]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/bxe/bxe.h
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
[FreeBSD/FreeBSD.git] / sys / dev / bxe / bxe.h
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #ifndef __BXE_H__
30 #define __BXE_H__
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/systm.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/sx.h>
41 #include <sys/module.h>
42 #include <sys/endian.h>
43 #include <sys/types.h>
44 #include <sys/malloc.h>
45 #include <sys/kobj.h>
46 #include <sys/bus.h>
47 #include <sys/rman.h>
48 #include <sys/socket.h>
49 #include <sys/sockio.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/bitstring.h>
53 #include <sys/limits.h>
54 #include <sys/queue.h>
55 #include <sys/taskqueue.h>
56 #include <sys/zlib.h>
57
58 #include <net/if.h>
59 #include <net/if_types.h>
60 #include <net/if_arp.h>
61 #include <net/ethernet.h>
62 #include <net/if_dl.h>
63 #include <net/if_var.h>
64 #include <net/if_media.h>
65 #include <net/if_vlan_var.h>
66 #include <net/bpf.h>
67
68 #include <netinet/in.h>
69 #include <netinet/ip.h>
70 #include <netinet/ip6.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73
74 #include <dev/pci/pcireg.h>
75 #include <dev/pci/pcivar.h>
76
77 #include <machine/atomic.h>
78 #include <machine/resource.h>
79 #include <machine/endian.h>
80 #include <machine/bus.h>
81 #include <machine/in_cksum.h>
82
83 #include "device_if.h"
84 #include "bus_if.h"
85 #include "pci_if.h"
86
87 #if _BYTE_ORDER == _LITTLE_ENDIAN
88 #ifndef LITTLE_ENDIAN
89 #define LITTLE_ENDIAN
90 #endif
91 #ifndef __LITTLE_ENDIAN
92 #define __LITTLE_ENDIAN
93 #endif
94 #undef BIG_ENDIAN
95 #undef __BIG_ENDIAN
96 #else /* _BIG_ENDIAN */
97 #ifndef BIG_ENDIAN
98 #define BIG_ENDIAN
99 #endif
100 #ifndef __BIG_ENDIAN
101 #define __BIG_ENDIAN
102 #endif
103 #undef LITTLE_ENDIAN
104 #undef __LITTLE_ENDIAN
105 #endif
106
107 #include "ecore_mfw_req.h"
108 #include "ecore_fw_defs.h"
109 #include "ecore_hsi.h"
110 #include "ecore_reg.h"
111 #include "bxe_dcb.h"
112 #include "bxe_stats.h"
113
114 #include "bxe_elink.h"
115
116 #define VF_MAC_CREDIT_CNT 0
117 #define VF_VLAN_CREDIT_CNT (0)
118
119 #if __FreeBSD_version < 800054
120 #if defined(__i386__) || defined(__amd64__)
121 #define mb()  __asm volatile("mfence;" : : : "memory")
122 #define wmb() __asm volatile("sfence;" : : : "memory")
123 #define rmb() __asm volatile("lfence;" : : : "memory")
124 static __inline void prefetch(void *x)
125 {
126     __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
127 }
128 #else
129 #define mb()
130 #define rmb()
131 #define wmb()
132 #define prefetch(x)
133 #endif
134 #endif
135
136 #if __FreeBSD_version >= 1000000
137 #define PCIR_EXPRESS_DEVICE_STA        PCIER_DEVICE_STA
138 #define PCIM_EXP_STA_TRANSACTION_PND   PCIEM_STA_TRANSACTION_PND
139 #define PCIR_EXPRESS_LINK_STA          PCIER_LINK_STA
140 #define PCIM_LINK_STA_WIDTH            PCIEM_LINK_STA_WIDTH
141 #define PCIM_LINK_STA_SPEED            PCIEM_LINK_STA_SPEED
142 #define PCIR_EXPRESS_DEVICE_CTL        PCIER_DEVICE_CTL
143 #define PCIM_EXP_CTL_MAX_PAYLOAD       PCIEM_CTL_MAX_PAYLOAD
144 #define PCIM_EXP_CTL_MAX_READ_REQUEST  PCIEM_CTL_MAX_READ_REQUEST
145 #endif
146
147 #ifndef ARRAY_SIZE
148 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
149 #endif
150 #ifndef ARRSIZE
151 #define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
152 #endif
153 #ifndef DIV_ROUND_UP
154 #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
155 #endif
156 #ifndef roundup
157 #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
158 #endif
159 #ifndef ilog2
160 static inline
161 int bxe_ilog2(int x)
162 {
163     int log = 0;
164     while (x >>= 1) log++;
165     return (log);
166 }
167 #define ilog2(x) bxe_ilog2(x)
168 #endif
169
170 #include "ecore_sp.h"
171
172 #define BRCM_VENDORID 0x14e4
173 #define QLOGIC_VENDORID 0x1077
174 #define PCI_ANY_ID    (uint16_t)(~0U)
175
176 struct bxe_device_type
177 {
178     uint16_t bxe_vid;
179     uint16_t bxe_did;
180     uint16_t bxe_svid;
181     uint16_t bxe_sdid;
182     char     *bxe_name;
183 };
184
185 #define BCM_PAGE_SHIFT       12
186 #define BCM_PAGE_SIZE        (1 << BCM_PAGE_SHIFT)
187 #define BCM_PAGE_MASK        (~(BCM_PAGE_SIZE - 1))
188 #define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
189
190 #if BCM_PAGE_SIZE != 4096
191 #error Page sizes other than 4KB are unsupported!
192 #endif
193
194 #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
195 #define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
196 #define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
197 #else
198 #define U64_LO(addr) ((uint32_t)(addr))
199 #define U64_HI(addr) (0)
200 #endif
201 #define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
202
203 #define SET_FLAG(value, mask, flag)            \
204     do {                                       \
205         (value) &= ~(mask);                    \
206         (value) |= ((flag) << (mask##_SHIFT)); \
207     } while (0)
208
209 #define GET_FLAG(value, mask)              \
210     (((value) & (mask)) >> (mask##_SHIFT))
211
212 #define GET_FIELD(value, fname)                     \
213     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
214
215 #define BXE_MAX_SEGMENTS     12 /* 13-1 for parsing buffer */
216 #define BXE_TSO_MAX_SEGMENTS 32
217 #define BXE_TSO_MAX_SIZE     (65535 + sizeof(struct ether_vlan_header))
218 #define BXE_TSO_MAX_SEG_SIZE 4096
219
220 /* dropless fc FW/HW related params */
221 #define BRB_SIZE(sc)         (CHIP_IS_E3(sc) ? 1024 : 512)
222 #define MAX_AGG_QS(sc)       (CHIP_IS_E1(sc) ?                       \
223                                   ETH_MAX_AGGREGATION_QUEUES_E1 :    \
224                                   ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
225 #define FW_DROP_LEVEL(sc)    (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
226 #define FW_PREFETCH_CNT      16
227 #define DROPLESS_FC_HEADROOM 100
228
229 /******************/
230 /* RX SGE defines */
231 /******************/
232
233 #define RX_SGE_NUM_PAGES       2 /* must be a power of 2 */
234 #define RX_SGE_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
235 #define RX_SGE_NEXT_PAGE_DESC_CNT 2
236 #define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
237 #define RX_SGE_PER_PAGE_MASK   (RX_SGE_TOTAL_PER_PAGE - 1)
238 #define RX_SGE_TOTAL           (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
239 #define RX_SGE_USABLE          (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
240 #define RX_SGE_MAX             (RX_SGE_TOTAL - 1)
241 #define RX_SGE(x)              ((x) & RX_SGE_MAX)
242
243 #define RX_SGE_NEXT(x)                                              \
244     ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
245      ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
246
247 #define RX_SGE_MASK_ELEM_SZ    64
248 #define RX_SGE_MASK_ELEM_SHIFT 6
249 #define RX_SGE_MASK_ELEM_MASK  ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
250
251 /*
252  * Creates a bitmask of all ones in less significant bits.
253  * idx - index of the most significant bit in the created mask.
254  */
255 #define RX_SGE_ONES_MASK(idx)                                      \
256     (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
257 #define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
258
259 /* Number of uint64_t elements in SGE mask array. */
260 #define RX_SGE_MASK_LEN                                                \
261     ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
262 #define RX_SGE_MASK_LEN_MASK      (RX_SGE_MASK_LEN - 1)
263 #define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
264
265 /*
266  * dropless fc calculations for SGEs
267  * Number of required SGEs is the sum of two:
268  * 1. Number of possible opened aggregations (next packet for
269  *    these aggregations will probably consume SGE immidiatelly)
270  * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
271  *    after placement on BD for new TPA aggregation)
272  * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
273  */
274 #define NUM_SGE_REQ(sc)                                    \
275     (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
276 #define NUM_SGE_PG_REQ(sc)                                                    \
277     ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
278 #define SGE_TH_LO(sc)                                                  \
279     (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
280 #define SGE_TH_HI(sc)                      \
281     (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
282
283 #define PAGES_PER_SGE_SHIFT  0
284 #define PAGES_PER_SGE        (1 << PAGES_PER_SGE_SHIFT)
285 #define SGE_PAGE_SIZE        BCM_PAGE_SIZE
286 #define SGE_PAGE_SHIFT       BCM_PAGE_SHIFT
287 #define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
288 #define SGE_PAGES            (SGE_PAGE_SIZE * PAGES_PER_SGE)
289 #define TPA_AGG_SIZE         min((8 * SGE_PAGES), 0xffff)
290
291 /*****************/
292 /* TX BD defines */
293 /*****************/
294
295 #define TX_BD_NUM_PAGES       16 /* must be a power of 2 */
296 #define TX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
297 #define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
298 #define TX_BD_TOTAL           (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
299 #define TX_BD_USABLE          (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
300 #define TX_BD_MAX             (TX_BD_TOTAL - 1)
301
302 #define TX_BD_NEXT(x)                                                 \
303     ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
304      ((x) + 2) : ((x) + 1))
305 #define TX_BD(x)      ((x) & TX_BD_MAX)
306 #define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
307 #define TX_BD_IDX(x)  ((x) & TX_BD_USABLE_PER_PAGE)
308
309 /*
310  * Trigger pending transmits when the number of available BDs is greater
311  * than 1/8 of the total number of usable BDs.
312  */
313 #define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
314 #define BXE_TX_TIMEOUT 5
315
316 /*****************/
317 /* RX BD defines */
318 /*****************/
319
320 #define RX_BD_NUM_PAGES       8 /* power of 2 */
321 #define RX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
322 #define RX_BD_NEXT_PAGE_DESC_CNT 2
323 #define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
324 #define RX_BD_PER_PAGE_MASK   (RX_BD_TOTAL_PER_PAGE - 1)
325 #define RX_BD_TOTAL           (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
326 #define RX_BD_USABLE          (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
327 #define RX_BD_MAX             (RX_BD_TOTAL - 1)
328
329 #define RX_BD_NEXT(x)                                               \
330     ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
331      ((x) + 3) : ((x) + 1))
332 #define RX_BD(x)      ((x) & RX_BD_MAX)
333 #define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
334 #define RX_BD_IDX(x)  ((x) & RX_BD_PER_PAGE_MASK)
335
336 /*
337  * dropless fc calculations for BDs
338  * Number of BDs should be as number of buffers in BRB:
339  * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
340  * "next" elements on each page
341  */
342 #define NUM_BD_REQ(sc) \
343     BRB_SIZE(sc)
344 #define NUM_BD_PG_REQ(sc)                                                  \
345     ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
346 #define BD_TH_LO(sc)                                \
347     (NUM_BD_REQ(sc) +                               \
348      NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
349      FW_DROP_LEVEL(sc))
350 #define BD_TH_HI(sc)                      \
351     (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
352 #define MIN_RX_AVAIL(sc)                           \
353     ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
354 #define MIN_RX_SIZE_TPA_HW(sc)                         \
355     (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 :    \
356                       ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
357 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
358 #define MIN_RX_SIZE_TPA(sc)                         \
359     (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
360 #define MIN_RX_SIZE_NONTPA(sc)                     \
361     (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
362
363 /***************/
364 /* RCQ defines */
365 /***************/
366
367 /*
368  * As long as CQE is X times bigger than BD entry we have to allocate X times
369  * more pages for CQ ring in order to keep it balanced with BD ring
370  */
371 #define CQE_BD_REL          (sizeof(union eth_rx_cqe) / \
372                              sizeof(struct eth_rx_bd))
373 #define RCQ_NUM_PAGES       (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
374 #define RCQ_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
375 #define RCQ_NEXT_PAGE_DESC_CNT 1
376 #define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
377 #define RCQ_TOTAL           (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
378 #define RCQ_USABLE          (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
379 #define RCQ_MAX             (RCQ_TOTAL - 1)
380
381 #define RCQ_NEXT(x)                                               \
382     ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
383      ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
384 #define RCQ(x)      ((x) & RCQ_MAX)
385 #define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
386 #define RCQ_IDX(x)  ((x) & RCQ_USABLE_PER_PAGE)
387
388 /*
389  * dropless fc calculations for RCQs
390  * Number of RCQs should be as number of buffers in BRB:
391  * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
392  * "next" elements on each page
393  */
394 #define NUM_RCQ_REQ(sc) \
395     BRB_SIZE(sc)
396 #define NUM_RCQ_PG_REQ(sc)                                              \
397     ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
398 #define RCQ_TH_LO(sc)                              \
399     (NUM_RCQ_REQ(sc) +                             \
400      NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
401      FW_DROP_LEVEL(sc))
402 #define RCQ_TH_HI(sc)                      \
403     (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
404
405 /* This is needed for determening of last_max */
406 #define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
407
408 #define __SGE_MASK_SET_BIT(el, bit)               \
409     do {                                          \
410         (el) = ((el) | ((uint64_t)0x1 << (bit))); \
411     } while (0)
412
413 #define __SGE_MASK_CLEAR_BIT(el, bit)                \
414     do {                                             \
415         (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
416     } while (0)
417
418 #define SGE_MASK_SET_BIT(fp, idx)                                       \
419     __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
420                        ((idx) & RX_SGE_MASK_ELEM_MASK))
421
422 #define SGE_MASK_CLEAR_BIT(fp, idx)                                       \
423     __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
424                          ((idx) & RX_SGE_MASK_ELEM_MASK))
425
426 /* Load / Unload modes */
427 #define LOAD_NORMAL       0
428 #define LOAD_OPEN         1
429 #define LOAD_DIAG         2
430 #define LOAD_LOOPBACK_EXT 3
431 #define UNLOAD_NORMAL     0
432 #define UNLOAD_CLOSE      1
433 #define UNLOAD_RECOVERY   2
434
435 /* Some constants... */
436 //#define MAX_PATH_NUM       2
437 //#define E2_MAX_NUM_OF_VFS  64
438 //#define E1H_FUNC_MAX       8
439 //#define E2_FUNC_MAX        4   /* per path */
440 #define MAX_VNIC_NUM       4
441 #define MAX_FUNC_NUM       8   /* common to all chips */
442 //#define MAX_NDSB           HC_SB_MAX_SB_E2 /* max non-default status block */
443 #define MAX_RSS_CHAINS     16 /* a constant for HW limit */
444 #define MAX_MSI_VECTOR     8  /* a constant for HW limit */
445
446 #define ILT_NUM_PAGE_ENTRIES 3072
447 /*
448  * 57710/11 we use whole table since we have 8 functions.
449  * 57712 we have only 4 functions, but use same size per func, so only half
450  * of the table is used.
451  */
452 #define ILT_PER_FUNC        (ILT_NUM_PAGE_ENTRIES / 8)
453 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
454 /*
455  * the phys address is shifted right 12 bits and has an added
456  * 1=valid bit added to the 53rd bit
457  * then since this is a wide register(TM)
458  * we split it into two 32 bit writes
459  */
460 #define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
461 #define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
462
463 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
464 #define ETH_HLEN                  14
465 #define ETH_OVERHEAD              (ETH_HLEN + 8 + 8)
466 #define ETH_MIN_PACKET_SIZE       60
467 #define ETH_MAX_PACKET_SIZE       ETHERMTU /* 1500 */
468 #define ETH_MAX_JUMBO_PACKET_SIZE 9600
469 /* TCP with Timestamp Option (32) + IPv6 (40) */
470 #define ETH_MAX_TPA_HEADER_SIZE   72
471
472 /* max supported alignment is 256 (8 shift) */
473 //#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
474 #define BXE_RX_ALIGN_SHIFT 8
475 /* FW uses 2 cache lines alignment for start packet and size  */
476 #define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
477 #define BXE_FW_RX_ALIGN_END   (1 << BXE_RX_ALIGN_SHIFT)
478
479 #define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
480
481 struct bxe_bar {
482     struct resource    *resource;
483     int                rid;
484     bus_space_tag_t    tag;
485     bus_space_handle_t handle;
486     vm_offset_t        kva;
487 };
488
489 struct bxe_intr {
490     struct resource *resource;
491     int             rid;
492     void            *tag;
493 };
494
495 /* Used to manage DMA allocations. */
496 struct bxe_dma {
497     struct bxe_softc  *sc;
498     bus_addr_t        paddr;
499     void              *vaddr;
500     bus_dma_tag_t     tag;
501     bus_dmamap_t      map;
502     bus_dma_segment_t seg;
503     bus_size_t        size;
504     int               nseg;
505     char              msg[32];
506 };
507
508 /* attn group wiring */
509 #define MAX_DYNAMIC_ATTN_GRPS 8
510
511 struct attn_route {
512     uint32_t sig[5];
513 };
514
515 struct iro {
516     uint32_t base;
517     uint16_t m1;
518     uint16_t m2;
519     uint16_t m3;
520     uint16_t size;
521 };
522
523 union bxe_host_hc_status_block {
524     /* pointer to fp status block e2 */
525     struct host_hc_status_block_e2  *e2_sb;
526     /* pointer to fp status block e1x */
527     struct host_hc_status_block_e1x *e1x_sb;
528 };
529
530 union bxe_db_prod {
531     struct doorbell_set_prod data;
532     uint32_t                 raw;
533 };
534
535 struct bxe_sw_tx_bd {
536     struct mbuf  *m;
537     bus_dmamap_t m_map;
538     uint16_t     first_bd;
539     uint8_t      flags;
540 /* set on the first BD descriptor when there is a split BD */
541 #define BXE_TSO_SPLIT_BD (1 << 0)
542 };
543
544 struct bxe_sw_rx_bd {
545     struct mbuf  *m;
546     bus_dmamap_t m_map;
547 };
548
549 struct bxe_sw_tpa_info {
550     struct bxe_sw_rx_bd bd;
551     bus_dma_segment_t   seg;
552     uint8_t             state;
553 #define BXE_TPA_STATE_START 1
554 #define BXE_TPA_STATE_STOP  2
555     uint8_t             placement_offset;
556     uint16_t            parsing_flags;
557     uint16_t            vlan_tag;
558     uint16_t            len_on_bd;
559 };
560
561 /*
562  * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
563  * instances of the fastpath structure when using multiple queues.
564  */
565 struct bxe_fastpath {
566     /* pointer back to parent structure */
567     struct bxe_softc *sc;
568
569     struct mtx tx_mtx;
570     char       tx_mtx_name[32];
571     struct mtx rx_mtx;
572     char       rx_mtx_name[32];
573
574 #define BXE_FP_TX_LOCK(fp)        mtx_lock(&fp->tx_mtx)
575 #define BXE_FP_TX_UNLOCK(fp)      mtx_unlock(&fp->tx_mtx)
576 #define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
577 #define BXE_FP_TX_TRYLOCK(fp)     mtx_trylock(&fp->tx_mtx)
578
579 #define BXE_FP_RX_LOCK(fp)        mtx_lock(&fp->rx_mtx)
580 #define BXE_FP_RX_UNLOCK(fp)      mtx_unlock(&fp->rx_mtx)
581 #define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
582
583     /* status block */
584     struct bxe_dma                 sb_dma;
585     union bxe_host_hc_status_block status_block;
586
587     /* transmit chain (tx bds) */
588     struct bxe_dma        tx_dma;
589     union eth_tx_bd_types *tx_chain;
590
591     /* receive chain (rx bds) */
592     struct bxe_dma   rx_dma;
593     struct eth_rx_bd *rx_chain;
594
595     /* receive completion queue chain (rcq bds) */
596     struct bxe_dma   rcq_dma;
597     union eth_rx_cqe *rcq_chain;
598
599     /* receive scatter/gather entry chain (for TPA) */
600     struct bxe_dma    rx_sge_dma;
601     struct eth_rx_sge *rx_sge_chain;
602
603     /* tx mbufs */
604     bus_dma_tag_t       tx_mbuf_tag;
605     struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
606
607     /* rx mbufs */
608     bus_dma_tag_t       rx_mbuf_tag;
609     struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
610     bus_dmamap_t        rx_mbuf_spare_map;
611
612     /* rx sge mbufs */
613     bus_dma_tag_t       rx_sge_mbuf_tag;
614     struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
615     bus_dmamap_t        rx_sge_mbuf_spare_map;
616
617     /* rx tpa mbufs (use the larger size for TPA queue length) */
618     int                    tpa_enable; /* disabled per fastpath upon error */
619     struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
620     bus_dmamap_t           rx_tpa_info_mbuf_spare_map;
621     uint64_t               rx_tpa_queue_used;
622
623     uint16_t *sb_index_values;
624     uint16_t *sb_running_index;
625     uint32_t ustorm_rx_prods_offset;
626
627     uint8_t igu_sb_id; /* status block number in HW */
628     uint8_t fw_sb_id;  /* status block number in FW */
629
630     uint32_t rx_buf_size;
631     int mbuf_alloc_size;
632
633     int state;
634 #define BXE_FP_STATE_CLOSED  0x01
635 #define BXE_FP_STATE_IRQ     0x02
636 #define BXE_FP_STATE_OPENING 0x04
637 #define BXE_FP_STATE_OPEN    0x08
638 #define BXE_FP_STATE_HALTING 0x10
639 #define BXE_FP_STATE_HALTED  0x20
640
641     /* reference back to this fastpath queue number */
642     uint8_t index; /* this is also the 'cid' */
643 #define FP_IDX(fp) (fp->index)
644
645     /* interrupt taskqueue (fast) */
646     struct task      tq_task;
647     struct taskqueue *tq;
648     char             tq_name[32];
649
650     struct task tx_task;
651     struct timeout_task tx_timeout_task;
652
653     /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
654     uint8_t cl_id;
655 #define FP_CL_ID(fp) (fp->cl_id)
656     uint8_t cl_qzone_id;
657
658     uint16_t fp_hc_idx;
659
660     /* driver copy of the receive buffer descriptor prod/cons indices */
661     uint16_t rx_bd_prod;
662     uint16_t rx_bd_cons;
663
664     /* driver copy of the receive completion queue prod/cons indices */
665     uint16_t rx_cq_prod;
666     uint16_t rx_cq_cons;
667
668     union bxe_db_prod tx_db;
669
670     /* Transmit packet producer index (used in eth_tx_bd). */
671     uint16_t tx_pkt_prod;
672     uint16_t tx_pkt_cons;
673
674     /* Transmit buffer descriptor producer index. */
675     uint16_t tx_bd_prod;
676     uint16_t tx_bd_cons;
677
678     uint64_t sge_mask[RX_SGE_MASK_LEN];
679     uint16_t rx_sge_prod;
680
681     struct tstorm_per_queue_stats old_tclient;
682     struct ustorm_per_queue_stats old_uclient;
683     struct xstorm_per_queue_stats old_xclient;
684     struct bxe_eth_q_stats        eth_q_stats;
685     struct bxe_eth_q_stats_old    eth_q_stats_old;
686
687     /* Pointer to the receive consumer in the status block */
688     uint16_t *rx_cq_cons_sb;
689
690     /* Pointer to the transmit consumer in the status block */
691     uint16_t *tx_cons_sb;
692
693     /* transmit timeout until chip reset */
694     int watchdog_timer;
695
696     /* Free/used buffer descriptor counters. */
697     //uint16_t used_tx_bd;
698
699     /* Last maximal completed SGE */
700     uint16_t last_max_sge;
701
702     //uint16_t rx_sge_free_idx;
703
704     //uint8_t segs;
705
706 #if __FreeBSD_version >= 800000
707 #define BXE_BR_SIZE 4096
708     struct buf_ring *tx_br;
709 #endif
710 }; /* struct bxe_fastpath */
711
712 /* sriov XXX */
713 #define BXE_MAX_NUM_OF_VFS 64
714 #define BXE_VF_CID_WND     0
715 #define BXE_CIDS_PER_VF    (1 << BXE_VF_CID_WND)
716 #define BXE_CLIENTS_PER_VF 1
717 #define BXE_FIRST_VF_CID   256
718 #define BXE_VF_CIDS        (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
719 #define BXE_VF_ID_INVALID  0xFF
720 #define IS_SRIOV(sc) 0
721
722 #define GET_NUM_VFS_PER_PATH(sc) 0
723 #define GET_NUM_VFS_PER_PF(sc)   0
724
725 /* maximum number of fast-path interrupt contexts */
726 #define FP_SB_MAX_E1x 16
727 #define FP_SB_MAX_E2  HC_SB_MAX_SB_E2
728
729 union cdu_context {
730     struct eth_context eth;
731     char pad[1024];
732 };
733
734 /* CDU host DB constants */
735 #define CDU_ILT_PAGE_SZ_HW 2
736 #define CDU_ILT_PAGE_SZ    (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
737 #define ILT_PAGE_CIDS      (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
738
739 #define CNIC_ISCSI_CID_MAX 256
740 #define CNIC_FCOE_CID_MAX  2048
741 #define CNIC_CID_MAX       (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
742 #define CNIC_ILT_LINES     DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
743
744 #define QM_ILT_PAGE_SZ_HW  0
745 #define QM_ILT_PAGE_SZ     (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
746 #define QM_CID_ROUND       1024
747
748 /* TM (timers) host DB constants */
749 #define TM_ILT_PAGE_SZ_HW  0
750 #define TM_ILT_PAGE_SZ     (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
751 /*#define TM_CONN_NUM        (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
752 #define TM_CONN_NUM        1024
753 #define TM_ILT_SZ          (8 * TM_CONN_NUM)
754 #define TM_ILT_LINES       DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
755
756 /* SRC (Searcher) host DB constants */
757 #define SRC_ILT_PAGE_SZ_HW 0
758 #define SRC_ILT_PAGE_SZ    (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
759 #define SRC_HASH_BITS      10
760 #define SRC_CONN_NUM       (1 << SRC_HASH_BITS) /* 1024 */
761 #define SRC_ILT_SZ         (sizeof(struct src_ent) * SRC_CONN_NUM)
762 #define SRC_T2_SZ          SRC_ILT_SZ
763 #define SRC_ILT_LINES      DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
764
765 struct hw_context {
766     struct bxe_dma    vcxt_dma;
767     union cdu_context *vcxt;
768     //bus_addr_t        cxt_mapping;
769     size_t            size;
770 };
771
772 #define SM_RX_ID 0
773 #define SM_TX_ID 1
774
775 /* defines for multiple tx priority indices */
776 #define FIRST_TX_ONLY_COS_INDEX 1
777 #define FIRST_TX_COS_INDEX      0
778
779 #define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
780
781 #define HC_INDEX_ETH_RX_CQ_CONS       1
782 #define HC_INDEX_OOO_TX_CQ_CONS       4
783 #define HC_INDEX_ETH_TX_CQ_CONS_COS0  5
784 #define HC_INDEX_ETH_TX_CQ_CONS_COS1  6
785 #define HC_INDEX_ETH_TX_CQ_CONS_COS2  7
786 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
787
788 /* congestion management fairness mode */
789 #define CMNG_FNS_NONE   0
790 #define CMNG_FNS_MINMAX 1
791
792 /* CMNG constants, as derived from system spec calculations */
793 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
794 #define DEF_MIN_RATE 100
795 /* resolution of the rate shaping timer - 400 usec */
796 #define RS_PERIODIC_TIMEOUT_USEC 400
797 /* number of bytes in single QM arbitration cycle -
798  * coefficient for calculating the fairness timer */
799 #define QM_ARB_BYTES 160000
800 /* resolution of Min algorithm 1:100 */
801 #define MIN_RES 100
802 /* how many bytes above threshold for the minimal credit of Min algorithm*/
803 #define MIN_ABOVE_THRESH 32768
804 /* fairness algorithm integration time coefficient -
805  * for calculating the actual Tfair */
806 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
807 /* memory of fairness algorithm - 2 cycles */
808 #define FAIR_MEM 2
809
810 #define HC_SEG_ACCESS_DEF   0 /* Driver decision 0-3 */
811 #define HC_SEG_ACCESS_ATTN  4
812 #define HC_SEG_ACCESS_NORM  0 /* Driver decision 0-1 */
813
814 /*
815  * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
816  * control by the number of fast-path status blocks supported by the
817  * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
818  * status block represents an independent interrupts context that can
819  * serve a regular L2 networking queue. However special L2 queues such
820  * as the FCoE queue do not require a FP-SB and other components like
821  * the CNIC may consume FP-SB reducing the number of possible L2 queues
822  *
823  * If the maximum number of FP-SB available is X then:
824  * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
825  *    regular L2 queues is Y=X-1
826  * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
827  * c. If the FCoE L2 queue is supported the actual number of L2 queues
828  *    is Y+1
829  * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
830  *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
831  *    FP interrupt context for the CNIC).
832  * e. The number of HW context (CID count) is always X or X+1 if FCoE
833  *    L2 queue is supported. the cid for the FCoE L2 queue is always X.
834  *
835  * So this is quite simple for now as no ULPs are supported yet. :-)
836  */
837 #define BXE_NUM_QUEUES(sc)          ((sc)->num_queues)
838 #define BXE_NUM_ETH_QUEUES(sc)      BXE_NUM_QUEUES(sc)
839 #define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
840 #define BXE_NUM_RX_QUEUES(sc)       BXE_NUM_QUEUES(sc)
841
842 #define FOR_EACH_QUEUE(sc, var)                          \
843     for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
844
845 #define FOR_EACH_NONDEFAULT_QUEUE(sc, var)               \
846     for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
847
848 #define FOR_EACH_ETH_QUEUE(sc, var)                          \
849     for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
850
851 #define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var)               \
852     for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
853
854 #define FOR_EACH_COS_IN_TX_QUEUE(sc, var)           \
855     for ((var) = 0; (var) < (sc)->max_cos; (var)++)
856
857 #define FOR_EACH_CNIC_QUEUE(sc, var)     \
858     for ((var) = BXE_NUM_ETH_QUEUES(sc); \
859          (var) < BXE_NUM_QUEUES(sc);     \
860          (var)++)
861
862 enum {
863     OOO_IDX_OFFSET,
864     FCOE_IDX_OFFSET,
865     FWD_IDX_OFFSET,
866 };
867
868 #define FCOE_IDX(sc)              (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
869 #define bxe_fcoe_fp(sc)           (&sc->fp[FCOE_IDX(sc)])
870 #define bxe_fcoe(sc, var)         (bxe_fcoe_fp(sc)->var)
871 #define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
872 #define bxe_fcoe_sp_obj(sc, var)  (bxe_fcoe_inner_sp_obj(sc)->var)
873 #define bxe_fcoe_tx(sc, var)      (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
874
875 #define OOO_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
876 #define bxe_ooo_fp(sc)            (&sc->fp[OOO_IDX(sc)])
877 #define bxe_ooo(sc, var)          (bxe_ooo_fp(sc)->var)
878 #define bxe_ooo_inner_sp_obj(sc)  (&sc->sp_objs[OOO_IDX(sc)])
879 #define bxe_ooo_sp_obj(sc, var)   (bxe_ooo_inner_sp_obj(sc)->var)
880
881 #define FWD_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
882 #define bxe_fwd_fp(sc)            (&sc->fp[FWD_IDX(sc)])
883 #define bxe_fwd(sc, var)          (bxe_fwd_fp(sc)->var)
884 #define bxe_fwd_inner_sp_obj(sc)  (&sc->sp_objs[FWD_IDX(sc)])
885 #define bxe_fwd_sp_obj(sc, var)   (bxe_fwd_inner_sp_obj(sc)->var)
886 #define bxe_fwd_txdata(fp)        (fp->txdata_ptr[FIRST_TX_COS_INDEX])
887
888 #define IS_ETH_FP(fp)    ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
889 #define IS_FCOE_FP(fp)   ((fp)->index == FCOE_IDX((fp)->sc))
890 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
891 #define IS_FWD_FP(fp)    ((fp)->index == FWD_IDX((fp)->sc))
892 #define IS_FWD_IDX(idx)  ((idx) == FWD_IDX(sc))
893 #define IS_OOO_FP(fp)    ((fp)->index == OOO_IDX((fp)->sc))
894 #define IS_OOO_IDX(idx)  ((idx) == OOO_IDX(sc))
895
896 enum {
897     BXE_PORT_QUERY_IDX,
898     BXE_PF_QUERY_IDX,
899     BXE_FCOE_QUERY_IDX,
900     BXE_FIRST_QUEUE_QUERY_IDX,
901 };
902
903 struct bxe_fw_stats_req {
904     struct stats_query_header hdr;
905     struct stats_query_entry  query[FP_SB_MAX_E1x +
906                                     BXE_FIRST_QUEUE_QUERY_IDX];
907 };
908
909 struct bxe_fw_stats_data {
910     struct stats_counter          storm_counters;
911     struct per_port_stats         port;
912     struct per_pf_stats           pf;
913     //struct fcoe_statistics_params fcoe;
914     struct per_queue_stats        queue_stats[1];
915 };
916
917 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
918 #define BXE_IGU_STAS_MSG_VF_CNT 64
919 #define BXE_IGU_STAS_MSG_PF_CNT 4
920
921 #define MAX_DMAE_C 8
922
923 /*
924  * For the main interface up/down code paths, a not-so-fine-grained CORE
925  * mutex lock is used. Inside this code are various calls to kernel routines
926  * that can cause a sleep to occur. Namely memory allocations and taskqueue
927  * handling. If using an MTX lock we are *not* allowed to sleep but we can
928  * with an SX lock. This define forces the CORE lock to use and SX lock.
929  * Undefine this and an MTX lock will be used instead. Note that the IOCTL
930  * path can cause problems since it's called by a non-sleepable thread. To
931  * alleviate a potential sleep, any IOCTL processing that results in the
932  * chip/interface being started/stopped/reinitialized, the actual work is
933  * offloaded to a taskqueue.
934  */
935 #define BXE_CORE_LOCK_SX
936
937 /*
938  * This is the slowpath data structure. It is mapped into non-paged memory
939  * so that the hardware can access it's contents directly and must be page
940  * aligned.
941  */
942 struct bxe_slowpath {
943
944     /* used by the DMAE command executer */
945     struct dmae_cmd dmae[MAX_DMAE_C];
946
947     /* statistics completion */
948     uint32_t stats_comp;
949
950     /* firmware defined statistics blocks */
951     union mac_stats        mac_stats;
952     struct nig_stats       nig_stats;
953     struct host_port_stats port_stats;
954     struct host_func_stats func_stats;
955     //struct host_func_stats func_stats_base;
956
957     /* DMAE completion value and data source/sink */
958     uint32_t wb_comp;
959     uint32_t wb_data[4];
960
961     union {
962         struct mac_configuration_cmd          e1x;
963         struct eth_classify_rules_ramrod_data e2;
964     } mac_rdata;
965
966     union {
967         struct tstorm_eth_mac_filter_config e1x;
968         struct eth_filter_rules_ramrod_data e2;
969     } rx_mode_rdata;
970
971     struct eth_rss_update_ramrod_data rss_rdata;
972
973     union {
974         struct mac_configuration_cmd           e1;
975         struct eth_multicast_rules_ramrod_data e2;
976     } mcast_rdata;
977
978     union {
979         struct function_start_data        func_start;
980         struct flow_control_configuration pfc_config; /* for DCBX ramrod */
981     } func_rdata;
982
983     /* Queue State related ramrods */
984     union {
985         struct client_init_ramrod_data   init_data;
986         struct client_update_ramrod_data update_data;
987     } q_rdata;
988
989     /*
990      * AFEX ramrod can not be a part of func_rdata union because these
991      * events might arrive in parallel to other events from func_rdata.
992      * If they were defined in the same union the data can get corrupted.
993      */
994     struct afex_vif_list_ramrod_data func_afex_rdata;
995
996     union drv_info_to_mcp drv_info_to_mcp;
997 }; /* struct bxe_slowpath */
998
999 /*
1000  * Port specifc data structure.
1001  */
1002 struct bxe_port {
1003     /*
1004      * Port Management Function (for 57711E only).
1005      * When this field is set the driver instance is
1006      * responsible for managing port specifc
1007      * configurations such as handling link attentions.
1008      */
1009     uint32_t pmf;
1010
1011     /* Ethernet maximum transmission unit. */
1012     uint16_t ether_mtu;
1013
1014     uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
1015
1016     uint32_t ext_phy_config;
1017
1018     /* Port feature config.*/
1019     uint32_t config;
1020
1021     /* Defines the features supported by the PHY. */
1022     uint32_t supported[ELINK_LINK_CONFIG_SIZE];
1023
1024     /* Defines the features advertised by the PHY. */
1025     uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
1026 #define ADVERTISED_10baseT_Half    (1 << 1)
1027 #define ADVERTISED_10baseT_Full    (1 << 2)
1028 #define ADVERTISED_100baseT_Half   (1 << 3)
1029 #define ADVERTISED_100baseT_Full   (1 << 4)
1030 #define ADVERTISED_1000baseT_Half  (1 << 5)
1031 #define ADVERTISED_1000baseT_Full  (1 << 6)
1032 #define ADVERTISED_TP              (1 << 7)
1033 #define ADVERTISED_FIBRE           (1 << 8)
1034 #define ADVERTISED_Autoneg         (1 << 9)
1035 #define ADVERTISED_Asym_Pause      (1 << 10)
1036 #define ADVERTISED_Pause           (1 << 11)
1037 #define ADVERTISED_2500baseX_Full  (1 << 15)
1038 #define ADVERTISED_10000baseT_Full (1 << 16)
1039
1040     uint32_t    phy_addr;
1041
1042     /* Used to synchronize phy accesses. */
1043     struct mtx  phy_mtx;
1044     char        phy_mtx_name[32];
1045
1046 #define BXE_PHY_LOCK(sc)          mtx_lock(&sc->port.phy_mtx)
1047 #define BXE_PHY_UNLOCK(sc)        mtx_unlock(&sc->port.phy_mtx)
1048 #define BXE_PHY_LOCK_ASSERT(sc)   mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1049
1050     /*
1051      * MCP scratchpad address for port specific statistics.
1052      * The device is responsible for writing statistcss
1053      * back to the MCP for use with management firmware such
1054      * as UMP/NC-SI.
1055      */
1056     uint32_t port_stx;
1057
1058     struct nig_stats old_nig_stats;
1059 }; /* struct bxe_port */
1060
1061 struct bxe_mf_info {
1062     uint32_t mf_config[E1HVN_MAX];
1063
1064     uint32_t vnics_per_port;   /* 1, 2 or 4 */
1065     uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1066     uint32_t path_has_ovlan;   /* MF mode in the path (can be different than the MF mode of the function */
1067
1068 #define IS_MULTI_VNIC(sc)  ((sc)->devinfo.mf_info.multi_vnics_mode)
1069 #define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1070 #define VNICS_PER_PATH(sc)                                  \
1071     ((sc)->devinfo.mf_info.vnics_per_port *                 \
1072      ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1073
1074     uint8_t min_bw[MAX_VNIC_NUM];
1075     uint8_t max_bw[MAX_VNIC_NUM];
1076
1077     uint16_t ext_id; /* vnic outer vlan or VIF ID */
1078 #define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1079 #define INVALID_VIF_ID 0xFFFF
1080 #define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1081 #define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1082
1083     uint16_t default_vlan;
1084 #define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1085
1086     uint8_t niv_allowed_priorities;
1087 #define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1088
1089     uint8_t niv_default_cos;
1090 #define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1091
1092     uint8_t niv_mba_enabled;
1093
1094     enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1095 #define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1096     int                        afex_def_vlan_tag;
1097     uint32_t                   pending_max;
1098
1099     uint16_t flags;
1100 #define MF_INFO_VALID_MAC       0x0001
1101
1102     uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1103 #define IS_MF(sc)                        \
1104     (IS_MULTI_VNIC(sc) &&                \
1105      ((sc)->devinfo.mf_info.mf_mode != 0))
1106 #define IS_MF_SD(sc)                                     \
1107     (IS_MULTI_VNIC(sc) &&                                \
1108      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1109 #define IS_MF_SI(sc)                                     \
1110     (IS_MULTI_VNIC(sc) &&                                \
1111      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1112 #define IS_MF_AFEX(sc)                              \
1113     (IS_MULTI_VNIC(sc) &&                           \
1114      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1115 #define IS_MF_SD_MODE(sc)   IS_MF_SD(sc)
1116 #define IS_MF_SI_MODE(sc)   IS_MF_SI(sc)
1117 #define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1118
1119     uint32_t mf_protos_supported;
1120     #define MF_PROTO_SUPPORT_ETHERNET 0x1
1121     #define MF_PROTO_SUPPORT_ISCSI    0x2
1122     #define MF_PROTO_SUPPORT_FCOE     0x4
1123 }; /* struct bxe_mf_info */
1124
1125 /* Device information data structure. */
1126 struct bxe_devinfo {
1127     /* PCIe info */
1128     uint16_t vendor_id;
1129     uint16_t device_id;
1130     uint16_t subvendor_id;
1131     uint16_t subdevice_id;
1132
1133     /*
1134      * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1135      *   C = Chip Number   (bits 16-31)
1136      *   R = Chip Revision (bits 12-15)
1137      *   M = Chip Metal    (bits 4-11)
1138      *   B = Chip Bond ID  (bits 0-3)
1139      */
1140     uint32_t chip_id;
1141 #define CHIP_ID(sc)           ((sc)->devinfo.chip_id & 0xffff0000)
1142 #define CHIP_NUM(sc)          ((sc)->devinfo.chip_id >> 16)
1143 /* device ids */
1144 #define CHIP_NUM_57710        0x164e
1145 #define CHIP_NUM_57711        0x164f
1146 #define CHIP_NUM_57711E       0x1650
1147 #define CHIP_NUM_57712        0x1662
1148 #define CHIP_NUM_57712_MF     0x1663
1149 #define CHIP_NUM_57712_VF     0x166f
1150 #define CHIP_NUM_57800        0x168a
1151 #define CHIP_NUM_57800_MF     0x16a5
1152 #define CHIP_NUM_57800_VF     0x16a9
1153 #define CHIP_NUM_57810        0x168e
1154 #define CHIP_NUM_57810_MF     0x16ae
1155 #define CHIP_NUM_57810_VF     0x16af
1156 #define CHIP_NUM_57811        0x163d
1157 #define CHIP_NUM_57811_MF     0x163e
1158 #define CHIP_NUM_57811_VF     0x163f
1159 #define CHIP_NUM_57840_OBS    0x168d
1160 #define CHIP_NUM_57840_OBS_MF 0x16ab
1161 #define CHIP_NUM_57840_4_10   0x16a1
1162 #define CHIP_NUM_57840_2_20   0x16a2
1163 #define CHIP_NUM_57840_MF     0x16a4
1164 #define CHIP_NUM_57840_VF     0x16ad
1165
1166 #define CHIP_REV_SHIFT      12
1167 #define CHIP_REV_MASK       (0xF << CHIP_REV_SHIFT)
1168 #define CHIP_REV(sc)        ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1169
1170 #define CHIP_REV_Ax         (0x0 << CHIP_REV_SHIFT)
1171 #define CHIP_REV_Bx         (0x1 << CHIP_REV_SHIFT)
1172 #define CHIP_REV_Cx         (0x2 << CHIP_REV_SHIFT)
1173
1174 #define CHIP_REV_IS_SLOW(sc)    \
1175     (CHIP_REV(sc) > 0x00005000)
1176 #define CHIP_REV_IS_FPGA(sc)                              \
1177     (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1178 #define CHIP_REV_IS_EMUL(sc)                               \
1179     (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1180 #define CHIP_REV_IS_ASIC(sc) \
1181     (!CHIP_REV_IS_SLOW(sc))
1182
1183 #define CHIP_METAL(sc)      ((sc->devinfo.chip_id) & 0x00000ff0)
1184 #define CHIP_BOND_ID(sc)    ((sc->devinfo.chip_id) & 0x0000000f)
1185
1186 #define CHIP_IS_E1(sc)      (CHIP_NUM(sc) == CHIP_NUM_57710)
1187 #define CHIP_IS_57710(sc)   (CHIP_NUM(sc) == CHIP_NUM_57710)
1188 #define CHIP_IS_57711(sc)   (CHIP_NUM(sc) == CHIP_NUM_57711)
1189 #define CHIP_IS_57711E(sc)  (CHIP_NUM(sc) == CHIP_NUM_57711E)
1190 #define CHIP_IS_E1H(sc)     ((CHIP_IS_57711(sc)) || \
1191                              (CHIP_IS_57711E(sc)))
1192 #define CHIP_IS_E1x(sc)     (CHIP_IS_E1((sc)) || \
1193                              CHIP_IS_E1H((sc)))
1194
1195 #define CHIP_IS_57712(sc)    (CHIP_NUM(sc) == CHIP_NUM_57712)
1196 #define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1197 #define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1198 #define CHIP_IS_E2(sc)       (CHIP_IS_57712(sc) ||  \
1199                               CHIP_IS_57712_MF(sc))
1200
1201 #define CHIP_IS_57800(sc)    (CHIP_NUM(sc) == CHIP_NUM_57800)
1202 #define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1203 #define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1204 #define CHIP_IS_57810(sc)    (CHIP_NUM(sc) == CHIP_NUM_57810)
1205 #define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1206 #define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1207 #define CHIP_IS_57811(sc)    (CHIP_NUM(sc) == CHIP_NUM_57811)
1208 #define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1209 #define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1210 #define CHIP_IS_57840(sc)    ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS)  || \
1211                               (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1212                               (CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1213 #define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1214                               (CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1215 #define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1216
1217 #define CHIP_IS_E3(sc)      (CHIP_IS_57800(sc)    || \
1218                              CHIP_IS_57800_MF(sc) || \
1219                              CHIP_IS_57800_VF(sc) || \
1220                              CHIP_IS_57810(sc)    || \
1221                              CHIP_IS_57810_MF(sc) || \
1222                              CHIP_IS_57810_VF(sc) || \
1223                              CHIP_IS_57811(sc)    || \
1224                              CHIP_IS_57811_MF(sc) || \
1225                              CHIP_IS_57811_VF(sc) || \
1226                              CHIP_IS_57840(sc)    || \
1227                              CHIP_IS_57840_MF(sc) || \
1228                              CHIP_IS_57840_VF(sc))
1229 #define CHIP_IS_E3A0(sc)    (CHIP_IS_E3(sc) &&              \
1230                              (CHIP_REV(sc) == CHIP_REV_Ax))
1231 #define CHIP_IS_E3B0(sc)    (CHIP_IS_E3(sc) &&              \
1232                              (CHIP_REV(sc) == CHIP_REV_Bx))
1233
1234 #define USES_WARPCORE(sc)   (CHIP_IS_E3(sc))
1235 #define CHIP_IS_E2E3(sc)    (CHIP_IS_E2(sc) || \
1236                              CHIP_IS_E3(sc))
1237
1238 #define CHIP_IS_MF_CAP(sc)  (CHIP_IS_57711E(sc)  ||  \
1239                              CHIP_IS_57712_MF(sc) || \
1240                              CHIP_IS_E3(sc))
1241
1242 #define IS_VF(sc)           (CHIP_IS_57712_VF(sc) || \
1243                              CHIP_IS_57800_VF(sc) || \
1244                              CHIP_IS_57810_VF(sc) || \
1245                              CHIP_IS_57840_VF(sc))
1246 #define IS_PF(sc)           (!IS_VF(sc))
1247
1248 /*
1249  * This define is used in two main places:
1250  * 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1251  * to nic-only mode or to offload mode. Offload mode is configured if either
1252  * the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1253  * already registered for this port (which means that the user wants storage
1254  * services).
1255  * 2. During cnic-related load, to know if offload mode is already configured
1256  * in the HW or needs to be configrued. Since the transition from nic-mode to
1257  * offload-mode in HW causes traffic coruption, nic-mode is configured only
1258  * in ports on which storage services where never requested.
1259  */
1260 #define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1261
1262     uint8_t  chip_port_mode;
1263 #define CHIP_4_PORT_MODE        0x0
1264 #define CHIP_2_PORT_MODE        0x1
1265 #define CHIP_PORT_MODE_NONE     0x2
1266 #define CHIP_PORT_MODE(sc)      ((sc)->devinfo.chip_port_mode)
1267 #define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1268
1269     uint8_t int_block;
1270 #define INT_BLOCK_HC            0
1271 #define INT_BLOCK_IGU           1
1272 #define INT_BLOCK_MODE_NORMAL   0
1273 #define INT_BLOCK_MODE_BW_COMP  2
1274 #define CHIP_INT_MODE_IS_NBC(sc)                          \
1275     (!CHIP_IS_E1x(sc) &&                                  \
1276      !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1277 #define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1278
1279     uint32_t shmem_base;
1280     uint32_t shmem2_base;
1281     uint32_t bc_ver;
1282     char bc_ver_str[32];
1283     uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1284     struct bxe_mf_info mf_info;
1285
1286     int flash_size;
1287 #define NVRAM_1MB_SIZE      0x20000
1288 #define NVRAM_TIMEOUT_COUNT 30000
1289 #define NVRAM_PAGE_SIZE     256
1290
1291     /* PCIe capability information */
1292     uint32_t pcie_cap_flags;
1293 #define BXE_PM_CAPABLE_FLAG     0x00000001
1294 #define BXE_PCIE_CAPABLE_FLAG   0x00000002
1295 #define BXE_MSI_CAPABLE_FLAG    0x00000004
1296 #define BXE_MSIX_CAPABLE_FLAG   0x00000008
1297     uint16_t pcie_pm_cap_reg;
1298     uint16_t pcie_pcie_cap_reg;
1299     //uint16_t pcie_devctl;
1300     uint16_t pcie_link_width;
1301     uint16_t pcie_link_speed;
1302     uint16_t pcie_msi_cap_reg;
1303     uint16_t pcie_msix_cap_reg;
1304
1305     /* device configuration read from bootcode shared memory */
1306     uint32_t hw_config;
1307     uint32_t hw_config2;
1308 }; /* struct bxe_devinfo */
1309
1310 struct bxe_sp_objs {
1311     struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1312     struct ecore_queue_sp_obj q_obj; /* Queue State object */
1313 }; /* struct bxe_sp_objs */
1314
1315 /*
1316  * Data that will be used to create a link report message. We will keep the
1317  * data used for the last link report in order to prevent reporting the same
1318  * link parameters twice.
1319  */
1320 struct bxe_link_report_data {
1321     uint16_t      line_speed;        /* Effective line speed */
1322     unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1323 };
1324 enum {
1325     BXE_LINK_REPORT_FULL_DUPLEX,
1326     BXE_LINK_REPORT_LINK_DOWN,
1327     BXE_LINK_REPORT_RX_FC_ON,
1328     BXE_LINK_REPORT_TX_FC_ON
1329 };
1330
1331 /* Top level device private data structure. */
1332 struct bxe_softc {
1333     /*
1334      * First entry must be a pointer to the BSD ifnet struct which
1335      * has a first element of 'void *if_softc' (which is us). XXX
1336      */
1337     if_t            ifp;
1338     struct ifmedia  ifmedia; /* network interface media structure */
1339     int             media;
1340
1341     volatile int    state; /* device state */
1342 #define BXE_STATE_CLOSED                 0x0000
1343 #define BXE_STATE_OPENING_WAITING_LOAD   0x1000
1344 #define BXE_STATE_OPENING_WAITING_PORT   0x2000
1345 #define BXE_STATE_OPEN                   0x3000
1346 #define BXE_STATE_CLOSING_WAITING_HALT   0x4000
1347 #define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1348 #define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1349 #define BXE_STATE_DISABLED               0xD000
1350 #define BXE_STATE_DIAG                   0xE000
1351 #define BXE_STATE_ERROR                  0xF000
1352
1353     int flags;
1354 #define BXE_ONE_PORT_FLAG    0x00000001
1355 #define BXE_NO_ISCSI         0x00000002
1356 #define BXE_NO_FCOE          0x00000004
1357 #define BXE_ONE_PORT(sc)     (sc->flags & BXE_ONE_PORT_FLAG)
1358 //#define BXE_NO_WOL_FLAG      0x00000008
1359 //#define BXE_USING_DAC_FLAG   0x00000010
1360 //#define BXE_USING_MSIX_FLAG  0x00000020
1361 //#define BXE_USING_MSI_FLAG   0x00000040
1362 //#define BXE_DISABLE_MSI_FLAG 0x00000080
1363 #define BXE_NO_MCP_FLAG      0x00000200
1364 #define BXE_NOMCP(sc)        (sc->flags & BXE_NO_MCP_FLAG)
1365 //#define BXE_SAFC_TX_FLAG     0x00000400
1366 #define BXE_MF_FUNC_DIS      0x00000800
1367 #define BXE_TX_SWITCHING     0x00001000
1368 #define BXE_NO_PULSE         0x00002000
1369
1370     unsigned long debug; /* per-instance debug logging config */
1371
1372 #define MAX_BARS 5
1373     struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1374
1375     uint16_t doorbell_size;
1376
1377     /* periodic timer callout */
1378 #define PERIODIC_STOP 0
1379 #define PERIODIC_GO   1
1380     volatile unsigned long periodic_flags;
1381     struct callout         periodic_callout;
1382
1383     /* chip start/stop/reset taskqueue */
1384 #define CHIP_TQ_NONE   0
1385 #define CHIP_TQ_START  1
1386 #define CHIP_TQ_STOP   2
1387 #define CHIP_TQ_REINIT 3
1388     volatile unsigned long chip_tq_flags;
1389     struct task            chip_tq_task;
1390     struct taskqueue       *chip_tq;
1391     char                   chip_tq_name[32];
1392
1393     /* slowpath interrupt taskqueue */
1394     struct task      sp_tq_task;
1395     struct taskqueue *sp_tq;
1396     char             sp_tq_name[32];
1397
1398     struct bxe_fastpath fp[MAX_RSS_CHAINS];
1399     struct bxe_sp_objs  sp_objs[MAX_RSS_CHAINS];
1400
1401     device_t dev;  /* parent device handle */
1402     uint8_t  unit; /* driver instance number */
1403
1404     int pcie_bus;    /* PCIe bus number */
1405     int pcie_device; /* PCIe device/slot number */
1406     int pcie_func;   /* PCIe function number */
1407
1408     uint8_t pfunc_rel; /* function relative */
1409     uint8_t pfunc_abs; /* function absolute */
1410     uint8_t path_id;   /* function absolute */
1411 #define SC_PATH(sc)     (sc->path_id)
1412 #define SC_PORT(sc)     (sc->pfunc_rel & 1)
1413 #define SC_FUNC(sc)     (sc->pfunc_rel)
1414 #define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1415 #define SC_VN(sc)       (sc->pfunc_rel >> 1)
1416 #define SC_L_ID(sc)     (SC_VN(sc) << 2)
1417 #define PORT_ID(sc)     SC_PORT(sc)
1418 #define PATH_ID(sc)     SC_PATH(sc)
1419 #define VNIC_ID(sc)     SC_VN(sc)
1420 #define FUNC_ID(sc)     SC_FUNC(sc)
1421 #define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1422 #define SC_FW_MB_IDX_VN(sc, vn)                                \
1423     (SC_PORT(sc) + (vn) *                                      \
1424      ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1425 #define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1426
1427     int if_capen; /* enabled interface capabilities */
1428
1429     struct bxe_devinfo devinfo;
1430     char fw_ver_str[32];
1431     char mf_mode_str[32];
1432     char pci_link_str[32];
1433
1434     const struct iro *iro_array;
1435
1436 #ifdef BXE_CORE_LOCK_SX
1437     struct sx      core_sx;
1438     char           core_sx_name[32];
1439 #else
1440     struct mtx     core_mtx;
1441     char           core_mtx_name[32];
1442 #endif
1443     struct mtx     sp_mtx;
1444     char           sp_mtx_name[32];
1445     struct mtx     dmae_mtx;
1446     char           dmae_mtx_name[32];
1447     struct mtx     fwmb_mtx;
1448     char           fwmb_mtx_name[32];
1449     struct mtx     print_mtx;
1450     char           print_mtx_name[32];
1451     struct mtx     stats_mtx;
1452     char           stats_mtx_name[32];
1453     struct mtx     mcast_mtx;
1454     char           mcast_mtx_name[32];
1455
1456 #ifdef BXE_CORE_LOCK_SX
1457 #define BXE_CORE_TRYLOCK(sc)      sx_try_xlock(&sc->core_sx)
1458 #define BXE_CORE_LOCK(sc)         sx_xlock(&sc->core_sx)
1459 #define BXE_CORE_UNLOCK(sc)       sx_xunlock(&sc->core_sx)
1460 #define BXE_CORE_LOCK_ASSERT(sc)  sx_assert(&sc->core_sx, SA_XLOCKED)
1461 #else
1462 #define BXE_CORE_TRYLOCK(sc)      mtx_trylock(&sc->core_mtx)
1463 #define BXE_CORE_LOCK(sc)         mtx_lock(&sc->core_mtx)
1464 #define BXE_CORE_UNLOCK(sc)       mtx_unlock(&sc->core_mtx)
1465 #define BXE_CORE_LOCK_ASSERT(sc)  mtx_assert(&sc->core_mtx, MA_OWNED)
1466 #endif
1467
1468 #define BXE_SP_LOCK(sc)           mtx_lock(&sc->sp_mtx)
1469 #define BXE_SP_UNLOCK(sc)         mtx_unlock(&sc->sp_mtx)
1470 #define BXE_SP_LOCK_ASSERT(sc)    mtx_assert(&sc->sp_mtx, MA_OWNED)
1471
1472 #define BXE_DMAE_LOCK(sc)         mtx_lock(&sc->dmae_mtx)
1473 #define BXE_DMAE_UNLOCK(sc)       mtx_unlock(&sc->dmae_mtx)
1474 #define BXE_DMAE_LOCK_ASSERT(sc)  mtx_assert(&sc->dmae_mtx, MA_OWNED)
1475
1476 #define BXE_FWMB_LOCK(sc)         mtx_lock(&sc->fwmb_mtx)
1477 #define BXE_FWMB_UNLOCK(sc)       mtx_unlock(&sc->fwmb_mtx)
1478 #define BXE_FWMB_LOCK_ASSERT(sc)  mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1479
1480 #define BXE_PRINT_LOCK(sc)        mtx_lock(&sc->print_mtx)
1481 #define BXE_PRINT_UNLOCK(sc)      mtx_unlock(&sc->print_mtx)
1482 #define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1483
1484 #define BXE_STATS_LOCK(sc)        mtx_lock(&sc->stats_mtx)
1485 #define BXE_STATS_UNLOCK(sc)      mtx_unlock(&sc->stats_mtx)
1486 #define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1487
1488 #if __FreeBSD_version < 800000
1489 #define BXE_MCAST_LOCK(sc)        \
1490     do {                          \
1491         mtx_lock(&sc->mcast_mtx); \
1492         IF_ADDR_LOCK(sc->ifp);  \
1493     } while (0)
1494 #define BXE_MCAST_UNLOCK(sc)        \
1495     do {                            \
1496         IF_ADDR_UNLOCK(sc->ifp);  \
1497         mtx_unlock(&sc->mcast_mtx); \
1498     } while (0)
1499 #else
1500 #define BXE_MCAST_LOCK(sc)         \
1501     do {                           \
1502         mtx_lock(&sc->mcast_mtx);  \
1503         if_maddr_rlock(sc->ifp); \
1504     } while (0)
1505 #define BXE_MCAST_UNLOCK(sc)         \
1506     do {                             \
1507         if_maddr_runlock(sc->ifp); \
1508         mtx_unlock(&sc->mcast_mtx);  \
1509     } while (0)
1510 #endif
1511 #define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1512
1513     int dmae_ready;
1514 #define DMAE_READY(sc) (sc->dmae_ready)
1515
1516     struct ecore_credit_pool_obj vlans_pool;
1517     struct ecore_credit_pool_obj macs_pool;
1518     struct ecore_rx_mode_obj     rx_mode_obj;
1519     struct ecore_mcast_obj       mcast_obj;
1520     struct ecore_rss_config_obj  rss_conf_obj;
1521     struct ecore_func_sp_obj     func_obj;
1522
1523     uint16_t fw_seq;
1524     uint16_t fw_drv_pulse_wr_seq;
1525     uint32_t func_stx;
1526
1527     struct elink_params         link_params;
1528     struct elink_vars           link_vars;
1529     uint32_t                    link_cnt;
1530     struct bxe_link_report_data last_reported_link;
1531     char mac_addr_str[32];
1532
1533     int last_reported_link_state;
1534
1535     int tx_ring_size;
1536     int rx_ring_size;
1537     int wol;
1538
1539     int is_leader;
1540     int recovery_state;
1541 #define BXE_RECOVERY_DONE        1
1542 #define BXE_RECOVERY_INIT        2
1543 #define BXE_RECOVERY_WAIT        3
1544 #define BXE_RECOVERY_FAILED      4
1545 #define BXE_RECOVERY_NIC_LOADING 5
1546
1547     uint32_t rx_mode;
1548 #define BXE_RX_MODE_NONE     0
1549 #define BXE_RX_MODE_NORMAL   1
1550 #define BXE_RX_MODE_ALLMULTI 2
1551 #define BXE_RX_MODE_PROMISC  3
1552 #define BXE_MAX_MULTICAST    64
1553
1554     struct bxe_port port;
1555
1556     struct cmng_init cmng;
1557
1558     /* user configs */
1559     int      num_queues;
1560     int      max_rx_bufs;
1561     int      hc_rx_ticks;
1562     int      hc_tx_ticks;
1563     int      rx_budget;
1564     int      max_aggregation_size;
1565     int      mrrs;
1566     int      autogreeen;
1567 #define AUTO_GREEN_HW_DEFAULT 0
1568 #define AUTO_GREEN_FORCE_ON   1
1569 #define AUTO_GREEN_FORCE_OFF  2
1570     int      interrupt_mode;
1571 #define INTR_MODE_INTX 0
1572 #define INTR_MODE_MSI  1
1573 #define INTR_MODE_MSIX 2
1574     int      udp_rss;
1575
1576     /* interrupt allocations */
1577     struct bxe_intr intr[MAX_RSS_CHAINS+1];
1578     int             intr_count;
1579     uint8_t         igu_dsb_id;
1580     uint8_t         igu_base_sb;
1581     uint8_t         igu_sb_cnt;
1582     //uint8_t         min_msix_vec_cnt;
1583     uint32_t        igu_base_addr;
1584     //bus_addr_t      def_status_blk_mapping;
1585     uint8_t         base_fw_ndsb;
1586 #define DEF_SB_IGU_ID 16
1587 #define DEF_SB_ID     HC_SP_SB_ID
1588
1589     /* parent bus DMA tag  */
1590     bus_dma_tag_t parent_dma_tag;
1591
1592     /* default status block */
1593     struct bxe_dma              def_sb_dma;
1594     struct host_sp_status_block *def_sb;
1595     uint16_t                    def_idx;
1596     uint16_t                    def_att_idx;
1597     uint32_t                    attn_state;
1598     struct attn_route           attn_group[MAX_DYNAMIC_ATTN_GRPS];
1599
1600 /* general SP events - stats query, cfc delete, etc */
1601 #define HC_SP_INDEX_ETH_DEF_CONS         3
1602 /* EQ completions */
1603 #define HC_SP_INDEX_EQ_CONS              7
1604 /* FCoE L2 connection completions */
1605 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS  6
1606 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS  4
1607 /* iSCSI L2 */
1608 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS    5
1609 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1610
1611     /* event queue */
1612     struct bxe_dma        eq_dma;
1613     union event_ring_elem *eq;
1614     uint16_t              eq_prod;
1615     uint16_t              eq_cons;
1616     uint16_t              *eq_cons_sb;
1617 #define NUM_EQ_PAGES     1 /* must be a power of 2 */
1618 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1619 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1620 #define NUM_EQ_DESC      (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1621 #define EQ_DESC_MASK     (NUM_EQ_DESC - 1)
1622 #define MAX_EQ_AVAIL     (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1623 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1624 #define NEXT_EQ_IDX(x)                                      \
1625     ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1626          ((x) + 2) : ((x) + 1))
1627 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1628 #define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1629
1630     /* slow path */
1631     struct bxe_dma      sp_dma;
1632     struct bxe_slowpath *sp;
1633     unsigned long       sp_state;
1634
1635     /* slow path queue */
1636     struct bxe_dma spq_dma;
1637     struct eth_spe *spq;
1638 #define SP_DESC_CNT     (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1639 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1640 #define MAX_SPQ_PENDING 8
1641
1642     uint16_t       spq_prod_idx;
1643     struct eth_spe *spq_prod_bd;
1644     struct eth_spe *spq_last_bd;
1645     uint16_t       *dsb_sp_prod;
1646     //uint16_t       *spq_hw_con;
1647     //uint16_t       spq_left;
1648
1649     volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1650     volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1651
1652     /* fw decompression buffer */
1653     struct bxe_dma gz_buf_dma;
1654     void           *gz_buf;
1655     z_streamp      gz_strm;
1656     uint32_t       gz_outlen;
1657 #define GUNZIP_BUF(sc)    (sc->gz_buf)
1658 #define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1659 #define GUNZIP_PHYS(sc)   (sc->gz_buf_dma.paddr)
1660 #define FW_BUF_SIZE       0x40000
1661
1662     const struct raw_op *init_ops;
1663     const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1664     const uint32_t *init_data;        /* data blob, 32 bit granularity */
1665     uint32_t       init_mode_flags;
1666 #define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1667     /* PRAM blobs - raw data */
1668     const uint8_t *tsem_int_table_data;
1669     const uint8_t *tsem_pram_data;
1670     const uint8_t *usem_int_table_data;
1671     const uint8_t *usem_pram_data;
1672     const uint8_t *xsem_int_table_data;
1673     const uint8_t *xsem_pram_data;
1674     const uint8_t *csem_int_table_data;
1675     const uint8_t *csem_pram_data;
1676 #define INIT_OPS(sc)                 (sc->init_ops)
1677 #define INIT_OPS_OFFSETS(sc)         (sc->init_ops_offsets)
1678 #define INIT_DATA(sc)                (sc->init_data)
1679 #define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1680 #define INIT_TSEM_PRAM_DATA(sc)      (sc->tsem_pram_data)
1681 #define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1682 #define INIT_USEM_PRAM_DATA(sc)      (sc->usem_pram_data)
1683 #define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1684 #define INIT_XSEM_PRAM_DATA(sc)      (sc->xsem_pram_data)
1685 #define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1686 #define INIT_CSEM_PRAM_DATA(sc)      (sc->csem_pram_data)
1687
1688     /* ILT
1689      * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1690      * context size we need 8 ILT entries.
1691      */
1692 #define ILT_MAX_L2_LINES 8
1693     struct hw_context context[ILT_MAX_L2_LINES];
1694     struct ecore_ilt *ilt;
1695 #define ILT_MAX_LINES 256
1696
1697 /* max supported number of RSS queues: IGU SBs minus one for CNIC */
1698 #define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1699 /* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1700 #if 1
1701 #define BXE_L2_MAX_CID(sc)                                              \
1702     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1703 #else
1704 #define BXE_L2_MAX_CID(sc) /* OOO + FWD */                              \
1705     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1706 #endif
1707 #if 1
1708 #define BXE_L2_CID_COUNT(sc)                                             \
1709     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1710 #else
1711 #define BXE_L2_CID_COUNT(sc) /* OOO + FWD */                             \
1712     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1713 #endif
1714 #define L2_ILT_LINES(sc)                                \
1715     (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1716
1717     int qm_cid_count;
1718
1719     uint8_t dropless_fc;
1720
1721     /* total number of FW statistics requests */
1722     uint8_t fw_stats_num;
1723     /*
1724      * This is a memory buffer that will contain both statistics ramrod
1725      * request and data.
1726      */
1727     struct bxe_dma fw_stats_dma;
1728     /*
1729      * FW statistics request shortcut (points at the beginning of fw_stats
1730      * buffer).
1731      */
1732     int                     fw_stats_req_size;
1733     struct bxe_fw_stats_req *fw_stats_req;
1734     bus_addr_t              fw_stats_req_mapping;
1735     /*
1736      * FW statistics data shortcut (points at the beginning of fw_stats
1737      * buffer + fw_stats_req_size).
1738      */
1739     int                      fw_stats_data_size;
1740     struct bxe_fw_stats_data *fw_stats_data;
1741     bus_addr_t               fw_stats_data_mapping;
1742
1743     /* tracking a pending STAT_QUERY ramrod */
1744     uint16_t stats_pending;
1745     /* number of completed statistics ramrods */
1746     uint16_t stats_comp;
1747     uint16_t stats_counter;
1748     uint8_t  stats_init;
1749     int      stats_state;
1750
1751     struct bxe_eth_stats         eth_stats;
1752     struct host_func_stats       func_stats;
1753     struct bxe_eth_stats_old     eth_stats_old;
1754     struct bxe_net_stats_old     net_stats_old;
1755     struct bxe_fw_port_stats_old fw_stats_old;
1756
1757     struct dmae_cmd stats_dmae; /* used by dmae command loader */
1758     int                 executer_idx;
1759
1760     int mtu;
1761
1762     /* LLDP params */
1763     struct bxe_config_lldp_params lldp_config_params;
1764     /* DCB support on/off */
1765     int dcb_state;
1766 #define BXE_DCB_STATE_OFF 0
1767 #define BXE_DCB_STATE_ON  1
1768     /* DCBX engine mode */
1769     int dcbx_enabled;
1770 #define BXE_DCBX_ENABLED_OFF        0
1771 #define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1772 #define BXE_DCBX_ENABLED_ON_NEG_ON  2
1773 #define BXE_DCBX_ENABLED_INVALID    -1
1774     uint8_t dcbx_mode_uset;
1775     struct bxe_config_dcbx_params dcbx_config_params;
1776     struct bxe_dcbx_port_params   dcbx_port_params;
1777     int dcb_version;
1778
1779     uint8_t cnic_support;
1780     uint8_t cnic_enabled;
1781     uint8_t cnic_loaded;
1782 #define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1783 #define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1784 #define CNIC_LOADED(sc)  0 /* ((sc)->cnic_loaded) */
1785
1786     /* multiple tx classes of service */
1787     uint8_t max_cos;
1788 #define BXE_MAX_PRIORITY 8
1789     /* priority to cos mapping */
1790     uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1791
1792     int panic;
1793
1794     struct cdev *ioctl_dev;
1795
1796     void *grc_dump;
1797     unsigned int trigger_grcdump;
1798     unsigned int  grcdump_done;
1799     unsigned int grcdump_started;
1800     int bxe_pause_param;
1801     void *eeprom;
1802 }; /* struct bxe_softc */
1803
1804 /* IOCTL sub-commands for edebug and firmware upgrade */
1805 #define BXE_IOC_RD_NVRAM        1
1806 #define BXE_IOC_WR_NVRAM        2
1807 #define BXE_IOC_STATS_SHOW_NUM  3
1808 #define BXE_IOC_STATS_SHOW_STR  4
1809 #define BXE_IOC_STATS_SHOW_CNT  5
1810
1811 struct bxe_nvram_data {
1812     uint32_t op; /* ioctl sub-command */
1813     uint32_t offset;
1814     uint32_t len;
1815     uint32_t value[1]; /* variable */
1816 };
1817
1818 union bxe_stats_show_data {
1819     uint32_t op; /* ioctl sub-command */
1820
1821     struct {
1822         uint32_t num; /* return number of stats */
1823         uint32_t len; /* length of each string item */
1824     } desc;
1825
1826     /* variable length... */
1827     char str[1]; /* holds names of desc.num stats, each desc.len in length */
1828
1829     /* variable length... */
1830     uint64_t stats[1]; /* holds all stats */
1831 };
1832
1833 /* function init flags */
1834 #define FUNC_FLG_RSS     0x0001
1835 #define FUNC_FLG_STATS   0x0002
1836 /* FUNC_FLG_UNMATCHED       0x0004 */
1837 #define FUNC_FLG_TPA     0x0008
1838 #define FUNC_FLG_SPQ     0x0010
1839 #define FUNC_FLG_LEADING 0x0020 /* PF only */
1840
1841 struct bxe_func_init_params {
1842     bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1843     bus_addr_t spq_map;     /* (dma) valid if FUNC_FLG_SPQ */
1844     uint16_t   func_flgs;
1845     uint16_t   func_id;     /* abs function id */
1846     uint16_t   pf_id;
1847     uint16_t   spq_prod;    /* valid if FUNC_FLG_SPQ */
1848 };
1849
1850 /* memory resources reside at BARs 0, 2, 4 */
1851 /* Run `pciconf -lb` to see mappings */
1852 #define BAR0 0
1853 #define BAR1 2
1854 #define BAR2 4
1855
1856 #ifdef BXE_REG_NO_INLINE
1857
1858 uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1859 uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1860 uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1861
1862 void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1863 void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1864 void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1865
1866 #define REG_RD8(sc, offset)  bxe_reg_read8(sc, offset)
1867 #define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1868 #define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1869
1870 #define REG_WR8(sc, offset, val)  bxe_reg_write8(sc, offset, val)
1871 #define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1872 #define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1873
1874 #else /* not BXE_REG_NO_INLINE */
1875
1876 #define REG_WR8(sc, offset, val)            \
1877     bus_space_write_1(sc->bar[BAR0].tag,    \
1878                       sc->bar[BAR0].handle, \
1879                       offset, val)
1880
1881 #define REG_WR16(sc, offset, val)           \
1882     bus_space_write_2(sc->bar[BAR0].tag,    \
1883                       sc->bar[BAR0].handle, \
1884                       offset, val)
1885
1886 #define REG_WR32(sc, offset, val)           \
1887     bus_space_write_4(sc->bar[BAR0].tag,    \
1888                       sc->bar[BAR0].handle, \
1889                       offset, val)
1890
1891 #define REG_RD8(sc, offset)                \
1892     bus_space_read_1(sc->bar[BAR0].tag,    \
1893                      sc->bar[BAR0].handle, \
1894                      offset)
1895
1896 #define REG_RD16(sc, offset)               \
1897     bus_space_read_2(sc->bar[BAR0].tag,    \
1898                      sc->bar[BAR0].handle, \
1899                      offset)
1900
1901 #define REG_RD32(sc, offset)               \
1902     bus_space_read_4(sc->bar[BAR0].tag,    \
1903                      sc->bar[BAR0].handle, \
1904                      offset)
1905
1906 #endif /* BXE_REG_NO_INLINE */
1907
1908 #define REG_RD(sc, offset)      REG_RD32(sc, offset)
1909 #define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1910
1911 #define REG_RD_IND(sc, offset)      bxe_reg_rd_ind(sc, offset)
1912 #define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1913
1914 #define BXE_SP(sc, var) (&(sc)->sp->var)
1915 #define BXE_SP_MAPPING(sc, var) \
1916     (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1917
1918 #define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1919 #define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1920
1921 #define REG_RD_DMAE(sc, offset, valp, len32)               \
1922     do {                                                   \
1923         bxe_read_dmae(sc, offset, len32);                  \
1924         memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1925     } while (0)
1926
1927 #define REG_WR_DMAE(sc, offset, valp, len32)                            \
1928     do {                                                                \
1929         memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4);              \
1930         bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1931     } while (0)
1932
1933 #define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1934     REG_WR_DMAE(sc, offset, valp, len32)
1935
1936 #define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1937     REG_RD_DMAE(sc, offset, valp, len32)
1938
1939 #define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap)         \
1940     do {                                                           \
1941         /* if (le32_swap) {                                     */ \
1942         /*    BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1943         /* }                                                    */ \
1944         memcpy(GUNZIP_BUF(sc), data, len32 * 4);                   \
1945         ecore_write_big_buf_wb(sc, addr, len32);                   \
1946     } while (0)
1947
1948 #define BXE_DB_MIN_SHIFT 3   /* 8 bytes */
1949 #define BXE_DB_SHIFT     7   /* 128 bytes */
1950 #if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1951 #error "Minimum DB doorbell stride is 8"
1952 #endif
1953 #define DPM_TRIGGER_TYPE 0x40
1954 #define DOORBELL(sc, cid, val)                                              \
1955     do {                                                                    \
1956         bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle,          \
1957                           ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
1958                           (uint32_t)val);                                   \
1959     } while(0)
1960
1961 #define SHMEM_ADDR(sc, field)                                       \
1962     (sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
1963 #define SHMEM_RD(sc, field)      REG_RD(sc, SHMEM_ADDR(sc, field))
1964 #define SHMEM_RD16(sc, field)    REG_RD16(sc, SHMEM_ADDR(sc, field))
1965 #define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
1966
1967 #define SHMEM2_ADDR(sc, field)                                        \
1968     (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
1969 #define SHMEM2_HAS(sc, field)                                            \
1970     (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) >     \
1971                                  offsetof(struct shmem2_region, field)))
1972 #define SHMEM2_RD(sc, field)      REG_RD(sc, SHMEM2_ADDR(sc, field))
1973 #define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
1974
1975 #define MFCFG_ADDR(sc, field)                                  \
1976     (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
1977 #define MFCFG_RD(sc, field)      REG_RD(sc, MFCFG_ADDR(sc, field))
1978 #define MFCFG_RD16(sc, field)    REG_RD16(sc, MFCFG_ADDR(sc, field))
1979 #define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
1980
1981 /* DMAE command defines */
1982
1983 #define DMAE_TIMEOUT      -1
1984 #define DMAE_PCI_ERROR    -2 /* E2 and onward */
1985 #define DMAE_NOT_RDY      -3
1986 #define DMAE_PCI_ERR_FLAG 0x80000000
1987
1988 #define DMAE_SRC_PCI      0
1989 #define DMAE_SRC_GRC      1
1990
1991 #define DMAE_DST_NONE     0
1992 #define DMAE_DST_PCI      1
1993 #define DMAE_DST_GRC      2
1994
1995 #define DMAE_COMP_PCI     0
1996 #define DMAE_COMP_GRC     1
1997
1998 #define DMAE_COMP_REGULAR 0
1999 #define DMAE_COM_SET_ERR  1
2000
2001 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_CMD_SRC_SHIFT)
2002 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_CMD_SRC_SHIFT)
2003 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_CMD_DST_SHIFT)
2004 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_CMD_DST_SHIFT)
2005
2006 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_CMD_C_DST_SHIFT)
2007 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_CMD_C_DST_SHIFT)
2008
2009 #define DMAE_CMD_ENDIANITY_NO_SWAP   (0 << DMAE_CMD_ENDIANITY_SHIFT)
2010 #define DMAE_CMD_ENDIANITY_B_SWAP    (1 << DMAE_CMD_ENDIANITY_SHIFT)
2011 #define DMAE_CMD_ENDIANITY_DW_SWAP   (2 << DMAE_CMD_ENDIANITY_SHIFT)
2012 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_CMD_ENDIANITY_SHIFT)
2013
2014 #define DMAE_CMD_PORT_0 0
2015 #define DMAE_CMD_PORT_1 DMAE_CMD_PORT
2016
2017 #define DMAE_SRC_PF 0
2018 #define DMAE_SRC_VF 1
2019
2020 #define DMAE_DST_PF 0
2021 #define DMAE_DST_VF 1
2022
2023 #define DMAE_C_SRC 0
2024 #define DMAE_C_DST 1
2025
2026 #define DMAE_LEN32_RD_MAX     0x80
2027 #define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
2028
2029 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
2030
2031 #define MAX_DMAE_C_PER_PORT 8
2032 #define INIT_DMAE_C(sc)     ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
2033 #define PMF_DMAE_C(sc)      ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
2034
2035 static const uint32_t dmae_reg_go_c[] = {
2036     DMAE_REG_GO_C0,  DMAE_REG_GO_C1,  DMAE_REG_GO_C2,  DMAE_REG_GO_C3,
2037     DMAE_REG_GO_C4,  DMAE_REG_GO_C5,  DMAE_REG_GO_C6,  DMAE_REG_GO_C7,
2038     DMAE_REG_GO_C8,  DMAE_REG_GO_C9,  DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2039     DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2040 };
2041
2042 #define ATTN_NIG_FOR_FUNC     (1L << 8)
2043 #define ATTN_SW_TIMER_4_FUNC  (1L << 9)
2044 #define GPIO_2_FUNC           (1L << 10)
2045 #define GPIO_3_FUNC           (1L << 11)
2046 #define GPIO_4_FUNC           (1L << 12)
2047 #define ATTN_GENERAL_ATTN_1   (1L << 13)
2048 #define ATTN_GENERAL_ATTN_2   (1L << 14)
2049 #define ATTN_GENERAL_ATTN_3   (1L << 15)
2050 #define ATTN_GENERAL_ATTN_4   (1L << 13)
2051 #define ATTN_GENERAL_ATTN_5   (1L << 14)
2052 #define ATTN_GENERAL_ATTN_6   (1L << 15)
2053 #define ATTN_HARD_WIRED_MASK  0xff00
2054 #define ATTENTION_ID          4
2055
2056 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2057     AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2058
2059 #define MAX_IGU_ATTN_ACK_TO 100
2060
2061 #define STORM_ASSERT_ARRAY_SIZE 50
2062
2063 #define BXE_PMF_LINK_ASSERT(sc) \
2064     GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2065
2066 #define BXE_MC_ASSERT_BITS \
2067     (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2068      GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2069      GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2070      GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2071
2072 #define BXE_MCP_ASSERT \
2073     GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2074
2075 #define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2076 #define BXE_GRC_RSV     (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2077                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2078                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2079                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2080                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2081                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2082
2083 #define MULTI_MASK 0x7f
2084
2085 #define PFS_PER_PORT(sc)                               \
2086     ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2087 #define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2088
2089 #define FIRST_ABS_FUNC_IN_PORT(sc)                    \
2090     ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ?    \
2091      PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2092
2093 #define FOREACH_ABS_FUNC_IN_PORT(sc, i)            \
2094     for ((i) = FIRST_ABS_FUNC_IN_PORT(sc);         \
2095          (i) < MAX_FUNC_NUM;                       \
2096          (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2097
2098 #define BXE_SWCID_SHIFT 17
2099 #define BXE_SWCID_MASK  ((0x1 << BXE_SWCID_SHIFT) - 1)
2100
2101 #define SW_CID(x)  (le32toh(x) & BXE_SWCID_MASK)
2102 #define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2103
2104 #define CQE_TYPE(cqe_fp_flags)   ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2105 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2106 #define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2107 #define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2108 #define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2109
2110 /* must be used on a CID before placing it on a HW ring */
2111 #define HW_CID(sc, x) \
2112     ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2113
2114 #define SPEED_10    10
2115 #define SPEED_100   100
2116 #define SPEED_1000  1000
2117 #define SPEED_2500  2500
2118 #define SPEED_10000 10000
2119
2120 #define PCI_PM_D0    1
2121 #define PCI_PM_D3hot 2
2122
2123 #ifndef DUPLEX_UNKNOWN
2124 #define DUPLEX_UNKNOWN (0xff)
2125 #endif
2126
2127 #ifndef SPEED_UNKNOWN
2128 #define SPEED_UNKNOWN (-1)
2129 #endif
2130
2131 /* Enable or disable autonegotiation. */
2132 #define AUTONEG_DISABLE         0x00
2133 #define AUTONEG_ENABLE          0x01
2134
2135 /* Which connector port. */
2136 #define PORT_TP                 0x00
2137 #define PORT_AUI                0x01
2138 #define PORT_MII                0x02
2139 #define PORT_FIBRE              0x03
2140 #define PORT_BNC                0x04
2141 #define PORT_DA                 0x05
2142 #define PORT_NONE               0xef
2143 #define PORT_OTHER              0xff
2144
2145 int  bxe_test_bit(int nr, volatile unsigned long * addr);
2146 void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2147 void bxe_clear_bit(int nr, volatile unsigned long * addr);
2148 int  bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2149 int  bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2150 int  bxe_cmpxchg(volatile int *addr, int old, int new);
2151
2152 void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2153                     uint32_t val);
2154 uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2155
2156
2157 int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2158                   struct bxe_dma *dma, const char *msg);
2159 void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2160
2161 uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2162 uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2163 uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2164                          uint8_t dst_type, uint8_t with_comp,
2165                          uint8_t comp_type);
2166 void bxe_post_dmae(struct bxe_softc *sc, struct dmae_cmd *dmae, int idx);
2167 void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2168 void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2169                     uint32_t dst_addr, uint32_t len32);
2170 void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2171                              uint32_t addr, uint32_t len);
2172
2173 void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2174                             uint32_t cid);
2175 void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2176                                   uint8_t sb_index, uint8_t disable,
2177                                   uint16_t usec);
2178
2179 int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2180                 uint32_t data_hi, uint32_t data_lo, int cmd_type);
2181
2182 void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2183                     uint8_t segment, uint16_t index, uint8_t op,
2184                     uint8_t update);
2185
2186 void ecore_init_e1_firmware(struct bxe_softc *sc);
2187 void ecore_init_e1h_firmware(struct bxe_softc *sc);
2188 void ecore_init_e2_firmware(struct bxe_softc *sc);
2189
2190 void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2191                                size_t size, uint32_t *data);
2192
2193 /*********************/
2194 /* LOGGING AND DEBUG */
2195 /*********************/
2196
2197 /* debug logging codepaths */
2198 #define DBG_LOAD   0x00000001 /* load and unload    */
2199 #define DBG_INTR   0x00000002 /* interrupt handling */
2200 #define DBG_SP     0x00000004 /* slowpath handling  */
2201 #define DBG_STATS  0x00000008 /* stats updates      */
2202 #define DBG_TX     0x00000010 /* packet transmit    */
2203 #define DBG_RX     0x00000020 /* packet receive     */
2204 #define DBG_PHY    0x00000040 /* phy/link handling  */
2205 #define DBG_IOCTL  0x00000080 /* ioctl handling     */
2206 #define DBG_MBUF   0x00000100 /* dumping mbuf info  */
2207 #define DBG_REGS   0x00000200 /* register access    */
2208 #define DBG_LRO    0x00000400 /* lro processing     */
2209 #define DBG_ASSERT 0x80000000 /* debug assert       */
2210 #define DBG_ALL    0xFFFFFFFF /* flying monkeys     */
2211
2212 #define DBASSERT(sc, exp, msg)                         \
2213     do {                                               \
2214         if (__predict_false(sc->debug & DBG_ASSERT)) { \
2215             if (__predict_false(!(exp))) {             \
2216                 panic msg;                             \
2217             }                                          \
2218         }                                              \
2219     } while (0)
2220
2221 /* log a debug message */
2222 #define BLOGD(sc, codepath, format, args...)           \
2223     do {                                               \
2224         if (__predict_false(sc->debug & (codepath))) { \
2225             device_printf((sc)->dev,                   \
2226                           "%s(%s:%d) " format,         \
2227                           __FUNCTION__,                \
2228                           __FILE__,                    \
2229                           __LINE__,                    \
2230                           ## args);                    \
2231         }                                              \
2232     } while(0)
2233
2234 /* log a info message */
2235 #define BLOGI(sc, format, args...)             \
2236     do {                                       \
2237         if (__predict_false(sc->debug)) {      \
2238             device_printf((sc)->dev,           \
2239                           "%s(%s:%d) " format, \
2240                           __FUNCTION__,        \
2241                           __FILE__,            \
2242                           __LINE__,            \
2243                           ## args);            \
2244         } else {                               \
2245             device_printf((sc)->dev,           \
2246                           format,              \
2247                           ## args);            \
2248         }                                      \
2249     } while(0)
2250
2251 /* log a warning message */
2252 #define BLOGW(sc, format, args...)                      \
2253     do {                                                \
2254         if (__predict_false(sc->debug)) {               \
2255             device_printf((sc)->dev,                    \
2256                           "%s(%s:%d) WARNING: " format, \
2257                           __FUNCTION__,                 \
2258                           __FILE__,                     \
2259                           __LINE__,                     \
2260                           ## args);                     \
2261         } else {                                        \
2262             device_printf((sc)->dev,                    \
2263                           "WARNING: " format,           \
2264                           ## args);                     \
2265         }                                               \
2266     } while(0)
2267
2268 /* log a error message */
2269 #define BLOGE(sc, format, args...)                    \
2270     do {                                              \
2271         if (__predict_false(sc->debug)) {             \
2272             device_printf((sc)->dev,                  \
2273                           "%s(%s:%d) ERROR: " format, \
2274                           __FUNCTION__,               \
2275                           __FILE__,                   \
2276                           __LINE__,                   \
2277                           ## args);                   \
2278         } else {                                      \
2279             device_printf((sc)->dev,                  \
2280                           "ERROR: " format,           \
2281                           ## args);                   \
2282         }                                             \
2283     } while(0)
2284
2285 #ifdef ECORE_STOP_ON_ERROR
2286
2287 #define bxe_panic(sc, msg) \
2288     do {                   \
2289         panic msg;         \
2290     } while (0)
2291
2292 #else
2293
2294 #define bxe_panic(sc, msg) \
2295     device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__);
2296
2297 #endif
2298
2299 #define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2300 #define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2301
2302 void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2303                   uint8_t *mem, uint32_t len);
2304 void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2305                         struct mbuf *m, uint8_t contents);
2306
2307 #if __FreeBSD_version >= 800000
2308 #if (__FreeBSD_version >= 1001513 && __FreeBSD_version < 1100000) ||\
2309     __FreeBSD_version >= 1100048
2310 #define BXE_SET_FLOWID(m) M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE)
2311 #define BXE_VALID_FLOWID(m) (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2312 #else
2313 #define BXE_VALID_FLOWID(m) ((m->m_flags & M_FLOWID) != 0)
2314 #define BXE_SET_FLOWID(m) m->m_flags |= M_FLOWID
2315 #endif
2316 #endif /* #if __FreeBSD_version >= 800000 */
2317
2318 /***********/
2319 /* INLINES */
2320 /***********/
2321
2322 static inline uint32_t
2323 reg_poll(struct bxe_softc *sc,
2324          uint32_t         reg,
2325          uint32_t         expected,
2326          int              ms,
2327          int              wait)
2328 {
2329     uint32_t val;
2330
2331     do {
2332         val = REG_RD(sc, reg);
2333         if (val == expected) {
2334             break;
2335         }
2336         ms -= wait;
2337         DELAY(wait * 1000);
2338     } while (ms > 0);
2339
2340     return (val);
2341 }
2342
2343 static inline void
2344 bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2345 {
2346     mb(); /* status block is written to by the chip */
2347     fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2348 }
2349
2350 static inline void
2351 bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2352                    uint8_t          igu_sb_id,
2353                    uint8_t          segment,
2354                    uint16_t         index,
2355                    uint8_t          op,
2356                    uint8_t          update,
2357                    uint32_t         igu_addr)
2358 {
2359     struct igu_regular cmd_data = {0};
2360
2361     cmd_data.sb_id_and_flags =
2362         ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2363          (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2364          (update << IGU_REGULAR_BUPDATE_SHIFT) |
2365          (op << IGU_REGULAR_ENABLE_INT_SHIFT));
2366
2367     BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2368             cmd_data.sb_id_and_flags, igu_addr);
2369     REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2370
2371     /* Make sure that ACK is written */
2372     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2373                       BUS_SPACE_BARRIER_WRITE);
2374     mb();
2375 }
2376
2377 static inline void
2378 bxe_hc_ack_sb(struct bxe_softc *sc,
2379               uint8_t          sb_id,
2380               uint8_t          storm,
2381               uint16_t         index,
2382               uint8_t          op,
2383               uint8_t          update)
2384 {
2385     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2386                         COMMAND_REG_INT_ACK);
2387     struct igu_ack_register igu_ack;
2388
2389     igu_ack.status_block_index = index;
2390     igu_ack.sb_id_and_flags =
2391         ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2392          (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2393          (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2394          (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2395
2396     REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2397
2398     /* Make sure that ACK is written */
2399     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2400                       BUS_SPACE_BARRIER_WRITE);
2401     mb();
2402 }
2403
2404 static inline void
2405 bxe_ack_sb(struct bxe_softc *sc,
2406            uint8_t          igu_sb_id,
2407            uint8_t          storm,
2408            uint16_t         index,
2409            uint8_t          op,
2410            uint8_t          update)
2411 {
2412     if (sc->devinfo.int_block == INT_BLOCK_HC)
2413         bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2414     else {
2415         uint8_t segment;
2416         if (CHIP_INT_MODE_IS_BC(sc)) {
2417             segment = storm;
2418         } else if (igu_sb_id != sc->igu_dsb_id) {
2419             segment = IGU_SEG_ACCESS_DEF;
2420         } else if (storm == ATTENTION_ID) {
2421             segment = IGU_SEG_ACCESS_ATTN;
2422         } else {
2423             segment = IGU_SEG_ACCESS_DEF;
2424         }
2425         bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2426     }
2427 }
2428
2429 static inline uint16_t
2430 bxe_hc_ack_int(struct bxe_softc *sc)
2431 {
2432     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2433                         COMMAND_REG_SIMD_MASK);
2434     uint32_t result = REG_RD(sc, hc_addr);
2435
2436     mb();
2437     return (result);
2438 }
2439
2440 static inline uint16_t
2441 bxe_igu_ack_int(struct bxe_softc *sc)
2442 {
2443     uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2444     uint32_t result = REG_RD(sc, igu_addr);
2445
2446     BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2447           result, igu_addr);
2448
2449     mb();
2450     return (result);
2451 }
2452
2453 static inline uint16_t
2454 bxe_ack_int(struct bxe_softc *sc)
2455 {
2456     mb();
2457     if (sc->devinfo.int_block == INT_BLOCK_HC) {
2458         return (bxe_hc_ack_int(sc));
2459     } else {
2460         return (bxe_igu_ack_int(sc));
2461     }
2462 }
2463
2464 static inline int
2465 func_by_vn(struct bxe_softc *sc,
2466            int              vn)
2467 {
2468     return (2 * vn + SC_PORT(sc));
2469 }
2470
2471 /*
2472  * Statistics ID are global per chip/path, while Client IDs for E1x
2473  * are per port.
2474  */
2475 static inline uint8_t
2476 bxe_stats_id(struct bxe_fastpath *fp)
2477 {
2478     struct bxe_softc *sc = fp->sc;
2479
2480     if (!CHIP_IS_E1x(sc)) {
2481         return (fp->cl_id);
2482     }
2483
2484     return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2485 }
2486
2487 #endif /* __BXE_H__ */
2488