags */
10747     if (shmem > 0) {
10748         REG_WR(sc, shmem + validity_offset, 0);
10749     }
10750 }
10751
10752 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
10753 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
10754
10755 static void
10756 bxe_mcp_wait_one(struct bxe_softc *sc)
10757 {
10758     /* special handling for emulation and FPGA (10 times longer) */
10759     if (CHIP_REV_IS_SLOW(sc)) {
10760         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10761     } else {
10762         DELAY((MCP_ONE_TIMEOUT) * 1000);
10763     }
10764 }
10765
10766 /* initialize shmem_base and waits for validity signature to appear */
10767 static int
10768 bxe_init_shmem(struct bxe_softc *sc)
10769 {
10770     int cnt = 0;
10771     uint32_t val = 0;
10772
10773     do {
10774         sc->devinfo.shmem_base     =
10775         sc->link_params.shmem_base =
10776             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10777
10778         if (sc->devinfo.shmem_base) {
10779             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10780             if (val & SHR_MEM_VALIDITY_MB)
10781                 return (0);
10782         }
10783
10784         bxe_mcp_wait_one(sc);
10785
10786     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10787
10788     BLOGE(sc, "BAD MCP validity signature\n");
10789
10790     return (-1);
10791 }
10792
10793 static int
10794 bxe_reset_mcp_comp(struct bxe_softc *sc,
10795                    uint32_t         magic_val)
10796 {
10797     int rc = bxe_init_shmem(sc);
10798
10799     /* Restore the `magic' bit value */
10800     if (!CHIP_IS_E1(sc)) {
10801         bxe_clp_reset_done(sc, magic_val);
10802     }
10803
10804     return (rc);
10805 }
10806
10807 static void
10808 bxe_pxp_prep(struct bxe_softc *sc)
10809 {
10810     if (!CHIP_IS_E1(sc)) {
10811         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10812         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10813         wmb();
10814     }
10815 }
10816
10817 /*
10818  * Reset the whole chip except for:
10819  *      - PCIE core
10820  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10821  *      - IGU
10822  *      - MISC (including AEU)
10823  *      - GRC
10824  *      - RBCN, RBCP
10825  */
10826 static void
10827 bxe_process_kill_chip_reset(struct bxe_softc *sc,
10828                             uint8_t          global)
10829 {
10830     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10831     uint32_t global_bits2, stay_reset2;
10832
10833     /*
10834      * Bits that have to be set in reset_mask2 if we want to reset 'global'
10835      * (per chip) blocks.
10836      */
10837     global_bits2 =
10838         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10839         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10840
10841     /*
10842      * Don't reset the following blocks.
10843      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10844      *            reset, as in 4 port device they might still be owned
10845      *            by the MCP (there is only one leader per path).
10846      */
10847     not_reset_mask1 =
10848         MISC_REGISTERS_RESET_REG_1_RST_HC |
10849         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10850         MISC_REGISTERS_RESET_REG_1_RST_PXP;
10851
10852     not_reset_mask2 =
10853         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10854         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10855         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10856         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10857         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10858         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
10859         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10860         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10861         MISC_REGISTERS_RESET_REG_2_RST_ATC |
10862         MISC_REGISTERS_RESET_REG_2_PGLC |
10863         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10864         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10865         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10866         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10867         MISC_REGISTERS_RESET_REG_2_UMAC0 |
10868         MISC_REGISTERS_RESET_REG_2_UMAC1;
10869
10870     /*
10871      * Keep the following blocks in reset:
10872      *  - all xxMACs are handled by the elink code.
10873      */
10874     stay_reset2 =
10875         MISC_REGISTERS_RESET_REG_2_XMAC |
10876         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10877
10878     /* Full reset masks according to the chip */
10879     reset_mask1 = 0xffffffff;
10880
10881     if (CHIP_IS_E1(sc))
10882         reset_mask2 = 0xffff;
10883     else if (CHIP_IS_E1H(sc))
10884         reset_mask2 = 0x1ffff;
10885     else if (CHIP_IS_E2(sc))
10886         reset_mask2 = 0xfffff;
10887     else /* CHIP_IS_E3 */
10888         reset_mask2 = 0x3ffffff;
10889
10890     /* Don't reset global blocks unless we need to */
10891     if (!global)
10892         reset_mask2 &= ~global_bits2;
10893
10894     /*
10895      * In case of attention in the QM, we need to reset PXP
10896      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10897      * because otherwise QM reset would release 'close the gates' shortly
10898      * before resetting the PXP, then the PSWRQ would send a write
10899      * request to PGLUE. Then when PXP is reset, PGLUE would try to
10900      * read the payload data from PSWWR, but PSWWR would not
10901      * respond. The write queue in PGLUE would stuck, dmae commands
10902      * would not return. Therefore it's important to reset the second
10903      * reset register (containing the
10904      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10905      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10906      * bit).
10907      */
10908     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10909            reset_mask2 & (~not_reset_mask2));
10910
10911     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10912            reset_mask1 & (~not_reset_mask1));
10913
10914     mb();
10915     wmb();
10916
10917     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
10918            reset_mask2 & (~stay_reset2));
10919
10920     mb();
10921     wmb();
10922
10923     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
10924     wmb();
10925 }
10926
10927 static int
10928 bxe_process_kill(struct bxe_softc *sc,
10929                  uint8_t          global)
10930 {
10931     int cnt = 1000;
10932     uint32_t val = 0;
10933     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
10934     uint32_t tags_63_32 = 0;
10935
10936     /* Empty the Tetris buffer, wait for 1s */
10937     do {
10938         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
10939         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
10940         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
10941         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
10942         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
10943         if (CHIP_IS_E3(sc)) {
10944             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
10945         }
10946
10947         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
10948             ((port_is_idle_0 & 0x1) == 0x1) &&
10949             ((port_is_idle_1 & 0x1) == 0x1) &&
10950             (pgl_exp_rom2 == 0xffffffff) &&
10951             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
10952             break;
10953         DELAY(1000);
10954     } while (cnt-- > 0);
10955
10956     if (cnt <= 0) {
10957         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
10958                   "are still outstanding read requests after 1s! "
10959                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
10960                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
10961               sr_cnt, blk_cnt, port_is_idle_0,
10962               port_is_idle_1, pgl_exp_rom2);
10963         return (-1);
10964     }
10965
10966     mb();
10967
10968     /* Close gates #2, #3 and #4 */
10969     bxe_set_234_gates(sc, TRUE);
10970
10971     /* Poll for IGU VQs for 57712 and newer chips */
10972     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
10973         return (-1);
10974     }
10975
10976     /* XXX indicate that "process kill" is in progress to MCP */
10977
10978     /* clear "unprepared" bit */
10979     REG_WR(sc, MISC_REG_UNPREPARED, 0);
10980     mb();
10981
10982     /* Make sure all is written to the chip before the reset */
10983     wmb();
10984
10985     /*
10986      * Wait for 1ms to empty GLUE and PCI-E core queues,
10987      * PSWHST, GRC and PSWRD Tetris buffer.
10988      */
10989     DELAY(1000);
10990
10991     /* Prepare to chip reset: */
10992     /* MCP */
10993     if (global) {
10994         bxe_reset_mcp_prep(sc, &val);
10995     }
10996
10997     /* PXP */
10998     bxe_pxp_prep(sc);
10999     mb();
11000
11001     /* reset the chip */
11002     bxe_process_kill_chip_reset(sc, global);
11003     mb();
11004
11005     /* clear errors in PGB */
11006     if (!CHIP_IS_E1(sc))
11007         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11008
11009     /* Recover after reset: */
11010     /* MCP */
11011     if (global && bxe_reset_mcp_comp(sc, val)) {
11012         return (-1);
11013     }
11014
11015     /* XXX add resetting the NO_MCP mode DB here */
11016
11017     /* Open the gates #2, #3 and #4 */
11018     bxe_set_234_gates(sc, FALSE);
11019
11020     /* XXX
11021      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11022      * re-enable attentions
11023      */
11024
11025     return (0);
11026 }
11027
11028 static int
11029 bxe_leader_reset(struct bxe_softc *sc)
11030 {
11031     int rc = 0;
11032     uint8_t global = bxe_reset_is_global(sc);
11033     uint32_t load_code;
11034
11035     /*
11036      * If not going to reset MCP, load "fake" driver to reset HW while
11037      * driver is owner of the HW.
11038      */
11039     if (!global && !BXE_NOMCP(sc)) {
11040         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11041                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11042         if (!load_code) {
11043             BLOGE(sc, "MCP response failure, aborting\n");
11044             rc = -1;
11045             goto exit_leader_reset;
11046         }
11047
11048         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11049             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11050             BLOGE(sc, "MCP unexpected response, aborting\n");
11051             rc = -1;
11052             goto exit_leader_reset2;
11053         }
11054
11055         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11056         if (!load_code) {
11057             BLOGE(sc, "MCP response failure, aborting\n");
11058             rc = -1;
11059             goto exit_leader_reset2;
11060         }
11061     }
11062
11063     /* try to recover after the failure */
11064     if (bxe_process_kill(sc, global)) {
11065         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11066         rc = -1;
11067         goto exit_leader_reset2;
11068     }
11069
11070     /*
11071      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11072      * state.
11073      */
11074     bxe_set_reset_done(sc);
11075     if (global) {
11076         bxe_clear_reset_global(sc);
11077     }
11078
11079 exit_leader_reset2:
11080
11081     /* unload "fake driver" if it was loaded */
11082     if (!global && !BXE_NOMCP(sc)) {
11083         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11084         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11085     }
11086
11087 exit_leader_reset:
11088
11089     sc->is_leader = 0;
11090     bxe_release_leader_lock(sc);
11091
11092     mb();
11093     return (rc);
11094 }
11095
11096 /*
11097  * prepare INIT transition, parameters configured:
11098  *   - HC configuration
11099  *   - Queue's CDU context
11100  */
11101 static void
11102 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11103                    struct bxe_fastpath            *fp,
11104                    struct ecore_queue_init_params *init_params)
11105 {
11106     uint8_t cos;
11107     int cxt_index, cxt_offset;
11108
11109     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11110     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11111
11112     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11113     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11114
11115     /* HC rate */
11116     init_params->rx.hc_rate =
11117         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11118     init_params->tx.hc_rate =
11119         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11120
11121     /* FW SB ID */
11122     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11123
11124     /* CQ index among the SB indices */
11125     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11126     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11127
11128     /* set maximum number of COSs supported by this queue */
11129     init_params->max_cos = sc->max_cos;
11130
11131     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11132           fp->index, init_params->max_cos);
11133
11134     /* set the context pointers queue object */
11135     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11136         /* XXX change index/cid here if ever support multiple tx CoS */
11137         /* fp->txdata[cos]->cid */
11138         cxt_index = fp->index / ILT_PAGE_CIDS;
11139         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11140         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11141     }
11142 }
11143
11144 /* set flags that are common for the Tx-only and not normal connections */
11145 static unsigned long
11146 bxe_get_common_flags(struct bxe_softc    *sc,
11147                      struct bxe_fastpath *fp,
11148                      uint8_t             zero_stats)
11149 {
11150     unsigned long flags = 0;
11151
11152     /* PF driver will always initialize the Queue to an ACTIVE state */
11153     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11154
11155     /*
11156      * tx only connections collect statistics (on the same index as the
11157      * parent connection). The statistics are zeroed when the parent
11158      * connection is initialized.
11159      */
11160
11161     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11162     if (zero_stats) {
11163         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11164     }
11165
11166     /*
11167      * tx only connections can support tx-switching, though their
11168      * CoS-ness doesn't survive the loopback
11169      */
11170     if (sc->flags & BXE_TX_SWITCHING) {
11171         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11172     }
11173
11174     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11175
11176     return (flags);
11177 }
11178
11179 static unsigned long
11180 bxe_get_q_flags(struct bxe_softc    *sc,
11181                 struct bxe_fastpath *fp,
11182                 uint8_t             leading)
11183 {
11184     unsigned long flags = 0;
11185
11186     if (IS_MF_SD(sc)) {
11187         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11188     }
11189
11190     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11191         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11192         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11193     }
11194
11195     if (leading) {
11196         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11197         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11198     }
11199
11200     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11201
11202     /* merge with common flags */
11203     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11204 }
11205
11206 static void
11207 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11208                       struct bxe_fastpath               *fp,
11209                       struct ecore_general_setup_params *gen_init,
11210                       uint8_t                           cos)
11211 {
11212     gen_init->stat_id = bxe_stats_id(fp);
11213     gen_init->spcl_id = fp->cl_id;
11214     gen_init->mtu = sc->mtu;
11215     gen_init->cos = cos;
11216 }
11217
11218 static void
11219 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11220                  struct bxe_fastpath           *fp,
11221                  struct rxq_pause_params       *pause,
11222                  struct ecore_rxq_setup_params *rxq_init)
11223 {
11224     uint8_t max_sge = 0;
11225     uint16_t sge_sz = 0;
11226     uint16_t tpa_agg_size = 0;
11227
11228     pause->sge_th_lo = SGE_TH_LO(sc);
11229     pause->sge_th_hi = SGE_TH_HI(sc);
11230
11231     /* validate SGE ring has enough to cross high threshold */
11232     if (sc->dropless_fc &&
11233             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11234             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11235         BLOGW(sc, "sge ring threshold limit\n");
11236     }
11237
11238     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11239     tpa_agg_size = (2 * sc->mtu);
11240     if (tpa_agg_size < sc->max_aggregation_size) {
11241         tpa_agg_size = sc->max_aggregation_size;
11242     }
11243
11244     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11245     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11246                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11247     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11248
11249     /* pause - not for e1 */
11250     if (!CHIP_IS_E1(sc)) {
11251         pause->bd_th_lo = BD_TH_LO(sc);
11252         pause->bd_th_hi = BD_TH_HI(sc);
11253
11254         pause->rcq_th_lo = RCQ_TH_LO(sc);
11255         pause->rcq_th_hi = RCQ_TH_HI(sc);
11256
11257         /* validate rings have enough entries to cross high thresholds */
11258         if (sc->dropless_fc &&
11259             pause->bd_th_hi + FW_PREFETCH_CNT >
11260             sc->rx_ring_size) {
11261             BLOGW(sc, "rx bd ring threshold limit\n");
11262         }
11263
11264         if (sc->dropless_fc &&
11265             pause->rcq_th_hi + FW_PREFETCH_CNT >
11266             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11267             BLOGW(sc, "rcq ring threshold limit\n");
11268         }
11269
11270         pause->pri_map = 1;
11271     }
11272
11273     /* rxq setup */
11274     rxq_init->dscr_map   = fp->rx_dma.paddr;
11275     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11276     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11277     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11278
11279     /*
11280      * This should be a maximum number of data bytes that may be
11281      * placed on the BD (not including paddings).
11282      */
11283     rxq_init->buf_sz = (fp->rx_buf_size -
11284                         IP_HEADER_ALIGNMENT_PADDING);
11285
11286     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11287     rxq_init->tpa_agg_sz      = tpa_agg_size;
11288     rxq_init->sge_buf_sz      = sge_sz;
11289     rxq_init->max_sges_pkt    = max_sge;
11290     rxq_init->rss_engine_id   = SC_FUNC(sc);
11291     rxq_init->mcast_engine_id = SC_FUNC(sc);
11292
11293     /*
11294      * Maximum number or simultaneous TPA aggregation for this Queue.
11295      * For PF Clients it should be the maximum available number.
11296      * VF driver(s) may want to define it to a smaller value.
11297      */
11298     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11299
11300     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11301     rxq_init->fw_sb_id = fp->fw_sb_id;
11302
11303     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11304
11305     /*
11306      * configure silent vlan removal
11307      * if multi function mode is afex, then mask default vlan
11308      */
11309     if (IS_MF_AFEX(sc)) {
11310         rxq_init->silent_removal_value =
11311             sc->devinfo.mf_info.afex_def_vlan_tag;
11312         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11313     }
11314 }
11315
11316 static void
11317 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11318                  struct bxe_fastpath           *fp,
11319                  struct ecore_txq_setup_params *txq_init,
11320                  uint8_t                       cos)
11321 {
11322     /*
11323      * XXX If multiple CoS is ever supported then each fastpath structure
11324      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11325      * fp->txdata[cos]->tx_dma.paddr;
11326      */
11327     txq_init->dscr_map     = fp->tx_dma.paddr;
11328     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11329     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11330     txq_init->fw_sb_id     = fp->fw_sb_id;
11331
11332     /*
11333      * set the TSS leading client id for TX classfication to the
11334      * leading RSS client id
11335      */
11336     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11337 }
11338
11339 /*
11340  * This function performs 2 steps in a queue state machine:
11341  *   1) RESET->INIT
11342  *   2) INIT->SETUP
11343  */
11344 static int
11345 bxe_setup_queue(struct bxe_softc    *sc,
11346                 struct bxe_fastpath *fp,
11347                 uint8_t             leading)
11348 {
11349     struct ecore_queue_state_params q_params = { NULL };
11350     struct ecore_queue_setup_params *setup_params =
11351                         &q_params.params.setup;
11352     int rc;
11353
11354     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11355
11356     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11357
11358     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11359
11360     /* we want to wait for completion in this context */
11361     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11362
11363     /* prepare the INIT parameters */
11364     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11365
11366     /* Set the command */
11367     q_params.cmd = ECORE_Q_CMD_INIT;
11368
11369     /* Change the state to INIT */
11370     rc = ecore_queue_state_change(sc, &q_params);
11371     if (rc) {
11372         BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11373         return (rc);
11374     }
11375
11376     BLOGD(sc, DBG_LOAD, "init complete\n");
11377
11378     /* now move the Queue to the SETUP state */
11379     memset(setup_params, 0, sizeof(*setup_params));
11380
11381     /* set Queue flags */
11382     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11383
11384     /* set general SETUP parameters */
11385     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11386                           FIRST_TX_COS_INDEX);
11387
11388     bxe_pf_rx_q_prep(sc, fp,
11389                      &setup_params->pause_params,
11390                      &setup_params->rxq_params);
11391
11392     bxe_pf_tx_q_prep(sc, fp,
11393                      &setup_params->txq_params,
11394                      FIRST_TX_COS_INDEX);
11395
11396     /* Set the command */
11397     q_params.cmd = ECORE_Q_CMD_SETUP;
11398
11399     /* change the state to SETUP */
11400     rc = ecore_queue_state_change(sc, &q_params);
11401     if (rc) {
11402         BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11403         return (rc);
11404     }
11405
11406     return (rc);
11407 }
11408
11409 static int
11410 bxe_setup_leading(struct bxe_softc *sc)
11411 {
11412     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11413 }
11414
11415 static int
11416 bxe_config_rss_pf(struct bxe_softc            *sc,
11417                   struct ecore_rss_config_obj *rss_obj,
11418                   uint8_t                     config_hash)
11419 {
11420     struct ecore_config_rss_params params = { NULL };
11421     int i;
11422
11423     /*
11424      * Although RSS is meaningless when there is a single HW queue we
11425      * still need it enabled in order to have HW Rx hash generated.
11426      */
11427
11428     params.rss_obj = rss_obj;
11429
11430     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11431
11432     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11433
11434     /* RSS configuration */
11435     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11436     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11437     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11438     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11439     if (rss_obj->udp_rss_v4) {
11440         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11441     }
11442     if (rss_obj->udp_rss_v6) {
11443         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11444     }
11445
11446     /* Hash bits */
11447     params.rss_result_mask = MULTI_MASK;
11448
11449     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11450
11451     if (config_hash) {
11452         /* RSS keys */
11453         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11454             params.rss_key[i] = arc4random();
11455         }
11456
11457         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11458     }
11459
11460     return (ecore_config_rss(sc, &params));
11461 }
11462
11463 static int
11464 bxe_config_rss_eth(struct bxe_softc *sc,
11465                    uint8_t          config_hash)
11466 {
11467     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11468 }
11469
11470 static int
11471 bxe_init_rss_pf(struct bxe_softc *sc)
11472 {
11473     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11474     int i;
11475
11476     /*
11477      * Prepare the initial contents of the indirection table if
11478      * RSS is enabled
11479      */
11480     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11481         sc->rss_conf_obj.ind_table[i] =
11482             (sc->fp->cl_id + (i % num_eth_queues));
11483     }
11484
11485     if (sc->udp_rss) {
11486         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11487     }
11488
11489     /*
11490      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11491      * per-port, so if explicit configuration is needed, do it only
11492      * for a PMF.
11493      *
11494      * For 57712 and newer it's a per-function configuration.
11495      */
11496     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11497 }
11498
11499 static int
11500 bxe_set_mac_one(struct bxe_softc          *sc,
11501                 uint8_t                   *mac,
11502                 struct ecore_vlan_mac_obj *obj,
11503                 uint8_t                   set,
11504                 int                       mac_type,
11505                 unsigned long             *ramrod_flags)
11506 {
11507     struct ecore_vlan_mac_ramrod_params ramrod_param;
11508     int rc;
11509
11510     memset(&ramrod_param, 0, sizeof(ramrod_param));
11511
11512     /* fill in general parameters */
11513     ramrod_param.vlan_mac_obj = obj;
11514     ramrod_param.ramrod_flags = *ramrod_flags;
11515
11516     /* fill a user request section if needed */
11517     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11518         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11519
11520         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11521
11522         /* Set the command: ADD or DEL */
11523         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11524                                             ECORE_VLAN_MAC_DEL;
11525     }
11526
11527     rc = ecore_config_vlan_mac(sc, &ramrod_param);
11528
11529     if (rc == ECORE_EXISTS) {
11530         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11531         /* do not treat adding same MAC as error */
11532         rc = 0;
11533     } else if (rc < 0) {
11534         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11535     }
11536
11537     return (rc);
11538 }
11539
11540 static int
11541 bxe_set_eth_mac(struct bxe_softc *sc,
11542                 uint8_t          set)
11543 {
11544     unsigned long ramrod_flags = 0;
11545
11546     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11547
11548     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11549
11550     /* Eth MAC is set on RSS leading client (fp[0]) */
11551     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11552                             &sc->sp_objs->mac_obj,
11553                             set, ECORE_ETH_MAC, &ramrod_flags));
11554 }
11555
11556 static int
11557 bxe_get_cur_phy_idx(struct bxe_softc *sc)
11558 {
11559     uint32_t sel_phy_idx = 0;
11560
11561     if (sc->link_params.num_phys <= 1) {
11562         return (ELINK_INT_PHY);
11563     }
11564
11565     if (sc->link_vars.link_up) {
11566         sel_phy_idx = ELINK_EXT_PHY1;
11567         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11568         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11569             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11570              ELINK_SUPPORTED_FIBRE))
11571             sel_phy_idx = ELINK_EXT_PHY2;
11572     } else {
11573         switch (elink_phy_selection(&sc->link_params)) {
11574         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11575         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11576         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11577                sel_phy_idx = ELINK_EXT_PHY1;
11578                break;
11579         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11580         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11581                sel_phy_idx = ELINK_EXT_PHY2;
11582                break;
11583         }
11584     }
11585
11586     return (sel_phy_idx);
11587 }
11588
11589 static int
11590 bxe_get_link_cfg_idx(struct bxe_softc *sc)
11591 {
11592     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11593
11594     /*
11595      * The selected activated PHY is always after swapping (in case PHY
11596      * swapping is enabled). So when swapping is enabled, we need to reverse
11597      * the configuration
11598      */
11599
11600     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11601         if (sel_phy_idx == ELINK_EXT_PHY1)
11602             sel_phy_idx = ELINK_EXT_PHY2;
11603         else if (sel_phy_idx == ELINK_EXT_PHY2)
11604             sel_phy_idx = ELINK_EXT_PHY1;
11605     }
11606
11607     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11608 }
11609
11610 static void
11611 bxe_set_requested_fc(struct bxe_softc *sc)
11612 {
11613     /*
11614      * Initialize link parameters structure variables
11615      * It is recommended to turn off RX FC for jumbo frames
11616      * for better performance
11617      */
11618     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11619         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11620     } else {
11621         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11622     }
11623 }
11624
11625 static void
11626 bxe_calc_fc_adv(struct bxe_softc *sc)
11627 {
11628     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11629     switch (sc->link_vars.ieee_fc &
11630             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11631     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
11632     default:
11633         sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11634                                            ADVERTISED_Pause);
11635         break;
11636
11637     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11638         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11639                                           ADVERTISED_Pause);
11640         break;
11641
11642     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11643         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11644         break;
11645     }
11646 }
11647
11648 static uint16_t
11649 bxe_get_mf_speed(struct bxe_softc *sc)
11650 {
11651     uint16_t line_speed = sc->link_vars.line_speed;
11652     if (IS_MF(sc)) {
11653         uint16_t maxCfg =
11654             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11655
11656         /* calculate the current MAX line speed limit for the MF devices */
11657         if (IS_MF_SI(sc)) {
11658             line_speed = (line_speed * maxCfg) / 100;
11659         } else { /* SD mode */
11660             uint16_t vn_max_rate = maxCfg * 100;
11661
11662             if (vn_max_rate < line_speed) {
11663                 line_speed = vn_max_rate;
11664             }
11665         }
11666     }
11667
11668     return (line_speed);
11669 }
11670
11671 static void
11672 bxe_fill_report_data(struct bxe_softc            *sc,
11673                      struct bxe_link_report_data *data)
11674 {
11675     uint16_t line_speed = bxe_get_mf_speed(sc);
11676
11677     memset(data, 0, sizeof(*data));
11678
11679     /* fill the report data with the effective line speed */
11680     data->line_speed = line_speed;
11681
11682     /* Link is down */
11683     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11684         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11685     }
11686
11687     /* Full DUPLEX */
11688     if (sc->link_vars.duplex == DUPLEX_FULL) {
11689         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11690     }
11691
11692     /* Rx Flow Control is ON */
11693     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11694         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11695     }
11696
11697     /* Tx Flow Control is ON */
11698     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11699         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11700     }
11701 }
11702
11703 /* report link status to OS, should be called under phy_lock */
11704 static void
11705 bxe_link_report_locked(struct bxe_softc *sc)
11706 {
11707     struct bxe_link_report_data cur_data;
11708
11709     /* reread mf_cfg */
11710     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11711         bxe_read_mf_cfg(sc);
11712     }
11713
11714     /* Read the current link report info */
11715     bxe_fill_report_data(sc, &cur_data);
11716
11717     /* Don't report link down or exactly the same link status twice */
11718     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11719         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11720                       &sc->last_reported_link.link_report_flags) &&
11721          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11722                       &cur_data.link_report_flags))) {
11723         return;
11724     }
11725
11726     sc->link_cnt++;
11727
11728     /* report new link params and remember the state for the next time */
11729     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11730
11731     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11732                      &cur_data.link_report_flags)) {
11733         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11734         BLOGI(sc, "NIC Link is Down\n");
11735     } else {
11736         const char *duplex;
11737         const char *flow;
11738
11739         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11740                                    &cur_data.link_report_flags)) {
11741             duplex = "full";
11742         } else {
11743             duplex = "half";
11744         }
11745
11746         /*
11747          * Handle the FC at the end so that only these flags would be
11748          * possibly set. This way we may easily check if there is no FC
11749          * enabled.
11750          */
11751         if (cur_data.link_report_flags) {
11752             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11753                              &cur_data.link_report_flags) &&
11754                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11755                              &cur_data.link_report_flags)) {
11756                 flow = "ON - receive & transmit";
11757             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11758                                     &cur_data.link_report_flags) &&
11759                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11760                                      &cur_data.link_report_flags)) {
11761                 flow = "ON - receive";
11762             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11763                                      &cur_data.link_report_flags) &&
11764                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11765                                     &cur_data.link_report_flags)) {
11766                 flow = "ON - transmit";
11767             } else {
11768                 flow = "none"; /* possible? */
11769             }
11770         } else {
11771             flow = "none";
11772         }
11773
11774         if_link_state_change(sc->ifp, LINK_STATE_UP);
11775         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11776               cur_data.line_speed, duplex, flow);
11777     }
11778 }
11779
11780 static void
11781 bxe_link_report(struct bxe_softc *sc)
11782 {
11783     bxe_acquire_phy_lock(sc);
11784     bxe_link_report_locked(sc);
11785     bxe_release_phy_lock(sc);
11786 }
11787
11788 static void
11789 bxe_link_status_update(struct bxe_softc *sc)
11790 {
11791     if (sc->state != BXE_STATE_OPEN) {
11792         return;
11793     }
11794
11795     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11796         elink_link_status_update(&sc->link_params, &sc->link_vars);
11797     } else {
11798         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11799                                   ELINK_SUPPORTED_10baseT_Full |
11800                                   ELINK_SUPPORTED_100baseT_Half |
11801                                   ELINK_SUPPORTED_100baseT_Full |
11802                                   ELINK_SUPPORTED_1000baseT_Full |
11803                                   ELINK_SUPPORTED_2500baseX_Full |
11804                                   ELINK_SUPPORTED_10000baseT_Full |
11805                                   ELINK_SUPPORTED_TP |
11806                                   ELINK_SUPPORTED_FIBRE |
11807                                   ELINK_SUPPORTED_Autoneg |
11808                                   ELINK_SUPPORTED_Pause |
11809                                   ELINK_SUPPORTED_Asym_Pause);
11810         sc->port.advertising[0] = sc->port.supported[0];
11811
11812         sc->link_params.sc                = sc;
11813         sc->link_params.port              = SC_PORT(sc);
11814         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
11815         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
11816         sc->link_params.req_line_speed[0] = SPEED_10000;
11817         sc->link_params.speed_cap_mask[0] = 0x7f0000;
11818         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
11819
11820         if (CHIP_REV_IS_FPGA(sc)) {
11821             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
11822             sc->link_vars.line_speed  = ELINK_SPEED_1000;
11823             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11824                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11825         } else {
11826             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
11827             sc->link_vars.line_speed  = ELINK_SPEED_10000;
11828             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11829                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11830         }
11831
11832         sc->link_vars.link_up = 1;
11833
11834         sc->link_vars.duplex    = DUPLEX_FULL;
11835         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11836
11837         if (IS_PF(sc)) {
11838             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11839             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11840             bxe_link_report(sc);
11841         }
11842     }
11843
11844     if (IS_PF(sc)) {
11845         if (sc->link_vars.link_up) {
11846             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11847         } else {
11848             bxe_stats_handle(sc, STATS_EVENT_STOP);
11849         }
11850         bxe_link_report(sc);
11851     } else {
11852         bxe_link_report(sc);
11853         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11854     }
11855 }
11856
11857 static int
11858 bxe_initial_phy_init(struct bxe_softc *sc,
11859                      int              load_mode)
11860 {
11861     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11862     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11863     struct elink_params *lp = &sc->link_params;
11864
11865     bxe_set_requested_fc(sc);
11866
11867     if (CHIP_REV_IS_SLOW(sc)) {
11868         uint32_t bond = CHIP_BOND_ID(sc);
11869         uint32_t feat = 0;
11870
11871         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11872             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11873         } else if (bond & 0x4) {
11874             if (CHIP_IS_E3(sc)) {
11875                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11876             } else {
11877                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11878             }
11879         } else if (bond & 0x8) {
11880             if (CHIP_IS_E3(sc)) {
11881                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11882             } else {
11883                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11884             }
11885         }
11886
11887         /* disable EMAC for E3 and above */
11888         if (bond & 0x2) {
11889             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11890         }
11891
11892         sc->link_params.feature_config_flags |= feat;
11893     }
11894
11895     bxe_acquire_phy_lock(sc);
11896
11897     if (load_mode == LOAD_DIAG) {
11898         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11899         /* Prefer doing PHY loopback at 10G speed, if possible */
11900         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11901             if (lp->speed_cap_mask[cfg_idx] &
11902                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11903                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11904             } else {
11905                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11906             }
11907         }
11908     }
11909
11910     if (load_mode == LOAD_LOOPBACK_EXT) {
11911         lp->loopback_mode = ELINK_LOOPBACK_EXT;
11912     }
11913
11914     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
11915
11916     bxe_release_phy_lock(sc);
11917
11918     bxe_calc_fc_adv(sc);
11919
11920     if (sc->link_vars.link_up) {
11921         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11922         bxe_link_report(sc);
11923     }
11924
11925     if (!CHIP_REV_IS_SLOW(sc)) {
11926         bxe_periodic_start(sc);
11927     }
11928
11929     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
11930     return (rc);
11931 }
11932
11933 /* must be called under IF_ADDR_LOCK */
11934
11935 static int
11936 bxe_set_mc_list(struct bxe_softc *sc)
11937 {
11938     struct ecore_mcast_ramrod_params rparam = { NULL };
11939     int rc = 0;
11940     int mc_count = 0;
11941     int mcnt, i;
11942     struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
11943     unsigned char *mta;
11944     if_t ifp = sc->ifp;
11945
11946     mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
11947     if (!mc_count)
11948         return (0);
11949
11950     mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
11951             mc_count, M_DEVBUF, M_NOWAIT);
11952
11953     if(mta == NULL) {
11954         BLOGE(sc, "Failed to allocate temp mcast list\n");
11955         return (-1);
11956     }
11957     bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
11958     
11959     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
11960     mc_mac_start = mc_mac;
11961
11962     if (!mc_mac) {
11963         free(mta, M_DEVBUF);
11964         BLOGE(sc, "Failed to allocate temp mcast list\n");
11965         return (-1);
11966     }
11967     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
11968
11969     /* mta and mcnt not expected to be  different */
11970     if_multiaddr_array(ifp, mta, &mcnt, mc_count);
11971
11972
11973     rparam.mcast_obj = &sc->mcast_obj;
11974     ECORE_LIST_INIT(&rparam.mcast_list);
11975
11976     for(i=0; i< mcnt; i++) {
11977
11978         mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
11979         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
11980
11981         BLOGD(sc, DBG_LOAD,
11982               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
11983               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
11984               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
11985
11986         mc_mac++;
11987     }
11988     rparam.mcast_list_len = mc_count;
11989
11990     BXE_MCAST_LOCK(sc);
11991
11992     /* first, clear all configured multicast MACs */
11993     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
11994     if (rc < 0) {
11995         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
11996         BXE_MCAST_UNLOCK(sc);
11997         free(mc_mac_start, M_DEVBUF);
11998         free(mta, M_DEVBUF);
11999         return (rc);
12000     }
12001
12002     /* Now add the new MACs */
12003     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12004     if (rc < 0) {
12005         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12006     }
12007
12008     BXE_MCAST_UNLOCK(sc);
12009
12010     free(mc_mac_start, M_DEVBUF);
12011     free(mta, M_DEVBUF);
12012
12013     return (rc);
12014 }
12015
12016 static int
12017 bxe_set_uc_list(struct bxe_softc *sc)
12018 {
12019     if_t ifp = sc->ifp;
12020     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12021     struct ifaddr *ifa;
12022     unsigned long ramrod_flags = 0;
12023     int rc;
12024
12025 #if __FreeBSD_version < 800000
12026     IF_ADDR_LOCK(ifp);
12027 #else
12028     if_addr_rlock(ifp);
12029 #endif
12030
12031     /* first schedule a cleanup up of old configuration */
12032     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12033     if (rc < 0) {
12034         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12035 #if __FreeBSD_version < 800000
12036         IF_ADDR_UNLOCK(ifp);
12037 #else
12038         if_addr_runlock(ifp);
12039 #endif
12040         return (rc);
12041     }
12042
12043     ifa = if_getifaddr(ifp); /* XXX Is this structure */
12044     while (ifa) {
12045         if (ifa->ifa_addr->sa_family != AF_LINK) {
12046             ifa = TAILQ_NEXT(ifa, ifa_link);
12047             continue;
12048         }
12049
12050         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12051                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12052         if (rc == -EEXIST) {
12053             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12054             /* do not treat adding same MAC as an error */
12055             rc = 0;
12056         } else if (rc < 0) {
12057             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12058 #if __FreeBSD_version < 800000
12059             IF_ADDR_UNLOCK(ifp);
12060 #else
12061             if_addr_runlock(ifp);
12062 #endif
12063             return (rc);
12064         }
12065
12066         ifa = TAILQ_NEXT(ifa, ifa_link);
12067     }
12068
12069 #if __FreeBSD_version < 800000
12070     IF_ADDR_UNLOCK(ifp);
12071 #else
12072     if_addr_runlock(ifp);
12073 #endif
12074
12075     /* Execute the pending commands */
12076     bit_set(&ramrod_flags, RAMROD_CONT);
12077     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12078                             ECORE_UC_LIST_MAC, &ramrod_flags));
12079 }
12080
12081 static void
12082 bxe_set_rx_mode(struct bxe_softc *sc)
12083 {
12084     if_t ifp = sc->ifp;
12085     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12086
12087     if (sc->state != BXE_STATE_OPEN) {
12088         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12089         return;
12090     }
12091
12092     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12093
12094     if (if_getflags(ifp) & IFF_PROMISC) {
12095         rx_mode = BXE_RX_MODE_PROMISC;
12096     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12097                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12098                 CHIP_IS_E1(sc))) {
12099         rx_mode = BXE_RX_MODE_ALLMULTI;
12100     } else {
12101         if (IS_PF(sc)) {
12102             /* some multicasts */
12103             if (bxe_set_mc_list(sc) < 0) {
12104                 rx_mode = BXE_RX_MODE_ALLMULTI;
12105             }
12106             if (bxe_set_uc_list(sc) < 0) {
12107                 rx_mode = BXE_RX_MODE_PROMISC;
12108             }
12109         }
12110     }
12111
12112     sc->rx_mode = rx_mode;
12113
12114     /* schedule the rx_mode command */
12115     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12116         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12117         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12118         return;
12119     }
12120
12121     if (IS_PF(sc)) {
12122         bxe_set_storm_rx_mode(sc);
12123     }
12124 }
12125
12126
12127 /* update flags in shmem */
12128 static void
12129 bxe_update_drv_flags(struct bxe_softc *sc,
12130                      uint32_t         flags,
12131                      uint32_t         set)
12132 {
12133     uint32_t drv_flags;
12134
12135     if (SHMEM2_HAS(sc, drv_flags)) {
12136         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12137         drv_flags = SHMEM2_RD(sc, drv_flags);
12138
12139         if (set) {
12140             SET_FLAGS(drv_flags, flags);
12141         } else {
12142             RESET_FLAGS(drv_flags, flags);
12143         }
12144
12145         SHMEM2_WR(sc, drv_flags, drv_flags);
12146         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12147
12148         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12149     }
12150 }
12151
12152 /* periodic timer callout routine, only runs when the interface is up */
12153
12154 static void
12155 bxe_periodic_callout_func(void *xsc)
12156 {
12157     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12158     int i;
12159
12160     if (!BXE_CORE_TRYLOCK(sc)) {
12161         /* just bail and try again next time */
12162
12163         if ((sc->state == BXE_STATE_OPEN) &&
12164             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12165             /* schedule the next periodic callout */
12166             callout_reset(&sc->periodic_callout, hz,
12167                           bxe_periodic_callout_func, sc);
12168         }
12169
12170         return;
12171     }
12172
12173     if ((sc->state != BXE_STATE_OPEN) ||
12174         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12175         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12176         BXE_CORE_UNLOCK(sc);
12177         return;
12178         }
12179
12180
12181     /* Check for TX timeouts on any fastpath. */
12182     FOR_EACH_QUEUE(sc, i) {
12183         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12184             /* Ruh-Roh, chip was reset! */
12185             break;
12186         }
12187     }
12188
12189     if (!CHIP_REV_IS_SLOW(sc)) {
12190         /*
12191          * This barrier is needed to ensure the ordering between the writing
12192          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12193          * the reading here.
12194          */
12195         mb();
12196         if (sc->port.pmf) {
12197             bxe_acquire_phy_lock(sc);
12198             elink_period_func(&sc->link_params, &sc->link_vars);
12199             bxe_release_phy_lock(sc);
12200         }
12201     }
12202
12203     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12204         int mb_idx = SC_FW_MB_IDX(sc);
12205         uint32_t drv_pulse;
12206         uint32_t mcp_pulse;
12207
12208         ++sc->fw_drv_pulse_wr_seq;
12209         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12210
12211         drv_pulse = sc->fw_drv_pulse_wr_seq;
12212         bxe_drv_pulse(sc);
12213
12214         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12215                      MCP_PULSE_SEQ_MASK);
12216
12217         /*
12218          * The delta between driver pulse and mcp response should
12219          * be 1 (before mcp response) or 0 (after mcp response).
12220          */
12221         if ((drv_pulse != mcp_pulse) &&
12222             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12223             /* someone lost a heartbeat... */
12224             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12225                   drv_pulse, mcp_pulse);
12226         }
12227     }
12228
12229     /* state is BXE_STATE_OPEN */
12230     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12231
12232     BXE_CORE_UNLOCK(sc);
12233
12234     if ((sc->state == BXE_STATE_OPEN) &&
12235         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12236         /* schedule the next periodic callout */
12237         callout_reset(&sc->periodic_callout, hz,
12238                       bxe_periodic_callout_func, sc);
12239     }
12240 }
12241
12242 static void
12243 bxe_periodic_start(struct bxe_softc *sc)
12244 {
12245     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12246     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12247 }
12248
12249 static void
12250 bxe_periodic_stop(struct bxe_softc *sc)
12251 {
12252     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12253     callout_drain(&sc->periodic_callout);
12254 }
12255
12256 /* start the controller */
12257 static __noinline int
12258 bxe_nic_load(struct bxe_softc *sc,
12259              int              load_mode)
12260 {
12261     uint32_t val;
12262     int load_code = 0;
12263     int i, rc = 0;
12264
12265     BXE_CORE_LOCK_ASSERT(sc);
12266
12267     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12268
12269     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12270
12271     if (IS_PF(sc)) {
12272         /* must be called before memory allocation and HW init */
12273         bxe_ilt_set_info(sc);
12274     }
12275
12276     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12277
12278     bxe_set_fp_rx_buf_size(sc);
12279
12280     if (bxe_alloc_fp_buffers(sc) != 0) {
12281         BLOGE(sc, "Failed to allocate fastpath memory\n");
12282         sc->state = BXE_STATE_CLOSED;
12283         rc = ENOMEM;
12284         goto bxe_nic_load_error0;
12285     }
12286
12287     if (bxe_alloc_mem(sc) != 0) {
12288         sc->state = BXE_STATE_CLOSED;
12289         rc = ENOMEM;
12290         goto bxe_nic_load_error0;
12291     }
12292
12293     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12294         sc->state = BXE_STATE_CLOSED;
12295         rc = ENOMEM;
12296         goto bxe_nic_load_error0;
12297     }
12298
12299     if (IS_PF(sc)) {
12300         /* set pf load just before approaching the MCP */
12301         bxe_set_pf_load(sc);
12302
12303         /* if MCP exists send load request and analyze response */
12304         if (!BXE_NOMCP(sc)) {
12305             /* attempt to load pf */
12306             if (bxe_nic_load_request(sc, &load_code) != 0) {
12307                 sc->state = BXE_STATE_CLOSED;
12308                 rc = ENXIO;
12309                 goto bxe_nic_load_error1;
12310             }
12311
12312             /* what did the MCP say? */
12313             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12314                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12315                 sc->state = BXE_STATE_CLOSED;
12316                 rc = ENXIO;
12317                 goto bxe_nic_load_error2;
12318             }
12319         } else {
12320             BLOGI(sc, "Device has no MCP!\n");
12321             load_code = bxe_nic_load_no_mcp(sc);
12322         }
12323
12324         /* mark PMF if applicable */
12325         bxe_nic_load_pmf(sc, load_code);
12326
12327         /* Init Function state controlling object */
12328         bxe_init_func_obj(sc);
12329
12330         /* Initialize HW */
12331         if (bxe_init_hw(sc, load_code) != 0) {
12332             BLOGE(sc, "HW init failed\n");
12333             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12334             sc->state = BXE_STATE_CLOSED;
12335             rc = ENXIO;
12336             goto bxe_nic_load_error2;
12337         }
12338     }
12339
12340     /* set ALWAYS_ALIVE bit in shmem */
12341     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12342     bxe_drv_pulse(sc);
12343     sc->flags |= BXE_NO_PULSE;
12344
12345     /* attach interrupts */
12346     if (bxe_interrupt_attach(sc) != 0) {
12347         sc->state = BXE_STATE_CLOSED;
12348         rc = ENXIO;
12349         goto bxe_nic_load_error2;
12350     }
12351
12352     bxe_nic_init(sc, load_code);
12353
12354     /* Init per-function objects */
12355     if (IS_PF(sc)) {
12356         bxe_init_objs(sc);
12357         // XXX bxe_iov_nic_init(sc);
12358
12359         /* set AFEX default VLAN tag to an invalid value */
12360         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12361         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12362
12363         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12364         rc = bxe_func_start(sc);
12365         if (rc) {
12366             BLOGE(sc, "Function start failed! rc = %d\n", rc);
12367             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12368             sc->state = BXE_STATE_ERROR;
12369             goto bxe_nic_load_error3;
12370         }
12371
12372         /* send LOAD_DONE command to MCP */
12373         if (!BXE_NOMCP(sc)) {
12374             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12375             if (!load_code) {
12376                 BLOGE(sc, "MCP response failure, aborting\n");
12377                 sc->state = BXE_STATE_ERROR;
12378                 rc = ENXIO;
12379                 goto bxe_nic_load_error3;
12380             }
12381         }
12382
12383         rc = bxe_setup_leading(sc);
12384         if (rc) {
12385             BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12386             sc->state = BXE_STATE_ERROR;
12387             goto bxe_nic_load_error3;
12388         }
12389
12390         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12391             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12392             if (rc) {
12393                 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12394                 sc->state = BXE_STATE_ERROR;
12395                 goto bxe_nic_load_error3;
12396             }
12397         }
12398
12399         rc = bxe_init_rss_pf(sc);
12400         if (rc) {
12401             BLOGE(sc, "PF RSS init failed\n");
12402             sc->state = BXE_STATE_ERROR;
12403             goto bxe_nic_load_error3;
12404         }
12405     }
12406     /* XXX VF */
12407
12408     /* now when Clients are configured we are ready to work */
12409     sc->state = BXE_STATE_OPEN;
12410
12411     /* Configure a ucast MAC */
12412     if (IS_PF(sc)) {
12413         rc = bxe_set_eth_mac(sc, TRUE);
12414     }
12415     if (rc) {
12416         BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12417         sc->state = BXE_STATE_ERROR;
12418         goto bxe_nic_load_error3;
12419     }
12420
12421     if (sc->port.pmf) {
12422         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12423         if (rc) {
12424             sc->state = BXE_STATE_ERROR;
12425             goto bxe_nic_load_error3;
12426         }
12427     }
12428
12429     sc->link_params.feature_config_flags &=
12430         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12431
12432     /* start fast path */
12433
12434     /* Initialize Rx filter */
12435     bxe_set_rx_mode(sc);
12436
12437     /* start the Tx */
12438     switch (/* XXX load_mode */LOAD_OPEN) {
12439     case LOAD_NORMAL:
12440     case LOAD_OPEN:
12441         break;
12442
12443     case LOAD_DIAG:
12444     case LOAD_LOOPBACK_EXT:
12445         sc->state = BXE_STATE_DIAG;
12446         break;
12447
12448     default:
12449         break;
12450     }
12451
12452     if (sc->port.pmf) {
12453         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12454     } else {
12455         bxe_link_status_update(sc);
12456     }
12457
12458     /* start the periodic timer callout */
12459     bxe_periodic_start(sc);
12460
12461     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12462         /* mark driver is loaded in shmem2 */
12463         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12464         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12465                   (val |
12466                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12467                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
12468     }
12469
12470     /* wait for all pending SP commands to complete */
12471     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12472         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12473         bxe_periodic_stop(sc);
12474         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12475         return (ENXIO);
12476     }
12477
12478     /* Tell the stack the driver is running! */
12479     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12480
12481     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12482
12483     return (0);
12484
12485 bxe_nic_load_error3:
12486
12487     if (IS_PF(sc)) {
12488         bxe_int_disable_sync(sc, 1);
12489
12490         /* clean out queued objects */
12491         bxe_squeeze_objects(sc);
12492     }
12493
12494     bxe_interrupt_detach(sc);
12495
12496 bxe_nic_load_error2:
12497
12498     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12499         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12500         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12501     }
12502
12503     sc->port.pmf = 0;
12504
12505 bxe_nic_load_error1:
12506
12507     /* clear pf_load status, as it was already set */
12508     if (IS_PF(sc)) {
12509         bxe_clear_pf_load(sc);
12510     }
12511
12512 bxe_nic_load_error0:
12513
12514     bxe_free_fw_stats_mem(sc);
12515     bxe_free_fp_buffers(sc);
12516     bxe_free_mem(sc);
12517
12518     return (rc);
12519 }
12520
12521 static int
12522 bxe_init_locked(struct bxe_softc *sc)
12523 {
12524     int other_engine = SC_PATH(sc) ? 0 : 1;
12525     uint8_t other_load_status, load_status;
12526     uint8_t global = FALSE;
12527     int rc;
12528
12529     BXE_CORE_LOCK_ASSERT(sc);
12530
12531     /* check if the driver is already running */
12532     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12533         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12534         return (0);
12535     }
12536
12537     bxe_set_power_state(sc, PCI_PM_D0);
12538
12539     /*
12540      * If parity occurred during the unload, then attentions and/or
12541      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12542      * loaded on the current engine to complete the recovery. Parity recovery
12543      * is only relevant for PF driver.
12544      */
12545     if (IS_PF(sc)) {
12546         other_load_status = bxe_get_load_status(sc, other_engine);
12547         load_status = bxe_get_load_status(sc, SC_PATH(sc));
12548
12549         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12550             bxe_chk_parity_attn(sc, &global, TRUE)) {
12551             do {
12552                 /*
12553                  * If there are attentions and they are in global blocks, set
12554                  * the GLOBAL_RESET bit regardless whether it will be this
12555                  * function that will complete the recovery or not.
12556                  */
12557                 if (global) {
12558                     bxe_set_reset_global(sc);
12559                 }
12560
12561                 /*
12562                  * Only the first function on the current engine should try
12563                  * to recover in open. In case of attentions in global blocks
12564                  * only the first in the chip should try to recover.
12565                  */
12566                 if ((!load_status && (!global || !other_load_status)) &&
12567                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12568                     BLOGI(sc, "Recovered during init\n");
12569                     break;
12570                 }
12571
12572                 /* recovery has failed... */
12573                 bxe_set_power_state(sc, PCI_PM_D3hot);
12574                 sc->recovery_state = BXE_RECOVERY_FAILED;
12575
12576                 BLOGE(sc, "Recovery flow hasn't properly "
12577                           "completed yet, try again later. "
12578                           "If you still see this message after a "
12579                           "few retries then power cycle is required.\n");
12580
12581                 rc = ENXIO;
12582                 goto bxe_init_locked_done;
12583             } while (0);
12584         }
12585     }
12586
12587     sc->recovery_state = BXE_RECOVERY_DONE;
12588
12589     rc = bxe_nic_load(sc, LOAD_OPEN);
12590
12591 bxe_init_locked_done:
12592
12593     if (rc) {
12594         /* Tell the stack the driver is NOT running! */
12595         BLOGE(sc, "Initialization failed, "
12596                   "stack notified driver is NOT running!\n");
12597         if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12598     }
12599
12600     return (rc);
12601 }
12602
12603 static int
12604 bxe_stop_locked(struct bxe_softc *sc)
12605 {
12606     BXE_CORE_LOCK_ASSERT(sc);
12607     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12608 }
12609
12610 /*
12611  * Handles controller initialization when called from an unlocked routine.
12612  * ifconfig calls this function.
12613  *
12614  * Returns:
12615  *   void
12616  */
12617 static void
12618 bxe_init(void *xsc)
12619 {
12620     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12621
12622     BXE_CORE_LOCK(sc);
12623     bxe_init_locked(sc);
12624     BXE_CORE_UNLOCK(sc);
12625 }
12626
12627 static int
12628 bxe_init_ifnet(struct bxe_softc *sc)
12629 {
12630     if_t ifp;
12631     int capabilities;
12632
12633     /* ifconfig entrypoint for media type/status reporting */
12634     ifmedia_init(&sc->ifmedia, IFM_IMASK,
12635                  bxe_ifmedia_update,
12636                  bxe_ifmedia_status);
12637
12638     /* set the default interface values */
12639     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12640     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12641     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12642
12643     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12644
12645     /* allocate the ifnet structure */
12646     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
12647         BLOGE(sc, "Interface allocation failed!\n");
12648         return (ENXIO);
12649     }
12650
12651     if_setsoftc(ifp, sc);
12652     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
12653     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
12654     if_setioctlfn(ifp, bxe_ioctl);
12655     if_setstartfn(ifp, bxe_tx_start);
12656     if_setgetcounterfn(ifp, bxe_get_counter);
12657 #if __FreeBSD_version >= 901504
12658     if_settransmitfn(ifp, bxe_tx_mq_start);
12659     if_setqflushfn(ifp, bxe_mq_flush);
12660 #endif
12661 #ifdef FreeBSD8_0
12662     if_settimer(ifp, 0);
12663 #endif
12664     if_setinitfn(ifp, bxe_init);
12665     if_setmtu(ifp, sc->mtu);
12666     if_sethwassist(ifp, (CSUM_IP      |
12667                         CSUM_TCP      |
12668                         CSUM_UDP      |
12669                         CSUM_TSO      |
12670                         CSUM_TCP_IPV6 |
12671                         CSUM_UDP_IPV6));
12672
12673     capabilities =
12674 #if __FreeBSD_version < 700000
12675         (IFCAP_VLAN_MTU       |
12676          IFCAP_VLAN_HWTAGGING |
12677          IFCAP_HWCSUM         |
12678          IFCAP_JUMBO_MTU      |
12679          IFCAP_LRO);
12680 #else
12681         (IFCAP_VLAN_MTU       |
12682          IFCAP_VLAN_HWTAGGING |
12683          IFCAP_VLAN_HWTSO     |
12684          IFCAP_VLAN_HWFILTER  |
12685          IFCAP_VLAN_HWCSUM    |
12686          IFCAP_HWCSUM         |
12687          IFCAP_JUMBO_MTU      |
12688          IFCAP_LRO            |
12689          IFCAP_TSO4           |
12690          IFCAP_TSO6           |
12691          IFCAP_WOL_MAGIC);
12692 #endif
12693     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
12694     if_setcapenable(ifp, if_getcapabilities(ifp));
12695     if_setbaudrate(ifp, IF_Gbps(10));
12696 /* XXX */
12697     if_setsendqlen(ifp, sc->tx_ring_size);
12698     if_setsendqready(ifp);
12699 /* XXX */
12700
12701     sc->ifp = ifp;
12702
12703     /* attach to the Ethernet interface list */
12704     ether_ifattach(ifp, sc->link_params.mac_addr);
12705
12706     return (0);
12707 }
12708
12709 static void
12710 bxe_deallocate_bars(struct bxe_softc *sc)
12711 {
12712     int i;
12713
12714     for (i = 0; i < MAX_BARS; i++) {
12715         if (sc->bar[i].resource != NULL) {
12716             bus_release_resource(sc->dev,
12717                                  SYS_RES_MEMORY,
12718                                  sc->bar[i].rid,
12719                                  sc->bar[i].resource);
12720             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
12721                   i, PCIR_BAR(i));
12722         }
12723     }
12724 }
12725
12726 static int
12727 bxe_allocate_bars(struct bxe_softc *sc)
12728 {
12729     u_int flags;
12730     int i;
12731
12732     memset(sc->bar, 0, sizeof(sc->bar));
12733
12734     for (i = 0; i < MAX_BARS; i++) {
12735
12736         /* memory resources reside at BARs 0, 2, 4 */
12737         /* Run `pciconf -lb` to see mappings */
12738         if ((i != 0) && (i != 2) && (i != 4)) {
12739             continue;
12740         }
12741
12742         sc->bar[i].rid = PCIR_BAR(i);
12743
12744         flags = RF_ACTIVE;
12745         if (i == 0) {
12746             flags |= RF_SHAREABLE;
12747         }
12748
12749         if ((sc->bar[i].resource =
12750              bus_alloc_resource_any(sc->dev,
12751                                     SYS_RES_MEMORY,
12752                                     &sc->bar[i].rid,
12753                                     flags)) == NULL) {
12754             return (0);
12755         }
12756
12757         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
12758         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
12759         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
12760
12761         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n",
12762               i, PCIR_BAR(i),
12763               (void *)rman_get_start(sc->bar[i].resource),
12764               (void *)rman_get_end(sc->bar[i].resource),
12765               rman_get_size(sc->bar[i].resource),
12766               (void *)sc->bar[i].kva);
12767     }
12768
12769     return (0);
12770 }
12771
12772 static void
12773 bxe_get_function_num(struct bxe_softc *sc)
12774 {
12775     uint32_t val = 0;
12776
12777     /*
12778      * Read the ME register to get the function number. The ME register
12779      * holds the relative-function number and absolute-function number. The
12780      * absolute-function number appears only in E2 and above. Before that
12781      * these bits always contained zero, therefore we cannot blindly use them.
12782      */
12783
12784     val = REG_RD(sc, BAR_ME_REGISTER);
12785
12786     sc->pfunc_rel =
12787         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
12788     sc->path_id =
12789         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
12790
12791     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
12792         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
12793     } else {
12794         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
12795     }
12796
12797     BLOGD(sc, DBG_LOAD,
12798           "Relative function %d, Absolute function %d, Path %d\n",
12799           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
12800 }
12801
12802 static uint32_t
12803 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
12804 {
12805     uint32_t shmem2_size;
12806     uint32_t offset;
12807     uint32_t mf_cfg_offset_value;
12808
12809     /* Non 57712 */
12810     offset = (SHMEM_RD(sc, func_mb) +
12811               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
12812
12813     /* 57712 plus */
12814     if (sc->devinfo.shmem2_base != 0) {
12815         shmem2_size = SHMEM2_RD(sc, size);
12816         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
12817             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
12818             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
12819                 offset = mf_cfg_offset_value;
12820             }
12821         }
12822     }
12823
12824     return (offset);
12825 }
12826
12827 static uint32_t
12828 bxe_pcie_capability_read(struct bxe_softc *sc,
12829                          int    reg,
12830                          int    width)
12831 {
12832     int pcie_reg;
12833
12834     /* ensure PCIe capability is enabled */
12835     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
12836         if (pcie_reg != 0) {
12837             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
12838             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
12839         }
12840     }
12841
12842     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
12843
12844     return (0);
12845 }
12846
12847 static uint8_t
12848 bxe_is_pcie_pending(struct bxe_softc *sc)
12849 {
12850     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
12851             PCIM_EXP_STA_TRANSACTION_PND);
12852 }
12853
12854 /*
12855  * Walk the PCI capabiites list for the device to find what features are
12856  * supported. These capabilites may be enabled/disabled by firmware so it's
12857  * best to walk the list rather than make assumptions.
12858  */
12859 static void
12860 bxe_probe_pci_caps(struct bxe_softc *sc)
12861 {
12862     uint16_t link_status;
12863     int reg;
12864
12865     /* check if PCI Power Management is enabled */
12866     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
12867         if (reg != 0) {
12868             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
12869
12870             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
12871             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
12872         }
12873     }
12874
12875     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
12876
12877     /* handle PCIe 2.0 workarounds for 57710 */
12878     if (CHIP_IS_E1(sc)) {
12879         /* workaround for 57710 errata E4_57710_27462 */
12880         sc->devinfo.pcie_link_speed =
12881             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
12882
12883         /* workaround for 57710 errata E4_57710_27488 */
12884         sc->devinfo.pcie_link_width =
12885             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12886         if (sc->devinfo.pcie_link_speed > 1) {
12887             sc->devinfo.pcie_link_width =
12888                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
12889         }
12890     } else {
12891         sc->devinfo.pcie_link_speed =
12892             (link_status & PCIM_LINK_STA_SPEED);
12893         sc->devinfo.pcie_link_width =
12894             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12895     }
12896
12897     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
12898           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
12899
12900     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
12901     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
12902
12903     /* check if MSI capability is enabled */
12904     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
12905         if (reg != 0) {
12906             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
12907
12908             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
12909             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
12910         }
12911     }
12912
12913     /* check if MSI-X capability is enabled */
12914     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
12915         if (reg != 0) {
12916             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
12917
12918             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
12919             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
12920         }
12921     }
12922 }
12923
12924 static int
12925 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
12926 {
12927     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
12928     uint32_t val;
12929
12930     /* get the outer vlan if we're in switch-dependent mode */
12931
12932     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
12933     mf_info->ext_id = (uint16_t)val;
12934
12935     mf_info->multi_vnics_mode = 1;
12936
12937     if (!VALID_OVLAN(mf_info->ext_id)) {
12938         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
12939         return (1);
12940     }
12941
12942     /* get the capabilities */
12943     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
12944         FUNC_MF_CFG_PROTOCOL_ISCSI) {
12945         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
12946     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
12947                FUNC_MF_CFG_PROTOCOL_FCOE) {
12948         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
12949     } else {
12950         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
12951     }
12952
12953     mf_info->vnics_per_port =
12954         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
12955
12956     return (0);
12957 }
12958
12959 static uint32_t
12960 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
12961 {
12962     uint32_t retval = 0;
12963     uint32_t val;
12964
12965     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
12966
12967     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
12968         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
12969             retval |= MF_PROTO_SUPPORT_ETHERNET;
12970         }
12971         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
12972             retval |= MF_PROTO_SUPPORT_ISCSI;
12973         }
12974         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
12975             retval |= MF_PROTO_SUPPORT_FCOE;
12976         }
12977     }
12978
12979     return (retval);
12980 }
12981
12982 static int
12983 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
12984 {
12985     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
12986     uint32_t val;
12987
12988     /*
12989      * There is no outer vlan if we're in switch-independent mode.
12990      * If the mac is valid then assume multi-function.
12991      */
12992
12993     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
12994
12995     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
12996
12997     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
12998
12999     mf_info->vnics_per_port =
13000         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13001
13002     return (0);
13003 }
13004
13005 static int
13006 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13007 {
13008     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13009     uint32_t e1hov_tag;
13010     uint32_t func_config;
13011     uint32_t niv_config;
13012
13013     mf_info->multi_vnics_mode = 1;
13014
13015     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13016     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13017     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13018
13019     mf_info->ext_id =
13020         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13021                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13022
13023     mf_info->default_vlan =
13024         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13025                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13026
13027     mf_info->niv_allowed_priorities =
13028         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13029                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13030
13031     mf_info->niv_default_cos =
13032         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13033                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13034
13035     mf_info->afex_vlan_mode =
13036         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13037          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13038
13039     mf_info->niv_mba_enabled =
13040         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13041          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13042
13043     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13044
13045     mf_info->vnics_per_port =
13046         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13047
13048     return (0);
13049 }
13050
13051 static int
13052 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13053 {
13054     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13055     uint32_t mf_cfg1;
13056     uint32_t mf_cfg2;
13057     uint32_t ovlan1;
13058     uint32_t ovlan2;
13059     uint8_t i, j;
13060
13061     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13062           SC_PORT(sc));
13063     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13064           mf_info->mf_config[SC_VN(sc)]);
13065     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13066           mf_info->multi_vnics_mode);
13067     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13068           mf_info->vnics_per_port);
13069     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13070           mf_info->ext_id);
13071     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13072           mf_info->min_bw[0], mf_info->min_bw[1],
13073           mf_info->min_bw[2], mf_info->min_bw[3]);
13074     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13075           mf_info->max_bw[0], mf_info->max_bw[1],
13076           mf_info->max_bw[2], mf_info->max_bw[3]);
13077     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13078           sc->mac_addr_str);
13079
13080     /* various MF mode sanity checks... */
13081
13082     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13083         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13084               SC_PORT(sc));
13085         return (1);
13086     }
13087
13088     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13089         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13090               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13091         return (1);
13092     }
13093
13094     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13095         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13096         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13097             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13098                   SC_VN(sc), OVLAN(sc));
13099             return (1);
13100         }
13101
13102         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13103             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13104                   mf_info->multi_vnics_mode, OVLAN(sc));
13105             return (1);
13106         }
13107
13108         /*
13109          * Verify all functions are either MF or SF mode. If MF, make sure
13110          * sure that all non-hidden functions have a valid ovlan. If SF,
13111          * make sure that all non-hidden functions have an invalid ovlan.
13112          */
13113         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13114             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13115             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13116             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13117                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13118                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13119                 BLOGE(sc, "mf_mode=SD function %d MF config "
13120                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13121                       i, mf_info->multi_vnics_mode, ovlan1);
13122                 return (1);
13123             }
13124         }
13125
13126         /* Verify all funcs on the same port each have a different ovlan. */
13127         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13128             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13129             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13130             /* iterate from the next function on the port to the max func */
13131             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13132                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13133                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13134                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13135                     VALID_OVLAN(ovlan1) &&
13136                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13137                     VALID_OVLAN(ovlan2) &&
13138                     (ovlan1 == ovlan2)) {
13139                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13140                               "have the same ovlan (%d)\n",
13141                           i, j, ovlan1);
13142                     return (1);
13143                 }
13144             }
13145         }
13146     } /* MULTI_FUNCTION_SD */
13147
13148     return (0);
13149 }
13150
13151 static int
13152 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13153 {
13154     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13155     uint32_t val, mac_upper;
13156     uint8_t i, vnic;
13157
13158     /* initialize mf_info defaults */
13159     mf_info->vnics_per_port   = 1;
13160     mf_info->multi_vnics_mode = FALSE;
13161     mf_info->path_has_ovlan   = FALSE;
13162     mf_info->mf_mode          = SINGLE_FUNCTION;
13163
13164     if (!CHIP_IS_MF_CAP(sc)) {
13165         return (0);
13166     }
13167
13168     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13169         BLOGE(sc, "Invalid mf_cfg_base!\n");
13170         return (1);
13171     }
13172
13173     /* get the MF mode (switch dependent / independent / single-function) */
13174
13175     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13176
13177     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13178     {
13179     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13180
13181         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13182
13183         /* check for legal upper mac bytes */
13184         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13185             mf_info->mf_mode = MULTI_FUNCTION_SI;
13186         } else {
13187             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13188         }
13189
13190         break;
13191
13192     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13193     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13194
13195         /* get outer vlan configuration */
13196         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13197
13198         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13199             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13200             mf_info->mf_mode = MULTI_FUNCTION_SD;
13201         } else {
13202             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13203         }
13204
13205         break;
13206
13207     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13208
13209         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13210         return (0);
13211
13212     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13213
13214         /*
13215          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13216          * and the MAC address is valid.
13217          */
13218         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13219
13220         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13221             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13222             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13223         } else {
13224             BLOGE(sc, "Invalid config for AFEX mode\n");
13225         }
13226
13227         break;
13228
13229     default:
13230
13231         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13232               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13233
13234         return (1);
13235     }
13236
13237     /* set path mf_mode (which could be different than function mf_mode) */
13238     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13239         mf_info->path_has_ovlan = TRUE;
13240     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13241         /*
13242          * Decide on path multi vnics mode. If we're not in MF mode and in
13243          * 4-port mode, this is good enough to check vnic-0 of the other port
13244          * on the same path
13245          */
13246         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13247             uint8_t other_port = !(PORT_ID(sc) & 1);
13248             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13249
13250             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13251
13252             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13253         }
13254     }
13255
13256     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13257         /* invalid MF config */
13258         if (SC_VN(sc) >= 1) {
13259             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13260             return (1);
13261         }
13262
13263         return (0);
13264     }
13265
13266     /* get the MF configuration */
13267     mf_info->mf_config[SC_VN(sc)] =
13268         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13269
13270     switch(mf_info->mf_mode)
13271     {
13272     case MULTI_FUNCTION_SD:
13273
13274         bxe_get_shmem_mf_cfg_info_sd(sc);
13275         break;
13276
13277     case MULTI_FUNCTION_SI:
13278
13279         bxe_get_shmem_mf_cfg_info_si(sc);
13280         break;
13281
13282     case MULTI_FUNCTION_AFEX:
13283
13284         bxe_get_shmem_mf_cfg_info_niv(sc);
13285         break;
13286
13287     default:
13288
13289         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13290               mf_info->mf_mode);
13291         return (1);
13292     }
13293
13294     /* get the congestion management parameters */
13295
13296     vnic = 0;
13297     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13298         /* get min/max bw */
13299         val = MFCFG_RD(sc, func_mf_config[i].config);
13300         mf_info->min_bw[vnic] =
13301             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13302         mf_info->max_bw[vnic] =
13303             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13304         vnic++;
13305     }
13306
13307     return (bxe_check_valid_mf_cfg(sc));
13308 }
13309
13310 static int
13311 bxe_get_shmem_info(struct bxe_softc *sc)
13312 {
13313     int port;
13314     uint32_t mac_hi, mac_lo, val;
13315
13316     port = SC_PORT(sc);
13317     mac_hi = mac_lo = 0;
13318
13319     sc->link_params.sc   = sc;
13320     sc->link_params.port = port;
13321
13322     /* get the hardware config info */
13323     sc->devinfo.hw_config =
13324         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13325     sc->devinfo.hw_config2 =
13326         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13327
13328     sc->link_params.hw_led_mode =
13329         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13330          SHARED_HW_CFG_LED_MODE_SHIFT);
13331
13332     /* get the port feature config */
13333     sc->port.config =
13334         SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13335
13336     /* get the link params */
13337     sc->link_params.speed_cap_mask[0] =
13338         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13339     sc->link_params.speed_cap_mask[1] =
13340         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13341
13342     /* get the lane config */
13343     sc->link_params.lane_config =
13344         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13345
13346     /* get the link config */
13347     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13348     sc->port.link_config[ELINK_INT_PHY] = val;
13349     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13350     sc->port.link_config[ELINK_EXT_PHY1] =
13351         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13352
13353     /* get the override preemphasis flag and enable it or turn it off */
13354     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13355     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13356         sc->link_params.feature_config_flags |=
13357             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13358     } else {
13359         sc->link_params.feature_config_flags &=
13360             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13361     }
13362
13363     /* get the initial value of the link params */
13364     sc->link_params.multi_phy_config =
13365         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13366
13367     /* get external phy info */
13368     sc->port.ext_phy_config =
13369         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13370
13371     /* get the multifunction configuration */
13372     bxe_get_mf_cfg_info(sc);
13373
13374     /* get the mac address */
13375     if (IS_MF(sc)) {
13376         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13377         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13378     } else {
13379         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13380         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13381     }
13382
13383     if ((mac_lo == 0) && (mac_hi == 0)) {
13384         *sc->mac_addr_str = 0;
13385         BLOGE(sc, "No Ethernet address programmed!\n");
13386     } else {
13387         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13388         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13389         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13390         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13391         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13392         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13393         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13394                  "%02x:%02x:%02x:%02x:%02x:%02x",
13395                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13396                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13397                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13398         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13399     }
13400
13401     return (0);
13402 }
13403
13404 static void
13405 bxe_get_tunable_params(struct bxe_softc *sc)
13406 {
13407     /* sanity checks */
13408
13409     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13410         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
13411         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13412         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13413         bxe_interrupt_mode = INTR_MODE_MSIX;
13414     }
13415
13416     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13417         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13418         bxe_queue_count = 0;
13419     }
13420
13421     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13422         if (bxe_max_rx_bufs == 0) {
13423             bxe_max_rx_bufs = RX_BD_USABLE;
13424         } else {
13425             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13426             bxe_max_rx_bufs = 2048;
13427         }
13428     }
13429
13430     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13431         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13432         bxe_hc_rx_ticks = 25;
13433     }
13434
13435     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13436         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13437         bxe_hc_tx_ticks = 50;
13438     }
13439
13440     if (bxe_max_aggregation_size == 0) {
13441         bxe_max_aggregation_size = TPA_AGG_SIZE;
13442     }
13443
13444     if (bxe_max_aggregation_size > 0xffff) {
13445         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13446               bxe_max_aggregation_size);
13447         bxe_max_aggregation_size = TPA_AGG_SIZE;
13448     }
13449
13450     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13451         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13452         bxe_mrrs = -1;
13453     }
13454
13455     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13456         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13457         bxe_autogreeen = 0;
13458     }
13459
13460     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13461         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13462         bxe_udp_rss = 0;
13463     }
13464
13465     /* pull in user settings */
13466
13467     sc->interrupt_mode       = bxe_interrupt_mode;
13468     sc->max_rx_bufs          = bxe_max_rx_bufs;
13469     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
13470     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
13471     sc->max_aggregation_size = bxe_max_aggregation_size;
13472     sc->mrrs                 = bxe_mrrs;
13473     sc->autogreeen           = bxe_autogreeen;
13474     sc->udp_rss              = bxe_udp_rss;
13475
13476     if (bxe_interrupt_mode == INTR_MODE_INTX) {
13477         sc->num_queues = 1;
13478     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13479         sc->num_queues =
13480             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13481                 MAX_RSS_CHAINS);
13482         if (sc->num_queues > mp_ncpus) {
13483             sc->num_queues = mp_ncpus;
13484         }
13485     }
13486
13487     BLOGD(sc, DBG_LOAD,
13488           "User Config: "
13489           "debug=0x%lx "
13490           "interrupt_mode=%d "
13491           "queue_count=%d "
13492           "hc_rx_ticks=%d "
13493           "hc_tx_ticks=%d "
13494           "rx_budget=%d "
13495           "max_aggregation_size=%d "
13496           "mrrs=%d "
13497           "autogreeen=%d "
13498           "udp_rss=%d\n",
13499           bxe_debug,
13500           sc->interrupt_mode,
13501           sc->num_queues,
13502           sc->hc_rx_ticks,
13503           sc->hc_tx_ticks,
13504           bxe_rx_budget,
13505           sc->max_aggregation_size,
13506           sc->mrrs,
13507           sc->autogreeen,
13508           sc->udp_rss);
13509 }
13510
13511 static int
13512 bxe_media_detect(struct bxe_softc *sc)
13513 {
13514     int port_type;
13515     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13516
13517     switch (sc->link_params.phy[phy_idx].media_type) {
13518     case ELINK_ETH_PHY_SFPP_10G_FIBER:
13519     case ELINK_ETH_PHY_XFP_FIBER:
13520         BLOGI(sc, "Found 10Gb Fiber media.\n");
13521         sc->media = IFM_10G_SR;
13522         port_type = PORT_FIBRE;
13523         break;
13524     case ELINK_ETH_PHY_SFP_1G_FIBER:
13525         BLOGI(sc, "Found 1Gb Fiber media.\n");
13526         sc->media = IFM_1000_SX;
13527         port_type = PORT_FIBRE;
13528         break;
13529     case ELINK_ETH_PHY_KR:
13530     case ELINK_ETH_PHY_CX4:
13531         BLOGI(sc, "Found 10GBase-CX4 media.\n");
13532         sc->media = IFM_10G_CX4;
13533         port_type = PORT_FIBRE;
13534         break;
13535     case ELINK_ETH_PHY_DA_TWINAX:
13536         BLOGI(sc, "Found 10Gb Twinax media.\n");
13537         sc->media = IFM_10G_TWINAX;
13538         port_type = PORT_DA;
13539         break;
13540     case ELINK_ETH_PHY_BASE_T:
13541         if (sc->link_params.speed_cap_mask[0] &
13542             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13543             BLOGI(sc, "Found 10GBase-T media.\n");
13544             sc->media = IFM_10G_T;
13545             port_type = PORT_TP;
13546         } else {
13547             BLOGI(sc, "Found 1000Base-T media.\n");
13548             sc->media = IFM_1000_T;
13549             port_type = PORT_TP;
13550         }
13551         break;
13552     case ELINK_ETH_PHY_NOT_PRESENT:
13553         BLOGI(sc, "Media not present.\n");
13554         sc->media = 0;
13555         port_type = PORT_OTHER;
13556         break;
13557     case ELINK_ETH_PHY_UNSPECIFIED:
13558     default:
13559         BLOGI(sc, "Unknown media!\n");
13560         sc->media = 0;
13561         port_type = PORT_OTHER;
13562         break;
13563     }
13564     return port_type;
13565 }
13566
13567 #define GET_FIELD(value, fname)                     \
13568     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13569 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13570 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13571
13572 static int
13573 bxe_get_igu_cam_info(struct bxe_softc *sc)
13574 {
13575     int pfid = SC_FUNC(sc);
13576     int igu_sb_id;
13577     uint32_t val;
13578     uint8_t fid, igu_sb_cnt = 0;
13579
13580     sc->igu_base_sb = 0xff;
13581
13582     if (CHIP_INT_MODE_IS_BC(sc)) {
13583         int vn = SC_VN(sc);
13584         igu_sb_cnt = sc->igu_sb_cnt;
13585         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13586                            FP_SB_MAX_E1x);
13587         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13588                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13589         return (0);
13590     }
13591
13592     /* IGU in normal mode - read CAM */
13593     for (igu_sb_id = 0;
13594          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13595          igu_sb_id++) {
13596         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13597         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13598             continue;
13599         }
13600         fid = IGU_FID(val);
13601         if ((fid & IGU_FID_ENCODE_IS_PF)) {
13602             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13603                 continue;
13604             }
13605             if (IGU_VEC(val) == 0) {
13606                 /* default status block */
13607                 sc->igu_dsb_id = igu_sb_id;
13608             } else {
13609                 if (sc->igu_base_sb == 0xff) {
13610                     sc->igu_base_sb = igu_sb_id;
13611                 }
13612                 igu_sb_cnt++;
13613             }
13614         }
13615     }
13616
13617     /*
13618      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13619      * that number of CAM entries will not be equal to the value advertised in
13620      * PCI. Driver should use the minimal value of both as the actual status
13621      * block count
13622      */
13623     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13624
13625     if (igu_sb_cnt == 0) {
13626         BLOGE(sc, "CAM configuration error\n");
13627         return (-1);
13628     }
13629
13630     return (0);
13631 }
13632
13633 /*
13634  * Gather various information from the device config space, the device itself,
13635  * shmem, and the user input.
13636  */
13637 static int
13638 bxe_get_device_info(struct bxe_softc *sc)
13639 {
13640     uint32_t val;
13641     int rc;
13642
13643     /* Get the data for the device */
13644     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
13645     sc->devinfo.device_id    = pci_get_device(sc->dev);
13646     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13647     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13648
13649     /* get the chip revision (chip metal comes from pci config space) */
13650     sc->devinfo.chip_id     =
13651     sc->link_params.chip_id =
13652         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
13653          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
13654          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
13655          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
13656
13657     /* force 57811 according to MISC register */
13658     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
13659         if (CHIP_IS_57810(sc)) {
13660             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
13661                                    (sc->devinfo.chip_id & 0x0000ffff));
13662         } else if (CHIP_IS_57810_MF(sc)) {
13663             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
13664                                    (sc->devinfo.chip_id & 0x0000ffff));
13665         }
13666         sc->devinfo.chip_id |= 0x1;
13667     }
13668
13669     BLOGD(sc, DBG_LOAD,
13670           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
13671           sc->devinfo.chip_id,
13672           ((sc->devinfo.chip_id >> 16) & 0xffff),
13673           ((sc->devinfo.chip_id >> 12) & 0xf),
13674           ((sc->devinfo.chip_id >>  4) & 0xff),
13675           ((sc->devinfo.chip_id >>  0) & 0xf));
13676
13677     val = (REG_RD(sc, 0x2874) & 0x55);
13678     if ((sc->devinfo.chip_id & 0x1) ||
13679         (CHIP_IS_E1(sc) && val) ||
13680         (CHIP_IS_E1H(sc) && (val == 0x55))) {
13681         sc->flags |= BXE_ONE_PORT_FLAG;
13682         BLOGD(sc, DBG_LOAD, "single port device\n");
13683     }
13684
13685     /* set the doorbell size */
13686     sc->doorbell_size = (1 << BXE_DB_SHIFT);
13687
13688     /* determine whether the device is in 2 port or 4 port mode */
13689     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
13690     if (CHIP_IS_E2E3(sc)) {
13691         /*
13692          * Read port4mode_en_ovwr[0]:
13693          *   If 1, four port mode is in port4mode_en_ovwr[1].
13694          *   If 0, four port mode is in port4mode_en[0].
13695          */
13696         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
13697         if (val & 1) {
13698             val = ((val >> 1) & 1);
13699         } else {
13700             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
13701         }
13702
13703         sc->devinfo.chip_port_mode =
13704             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
13705
13706         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
13707     }
13708
13709     /* get the function and path info for the device */
13710     bxe_get_function_num(sc);
13711
13712     /* get the shared memory base address */
13713     sc->devinfo.shmem_base     =
13714     sc->link_params.shmem_base =
13715         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
13716     sc->devinfo.shmem2_base =
13717         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
13718                                   MISC_REG_GENERIC_CR_0));
13719
13720     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
13721           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
13722
13723     if (!sc->devinfo.shmem_base) {
13724         /* this should ONLY prevent upcoming shmem reads */
13725         BLOGI(sc, "MCP not active\n");
13726         sc->flags |= BXE_NO_MCP_FLAG;
13727         return (0);
13728     }
13729
13730     /* make sure the shared memory contents are valid */
13731     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
13732     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
13733         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
13734         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
13735         return (0);
13736     }
13737     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
13738
13739     /* get the bootcode version */
13740     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
13741     snprintf(sc->devinfo.bc_ver_str,
13742              sizeof(sc->devinfo.bc_ver_str),
13743              "%d.%d.%d",
13744              ((sc->devinfo.bc_ver >> 24) & 0xff),
13745              ((sc->devinfo.bc_ver >> 16) & 0xff),
13746              ((sc->devinfo.bc_ver >>  8) & 0xff));
13747     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
13748
13749     /* get the bootcode shmem address */
13750     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
13751     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
13752
13753     /* clean indirect addresses as they're not used */
13754     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
13755     if (IS_PF(sc)) {
13756         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
13757         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
13758         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
13759         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
13760         if (CHIP_IS_E1x(sc)) {
13761             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
13762             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
13763             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
13764             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
13765         }
13766
13767         /*
13768          * Enable internal target-read (in case we are probed after PF
13769          * FLR). Must be done prior to any BAR read access. Only for
13770          * 57712 and up
13771          */
13772         if (!CHIP_IS_E1x(sc)) {
13773             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13774         }
13775     }
13776
13777     /* get the nvram size */
13778     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
13779     sc->devinfo.flash_size =
13780         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
13781     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
13782
13783     /* get PCI capabilites */
13784     bxe_probe_pci_caps(sc);
13785
13786     bxe_set_power_state(sc, PCI_PM_D0);
13787
13788     /* get various configuration parameters from shmem */
13789     bxe_get_shmem_info(sc);
13790
13791     if (sc->devinfo.pcie_msix_cap_reg != 0) {
13792         val = pci_read_config(sc->dev,
13793                               (sc->devinfo.pcie_msix_cap_reg +
13794                                PCIR_MSIX_CTRL),
13795                               2);
13796         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
13797     } else {
13798         sc->igu_sb_cnt = 1;
13799     }
13800
13801     sc->igu_base_addr = BAR_IGU_INTMEM;
13802
13803     /* initialize IGU parameters */
13804     if (CHIP_IS_E1x(sc)) {
13805         sc->devinfo.int_block = INT_BLOCK_HC;
13806         sc->igu_dsb_id = DEF_SB_IGU_ID;
13807         sc->igu_base_sb = 0;
13808     } else {
13809         sc->devinfo.int_block = INT_BLOCK_IGU;
13810
13811         /* do not allow device reset during IGU info preocessing */
13812         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13813
13814         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
13815
13816         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13817             int tout = 5000;
13818
13819             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
13820
13821             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
13822             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
13823             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
13824
13825             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13826                 tout--;
13827                 DELAY(1000);
13828             }
13829
13830             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13831                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
13832                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13833                 return (-1);
13834             }
13835         }
13836
13837         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13838             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
13839             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
13840         } else {
13841             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
13842         }
13843
13844         rc = bxe_get_igu_cam_info(sc);
13845
13846         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13847
13848         if (rc) {
13849             return (rc);
13850         }
13851     }
13852
13853     /*
13854      * Get base FW non-default (fast path) status block ID. This value is
13855      * used to initialize the fw_sb_id saved on the fp/queue structure to
13856      * determine the id used by the FW.
13857      */
13858     if (CHIP_IS_E1x(sc)) {
13859         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
13860     } else {
13861         /*
13862          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
13863          * the same queue are indicated on the same IGU SB). So we prefer
13864          * FW and IGU SBs to be the same value.
13865          */
13866         sc->base_fw_ndsb = sc->igu_base_sb;
13867     }
13868
13869     BLOGD(sc, DBG_LOAD,
13870           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
13871           sc->igu_dsb_id, sc->igu_base_sb,
13872           sc->igu_sb_cnt, sc->base_fw_ndsb);
13873
13874     elink_phy_probe(&sc->link_params);
13875
13876     return (0);
13877 }
13878
13879 static void
13880 bxe_link_settings_supported(struct bxe_softc *sc,
13881                             uint32_t         switch_cfg)
13882 {
13883     uint32_t cfg_size = 0;
13884     uint32_t idx;
13885     uint8_t port = SC_PORT(sc);
13886
13887     /* aggregation of supported attributes of all external phys */
13888     sc->port.supported[0] = 0;
13889     sc->port.supported[1] = 0;
13890
13891     switch (sc->link_params.num_phys) {
13892     case 1:
13893         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
13894         cfg_size = 1;
13895         break;
13896     case 2:
13897         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
13898         cfg_size = 1;
13899         break;
13900     case 3:
13901         if (sc->link_params.multi_phy_config &
13902             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
13903             sc->port.supported[1] =
13904                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
13905             sc->port.supported[0] =
13906                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
13907         } else {
13908             sc->port.supported[0] =
13909                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
13910             sc->port.supported[1] =
13911                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
13912         }
13913         cfg_size = 2;
13914         break;
13915     }
13916
13917     if (!(sc->port.supported[0] || sc->port.supported[1])) {
13918         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
13919               SHMEM_RD(sc,
13920                        dev_info.port_hw_config[port].external_phy_config),
13921               SHMEM_RD(sc,
13922                        dev_info.port_hw_config[port].external_phy_config2));
13923         return;
13924     }
13925
13926     if (CHIP_IS_E3(sc))
13927         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
13928     else {
13929         switch (switch_cfg) {
13930         case ELINK_SWITCH_CFG_1G:
13931             sc->port.phy_addr =
13932                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
13933             break;
13934         case ELINK_SWITCH_CFG_10G:
13935             sc->port.phy_addr =
13936                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
13937             break;
13938         default:
13939             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
13940                   sc->port.link_config[0]);
13941             return;
13942         }
13943     }
13944
13945     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
13946
13947     /* mask what we support according to speed_cap_mask per configuration */
13948     for (idx = 0; idx < cfg_size; idx++) {
13949         if (!(sc->link_params.speed_cap_mask[idx] &
13950               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
13951             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
13952         }
13953
13954         if (!(sc->link_params.speed_cap_mask[idx] &
13955               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
13956             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
13957         }
13958
13959         if (!(sc->link_params.speed_cap_mask[idx] &
13960               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
13961             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
13962         }
13963
13964         if (!(sc->link_params.speed_cap_mask[idx] &
13965               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
13966             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
13967         }
13968
13969         if (!(sc->link_params.speed_cap_mask[idx] &
13970               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
13971             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
13972         }
13973
13974         if (!(sc->link_params.speed_cap_mask[idx] &
13975               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
13976             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
13977         }
13978
13979         if (!(sc->link_params.speed_cap_mask[idx] &
13980               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
13981             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
13982         }
13983
13984         if (!(sc->link_params.speed_cap_mask[idx] &
13985               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
13986             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
13987         }
13988     }
13989
13990     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
13991           sc->port.supported[0], sc->port.supported[1]);
13992 }
13993
13994 static void
13995 bxe_link_settings_requested(struct bxe_softc *sc)
13996 {
13997     uint32_t link_config;
13998     uint32_t idx;
13999     uint32_t cfg_size = 0;
14000
14001     sc->port.advertising[0] = 0;
14002     sc->port.advertising[1] = 0;
14003
14004     switch (sc->link_params.num_phys) {
14005     case 1:
14006     case 2:
14007         cfg_size = 1;
14008         break;
14009     case 3:
14010         cfg_size = 2;
14011         break;
14012     }
14013
14014     for (idx = 0; idx < cfg_size; idx++) {
14015         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14016         link_config = sc->port.link_config[idx];
14017
14018         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14019         case PORT_FEATURE_LINK_SPEED_AUTO:
14020             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14021                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14022                 sc->port.advertising[idx] |= sc->port.supported[idx];
14023                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14024                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14025                     sc->port.advertising[idx] |=
14026                         (ELINK_SUPPORTED_100baseT_Half |
14027                          ELINK_SUPPORTED_100baseT_Full);
14028             } else {
14029                 /* force 10G, no AN */
14030                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14031                 sc->port.advertising[idx] |=
14032                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14033                 continue;
14034             }
14035             break;
14036
14037         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14038             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14039                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14040                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14041                                               ADVERTISED_TP);
14042             } else {
14043                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14044                           "speed_cap_mask=0x%08x\n",
14045                       link_config, sc->link_params.speed_cap_mask[idx]);
14046                 return;
14047             }
14048             break;
14049
14050         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14051             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14052                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14053                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14054                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14055                                               ADVERTISED_TP);
14056             } else {
14057                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14058                           "speed_cap_mask=0x%08x\n",
14059                       link_config, sc->link_params.speed_cap_mask[idx]);
14060                 return;
14061             }
14062             break;
14063
14064         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14065             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14066                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14067                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14068                                               ADVERTISED_TP);
14069             } else {
14070                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14071                           "speed_cap_mask=0x%08x\n",
14072                       link_config, sc->link_params.speed_cap_mask[idx]);
14073                 return;
14074             }
14075             break;
14076
14077         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14078             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14079                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14080                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14081                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14082                                               ADVERTISED_TP);
14083             } else {
14084                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14085                           "speed_cap_mask=0x%08x\n",
14086                       link_config, sc->link_params.speed_cap_mask[idx]);
14087                 return;
14088             }
14089             break;
14090
14091         case PORT_FEATURE_LINK_SPEED_1G:
14092             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14093                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14094                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14095                                               ADVERTISED_TP);
14096             } else {
14097                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14098                           "speed_cap_mask=0x%08x\n",
14099                       link_config, sc->link_params.speed_cap_mask[idx]);
14100                 return;
14101             }
14102             break;
14103
14104         case PORT_FEATURE_LINK_SPEED_2_5G:
14105             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14106                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14107                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14108                                               ADVERTISED_TP);
14109             } else {
14110                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14111                           "speed_cap_mask=0x%08x\n",
14112                       link_config, sc->link_params.speed_cap_mask[idx]);
14113                 return;
14114             }
14115             break;
14116
14117         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14118             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14119                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14120                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14121                                               ADVERTISED_FIBRE);
14122             } else {
14123                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14124                           "speed_cap_mask=0x%08x\n",
14125                       link_config, sc->link_params.speed_cap_mask[idx]);
14126                 return;
14127             }
14128             break;
14129
14130         case PORT_FEATURE_LINK_SPEED_20G:
14131             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14132             break;
14133
14134         default:
14135             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14136                       "speed_cap_mask=0x%08x\n",
14137                   link_config, sc->link_params.speed_cap_mask[idx]);
14138             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14139             sc->port.advertising[idx] = sc->port.supported[idx];
14140             break;
14141         }
14142
14143         sc->link_params.req_flow_ctrl[idx] =
14144             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14145
14146         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14147             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14148                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14149             } else {
14150                 bxe_set_requested_fc(sc);
14151             }
14152         }
14153
14154         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14155                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14156               sc->link_params.req_line_speed[idx],
14157               sc->link_params.req_duplex[idx],
14158               sc->link_params.req_flow_ctrl[idx],
14159               sc->port.advertising[idx]);
14160     }
14161 }
14162
14163 static void
14164 bxe_get_phy_info(struct bxe_softc *sc)
14165 {
14166     uint8_t port = SC_PORT(sc);
14167     uint32_t config = sc->port.config;
14168     uint32_t eee_mode;
14169
14170     /* shmem data already read in bxe_get_shmem_info() */
14171
14172     BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14173                         "link_config0=0x%08x\n",
14174                sc->link_params.lane_config,
14175                sc->link_params.speed_cap_mask[0],
14176                sc->port.link_config[0]);
14177
14178     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14179     bxe_link_settings_requested(sc);
14180
14181     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14182         sc->link_params.feature_config_flags |=
14183             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14184     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14185         sc->link_params.feature_config_flags &=
14186             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14187     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14188         sc->link_params.feature_config_flags |=
14189             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14190     }
14191
14192     /* configure link feature according to nvram value */
14193     eee_mode =
14194         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14195           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14196          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14197     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14198         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14199                                     ELINK_EEE_MODE_ENABLE_LPI |
14200                                     ELINK_EEE_MODE_OUTPUT_TIME);
14201     } else {
14202         sc->link_params.eee_mode = 0;
14203     }
14204
14205     /* get the media type */
14206     bxe_media_detect(sc);
14207 }
14208
14209 static void
14210 bxe_get_params(struct bxe_softc *sc)
14211 {
14212     /* get user tunable params */
14213     bxe_get_tunable_params(sc);
14214
14215     /* select the RX and TX ring sizes */
14216     sc->tx_ring_size = TX_BD_USABLE;
14217     sc->rx_ring_size = RX_BD_USABLE;
14218
14219     /* XXX disable WoL */
14220     sc->wol = 0;
14221 }
14222
14223 static void
14224 bxe_set_modes_bitmap(struct bxe_softc *sc)
14225 {
14226     uint32_t flags = 0;
14227
14228     if (CHIP_REV_IS_FPGA(sc)) {
14229         SET_FLAGS(flags, MODE_FPGA);
14230     } else if (CHIP_REV_IS_EMUL(sc)) {
14231         SET_FLAGS(flags, MODE_EMUL);
14232     } else {
14233         SET_FLAGS(flags, MODE_ASIC);
14234     }
14235
14236     if (CHIP_IS_MODE_4_PORT(sc)) {
14237         SET_FLAGS(flags, MODE_PORT4);
14238     } else {
14239         SET_FLAGS(flags, MODE_PORT2);
14240     }
14241
14242     if (CHIP_IS_E2(sc)) {
14243         SET_FLAGS(flags, MODE_E2);
14244     } else if (CHIP_IS_E3(sc)) {
14245         SET_FLAGS(flags, MODE_E3);
14246         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14247             SET_FLAGS(flags, MODE_E3_A0);
14248         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14249             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14250         }
14251     }
14252
14253     if (IS_MF(sc)) {
14254         SET_FLAGS(flags, MODE_MF);
14255         switch (sc->devinfo.mf_info.mf_mode) {
14256         case MULTI_FUNCTION_SD:
14257             SET_FLAGS(flags, MODE_MF_SD);
14258             break;
14259         case MULTI_FUNCTION_SI:
14260             SET_FLAGS(flags, MODE_MF_SI);
14261             break;
14262         case MULTI_FUNCTION_AFEX:
14263             SET_FLAGS(flags, MODE_MF_AFEX);
14264             break;
14265         }
14266     } else {
14267         SET_FLAGS(flags, MODE_SF);
14268     }
14269
14270 #if defined(__LITTLE_ENDIAN)
14271     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14272 #else /* __BIG_ENDIAN */
14273     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14274 #endif
14275
14276     INIT_MODE_FLAGS(sc) = flags;
14277 }
14278
14279 static int
14280 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14281 {
14282     struct bxe_fastpath *fp;
14283     bus_addr_t busaddr;
14284     int max_agg_queues;
14285     int max_segments;
14286     bus_size_t max_size;
14287     bus_size_t max_seg_size;
14288     char buf[32];
14289     int rc;
14290     int i, j;
14291
14292     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14293
14294     /* allocate the parent bus DMA tag */
14295     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14296                             1,                        /* alignment */
14297                             0,                        /* boundary limit */
14298                             BUS_SPACE_MAXADDR,        /* restricted low */
14299                             BUS_SPACE_MAXADDR,        /* restricted hi */
14300                             NULL,                     /* addr filter() */
14301                             NULL,                     /* addr filter() arg */
14302                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14303                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14304                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14305                             0,                        /* flags */
14306                             NULL,                     /* lock() */
14307                             NULL,                     /* lock() arg */
14308                             &sc->parent_dma_tag);     /* returned dma tag */
14309     if (rc != 0) {
14310         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14311         return (1);
14312     }
14313
14314     /************************/
14315     /* DEFAULT STATUS BLOCK */
14316     /************************/
14317
14318     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14319                       &sc->def_sb_dma, "default status block") != 0) {
14320         /* XXX */
14321         bus_dma_tag_destroy(sc->parent_dma_tag);
14322         return (1);
14323     }
14324
14325     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14326
14327     /***************/
14328     /* EVENT QUEUE */
14329     /***************/
14330
14331     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14332                       &sc->eq_dma, "event queue") != 0) {
14333         /* XXX */
14334         bxe_dma_free(sc, &sc->def_sb_dma);
14335         sc->def_sb = NULL;
14336         bus_dma_tag_destroy(sc->parent_dma_tag);
14337         return (1);
14338     }
14339
14340     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14341
14342     /*************/
14343     /* SLOW PATH */
14344     /*************/
14345
14346     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14347                       &sc->sp_dma, "slow path") != 0) {
14348         /* XXX */
14349         bxe_dma_free(sc, &sc->eq_dma);
14350         sc->eq = NULL;
14351         bxe_dma_free(sc, &sc->def_sb_dma);
14352         sc->def_sb = NULL;
14353         bus_dma_tag_destroy(sc->parent_dma_tag);
14354         return (1);
14355     }
14356
14357     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14358
14359     /*******************/
14360     /* SLOW PATH QUEUE */
14361     /*******************/
14362
14363     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14364                       &sc->spq_dma, "slow path queue") != 0) {
14365         /* XXX */
14366         bxe_dma_free(sc, &sc->sp_dma);
14367         sc->sp = NULL;
14368         bxe_dma_free(sc, &sc->eq_dma);
14369         sc->eq = NULL;
14370         bxe_dma_free(sc, &sc->def_sb_dma);
14371         sc->def_sb = NULL;
14372         bus_dma_tag_destroy(sc->parent_dma_tag);
14373         return (1);
14374     }
14375
14376     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14377
14378     /***************************/
14379     /* FW DECOMPRESSION BUFFER */
14380     /***************************/
14381
14382     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14383                       "fw decompression buffer") != 0) {
14384         /* XXX */
14385         bxe_dma_free(sc, &sc->spq_dma);
14386         sc->spq = NULL;
14387         bxe_dma_free(sc, &sc->sp_dma);
14388         sc->sp = NULL;
14389         bxe_dma_free(sc, &sc->eq_dma);
14390         sc->eq = NULL;
14391         bxe_dma_free(sc, &sc->def_sb_dma);
14392         sc->def_sb = NULL;
14393         bus_dma_tag_destroy(sc->parent_dma_tag);
14394         return (1);
14395     }
14396
14397     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14398
14399     if ((sc->gz_strm =
14400          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14401         /* XXX */
14402         bxe_dma_free(sc, &sc->gz_buf_dma);
14403         sc->gz_buf = NULL;
14404         bxe_dma_free(sc, &sc->spq_dma);
14405         sc->spq = NULL;
14406         bxe_dma_free(sc, &sc->sp_dma);
14407         sc->sp = NULL;
14408         bxe_dma_free(sc, &sc->eq_dma);
14409         sc->eq = NULL;
14410         bxe_dma_free(sc, &sc->def_sb_dma);
14411         sc->def_sb = NULL;
14412         bus_dma_tag_destroy(sc->parent_dma_tag);
14413         return (1);
14414     }
14415
14416     /*************/
14417     /* FASTPATHS */
14418     /*************/
14419
14420     /* allocate DMA memory for each fastpath structure */
14421     for (i = 0; i < sc->num_queues; i++) {
14422         fp = &sc->fp[i];
14423         fp->sc    = sc;
14424         fp->index = i;
14425
14426         /*******************/
14427         /* FP STATUS BLOCK */
14428         /*******************/
14429
14430         snprintf(buf, sizeof(buf), "fp %d status block", i);
14431         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14432                           &fp->sb_dma, buf) != 0) {
14433             /* XXX unwind and free previous fastpath allocations */
14434             BLOGE(sc, "Failed to alloc %s\n", buf);
14435             return (1);
14436         } else {
14437             if (CHIP_IS_E2E3(sc)) {
14438                 fp->status_block.e2_sb =
14439                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14440             } else {
14441                 fp->status_block.e1x_sb =
14442                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14443             }
14444         }
14445
14446         /******************/
14447         /* FP TX BD CHAIN */
14448         /******************/
14449
14450         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14451         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14452                           &fp->tx_dma, buf) != 0) {
14453             /* XXX unwind and free previous fastpath allocations */
14454             BLOGE(sc, "Failed to alloc %s\n", buf);
14455             return (1);
14456         } else {
14457             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14458         }
14459
14460         /* link together the tx bd chain pages */
14461         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14462             /* index into the tx bd chain array to last entry per page */
14463             struct eth_tx_next_bd *tx_next_bd =
14464                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14465             /* point to the next page and wrap from last page */
14466             busaddr = (fp->tx_dma.paddr +
14467                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14468             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14469             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14470         }
14471
14472         /******************/
14473         /* FP RX BD CHAIN */
14474         /******************/
14475
14476         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14477         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14478                           &fp->rx_dma, buf) != 0) {
14479             /* XXX unwind and free previous fastpath allocations */
14480             BLOGE(sc, "Failed to alloc %s\n", buf);
14481             return (1);
14482         } else {
14483             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14484         }
14485
14486         /* link together the rx bd chain pages */
14487         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14488             /* index into the rx bd chain array to last entry per page */
14489             struct eth_rx_bd *rx_bd =
14490                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14491             /* point to the next page and wrap from last page */
14492             busaddr = (fp->rx_dma.paddr +
14493                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14494             rx_bd->addr_hi = htole32(U64_HI(busaddr));
14495             rx_bd->addr_lo = htole32(U64_LO(busaddr));
14496         }
14497
14498         /*******************/
14499         /* FP RX RCQ CHAIN */
14500         /*******************/
14501
14502         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14503         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14504                           &fp->rcq_dma, buf) != 0) {
14505             /* XXX unwind and free previous fastpath allocations */
14506             BLOGE(sc, "Failed to alloc %s\n", buf);
14507             return (1);
14508         } else {
14509             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14510         }
14511
14512         /* link together the rcq chain pages */
14513         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14514             /* index into the rcq chain array to last entry per page */
14515             struct eth_rx_cqe_next_page *rx_cqe_next =
14516                 (struct eth_rx_cqe_next_page *)
14517                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14518             /* point to the next page and wrap from last page */
14519             busaddr = (fp->rcq_dma.paddr +
14520                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14521             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14522             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14523         }
14524
14525         /*******************/
14526         /* FP RX SGE CHAIN */
14527         /*******************/
14528
14529         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14530         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14531                           &fp->rx_sge_dma, buf) != 0) {
14532             /* XXX unwind and free previous fastpath allocations */
14533             BLOGE(sc, "Failed to alloc %s\n", buf);
14534             return (1);
14535         } else {
14536             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14537         }
14538
14539         /* link together the sge chain pages */
14540         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14541             /* index into the rcq chain array to last entry per page */
14542             struct eth_rx_sge *rx_sge =
14543                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14544             /* point to the next page and wrap from last page */
14545             busaddr = (fp->rx_sge_dma.paddr +
14546                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14547             rx_sge->addr_hi = htole32(U64_HI(busaddr));
14548             rx_sge->addr_lo = htole32(U64_LO(busaddr));
14549         }
14550
14551         /***********************/
14552         /* FP TX MBUF DMA MAPS */
14553         /***********************/
14554
14555         /* set required sizes before mapping to conserve resources */
14556         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14557             max_size     = BXE_TSO_MAX_SIZE;
14558             max_segments = BXE_TSO_MAX_SEGMENTS;
14559             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14560         } else {
14561             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
14562             max_segments = BXE_MAX_SEGMENTS;
14563             max_seg_size = MCLBYTES;
14564         }
14565
14566         /* create a dma tag for the tx mbufs */
14567         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14568                                 1,                  /* alignment */
14569                                 0,                  /* boundary limit */
14570                                 BUS_SPACE_MAXADDR,  /* restricted low */
14571                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14572                                 NULL,               /* addr filter() */
14573                                 NULL,               /* addr filter() arg */
14574                                 max_size,           /* max map size */
14575                                 max_segments,       /* num discontinuous */
14576                                 max_seg_size,       /* max seg size */
14577                                 0,                  /* flags */
14578                                 NULL,               /* lock() */
14579                                 NULL,               /* lock() arg */
14580                                 &fp->tx_mbuf_tag);  /* returned dma tag */
14581         if (rc != 0) {
14582             /* XXX unwind and free previous fastpath allocations */
14583             BLOGE(sc, "Failed to create dma tag for "
14584                       "'fp %d tx mbufs' (%d)\n", i, rc);
14585             return (1);
14586         }
14587
14588         /* create dma maps for each of the tx mbuf clusters */
14589         for (j = 0; j < TX_BD_TOTAL; j++) {
14590             if (bus_dmamap_create(fp->tx_mbuf_tag,
14591                                   BUS_DMA_NOWAIT,
14592                                   &fp->tx_mbuf_chain[j].m_map)) {
14593                 /* XXX unwind and free previous fastpath allocations */
14594                 BLOGE(sc, "Failed to create dma map for "
14595                           "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14596                 return (1);
14597             }
14598         }
14599
14600         /***********************/
14601         /* FP RX MBUF DMA MAPS */
14602         /***********************/
14603
14604         /* create a dma tag for the rx mbufs */
14605         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14606                                 1,                  /* alignment */
14607                                 0,                  /* boundary limit */
14608                                 BUS_SPACE_MAXADDR,  /* restricted low */
14609                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14610                                 NULL,               /* addr filter() */
14611                                 NULL,               /* addr filter() arg */
14612                                 MJUM9BYTES,         /* max map size */
14613                                 1,                  /* num discontinuous */
14614                                 MJUM9BYTES,         /* max seg size */
14615                                 0,                  /* flags */
14616                                 NULL,               /* lock() */
14617                                 NULL,               /* lock() arg */
14618                                 &fp->rx_mbuf_tag);  /* returned dma tag */
14619         if (rc != 0) {
14620             /* XXX unwind and free previous fastpath allocations */
14621             BLOGE(sc, "Failed to create dma tag for "
14622                       "'fp %d rx mbufs' (%d)\n", i, rc);
14623             return (1);
14624         }
14625
14626         /* create dma maps for each of the rx mbuf clusters */
14627         for (j = 0; j < RX_BD_TOTAL; j++) {
14628             if (bus_dmamap_create(fp->rx_mbuf_tag,
14629                                   BUS_DMA_NOWAIT,
14630                                   &fp->rx_mbuf_chain[j].m_map)) {
14631                 /* XXX unwind and free previous fastpath allocations */
14632                 BLOGE(sc, "Failed to create dma map for "
14633                           "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14634                 return (1);
14635             }
14636         }
14637
14638         /* create dma map for the spare rx mbuf cluster */
14639         if (bus_dmamap_create(fp->rx_mbuf_tag,
14640                               BUS_DMA_NOWAIT,
14641                               &fp->rx_mbuf_spare_map)) {
14642             /* XXX unwind and free previous fastpath allocations */
14643             BLOGE(sc, "Failed to create dma map for "
14644                       "'fp %d spare rx mbuf' (%d)\n", i, rc);
14645             return (1);
14646         }
14647
14648         /***************************/
14649         /* FP RX SGE MBUF DMA MAPS */
14650         /***************************/
14651
14652         /* create a dma tag for the rx sge mbufs */
14653         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14654                                 1,                  /* alignment */
14655                                 0,                  /* boundary limit */
14656                                 BUS_SPACE_MAXADDR,  /* restricted low */
14657                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14658                                 NULL,               /* addr filter() */
14659                                 NULL,               /* addr filter() arg */
14660                                 BCM_PAGE_SIZE,      /* max map size */
14661                                 1,                  /* num discontinuous */
14662                                 BCM_PAGE_SIZE,      /* max seg size */
14663                                 0,                  /* flags */
14664                                 NULL,               /* lock() */
14665                                 NULL,               /* lock() arg */
14666                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
14667         if (rc != 0) {
14668             /* XXX unwind and free previous fastpath allocations */
14669             BLOGE(sc, "Failed to create dma tag for "
14670                       "'fp %d rx sge mbufs' (%d)\n", i, rc);
14671             return (1);
14672         }
14673
14674         /* create dma maps for the rx sge mbuf clusters */
14675         for (j = 0; j < RX_SGE_TOTAL; j++) {
14676             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14677                                   BUS_DMA_NOWAIT,
14678                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
14679                 /* XXX unwind and free previous fastpath allocations */
14680                 BLOGE(sc, "Failed to create dma map for "
14681                           "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
14682                 return (1);
14683             }
14684         }
14685
14686         /* create dma map for the spare rx sge mbuf cluster */
14687         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14688                               BUS_DMA_NOWAIT,
14689                               &fp->rx_sge_mbuf_spare_map)) {
14690             /* XXX unwind and free previous fastpath allocations */
14691             BLOGE(sc, "Failed to create dma map for "
14692                       "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
14693             return (1);
14694         }
14695
14696         /***************************/
14697         /* FP RX TPA MBUF DMA MAPS */
14698         /***************************/
14699
14700         /* create dma maps for the rx tpa mbuf clusters */
14701         max_agg_queues = MAX_AGG_QS(sc);
14702
14703         for (j = 0; j < max_agg_queues; j++) {
14704             if (bus_dmamap_create(fp->rx_mbuf_tag,
14705                                   BUS_DMA_NOWAIT,
14706                                   &fp->rx_tpa_info[j].bd.m_map)) {
14707                 /* XXX unwind and free previous fastpath allocations */
14708                 BLOGE(sc, "Failed to create dma map for "
14709                           "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
14710                 return (1);
14711             }
14712         }
14713
14714         /* create dma map for the spare rx tpa mbuf cluster */
14715         if (bus_dmamap_create(fp->rx_mbuf_tag,
14716                               BUS_DMA_NOWAIT,
14717                               &fp->rx_tpa_info_mbuf_spare_map)) {
14718             /* XXX unwind and free previous fastpath allocations */
14719             BLOGE(sc, "Failed to create dma map for "
14720                       "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
14721             return (1);
14722         }
14723
14724         bxe_init_sge_ring_bit_mask(fp);
14725     }
14726
14727     return (0);
14728 }
14729
14730 static void
14731 bxe_free_hsi_mem(struct bxe_softc *sc)
14732 {
14733     struct bxe_fastpath *fp;
14734     int max_agg_queues;
14735     int i, j;
14736
14737     if (sc->parent_dma_tag == NULL) {
14738         return; /* assume nothing was allocated */
14739     }
14740
14741     for (i = 0; i < sc->num_queues; i++) {
14742         fp = &sc->fp[i];
14743
14744         /*******************/
14745         /* FP STATUS BLOCK */
14746         /*******************/
14747
14748         bxe_dma_free(sc, &fp->sb_dma);
14749         memset(&fp->status_block, 0, sizeof(fp->status_block));
14750
14751         /******************/
14752         /* FP TX BD CHAIN */
14753         /******************/
14754
14755         bxe_dma_free(sc, &fp->tx_dma);
14756         fp->tx_chain = NULL;
14757
14758         /******************/
14759         /* FP RX BD CHAIN */
14760         /******************/
14761
14762         bxe_dma_free(sc, &fp->rx_dma);
14763         fp->rx_chain = NULL;
14764
14765         /*******************/
14766         /* FP RX RCQ CHAIN */
14767         /*******************/
14768
14769         bxe_dma_free(sc, &fp->rcq_dma);
14770         fp->rcq_chain = NULL;
14771
14772         /*******************/
14773         /* FP RX SGE CHAIN */
14774         /*******************/
14775
14776         bxe_dma_free(sc, &fp->rx_sge_dma);
14777         fp->rx_sge_chain = NULL;
14778
14779         /***********************/
14780         /* FP TX MBUF DMA MAPS */
14781         /***********************/
14782
14783         if (fp->tx_mbuf_tag != NULL) {
14784             for (j = 0; j < TX_BD_TOTAL; j++) {
14785                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
14786                     bus_dmamap_unload(fp->tx_mbuf_tag,
14787                                       fp->tx_mbuf_chain[j].m_map);
14788                     bus_dmamap_destroy(fp->tx_mbuf_tag,
14789                                        fp->tx_mbuf_chain[j].m_map);
14790                 }
14791             }
14792
14793             bus_dma_tag_destroy(fp->tx_mbuf_tag);
14794             fp->tx_mbuf_tag = NULL;
14795         }
14796
14797         /***********************/
14798         /* FP RX MBUF DMA MAPS */
14799         /***********************/
14800
14801         if (fp->rx_mbuf_tag != NULL) {
14802             for (j = 0; j < RX_BD_TOTAL; j++) {
14803                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
14804                     bus_dmamap_unload(fp->rx_mbuf_tag,
14805                                       fp->rx_mbuf_chain[j].m_map);
14806                     bus_dmamap_destroy(fp->rx_mbuf_tag,
14807                                        fp->rx_mbuf_chain[j].m_map);
14808                 }
14809             }
14810
14811             if (fp->rx_mbuf_spare_map != NULL) {
14812                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14813                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14814             }
14815
14816             /***************************/
14817             /* FP RX TPA MBUF DMA MAPS */
14818             /***************************/
14819
14820             max_agg_queues = MAX_AGG_QS(sc);
14821
14822             for (j = 0; j < max_agg_queues; j++) {
14823                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
14824                     bus_dmamap_unload(fp->rx_mbuf_tag,
14825                                       fp->rx_tpa_info[j].bd.m_map);
14826                     bus_dmamap_destroy(fp->rx_mbuf_tag,
14827                                        fp->rx_tpa_info[j].bd.m_map);
14828                 }
14829             }
14830
14831             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
14832                 bus_dmamap_unload(fp->rx_mbuf_tag,
14833                                   fp->rx_tpa_info_mbuf_spare_map);
14834                 bus_dmamap_destroy(fp->rx_mbuf_tag,
14835                                    fp->rx_tpa_info_mbuf_spare_map);
14836             }
14837
14838             bus_dma_tag_destroy(fp->rx_mbuf_tag);
14839             fp->rx_mbuf_tag = NULL;
14840         }
14841
14842         /***************************/
14843         /* FP RX SGE MBUF DMA MAPS */
14844         /***************************/
14845
14846         if (fp->rx_sge_mbuf_tag != NULL) {
14847             for (j = 0; j < RX_SGE_TOTAL; j++) {
14848                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
14849                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14850                                       fp->rx_sge_mbuf_chain[j].m_map);
14851                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14852                                        fp->rx_sge_mbuf_chain[j].m_map);
14853                 }
14854             }
14855
14856             if (fp->rx_sge_mbuf_spare_map != NULL) {
14857                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14858                                   fp->rx_sge_mbuf_spare_map);
14859                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14860                                    fp->rx_sge_mbuf_spare_map);
14861             }
14862
14863             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
14864             fp->rx_sge_mbuf_tag = NULL;
14865         }
14866     }
14867
14868     /***************************/
14869     /* FW DECOMPRESSION BUFFER */
14870     /***************************/
14871
14872     bxe_dma_free(sc, &sc->gz_buf_dma);
14873     sc->gz_buf = NULL;
14874     free(sc->gz_strm, M_DEVBUF);
14875     sc->gz_strm = NULL;
14876
14877     /*******************/
14878     /* SLOW PATH QUEUE */
14879     /*******************/
14880
14881     bxe_dma_free(sc, &sc->spq_dma);
14882     sc->spq = NULL;
14883
14884     /*************/
14885     /* SLOW PATH */
14886     /*************/
14887
14888     bxe_dma_free(sc, &sc->sp_dma);
14889     sc->sp = NULL;
14890
14891     /***************/
14892     /* EVENT QUEUE */
14893     /***************/
14894
14895     bxe_dma_free(sc, &sc->eq_dma);
14896     sc->eq = NULL;
14897
14898     /************************/
14899     /* DEFAULT STATUS BLOCK */
14900     /************************/
14901
14902     bxe_dma_free(sc, &sc->def_sb_dma);
14903     sc->def_sb = NULL;
14904
14905     bus_dma_tag_destroy(sc->parent_dma_tag);
14906     sc->parent_dma_tag = NULL;
14907 }
14908
14909 /*
14910  * Previous driver DMAE transaction may have occurred when pre-boot stage
14911  * ended and boot began. This would invalidate the addresses of the
14912  * transaction, resulting in was-error bit set in the PCI causing all
14913  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
14914  * the interrupt which detected this from the pglueb and the was-done bit
14915  */
14916 static void
14917 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
14918 {
14919     uint32_t val;
14920
14921     if (!CHIP_IS_E1x(sc)) {
14922         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
14923         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
14924             BLOGD(sc, DBG_LOAD,
14925                   "Clearing 'was-error' bit that was set in pglueb");
14926             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
14927         }
14928     }
14929 }
14930
14931 static int
14932 bxe_prev_mcp_done(struct bxe_softc *sc)
14933 {
14934     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
14935                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
14936     if (!rc) {
14937         BLOGE(sc, "MCP response failure, aborting\n");
14938         return (-1);
14939     }
14940
14941     return (0);
14942 }
14943
14944 static struct bxe_prev_list_node *
14945 bxe_prev_path_get_entry(struct bxe_softc *sc)
14946 {
14947     struct bxe_prev_list_node *tmp;
14948
14949     LIST_FOREACH(tmp, &bxe_prev_list, node) {
14950         if ((sc->pcie_bus == tmp->bus) &&
14951             (sc->pcie_device == tmp->slot) &&
14952             (SC_PATH(sc) == tmp->path)) {
14953             return (tmp);
14954         }
14955     }
14956
14957     return (NULL);
14958 }
14959
14960 static uint8_t
14961 bxe_prev_is_path_marked(struct bxe_softc *sc)
14962 {
14963     struct bxe_prev_list_node *tmp;
14964     int rc = FALSE;
14965
14966     mtx_lock(&bxe_prev_mtx);
14967
14968     tmp = bxe_prev_path_get_entry(sc);
14969     if (tmp) {
14970         if (tmp->aer) {
14971             BLOGD(sc, DBG_LOAD,
14972                   "Path %d/%d/%d was marked by AER\n",
14973                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
14974         } else {
14975             rc = TRUE;
14976             BLOGD(sc, DBG_LOAD,
14977                   "Path %d/%d/%d was already cleaned from previous drivers\n",
14978                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
14979         }
14980     }
14981
14982     mtx_unlock(&bxe_prev_mtx);
14983
14984     return (rc);
14985 }
14986
14987 static int
14988 bxe_prev_mark_path(struct bxe_softc *sc,
14989                    uint8_t          after_undi)
14990 {
14991     struct bxe_prev_list_node *tmp;
14992
14993     mtx_lock(&bxe_prev_mtx);
14994
14995     /* Check whether the entry for this path already exists */
14996     tmp = bxe_prev_path_get_entry(sc);
14997     if (tmp) {
14998         if (!tmp->aer) {
14999             BLOGD(sc, DBG_LOAD,
15000                   "Re-marking AER in path %d/%d/%d\n",
15001                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15002         } else {
15003             BLOGD(sc, DBG_LOAD,
15004                   "Removing AER indication from path %d/%d/%d\n",
15005                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15006             tmp->aer = 0;
15007         }
15008
15009         mtx_unlock(&bxe_prev_mtx);
15010         return (0);
15011     }
15012
15013     mtx_unlock(&bxe_prev_mtx);
15014
15015     /* Create an entry for this path and add it */
15016     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15017                  (M_NOWAIT | M_ZERO));
15018     if (!tmp) {
15019         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15020         return (-1);
15021     }
15022
15023     tmp->bus  = sc->pcie_bus;
15024     tmp->slot = sc->pcie_device;
15025     tmp->path = SC_PATH(sc);
15026     tmp->aer  = 0;
15027     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15028
15029     mtx_lock(&bxe_prev_mtx);
15030
15031     BLOGD(sc, DBG_LOAD,
15032           "Marked path %d/%d/%d - finished previous unload\n",
15033           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15034     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15035
15036     mtx_unlock(&bxe_prev_mtx);
15037
15038     return (0);
15039 }
15040
15041 static int
15042 bxe_do_flr(struct bxe_softc *sc)
15043 {
15044     int i;
15045
15046     /* only E2 and onwards support FLR */
15047     if (CHIP_IS_E1x(sc)) {
15048         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15049         return (-1);
15050     }
15051
15052     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15053     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15054         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15055               sc->devinfo.bc_ver);
15056         return (-1);
15057     }
15058
15059     /* Wait for Transaction Pending bit clean */
15060     for (i = 0; i < 4; i++) {
15061         if (i) {
15062             DELAY(((1 << (i - 1)) * 100) * 1000);
15063         }
15064
15065         if (!bxe_is_pcie_pending(sc)) {
15066             goto clear;
15067         }
15068     }
15069
15070     BLOGE(sc, "PCIE transaction is not cleared, "
15071               "proceeding with reset anyway\n");
15072
15073 clear:
15074
15075     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15076     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15077
15078     return (0);
15079 }
15080
15081 struct bxe_mac_vals {
15082     uint32_t xmac_addr;
15083     uint32_t xmac_val;
15084     uint32_t emac_addr;
15085     uint32_t emac_val;
15086     uint32_t umac_addr;
15087     uint32_t umac_val;
15088     uint32_t bmac_addr;
15089     uint32_t bmac_val[2];
15090 };
15091
15092 static void
15093 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15094                           struct bxe_mac_vals *vals)
15095 {
15096     uint32_t val, base_addr, offset, mask, reset_reg;
15097     uint8_t mac_stopped = FALSE;
15098     uint8_t port = SC_PORT(sc);
15099     uint32_t wb_data[2];
15100
15101     /* reset addresses as they also mark which values were changed */
15102     vals->bmac_addr = 0;
15103     vals->umac_addr = 0;
15104     vals->xmac_addr = 0;
15105     vals->emac_addr = 0;
15106
15107     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15108
15109     if (!CHIP_IS_E3(sc)) {
15110         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15111         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15112         if ((mask & reset_reg) && val) {
15113             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15114             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15115                                     : NIG_REG_INGRESS_BMAC0_MEM;
15116             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15117                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15118
15119             /*
15120              * use rd/wr since we cannot use dmae. This is safe
15121              * since MCP won't access the bus due to the request
15122              * to unload, and no function on the path can be
15123              * loaded at this time.
15124              */
15125             wb_data[0] = REG_RD(sc, base_addr + offset);
15126             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15127             vals->bmac_addr = base_addr + offset;
15128             vals->bmac_val[0] = wb_data[0];
15129             vals->bmac_val[1] = wb_data[1];
15130             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15131             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15132             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15133         }
15134
15135         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15136         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15137         vals->emac_val = REG_RD(sc, vals->emac_addr);
15138         REG_WR(sc, vals->emac_addr, 0);
15139         mac_stopped = TRUE;
15140     } else {
15141         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15142             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15143             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15144             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15145             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15146             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15147             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15148             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15149             REG_WR(sc, vals->xmac_addr, 0);
15150             mac_stopped = TRUE;
15151         }
15152
15153         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15154         if (mask & reset_reg) {
15155             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15156             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15157             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15158             vals->umac_val = REG_RD(sc, vals->umac_addr);
15159             REG_WR(sc, vals->umac_addr, 0);
15160             mac_stopped = TRUE;
15161         }
15162     }
15163
15164     if (mac_stopped) {
15165         DELAY(20000);
15166     }
15167 }
15168
15169 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15170 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15171 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15172 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15173
15174 static void
15175 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15176                          uint8_t          port,
15177                          uint8_t          inc)
15178 {
15179     uint16_t rcq, bd;
15180     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15181
15182     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15183     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15184
15185     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15186     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15187
15188     BLOGD(sc, DBG_LOAD,
15189           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15190           port, bd, rcq);
15191 }
15192
15193 static int
15194 bxe_prev_unload_common(struct bxe_softc *sc)
15195 {
15196     uint32_t reset_reg, tmp_reg = 0, rc;
15197     uint8_t prev_undi = FALSE;
15198     struct bxe_mac_vals mac_vals;
15199     uint32_t timer_count = 1000;
15200     uint32_t prev_brb;
15201
15202     /*
15203      * It is possible a previous function received 'common' answer,
15204      * but hasn't loaded yet, therefore creating a scenario of
15205      * multiple functions receiving 'common' on the same path.
15206      */
15207     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15208
15209     memset(&mac_vals, 0, sizeof(mac_vals));
15210
15211     if (bxe_prev_is_path_marked(sc)) {
15212         return (bxe_prev_mcp_done(sc));
15213     }
15214
15215     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15216
15217     /* Reset should be performed after BRB is emptied */
15218     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15219         /* Close the MAC Rx to prevent BRB from filling up */
15220         bxe_prev_unload_close_mac(sc, &mac_vals);
15221
15222         /* close LLH filters towards the BRB */
15223         elink_set_rx_filter(&sc->link_params, 0);
15224
15225         /*
15226          * Check if the UNDI driver was previously loaded.
15227          * UNDI driver initializes CID offset for normal bell to 0x7
15228          */
15229         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15230             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15231             if (tmp_reg == 0x7) {
15232                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15233                 prev_undi = TRUE;
15234                 /* clear the UNDI indication */
15235                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15236                 /* clear possible idle check errors */
15237                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15238             }
15239         }
15240
15241         /* wait until BRB is empty */
15242         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15243         while (timer_count) {
15244             prev_brb = tmp_reg;
15245
15246             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15247             if (!tmp_reg) {
15248                 break;
15249             }
15250
15251             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15252
15253             /* reset timer as long as BRB actually gets emptied */
15254             if (prev_brb > tmp_reg) {
15255                 timer_count = 1000;
15256             } else {
15257                 timer_count--;
15258             }
15259
15260             /* If UNDI resides in memory, manually increment it */
15261             if (prev_undi) {
15262                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15263             }
15264
15265             DELAY(10);
15266         }
15267
15268         if (!timer_count) {
15269             BLOGE(sc, "Failed to empty BRB\n");
15270         }
15271     }
15272
15273     /* No packets are in the pipeline, path is ready for reset */
15274     bxe_reset_common(sc);
15275
15276     if (mac_vals.xmac_addr) {
15277         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15278     }
15279     if (mac_vals.umac_addr) {
15280         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15281     }
15282     if (mac_vals.emac_addr) {
15283         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15284     }
15285     if (mac_vals.bmac_addr) {
15286         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15287         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15288     }
15289
15290     rc = bxe_prev_mark_path(sc, prev_undi);
15291     if (rc) {
15292         bxe_prev_mcp_done(sc);
15293         return (rc);
15294     }
15295
15296     return (bxe_prev_mcp_done(sc));
15297 }
15298
15299 static int
15300 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15301 {
15302     int rc;
15303
15304     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15305
15306     /* Test if previous unload process was already finished for this path */
15307     if (bxe_prev_is_path_marked(sc)) {
15308         return (bxe_prev_mcp_done(sc));
15309     }
15310
15311     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15312
15313     /*
15314      * If function has FLR capabilities, and existing FW version matches
15315      * the one required, then FLR will be sufficient to clean any residue
15316      * left by previous driver
15317      */
15318     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15319     if (!rc) {
15320         /* fw version is good */
15321         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15322         rc = bxe_do_flr(sc);
15323     }
15324
15325     if (!rc) {
15326         /* FLR was performed */
15327         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15328         return (0);
15329     }
15330
15331     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15332
15333     /* Close the MCP request, return failure*/
15334     rc = bxe_prev_mcp_done(sc);
15335     if (!rc) {
15336         rc = BXE_PREV_WAIT_NEEDED;
15337     }
15338
15339     return (rc);
15340 }
15341
15342 static int
15343 bxe_prev_unload(struct bxe_softc *sc)
15344 {
15345     int time_counter = 10;
15346     uint32_t fw, hw_lock_reg, hw_lock_val;
15347     uint32_t rc = 0;
15348
15349     /*
15350      * Clear HW from errors which may have resulted from an interrupted
15351      * DMAE transaction.
15352      */
15353     bxe_prev_interrupted_dmae(sc);
15354
15355     /* Release previously held locks */
15356     hw_lock_reg =
15357         (SC_FUNC(sc) <= 5) ?
15358             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15359             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15360
15361     hw_lock_val = (REG_RD(sc, hw_lock_reg));
15362     if (hw_lock_val) {
15363         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15364             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15365             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15366                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15367         }
15368         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15369         REG_WR(sc, hw_lock_reg, 0xffffffff);
15370     } else {
15371         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15372     }
15373
15374     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15375         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15376         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15377     }
15378
15379     do {
15380         /* Lock MCP using an unload request */
15381         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15382         if (!fw) {
15383             BLOGE(sc, "MCP response failure, aborting\n");
15384             rc = -1;
15385             break;
15386         }
15387
15388         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15389             rc = bxe_prev_unload_common(sc);
15390             break;
15391         }
15392
15393         /* non-common reply from MCP night require looping */
15394         rc = bxe_prev_unload_uncommon(sc);
15395         if (rc != BXE_PREV_WAIT_NEEDED) {
15396             break;
15397         }
15398
15399         DELAY(20000);
15400     } while (--time_counter);
15401
15402     if (!time_counter || rc) {
15403         BLOGE(sc, "Failed to unload previous driver!"
15404             " time_counter %d rc %d\n", time_counter, rc);
15405         rc = -1;
15406     }
15407
15408     return (rc);
15409 }
15410
15411 void
15412 bxe_dcbx_set_state(struct bxe_softc *sc,
15413                    uint8_t          dcb_on,
15414                    uint32_t         dcbx_enabled)
15415 {
15416     if (!CHIP_IS_E1x(sc)) {
15417         sc->dcb_state = dcb_on;
15418         sc->dcbx_enabled = dcbx_enabled;
15419     } else {
15420         sc->dcb_state = FALSE;
15421         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15422     }
15423     BLOGD(sc, DBG_LOAD,
15424           "DCB state [%s:%s]\n",
15425           dcb_on ? "ON" : "OFF",
15426           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15427           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15428           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15429           "on-chip with negotiation" : "invalid");
15430 }
15431
15432 /* must be called after sriov-enable */
15433 static int
15434 bxe_set_qm_cid_count(struct bxe_softc *sc)
15435 {
15436     int cid_count = BXE_L2_MAX_CID(sc);
15437
15438     if (IS_SRIOV(sc)) {
15439         cid_count += BXE_VF_CIDS;
15440     }
15441
15442     if (CNIC_SUPPORT(sc)) {
15443         cid_count += CNIC_CID_MAX;
15444     }
15445
15446     return (roundup(cid_count, QM_CID_ROUND));
15447 }
15448
15449 static void
15450 bxe_init_multi_cos(struct bxe_softc *sc)
15451 {
15452     int pri, cos;
15453
15454     uint32_t pri_map = 0; /* XXX change to user config */
15455
15456     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15457         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15458         if (cos < sc->max_cos) {
15459             sc->prio_to_cos[pri] = cos;
15460         } else {
15461             BLOGW(sc, "Invalid COS %d for priority %d "
15462                       "(max COS is %d), setting to 0\n",
15463                   cos, pri, (sc->max_cos - 1));
15464             sc->prio_to_cos[pri] = 0;
15465         }
15466     }
15467 }
15468
15469 static int
15470 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15471 {
15472     struct bxe_softc *sc;
15473     int error, result;
15474
15475     result = 0;
15476     error = sysctl_handle_int(oidp, &result, 0, req);
15477
15478     if (error || !req->newptr) {
15479         return (error);
15480     }
15481
15482     if (result == 1) {
15483         uint32_t  temp;
15484         sc = (struct bxe_softc *)arg1;
15485
15486         BLOGI(sc, "... dumping driver state ...\n");
15487         temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15488         BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15489     }
15490
15491     return (error);
15492 }
15493
15494 static int
15495 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15496 {
15497     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15498     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15499     uint32_t *offset;
15500     uint64_t value = 0;
15501     int index = (int)arg2;
15502
15503     if (index >= BXE_NUM_ETH_STATS) {
15504         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15505         return (-1);
15506     }
15507
15508     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15509
15510     switch (bxe_eth_stats_arr[index].size) {
15511     case 4:
15512         value = (uint64_t)*offset;
15513         break;
15514     case 8:
15515         value = HILO_U64(*offset, *(offset + 1));
15516         break;
15517     default:
15518         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15519               index, bxe_eth_stats_arr[index].size);
15520         return (-1);
15521     }
15522
15523     return (sysctl_handle_64(oidp, &value, 0, req));
15524 }
15525
15526 static int
15527 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15528 {
15529     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15530     uint32_t *eth_stats;
15531     uint32_t *offset;
15532     uint64_t value = 0;
15533     uint32_t q_stat = (uint32_t)arg2;
15534     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15535     uint32_t index = (q_stat & 0xffff);
15536
15537     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15538
15539     if (index >= BXE_NUM_ETH_Q_STATS) {
15540         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15541         return (-1);
15542     }
15543
15544     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15545
15546     switch (bxe_eth_q_stats_arr[index].size) {
15547     case 4:
15548         value = (uint64_t)*offset;
15549         break;
15550     case 8:
15551         value = HILO_U64(*offset, *(offset + 1));
15552         break;
15553     default:
15554         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15555               index, bxe_eth_q_stats_arr[index].size);
15556         return (-1);
15557     }
15558
15559     return (sysctl_handle_64(oidp, &value, 0, req));
15560 }
15561
15562 static void
15563 bxe_add_sysctls(struct bxe_softc *sc)
15564 {
15565     struct sysctl_ctx_list *ctx;
15566     struct sysctl_oid_list *children;
15567     struct sysctl_oid *queue_top, *queue;
15568     struct sysctl_oid_list *queue_top_children, *queue_children;
15569     char queue_num_buf[32];
15570     uint32_t q_stat;
15571     int i, j;
15572
15573     ctx = device_get_sysctl_ctx(sc->dev);
15574     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
15575
15576     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
15577                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
15578                       "version");
15579
15580     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
15581              BCM_5710_FW_MAJOR_VERSION,
15582              BCM_5710_FW_MINOR_VERSION,
15583              BCM_5710_FW_REVISION_VERSION,
15584              BCM_5710_FW_ENGINEERING_VERSION);
15585
15586     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
15587         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
15588          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
15589          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
15590          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
15591                                                                 "Unknown"));
15592     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
15593                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
15594                     "multifunction vnics per port");
15595
15596     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
15597         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
15598          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
15599          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
15600                                               "???GT/s"),
15601         sc->devinfo.pcie_link_width);
15602
15603     sc->debug = bxe_debug;
15604
15605 #if __FreeBSD_version >= 900000
15606     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15607                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
15608                       "bootcode version");
15609     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15610                       CTLFLAG_RD, sc->fw_ver_str, 0,
15611                       "firmware version");
15612     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15613                       CTLFLAG_RD, sc->mf_mode_str, 0,
15614                       "multifunction mode");
15615     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15616                       CTLFLAG_RD, sc->mac_addr_str, 0,
15617                       "mac address");
15618     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15619                       CTLFLAG_RD, sc->pci_link_str, 0,
15620                       "pci link status");
15621     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
15622                     CTLFLAG_RW, &sc->debug,
15623                     "debug logging mode");
15624 #else
15625     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15626                       CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
15627                       "bootcode version");
15628     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15629                       CTLFLAG_RD, &sc->fw_ver_str, 0,
15630                       "firmware version");
15631     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15632                       CTLFLAG_RD, &sc->mf_mode_str, 0,
15633                       "multifunction mode");
15634     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15635                       CTLFLAG_RD, &sc->mac_addr_str, 0,
15636                       "mac address");
15637     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15638                       CTLFLAG_RD, &sc->pci_link_str, 0,
15639                       "pci link status");
15640     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
15641                     CTLFLAG_RW, &sc->debug, 0,
15642                     "debug logging mode");
15643 #endif /* #if __FreeBSD_version >= 900000 */
15644
15645     sc->trigger_grcdump = 0;
15646     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
15647                    CTLFLAG_RW, &sc->trigger_grcdump, 0,
15648                    "trigger grcdump should be invoked"
15649                    "  before collecting grcdump");
15650
15651     sc->grcdump_started = 0;
15652     sc->grcdump_done = 0;
15653     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
15654                    CTLFLAG_RD, &sc->grcdump_done, 0,
15655                    "set by driver when grcdump is done");
15656
15657     sc->rx_budget = bxe_rx_budget;
15658     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
15659                     CTLFLAG_RW, &sc->rx_budget, 0,
15660                     "rx processing budget");
15661
15662     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
15663                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15664                     bxe_sysctl_state, "IU", "dump driver state");
15665
15666     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
15667         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
15668                         bxe_eth_stats_arr[i].string,
15669                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
15670                         bxe_sysctl_eth_stat, "LU",
15671                         bxe_eth_stats_arr[i].string);
15672     }
15673
15674     /* add a new parent node for all queues "dev.bxe.#.queue" */
15675     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
15676                                 CTLFLAG_RD, NULL, "queue");
15677     queue_top_children = SYSCTL_CHILDREN(queue_top);
15678
15679     for (i = 0; i < sc->num_queues; i++) {
15680         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
15681         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
15682         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
15683                                 queue_num_buf, CTLFLAG_RD, NULL,
15684                                 "single queue");
15685         queue_children = SYSCTL_CHILDREN(queue);
15686
15687         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
15688             q_stat = ((i << 16) | j);
15689             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
15690                             bxe_eth_q_stats_arr[j].string,
15691                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
15692                             bxe_sysctl_eth_q_stat, "LU",
15693                             bxe_eth_q_stats_arr[j].string);
15694         }
15695     }
15696 }
15697
15698 static int
15699 bxe_alloc_buf_rings(struct bxe_softc *sc)
15700 {
15701 #if __FreeBSD_version >= 901504
15702
15703     int i;
15704     struct bxe_fastpath *fp;
15705
15706     for (i = 0; i < sc->num_queues; i++) {
15707
15708         fp = &sc->fp[i];
15709
15710         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
15711                                    M_NOWAIT, &fp->tx_mtx);
15712         if (fp->tx_br == NULL)
15713             return (-1);
15714     }
15715 #endif
15716     return (0);
15717 }
15718
15719 static void
15720 bxe_free_buf_rings(struct bxe_softc *sc)
15721 {
15722 #if __FreeBSD_version >= 901504
15723
15724     int i;
15725     struct bxe_fastpath *fp;
15726
15727     for (i = 0; i < sc->num_queues; i++) {
15728
15729         fp = &sc->fp[i];
15730
15731         if (fp->tx_br) {
15732             buf_ring_free(fp->tx_br, M_DEVBUF);
15733             fp->tx_br = NULL;
15734         }
15735     }
15736
15737 #endif
15738 }
15739
15740 static void
15741 bxe_init_fp_mutexs(struct bxe_softc *sc)
15742 {
15743     int i;
15744     struct bxe_fastpath *fp;
15745
15746     for (i = 0; i < sc->num_queues; i++) {
15747
15748         fp = &sc->fp[i];
15749
15750         snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
15751             "bxe%d_fp%d_tx_lock", sc->unit, i);
15752         mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
15753
15754         snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
15755             "bxe%d_fp%d_rx_lock", sc->unit, i);
15756         mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
15757     }
15758 }
15759
15760 static void
15761 bxe_destroy_fp_mutexs(struct bxe_softc *sc)
15762 {
15763     int i;
15764     struct bxe_fastpath *fp;
15765
15766     for (i = 0; i < sc->num_queues; i++) {
15767
15768         fp = &sc->fp[i];
15769
15770         if (mtx_initialized(&fp->tx_mtx)) {
15771             mtx_destroy(&fp->tx_mtx);
15772         }
15773
15774         if (mtx_initialized(&fp->rx_mtx)) {
15775             mtx_destroy(&fp->rx_mtx);
15776         }
15777     }
15778 }
15779
15780
15781 /*
15782  * Device attach function.
15783  *
15784  * Allocates device resources, performs secondary chip identification, and
15785  * initializes driver instance variables. This function is called from driver
15786  * load after a successful probe.
15787  *
15788  * Returns:
15789  *   0 = Success, >0 = Failure
15790  */
15791 static int
15792 bxe_attach(device_t dev)
15793 {
15794     struct bxe_softc *sc;
15795
15796     sc = device_get_softc(dev);
15797
15798     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
15799
15800     sc->state = BXE_STATE_CLOSED;
15801
15802     sc->dev  = dev;
15803     sc->unit = device_get_unit(dev);
15804
15805     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
15806
15807     sc->pcie_bus    = pci_get_bus(dev);
15808     sc->pcie_device = pci_get_slot(dev);
15809     sc->pcie_func   = pci_get_function(dev);
15810
15811     /* enable bus master capability */
15812     pci_enable_busmaster(dev);
15813
15814     /* get the BARs */
15815     if (bxe_allocate_bars(sc) != 0) {
15816         return (ENXIO);
15817     }
15818
15819     /* initialize the mutexes */
15820     bxe_init_mutexes(sc);
15821
15822     /* prepare the periodic callout */
15823     callout_init(&sc->periodic_callout, 0);
15824
15825     /* prepare the chip taskqueue */
15826     sc->chip_tq_flags = CHIP_TQ_NONE;
15827     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
15828              "bxe%d_chip_tq", sc->unit);
15829     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
15830     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
15831                                    taskqueue_thread_enqueue,
15832                                    &sc->chip_tq);
15833     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
15834                             "%s", sc->chip_tq_name);
15835
15836     /* get device info and set params */
15837     if (bxe_get_device_info(sc) != 0) {
15838         BLOGE(sc, "getting device info\n");
15839         bxe_deallocate_bars(sc);
15840         pci_disable_busmaster(dev);
15841         return (ENXIO);
15842     }
15843
15844     /* get final misc params */
15845     bxe_get_params(sc);
15846
15847     /* set the default MTU (changed via ifconfig) */
15848     sc->mtu = ETHERMTU;
15849
15850     bxe_set_modes_bitmap(sc);
15851
15852     /* XXX
15853      * If in AFEX mode and the function is configured for FCoE
15854      * then bail... no L2 allowed.
15855      */
15856
15857     /* get phy settings from shmem and 'and' against admin settings */
15858     bxe_get_phy_info(sc);
15859
15860     /* initialize the FreeBSD ifnet interface */
15861     if (bxe_init_ifnet(sc) != 0) {
15862         bxe_release_mutexes(sc);
15863         bxe_deallocate_bars(sc);
15864         pci_disable_busmaster(dev);
15865         return (ENXIO);
15866     }
15867
15868     if (bxe_add_cdev(sc) != 0) {
15869         if (sc->ifp != NULL) {
15870             ether_ifdetach(sc->ifp);
15871         }
15872         ifmedia_removeall(&sc->ifmedia);
15873         bxe_release_mutexes(sc);
15874         bxe_deallocate_bars(sc);
15875         pci_disable_busmaster(dev);
15876         return (ENXIO);
15877     }
15878
15879     /* allocate device interrupts */
15880     if (bxe_interrupt_alloc(sc) != 0) {
15881         bxe_del_cdev(sc);
15882         if (sc->ifp != NULL) {
15883             ether_ifdetach(sc->ifp);
15884         }
15885         ifmedia_removeall(&sc->ifmedia);
15886         bxe_release_mutexes(sc);
15887         bxe_deallocate_bars(sc);
15888         pci_disable_busmaster(dev);
15889         return (ENXIO);
15890     }
15891
15892     bxe_init_fp_mutexs(sc);
15893
15894     if (bxe_alloc_buf_rings(sc) != 0) {
15895         bxe_free_buf_rings(sc);
15896         bxe_interrupt_free(sc);
15897         bxe_del_cdev(sc);
15898         if (sc->ifp != NULL) {
15899             ether_ifdetach(sc->ifp);
15900         }
15901         ifmedia_removeall(&sc->ifmedia);
15902         bxe_release_mutexes(sc);
15903         bxe_deallocate_bars(sc);
15904         pci_disable_busmaster(dev);
15905         return (ENXIO);
15906     }
15907
15908     /* allocate ilt */
15909     if (bxe_alloc_ilt_mem(sc) != 0) {
15910         bxe_free_buf_rings(sc);
15911         bxe_interrupt_free(sc);
15912         bxe_del_cdev(sc);
15913         if (sc->ifp != NULL) {
15914             ether_ifdetach(sc->ifp);
15915         }
15916         ifmedia_removeall(&sc->ifmedia);
15917         bxe_release_mutexes(sc);
15918         bxe_deallocate_bars(sc);
15919         pci_disable_busmaster(dev);
15920         return (ENXIO);
15921     }
15922
15923     /* allocate the host hardware/software hsi structures */
15924     if (bxe_alloc_hsi_mem(sc) != 0) {
15925         bxe_free_ilt_mem(sc);
15926         bxe_free_buf_rings(sc);
15927         bxe_interrupt_free(sc);
15928         bxe_del_cdev(sc);
15929         if (sc->ifp != NULL) {
15930             ether_ifdetach(sc->ifp);
15931         }
15932         ifmedia_removeall(&sc->ifmedia);
15933         bxe_release_mutexes(sc);
15934         bxe_deallocate_bars(sc);
15935         pci_disable_busmaster(dev);
15936         return (ENXIO);
15937     }
15938
15939     /* need to reset chip if UNDI was active */
15940     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
15941         /* init fw_seq */
15942         sc->fw_seq =
15943             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
15944              DRV_MSG_SEQ_NUMBER_MASK);
15945         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
15946         bxe_prev_unload(sc);
15947     }
15948
15949 #if 1
15950     /* XXX */
15951     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
15952 #else
15953     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
15954         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
15955         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
15956         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
15957         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
15958         bxe_dcbx_init_params(sc);
15959     } else {
15960         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
15961     }
15962 #endif
15963
15964     /* calculate qm_cid_count */
15965     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
15966     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
15967
15968     sc->max_cos = 1;
15969     bxe_init_multi_cos(sc);
15970
15971     bxe_add_sysctls(sc);
15972
15973     return (0);
15974 }
15975
15976 /*
15977  * Device detach function.
15978  *
15979  * Stops the controller, resets the controller, and releases resources.
15980  *
15981  * Returns:
15982  *   0 = Success, >0 = Failure
15983  */
15984 static int
15985 bxe_detach(device_t dev)
15986 {
15987     struct bxe_softc *sc;
15988     if_t ifp;
15989
15990     sc = device_get_softc(dev);
15991
15992     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
15993
15994     ifp = sc->ifp;
15995     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
15996         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
15997         return(EBUSY);
15998     }
15999
16000     bxe_del_cdev(sc);
16001
16002     /* stop the periodic callout */
16003     bxe_periodic_stop(sc);
16004
16005     /* stop the chip taskqueue */
16006     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16007     if (sc->chip_tq) {
16008         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16009         taskqueue_free(sc->chip_tq);
16010         sc->chip_tq = NULL;
16011     }
16012
16013     /* stop and reset the controller if it was open */
16014     if (sc->state != BXE_STATE_CLOSED) {
16015         BXE_CORE_LOCK(sc);
16016         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16017         sc->state = BXE_STATE_DISABLED;
16018         BXE_CORE_UNLOCK(sc);
16019     }
16020
16021     /* release the network interface */
16022     if (ifp != NULL) {
16023         ether_ifdetach(ifp);
16024     }
16025     ifmedia_removeall(&sc->ifmedia);
16026
16027     /* XXX do the following based on driver state... */
16028
16029     /* free the host hardware/software hsi structures */
16030     bxe_free_hsi_mem(sc);
16031
16032     /* free ilt */
16033     bxe_free_ilt_mem(sc);
16034
16035     bxe_free_buf_rings(sc);
16036
16037     /* release the interrupts */
16038     bxe_interrupt_free(sc);
16039
16040     /* Release the mutexes*/
16041     bxe_destroy_fp_mutexs(sc);
16042     bxe_release_mutexes(sc);
16043
16044
16045     /* Release the PCIe BAR mapped memory */
16046     bxe_deallocate_bars(sc);
16047
16048     /* Release the FreeBSD interface. */
16049     if (sc->ifp != NULL) {
16050         if_free(sc->ifp);
16051     }
16052
16053     pci_disable_busmaster(dev);
16054
16055     return (0);
16056 }
16057
16058 /*
16059  * Device shutdown function.
16060  *
16061  * Stops and resets the controller.
16062  *
16063  * Returns:
16064  *   Nothing
16065  */
16066 static int
16067 bxe_shutdown(device_t dev)
16068 {
16069     struct bxe_softc *sc;
16070
16071     sc = device_get_softc(dev);
16072
16073     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16074
16075     /* stop the periodic callout */
16076     bxe_periodic_stop(sc);
16077
16078     BXE_CORE_LOCK(sc);
16079     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16080     BXE_CORE_UNLOCK(sc);
16081
16082     return (0);
16083 }
16084
16085 void
16086 bxe_igu_ack_sb(struct bxe_softc *sc,
16087                uint8_t          igu_sb_id,
16088                uint8_t          segment,
16089                uint16_t         index,
16090                uint8_t          op,
16091                uint8_t          update)
16092 {
16093     uint32_t igu_addr = sc->igu_base_addr;
16094     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16095     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16096 }
16097
16098 static void
16099 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16100                      uint8_t          func,
16101                      uint8_t          idu_sb_id,
16102                      uint8_t          is_pf)
16103 {
16104     uint32_t data, ctl, cnt = 100;
16105     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16106     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16107     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16108     uint32_t sb_bit =  1 << (idu_sb_id%32);
16109     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16110     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16111
16112     /* Not supported in BC mode */
16113     if (CHIP_INT_MODE_IS_BC(sc)) {
16114         return;
16115     }
16116
16117     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16118              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16119             IGU_REGULAR_CLEANUP_SET |
16120             IGU_REGULAR_BCLEANUP);
16121
16122     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16123            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16124            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16125
16126     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16127             data, igu_addr_data);
16128     REG_WR(sc, igu_addr_data, data);
16129
16130     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16131                       BUS_SPACE_BARRIER_WRITE);
16132     mb();
16133
16134     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16135             ctl, igu_addr_ctl);
16136     REG_WR(sc, igu_addr_ctl, ctl);
16137
16138     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16139                       BUS_SPACE_BARRIER_WRITE);
16140     mb();
16141
16142     /* wait for clean up to finish */
16143     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16144         DELAY(20000);
16145     }
16146
16147     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16148         BLOGD(sc, DBG_LOAD,
16149               "Unable to finish IGU cleanup: "
16150               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16151               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16152     }
16153 }
16154
16155 static void
16156 bxe_igu_clear_sb(struct bxe_softc *sc,
16157                  uint8_t          idu_sb_id)
16158 {
16159     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16160 }
16161
16162
16163
16164
16165
16166
16167
16168 /*******************/
16169 /* ECORE CALLBACKS */
16170 /*******************/
16171
16172 static void
16173 bxe_reset_common(struct bxe_softc *sc)
16174 {
16175     uint32_t val = 0x1400;
16176
16177     /* reset_common */
16178     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16179
16180     if (CHIP_IS_E3(sc)) {
16181         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16182         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16183     }
16184
16185     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16186 }
16187
16188 static void
16189 bxe_common_init_phy(struct bxe_softc *sc)
16190 {
16191     uint32_t shmem_base[2];
16192     uint32_t shmem2_base[2];
16193
16194     /* Avoid common init in case MFW supports LFA */
16195     if (SHMEM2_RD(sc, size) >
16196         (uint32_t)offsetof(struct shmem2_region,
16197                            lfa_host_addr[SC_PORT(sc)])) {
16198         return;
16199     }
16200
16201     shmem_base[0]  = sc->devinfo.shmem_base;
16202     shmem2_base[0] = sc->devinfo.shmem2_base;
16203
16204     if (!CHIP_IS_E1x(sc)) {
16205         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16206         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16207     }
16208
16209     bxe_acquire_phy_lock(sc);
16210     elink_common_init_phy(sc, shmem_base, shmem2_base,
16211                           sc->devinfo.chip_id, 0);
16212     bxe_release_phy_lock(sc);
16213 }
16214
16215 static void
16216 bxe_pf_disable(struct bxe_softc *sc)
16217 {
16218     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16219
16220     val &= ~IGU_PF_CONF_FUNC_EN;
16221
16222     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16223     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16224     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16225 }
16226
16227 static void
16228 bxe_init_pxp(struct bxe_softc *sc)
16229 {
16230     uint16_t devctl;
16231     int r_order, w_order;
16232
16233     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16234
16235     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16236
16237     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16238
16239     if (sc->mrrs == -1) {
16240         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16241     } else {
16242         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16243         r_order = sc->mrrs;
16244     }
16245
16246     ecore_init_pxp_arb(sc, r_order, w_order);
16247 }
16248
16249 static uint32_t
16250 bxe_get_pretend_reg(struct bxe_softc *sc)
16251 {
16252     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16253     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16254     return (base + (SC_ABS_FUNC(sc)) * stride);
16255 }
16256
16257 /*
16258  * Called only on E1H or E2.
16259  * When pretending to be PF, the pretend value is the function number 0..7.
16260  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16261  * combination.
16262  */
16263 static int
16264 bxe_pretend_func(struct bxe_softc *sc,
16265                  uint16_t         pretend_func_val)
16266 {
16267     uint32_t pretend_reg;
16268
16269     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16270         return (-1);
16271     }
16272
16273     /* get my own pretend register */
16274     pretend_reg = bxe_get_pretend_reg(sc);
16275     REG_WR(sc, pretend_reg, pretend_func_val);
16276     REG_RD(sc, pretend_reg);
16277     return (0);
16278 }
16279
16280 static void
16281 bxe_iov_init_dmae(struct bxe_softc *sc)
16282 {
16283     return;
16284 }
16285
16286 static void
16287 bxe_iov_init_dq(struct bxe_softc *sc)
16288 {
16289     return;
16290 }
16291
16292 /* send a NIG loopback debug packet */
16293 static void
16294 bxe_lb_pckt(struct bxe_softc *sc)
16295 {
16296     uint32_t wb_write[3];
16297
16298     /* Ethernet source and destination addresses */
16299     wb_write[0] = 0x55555555;
16300     wb_write[1] = 0x55555555;
16301     wb_write[2] = 0x20;     /* SOP */
16302     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16303
16304     /* NON-IP protocol */
16305     wb_write[0] = 0x09000000;
16306     wb_write[1] = 0x55555555;
16307     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16308     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16309 }
16310
16311 /*
16312  * Some of the internal memories are not directly readable from the driver.
16313  * To test them we send debug packets.
16314  */
16315 static int
16316 bxe_int_mem_test(struct bxe_softc *sc)
16317 {
16318     int factor;
16319     int count, i;
16320     uint32_t val = 0;
16321
16322     if (CHIP_REV_IS_FPGA(sc)) {
16323         factor = 120;
16324     } else if (CHIP_REV_IS_EMUL(sc)) {
16325         factor = 200;
16326     } else {
16327         factor = 1;
16328     }
16329
16330     /* disable inputs of parser neighbor blocks */
16331     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16332     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16333     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16334     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16335
16336     /*  write 0 to parser credits for CFC search request */
16337     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16338
16339     /* send Ethernet packet */
16340     bxe_lb_pckt(sc);
16341
16342     /* TODO do i reset NIG statistic? */
16343     /* Wait until NIG register shows 1 packet of size 0x10 */
16344     count = 1000 * factor;
16345     while (count) {
16346         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16347         val = *BXE_SP(sc, wb_data[0]);
16348         if (val == 0x10) {
16349             break;
16350         }
16351
16352         DELAY(10000);
16353         count--;
16354     }
16355
16356     if (val != 0x10) {
16357         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16358         return (-1);
16359     }
16360
16361     /* wait until PRS register shows 1 packet */
16362     count = (1000 * factor);
16363     while (count) {
16364         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16365         if (val == 1) {
16366             break;
16367         }
16368
16369         DELAY(10000);
16370         count--;
16371     }
16372
16373     if (val != 0x1) {
16374         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16375         return (-2);
16376     }
16377
16378     /* Reset and init BRB, PRS */
16379     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16380     DELAY(50000);
16381     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16382     DELAY(50000);
16383     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16384     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16385
16386     /* Disable inputs of parser neighbor blocks */
16387     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16388     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16389     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16390     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16391
16392     /* Write 0 to parser credits for CFC search request */
16393     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16394
16395     /* send 10 Ethernet packets */
16396     for (i = 0; i < 10; i++) {
16397         bxe_lb_pckt(sc);
16398     }
16399
16400     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16401     count = (1000 * factor);
16402     while (count) {
16403         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16404         val = *BXE_SP(sc, wb_data[0]);
16405         if (val == 0xb0) {
16406             break;
16407         }
16408
16409         DELAY(10000);
16410         count--;
16411     }
16412
16413     if (val != 0xb0) {
16414         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16415         return (-3);
16416     }
16417
16418     /* Wait until PRS register shows 2 packets */
16419     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16420     if (val != 2) {
16421         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16422     }
16423
16424     /* Write 1 to parser credits for CFC search request */
16425     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16426
16427     /* Wait until PRS register shows 3 packets */
16428     DELAY(10000 * factor);
16429
16430     /* Wait until NIG register shows 1 packet of size 0x10 */
16431     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16432     if (val != 3) {
16433         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16434     }
16435
16436     /* clear NIG EOP FIFO */
16437     for (i = 0; i < 11; i++) {
16438         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16439     }
16440
16441     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16442     if (val != 1) {
16443         BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16444         return (-4);
16445     }
16446
16447     /* Reset and init BRB, PRS, NIG */
16448     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16449     DELAY(50000);
16450     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16451     DELAY(50000);
16452     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16453     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16454     if (!CNIC_SUPPORT(sc)) {
16455         /* set NIC mode */
16456         REG_WR(sc, PRS_REG_NIC_MODE, 1);
16457     }
16458
16459     /* Enable inputs of parser neighbor blocks */
16460     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16461     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16462     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16463     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16464
16465     return (0);
16466 }
16467
16468 static void
16469 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16470 {
16471     int is_required;
16472     uint32_t val;
16473     int port;
16474
16475     is_required = 0;
16476     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16477            SHARED_HW_CFG_FAN_FAILURE_MASK);
16478
16479     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16480         is_required = 1;
16481     }
16482     /*
16483      * The fan failure mechanism is usually related to the PHY type since
16484      * the power consumption of the board is affected by the PHY. Currently,
16485      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16486      */
16487     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16488         for (port = PORT_0; port < PORT_MAX; port++) {
16489             is_required |= elink_fan_failure_det_req(sc,
16490                                                      sc->devinfo.shmem_base,
16491                                                      sc->devinfo.shmem2_base,
16492                                                      port);
16493         }
16494     }
16495
16496     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16497
16498     if (is_required == 0) {
16499         return;
16500     }
16501
16502     /* Fan failure is indicated by SPIO 5 */
16503     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16504
16505     /* set to active low mode */
16506     val = REG_RD(sc, MISC_REG_SPIO_INT);
16507     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16508     REG_WR(sc, MISC_REG_SPIO_INT, val);
16509
16510     /* enable interrupt to signal the IGU */
16511     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16512     val |= MISC_SPIO_SPIO5;
16513     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16514 }
16515
16516 static void
16517 bxe_enable_blocks_attention(struct bxe_softc *sc)
16518 {
16519     uint32_t val;
16520
16521     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16522     if (!CHIP_IS_E1x(sc)) {
16523         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16524     } else {
16525         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16526     }
16527     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16528     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16529     /*
16530      * mask read length error interrupts in brb for parser
16531      * (parsing unit and 'checksum and crc' unit)
16532      * these errors are legal (PU reads fixed length and CAC can cause
16533      * read length error on truncated packets)
16534      */
16535     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16536     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16537     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16538     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16539     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16540     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16541 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16542 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16543     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16544     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16545     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16546 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16547 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16548     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16549     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16550     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16551     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16552 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16553 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16554
16555     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16556            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16557            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16558     if (!CHIP_IS_E1x(sc)) {
16559         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16560                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16561     }
16562     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16563
16564     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16565     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16566     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16567 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16568
16569     if (!CHIP_IS_E1x(sc)) {
16570         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16571         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16572     }
16573
16574     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16575     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16576 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16577     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
16578 }
16579
16580 /**
16581  * bxe_init_hw_common - initialize the HW at the COMMON phase.
16582  *
16583  * @sc:     driver handle
16584  */
16585 static int
16586 bxe_init_hw_common(struct bxe_softc *sc)
16587 {
16588     uint8_t abs_func_id;
16589     uint32_t val;
16590
16591     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
16592           SC_ABS_FUNC(sc));
16593
16594     /*
16595      * take the RESET lock to protect undi_unload flow from accessing
16596      * registers while we are resetting the chip
16597      */
16598     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16599
16600     bxe_reset_common(sc);
16601
16602     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
16603
16604     val = 0xfffc;
16605     if (CHIP_IS_E3(sc)) {
16606         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16607         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16608     }
16609
16610     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
16611
16612     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16613
16614     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
16615     BLOGD(sc, DBG_LOAD, "after misc block init\n");
16616
16617     if (!CHIP_IS_E1x(sc)) {
16618         /*
16619          * 4-port mode or 2-port mode we need to turn off master-enable for
16620          * everyone. After that we turn it back on for self. So, we disregard
16621          * multi-function, and always disable all functions on the given path,
16622          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
16623          */
16624         for (abs_func_id = SC_PATH(sc);
16625              abs_func_id < (E2_FUNC_MAX * 2);
16626              abs_func_id += 2) {
16627             if (abs_func_id == SC_ABS_FUNC(sc)) {
16628                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
16629                 continue;
16630             }
16631
16632             bxe_pretend_func(sc, abs_func_id);
16633
16634             /* clear pf enable */
16635             bxe_pf_disable(sc);
16636
16637             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16638         }
16639     }
16640
16641     BLOGD(sc, DBG_LOAD, "after pf disable\n");
16642
16643     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
16644
16645     if (CHIP_IS_E1(sc)) {
16646         /*
16647          * enable HW interrupt from PXP on USDM overflow
16648          * bit 16 on INT_MASK_0
16649          */
16650         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16651     }
16652
16653     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
16654     bxe_init_pxp(sc);
16655
16656 #ifdef __BIG_ENDIAN
16657     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
16658     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
16659     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
16660     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
16661     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
16662     /* make sure this value is 0 */
16663     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
16664
16665     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
16666     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
16667     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
16668     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
16669     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
16670 #endif
16671
16672     ecore_ilt_init_page_size(sc, INITOP_SET);
16673
16674     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
16675         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
16676     }
16677
16678     /* let the HW do it's magic... */
16679     DELAY(100000);
16680
16681     /* finish PXP init */
16682     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
16683     if (val != 1) {
16684         BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
16685             val);
16686         return (-1);
16687     }
16688     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
16689     if (val != 1) {
16690         BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
16691         return (-1);
16692     }
16693
16694     BLOGD(sc, DBG_LOAD, "after pxp init\n");
16695
16696     /*
16697      * Timer bug workaround for E2 only. We need to set the entire ILT to have
16698      * entries with value "0" and valid bit on. This needs to be done by the
16699      * first PF that is loaded in a path (i.e. common phase)
16700      */
16701     if (!CHIP_IS_E1x(sc)) {
16702 /*
16703  * In E2 there is a bug in the timers block that can cause function 6 / 7
16704  * (i.e. vnic3) to start even if it is marked as "scan-off".
16705  * This occurs when a different function (func2,3) is being marked
16706  * as "scan-off". Real-life scenario for example: if a driver is being
16707  * load-unloaded while func6,7 are down. This will cause the timer to access
16708  * the ilt, translate to a logical address and send a request to read/write.
16709  * Since the ilt for the function that is down is not valid, this will cause
16710  * a translation error which is unrecoverable.
16711  * The Workaround is intended to make sure that when this happens nothing
16712  * fatal will occur. The workaround:
16713  *  1.  First PF driver which loads on a path will:
16714  *      a.  After taking the chip out of reset, by using pretend,
16715  *          it will write "0" to the following registers of
16716  *          the other vnics.
16717  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16718  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
16719  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
16720  *          And for itself it will write '1' to
16721  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
16722  *          dmae-operations (writing to pram for example.)
16723  *          note: can be done for only function 6,7 but cleaner this
16724  *            way.
16725  *      b.  Write zero+valid to the entire ILT.
16726  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
16727  *          VNIC3 (of that port). The range allocated will be the
16728  *          entire ILT. This is needed to prevent  ILT range error.
16729  *  2.  Any PF driver load flow:
16730  *      a.  ILT update with the physical addresses of the allocated
16731  *          logical pages.
16732  *      b.  Wait 20msec. - note that this timeout is needed to make
16733  *          sure there are no requests in one of the PXP internal
16734  *          queues with "old" ILT addresses.
16735  *      c.  PF enable in the PGLC.
16736  *      d.  Clear the was_error of the PF in the PGLC. (could have
16737  *          occurred while driver was down)
16738  *      e.  PF enable in the CFC (WEAK + STRONG)
16739  *      f.  Timers scan enable
16740  *  3.  PF driver unload flow:
16741  *      a.  Clear the Timers scan_en.
16742  *      b.  Polling for scan_on=0 for that PF.
16743  *      c.  Clear the PF enable bit in the PXP.
16744  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
16745  *      e.  Write zero+valid to all ILT entries (The valid bit must
16746  *          stay set)
16747  *      f.  If this is VNIC 3 of a port then also init
16748  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
16749  *          to the last enrty in the ILT.
16750  *
16751  *      Notes:
16752  *      Currently the PF error in the PGLC is non recoverable.
16753  *      In the future the there will be a recovery routine for this error.
16754  *      Currently attention is masked.
16755  *      Having an MCP lock on the load/unload process does not guarantee that
16756  *      there is no Timer disable during Func6/7 enable. This is because the
16757  *      Timers scan is currently being cleared by the MCP on FLR.
16758  *      Step 2.d can be done only for PF6/7 and the driver can also check if
16759  *      there is error before clearing it. But the flow above is simpler and
16760  *      more general.
16761  *      All ILT entries are written by zero+valid and not just PF6/7
16762  *      ILT entries since in the future the ILT entries allocation for
16763  *      PF-s might be dynamic.
16764  */
16765         struct ilt_client_info ilt_cli;
16766         struct ecore_ilt ilt;
16767
16768         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
16769         memset(&ilt, 0, sizeof(struct ecore_ilt));
16770
16771         /* initialize dummy TM client */
16772         ilt_cli.start      = 0;
16773         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
16774         ilt_cli.client_num = ILT_CLIENT_TM;
16775
16776         /*
16777          * Step 1: set zeroes to all ilt page entries with valid bit on
16778          * Step 2: set the timers first/last ilt entry to point
16779          * to the entire range to prevent ILT range error for 3rd/4th
16780          * vnic (this code assumes existence of the vnic)
16781          *
16782          * both steps performed by call to ecore_ilt_client_init_op()
16783          * with dummy TM client
16784          *
16785          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
16786          * and his brother are split registers
16787          */
16788
16789         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
16790         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
16791         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16792
16793         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
16794         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
16795         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
16796     }
16797
16798     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
16799     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
16800
16801     if (!CHIP_IS_E1x(sc)) {
16802         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
16803                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
16804
16805         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
16806         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
16807
16808         /* let the HW do it's magic... */
16809         do {
16810             DELAY(200000);
16811             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
16812         } while (factor-- && (val != 1));
16813
16814         if (val != 1) {
16815             BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
16816             return (-1);
16817         }
16818     }
16819
16820     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
16821
16822     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
16823
16824     bxe_iov_init_dmae(sc);
16825
16826     /* clean the DMAE memory */
16827     sc->dmae_ready = 1;
16828     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
16829
16830     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
16831
16832     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
16833
16834     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
16835
16836     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
16837
16838     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
16839     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
16840     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
16841     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
16842
16843     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
16844
16845     /* QM queues pointers table */
16846     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
16847
16848     /* soft reset pulse */
16849     REG_WR(sc, QM_REG_SOFT_RESET, 1);
16850     REG_WR(sc, QM_REG_SOFT_RESET, 0);
16851
16852     if (CNIC_SUPPORT(sc))
16853         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
16854
16855     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
16856     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
16857     if (!CHIP_REV_IS_SLOW(sc)) {
16858         /* enable hw interrupt from doorbell Q */
16859         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16860     }
16861
16862     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16863
16864     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16865     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
16866
16867     if (!CHIP_IS_E1(sc)) {
16868         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
16869     }
16870
16871     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
16872         if (IS_MF_AFEX(sc)) {
16873             /*
16874              * configure that AFEX and VLAN headers must be
16875              * received in AFEX mode
16876              */
16877             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
16878             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
16879             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
16880             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
16881             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
16882         } else {
16883             /*
16884              * Bit-map indicating which L2 hdrs may appear
16885              * after the basic Ethernet header
16886              */
16887             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
16888                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
16889         }
16890     }
16891
16892     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
16893     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
16894     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
16895     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
16896
16897     if (!CHIP_IS_E1x(sc)) {
16898         /* reset VFC memories */
16899         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
16900                VFC_MEMORIES_RST_REG_CAM_RST |
16901                VFC_MEMORIES_RST_REG_RAM_RST);
16902         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
16903                VFC_MEMORIES_RST_REG_CAM_RST |
16904                VFC_MEMORIES_RST_REG_RAM_RST);
16905
16906         DELAY(20000);
16907     }
16908
16909     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
16910     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
16911     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
16912     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
16913
16914     /* sync semi rtc */
16915     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
16916            0x80000000);
16917     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
16918            0x80000000);
16919
16920     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
16921     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
16922     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
16923
16924     if (!CHIP_IS_E1x(sc)) {
16925         if (IS_MF_AFEX(sc)) {
16926             /*
16927              * configure that AFEX and VLAN headers must be
16928              * sent in AFEX mode
16929              */
16930             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
16931             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
16932             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
16933             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
16934             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
16935         } else {
16936             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
16937                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
16938         }
16939     }
16940
16941     REG_WR(sc, SRC_REG_SOFT_RST, 1);
16942
16943     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
16944
16945     if (CNIC_SUPPORT(sc)) {
16946         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
16947         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
16948         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
16949         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
16950         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
16951         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
16952         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
16953         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
16954         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
16955         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
16956     }
16957     REG_WR(sc, SRC_REG_SOFT_RST, 0);
16958
16959     if (sizeof(union cdu_context) != 1024) {
16960         /* we currently assume that a context is 1024 bytes */
16961         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
16962               (long)sizeof(union cdu_context));
16963     }
16964
16965     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
16966     val = (4 << 24) + (0 << 12) + 1024;
16967     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
16968
16969     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
16970
16971     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
16972     /* enable context validation interrupt from CFC */
16973     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16974
16975     /* set the thresholds to prevent CFC/CDU race */
16976     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
16977     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
16978
16979     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
16980         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
16981     }
16982
16983     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
16984     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
16985
16986     /* Reset PCIE errors for debug */
16987     REG_WR(sc, 0x2814, 0xffffffff);
16988     REG_WR(sc, 0x3820, 0xffffffff);
16989
16990     if (!CHIP_IS_E1x(sc)) {
16991         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
16992                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
16993                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
16994         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
16995                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
16996                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
16997                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
16998         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
16999                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17000                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17001                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17002     }
17003
17004     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17005
17006     if (!CHIP_IS_E1(sc)) {
17007         /* in E3 this done in per-port section */
17008         if (!CHIP_IS_E3(sc))
17009             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17010     }
17011
17012     if (CHIP_IS_E1H(sc)) {
17013         /* not applicable for E2 (and above ...) */
17014         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17015     }
17016
17017     if (CHIP_REV_IS_SLOW(sc)) {
17018         DELAY(200000);
17019     }
17020
17021     /* finish CFC init */
17022     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17023     if (val != 1) {
17024         BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17025         return (-1);
17026     }
17027     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17028     if (val != 1) {
17029         BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17030         return (-1);
17031     }
17032     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17033     if (val != 1) {
17034         BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17035         return (-1);
17036     }
17037     REG_WR(sc, CFC_REG_DEBUG0, 0);
17038
17039     if (CHIP_IS_E1(sc)) {
17040         /* read NIG statistic to see if this is our first up since powerup */
17041         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17042         val = *BXE_SP(sc, wb_data[0]);
17043
17044         /* do internal memory self test */
17045         if ((val == 0) && bxe_int_mem_test(sc)) {
17046             BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17047             return (-1);
17048         }
17049     }
17050
17051     bxe_setup_fan_failure_detection(sc);
17052
17053     /* clear PXP2 attentions */
17054     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17055
17056     bxe_enable_blocks_attention(sc);
17057
17058     if (!CHIP_REV_IS_SLOW(sc)) {
17059         ecore_enable_blocks_parity(sc);
17060     }
17061
17062     if (!BXE_NOMCP(sc)) {
17063         if (CHIP_IS_E1x(sc)) {
17064             bxe_common_init_phy(sc);
17065         }
17066     }
17067
17068     return (0);
17069 }
17070
17071 /**
17072  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17073  *
17074  * @sc:     driver handle
17075  */
17076 static int
17077 bxe_init_hw_common_chip(struct bxe_softc *sc)
17078 {
17079     int rc = bxe_init_hw_common(sc);
17080
17081     if (rc) {
17082         BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17083         return (rc);
17084     }
17085
17086     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17087     if (!BXE_NOMCP(sc)) {
17088         bxe_common_init_phy(sc);
17089     }
17090
17091     return (0);
17092 }
17093
17094 static int
17095 bxe_init_hw_port(struct bxe_softc *sc)
17096 {
17097     int port = SC_PORT(sc);
17098     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17099     uint32_t low, high;
17100     uint32_t val;
17101
17102     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17103
17104     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17105
17106     ecore_init_block(sc, BLOCK_MISC, init_phase);
17107     ecore_init_block(sc, BLOCK_PXP, init_phase);
17108     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17109
17110     /*
17111      * Timers bug workaround: disables the pf_master bit in pglue at
17112      * common phase, we need to enable it here before any dmae access are
17113      * attempted. Therefore we manually added the enable-master to the
17114      * port phase (it also happens in the function phase)
17115      */
17116     if (!CHIP_IS_E1x(sc)) {
17117         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17118     }
17119
17120     ecore_init_block(sc, BLOCK_ATC, init_phase);
17121     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17122     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17123     ecore_init_block(sc, BLOCK_QM, init_phase);
17124
17125     ecore_init_block(sc, BLOCK_TCM, init_phase);
17126     ecore_init_block(sc, BLOCK_UCM, init_phase);
17127     ecore_init_block(sc, BLOCK_CCM, init_phase);
17128     ecore_init_block(sc, BLOCK_XCM, init_phase);
17129
17130     /* QM cid (connection) count */
17131     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17132
17133     if (CNIC_SUPPORT(sc)) {
17134         ecore_init_block(sc, BLOCK_TM, init_phase);
17135         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17136         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17137     }
17138
17139     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17140
17141     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17142
17143     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17144         if (IS_MF(sc)) {
17145             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17146         } else if (sc->mtu > 4096) {
17147             if (BXE_ONE_PORT(sc)) {
17148                 low = 160;
17149             } else {
17150                 val = sc->mtu;
17151                 /* (24*1024 + val*4)/256 */
17152                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17153             }
17154         } else {
17155             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17156         }
17157         high = (low + 56); /* 14*1024/256 */
17158         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17159         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17160     }
17161
17162     if (CHIP_IS_MODE_4_PORT(sc)) {
17163         REG_WR(sc, SC_PORT(sc) ?
17164                BRB1_REG_MAC_GUARANTIED_1 :
17165                BRB1_REG_MAC_GUARANTIED_0, 40);
17166     }
17167
17168     ecore_init_block(sc, BLOCK_PRS, init_phase);
17169     if (CHIP_IS_E3B0(sc)) {
17170         if (IS_MF_AFEX(sc)) {
17171             /* configure headers for AFEX mode */
17172             REG_WR(sc, SC_PORT(sc) ?
17173                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17174                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17175             REG_WR(sc, SC_PORT(sc) ?
17176                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17177                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17178             REG_WR(sc, SC_PORT(sc) ?
17179                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17180                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17181         } else {
17182             /* Ovlan exists only if we are in multi-function +
17183              * switch-dependent mode, in switch-independent there
17184              * is no ovlan headers
17185              */
17186             REG_WR(sc, SC_PORT(sc) ?
17187                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17188                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17189                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17190         }
17191     }
17192
17193     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17194     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17195     ecore_init_block(sc, BLOCK_USDM, init_phase);
17196     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17197
17198     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17199     ecore_init_block(sc, BLOCK_USEM, init_phase);
17200     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17201     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17202
17203     ecore_init_block(sc, BLOCK_UPB, init_phase);
17204     ecore_init_block(sc, BLOCK_XPB, init_phase);
17205
17206     ecore_init_block(sc, BLOCK_PBF, init_phase);
17207
17208     if (CHIP_IS_E1x(sc)) {
17209         /* configure PBF to work without PAUSE mtu 9000 */
17210         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17211
17212         /* update threshold */
17213         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17214         /* update init credit */
17215         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17216
17217         /* probe changes */
17218         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17219         DELAY(50);
17220         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17221     }
17222
17223     if (CNIC_SUPPORT(sc)) {
17224         ecore_init_block(sc, BLOCK_SRC, init_phase);
17225     }
17226
17227     ecore_init_block(sc, BLOCK_CDU, init_phase);
17228     ecore_init_block(sc, BLOCK_CFC, init_phase);
17229
17230     if (CHIP_IS_E1(sc)) {
17231         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17232         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17233     }
17234     ecore_init_block(sc, BLOCK_HC, init_phase);
17235
17236     ecore_init_block(sc, BLOCK_IGU, init_phase);
17237
17238     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17239     /* init aeu_mask_attn_func_0/1:
17240      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17241      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17242      *             bits 4-7 are used for "per vn group attention" */
17243     val = IS_MF(sc) ? 0xF7 : 0x7;
17244     /* Enable DCBX attention for all but E1 */
17245     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17246     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17247
17248     ecore_init_block(sc, BLOCK_NIG, init_phase);
17249
17250     if (!CHIP_IS_E1x(sc)) {
17251         /* Bit-map indicating which L2 hdrs may appear after the
17252          * basic Ethernet header
17253          */
17254         if (IS_MF_AFEX(sc)) {
17255             REG_WR(sc, SC_PORT(sc) ?
17256                    NIG_REG_P1_HDRS_AFTER_BASIC :
17257                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17258         } else {
17259             REG_WR(sc, SC_PORT(sc) ?
17260                    NIG_REG_P1_HDRS_AFTER_BASIC :
17261                    NIG_REG_P0_HDRS_AFTER_BASIC,
17262                    IS_MF_SD(sc) ? 7 : 6);
17263         }
17264
17265         if (CHIP_IS_E3(sc)) {
17266             REG_WR(sc, SC_PORT(sc) ?
17267                    NIG_REG_LLH1_MF_MODE :
17268                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17269         }
17270     }
17271     if (!CHIP_IS_E3(sc)) {
17272         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17273     }
17274
17275     if (!CHIP_IS_E1(sc)) {
17276         /* 0x2 disable mf_ov, 0x1 enable */
17277         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17278                (IS_MF_SD(sc) ? 0x1 : 0x2));
17279
17280         if (!CHIP_IS_E1x(sc)) {
17281             val = 0;
17282             switch (sc->devinfo.mf_info.mf_mode) {
17283             case MULTI_FUNCTION_SD:
17284                 val = 1;
17285                 break;
17286             case MULTI_FUNCTION_SI:
17287             case MULTI_FUNCTION_AFEX:
17288                 val = 2;
17289                 break;
17290             }
17291
17292             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17293                         NIG_REG_LLH0_CLS_TYPE), val);
17294         }
17295         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17296         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17297         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17298     }
17299
17300     /* If SPIO5 is set to generate interrupts, enable it for this port */
17301     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17302     if (val & MISC_SPIO_SPIO5) {
17303         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17304                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17305         val = REG_RD(sc, reg_addr);
17306         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17307         REG_WR(sc, reg_addr, val);
17308     }
17309
17310     return (0);
17311 }
17312
17313 static uint32_t
17314 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17315                        uint32_t         reg,
17316                        uint32_t         expected,
17317                        uint32_t         poll_count)
17318 {
17319     uint32_t cur_cnt = poll_count;
17320     uint32_t val;
17321
17322     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17323         DELAY(FLR_WAIT_INTERVAL);
17324     }
17325
17326     return (val);
17327 }
17328
17329 static int
17330 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17331                               uint32_t         reg,
17332                               char             *msg,
17333                               uint32_t         poll_cnt)
17334 {
17335     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17336
17337     if (val != 0) {
17338         BLOGE(sc, "%s usage count=%d\n", msg, val);
17339         return (1);
17340     }
17341
17342     return (0);
17343 }
17344
17345 /* Common routines with VF FLR cleanup */
17346 static uint32_t
17347 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17348 {
17349     /* adjust polling timeout */
17350     if (CHIP_REV_IS_EMUL(sc)) {
17351         return (FLR_POLL_CNT * 2000);
17352     }
17353
17354     if (CHIP_REV_IS_FPGA(sc)) {
17355         return (FLR_POLL_CNT * 120);
17356     }
17357
17358     return (FLR_POLL_CNT);
17359 }
17360
17361 static int
17362 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17363                            uint32_t         poll_cnt)
17364 {
17365     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17366     if (bxe_flr_clnup_poll_hw_counter(sc,
17367                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17368                                       "CFC PF usage counter timed out",
17369                                       poll_cnt)) {
17370         return (1);
17371     }
17372
17373     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17374     if (bxe_flr_clnup_poll_hw_counter(sc,
17375                                       DORQ_REG_PF_USAGE_CNT,
17376                                       "DQ PF usage counter timed out",
17377                                       poll_cnt)) {
17378         return (1);
17379     }
17380
17381     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17382     if (bxe_flr_clnup_poll_hw_counter(sc,
17383                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17384                                       "QM PF usage counter timed out",
17385                                       poll_cnt)) {
17386         return (1);
17387     }
17388
17389     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17390     if (bxe_flr_clnup_poll_hw_counter(sc,
17391                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17392                                       "Timers VNIC usage counter timed out",
17393                                       poll_cnt)) {
17394         return (1);
17395     }
17396
17397     if (bxe_flr_clnup_poll_hw_counter(sc,
17398                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17399                                       "Timers NUM_SCANS usage counter timed out",
17400                                       poll_cnt)) {
17401         return (1);
17402     }
17403
17404     /* Wait DMAE PF usage counter to zero */
17405     if (bxe_flr_clnup_poll_hw_counter(sc,
17406                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17407                                       "DMAE dommand register timed out",
17408                                       poll_cnt)) {
17409         return (1);
17410     }
17411
17412     return (0);
17413 }
17414
17415 #define OP_GEN_PARAM(param)                                            \
17416     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17417 #define OP_GEN_TYPE(type)                                           \
17418     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17419 #define OP_GEN_AGG_VECT(index)                                             \
17420     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17421
17422 static int
17423 bxe_send_final_clnup(struct bxe_softc *sc,
17424                      uint8_t          clnup_func,
17425                      uint32_t         poll_cnt)
17426 {
17427     uint32_t op_gen_command = 0;
17428     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17429                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17430     int ret = 0;
17431
17432     if (REG_RD(sc, comp_addr)) {
17433         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17434         return (1);
17435     }
17436
17437     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17438     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17439     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17440     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17441
17442     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17443     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17444
17445     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17446         BLOGE(sc, "FW final cleanup did not succeed\n");
17447         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17448               (REG_RD(sc, comp_addr)));
17449         bxe_panic(sc, ("FLR cleanup failed\n"));
17450         return (1);
17451     }
17452
17453     /* Zero completion for nxt FLR */
17454     REG_WR(sc, comp_addr, 0);
17455
17456     return (ret);
17457 }
17458
17459 static void
17460 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
17461                        struct pbf_pN_buf_regs *regs,
17462                        uint32_t               poll_count)
17463 {
17464     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17465     uint32_t cur_cnt = poll_count;
17466
17467     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17468     crd = crd_start = REG_RD(sc, regs->crd);
17469     init_crd = REG_RD(sc, regs->init_crd);
17470
17471     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17472     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
17473     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17474
17475     while ((crd != init_crd) &&
17476            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17477             (init_crd - crd_start))) {
17478         if (cur_cnt--) {
17479             DELAY(FLR_WAIT_INTERVAL);
17480             crd = REG_RD(sc, regs->crd);
17481             crd_freed = REG_RD(sc, regs->crd_freed);
17482         } else {
17483             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17484             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
17485             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17486             break;
17487         }
17488     }
17489
17490     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17491           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17492 }
17493
17494 static void
17495 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
17496                        struct pbf_pN_cmd_regs *regs,
17497                        uint32_t               poll_count)
17498 {
17499     uint32_t occup, to_free, freed, freed_start;
17500     uint32_t cur_cnt = poll_count;
17501
17502     occup = to_free = REG_RD(sc, regs->lines_occup);
17503     freed = freed_start = REG_RD(sc, regs->lines_freed);
17504
17505     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17506     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17507
17508     while (occup &&
17509            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17510         if (cur_cnt--) {
17511             DELAY(FLR_WAIT_INTERVAL);
17512             occup = REG_RD(sc, regs->lines_occup);
17513             freed = REG_RD(sc, regs->lines_freed);
17514         } else {
17515             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17516             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17517             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17518             break;
17519         }
17520     }
17521
17522     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17523           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17524 }
17525
17526 static void
17527 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17528 {
17529     struct pbf_pN_cmd_regs cmd_regs[] = {
17530         {0, (CHIP_IS_E3B0(sc)) ?
17531             PBF_REG_TQ_OCCUPANCY_Q0 :
17532             PBF_REG_P0_TQ_OCCUPANCY,
17533             (CHIP_IS_E3B0(sc)) ?
17534             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17535             PBF_REG_P0_TQ_LINES_FREED_CNT},
17536         {1, (CHIP_IS_E3B0(sc)) ?
17537             PBF_REG_TQ_OCCUPANCY_Q1 :
17538             PBF_REG_P1_TQ_OCCUPANCY,
17539             (CHIP_IS_E3B0(sc)) ?
17540             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17541             PBF_REG_P1_TQ_LINES_FREED_CNT},
17542         {4, (CHIP_IS_E3B0(sc)) ?
17543             PBF_REG_TQ_OCCUPANCY_LB_Q :
17544             PBF_REG_P4_TQ_OCCUPANCY,
17545             (CHIP_IS_E3B0(sc)) ?
17546             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17547             PBF_REG_P4_TQ_LINES_FREED_CNT}
17548     };
17549
17550     struct pbf_pN_buf_regs buf_regs[] = {
17551         {0, (CHIP_IS_E3B0(sc)) ?
17552             PBF_REG_INIT_CRD_Q0 :
17553             PBF_REG_P0_INIT_CRD ,
17554             (CHIP_IS_E3B0(sc)) ?
17555             PBF_REG_CREDIT_Q0 :
17556             PBF_REG_P0_CREDIT,
17557             (CHIP_IS_E3B0(sc)) ?
17558             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17559             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17560         {1, (CHIP_IS_E3B0(sc)) ?
17561             PBF_REG_INIT_CRD_Q1 :
17562             PBF_REG_P1_INIT_CRD,
17563             (CHIP_IS_E3B0(sc)) ?
17564             PBF_REG_CREDIT_Q1 :
17565             PBF_REG_P1_CREDIT,
17566             (CHIP_IS_E3B0(sc)) ?
17567             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17568             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17569         {4, (CHIP_IS_E3B0(sc)) ?
17570             PBF_REG_INIT_CRD_LB_Q :
17571             PBF_REG_P4_INIT_CRD,
17572             (CHIP_IS_E3B0(sc)) ?
17573             PBF_REG_CREDIT_LB_Q :
17574             PBF_REG_P4_CREDIT,
17575             (CHIP_IS_E3B0(sc)) ?
17576             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17577             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17578     };
17579
17580     int i;
17581
17582     /* Verify the command queues are flushed P0, P1, P4 */
17583     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
17584         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
17585     }
17586
17587     /* Verify the transmission buffers are flushed P0, P1, P4 */
17588     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
17589         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
17590     }
17591 }
17592
17593 static void
17594 bxe_hw_enable_status(struct bxe_softc *sc)
17595 {
17596     uint32_t val;
17597
17598     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
17599     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
17600
17601     val = REG_RD(sc, PBF_REG_DISABLE_PF);
17602     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
17603
17604     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
17605     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
17606
17607     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
17608     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
17609
17610     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
17611     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
17612
17613     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
17614     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
17615
17616     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
17617     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
17618
17619     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
17620     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
17621 }
17622
17623 static int
17624 bxe_pf_flr_clnup(struct bxe_softc *sc)
17625 {
17626     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
17627
17628     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
17629
17630     /* Re-enable PF target read access */
17631     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
17632
17633     /* Poll HW usage counters */
17634     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
17635     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
17636         return (-1);
17637     }
17638
17639     /* Zero the igu 'trailing edge' and 'leading edge' */
17640
17641     /* Send the FW cleanup command */
17642     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
17643         return (-1);
17644     }
17645
17646     /* ATC cleanup */
17647
17648     /* Verify TX hw is flushed */
17649     bxe_tx_hw_flushed(sc, poll_cnt);
17650
17651     /* Wait 100ms (not adjusted according to platform) */
17652     DELAY(100000);
17653
17654     /* Verify no pending pci transactions */
17655     if (bxe_is_pcie_pending(sc)) {
17656         BLOGE(sc, "PCIE Transactions still pending\n");
17657     }
17658
17659     /* Debug */
17660     bxe_hw_enable_status(sc);
17661
17662     /*
17663      * Master enable - Due to WB DMAE writes performed before this
17664      * register is re-initialized as part of the regular function init
17665      */
17666     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17667
17668     return (0);
17669 }
17670
17671 static int
17672 bxe_init_hw_func(struct bxe_softc *sc)
17673 {
17674     int port = SC_PORT(sc);
17675     int func = SC_FUNC(sc);
17676     int init_phase = PHASE_PF0 + func;
17677     struct ecore_ilt *ilt = sc->ilt;
17678     uint16_t cdu_ilt_start;
17679     uint32_t addr, val;
17680     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
17681     int i, main_mem_width, rc;
17682
17683     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
17684
17685     /* FLR cleanup */
17686     if (!CHIP_IS_E1x(sc)) {
17687         rc = bxe_pf_flr_clnup(sc);
17688         if (rc) {
17689             BLOGE(sc, "FLR cleanup failed!\n");
17690             // XXX bxe_fw_dump(sc);
17691             // XXX bxe_idle_chk(sc);
17692             return (rc);
17693         }
17694     }
17695
17696     /* set MSI reconfigure capability */
17697     if (sc->devinfo.int_block == INT_BLOCK_HC) {
17698         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
17699         val = REG_RD(sc, addr);
17700         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
17701         REG_WR(sc, addr, val);
17702     }
17703
17704     ecore_init_block(sc, BLOCK_PXP, init_phase);
17705     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17706
17707     ilt = sc->ilt;
17708     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
17709
17710     for (i = 0; i < L2_ILT_LINES(sc); i++) {
17711         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
17712         ilt->lines[cdu_ilt_start + i].page_mapping =
17713             sc->context[i].vcxt_dma.paddr;
17714         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
17715     }
17716     ecore_ilt_init_op(sc, INITOP_SET);
17717
17718     /* Set NIC mode */
17719     REG_WR(sc, PRS_REG_NIC_MODE, 1);
17720     BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
17721
17722     if (!CHIP_IS_E1x(sc)) {
17723         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
17724
17725         /* Turn on a single ISR mode in IGU if driver is going to use
17726          * INT#x or MSI
17727          */
17728         if (sc->interrupt_mode != INTR_MODE_MSIX) {
17729             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
17730         }
17731
17732         /*
17733          * Timers workaround bug: function init part.
17734          * Need to wait 20msec after initializing ILT,
17735          * needed to make sure there are no requests in
17736          * one of the PXP internal queues with "old" ILT addresses
17737          */
17738         DELAY(20000);
17739
17740         /*
17741          * Master enable - Due to WB DMAE writes performed before this
17742          * register is re-initialized as part of the regular function
17743          * init
17744          */
17745         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17746         /* Enable the function in IGU */
17747         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
17748     }
17749
17750     sc->dmae_ready = 1;
17751
17752     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17753
17754     if (!CHIP_IS_E1x(sc))
17755         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
17756
17757     ecore_init_block(sc, BLOCK_ATC, init_phase);
17758     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17759     ecore_init_block(sc, BLOCK_NIG, init_phase);
17760     ecore_init_block(sc, BLOCK_SRC, init_phase);
17761     ecore_init_block(sc, BLOCK_MISC, init_phase);
17762     ecore_init_block(sc, BLOCK_TCM, init_phase);
17763     ecore_init_block(sc, BLOCK_UCM, init_phase);
17764     ecore_init_block(sc, BLOCK_CCM, init_phase);
17765     ecore_init_block(sc, BLOCK_XCM, init_phase);
17766     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17767     ecore_init_block(sc, BLOCK_USEM, init_phase);
17768     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17769     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17770
17771     if (!CHIP_IS_E1x(sc))
17772         REG_WR(sc, QM_REG_PF_EN, 1);
17773
17774     if (!CHIP_IS_E1x(sc)) {
17775         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17776         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17777         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17778         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17779     }
17780     ecore_init_block(sc, BLOCK_QM, init_phase);
17781
17782     ecore_init_block(sc, BLOCK_TM, init_phase);
17783     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17784
17785     bxe_iov_init_dq(sc);
17786
17787     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17788     ecore_init_block(sc, BLOCK_PRS, init_phase);
17789     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17790     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17791     ecore_init_block(sc, BLOCK_USDM, init_phase);
17792     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17793     ecore_init_block(sc, BLOCK_UPB, init_phase);
17794     ecore_init_block(sc, BLOCK_XPB, init_phase);
17795     ecore_init_block(sc, BLOCK_PBF, init_phase);
17796     if (!CHIP_IS_E1x(sc))
17797         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
17798
17799     ecore_init_block(sc, BLOCK_CDU, init_phase);
17800
17801     ecore_init_block(sc, BLOCK_CFC, init_phase);
17802
17803     if (!CHIP_IS_E1x(sc))
17804         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
17805
17806     if (IS_MF(sc)) {
17807         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
17808         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
17809     }
17810
17811     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17812
17813     /* HC init per function */
17814     if (sc->devinfo.int_block == INT_BLOCK_HC) {
17815         if (CHIP_IS_E1H(sc)) {
17816             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17817
17818             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17819             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17820         }
17821         ecore_init_block(sc, BLOCK_HC, init_phase);
17822
17823     } else {
17824         int num_segs, sb_idx, prod_offset;
17825
17826         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17827
17828         if (!CHIP_IS_E1x(sc)) {
17829             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
17830             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
17831         }
17832
17833         ecore_init_block(sc, BLOCK_IGU, init_phase);
17834
17835         if (!CHIP_IS_E1x(sc)) {
17836             int dsb_idx = 0;
17837             /**
17838              * Producer memory:
17839              * E2 mode: address 0-135 match to the mapping memory;
17840              * 136 - PF0 default prod; 137 - PF1 default prod;
17841              * 138 - PF2 default prod; 139 - PF3 default prod;
17842              * 140 - PF0 attn prod;    141 - PF1 attn prod;
17843              * 142 - PF2 attn prod;    143 - PF3 attn prod;
17844              * 144-147 reserved.
17845              *
17846              * E1.5 mode - In backward compatible mode;
17847              * for non default SB; each even line in the memory
17848              * holds the U producer and each odd line hold
17849              * the C producer. The first 128 producers are for
17850              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
17851              * producers are for the DSB for each PF.
17852              * Each PF has five segments: (the order inside each
17853              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
17854              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
17855              * 144-147 attn prods;
17856              */
17857             /* non-default-status-blocks */
17858             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17859                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
17860             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
17861                 prod_offset = (sc->igu_base_sb + sb_idx) *
17862                     num_segs;
17863
17864                 for (i = 0; i < num_segs; i++) {
17865                     addr = IGU_REG_PROD_CONS_MEMORY +
17866                             (prod_offset + i) * 4;
17867                     REG_WR(sc, addr, 0);
17868                 }
17869                 /* send consumer update with value 0 */
17870                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
17871                            USTORM_ID, 0, IGU_INT_NOP, 1);
17872                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
17873             }
17874
17875             /* default-status-blocks */
17876             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
17877                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
17878
17879             if (CHIP_IS_MODE_4_PORT(sc))
17880                 dsb_idx = SC_FUNC(sc);
17881             else
17882                 dsb_idx = SC_VN(sc);
17883
17884             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
17885                        IGU_BC_BASE_DSB_PROD + dsb_idx :
17886                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
17887
17888             /*
17889              * igu prods come in chunks of E1HVN_MAX (4) -
17890              * does not matters what is the current chip mode
17891              */
17892             for (i = 0; i < (num_segs * E1HVN_MAX);
17893                  i += E1HVN_MAX) {
17894                 addr = IGU_REG_PROD_CONS_MEMORY +
17895                             (prod_offset + i)*4;
17896                 REG_WR(sc, addr, 0);
17897             }
17898             /* send consumer update with 0 */
17899             if (CHIP_INT_MODE_IS_BC(sc)) {
17900                 bxe_ack_sb(sc, sc->igu_dsb_id,
17901                            USTORM_ID, 0, IGU_INT_NOP, 1);
17902                 bxe_ack_sb(sc, sc->igu_dsb_id,
17903                            CSTORM_ID, 0, IGU_INT_NOP, 1);
17904                 bxe_ack_sb(sc, sc->igu_dsb_id,
17905                            XSTORM_ID, 0, IGU_INT_NOP, 1);
17906                 bxe_ack_sb(sc, sc->igu_dsb_id,
17907                            TSTORM_ID, 0, IGU_INT_NOP, 1);
17908                 bxe_ack_sb(sc, sc->igu_dsb_id,
17909                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
17910             } else {
17911                 bxe_ack_sb(sc, sc->igu_dsb_id,
17912                            USTORM_ID, 0, IGU_INT_NOP, 1);
17913                 bxe_ack_sb(sc, sc->igu_dsb_id,
17914                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
17915             }
17916             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
17917
17918             /* !!! these should become driver const once
17919                rf-tool supports split-68 const */
17920             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
17921             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
17922             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
17923             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
17924             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
17925             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
17926         }
17927     }
17928
17929     /* Reset PCIE errors for debug */
17930     REG_WR(sc, 0x2114, 0xffffffff);
17931     REG_WR(sc, 0x2120, 0xffffffff);
17932
17933     if (CHIP_IS_E1x(sc)) {
17934         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
17935         main_mem_base = HC_REG_MAIN_MEMORY +
17936                 SC_PORT(sc) * (main_mem_size * 4);
17937         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
17938         main_mem_width = 8;
17939
17940         val = REG_RD(sc, main_mem_prty_clr);
17941         if (val) {
17942             BLOGD(sc, DBG_LOAD,
17943                   "Parity errors in HC block during function init (0x%x)!\n",
17944                   val);
17945         }
17946
17947         /* Clear "false" parity errors in MSI-X table */
17948         for (i = main_mem_base;
17949              i < main_mem_base + main_mem_size * 4;
17950              i += main_mem_width) {
17951             bxe_read_dmae(sc, i, main_mem_width / 4);
17952             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
17953                            i, main_mem_width / 4);
17954         }
17955         /* Clear HC parity attention */
17956         REG_RD(sc, main_mem_prty_clr);
17957     }
17958
17959 #if 1
17960     /* Enable STORMs SP logging */
17961     REG_WR8(sc, BAR_USTRORM_INTMEM +
17962            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17963     REG_WR8(sc, BAR_TSTRORM_INTMEM +
17964            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17965     REG_WR8(sc, BAR_CSTRORM_INTMEM +
17966            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17967     REG_WR8(sc, BAR_XSTRORM_INTMEM +
17968            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
17969 #endif
17970
17971     elink_phy_probe(&sc->link_params);
17972
17973     return (0);
17974 }
17975
17976 static void
17977 bxe_link_reset(struct bxe_softc *sc)
17978 {
17979     if (!BXE_NOMCP(sc)) {
17980         bxe_acquire_phy_lock(sc);
17981         elink_lfa_reset(&sc->link_params, &sc->link_vars);
17982         bxe_release_phy_lock(sc);
17983     } else {
17984         if (!CHIP_REV_IS_SLOW(sc)) {
17985             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
17986         }
17987     }
17988 }
17989
17990 static void
17991 bxe_reset_port(struct bxe_softc *sc)
17992 {
17993     int port = SC_PORT(sc);
17994     uint32_t val;
17995
17996     /* reset physical Link */
17997     bxe_link_reset(sc);
17998
17999     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18000
18001     /* Do not rcv packets to BRB */
18002     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18003     /* Do not direct rcv packets that are not for MCP to the BRB */
18004     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18005                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18006
18007     /* Configure AEU */
18008     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18009
18010     DELAY(100000);
18011
18012     /* Check for BRB port occupancy */
18013     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18014     if (val) {
18015         BLOGD(sc, DBG_LOAD,
18016               "BRB1 is not empty, %d blocks are occupied\n", val);
18017     }
18018
18019     /* TODO: Close Doorbell port? */
18020 }
18021
18022 static void
18023 bxe_ilt_wr(struct bxe_softc *sc,
18024            uint32_t         index,
18025            bus_addr_t       addr)
18026 {
18027     int reg;
18028     uint32_t wb_write[2];
18029
18030     if (CHIP_IS_E1(sc)) {
18031         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18032     } else {
18033         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18034     }
18035
18036     wb_write[0] = ONCHIP_ADDR1(addr);
18037     wb_write[1] = ONCHIP_ADDR2(addr);
18038     REG_WR_DMAE(sc, reg, wb_write, 2);
18039 }
18040
18041 static void
18042 bxe_clear_func_ilt(struct bxe_softc *sc,
18043                    uint32_t         func)
18044 {
18045     uint32_t i, base = FUNC_ILT_BASE(func);
18046     for (i = base; i < base + ILT_PER_FUNC; i++) {
18047         bxe_ilt_wr(sc, i, 0);
18048     }
18049 }
18050
18051 static void
18052 bxe_reset_func(struct bxe_softc *sc)
18053 {
18054     struct bxe_fastpath *fp;
18055     int port = SC_PORT(sc);
18056     int func = SC_FUNC(sc);
18057     int i;
18058
18059     /* Disable the function in the FW */
18060     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18061     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18062     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18063     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18064
18065     /* FP SBs */
18066     FOR_EACH_ETH_QUEUE(sc, i) {
18067         fp = &sc->fp[i];
18068         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18069                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18070                 SB_DISABLED);
18071     }
18072
18073     /* SP SB */
18074     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18075             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18076             SB_DISABLED);
18077
18078     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18079         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18080     }
18081
18082     /* Configure IGU */
18083     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18084         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18085         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18086     } else {
18087         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18088         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18089     }
18090
18091     if (CNIC_LOADED(sc)) {
18092         /* Disable Timer scan */
18093         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18094         /*
18095          * Wait for at least 10ms and up to 2 second for the timers
18096          * scan to complete
18097          */
18098         for (i = 0; i < 200; i++) {
18099             DELAY(10000);
18100             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18101                 break;
18102         }
18103     }
18104
18105     /* Clear ILT */
18106     bxe_clear_func_ilt(sc, func);
18107
18108     /*
18109      * Timers workaround bug for E2: if this is vnic-3,
18110      * we need to set the entire ilt range for this timers.
18111      */
18112     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18113         struct ilt_client_info ilt_cli;
18114         /* use dummy TM client */
18115         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18116         ilt_cli.start = 0;
18117         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18118         ilt_cli.client_num = ILT_CLIENT_TM;
18119
18120         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18121     }
18122
18123     /* this assumes that reset_port() called before reset_func()*/
18124     if (!CHIP_IS_E1x(sc)) {
18125         bxe_pf_disable(sc);
18126     }
18127
18128     sc->dmae_ready = 0;
18129 }
18130
18131 static int
18132 bxe_gunzip_init(struct bxe_softc *sc)
18133 {
18134     return (0);
18135 }
18136
18137 static void
18138 bxe_gunzip_end(struct bxe_softc *sc)
18139 {
18140     return;
18141 }
18142
18143 static int
18144 bxe_init_firmware(struct bxe_softc *sc)
18145 {
18146     if (CHIP_IS_E1(sc)) {
18147         ecore_init_e1_firmware(sc);
18148         sc->iro_array = e1_iro_arr;
18149     } else if (CHIP_IS_E1H(sc)) {
18150         ecore_init_e1h_firmware(sc);
18151         sc->iro_array = e1h_iro_arr;
18152     } else if (!CHIP_IS_E1x(sc)) {
18153         ecore_init_e2_firmware(sc);
18154         sc->iro_array = e2_iro_arr;
18155     } else {
18156         BLOGE(sc, "Unsupported chip revision\n");
18157         return (-1);
18158     }
18159
18160     return (0);
18161 }
18162
18163 static void
18164 bxe_release_firmware(struct bxe_softc *sc)
18165 {
18166     /* Do nothing */
18167     return;
18168 }
18169
18170 static int
18171 ecore_gunzip(struct bxe_softc *sc,
18172              const uint8_t    *zbuf,
18173              int              len)
18174 {
18175     /* XXX : Implement... */
18176     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18177     return (FALSE);
18178 }
18179
18180 static void
18181 ecore_reg_wr_ind(struct bxe_softc *sc,
18182                  uint32_t         addr,
18183                  uint32_t         val)
18184 {
18185     bxe_reg_wr_ind(sc, addr, val);
18186 }
18187
18188 static void
18189 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18190                           bus_addr_t       phys_addr,
18191                           uint32_t         addr,
18192                           uint32_t         len)
18193 {
18194     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18195 }
18196
18197 void
18198 ecore_storm_memset_struct(struct bxe_softc *sc,
18199                           uint32_t         addr,
18200                           size_t           size,
18201                           uint32_t         *data)
18202 {
18203     uint8_t i;
18204     for (i = 0; i < size/4; i++) {
18205         REG_WR(sc, addr + (i * 4), data[i]);
18206     }
18207 }
18208
18209
18210 /*
18211  * character device - ioctl interface definitions
18212  */
18213
18214
18215 #include "bxe_dump.h"
18216 #include "bxe_ioctl.h"
18217 #include <sys/conf.h>
18218
18219 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18220                 struct thread *td);
18221
18222 static struct cdevsw bxe_cdevsw = {
18223     .d_version = D_VERSION,
18224     .d_ioctl = bxe_eioctl,
18225     .d_name = "bxecnic",
18226 };
18227
18228 #define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18229
18230
18231 #define DUMP_ALL_PRESETS        0x1FFF
18232 #define DUMP_MAX_PRESETS        13
18233 #define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18234 #define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18235 #define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18236 #define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18237 #define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18238
18239 #define IS_REG_IN_PRESET(presets, idx)  \
18240                 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18241
18242
18243 static int
18244 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18245 {
18246     if (CHIP_IS_E1(sc))
18247         return dump_num_registers[0][preset-1];
18248     else if (CHIP_IS_E1H(sc))
18249         return dump_num_registers[1][preset-1];
18250     else if (CHIP_IS_E2(sc))
18251         return dump_num_registers[2][preset-1];
18252     else if (CHIP_IS_E3A0(sc))
18253         return dump_num_registers[3][preset-1];
18254     else if (CHIP_IS_E3B0(sc))
18255         return dump_num_registers[4][preset-1];
18256     else
18257         return 0;
18258 }
18259
18260 static int
18261 bxe_get_total_regs_len32(struct bxe_softc *sc)
18262 {
18263     uint32_t preset_idx;
18264     int regdump_len32 = 0;
18265
18266
18267     /* Calculate the total preset regs length */
18268     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18269         regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18270     }
18271
18272     return regdump_len32;
18273 }
18274
18275 static const uint32_t *
18276 __bxe_get_page_addr_ar(struct bxe_softc *sc)
18277 {
18278     if (CHIP_IS_E2(sc))
18279         return page_vals_e2;
18280     else if (CHIP_IS_E3(sc))
18281         return page_vals_e3;
18282     else
18283         return NULL;
18284 }
18285
18286 static uint32_t
18287 __bxe_get_page_reg_num(struct bxe_softc *sc)
18288 {
18289     if (CHIP_IS_E2(sc))
18290         return PAGE_MODE_VALUES_E2;
18291     else if (CHIP_IS_E3(sc))
18292         return PAGE_MODE_VALUES_E3;
18293     else
18294         return 0;
18295 }
18296
18297 static const uint32_t *
18298 __bxe_get_page_write_ar(struct bxe_softc *sc)
18299 {
18300     if (CHIP_IS_E2(sc))
18301         return page_write_regs_e2;
18302     else if (CHIP_IS_E3(sc))
18303         return page_write_regs_e3;
18304     else
18305         return NULL;
18306 }
18307
18308 static uint32_t
18309 __bxe_get_page_write_num(struct bxe_softc *sc)
18310 {
18311     if (CHIP_IS_E2(sc))
18312         return PAGE_WRITE_REGS_E2;
18313     else if (CHIP_IS_E3(sc))
18314         return PAGE_WRITE_REGS_E3;
18315     else
18316         return 0;
18317 }
18318
18319 static const struct reg_addr *
18320 __bxe_get_page_read_ar(struct bxe_softc *sc)
18321 {
18322     if (CHIP_IS_E2(sc))
18323         return page_read_regs_e2;
18324     else if (CHIP_IS_E3(sc))
18325         return page_read_regs_e3;
18326     else
18327         return NULL;
18328 }
18329
18330 static uint32_t
18331 __bxe_get_page_read_num(struct bxe_softc *sc)
18332 {
18333     if (CHIP_IS_E2(sc))
18334         return PAGE_READ_REGS_E2;
18335     else if (CHIP_IS_E3(sc))
18336         return PAGE_READ_REGS_E3;
18337     else
18338         return 0;
18339 }
18340
18341 static bool
18342 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18343 {
18344     if (CHIP_IS_E1(sc))
18345         return IS_E1_REG(reg_info->chips);
18346     else if (CHIP_IS_E1H(sc))
18347         return IS_E1H_REG(reg_info->chips);
18348     else if (CHIP_IS_E2(sc))
18349         return IS_E2_REG(reg_info->chips);
18350     else if (CHIP_IS_E3A0(sc))
18351         return IS_E3A0_REG(reg_info->chips);
18352     else if (CHIP_IS_E3B0(sc))
18353         return IS_E3B0_REG(reg_info->chips);
18354     else
18355         return 0;
18356 }
18357
18358 static bool
18359 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18360 {
18361     if (CHIP_IS_E1(sc))
18362         return IS_E1_REG(wreg_info->chips);
18363     else if (CHIP_IS_E1H(sc))
18364         return IS_E1H_REG(wreg_info->chips);
18365     else if (CHIP_IS_E2(sc))
18366         return IS_E2_REG(wreg_info->chips);
18367     else if (CHIP_IS_E3A0(sc))
18368         return IS_E3A0_REG(wreg_info->chips);
18369     else if (CHIP_IS_E3B0(sc))
18370         return IS_E3B0_REG(wreg_info->chips);
18371     else
18372         return 0;
18373 }
18374
18375 /**
18376  * bxe_read_pages_regs - read "paged" registers
18377  *
18378  * @bp          device handle
18379  * @p           output buffer
18380  *
18381  * Reads "paged" memories: memories that may only be read by first writing to a
18382  * specific address ("write address") and then reading from a specific address
18383  * ("read address"). There may be more than one write address per "page" and
18384  * more than one read address per write address.
18385  */
18386 static void
18387 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18388 {
18389     uint32_t i, j, k, n;
18390
18391     /* addresses of the paged registers */
18392     const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18393     /* number of paged registers */
18394     int num_pages = __bxe_get_page_reg_num(sc);
18395     /* write addresses */
18396     const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18397     /* number of write addresses */
18398     int write_num = __bxe_get_page_write_num(sc);
18399     /* read addresses info */
18400     const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18401     /* number of read addresses */
18402     int read_num = __bxe_get_page_read_num(sc);
18403     uint32_t addr, size;
18404
18405     for (i = 0; i < num_pages; i++) {
18406         for (j = 0; j < write_num; j++) {
18407             REG_WR(sc, write_addr[j], page_addr[i]);
18408
18409             for (k = 0; k < read_num; k++) {
18410                 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18411                     size = read_addr[k].size;
18412                     for (n = 0; n < size; n++) {
18413                         addr = read_addr[k].addr + n*4;
18414                         *p++ = REG_RD(sc, addr);
18415                     }
18416                 }
18417             }
18418         }
18419     }
18420     return;
18421 }
18422
18423
18424 static int
18425 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18426 {
18427     uint32_t i, j, addr;
18428     const struct wreg_addr *wreg_addr_p = NULL;
18429
18430     if (CHIP_IS_E1(sc))
18431         wreg_addr_p = &wreg_addr_e1;
18432     else if (CHIP_IS_E1H(sc))
18433         wreg_addr_p = &wreg_addr_e1h;
18434     else if (CHIP_IS_E2(sc))
18435         wreg_addr_p = &wreg_addr_e2;
18436     else if (CHIP_IS_E3A0(sc))
18437         wreg_addr_p = &wreg_addr_e3;
18438     else if (CHIP_IS_E3B0(sc))
18439         wreg_addr_p = &wreg_addr_e3b0;
18440     else
18441         return (-1);
18442
18443     /* Read the idle_chk registers */
18444     for (i = 0; i < IDLE_REGS_COUNT; i++) {
18445         if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18446             IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18447             for (j = 0; j < idle_reg_addrs[i].size; j++)
18448                 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18449         }
18450     }
18451
18452     /* Read the regular registers */
18453     for (i = 0; i < REGS_COUNT; i++) {
18454         if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18455             IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18456             for (j = 0; j < reg_addrs[i].size; j++)
18457                 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18458         }
18459     }
18460
18461     /* Read the CAM registers */
18462     if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18463         IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18464         for (i = 0; i < wreg_addr_p->size; i++) {
18465             *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18466
18467             /* In case of wreg_addr register, read additional
18468                registers from read_regs array
18469              */
18470             for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18471                 addr = *(wreg_addr_p->read_regs);
18472                 *p++ = REG_RD(sc, addr + j*4);
18473             }
18474         }
18475     }
18476
18477     /* Paged registers are supported in E2 & E3 only */
18478     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18479         /* Read "paged" registers */
18480         bxe_read_pages_regs(sc, p, preset);
18481     }
18482
18483     return 0;
18484 }
18485
18486 int
18487 bxe_grc_dump(struct bxe_softc *sc)
18488 {
18489     int rval = 0;
18490     uint32_t preset_idx;
18491     uint8_t *buf;
18492     uint32_t size;
18493     struct  dump_header *d_hdr;
18494     uint32_t i;
18495     uint32_t reg_val;
18496     uint32_t reg_addr;
18497     uint32_t cmd_offset;
18498     int context_size;
18499     int allocated;
18500     struct ecore_ilt *ilt = SC_ILT(sc);
18501     struct bxe_fastpath *fp;
18502     struct ilt_client_info *ilt_cli;
18503     int grc_dump_size;
18504
18505
18506     if (sc->grcdump_done || sc->grcdump_started)
18507         return (rval);
18508     
18509     sc->grcdump_started = 1;
18510     BLOGI(sc, "Started collecting grcdump\n");
18511
18512     grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18513                 sizeof(struct  dump_header);
18514
18515     sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18516
18517     if (sc->grc_dump == NULL) {
18518         BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18519         return(ENOMEM);
18520     }
18521
18522
18523
18524     /* Disable parity attentions as long as following dump may
18525      * cause false alarms by reading never written registers. We
18526      * will re-enable parity attentions right after the dump.
18527      */
18528
18529     /* Disable parity on path 0 */
18530     bxe_pretend_func(sc, 0);
18531
18532     ecore_disable_blocks_parity(sc);
18533
18534     /* Disable parity on path 1 */
18535     bxe_pretend_func(sc, 1);
18536     ecore_disable_blocks_parity(sc);
18537
18538     /* Return to current function */
18539     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18540
18541     buf = sc->grc_dump;
18542     d_hdr = sc->grc_dump;
18543
18544     d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
18545     d_hdr->version = BNX2X_DUMP_VERSION;
18546     d_hdr->preset = DUMP_ALL_PRESETS;
18547
18548     if (CHIP_IS_E1(sc)) {
18549         d_hdr->dump_meta_data = DUMP_CHIP_E1;
18550     } else if (CHIP_IS_E1H(sc)) {
18551         d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18552     } else if (CHIP_IS_E2(sc)) {
18553         d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18554                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18555     } else if (CHIP_IS_E3A0(sc)) {
18556         d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18557                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18558     } else if (CHIP_IS_E3B0(sc)) {
18559         d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18560                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18561     }
18562
18563     buf += sizeof(struct  dump_header);
18564
18565     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18566
18567         /* Skip presets with IOR */
18568         if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18569             (preset_idx == 11))
18570             continue;
18571
18572         rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18573
18574         if (rval)
18575             break;
18576
18577         size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18578
18579         buf += size;
18580     }
18581
18582     bxe_pretend_func(sc, 0);
18583     ecore_clear_blocks_parity(sc);
18584     ecore_enable_blocks_parity(sc);
18585
18586     bxe_pretend_func(sc, 1);
18587     ecore_clear_blocks_parity(sc);
18588     ecore_enable_blocks_parity(sc);
18589
18590     /* Return to current function */
18591     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18592
18593
18594     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
18595     for (i = 0, allocated = 0; allocated < context_size; i++) {
18596
18597         BLOGI(sc, "cdu_context i %d paddr %#jx vaddr %p size 0x%zx\n", i,
18598             (uintmax_t)sc->context[i].vcxt_dma.paddr,
18599             sc->context[i].vcxt_dma.vaddr,
18600             sc->context[i].size);
18601         allocated += sc->context[i].size;
18602     }
18603     BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
18604         (uintmax_t)sc->fw_stats_req_mapping,
18605         (uintmax_t)sc->fw_stats_data_mapping,
18606         sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
18607     BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
18608         (void *)sc->def_sb_dma.paddr, sc->def_sb,
18609         sizeof(struct host_sp_status_block));
18610     BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
18611         (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
18612     BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
18613         (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
18614         sizeof(struct bxe_slowpath));
18615     BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
18616         (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
18617     BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
18618         (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
18619         FW_BUF_SIZE);
18620     for (i = 0; i < sc->num_queues; i++) {
18621         fp = &sc->fp[i];
18622         BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18623             (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
18624             sizeof(union bxe_host_hc_status_block));
18625         BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18626             (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
18627             (BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
18628         BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18629             (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
18630             (BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
18631         BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18632             (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
18633             (BCM_PAGE_SIZE * RCQ_NUM_PAGES));
18634         BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18635             (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
18636             (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
18637     }
18638
18639     ilt_cli = &ilt->clients[1];
18640     for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
18641         BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
18642             (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
18643             ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
18644     }
18645
18646
18647     cmd_offset = DMAE_REG_CMD_MEM;
18648     for (i = 0; i < 224; i++) {
18649         reg_addr = (cmd_offset +(i * 4));
18650         reg_val = REG_RD(sc, reg_addr);
18651         BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
18652             reg_addr, reg_val);
18653     }
18654
18655
18656     BLOGI(sc, "Collection of grcdump done\n");
18657     sc->grcdump_done = 1;
18658     return(rval);
18659 }
18660
18661 static int
18662 bxe_add_cdev(struct bxe_softc *sc)
18663 {
18664     sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
18665
18666     if (sc->eeprom == NULL) {
18667         BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
18668         return (-1);
18669     }
18670
18671     sc->ioctl_dev = make_dev(&bxe_cdevsw,
18672                             sc->ifp->if_dunit,
18673                             UID_ROOT,
18674                             GID_WHEEL,
18675                             0600,
18676                             "%s",
18677                             if_name(sc->ifp));
18678
18679     if (sc->ioctl_dev == NULL) {
18680         free(sc->eeprom, M_DEVBUF);
18681         sc->eeprom = NULL;
18682         return (-1);
18683     }
18684
18685     sc->ioctl_dev->si_drv1 = sc;
18686
18687     return (0);
18688 }
18689
18690 static void
18691 bxe_del_cdev(struct bxe_softc *sc)
18692 {
18693     if (sc->ioctl_dev != NULL)
18694         destroy_dev(sc->ioctl_dev);
18695
18696     if (sc->eeprom != NULL) {
18697         free(sc->eeprom, M_DEVBUF);
18698         sc->eeprom = NULL;
18699     }
18700     sc->ioctl_dev = NULL;
18701
18702     return;
18703 }
18704
18705 static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
18706 {
18707
18708     if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
18709         return FALSE;
18710
18711     return TRUE;
18712 }
18713
18714
18715 static int
18716 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18717 {
18718     int rval = 0;
18719
18720     if(!bxe_is_nvram_accessible(sc)) {
18721         BLOGW(sc, "Cannot access eeprom when interface is down\n");
18722         return (-EAGAIN);
18723     }
18724     rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
18725
18726
18727    return (rval);
18728 }
18729
18730 static int
18731 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18732 {
18733     int rval = 0;
18734
18735     if(!bxe_is_nvram_accessible(sc)) {
18736         BLOGW(sc, "Cannot access eeprom when interface is down\n");
18737         return (-EAGAIN);
18738     }
18739     rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
18740
18741    return (rval);
18742 }
18743
18744 static int
18745 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
18746 {
18747     int rval = 0;
18748
18749     switch (eeprom->eeprom_cmd) {
18750
18751     case BXE_EEPROM_CMD_SET_EEPROM:
18752
18753         rval = copyin(eeprom->eeprom_data, sc->eeprom,
18754                        eeprom->eeprom_data_len);
18755
18756         if (rval)
18757             break;
18758
18759         rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18760                        eeprom->eeprom_data_len);
18761         break;
18762
18763     case BXE_EEPROM_CMD_GET_EEPROM:
18764
18765         rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18766                        eeprom->eeprom_data_len);
18767
18768         if (rval) {
18769             break;
18770         }
18771
18772         rval = copyout(sc->eeprom, eeprom->eeprom_data,
18773                        eeprom->eeprom_data_len);
18774         break;
18775
18776     default:
18777             rval = EINVAL;
18778             break;
18779     }
18780
18781     if (rval) {
18782         BLOGW(sc, "ioctl cmd %d  failed rval %d\n", eeprom->eeprom_cmd, rval);
18783     }
18784
18785     return (rval);
18786 }
18787
18788 static int
18789 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
18790 {
18791     uint32_t ext_phy_config;
18792     int port = SC_PORT(sc);
18793     int cfg_idx = bxe_get_link_cfg_idx(sc);
18794
18795     dev_p->supported = sc->port.supported[cfg_idx] |
18796             (sc->port.supported[cfg_idx ^ 1] &
18797             (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
18798     dev_p->advertising = sc->port.advertising[cfg_idx];
18799     if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
18800         ELINK_ETH_PHY_SFP_1G_FIBER) {
18801         dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
18802         dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
18803     }
18804     if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
18805         !(sc->flags & BXE_MF_FUNC_DIS)) {
18806         dev_p->duplex = sc->link_vars.duplex;
18807         if (IS_MF(sc) && !BXE_NOMCP(sc))
18808             dev_p->speed = bxe_get_mf_speed(sc);
18809         else
18810             dev_p->speed = sc->link_vars.line_speed;
18811     } else {
18812         dev_p->duplex = DUPLEX_UNKNOWN;
18813         dev_p->speed = SPEED_UNKNOWN;
18814     }
18815
18816     dev_p->port = bxe_media_detect(sc);
18817
18818     ext_phy_config = SHMEM_RD(sc,
18819                          dev_info.port_hw_config[port].external_phy_config);
18820     if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
18821         PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
18822         dev_p->phy_address =  sc->port.phy_addr;
18823     else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18824             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
18825         ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18826             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
18827         dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
18828     else
18829         dev_p->phy_address = 0;
18830
18831     if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
18832         dev_p->autoneg = AUTONEG_ENABLE;
18833     else
18834        dev_p->autoneg = AUTONEG_DISABLE;
18835
18836
18837     return 0;
18838 }
18839
18840 static int
18841 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18842         struct thread *td)
18843 {
18844     struct bxe_softc    *sc;
18845     int                 rval = 0;
18846     device_t            pci_dev;
18847     bxe_grcdump_t       *dump = NULL;
18848     int grc_dump_size;
18849     bxe_drvinfo_t   *drv_infop = NULL;
18850     bxe_dev_setting_t  *dev_p;
18851     bxe_dev_setting_t  dev_set;
18852     bxe_get_regs_t  *reg_p;
18853     bxe_reg_rdw_t *reg_rdw_p;
18854     bxe_pcicfg_rdw_t *cfg_rdw_p;
18855     bxe_perm_mac_addr_t *mac_addr_p;
18856
18857
18858     if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
18859         return ENXIO;
18860
18861     pci_dev= sc->dev;
18862
18863     dump = (bxe_grcdump_t *)data;
18864
18865     switch(cmd) {
18866
18867         case BXE_GRC_DUMP_SIZE:
18868             dump->pci_func = sc->pcie_func;
18869             dump->grcdump_size =
18870                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18871                      sizeof(struct  dump_header);
18872             break;
18873
18874         case BXE_GRC_DUMP:
18875             
18876             grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18877                                 sizeof(struct  dump_header);
18878             if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
18879                 (dump->grcdump_size < grc_dump_size)) {
18880                 rval = EINVAL;
18881                 break;
18882             }
18883
18884             if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
18885                 (!sc->grcdump_started)) {
18886                 rval =  bxe_grc_dump(sc);
18887             }
18888
18889             if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
18890                 (sc->grc_dump != NULL))  {
18891                 dump->grcdump_dwords = grc_dump_size >> 2;
18892                 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
18893                 free(sc->grc_dump, M_DEVBUF);
18894                 sc->grc_dump = NULL;
18895                 sc->grcdump_started = 0;
18896                 sc->grcdump_done = 0;
18897             }
18898
18899             break;
18900
18901         case BXE_DRV_INFO:
18902             drv_infop = (bxe_drvinfo_t *)data;
18903             snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
18904             snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
18905                 BXE_DRIVER_VERSION);
18906             snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
18907                 sc->devinfo.bc_ver_str);
18908             snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
18909                 "%s", sc->fw_ver_str);
18910             drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
18911             drv_infop->reg_dump_len =
18912                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
18913                     + sizeof(struct  dump_header);
18914             snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
18915                 sc->pcie_bus, sc->pcie_device, sc->pcie_func);
18916             break;
18917
18918         case BXE_DEV_SETTING:
18919             dev_p = (bxe_dev_setting_t *)data;
18920             bxe_get_settings(sc, &dev_set);
18921             dev_p->supported = dev_set.supported;
18922             dev_p->advertising = dev_set.advertising;
18923             dev_p->speed = dev_set.speed;
18924             dev_p->duplex = dev_set.duplex;
18925             dev_p->port = dev_set.port;
18926             dev_p->phy_address = dev_set.phy_address;
18927             dev_p->autoneg = dev_set.autoneg;
18928
18929             break;
18930
18931         case BXE_GET_REGS:
18932
18933             reg_p = (bxe_get_regs_t *)data;
18934             grc_dump_size = reg_p->reg_buf_len;
18935
18936             if((!sc->grcdump_done) && (!sc->grcdump_started)) {
18937                 bxe_grc_dump(sc);
18938             }
18939             if((sc->grcdump_done) && (sc->grcdump_started) &&
18940                 (sc->grc_dump != NULL))  {
18941                 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
18942                 free(sc->grc_dump, M_DEVBUF);
18943                 sc->grc_dump = NULL;
18944                 sc->grcdump_started = 0;
18945                 sc->grcdump_done = 0;
18946             }
18947
18948             break;
18949
18950         case BXE_RDW_REG:
18951             reg_rdw_p = (bxe_reg_rdw_t *)data;
18952             if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
18953                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
18954                 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
18955
18956             if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
18957                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
18958                 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
18959
18960             break;
18961
18962         case BXE_RDW_PCICFG:
18963             cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
18964             if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
18965
18966                 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
18967                                          cfg_rdw_p->cfg_width);
18968
18969             } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
18970                 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
18971                             cfg_rdw_p->cfg_width);
18972             } else {
18973                 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
18974             }
18975             break;
18976
18977         case BXE_MAC_ADDR:
18978             mac_addr_p = (bxe_perm_mac_addr_t *)data;
18979             snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
18980                 sc->mac_addr_str);
18981             break;
18982
18983         case BXE_EEPROM:
18984             rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
18985             break;
18986
18987
18988         default:
18989             break;
18990     }
18991
18992     return (rval);
18993 }