]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/common/t4_hw.c
Merge llvm, clang, compiler-rt, libc++, lld, and lldb release_80 branch
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / common / t4_hw.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_inet.h"
33
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41
42 #undef msleep
43 #define msleep(x) do { \
44         if (cold) \
45                 DELAY((x) * 1000); \
46         else \
47                 pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49
50 /**
51  *      t4_wait_op_done_val - wait until an operation is completed
52  *      @adapter: the adapter performing the operation
53  *      @reg: the register to check for completion
54  *      @mask: a single-bit field within @reg that indicates completion
55  *      @polarity: the value of the field when the operation is completed
56  *      @attempts: number of check iterations
57  *      @delay: delay in usecs between iterations
58  *      @valp: where to store the value of the register at completion time
59  *
60  *      Wait until an operation is completed by checking a bit in a register
61  *      up to @attempts times.  If @valp is not NULL the value of the register
62  *      at the time it indicated completion is stored there.  Returns 0 if the
63  *      operation completes and -EAGAIN otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66                                int polarity, int attempts, int delay, u32 *valp)
67 {
68         while (1) {
69                 u32 val = t4_read_reg(adapter, reg);
70
71                 if (!!(val & mask) == polarity) {
72                         if (valp)
73                                 *valp = val;
74                         return 0;
75                 }
76                 if (--attempts == 0)
77                         return -EAGAIN;
78                 if (delay)
79                         udelay(delay);
80         }
81 }
82
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84                                   int polarity, int attempts, int delay)
85 {
86         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87                                    delay, NULL);
88 }
89
90 /**
91  *      t4_set_reg_field - set a register field to a value
92  *      @adapter: the adapter to program
93  *      @addr: the register address
94  *      @mask: specifies the portion of the register to modify
95  *      @val: the new value for the register field
96  *
97  *      Sets a register field specified by the supplied mask to the
98  *      given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101                       u32 val)
102 {
103         u32 v = t4_read_reg(adapter, addr) & ~mask;
104
105         t4_write_reg(adapter, addr, v | val);
106         (void) t4_read_reg(adapter, addr);      /* flush */
107 }
108
109 /**
110  *      t4_read_indirect - read indirectly addressed registers
111  *      @adap: the adapter
112  *      @addr_reg: register holding the indirect address
113  *      @data_reg: register holding the value of the indirect register
114  *      @vals: where the read register values are stored
115  *      @nregs: how many indirect registers to read
116  *      @start_idx: index of first indirect register to read
117  *
118  *      Reads registers that are accessed indirectly through an address/data
119  *      register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122                              unsigned int data_reg, u32 *vals,
123                              unsigned int nregs, unsigned int start_idx)
124 {
125         while (nregs--) {
126                 t4_write_reg(adap, addr_reg, start_idx);
127                 *vals++ = t4_read_reg(adap, data_reg);
128                 start_idx++;
129         }
130 }
131
132 /**
133  *      t4_write_indirect - write indirectly addressed registers
134  *      @adap: the adapter
135  *      @addr_reg: register holding the indirect addresses
136  *      @data_reg: register holding the value for the indirect registers
137  *      @vals: values to write
138  *      @nregs: how many indirect registers to write
139  *      @start_idx: address of first indirect register to write
140  *
141  *      Writes a sequential block of registers that are accessed indirectly
142  *      through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145                        unsigned int data_reg, const u32 *vals,
146                        unsigned int nregs, unsigned int start_idx)
147 {
148         while (nregs--) {
149                 t4_write_reg(adap, addr_reg, start_idx++);
150                 t4_write_reg(adap, data_reg, *vals++);
151         }
152 }
153
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166         u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167         u32 val;
168
169         if (chip_id(adap) <= CHELSIO_T5)
170                 req |= F_ENABLE;
171         else
172                 req |= F_T6_ENABLE;
173
174         if (is_t4(adap))
175                 req |= F_LOCALCFG;
176
177         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178         val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179
180         /*
181          * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182          * Configuration Space read.  (None of the other fields matter when
183          * F_ENABLE is 0 so a simple register write is easier than a
184          * read-modify-write via t4_set_reg_field().)
185          */
186         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187
188         return val;
189 }
190
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201         static const char *const reason[] = {
202                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
203                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
204                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
205                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
206                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
208                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
209                 "Reserved",                     /* reserved */
210         };
211         u32 pcie_fw;
212
213         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214         if (pcie_fw & F_PCIE_FW_ERR) {
215                 adap->flags &= ~FW_OK;
216                 CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217                     reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218                 if (pcie_fw != 0xffffffff)
219                         t4_os_dump_devlog(adap);
220         }
221 }
222
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227                          u32 mbox_addr)
228 {
229         for ( ; nflit; nflit--, mbox_addr += 8)
230                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238         CH_ALERT(adap,
239                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240                   asrt->u.assert.filename_0_7,
241                   be32_to_cpu(asrt->u.assert.line),
242                   be32_to_cpu(asrt->u.assert.x),
243                   be32_to_cpu(asrt->u.assert.y));
244 }
245
246 struct port_tx_state {
247         uint64_t rx_pause;
248         uint64_t tx_frames;
249 };
250
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254         uint32_t rx_pause_reg, tx_frames_reg;
255
256         if (is_t4(sc)) {
257                 tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258                 rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259         } else {
260                 tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261                 rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262         }
263
264         tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265         tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271         int i;
272
273         for_each_port(sc, i)
274                 read_tx_state_one(sc, i, &tx_state[i]);
275 }
276
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280         uint32_t port_ctl_reg;
281         uint64_t tx_frames, rx_pause;
282         int i;
283
284         for_each_port(sc, i) {
285                 rx_pause = tx_state[i].rx_pause;
286                 tx_frames = tx_state[i].tx_frames;
287                 read_tx_state_one(sc, i, &tx_state[i]); /* update */
288
289                 if (is_t4(sc))
290                         port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291                 else
292                         port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293                 if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294                     rx_pause != tx_state[i].rx_pause &&
295                     tx_frames == tx_state[i].tx_frames) {
296                         t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297                         mdelay(1);
298                         t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299                 }
300         }
301 }
302
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *      @adap: the adapter
307  *      @mbox: index of the mailbox to use
308  *      @cmd: the command to write
309  *      @size: command length in bytes
310  *      @rpl: where to optionally store the reply
311  *      @sleep_ok: if true we may sleep while awaiting command completion
312  *      @timeout: time to wait for command to finish before timing out
313  *              (negative implies @sleep_ok=false)
314  *
315  *      Sends the given command to FW through the selected mailbox and waits
316  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *      store the FW's reply to the command.  The command and its optional
318  *      reply are of the same length.  Some FW commands like RESET and
319  *      INITIALIZE can take a considerable amount of time to execute.
320  *      @sleep_ok determines whether we may sleep while awaiting the response.
321  *      If sleeping is allowed we use progressive backoff otherwise we spin.
322  *      Note that passing in a negative @timeout is an alternate mechanism
323  *      for specifying @sleep_ok=false.  This is useful when a higher level
324  *      interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *      The return value is 0 on success or a negative errno on failure.  A
327  *      failure can happen either because we are not able to execute the
328  *      command or FW executes it but signals an error.  In the latter case
329  *      the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332                             int size, void *rpl, bool sleep_ok, int timeout)
333 {
334         /*
335          * We delay in small increments at first in an effort to maintain
336          * responsiveness for simple, fast executing commands but then back
337          * off to larger delays to a maximum retry delay.
338          */
339         static const int delay[] = {
340                 1, 1, 3, 5, 10, 10, 20, 50, 100
341         };
342         u32 v;
343         u64 res;
344         int i, ms, delay_idx, ret, next_tx_check;
345         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347         u32 ctl;
348         __be64 cmd_rpl[MBOX_LEN/8];
349         u32 pcie_fw;
350         struct port_tx_state tx_state[MAX_NPORTS];
351
352         if (adap->flags & CHK_MBOX_ACCESS)
353                 ASSERT_SYNCHRONIZED_OP(adap);
354
355         if (size <= 0 || (size & 15) || size > MBOX_LEN)
356                 return -EINVAL;
357
358         if (adap->flags & IS_VF) {
359                 if (is_t6(adap))
360                         data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361                 else
362                         data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363                 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364         }
365
366         /*
367          * If we have a negative timeout, that implies that we can't sleep.
368          */
369         if (timeout < 0) {
370                 sleep_ok = false;
371                 timeout = -timeout;
372         }
373
374         /*
375          * Attempt to gain access to the mailbox.
376          */
377         for (i = 0; i < 4; i++) {
378                 ctl = t4_read_reg(adap, ctl_reg);
379                 v = G_MBOWNER(ctl);
380                 if (v != X_MBOWNER_NONE)
381                         break;
382         }
383
384         /*
385          * If we were unable to gain access, report the error to our caller.
386          */
387         if (v != X_MBOWNER_PL) {
388                 t4_report_fw_error(adap);
389                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390                 return ret;
391         }
392
393         /*
394          * If we gain ownership of the mailbox and there's a "valid" message
395          * in it, this is likely an asynchronous error message from the
396          * firmware.  So we'll report that and then proceed on with attempting
397          * to issue our own command ... which may well fail if the error
398          * presaged the firmware crashing ...
399          */
400         if (ctl & F_MBMSGVALID) {
401                 CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402         }
403
404         /*
405          * Copy in the new mailbox command and send it on its way ...
406          */
407         memset(cmd_rpl, 0, sizeof(cmd_rpl));
408         memcpy(cmd_rpl, cmd, size);
409         CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410         for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411                 t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412
413         if (adap->flags & IS_VF) {
414                 /*
415                  * For the VFs, the Mailbox Data "registers" are
416                  * actually backed by T4's "MA" interface rather than
417                  * PL Registers (as is the case for the PFs).  Because
418                  * these are in different coherency domains, the write
419                  * to the VF's PL-register-backed Mailbox Control can
420                  * race in front of the writes to the MA-backed VF
421                  * Mailbox Data "registers".  So we need to do a
422                  * read-back on at least one byte of the VF Mailbox
423                  * Data registers before doing the write to the VF
424                  * Mailbox Control register.
425                  */
426                 t4_read_reg(adap, data_reg);
427         }
428
429         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430         read_tx_state(adap, &tx_state[0]);      /* also flushes the write_reg */
431         next_tx_check = 1000;
432         delay_idx = 0;
433         ms = delay[0];
434
435         /*
436          * Loop waiting for the reply; bail out if we time out or the firmware
437          * reports an error.
438          */
439         pcie_fw = 0;
440         for (i = 0; i < timeout; i += ms) {
441                 if (!(adap->flags & IS_VF)) {
442                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443                         if (pcie_fw & F_PCIE_FW_ERR)
444                                 break;
445                 }
446
447                 if (i >= next_tx_check) {
448                         check_tx_state(adap, &tx_state[0]);
449                         next_tx_check = i + 1000;
450                 }
451
452                 if (sleep_ok) {
453                         ms = delay[delay_idx];  /* last element may repeat */
454                         if (delay_idx < ARRAY_SIZE(delay) - 1)
455                                 delay_idx++;
456                         msleep(ms);
457                 } else {
458                         mdelay(ms);
459                 }
460
461                 v = t4_read_reg(adap, ctl_reg);
462                 if (v == X_CIM_PF_NOACCESS)
463                         continue;
464                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
465                         if (!(v & F_MBMSGVALID)) {
466                                 t4_write_reg(adap, ctl_reg,
467                                              V_MBOWNER(X_MBOWNER_NONE));
468                                 continue;
469                         }
470
471                         /*
472                          * Retrieve the command reply and release the mailbox.
473                          */
474                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475                         CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477
478                         res = be64_to_cpu(cmd_rpl[0]);
479                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480                                 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481                                 res = V_FW_CMD_RETVAL(EIO);
482                         } else if (rpl)
483                                 memcpy(rpl, cmd_rpl, size);
484                         return -G_FW_CMD_RETVAL((int)res);
485                 }
486         }
487
488         /*
489          * We timed out waiting for a reply to our mailbox command.  Report
490          * the error and also check to see if the firmware reported any
491          * errors ...
492          */
493         CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494             *(const u8 *)cmd, mbox, pcie_fw);
495         CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496         CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497
498         if (pcie_fw & F_PCIE_FW_ERR) {
499                 ret = -ENXIO;
500                 t4_report_fw_error(adap);
501         } else {
502                 ret = -ETIMEDOUT;
503                 t4_os_dump_devlog(adap);
504         }
505
506         t4_fatal_err(adap, true);
507         return ret;
508 }
509
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511                     void *rpl, bool sleep_ok)
512 {
513                 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514                                                sleep_ok, FW_CMD_MAX_TIMEOUT);
515
516 }
517
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520         u32 edc_ecc_err_addr_reg;
521         u32 edc_bist_status_rdata_reg;
522
523         if (is_t4(adap)) {
524                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525                 return 0;
526         }
527         if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529                 return 0;
530         }
531
532         edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533         edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534
535         CH_WARN(adap,
536                 "edc%d err addr 0x%x: 0x%x.\n",
537                 idx, edc_ecc_err_addr_reg,
538                 t4_read_reg(adap, edc_ecc_err_addr_reg));
539         CH_WARN(adap,
540                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541                 edc_bist_status_rdata_reg,
542                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551
552         return 0;
553 }
554
555 /**
556  *      t4_mc_read - read from MC through backdoor accesses
557  *      @adap: the adapter
558  *      @idx: which MC to access
559  *      @addr: address of first byte requested
560  *      @data: 64 bytes of data containing the requested address
561  *      @ecc: where to store the corresponding 64-bit ECC word
562  *
563  *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *      that covers the requested address @addr.  If @parity is not %NULL it
565  *      is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569         int i;
570         u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571         u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572
573         if (is_t4(adap)) {
574                 mc_bist_cmd_reg = A_MC_BIST_CMD;
575                 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576                 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577                 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578                 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579         } else {
580                 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581                 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582                 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583                 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584                                                   idx);
585                 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586                                                   idx);
587         }
588
589         if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590                 return -EBUSY;
591         t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592         t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593         t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594         t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595                      F_START_BIST | V_BIST_CMD_GAP(1));
596         i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597         if (i)
598                 return i;
599
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601
602         for (i = 15; i >= 0; i--)
603                 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604         if (ecc)
605                 *ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607         return 0;
608 }
609
610 /**
611  *      t4_edc_read - read from EDC through backdoor accesses
612  *      @adap: the adapter
613  *      @idx: which EDC to access
614  *      @addr: address of first byte requested
615  *      @data: 64 bytes of data containing the requested address
616  *      @ecc: where to store the corresponding 64-bit ECC word
617  *
618  *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *      that covers the requested address @addr.  If @parity is not %NULL it
620  *      is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624         int i;
625         u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626         u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627
628         if (is_t4(adap)) {
629                 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630                 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631                 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632                 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633                                                     idx);
634                 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635                                                     idx);
636         } else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643                 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644                 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645                 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646                 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647                                                     idx);
648                 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649                                                     idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652         }
653
654         if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655                 return -EBUSY;
656         t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657         t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658         t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659         t4_write_reg(adap, edc_bist_cmd_reg,
660                      V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661         i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662         if (i)
663                 return i;
664
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666
667         for (i = 15; i >= 0; i--)
668                 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669         if (ecc)
670                 *ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672         return 0;
673 }
674
675 /**
676  *      t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *      @adap: the adapter
678  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *      @addr: address within indicated memory type
680  *      @len: amount of memory to read
681  *      @buf: host memory buffer
682  *
683  *      Reads an [almost] arbitrary memory region in the firmware: the
684  *      firmware memory address, length and host buffer must be aligned on
685  *      32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *      the firmware's memory.  If this memory contains data structures which
687  *      contain multi-byte integers, it's the callers responsibility to
688  *      perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691                 __be32 *buf)
692 {
693         u32 pos, start, end, offset;
694         int ret;
695
696         /*
697          * Argument sanity checks ...
698          */
699         if ((addr & 0x3) || (len & 0x3))
700                 return -EINVAL;
701
702         /*
703          * The underlaying EDC/MC read routines read 64 bytes at a time so we
704          * need to round down the start and round up the end.  We'll start
705          * copying out of the first line at (addr - start) a word at a time.
706          */
707         start = rounddown2(addr, 64);
708         end = roundup2(addr + len, 64);
709         offset = (addr - start)/sizeof(__be32);
710
711         for (pos = start; pos < end; pos += 64, offset = 0) {
712                 __be32 data[16];
713
714                 /*
715                  * Read the chip's memory block and bail if there's an error.
716                  */
717                 if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718                         ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719                 else
720                         ret = t4_edc_read(adap, mtype, pos, data, NULL);
721                 if (ret)
722                         return ret;
723
724                 /*
725                  * Copy the data into the caller's memory buffer.
726                  */
727                 while (offset < 16 && len > 0) {
728                         *buf++ = data[offset++];
729                         len -= sizeof(__be32);
730                 }
731         }
732
733         return 0;
734 }
735
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744
745         /*
746          * If fw_attach != 0, construct and send the Firmware LDST Command to
747          * retrieve the specified PCI-E Configuration Space register.
748          */
749         if (drv_fw_attach != 0) {
750                 struct fw_ldst_cmd ldst_cmd;
751                 int ret;
752
753                 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754                 ldst_cmd.op_to_addrspace =
755                         cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756                                     F_FW_CMD_REQUEST |
757                                     F_FW_CMD_READ |
758                                     V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759                 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760                 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761                 ldst_cmd.u.pcie.ctrl_to_fn =
762                         (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763                 ldst_cmd.u.pcie.r = reg;
764
765                 /*
766                  * If the LDST Command succeeds, return the result, otherwise
767                  * fall through to reading it directly ourselves ...
768                  */
769                 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770                                  &ldst_cmd);
771                 if (ret == 0)
772                         return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773
774                 CH_WARN(adap, "Firmware failed to return "
775                         "Configuration Space register %d, err = %d\n",
776                         reg, -ret);
777         }
778
779         /*
780          * Read the desired Configuration Space register via the PCI-E
781          * Backdoor mechanism.
782          */
783         return t4_hw_pci_read_cfg4(adap, reg);
784 }
785
786 /**
787  *      t4_get_regs_len - return the size of the chips register set
788  *      @adapter: the adapter
789  *
790  *      Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794         unsigned int chip_version = chip_id(adapter);
795
796         switch (chip_version) {
797         case CHELSIO_T4:
798                 if (adapter->flags & IS_VF)
799                         return FW_T4VF_REGMAP_SIZE;
800                 return T4_REGMAP_SIZE;
801
802         case CHELSIO_T5:
803         case CHELSIO_T6:
804                 if (adapter->flags & IS_VF)
805                         return FW_T4VF_REGMAP_SIZE;
806                 return T5_REGMAP_SIZE;
807         }
808
809         CH_ERR(adapter,
810                 "Unsupported chip version %d\n", chip_version);
811         return 0;
812 }
813
814 /**
815  *      t4_get_regs - read chip registers into provided buffer
816  *      @adap: the adapter
817  *      @buf: register buffer
818  *      @buf_size: size (in bytes) of register buffer
819  *
820  *      If the provided register buffer isn't large enough for the chip's
821  *      full register range, the register dump will be truncated to the
822  *      register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826         static const unsigned int t4_reg_ranges[] = {
827                 0x1008, 0x1108,
828                 0x1180, 0x1184,
829                 0x1190, 0x1194,
830                 0x11a0, 0x11a4,
831                 0x11b0, 0x11b4,
832                 0x11fc, 0x123c,
833                 0x1300, 0x173c,
834                 0x1800, 0x18fc,
835                 0x3000, 0x30d8,
836                 0x30e0, 0x30e4,
837                 0x30ec, 0x5910,
838                 0x5920, 0x5924,
839                 0x5960, 0x5960,
840                 0x5968, 0x5968,
841                 0x5970, 0x5970,
842                 0x5978, 0x5978,
843                 0x5980, 0x5980,
844                 0x5988, 0x5988,
845                 0x5990, 0x5990,
846                 0x5998, 0x5998,
847                 0x59a0, 0x59d4,
848                 0x5a00, 0x5ae0,
849                 0x5ae8, 0x5ae8,
850                 0x5af0, 0x5af0,
851                 0x5af8, 0x5af8,
852                 0x6000, 0x6098,
853                 0x6100, 0x6150,
854                 0x6200, 0x6208,
855                 0x6240, 0x6248,
856                 0x6280, 0x62b0,
857                 0x62c0, 0x6338,
858                 0x6370, 0x638c,
859                 0x6400, 0x643c,
860                 0x6500, 0x6524,
861                 0x6a00, 0x6a04,
862                 0x6a14, 0x6a38,
863                 0x6a60, 0x6a70,
864                 0x6a78, 0x6a78,
865                 0x6b00, 0x6b0c,
866                 0x6b1c, 0x6b84,
867                 0x6bf0, 0x6bf8,
868                 0x6c00, 0x6c0c,
869                 0x6c1c, 0x6c84,
870                 0x6cf0, 0x6cf8,
871                 0x6d00, 0x6d0c,
872                 0x6d1c, 0x6d84,
873                 0x6df0, 0x6df8,
874                 0x6e00, 0x6e0c,
875                 0x6e1c, 0x6e84,
876                 0x6ef0, 0x6ef8,
877                 0x6f00, 0x6f0c,
878                 0x6f1c, 0x6f84,
879                 0x6ff0, 0x6ff8,
880                 0x7000, 0x700c,
881                 0x701c, 0x7084,
882                 0x70f0, 0x70f8,
883                 0x7100, 0x710c,
884                 0x711c, 0x7184,
885                 0x71f0, 0x71f8,
886                 0x7200, 0x720c,
887                 0x721c, 0x7284,
888                 0x72f0, 0x72f8,
889                 0x7300, 0x730c,
890                 0x731c, 0x7384,
891                 0x73f0, 0x73f8,
892                 0x7400, 0x7450,
893                 0x7500, 0x7530,
894                 0x7600, 0x760c,
895                 0x7614, 0x761c,
896                 0x7680, 0x76cc,
897                 0x7700, 0x7798,
898                 0x77c0, 0x77fc,
899                 0x7900, 0x79fc,
900                 0x7b00, 0x7b58,
901                 0x7b60, 0x7b84,
902                 0x7b8c, 0x7c38,
903                 0x7d00, 0x7d38,
904                 0x7d40, 0x7d80,
905                 0x7d8c, 0x7ddc,
906                 0x7de4, 0x7e04,
907                 0x7e10, 0x7e1c,
908                 0x7e24, 0x7e38,
909                 0x7e40, 0x7e44,
910                 0x7e4c, 0x7e78,
911                 0x7e80, 0x7ea4,
912                 0x7eac, 0x7edc,
913                 0x7ee8, 0x7efc,
914                 0x8dc0, 0x8e04,
915                 0x8e10, 0x8e1c,
916                 0x8e30, 0x8e78,
917                 0x8ea0, 0x8eb8,
918                 0x8ec0, 0x8f6c,
919                 0x8fc0, 0x9008,
920                 0x9010, 0x9058,
921                 0x9060, 0x9060,
922                 0x9068, 0x9074,
923                 0x90fc, 0x90fc,
924                 0x9400, 0x9408,
925                 0x9410, 0x9458,
926                 0x9600, 0x9600,
927                 0x9608, 0x9638,
928                 0x9640, 0x96bc,
929                 0x9800, 0x9808,
930                 0x9820, 0x983c,
931                 0x9850, 0x9864,
932                 0x9c00, 0x9c6c,
933                 0x9c80, 0x9cec,
934                 0x9d00, 0x9d6c,
935                 0x9d80, 0x9dec,
936                 0x9e00, 0x9e6c,
937                 0x9e80, 0x9eec,
938                 0x9f00, 0x9f6c,
939                 0x9f80, 0x9fec,
940                 0xd004, 0xd004,
941                 0xd010, 0xd03c,
942                 0xdfc0, 0xdfe0,
943                 0xe000, 0xea7c,
944                 0xf000, 0x11110,
945                 0x11118, 0x11190,
946                 0x19040, 0x1906c,
947                 0x19078, 0x19080,
948                 0x1908c, 0x190e4,
949                 0x190f0, 0x190f8,
950                 0x19100, 0x19110,
951                 0x19120, 0x19124,
952                 0x19150, 0x19194,
953                 0x1919c, 0x191b0,
954                 0x191d0, 0x191e8,
955                 0x19238, 0x1924c,
956                 0x193f8, 0x1943c,
957                 0x1944c, 0x19474,
958                 0x19490, 0x194e0,
959                 0x194f0, 0x194f8,
960                 0x19800, 0x19c08,
961                 0x19c10, 0x19c90,
962                 0x19ca0, 0x19ce4,
963                 0x19cf0, 0x19d40,
964                 0x19d50, 0x19d94,
965                 0x19da0, 0x19de8,
966                 0x19df0, 0x19e40,
967                 0x19e50, 0x19e90,
968                 0x19ea0, 0x19f4c,
969                 0x1a000, 0x1a004,
970                 0x1a010, 0x1a06c,
971                 0x1a0b0, 0x1a0e4,
972                 0x1a0ec, 0x1a0f4,
973                 0x1a100, 0x1a108,
974                 0x1a114, 0x1a120,
975                 0x1a128, 0x1a130,
976                 0x1a138, 0x1a138,
977                 0x1a190, 0x1a1c4,
978                 0x1a1fc, 0x1a1fc,
979                 0x1e040, 0x1e04c,
980                 0x1e284, 0x1e28c,
981                 0x1e2c0, 0x1e2c0,
982                 0x1e2e0, 0x1e2e0,
983                 0x1e300, 0x1e384,
984                 0x1e3c0, 0x1e3c8,
985                 0x1e440, 0x1e44c,
986                 0x1e684, 0x1e68c,
987                 0x1e6c0, 0x1e6c0,
988                 0x1e6e0, 0x1e6e0,
989                 0x1e700, 0x1e784,
990                 0x1e7c0, 0x1e7c8,
991                 0x1e840, 0x1e84c,
992                 0x1ea84, 0x1ea8c,
993                 0x1eac0, 0x1eac0,
994                 0x1eae0, 0x1eae0,
995                 0x1eb00, 0x1eb84,
996                 0x1ebc0, 0x1ebc8,
997                 0x1ec40, 0x1ec4c,
998                 0x1ee84, 0x1ee8c,
999                 0x1eec0, 0x1eec0,
1000                 0x1eee0, 0x1eee0,
1001                 0x1ef00, 0x1ef84,
1002                 0x1efc0, 0x1efc8,
1003                 0x1f040, 0x1f04c,
1004                 0x1f284, 0x1f28c,
1005                 0x1f2c0, 0x1f2c0,
1006                 0x1f2e0, 0x1f2e0,
1007                 0x1f300, 0x1f384,
1008                 0x1f3c0, 0x1f3c8,
1009                 0x1f440, 0x1f44c,
1010                 0x1f684, 0x1f68c,
1011                 0x1f6c0, 0x1f6c0,
1012                 0x1f6e0, 0x1f6e0,
1013                 0x1f700, 0x1f784,
1014                 0x1f7c0, 0x1f7c8,
1015                 0x1f840, 0x1f84c,
1016                 0x1fa84, 0x1fa8c,
1017                 0x1fac0, 0x1fac0,
1018                 0x1fae0, 0x1fae0,
1019                 0x1fb00, 0x1fb84,
1020                 0x1fbc0, 0x1fbc8,
1021                 0x1fc40, 0x1fc4c,
1022                 0x1fe84, 0x1fe8c,
1023                 0x1fec0, 0x1fec0,
1024                 0x1fee0, 0x1fee0,
1025                 0x1ff00, 0x1ff84,
1026                 0x1ffc0, 0x1ffc8,
1027                 0x20000, 0x2002c,
1028                 0x20100, 0x2013c,
1029                 0x20190, 0x201a0,
1030                 0x201a8, 0x201b8,
1031                 0x201c4, 0x201c8,
1032                 0x20200, 0x20318,
1033                 0x20400, 0x204b4,
1034                 0x204c0, 0x20528,
1035                 0x20540, 0x20614,
1036                 0x21000, 0x21040,
1037                 0x2104c, 0x21060,
1038                 0x210c0, 0x210ec,
1039                 0x21200, 0x21268,
1040                 0x21270, 0x21284,
1041                 0x212fc, 0x21388,
1042                 0x21400, 0x21404,
1043                 0x21500, 0x21500,
1044                 0x21510, 0x21518,
1045                 0x2152c, 0x21530,
1046                 0x2153c, 0x2153c,
1047                 0x21550, 0x21554,
1048                 0x21600, 0x21600,
1049                 0x21608, 0x2161c,
1050                 0x21624, 0x21628,
1051                 0x21630, 0x21634,
1052                 0x2163c, 0x2163c,
1053                 0x21700, 0x2171c,
1054                 0x21780, 0x2178c,
1055                 0x21800, 0x21818,
1056                 0x21820, 0x21828,
1057                 0x21830, 0x21848,
1058                 0x21850, 0x21854,
1059                 0x21860, 0x21868,
1060                 0x21870, 0x21870,
1061                 0x21878, 0x21898,
1062                 0x218a0, 0x218a8,
1063                 0x218b0, 0x218c8,
1064                 0x218d0, 0x218d4,
1065                 0x218e0, 0x218e8,
1066                 0x218f0, 0x218f0,
1067                 0x218f8, 0x21a18,
1068                 0x21a20, 0x21a28,
1069                 0x21a30, 0x21a48,
1070                 0x21a50, 0x21a54,
1071                 0x21a60, 0x21a68,
1072                 0x21a70, 0x21a70,
1073                 0x21a78, 0x21a98,
1074                 0x21aa0, 0x21aa8,
1075                 0x21ab0, 0x21ac8,
1076                 0x21ad0, 0x21ad4,
1077                 0x21ae0, 0x21ae8,
1078                 0x21af0, 0x21af0,
1079                 0x21af8, 0x21c18,
1080                 0x21c20, 0x21c20,
1081                 0x21c28, 0x21c30,
1082                 0x21c38, 0x21c38,
1083                 0x21c80, 0x21c98,
1084                 0x21ca0, 0x21ca8,
1085                 0x21cb0, 0x21cc8,
1086                 0x21cd0, 0x21cd4,
1087                 0x21ce0, 0x21ce8,
1088                 0x21cf0, 0x21cf0,
1089                 0x21cf8, 0x21d7c,
1090                 0x21e00, 0x21e04,
1091                 0x22000, 0x2202c,
1092                 0x22100, 0x2213c,
1093                 0x22190, 0x221a0,
1094                 0x221a8, 0x221b8,
1095                 0x221c4, 0x221c8,
1096                 0x22200, 0x22318,
1097                 0x22400, 0x224b4,
1098                 0x224c0, 0x22528,
1099                 0x22540, 0x22614,
1100                 0x23000, 0x23040,
1101                 0x2304c, 0x23060,
1102                 0x230c0, 0x230ec,
1103                 0x23200, 0x23268,
1104                 0x23270, 0x23284,
1105                 0x232fc, 0x23388,
1106                 0x23400, 0x23404,
1107                 0x23500, 0x23500,
1108                 0x23510, 0x23518,
1109                 0x2352c, 0x23530,
1110                 0x2353c, 0x2353c,
1111                 0x23550, 0x23554,
1112                 0x23600, 0x23600,
1113                 0x23608, 0x2361c,
1114                 0x23624, 0x23628,
1115                 0x23630, 0x23634,
1116                 0x2363c, 0x2363c,
1117                 0x23700, 0x2371c,
1118                 0x23780, 0x2378c,
1119                 0x23800, 0x23818,
1120                 0x23820, 0x23828,
1121                 0x23830, 0x23848,
1122                 0x23850, 0x23854,
1123                 0x23860, 0x23868,
1124                 0x23870, 0x23870,
1125                 0x23878, 0x23898,
1126                 0x238a0, 0x238a8,
1127                 0x238b0, 0x238c8,
1128                 0x238d0, 0x238d4,
1129                 0x238e0, 0x238e8,
1130                 0x238f0, 0x238f0,
1131                 0x238f8, 0x23a18,
1132                 0x23a20, 0x23a28,
1133                 0x23a30, 0x23a48,
1134                 0x23a50, 0x23a54,
1135                 0x23a60, 0x23a68,
1136                 0x23a70, 0x23a70,
1137                 0x23a78, 0x23a98,
1138                 0x23aa0, 0x23aa8,
1139                 0x23ab0, 0x23ac8,
1140                 0x23ad0, 0x23ad4,
1141                 0x23ae0, 0x23ae8,
1142                 0x23af0, 0x23af0,
1143                 0x23af8, 0x23c18,
1144                 0x23c20, 0x23c20,
1145                 0x23c28, 0x23c30,
1146                 0x23c38, 0x23c38,
1147                 0x23c80, 0x23c98,
1148                 0x23ca0, 0x23ca8,
1149                 0x23cb0, 0x23cc8,
1150                 0x23cd0, 0x23cd4,
1151                 0x23ce0, 0x23ce8,
1152                 0x23cf0, 0x23cf0,
1153                 0x23cf8, 0x23d7c,
1154                 0x23e00, 0x23e04,
1155                 0x24000, 0x2402c,
1156                 0x24100, 0x2413c,
1157                 0x24190, 0x241a0,
1158                 0x241a8, 0x241b8,
1159                 0x241c4, 0x241c8,
1160                 0x24200, 0x24318,
1161                 0x24400, 0x244b4,
1162                 0x244c0, 0x24528,
1163                 0x24540, 0x24614,
1164                 0x25000, 0x25040,
1165                 0x2504c, 0x25060,
1166                 0x250c0, 0x250ec,
1167                 0x25200, 0x25268,
1168                 0x25270, 0x25284,
1169                 0x252fc, 0x25388,
1170                 0x25400, 0x25404,
1171                 0x25500, 0x25500,
1172                 0x25510, 0x25518,
1173                 0x2552c, 0x25530,
1174                 0x2553c, 0x2553c,
1175                 0x25550, 0x25554,
1176                 0x25600, 0x25600,
1177                 0x25608, 0x2561c,
1178                 0x25624, 0x25628,
1179                 0x25630, 0x25634,
1180                 0x2563c, 0x2563c,
1181                 0x25700, 0x2571c,
1182                 0x25780, 0x2578c,
1183                 0x25800, 0x25818,
1184                 0x25820, 0x25828,
1185                 0x25830, 0x25848,
1186                 0x25850, 0x25854,
1187                 0x25860, 0x25868,
1188                 0x25870, 0x25870,
1189                 0x25878, 0x25898,
1190                 0x258a0, 0x258a8,
1191                 0x258b0, 0x258c8,
1192                 0x258d0, 0x258d4,
1193                 0x258e0, 0x258e8,
1194                 0x258f0, 0x258f0,
1195                 0x258f8, 0x25a18,
1196                 0x25a20, 0x25a28,
1197                 0x25a30, 0x25a48,
1198                 0x25a50, 0x25a54,
1199                 0x25a60, 0x25a68,
1200                 0x25a70, 0x25a70,
1201                 0x25a78, 0x25a98,
1202                 0x25aa0, 0x25aa8,
1203                 0x25ab0, 0x25ac8,
1204                 0x25ad0, 0x25ad4,
1205                 0x25ae0, 0x25ae8,
1206                 0x25af0, 0x25af0,
1207                 0x25af8, 0x25c18,
1208                 0x25c20, 0x25c20,
1209                 0x25c28, 0x25c30,
1210                 0x25c38, 0x25c38,
1211                 0x25c80, 0x25c98,
1212                 0x25ca0, 0x25ca8,
1213                 0x25cb0, 0x25cc8,
1214                 0x25cd0, 0x25cd4,
1215                 0x25ce0, 0x25ce8,
1216                 0x25cf0, 0x25cf0,
1217                 0x25cf8, 0x25d7c,
1218                 0x25e00, 0x25e04,
1219                 0x26000, 0x2602c,
1220                 0x26100, 0x2613c,
1221                 0x26190, 0x261a0,
1222                 0x261a8, 0x261b8,
1223                 0x261c4, 0x261c8,
1224                 0x26200, 0x26318,
1225                 0x26400, 0x264b4,
1226                 0x264c0, 0x26528,
1227                 0x26540, 0x26614,
1228                 0x27000, 0x27040,
1229                 0x2704c, 0x27060,
1230                 0x270c0, 0x270ec,
1231                 0x27200, 0x27268,
1232                 0x27270, 0x27284,
1233                 0x272fc, 0x27388,
1234                 0x27400, 0x27404,
1235                 0x27500, 0x27500,
1236                 0x27510, 0x27518,
1237                 0x2752c, 0x27530,
1238                 0x2753c, 0x2753c,
1239                 0x27550, 0x27554,
1240                 0x27600, 0x27600,
1241                 0x27608, 0x2761c,
1242                 0x27624, 0x27628,
1243                 0x27630, 0x27634,
1244                 0x2763c, 0x2763c,
1245                 0x27700, 0x2771c,
1246                 0x27780, 0x2778c,
1247                 0x27800, 0x27818,
1248                 0x27820, 0x27828,
1249                 0x27830, 0x27848,
1250                 0x27850, 0x27854,
1251                 0x27860, 0x27868,
1252                 0x27870, 0x27870,
1253                 0x27878, 0x27898,
1254                 0x278a0, 0x278a8,
1255                 0x278b0, 0x278c8,
1256                 0x278d0, 0x278d4,
1257                 0x278e0, 0x278e8,
1258                 0x278f0, 0x278f0,
1259                 0x278f8, 0x27a18,
1260                 0x27a20, 0x27a28,
1261                 0x27a30, 0x27a48,
1262                 0x27a50, 0x27a54,
1263                 0x27a60, 0x27a68,
1264                 0x27a70, 0x27a70,
1265                 0x27a78, 0x27a98,
1266                 0x27aa0, 0x27aa8,
1267                 0x27ab0, 0x27ac8,
1268                 0x27ad0, 0x27ad4,
1269                 0x27ae0, 0x27ae8,
1270                 0x27af0, 0x27af0,
1271                 0x27af8, 0x27c18,
1272                 0x27c20, 0x27c20,
1273                 0x27c28, 0x27c30,
1274                 0x27c38, 0x27c38,
1275                 0x27c80, 0x27c98,
1276                 0x27ca0, 0x27ca8,
1277                 0x27cb0, 0x27cc8,
1278                 0x27cd0, 0x27cd4,
1279                 0x27ce0, 0x27ce8,
1280                 0x27cf0, 0x27cf0,
1281                 0x27cf8, 0x27d7c,
1282                 0x27e00, 0x27e04,
1283         };
1284
1285         static const unsigned int t4vf_reg_ranges[] = {
1286                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287                 VF_MPS_REG(A_MPS_VF_CTL),
1288                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292                 FW_T4VF_MBDATA_BASE_ADDR,
1293                 FW_T4VF_MBDATA_BASE_ADDR +
1294                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295         };
1296
1297         static const unsigned int t5_reg_ranges[] = {
1298                 0x1008, 0x10c0,
1299                 0x10cc, 0x10f8,
1300                 0x1100, 0x1100,
1301                 0x110c, 0x1148,
1302                 0x1180, 0x1184,
1303                 0x1190, 0x1194,
1304                 0x11a0, 0x11a4,
1305                 0x11b0, 0x11b4,
1306                 0x11fc, 0x123c,
1307                 0x1280, 0x173c,
1308                 0x1800, 0x18fc,
1309                 0x3000, 0x3028,
1310                 0x3060, 0x30b0,
1311                 0x30b8, 0x30d8,
1312                 0x30e0, 0x30fc,
1313                 0x3140, 0x357c,
1314                 0x35a8, 0x35cc,
1315                 0x35ec, 0x35ec,
1316                 0x3600, 0x5624,
1317                 0x56cc, 0x56ec,
1318                 0x56f4, 0x5720,
1319                 0x5728, 0x575c,
1320                 0x580c, 0x5814,
1321                 0x5890, 0x589c,
1322                 0x58a4, 0x58ac,
1323                 0x58b8, 0x58bc,
1324                 0x5940, 0x59c8,
1325                 0x59d0, 0x59dc,
1326                 0x59fc, 0x5a18,
1327                 0x5a60, 0x5a70,
1328                 0x5a80, 0x5a9c,
1329                 0x5b94, 0x5bfc,
1330                 0x6000, 0x6020,
1331                 0x6028, 0x6040,
1332                 0x6058, 0x609c,
1333                 0x60a8, 0x614c,
1334                 0x7700, 0x7798,
1335                 0x77c0, 0x78fc,
1336                 0x7b00, 0x7b58,
1337                 0x7b60, 0x7b84,
1338                 0x7b8c, 0x7c54,
1339                 0x7d00, 0x7d38,
1340                 0x7d40, 0x7d80,
1341                 0x7d8c, 0x7ddc,
1342                 0x7de4, 0x7e04,
1343                 0x7e10, 0x7e1c,
1344                 0x7e24, 0x7e38,
1345                 0x7e40, 0x7e44,
1346                 0x7e4c, 0x7e78,
1347                 0x7e80, 0x7edc,
1348                 0x7ee8, 0x7efc,
1349                 0x8dc0, 0x8de0,
1350                 0x8df8, 0x8e04,
1351                 0x8e10, 0x8e84,
1352                 0x8ea0, 0x8f84,
1353                 0x8fc0, 0x9058,
1354                 0x9060, 0x9060,
1355                 0x9068, 0x90f8,
1356                 0x9400, 0x9408,
1357                 0x9410, 0x9470,
1358                 0x9600, 0x9600,
1359                 0x9608, 0x9638,
1360                 0x9640, 0x96f4,
1361                 0x9800, 0x9808,
1362                 0x9820, 0x983c,
1363                 0x9850, 0x9864,
1364                 0x9c00, 0x9c6c,
1365                 0x9c80, 0x9cec,
1366                 0x9d00, 0x9d6c,
1367                 0x9d80, 0x9dec,
1368                 0x9e00, 0x9e6c,
1369                 0x9e80, 0x9eec,
1370                 0x9f00, 0x9f6c,
1371                 0x9f80, 0xa020,
1372                 0xd004, 0xd004,
1373                 0xd010, 0xd03c,
1374                 0xdfc0, 0xdfe0,
1375                 0xe000, 0x1106c,
1376                 0x11074, 0x11088,
1377                 0x1109c, 0x1117c,
1378                 0x11190, 0x11204,
1379                 0x19040, 0x1906c,
1380                 0x19078, 0x19080,
1381                 0x1908c, 0x190e8,
1382                 0x190f0, 0x190f8,
1383                 0x19100, 0x19110,
1384                 0x19120, 0x19124,
1385                 0x19150, 0x19194,
1386                 0x1919c, 0x191b0,
1387                 0x191d0, 0x191e8,
1388                 0x19238, 0x19290,
1389                 0x193f8, 0x19428,
1390                 0x19430, 0x19444,
1391                 0x1944c, 0x1946c,
1392                 0x19474, 0x19474,
1393                 0x19490, 0x194cc,
1394                 0x194f0, 0x194f8,
1395                 0x19c00, 0x19c08,
1396                 0x19c10, 0x19c60,
1397                 0x19c94, 0x19ce4,
1398                 0x19cf0, 0x19d40,
1399                 0x19d50, 0x19d94,
1400                 0x19da0, 0x19de8,
1401                 0x19df0, 0x19e10,
1402                 0x19e50, 0x19e90,
1403                 0x19ea0, 0x19f24,
1404                 0x19f34, 0x19f34,
1405                 0x19f40, 0x19f50,
1406                 0x19f90, 0x19fb4,
1407                 0x19fc4, 0x19fe4,
1408                 0x1a000, 0x1a004,
1409                 0x1a010, 0x1a06c,
1410                 0x1a0b0, 0x1a0e4,
1411                 0x1a0ec, 0x1a0f8,
1412                 0x1a100, 0x1a108,
1413                 0x1a114, 0x1a120,
1414                 0x1a128, 0x1a130,
1415                 0x1a138, 0x1a138,
1416                 0x1a190, 0x1a1c4,
1417                 0x1a1fc, 0x1a1fc,
1418                 0x1e008, 0x1e00c,
1419                 0x1e040, 0x1e044,
1420                 0x1e04c, 0x1e04c,
1421                 0x1e284, 0x1e290,
1422                 0x1e2c0, 0x1e2c0,
1423                 0x1e2e0, 0x1e2e0,
1424                 0x1e300, 0x1e384,
1425                 0x1e3c0, 0x1e3c8,
1426                 0x1e408, 0x1e40c,
1427                 0x1e440, 0x1e444,
1428                 0x1e44c, 0x1e44c,
1429                 0x1e684, 0x1e690,
1430                 0x1e6c0, 0x1e6c0,
1431                 0x1e6e0, 0x1e6e0,
1432                 0x1e700, 0x1e784,
1433                 0x1e7c0, 0x1e7c8,
1434                 0x1e808, 0x1e80c,
1435                 0x1e840, 0x1e844,
1436                 0x1e84c, 0x1e84c,
1437                 0x1ea84, 0x1ea90,
1438                 0x1eac0, 0x1eac0,
1439                 0x1eae0, 0x1eae0,
1440                 0x1eb00, 0x1eb84,
1441                 0x1ebc0, 0x1ebc8,
1442                 0x1ec08, 0x1ec0c,
1443                 0x1ec40, 0x1ec44,
1444                 0x1ec4c, 0x1ec4c,
1445                 0x1ee84, 0x1ee90,
1446                 0x1eec0, 0x1eec0,
1447                 0x1eee0, 0x1eee0,
1448                 0x1ef00, 0x1ef84,
1449                 0x1efc0, 0x1efc8,
1450                 0x1f008, 0x1f00c,
1451                 0x1f040, 0x1f044,
1452                 0x1f04c, 0x1f04c,
1453                 0x1f284, 0x1f290,
1454                 0x1f2c0, 0x1f2c0,
1455                 0x1f2e0, 0x1f2e0,
1456                 0x1f300, 0x1f384,
1457                 0x1f3c0, 0x1f3c8,
1458                 0x1f408, 0x1f40c,
1459                 0x1f440, 0x1f444,
1460                 0x1f44c, 0x1f44c,
1461                 0x1f684, 0x1f690,
1462                 0x1f6c0, 0x1f6c0,
1463                 0x1f6e0, 0x1f6e0,
1464                 0x1f700, 0x1f784,
1465                 0x1f7c0, 0x1f7c8,
1466                 0x1f808, 0x1f80c,
1467                 0x1f840, 0x1f844,
1468                 0x1f84c, 0x1f84c,
1469                 0x1fa84, 0x1fa90,
1470                 0x1fac0, 0x1fac0,
1471                 0x1fae0, 0x1fae0,
1472                 0x1fb00, 0x1fb84,
1473                 0x1fbc0, 0x1fbc8,
1474                 0x1fc08, 0x1fc0c,
1475                 0x1fc40, 0x1fc44,
1476                 0x1fc4c, 0x1fc4c,
1477                 0x1fe84, 0x1fe90,
1478                 0x1fec0, 0x1fec0,
1479                 0x1fee0, 0x1fee0,
1480                 0x1ff00, 0x1ff84,
1481                 0x1ffc0, 0x1ffc8,
1482                 0x30000, 0x30030,
1483                 0x30100, 0x30144,
1484                 0x30190, 0x301a0,
1485                 0x301a8, 0x301b8,
1486                 0x301c4, 0x301c8,
1487                 0x301d0, 0x301d0,
1488                 0x30200, 0x30318,
1489                 0x30400, 0x304b4,
1490                 0x304c0, 0x3052c,
1491                 0x30540, 0x3061c,
1492                 0x30800, 0x30828,
1493                 0x30834, 0x30834,
1494                 0x308c0, 0x30908,
1495                 0x30910, 0x309ac,
1496                 0x30a00, 0x30a14,
1497                 0x30a1c, 0x30a2c,
1498                 0x30a44, 0x30a50,
1499                 0x30a74, 0x30a74,
1500                 0x30a7c, 0x30afc,
1501                 0x30b08, 0x30c24,
1502                 0x30d00, 0x30d00,
1503                 0x30d08, 0x30d14,
1504                 0x30d1c, 0x30d20,
1505                 0x30d3c, 0x30d3c,
1506                 0x30d48, 0x30d50,
1507                 0x31200, 0x3120c,
1508                 0x31220, 0x31220,
1509                 0x31240, 0x31240,
1510                 0x31600, 0x3160c,
1511                 0x31a00, 0x31a1c,
1512                 0x31e00, 0x31e20,
1513                 0x31e38, 0x31e3c,
1514                 0x31e80, 0x31e80,
1515                 0x31e88, 0x31ea8,
1516                 0x31eb0, 0x31eb4,
1517                 0x31ec8, 0x31ed4,
1518                 0x31fb8, 0x32004,
1519                 0x32200, 0x32200,
1520                 0x32208, 0x32240,
1521                 0x32248, 0x32280,
1522                 0x32288, 0x322c0,
1523                 0x322c8, 0x322fc,
1524                 0x32600, 0x32630,
1525                 0x32a00, 0x32abc,
1526                 0x32b00, 0x32b10,
1527                 0x32b20, 0x32b30,
1528                 0x32b40, 0x32b50,
1529                 0x32b60, 0x32b70,
1530                 0x33000, 0x33028,
1531                 0x33030, 0x33048,
1532                 0x33060, 0x33068,
1533                 0x33070, 0x3309c,
1534                 0x330f0, 0x33128,
1535                 0x33130, 0x33148,
1536                 0x33160, 0x33168,
1537                 0x33170, 0x3319c,
1538                 0x331f0, 0x33238,
1539                 0x33240, 0x33240,
1540                 0x33248, 0x33250,
1541                 0x3325c, 0x33264,
1542                 0x33270, 0x332b8,
1543                 0x332c0, 0x332e4,
1544                 0x332f8, 0x33338,
1545                 0x33340, 0x33340,
1546                 0x33348, 0x33350,
1547                 0x3335c, 0x33364,
1548                 0x33370, 0x333b8,
1549                 0x333c0, 0x333e4,
1550                 0x333f8, 0x33428,
1551                 0x33430, 0x33448,
1552                 0x33460, 0x33468,
1553                 0x33470, 0x3349c,
1554                 0x334f0, 0x33528,
1555                 0x33530, 0x33548,
1556                 0x33560, 0x33568,
1557                 0x33570, 0x3359c,
1558                 0x335f0, 0x33638,
1559                 0x33640, 0x33640,
1560                 0x33648, 0x33650,
1561                 0x3365c, 0x33664,
1562                 0x33670, 0x336b8,
1563                 0x336c0, 0x336e4,
1564                 0x336f8, 0x33738,
1565                 0x33740, 0x33740,
1566                 0x33748, 0x33750,
1567                 0x3375c, 0x33764,
1568                 0x33770, 0x337b8,
1569                 0x337c0, 0x337e4,
1570                 0x337f8, 0x337fc,
1571                 0x33814, 0x33814,
1572                 0x3382c, 0x3382c,
1573                 0x33880, 0x3388c,
1574                 0x338e8, 0x338ec,
1575                 0x33900, 0x33928,
1576                 0x33930, 0x33948,
1577                 0x33960, 0x33968,
1578                 0x33970, 0x3399c,
1579                 0x339f0, 0x33a38,
1580                 0x33a40, 0x33a40,
1581                 0x33a48, 0x33a50,
1582                 0x33a5c, 0x33a64,
1583                 0x33a70, 0x33ab8,
1584                 0x33ac0, 0x33ae4,
1585                 0x33af8, 0x33b10,
1586                 0x33b28, 0x33b28,
1587                 0x33b3c, 0x33b50,
1588                 0x33bf0, 0x33c10,
1589                 0x33c28, 0x33c28,
1590                 0x33c3c, 0x33c50,
1591                 0x33cf0, 0x33cfc,
1592                 0x34000, 0x34030,
1593                 0x34100, 0x34144,
1594                 0x34190, 0x341a0,
1595                 0x341a8, 0x341b8,
1596                 0x341c4, 0x341c8,
1597                 0x341d0, 0x341d0,
1598                 0x34200, 0x34318,
1599                 0x34400, 0x344b4,
1600                 0x344c0, 0x3452c,
1601                 0x34540, 0x3461c,
1602                 0x34800, 0x34828,
1603                 0x34834, 0x34834,
1604                 0x348c0, 0x34908,
1605                 0x34910, 0x349ac,
1606                 0x34a00, 0x34a14,
1607                 0x34a1c, 0x34a2c,
1608                 0x34a44, 0x34a50,
1609                 0x34a74, 0x34a74,
1610                 0x34a7c, 0x34afc,
1611                 0x34b08, 0x34c24,
1612                 0x34d00, 0x34d00,
1613                 0x34d08, 0x34d14,
1614                 0x34d1c, 0x34d20,
1615                 0x34d3c, 0x34d3c,
1616                 0x34d48, 0x34d50,
1617                 0x35200, 0x3520c,
1618                 0x35220, 0x35220,
1619                 0x35240, 0x35240,
1620                 0x35600, 0x3560c,
1621                 0x35a00, 0x35a1c,
1622                 0x35e00, 0x35e20,
1623                 0x35e38, 0x35e3c,
1624                 0x35e80, 0x35e80,
1625                 0x35e88, 0x35ea8,
1626                 0x35eb0, 0x35eb4,
1627                 0x35ec8, 0x35ed4,
1628                 0x35fb8, 0x36004,
1629                 0x36200, 0x36200,
1630                 0x36208, 0x36240,
1631                 0x36248, 0x36280,
1632                 0x36288, 0x362c0,
1633                 0x362c8, 0x362fc,
1634                 0x36600, 0x36630,
1635                 0x36a00, 0x36abc,
1636                 0x36b00, 0x36b10,
1637                 0x36b20, 0x36b30,
1638                 0x36b40, 0x36b50,
1639                 0x36b60, 0x36b70,
1640                 0x37000, 0x37028,
1641                 0x37030, 0x37048,
1642                 0x37060, 0x37068,
1643                 0x37070, 0x3709c,
1644                 0x370f0, 0x37128,
1645                 0x37130, 0x37148,
1646                 0x37160, 0x37168,
1647                 0x37170, 0x3719c,
1648                 0x371f0, 0x37238,
1649                 0x37240, 0x37240,
1650                 0x37248, 0x37250,
1651                 0x3725c, 0x37264,
1652                 0x37270, 0x372b8,
1653                 0x372c0, 0x372e4,
1654                 0x372f8, 0x37338,
1655                 0x37340, 0x37340,
1656                 0x37348, 0x37350,
1657                 0x3735c, 0x37364,
1658                 0x37370, 0x373b8,
1659                 0x373c0, 0x373e4,
1660                 0x373f8, 0x37428,
1661                 0x37430, 0x37448,
1662                 0x37460, 0x37468,
1663                 0x37470, 0x3749c,
1664                 0x374f0, 0x37528,
1665                 0x37530, 0x37548,
1666                 0x37560, 0x37568,
1667                 0x37570, 0x3759c,
1668                 0x375f0, 0x37638,
1669                 0x37640, 0x37640,
1670                 0x37648, 0x37650,
1671                 0x3765c, 0x37664,
1672                 0x37670, 0x376b8,
1673                 0x376c0, 0x376e4,
1674                 0x376f8, 0x37738,
1675                 0x37740, 0x37740,
1676                 0x37748, 0x37750,
1677                 0x3775c, 0x37764,
1678                 0x37770, 0x377b8,
1679                 0x377c0, 0x377e4,
1680                 0x377f8, 0x377fc,
1681                 0x37814, 0x37814,
1682                 0x3782c, 0x3782c,
1683                 0x37880, 0x3788c,
1684                 0x378e8, 0x378ec,
1685                 0x37900, 0x37928,
1686                 0x37930, 0x37948,
1687                 0x37960, 0x37968,
1688                 0x37970, 0x3799c,
1689                 0x379f0, 0x37a38,
1690                 0x37a40, 0x37a40,
1691                 0x37a48, 0x37a50,
1692                 0x37a5c, 0x37a64,
1693                 0x37a70, 0x37ab8,
1694                 0x37ac0, 0x37ae4,
1695                 0x37af8, 0x37b10,
1696                 0x37b28, 0x37b28,
1697                 0x37b3c, 0x37b50,
1698                 0x37bf0, 0x37c10,
1699                 0x37c28, 0x37c28,
1700                 0x37c3c, 0x37c50,
1701                 0x37cf0, 0x37cfc,
1702                 0x38000, 0x38030,
1703                 0x38100, 0x38144,
1704                 0x38190, 0x381a0,
1705                 0x381a8, 0x381b8,
1706                 0x381c4, 0x381c8,
1707                 0x381d0, 0x381d0,
1708                 0x38200, 0x38318,
1709                 0x38400, 0x384b4,
1710                 0x384c0, 0x3852c,
1711                 0x38540, 0x3861c,
1712                 0x38800, 0x38828,
1713                 0x38834, 0x38834,
1714                 0x388c0, 0x38908,
1715                 0x38910, 0x389ac,
1716                 0x38a00, 0x38a14,
1717                 0x38a1c, 0x38a2c,
1718                 0x38a44, 0x38a50,
1719                 0x38a74, 0x38a74,
1720                 0x38a7c, 0x38afc,
1721                 0x38b08, 0x38c24,
1722                 0x38d00, 0x38d00,
1723                 0x38d08, 0x38d14,
1724                 0x38d1c, 0x38d20,
1725                 0x38d3c, 0x38d3c,
1726                 0x38d48, 0x38d50,
1727                 0x39200, 0x3920c,
1728                 0x39220, 0x39220,
1729                 0x39240, 0x39240,
1730                 0x39600, 0x3960c,
1731                 0x39a00, 0x39a1c,
1732                 0x39e00, 0x39e20,
1733                 0x39e38, 0x39e3c,
1734                 0x39e80, 0x39e80,
1735                 0x39e88, 0x39ea8,
1736                 0x39eb0, 0x39eb4,
1737                 0x39ec8, 0x39ed4,
1738                 0x39fb8, 0x3a004,
1739                 0x3a200, 0x3a200,
1740                 0x3a208, 0x3a240,
1741                 0x3a248, 0x3a280,
1742                 0x3a288, 0x3a2c0,
1743                 0x3a2c8, 0x3a2fc,
1744                 0x3a600, 0x3a630,
1745                 0x3aa00, 0x3aabc,
1746                 0x3ab00, 0x3ab10,
1747                 0x3ab20, 0x3ab30,
1748                 0x3ab40, 0x3ab50,
1749                 0x3ab60, 0x3ab70,
1750                 0x3b000, 0x3b028,
1751                 0x3b030, 0x3b048,
1752                 0x3b060, 0x3b068,
1753                 0x3b070, 0x3b09c,
1754                 0x3b0f0, 0x3b128,
1755                 0x3b130, 0x3b148,
1756                 0x3b160, 0x3b168,
1757                 0x3b170, 0x3b19c,
1758                 0x3b1f0, 0x3b238,
1759                 0x3b240, 0x3b240,
1760                 0x3b248, 0x3b250,
1761                 0x3b25c, 0x3b264,
1762                 0x3b270, 0x3b2b8,
1763                 0x3b2c0, 0x3b2e4,
1764                 0x3b2f8, 0x3b338,
1765                 0x3b340, 0x3b340,
1766                 0x3b348, 0x3b350,
1767                 0x3b35c, 0x3b364,
1768                 0x3b370, 0x3b3b8,
1769                 0x3b3c0, 0x3b3e4,
1770                 0x3b3f8, 0x3b428,
1771                 0x3b430, 0x3b448,
1772                 0x3b460, 0x3b468,
1773                 0x3b470, 0x3b49c,
1774                 0x3b4f0, 0x3b528,
1775                 0x3b530, 0x3b548,
1776                 0x3b560, 0x3b568,
1777                 0x3b570, 0x3b59c,
1778                 0x3b5f0, 0x3b638,
1779                 0x3b640, 0x3b640,
1780                 0x3b648, 0x3b650,
1781                 0x3b65c, 0x3b664,
1782                 0x3b670, 0x3b6b8,
1783                 0x3b6c0, 0x3b6e4,
1784                 0x3b6f8, 0x3b738,
1785                 0x3b740, 0x3b740,
1786                 0x3b748, 0x3b750,
1787                 0x3b75c, 0x3b764,
1788                 0x3b770, 0x3b7b8,
1789                 0x3b7c0, 0x3b7e4,
1790                 0x3b7f8, 0x3b7fc,
1791                 0x3b814, 0x3b814,
1792                 0x3b82c, 0x3b82c,
1793                 0x3b880, 0x3b88c,
1794                 0x3b8e8, 0x3b8ec,
1795                 0x3b900, 0x3b928,
1796                 0x3b930, 0x3b948,
1797                 0x3b960, 0x3b968,
1798                 0x3b970, 0x3b99c,
1799                 0x3b9f0, 0x3ba38,
1800                 0x3ba40, 0x3ba40,
1801                 0x3ba48, 0x3ba50,
1802                 0x3ba5c, 0x3ba64,
1803                 0x3ba70, 0x3bab8,
1804                 0x3bac0, 0x3bae4,
1805                 0x3baf8, 0x3bb10,
1806                 0x3bb28, 0x3bb28,
1807                 0x3bb3c, 0x3bb50,
1808                 0x3bbf0, 0x3bc10,
1809                 0x3bc28, 0x3bc28,
1810                 0x3bc3c, 0x3bc50,
1811                 0x3bcf0, 0x3bcfc,
1812                 0x3c000, 0x3c030,
1813                 0x3c100, 0x3c144,
1814                 0x3c190, 0x3c1a0,
1815                 0x3c1a8, 0x3c1b8,
1816                 0x3c1c4, 0x3c1c8,
1817                 0x3c1d0, 0x3c1d0,
1818                 0x3c200, 0x3c318,
1819                 0x3c400, 0x3c4b4,
1820                 0x3c4c0, 0x3c52c,
1821                 0x3c540, 0x3c61c,
1822                 0x3c800, 0x3c828,
1823                 0x3c834, 0x3c834,
1824                 0x3c8c0, 0x3c908,
1825                 0x3c910, 0x3c9ac,
1826                 0x3ca00, 0x3ca14,
1827                 0x3ca1c, 0x3ca2c,
1828                 0x3ca44, 0x3ca50,
1829                 0x3ca74, 0x3ca74,
1830                 0x3ca7c, 0x3cafc,
1831                 0x3cb08, 0x3cc24,
1832                 0x3cd00, 0x3cd00,
1833                 0x3cd08, 0x3cd14,
1834                 0x3cd1c, 0x3cd20,
1835                 0x3cd3c, 0x3cd3c,
1836                 0x3cd48, 0x3cd50,
1837                 0x3d200, 0x3d20c,
1838                 0x3d220, 0x3d220,
1839                 0x3d240, 0x3d240,
1840                 0x3d600, 0x3d60c,
1841                 0x3da00, 0x3da1c,
1842                 0x3de00, 0x3de20,
1843                 0x3de38, 0x3de3c,
1844                 0x3de80, 0x3de80,
1845                 0x3de88, 0x3dea8,
1846                 0x3deb0, 0x3deb4,
1847                 0x3dec8, 0x3ded4,
1848                 0x3dfb8, 0x3e004,
1849                 0x3e200, 0x3e200,
1850                 0x3e208, 0x3e240,
1851                 0x3e248, 0x3e280,
1852                 0x3e288, 0x3e2c0,
1853                 0x3e2c8, 0x3e2fc,
1854                 0x3e600, 0x3e630,
1855                 0x3ea00, 0x3eabc,
1856                 0x3eb00, 0x3eb10,
1857                 0x3eb20, 0x3eb30,
1858                 0x3eb40, 0x3eb50,
1859                 0x3eb60, 0x3eb70,
1860                 0x3f000, 0x3f028,
1861                 0x3f030, 0x3f048,
1862                 0x3f060, 0x3f068,
1863                 0x3f070, 0x3f09c,
1864                 0x3f0f0, 0x3f128,
1865                 0x3f130, 0x3f148,
1866                 0x3f160, 0x3f168,
1867                 0x3f170, 0x3f19c,
1868                 0x3f1f0, 0x3f238,
1869                 0x3f240, 0x3f240,
1870                 0x3f248, 0x3f250,
1871                 0x3f25c, 0x3f264,
1872                 0x3f270, 0x3f2b8,
1873                 0x3f2c0, 0x3f2e4,
1874                 0x3f2f8, 0x3f338,
1875                 0x3f340, 0x3f340,
1876                 0x3f348, 0x3f350,
1877                 0x3f35c, 0x3f364,
1878                 0x3f370, 0x3f3b8,
1879                 0x3f3c0, 0x3f3e4,
1880                 0x3f3f8, 0x3f428,
1881                 0x3f430, 0x3f448,
1882                 0x3f460, 0x3f468,
1883                 0x3f470, 0x3f49c,
1884                 0x3f4f0, 0x3f528,
1885                 0x3f530, 0x3f548,
1886                 0x3f560, 0x3f568,
1887                 0x3f570, 0x3f59c,
1888                 0x3f5f0, 0x3f638,
1889                 0x3f640, 0x3f640,
1890                 0x3f648, 0x3f650,
1891                 0x3f65c, 0x3f664,
1892                 0x3f670, 0x3f6b8,
1893                 0x3f6c0, 0x3f6e4,
1894                 0x3f6f8, 0x3f738,
1895                 0x3f740, 0x3f740,
1896                 0x3f748, 0x3f750,
1897                 0x3f75c, 0x3f764,
1898                 0x3f770, 0x3f7b8,
1899                 0x3f7c0, 0x3f7e4,
1900                 0x3f7f8, 0x3f7fc,
1901                 0x3f814, 0x3f814,
1902                 0x3f82c, 0x3f82c,
1903                 0x3f880, 0x3f88c,
1904                 0x3f8e8, 0x3f8ec,
1905                 0x3f900, 0x3f928,
1906                 0x3f930, 0x3f948,
1907                 0x3f960, 0x3f968,
1908                 0x3f970, 0x3f99c,
1909                 0x3f9f0, 0x3fa38,
1910                 0x3fa40, 0x3fa40,
1911                 0x3fa48, 0x3fa50,
1912                 0x3fa5c, 0x3fa64,
1913                 0x3fa70, 0x3fab8,
1914                 0x3fac0, 0x3fae4,
1915                 0x3faf8, 0x3fb10,
1916                 0x3fb28, 0x3fb28,
1917                 0x3fb3c, 0x3fb50,
1918                 0x3fbf0, 0x3fc10,
1919                 0x3fc28, 0x3fc28,
1920                 0x3fc3c, 0x3fc50,
1921                 0x3fcf0, 0x3fcfc,
1922                 0x40000, 0x4000c,
1923                 0x40040, 0x40050,
1924                 0x40060, 0x40068,
1925                 0x4007c, 0x4008c,
1926                 0x40094, 0x400b0,
1927                 0x400c0, 0x40144,
1928                 0x40180, 0x4018c,
1929                 0x40200, 0x40254,
1930                 0x40260, 0x40264,
1931                 0x40270, 0x40288,
1932                 0x40290, 0x40298,
1933                 0x402ac, 0x402c8,
1934                 0x402d0, 0x402e0,
1935                 0x402f0, 0x402f0,
1936                 0x40300, 0x4033c,
1937                 0x403f8, 0x403fc,
1938                 0x41304, 0x413c4,
1939                 0x41400, 0x4140c,
1940                 0x41414, 0x4141c,
1941                 0x41480, 0x414d0,
1942                 0x44000, 0x44054,
1943                 0x4405c, 0x44078,
1944                 0x440c0, 0x44174,
1945                 0x44180, 0x441ac,
1946                 0x441b4, 0x441b8,
1947                 0x441c0, 0x44254,
1948                 0x4425c, 0x44278,
1949                 0x442c0, 0x44374,
1950                 0x44380, 0x443ac,
1951                 0x443b4, 0x443b8,
1952                 0x443c0, 0x44454,
1953                 0x4445c, 0x44478,
1954                 0x444c0, 0x44574,
1955                 0x44580, 0x445ac,
1956                 0x445b4, 0x445b8,
1957                 0x445c0, 0x44654,
1958                 0x4465c, 0x44678,
1959                 0x446c0, 0x44774,
1960                 0x44780, 0x447ac,
1961                 0x447b4, 0x447b8,
1962                 0x447c0, 0x44854,
1963                 0x4485c, 0x44878,
1964                 0x448c0, 0x44974,
1965                 0x44980, 0x449ac,
1966                 0x449b4, 0x449b8,
1967                 0x449c0, 0x449fc,
1968                 0x45000, 0x45004,
1969                 0x45010, 0x45030,
1970                 0x45040, 0x45060,
1971                 0x45068, 0x45068,
1972                 0x45080, 0x45084,
1973                 0x450a0, 0x450b0,
1974                 0x45200, 0x45204,
1975                 0x45210, 0x45230,
1976                 0x45240, 0x45260,
1977                 0x45268, 0x45268,
1978                 0x45280, 0x45284,
1979                 0x452a0, 0x452b0,
1980                 0x460c0, 0x460e4,
1981                 0x47000, 0x4703c,
1982                 0x47044, 0x4708c,
1983                 0x47200, 0x47250,
1984                 0x47400, 0x47408,
1985                 0x47414, 0x47420,
1986                 0x47600, 0x47618,
1987                 0x47800, 0x47814,
1988                 0x48000, 0x4800c,
1989                 0x48040, 0x48050,
1990                 0x48060, 0x48068,
1991                 0x4807c, 0x4808c,
1992                 0x48094, 0x480b0,
1993                 0x480c0, 0x48144,
1994                 0x48180, 0x4818c,
1995                 0x48200, 0x48254,
1996                 0x48260, 0x48264,
1997                 0x48270, 0x48288,
1998                 0x48290, 0x48298,
1999                 0x482ac, 0x482c8,
2000                 0x482d0, 0x482e0,
2001                 0x482f0, 0x482f0,
2002                 0x48300, 0x4833c,
2003                 0x483f8, 0x483fc,
2004                 0x49304, 0x493c4,
2005                 0x49400, 0x4940c,
2006                 0x49414, 0x4941c,
2007                 0x49480, 0x494d0,
2008                 0x4c000, 0x4c054,
2009                 0x4c05c, 0x4c078,
2010                 0x4c0c0, 0x4c174,
2011                 0x4c180, 0x4c1ac,
2012                 0x4c1b4, 0x4c1b8,
2013                 0x4c1c0, 0x4c254,
2014                 0x4c25c, 0x4c278,
2015                 0x4c2c0, 0x4c374,
2016                 0x4c380, 0x4c3ac,
2017                 0x4c3b4, 0x4c3b8,
2018                 0x4c3c0, 0x4c454,
2019                 0x4c45c, 0x4c478,
2020                 0x4c4c0, 0x4c574,
2021                 0x4c580, 0x4c5ac,
2022                 0x4c5b4, 0x4c5b8,
2023                 0x4c5c0, 0x4c654,
2024                 0x4c65c, 0x4c678,
2025                 0x4c6c0, 0x4c774,
2026                 0x4c780, 0x4c7ac,
2027                 0x4c7b4, 0x4c7b8,
2028                 0x4c7c0, 0x4c854,
2029                 0x4c85c, 0x4c878,
2030                 0x4c8c0, 0x4c974,
2031                 0x4c980, 0x4c9ac,
2032                 0x4c9b4, 0x4c9b8,
2033                 0x4c9c0, 0x4c9fc,
2034                 0x4d000, 0x4d004,
2035                 0x4d010, 0x4d030,
2036                 0x4d040, 0x4d060,
2037                 0x4d068, 0x4d068,
2038                 0x4d080, 0x4d084,
2039                 0x4d0a0, 0x4d0b0,
2040                 0x4d200, 0x4d204,
2041                 0x4d210, 0x4d230,
2042                 0x4d240, 0x4d260,
2043                 0x4d268, 0x4d268,
2044                 0x4d280, 0x4d284,
2045                 0x4d2a0, 0x4d2b0,
2046                 0x4e0c0, 0x4e0e4,
2047                 0x4f000, 0x4f03c,
2048                 0x4f044, 0x4f08c,
2049                 0x4f200, 0x4f250,
2050                 0x4f400, 0x4f408,
2051                 0x4f414, 0x4f420,
2052                 0x4f600, 0x4f618,
2053                 0x4f800, 0x4f814,
2054                 0x50000, 0x50084,
2055                 0x50090, 0x500cc,
2056                 0x50400, 0x50400,
2057                 0x50800, 0x50884,
2058                 0x50890, 0x508cc,
2059                 0x50c00, 0x50c00,
2060                 0x51000, 0x5101c,
2061                 0x51300, 0x51308,
2062         };
2063
2064         static const unsigned int t5vf_reg_ranges[] = {
2065                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2066                 VF_MPS_REG(A_MPS_VF_CTL),
2067                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2068                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2069                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2070                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2071                 FW_T4VF_MBDATA_BASE_ADDR,
2072                 FW_T4VF_MBDATA_BASE_ADDR +
2073                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2074         };
2075
2076         static const unsigned int t6_reg_ranges[] = {
2077                 0x1008, 0x101c,
2078                 0x1024, 0x10a8,
2079                 0x10b4, 0x10f8,
2080                 0x1100, 0x1114,
2081                 0x111c, 0x112c,
2082                 0x1138, 0x113c,
2083                 0x1144, 0x114c,
2084                 0x1180, 0x1184,
2085                 0x1190, 0x1194,
2086                 0x11a0, 0x11a4,
2087                 0x11b0, 0x11b4,
2088                 0x11fc, 0x1274,
2089                 0x1280, 0x133c,
2090                 0x1800, 0x18fc,
2091                 0x3000, 0x302c,
2092                 0x3060, 0x30b0,
2093                 0x30b8, 0x30d8,
2094                 0x30e0, 0x30fc,
2095                 0x3140, 0x357c,
2096                 0x35a8, 0x35cc,
2097                 0x35ec, 0x35ec,
2098                 0x3600, 0x5624,
2099                 0x56cc, 0x56ec,
2100                 0x56f4, 0x5720,
2101                 0x5728, 0x575c,
2102                 0x580c, 0x5814,
2103                 0x5890, 0x589c,
2104                 0x58a4, 0x58ac,
2105                 0x58b8, 0x58bc,
2106                 0x5940, 0x595c,
2107                 0x5980, 0x598c,
2108                 0x59b0, 0x59c8,
2109                 0x59d0, 0x59dc,
2110                 0x59fc, 0x5a18,
2111                 0x5a60, 0x5a6c,
2112                 0x5a80, 0x5a8c,
2113                 0x5a94, 0x5a9c,
2114                 0x5b94, 0x5bfc,
2115                 0x5c10, 0x5e48,
2116                 0x5e50, 0x5e94,
2117                 0x5ea0, 0x5eb0,
2118                 0x5ec0, 0x5ec0,
2119                 0x5ec8, 0x5ed0,
2120                 0x5ee0, 0x5ee0,
2121                 0x5ef0, 0x5ef0,
2122                 0x5f00, 0x5f00,
2123                 0x6000, 0x6020,
2124                 0x6028, 0x6040,
2125                 0x6058, 0x609c,
2126                 0x60a8, 0x619c,
2127                 0x7700, 0x7798,
2128                 0x77c0, 0x7880,
2129                 0x78cc, 0x78fc,
2130                 0x7b00, 0x7b58,
2131                 0x7b60, 0x7b84,
2132                 0x7b8c, 0x7c54,
2133                 0x7d00, 0x7d38,
2134                 0x7d40, 0x7d84,
2135                 0x7d8c, 0x7ddc,
2136                 0x7de4, 0x7e04,
2137                 0x7e10, 0x7e1c,
2138                 0x7e24, 0x7e38,
2139                 0x7e40, 0x7e44,
2140                 0x7e4c, 0x7e78,
2141                 0x7e80, 0x7edc,
2142                 0x7ee8, 0x7efc,
2143                 0x8dc0, 0x8de4,
2144                 0x8df8, 0x8e04,
2145                 0x8e10, 0x8e84,
2146                 0x8ea0, 0x8f88,
2147                 0x8fb8, 0x9058,
2148                 0x9060, 0x9060,
2149                 0x9068, 0x90f8,
2150                 0x9100, 0x9124,
2151                 0x9400, 0x9470,
2152                 0x9600, 0x9600,
2153                 0x9608, 0x9638,
2154                 0x9640, 0x9704,
2155                 0x9710, 0x971c,
2156                 0x9800, 0x9808,
2157                 0x9820, 0x983c,
2158                 0x9850, 0x9864,
2159                 0x9c00, 0x9c6c,
2160                 0x9c80, 0x9cec,
2161                 0x9d00, 0x9d6c,
2162                 0x9d80, 0x9dec,
2163                 0x9e00, 0x9e6c,
2164                 0x9e80, 0x9eec,
2165                 0x9f00, 0x9f6c,
2166                 0x9f80, 0xa020,
2167                 0xd004, 0xd03c,
2168                 0xd100, 0xd118,
2169                 0xd200, 0xd214,
2170                 0xd220, 0xd234,
2171                 0xd240, 0xd254,
2172                 0xd260, 0xd274,
2173                 0xd280, 0xd294,
2174                 0xd2a0, 0xd2b4,
2175                 0xd2c0, 0xd2d4,
2176                 0xd2e0, 0xd2f4,
2177                 0xd300, 0xd31c,
2178                 0xdfc0, 0xdfe0,
2179                 0xe000, 0xf008,
2180                 0xf010, 0xf018,
2181                 0xf020, 0xf028,
2182                 0x11000, 0x11014,
2183                 0x11048, 0x1106c,
2184                 0x11074, 0x11088,
2185                 0x11098, 0x11120,
2186                 0x1112c, 0x1117c,
2187                 0x11190, 0x112e0,
2188                 0x11300, 0x1130c,
2189                 0x12000, 0x1206c,
2190                 0x19040, 0x1906c,
2191                 0x19078, 0x19080,
2192                 0x1908c, 0x190e8,
2193                 0x190f0, 0x190f8,
2194                 0x19100, 0x19110,
2195                 0x19120, 0x19124,
2196                 0x19150, 0x19194,
2197                 0x1919c, 0x191b0,
2198                 0x191d0, 0x191e8,
2199                 0x19238, 0x19290,
2200                 0x192a4, 0x192b0,
2201                 0x192bc, 0x192bc,
2202                 0x19348, 0x1934c,
2203                 0x193f8, 0x19418,
2204                 0x19420, 0x19428,
2205                 0x19430, 0x19444,
2206                 0x1944c, 0x1946c,
2207                 0x19474, 0x19474,
2208                 0x19490, 0x194cc,
2209                 0x194f0, 0x194f8,
2210                 0x19c00, 0x19c48,
2211                 0x19c50, 0x19c80,
2212                 0x19c94, 0x19c98,
2213                 0x19ca0, 0x19cbc,
2214                 0x19ce4, 0x19ce4,
2215                 0x19cf0, 0x19cf8,
2216                 0x19d00, 0x19d28,
2217                 0x19d50, 0x19d78,
2218                 0x19d94, 0x19d98,
2219                 0x19da0, 0x19dc8,
2220                 0x19df0, 0x19e10,
2221                 0x19e50, 0x19e6c,
2222                 0x19ea0, 0x19ebc,
2223                 0x19ec4, 0x19ef4,
2224                 0x19f04, 0x19f2c,
2225                 0x19f34, 0x19f34,
2226                 0x19f40, 0x19f50,
2227                 0x19f90, 0x19fac,
2228                 0x19fc4, 0x19fc8,
2229                 0x19fd0, 0x19fe4,
2230                 0x1a000, 0x1a004,
2231                 0x1a010, 0x1a06c,
2232                 0x1a0b0, 0x1a0e4,
2233                 0x1a0ec, 0x1a0f8,
2234                 0x1a100, 0x1a108,
2235                 0x1a114, 0x1a120,
2236                 0x1a128, 0x1a130,
2237                 0x1a138, 0x1a138,
2238                 0x1a190, 0x1a1c4,
2239                 0x1a1fc, 0x1a1fc,
2240                 0x1e008, 0x1e00c,
2241                 0x1e040, 0x1e044,
2242                 0x1e04c, 0x1e04c,
2243                 0x1e284, 0x1e290,
2244                 0x1e2c0, 0x1e2c0,
2245                 0x1e2e0, 0x1e2e0,
2246                 0x1e300, 0x1e384,
2247                 0x1e3c0, 0x1e3c8,
2248                 0x1e408, 0x1e40c,
2249                 0x1e440, 0x1e444,
2250                 0x1e44c, 0x1e44c,
2251                 0x1e684, 0x1e690,
2252                 0x1e6c0, 0x1e6c0,
2253                 0x1e6e0, 0x1e6e0,
2254                 0x1e700, 0x1e784,
2255                 0x1e7c0, 0x1e7c8,
2256                 0x1e808, 0x1e80c,
2257                 0x1e840, 0x1e844,
2258                 0x1e84c, 0x1e84c,
2259                 0x1ea84, 0x1ea90,
2260                 0x1eac0, 0x1eac0,
2261                 0x1eae0, 0x1eae0,
2262                 0x1eb00, 0x1eb84,
2263                 0x1ebc0, 0x1ebc8,
2264                 0x1ec08, 0x1ec0c,
2265                 0x1ec40, 0x1ec44,
2266                 0x1ec4c, 0x1ec4c,
2267                 0x1ee84, 0x1ee90,
2268                 0x1eec0, 0x1eec0,
2269                 0x1eee0, 0x1eee0,
2270                 0x1ef00, 0x1ef84,
2271                 0x1efc0, 0x1efc8,
2272                 0x1f008, 0x1f00c,
2273                 0x1f040, 0x1f044,
2274                 0x1f04c, 0x1f04c,
2275                 0x1f284, 0x1f290,
2276                 0x1f2c0, 0x1f2c0,
2277                 0x1f2e0, 0x1f2e0,
2278                 0x1f300, 0x1f384,
2279                 0x1f3c0, 0x1f3c8,
2280                 0x1f408, 0x1f40c,
2281                 0x1f440, 0x1f444,
2282                 0x1f44c, 0x1f44c,
2283                 0x1f684, 0x1f690,
2284                 0x1f6c0, 0x1f6c0,
2285                 0x1f6e0, 0x1f6e0,
2286                 0x1f700, 0x1f784,
2287                 0x1f7c0, 0x1f7c8,
2288                 0x1f808, 0x1f80c,
2289                 0x1f840, 0x1f844,
2290                 0x1f84c, 0x1f84c,
2291                 0x1fa84, 0x1fa90,
2292                 0x1fac0, 0x1fac0,
2293                 0x1fae0, 0x1fae0,
2294                 0x1fb00, 0x1fb84,
2295                 0x1fbc0, 0x1fbc8,
2296                 0x1fc08, 0x1fc0c,
2297                 0x1fc40, 0x1fc44,
2298                 0x1fc4c, 0x1fc4c,
2299                 0x1fe84, 0x1fe90,
2300                 0x1fec0, 0x1fec0,
2301                 0x1fee0, 0x1fee0,
2302                 0x1ff00, 0x1ff84,
2303                 0x1ffc0, 0x1ffc8,
2304                 0x30000, 0x30030,
2305                 0x30100, 0x30168,
2306                 0x30190, 0x301a0,
2307                 0x301a8, 0x301b8,
2308                 0x301c4, 0x301c8,
2309                 0x301d0, 0x301d0,
2310                 0x30200, 0x30320,
2311                 0x30400, 0x304b4,
2312                 0x304c0, 0x3052c,
2313                 0x30540, 0x3061c,
2314                 0x30800, 0x308a0,
2315                 0x308c0, 0x30908,
2316                 0x30910, 0x309b8,
2317                 0x30a00, 0x30a04,
2318                 0x30a0c, 0x30a14,
2319                 0x30a1c, 0x30a2c,
2320                 0x30a44, 0x30a50,
2321                 0x30a74, 0x30a74,
2322                 0x30a7c, 0x30afc,
2323                 0x30b08, 0x30c24,
2324                 0x30d00, 0x30d14,
2325                 0x30d1c, 0x30d3c,
2326                 0x30d44, 0x30d4c,
2327                 0x30d54, 0x30d74,
2328                 0x30d7c, 0x30d7c,
2329                 0x30de0, 0x30de0,
2330                 0x30e00, 0x30ed4,
2331                 0x30f00, 0x30fa4,
2332                 0x30fc0, 0x30fc4,
2333                 0x31000, 0x31004,
2334                 0x31080, 0x310fc,
2335                 0x31208, 0x31220,
2336                 0x3123c, 0x31254,
2337                 0x31300, 0x31300,
2338                 0x31308, 0x3131c,
2339                 0x31338, 0x3133c,
2340                 0x31380, 0x31380,
2341                 0x31388, 0x313a8,
2342                 0x313b4, 0x313b4,
2343                 0x31400, 0x31420,
2344                 0x31438, 0x3143c,
2345                 0x31480, 0x31480,
2346                 0x314a8, 0x314a8,
2347                 0x314b0, 0x314b4,
2348                 0x314c8, 0x314d4,
2349                 0x31a40, 0x31a4c,
2350                 0x31af0, 0x31b20,
2351                 0x31b38, 0x31b3c,
2352                 0x31b80, 0x31b80,
2353                 0x31ba8, 0x31ba8,
2354                 0x31bb0, 0x31bb4,
2355                 0x31bc8, 0x31bd4,
2356                 0x32140, 0x3218c,
2357                 0x321f0, 0x321f4,
2358                 0x32200, 0x32200,
2359                 0x32218, 0x32218,
2360                 0x32400, 0x32400,
2361                 0x32408, 0x3241c,
2362                 0x32618, 0x32620,
2363                 0x32664, 0x32664,
2364                 0x326a8, 0x326a8,
2365                 0x326ec, 0x326ec,
2366                 0x32a00, 0x32abc,
2367                 0x32b00, 0x32b18,
2368                 0x32b20, 0x32b38,
2369                 0x32b40, 0x32b58,
2370                 0x32b60, 0x32b78,
2371                 0x32c00, 0x32c00,
2372                 0x32c08, 0x32c3c,
2373                 0x33000, 0x3302c,
2374                 0x33034, 0x33050,
2375                 0x33058, 0x33058,
2376                 0x33060, 0x3308c,
2377                 0x3309c, 0x330ac,
2378                 0x330c0, 0x330c0,
2379                 0x330c8, 0x330d0,
2380                 0x330d8, 0x330e0,
2381                 0x330ec, 0x3312c,
2382                 0x33134, 0x33150,
2383                 0x33158, 0x33158,
2384                 0x33160, 0x3318c,
2385                 0x3319c, 0x331ac,
2386                 0x331c0, 0x331c0,
2387                 0x331c8, 0x331d0,
2388                 0x331d8, 0x331e0,
2389                 0x331ec, 0x33290,
2390                 0x33298, 0x332c4,
2391                 0x332e4, 0x33390,
2392                 0x33398, 0x333c4,
2393                 0x333e4, 0x3342c,
2394                 0x33434, 0x33450,
2395                 0x33458, 0x33458,
2396                 0x33460, 0x3348c,
2397                 0x3349c, 0x334ac,
2398                 0x334c0, 0x334c0,
2399                 0x334c8, 0x334d0,
2400                 0x334d8, 0x334e0,
2401                 0x334ec, 0x3352c,
2402                 0x33534, 0x33550,
2403                 0x33558, 0x33558,
2404                 0x33560, 0x3358c,
2405                 0x3359c, 0x335ac,
2406                 0x335c0, 0x335c0,
2407                 0x335c8, 0x335d0,
2408                 0x335d8, 0x335e0,
2409                 0x335ec, 0x33690,
2410                 0x33698, 0x336c4,
2411                 0x336e4, 0x33790,
2412                 0x33798, 0x337c4,
2413                 0x337e4, 0x337fc,
2414                 0x33814, 0x33814,
2415                 0x33854, 0x33868,
2416                 0x33880, 0x3388c,
2417                 0x338c0, 0x338d0,
2418                 0x338e8, 0x338ec,
2419                 0x33900, 0x3392c,
2420                 0x33934, 0x33950,
2421                 0x33958, 0x33958,
2422                 0x33960, 0x3398c,
2423                 0x3399c, 0x339ac,
2424                 0x339c0, 0x339c0,
2425                 0x339c8, 0x339d0,
2426                 0x339d8, 0x339e0,
2427                 0x339ec, 0x33a90,
2428                 0x33a98, 0x33ac4,
2429                 0x33ae4, 0x33b10,
2430                 0x33b24, 0x33b28,
2431                 0x33b38, 0x33b50,
2432                 0x33bf0, 0x33c10,
2433                 0x33c24, 0x33c28,
2434                 0x33c38, 0x33c50,
2435                 0x33cf0, 0x33cfc,
2436                 0x34000, 0x34030,
2437                 0x34100, 0x34168,
2438                 0x34190, 0x341a0,
2439                 0x341a8, 0x341b8,
2440                 0x341c4, 0x341c8,
2441                 0x341d0, 0x341d0,
2442                 0x34200, 0x34320,
2443                 0x34400, 0x344b4,
2444                 0x344c0, 0x3452c,
2445                 0x34540, 0x3461c,
2446                 0x34800, 0x348a0,
2447                 0x348c0, 0x34908,
2448                 0x34910, 0x349b8,
2449                 0x34a00, 0x34a04,
2450                 0x34a0c, 0x34a14,
2451                 0x34a1c, 0x34a2c,
2452                 0x34a44, 0x34a50,
2453                 0x34a74, 0x34a74,
2454                 0x34a7c, 0x34afc,
2455                 0x34b08, 0x34c24,
2456                 0x34d00, 0x34d14,
2457                 0x34d1c, 0x34d3c,
2458                 0x34d44, 0x34d4c,
2459                 0x34d54, 0x34d74,
2460                 0x34d7c, 0x34d7c,
2461                 0x34de0, 0x34de0,
2462                 0x34e00, 0x34ed4,
2463                 0x34f00, 0x34fa4,
2464                 0x34fc0, 0x34fc4,
2465                 0x35000, 0x35004,
2466                 0x35080, 0x350fc,
2467                 0x35208, 0x35220,
2468                 0x3523c, 0x35254,
2469                 0x35300, 0x35300,
2470                 0x35308, 0x3531c,
2471                 0x35338, 0x3533c,
2472                 0x35380, 0x35380,
2473                 0x35388, 0x353a8,
2474                 0x353b4, 0x353b4,
2475                 0x35400, 0x35420,
2476                 0x35438, 0x3543c,
2477                 0x35480, 0x35480,
2478                 0x354a8, 0x354a8,
2479                 0x354b0, 0x354b4,
2480                 0x354c8, 0x354d4,
2481                 0x35a40, 0x35a4c,
2482                 0x35af0, 0x35b20,
2483                 0x35b38, 0x35b3c,
2484                 0x35b80, 0x35b80,
2485                 0x35ba8, 0x35ba8,
2486                 0x35bb0, 0x35bb4,
2487                 0x35bc8, 0x35bd4,
2488                 0x36140, 0x3618c,
2489                 0x361f0, 0x361f4,
2490                 0x36200, 0x36200,
2491                 0x36218, 0x36218,
2492                 0x36400, 0x36400,
2493                 0x36408, 0x3641c,
2494                 0x36618, 0x36620,
2495                 0x36664, 0x36664,
2496                 0x366a8, 0x366a8,
2497                 0x366ec, 0x366ec,
2498                 0x36a00, 0x36abc,
2499                 0x36b00, 0x36b18,
2500                 0x36b20, 0x36b38,
2501                 0x36b40, 0x36b58,
2502                 0x36b60, 0x36b78,
2503                 0x36c00, 0x36c00,
2504                 0x36c08, 0x36c3c,
2505                 0x37000, 0x3702c,
2506                 0x37034, 0x37050,
2507                 0x37058, 0x37058,
2508                 0x37060, 0x3708c,
2509                 0x3709c, 0x370ac,
2510                 0x370c0, 0x370c0,
2511                 0x370c8, 0x370d0,
2512                 0x370d8, 0x370e0,
2513                 0x370ec, 0x3712c,
2514                 0x37134, 0x37150,
2515                 0x37158, 0x37158,
2516                 0x37160, 0x3718c,
2517                 0x3719c, 0x371ac,
2518                 0x371c0, 0x371c0,
2519                 0x371c8, 0x371d0,
2520                 0x371d8, 0x371e0,
2521                 0x371ec, 0x37290,
2522                 0x37298, 0x372c4,
2523                 0x372e4, 0x37390,
2524                 0x37398, 0x373c4,
2525                 0x373e4, 0x3742c,
2526                 0x37434, 0x37450,
2527                 0x37458, 0x37458,
2528                 0x37460, 0x3748c,
2529                 0x3749c, 0x374ac,
2530                 0x374c0, 0x374c0,
2531                 0x374c8, 0x374d0,
2532                 0x374d8, 0x374e0,
2533                 0x374ec, 0x3752c,
2534                 0x37534, 0x37550,
2535                 0x37558, 0x37558,
2536                 0x37560, 0x3758c,
2537                 0x3759c, 0x375ac,
2538                 0x375c0, 0x375c0,
2539                 0x375c8, 0x375d0,
2540                 0x375d8, 0x375e0,
2541                 0x375ec, 0x37690,
2542                 0x37698, 0x376c4,
2543                 0x376e4, 0x37790,
2544                 0x37798, 0x377c4,
2545                 0x377e4, 0x377fc,
2546                 0x37814, 0x37814,
2547                 0x37854, 0x37868,
2548                 0x37880, 0x3788c,
2549                 0x378c0, 0x378d0,
2550                 0x378e8, 0x378ec,
2551                 0x37900, 0x3792c,
2552                 0x37934, 0x37950,
2553                 0x37958, 0x37958,
2554                 0x37960, 0x3798c,
2555                 0x3799c, 0x379ac,
2556                 0x379c0, 0x379c0,
2557                 0x379c8, 0x379d0,
2558                 0x379d8, 0x379e0,
2559                 0x379ec, 0x37a90,
2560                 0x37a98, 0x37ac4,
2561                 0x37ae4, 0x37b10,
2562                 0x37b24, 0x37b28,
2563                 0x37b38, 0x37b50,
2564                 0x37bf0, 0x37c10,
2565                 0x37c24, 0x37c28,
2566                 0x37c38, 0x37c50,
2567                 0x37cf0, 0x37cfc,
2568                 0x40040, 0x40040,
2569                 0x40080, 0x40084,
2570                 0x40100, 0x40100,
2571                 0x40140, 0x401bc,
2572                 0x40200, 0x40214,
2573                 0x40228, 0x40228,
2574                 0x40240, 0x40258,
2575                 0x40280, 0x40280,
2576                 0x40304, 0x40304,
2577                 0x40330, 0x4033c,
2578                 0x41304, 0x413c8,
2579                 0x413d0, 0x413dc,
2580                 0x413f0, 0x413f0,
2581                 0x41400, 0x4140c,
2582                 0x41414, 0x4141c,
2583                 0x41480, 0x414d0,
2584                 0x44000, 0x4407c,
2585                 0x440c0, 0x441ac,
2586                 0x441b4, 0x4427c,
2587                 0x442c0, 0x443ac,
2588                 0x443b4, 0x4447c,
2589                 0x444c0, 0x445ac,
2590                 0x445b4, 0x4467c,
2591                 0x446c0, 0x447ac,
2592                 0x447b4, 0x4487c,
2593                 0x448c0, 0x449ac,
2594                 0x449b4, 0x44a7c,
2595                 0x44ac0, 0x44bac,
2596                 0x44bb4, 0x44c7c,
2597                 0x44cc0, 0x44dac,
2598                 0x44db4, 0x44e7c,
2599                 0x44ec0, 0x44fac,
2600                 0x44fb4, 0x4507c,
2601                 0x450c0, 0x451ac,
2602                 0x451b4, 0x451fc,
2603                 0x45800, 0x45804,
2604                 0x45810, 0x45830,
2605                 0x45840, 0x45860,
2606                 0x45868, 0x45868,
2607                 0x45880, 0x45884,
2608                 0x458a0, 0x458b0,
2609                 0x45a00, 0x45a04,
2610                 0x45a10, 0x45a30,
2611                 0x45a40, 0x45a60,
2612                 0x45a68, 0x45a68,
2613                 0x45a80, 0x45a84,
2614                 0x45aa0, 0x45ab0,
2615                 0x460c0, 0x460e4,
2616                 0x47000, 0x4703c,
2617                 0x47044, 0x4708c,
2618                 0x47200, 0x47250,
2619                 0x47400, 0x47408,
2620                 0x47414, 0x47420,
2621                 0x47600, 0x47618,
2622                 0x47800, 0x47814,
2623                 0x47820, 0x4782c,
2624                 0x50000, 0x50084,
2625                 0x50090, 0x500cc,
2626                 0x50300, 0x50384,
2627                 0x50400, 0x50400,
2628                 0x50800, 0x50884,
2629                 0x50890, 0x508cc,
2630                 0x50b00, 0x50b84,
2631                 0x50c00, 0x50c00,
2632                 0x51000, 0x51020,
2633                 0x51028, 0x510b0,
2634                 0x51300, 0x51324,
2635         };
2636
2637         static const unsigned int t6vf_reg_ranges[] = {
2638                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2639                 VF_MPS_REG(A_MPS_VF_CTL),
2640                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2641                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2642                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2643                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2644                 FW_T6VF_MBDATA_BASE_ADDR,
2645                 FW_T6VF_MBDATA_BASE_ADDR +
2646                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2647         };
2648
2649         u32 *buf_end = (u32 *)(buf + buf_size);
2650         const unsigned int *reg_ranges;
2651         int reg_ranges_size, range;
2652         unsigned int chip_version = chip_id(adap);
2653
2654         /*
2655          * Select the right set of register ranges to dump depending on the
2656          * adapter chip type.
2657          */
2658         switch (chip_version) {
2659         case CHELSIO_T4:
2660                 if (adap->flags & IS_VF) {
2661                         reg_ranges = t4vf_reg_ranges;
2662                         reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2663                 } else {
2664                         reg_ranges = t4_reg_ranges;
2665                         reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2666                 }
2667                 break;
2668
2669         case CHELSIO_T5:
2670                 if (adap->flags & IS_VF) {
2671                         reg_ranges = t5vf_reg_ranges;
2672                         reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2673                 } else {
2674                         reg_ranges = t5_reg_ranges;
2675                         reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2676                 }
2677                 break;
2678
2679         case CHELSIO_T6:
2680                 if (adap->flags & IS_VF) {
2681                         reg_ranges = t6vf_reg_ranges;
2682                         reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2683                 } else {
2684                         reg_ranges = t6_reg_ranges;
2685                         reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2686                 }
2687                 break;
2688
2689         default:
2690                 CH_ERR(adap,
2691                         "Unsupported chip version %d\n", chip_version);
2692                 return;
2693         }
2694
2695         /*
2696          * Clear the register buffer and insert the appropriate register
2697          * values selected by the above register ranges.
2698          */
2699         memset(buf, 0, buf_size);
2700         for (range = 0; range < reg_ranges_size; range += 2) {
2701                 unsigned int reg = reg_ranges[range];
2702                 unsigned int last_reg = reg_ranges[range + 1];
2703                 u32 *bufp = (u32 *)(buf + reg);
2704
2705                 /*
2706                  * Iterate across the register range filling in the register
2707                  * buffer but don't write past the end of the register buffer.
2708                  */
2709                 while (reg <= last_reg && bufp < buf_end) {
2710                         *bufp++ = t4_read_reg(adap, reg);
2711                         reg += sizeof(u32);
2712                 }
2713         }
2714 }
2715
2716 /*
2717  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2718  * header followed by one or more VPD-R sections, each with its own header.
2719  */
2720 struct t4_vpd_hdr {
2721         u8  id_tag;
2722         u8  id_len[2];
2723         u8  id_data[ID_LEN];
2724 };
2725
2726 struct t4_vpdr_hdr {
2727         u8  vpdr_tag;
2728         u8  vpdr_len[2];
2729 };
2730
2731 /*
2732  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2733  */
2734 #define EEPROM_DELAY            10              /* 10us per poll spin */
2735 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
2736
2737 #define EEPROM_STAT_ADDR        0x7bfc
2738 #define VPD_SIZE                0x800
2739 #define VPD_BASE                0x400
2740 #define VPD_BASE_OLD            0
2741 #define VPD_LEN                 1024
2742 #define VPD_INFO_FLD_HDR_SIZE   3
2743 #define CHELSIO_VPD_UNIQUE_ID   0x82
2744
2745 /*
2746  * Small utility function to wait till any outstanding VPD Access is complete.
2747  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2748  * VPD Access in flight.  This allows us to handle the problem of having a
2749  * previous VPD Access time out and prevent an attempt to inject a new VPD
2750  * Request before any in-flight VPD reguest has completed.
2751  */
2752 static int t4_seeprom_wait(struct adapter *adapter)
2753 {
2754         unsigned int base = adapter->params.pci.vpd_cap_addr;
2755         int max_poll;
2756
2757         /*
2758          * If no VPD Access is in flight, we can just return success right
2759          * away.
2760          */
2761         if (!adapter->vpd_busy)
2762                 return 0;
2763
2764         /*
2765          * Poll the VPD Capability Address/Flag register waiting for it
2766          * to indicate that the operation is complete.
2767          */
2768         max_poll = EEPROM_MAX_POLL;
2769         do {
2770                 u16 val;
2771
2772                 udelay(EEPROM_DELAY);
2773                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2774
2775                 /*
2776                  * If the operation is complete, mark the VPD as no longer
2777                  * busy and return success.
2778                  */
2779                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2780                         adapter->vpd_busy = 0;
2781                         return 0;
2782                 }
2783         } while (--max_poll);
2784
2785         /*
2786          * Failure!  Note that we leave the VPD Busy status set in order to
2787          * avoid pushing a new VPD Access request into the VPD Capability till
2788          * the current operation eventually succeeds.  It's a bug to issue a
2789          * new request when an existing request is in flight and will result
2790          * in corrupt hardware state.
2791          */
2792         return -ETIMEDOUT;
2793 }
2794
2795 /**
2796  *      t4_seeprom_read - read a serial EEPROM location
2797  *      @adapter: adapter to read
2798  *      @addr: EEPROM virtual address
2799  *      @data: where to store the read data
2800  *
2801  *      Read a 32-bit word from a location in serial EEPROM using the card's PCI
2802  *      VPD capability.  Note that this function must be called with a virtual
2803  *      address.
2804  */
2805 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2806 {
2807         unsigned int base = adapter->params.pci.vpd_cap_addr;
2808         int ret;
2809
2810         /*
2811          * VPD Accesses must alway be 4-byte aligned!
2812          */
2813         if (addr >= EEPROMVSIZE || (addr & 3))
2814                 return -EINVAL;
2815
2816         /*
2817          * Wait for any previous operation which may still be in flight to
2818          * complete.
2819          */
2820         ret = t4_seeprom_wait(adapter);
2821         if (ret) {
2822                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2823                 return ret;
2824         }
2825
2826         /*
2827          * Issue our new VPD Read request, mark the VPD as being busy and wait
2828          * for our request to complete.  If it doesn't complete, note the
2829          * error and return it to our caller.  Note that we do not reset the
2830          * VPD Busy status!
2831          */
2832         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2833         adapter->vpd_busy = 1;
2834         adapter->vpd_flag = PCI_VPD_ADDR_F;
2835         ret = t4_seeprom_wait(adapter);
2836         if (ret) {
2837                 CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2838                 return ret;
2839         }
2840
2841         /*
2842          * Grab the returned data, swizzle it into our endianness and
2843          * return success.
2844          */
2845         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2846         *data = le32_to_cpu(*data);
2847         return 0;
2848 }
2849
2850 /**
2851  *      t4_seeprom_write - write a serial EEPROM location
2852  *      @adapter: adapter to write
2853  *      @addr: virtual EEPROM address
2854  *      @data: value to write
2855  *
2856  *      Write a 32-bit word to a location in serial EEPROM using the card's PCI
2857  *      VPD capability.  Note that this function must be called with a virtual
2858  *      address.
2859  */
2860 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2861 {
2862         unsigned int base = adapter->params.pci.vpd_cap_addr;
2863         int ret;
2864         u32 stats_reg;
2865         int max_poll;
2866
2867         /*
2868          * VPD Accesses must alway be 4-byte aligned!
2869          */
2870         if (addr >= EEPROMVSIZE || (addr & 3))
2871                 return -EINVAL;
2872
2873         /*
2874          * Wait for any previous operation which may still be in flight to
2875          * complete.
2876          */
2877         ret = t4_seeprom_wait(adapter);
2878         if (ret) {
2879                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2880                 return ret;
2881         }
2882
2883         /*
2884          * Issue our new VPD Read request, mark the VPD as being busy and wait
2885          * for our request to complete.  If it doesn't complete, note the
2886          * error and return it to our caller.  Note that we do not reset the
2887          * VPD Busy status!
2888          */
2889         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2890                                  cpu_to_le32(data));
2891         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2892                                  (u16)addr | PCI_VPD_ADDR_F);
2893         adapter->vpd_busy = 1;
2894         adapter->vpd_flag = 0;
2895         ret = t4_seeprom_wait(adapter);
2896         if (ret) {
2897                 CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2898                 return ret;
2899         }
2900
2901         /*
2902          * Reset PCI_VPD_DATA register after a transaction and wait for our
2903          * request to complete. If it doesn't complete, return error.
2904          */
2905         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2906         max_poll = EEPROM_MAX_POLL;
2907         do {
2908                 udelay(EEPROM_DELAY);
2909                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2910         } while ((stats_reg & 0x1) && --max_poll);
2911         if (!max_poll)
2912                 return -ETIMEDOUT;
2913
2914         /* Return success! */
2915         return 0;
2916 }
2917
2918 /**
2919  *      t4_eeprom_ptov - translate a physical EEPROM address to virtual
2920  *      @phys_addr: the physical EEPROM address
2921  *      @fn: the PCI function number
2922  *      @sz: size of function-specific area
2923  *
2924  *      Translate a physical EEPROM address to virtual.  The first 1K is
2925  *      accessed through virtual addresses starting at 31K, the rest is
2926  *      accessed through virtual addresses starting at 0.
2927  *
2928  *      The mapping is as follows:
2929  *      [0..1K) -> [31K..32K)
2930  *      [1K..1K+A) -> [ES-A..ES)
2931  *      [1K+A..ES) -> [0..ES-A-1K)
2932  *
2933  *      where A = @fn * @sz, and ES = EEPROM size.
2934  */
2935 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2936 {
2937         fn *= sz;
2938         if (phys_addr < 1024)
2939                 return phys_addr + (31 << 10);
2940         if (phys_addr < 1024 + fn)
2941                 return EEPROMSIZE - fn + phys_addr - 1024;
2942         if (phys_addr < EEPROMSIZE)
2943                 return phys_addr - 1024 - fn;
2944         return -EINVAL;
2945 }
2946
2947 /**
2948  *      t4_seeprom_wp - enable/disable EEPROM write protection
2949  *      @adapter: the adapter
2950  *      @enable: whether to enable or disable write protection
2951  *
2952  *      Enables or disables write protection on the serial EEPROM.
2953  */
2954 int t4_seeprom_wp(struct adapter *adapter, int enable)
2955 {
2956         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2957 }
2958
2959 /**
2960  *      get_vpd_keyword_val - Locates an information field keyword in the VPD
2961  *      @vpd: Pointer to buffered vpd data structure
2962  *      @kw: The keyword to search for
2963  *      @region: VPD region to search (starting from 0)
2964  *
2965  *      Returns the value of the information field keyword or
2966  *      -ENOENT otherwise.
2967  */
2968 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2969 {
2970         int i, tag;
2971         unsigned int offset, len;
2972         const struct t4_vpdr_hdr *vpdr;
2973
2974         offset = sizeof(struct t4_vpd_hdr);
2975         vpdr = (const void *)(vpd + offset);
2976         tag = vpdr->vpdr_tag;
2977         len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2978         while (region--) {
2979                 offset += sizeof(struct t4_vpdr_hdr) + len;
2980                 vpdr = (const void *)(vpd + offset);
2981                 if (++tag != vpdr->vpdr_tag)
2982                         return -ENOENT;
2983                 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2984         }
2985         offset += sizeof(struct t4_vpdr_hdr);
2986
2987         if (offset + len > VPD_LEN) {
2988                 return -ENOENT;
2989         }
2990
2991         for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2992                 if (memcmp(vpd + i , kw , 2) == 0){
2993                         i += VPD_INFO_FLD_HDR_SIZE;
2994                         return i;
2995                 }
2996
2997                 i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2998         }
2999
3000         return -ENOENT;
3001 }
3002
3003
3004 /**
3005  *      get_vpd_params - read VPD parameters from VPD EEPROM
3006  *      @adapter: adapter to read
3007  *      @p: where to store the parameters
3008  *      @vpd: caller provided temporary space to read the VPD into
3009  *
3010  *      Reads card parameters stored in VPD EEPROM.
3011  */
3012 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3013     uint16_t device_id, u32 *buf)
3014 {
3015         int i, ret, addr;
3016         int ec, sn, pn, na, md;
3017         u8 csum;
3018         const u8 *vpd = (const u8 *)buf;
3019
3020         /*
3021          * Card information normally starts at VPD_BASE but early cards had
3022          * it at 0.
3023          */
3024         ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3025         if (ret)
3026                 return (ret);
3027
3028         /*
3029          * The VPD shall have a unique identifier specified by the PCI SIG.
3030          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3031          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3032          * is expected to automatically put this entry at the
3033          * beginning of the VPD.
3034          */
3035         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3036
3037         for (i = 0; i < VPD_LEN; i += 4) {
3038                 ret = t4_seeprom_read(adapter, addr + i, buf++);
3039                 if (ret)
3040                         return ret;
3041         }
3042
3043 #define FIND_VPD_KW(var,name) do { \
3044         var = get_vpd_keyword_val(vpd, name, 0); \
3045         if (var < 0) { \
3046                 CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3047                 return -EINVAL; \
3048         } \
3049 } while (0)
3050
3051         FIND_VPD_KW(i, "RV");
3052         for (csum = 0; i >= 0; i--)
3053                 csum += vpd[i];
3054
3055         if (csum) {
3056                 CH_ERR(adapter,
3057                         "corrupted VPD EEPROM, actual csum %u\n", csum);
3058                 return -EINVAL;
3059         }
3060
3061         FIND_VPD_KW(ec, "EC");
3062         FIND_VPD_KW(sn, "SN");
3063         FIND_VPD_KW(pn, "PN");
3064         FIND_VPD_KW(na, "NA");
3065 #undef FIND_VPD_KW
3066
3067         memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3068         strstrip(p->id);
3069         memcpy(p->ec, vpd + ec, EC_LEN);
3070         strstrip(p->ec);
3071         i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3072         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3073         strstrip(p->sn);
3074         i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3075         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3076         strstrip((char *)p->pn);
3077         i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3078         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3079         strstrip((char *)p->na);
3080
3081         if (device_id & 0x80)
3082                 return 0;       /* Custom card */
3083
3084         md = get_vpd_keyword_val(vpd, "VF", 1);
3085         if (md < 0) {
3086                 snprintf(p->md, sizeof(p->md), "unknown");
3087         } else {
3088                 i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3089                 memcpy(p->md, vpd + md, min(i, MD_LEN));
3090                 strstrip((char *)p->md);
3091         }
3092
3093         return 0;
3094 }
3095
3096 /* serial flash and firmware constants and flash config file constants */
3097 enum {
3098         SF_ATTEMPTS = 10,       /* max retries for SF operations */
3099
3100         /* flash command opcodes */
3101         SF_PROG_PAGE    = 2,    /* program 256B page */
3102         SF_WR_DISABLE   = 4,    /* disable writes */
3103         SF_RD_STATUS    = 5,    /* read status register */
3104         SF_WR_ENABLE    = 6,    /* enable writes */
3105         SF_RD_DATA_FAST = 0xb,  /* read flash */
3106         SF_RD_ID        = 0x9f, /* read ID */
3107         SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */
3108 };
3109
3110 /**
3111  *      sf1_read - read data from the serial flash
3112  *      @adapter: the adapter
3113  *      @byte_cnt: number of bytes to read
3114  *      @cont: whether another operation will be chained
3115  *      @lock: whether to lock SF for PL access only
3116  *      @valp: where to store the read data
3117  *
3118  *      Reads up to 4 bytes of data from the serial flash.  The location of
3119  *      the read needs to be specified prior to calling this by issuing the
3120  *      appropriate commands to the serial flash.
3121  */
3122 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3123                     int lock, u32 *valp)
3124 {
3125         int ret;
3126
3127         if (!byte_cnt || byte_cnt > 4)
3128                 return -EINVAL;
3129         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3130                 return -EBUSY;
3131         t4_write_reg(adapter, A_SF_OP,
3132                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3133         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3134         if (!ret)
3135                 *valp = t4_read_reg(adapter, A_SF_DATA);
3136         return ret;
3137 }
3138
3139 /**
3140  *      sf1_write - write data to the serial flash
3141  *      @adapter: the adapter
3142  *      @byte_cnt: number of bytes to write
3143  *      @cont: whether another operation will be chained
3144  *      @lock: whether to lock SF for PL access only
3145  *      @val: value to write
3146  *
3147  *      Writes up to 4 bytes of data to the serial flash.  The location of
3148  *      the write needs to be specified prior to calling this by issuing the
3149  *      appropriate commands to the serial flash.
3150  */
3151 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3152                      int lock, u32 val)
3153 {
3154         if (!byte_cnt || byte_cnt > 4)
3155                 return -EINVAL;
3156         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3157                 return -EBUSY;
3158         t4_write_reg(adapter, A_SF_DATA, val);
3159         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3160                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3161         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3162 }
3163
3164 /**
3165  *      flash_wait_op - wait for a flash operation to complete
3166  *      @adapter: the adapter
3167  *      @attempts: max number of polls of the status register
3168  *      @delay: delay between polls in ms
3169  *
3170  *      Wait for a flash operation to complete by polling the status register.
3171  */
3172 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3173 {
3174         int ret;
3175         u32 status;
3176
3177         while (1) {
3178                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3179                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3180                         return ret;
3181                 if (!(status & 1))
3182                         return 0;
3183                 if (--attempts == 0)
3184                         return -EAGAIN;
3185                 if (delay)
3186                         msleep(delay);
3187         }
3188 }
3189
3190 /**
3191  *      t4_read_flash - read words from serial flash
3192  *      @adapter: the adapter
3193  *      @addr: the start address for the read
3194  *      @nwords: how many 32-bit words to read
3195  *      @data: where to store the read data
3196  *      @byte_oriented: whether to store data as bytes or as words
3197  *
3198  *      Read the specified number of 32-bit words from the serial flash.
3199  *      If @byte_oriented is set the read data is stored as a byte array
3200  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3201  *      natural endianness.
3202  */
3203 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3204                   unsigned int nwords, u32 *data, int byte_oriented)
3205 {
3206         int ret;
3207
3208         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3209                 return -EINVAL;
3210
3211         addr = swab32(addr) | SF_RD_DATA_FAST;
3212
3213         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3214             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3215                 return ret;
3216
3217         for ( ; nwords; nwords--, data++) {
3218                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3219                 if (nwords == 1)
3220                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3221                 if (ret)
3222                         return ret;
3223                 if (byte_oriented)
3224                         *data = (__force __u32)(cpu_to_be32(*data));
3225         }
3226         return 0;
3227 }
3228
3229 /**
3230  *      t4_write_flash - write up to a page of data to the serial flash
3231  *      @adapter: the adapter
3232  *      @addr: the start address to write
3233  *      @n: length of data to write in bytes
3234  *      @data: the data to write
3235  *      @byte_oriented: whether to store data as bytes or as words
3236  *
3237  *      Writes up to a page of data (256 bytes) to the serial flash starting
3238  *      at the given address.  All the data must be written to the same page.
3239  *      If @byte_oriented is set the write data is stored as byte stream
3240  *      (i.e. matches what on disk), otherwise in big-endian.
3241  */
3242 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3243                           unsigned int n, const u8 *data, int byte_oriented)
3244 {
3245         int ret;
3246         u32 buf[SF_PAGE_SIZE / 4];
3247         unsigned int i, c, left, val, offset = addr & 0xff;
3248
3249         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3250                 return -EINVAL;
3251
3252         val = swab32(addr) | SF_PROG_PAGE;
3253
3254         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3255             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3256                 goto unlock;
3257
3258         for (left = n; left; left -= c) {
3259                 c = min(left, 4U);
3260                 for (val = 0, i = 0; i < c; ++i)
3261                         val = (val << 8) + *data++;
3262
3263                 if (!byte_oriented)
3264                         val = cpu_to_be32(val);
3265
3266                 ret = sf1_write(adapter, c, c != left, 1, val);
3267                 if (ret)
3268                         goto unlock;
3269         }
3270         ret = flash_wait_op(adapter, 8, 1);
3271         if (ret)
3272                 goto unlock;
3273
3274         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3275
3276         /* Read the page to verify the write succeeded */
3277         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3278                             byte_oriented);
3279         if (ret)
3280                 return ret;
3281
3282         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3283                 CH_ERR(adapter,
3284                         "failed to correctly write the flash page at %#x\n",
3285                         addr);
3286                 return -EIO;
3287         }
3288         return 0;
3289
3290 unlock:
3291         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3292         return ret;
3293 }
3294
3295 /**
3296  *      t4_get_fw_version - read the firmware version
3297  *      @adapter: the adapter
3298  *      @vers: where to place the version
3299  *
3300  *      Reads the FW version from flash.
3301  */
3302 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3303 {
3304         return t4_read_flash(adapter, FLASH_FW_START +
3305                              offsetof(struct fw_hdr, fw_ver), 1,
3306                              vers, 0);
3307 }
3308
3309 /**
3310  *      t4_get_fw_hdr - read the firmware header
3311  *      @adapter: the adapter
3312  *      @hdr: where to place the version
3313  *
3314  *      Reads the FW header from flash into caller provided buffer.
3315  */
3316 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3317 {
3318         return t4_read_flash(adapter, FLASH_FW_START,
3319             sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3320 }
3321
3322 /**
3323  *      t4_get_bs_version - read the firmware bootstrap version
3324  *      @adapter: the adapter
3325  *      @vers: where to place the version
3326  *
3327  *      Reads the FW Bootstrap version from flash.
3328  */
3329 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3330 {
3331         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3332                              offsetof(struct fw_hdr, fw_ver), 1,
3333                              vers, 0);
3334 }
3335
3336 /**
3337  *      t4_get_tp_version - read the TP microcode version
3338  *      @adapter: the adapter
3339  *      @vers: where to place the version
3340  *
3341  *      Reads the TP microcode version from flash.
3342  */
3343 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3344 {
3345         return t4_read_flash(adapter, FLASH_FW_START +
3346                              offsetof(struct fw_hdr, tp_microcode_ver),
3347                              1, vers, 0);
3348 }
3349
3350 /**
3351  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3352  *      @adapter: the adapter
3353  *      @vers: where to place the version
3354  *
3355  *      Reads the Expansion ROM header from FLASH and returns the version
3356  *      number (if present) through the @vers return value pointer.  We return
3357  *      this in the Firmware Version Format since it's convenient.  Return
3358  *      0 on success, -ENOENT if no Expansion ROM is present.
3359  */
3360 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3361 {
3362         struct exprom_header {
3363                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3364                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3365         } *hdr;
3366         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3367                                            sizeof(u32))];
3368         int ret;
3369
3370         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3371                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3372                             0);
3373         if (ret)
3374                 return ret;
3375
3376         hdr = (struct exprom_header *)exprom_header_buf;
3377         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3378                 return -ENOENT;
3379
3380         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3381                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3382                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3383                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3384         return 0;
3385 }
3386
3387 /**
3388  *      t4_get_scfg_version - return the Serial Configuration version
3389  *      @adapter: the adapter
3390  *      @vers: where to place the version
3391  *
3392  *      Reads the Serial Configuration Version via the Firmware interface
3393  *      (thus this can only be called once we're ready to issue Firmware
3394  *      commands).  The format of the Serial Configuration version is
3395  *      adapter specific.  Returns 0 on success, an error on failure.
3396  *
3397  *      Note that early versions of the Firmware didn't include the ability
3398  *      to retrieve the Serial Configuration version, so we zero-out the
3399  *      return-value parameter in that case to avoid leaving it with
3400  *      garbage in it.
3401  *
3402  *      Also note that the Firmware will return its cached copy of the Serial
3403  *      Initialization Revision ID, not the actual Revision ID as written in
3404  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3405  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3406  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3407  *      been issued if the Host Driver will be performing a full adapter
3408  *      initialization.
3409  */
3410 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3411 {
3412         u32 scfgrev_param;
3413         int ret;
3414
3415         scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3416                          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3417         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3418                               1, &scfgrev_param, vers);
3419         if (ret)
3420                 *vers = 0;
3421         return ret;
3422 }
3423
3424 /**
3425  *      t4_get_vpd_version - return the VPD version
3426  *      @adapter: the adapter
3427  *      @vers: where to place the version
3428  *
3429  *      Reads the VPD via the Firmware interface (thus this can only be called
3430  *      once we're ready to issue Firmware commands).  The format of the
3431  *      VPD version is adapter specific.  Returns 0 on success, an error on
3432  *      failure.
3433  *
3434  *      Note that early versions of the Firmware didn't include the ability
3435  *      to retrieve the VPD version, so we zero-out the return-value parameter
3436  *      in that case to avoid leaving it with garbage in it.
3437  *
3438  *      Also note that the Firmware will return its cached copy of the VPD
3439  *      Revision ID, not the actual Revision ID as written in the Serial
3440  *      EEPROM.  This is only an issue if a new VPD has been written and the
3441  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3442  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3443  *      if the Host Driver will be performing a full adapter initialization.
3444  */
3445 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3446 {
3447         u32 vpdrev_param;
3448         int ret;
3449
3450         vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3451                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3452         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3453                               1, &vpdrev_param, vers);
3454         if (ret)
3455                 *vers = 0;
3456         return ret;
3457 }
3458
3459 /**
3460  *      t4_get_version_info - extract various chip/firmware version information
3461  *      @adapter: the adapter
3462  *
3463  *      Reads various chip/firmware version numbers and stores them into the
3464  *      adapter Adapter Parameters structure.  If any of the efforts fails
3465  *      the first failure will be returned, but all of the version numbers
3466  *      will be read.
3467  */
3468 int t4_get_version_info(struct adapter *adapter)
3469 {
3470         int ret = 0;
3471
3472         #define FIRST_RET(__getvinfo) \
3473         do { \
3474                 int __ret = __getvinfo; \
3475                 if (__ret && !ret) \
3476                         ret = __ret; \
3477         } while (0)
3478
3479         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3480         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3481         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3482         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3483         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3484         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3485
3486         #undef FIRST_RET
3487
3488         return ret;
3489 }
3490
3491 /**
3492  *      t4_flash_erase_sectors - erase a range of flash sectors
3493  *      @adapter: the adapter
3494  *      @start: the first sector to erase
3495  *      @end: the last sector to erase
3496  *
3497  *      Erases the sectors in the given inclusive range.
3498  */
3499 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3500 {
3501         int ret = 0;
3502
3503         if (end >= adapter->params.sf_nsec)
3504                 return -EINVAL;
3505
3506         while (start <= end) {
3507                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3508                     (ret = sf1_write(adapter, 4, 0, 1,
3509                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3510                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3511                         CH_ERR(adapter,
3512                                 "erase of flash sector %d failed, error %d\n",
3513                                 start, ret);
3514                         break;
3515                 }
3516                 start++;
3517         }
3518         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3519         return ret;
3520 }
3521
3522 /**
3523  *      t4_flash_cfg_addr - return the address of the flash configuration file
3524  *      @adapter: the adapter
3525  *
3526  *      Return the address within the flash where the Firmware Configuration
3527  *      File is stored, or an error if the device FLASH is too small to contain
3528  *      a Firmware Configuration File.
3529  */
3530 int t4_flash_cfg_addr(struct adapter *adapter)
3531 {
3532         /*
3533          * If the device FLASH isn't large enough to hold a Firmware
3534          * Configuration File, return an error.
3535          */
3536         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3537                 return -ENOSPC;
3538
3539         return FLASH_CFG_START;
3540 }
3541
3542 /*
3543  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3544  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3545  * and emit an error message for mismatched firmware to save our caller the
3546  * effort ...
3547  */
3548 static int t4_fw_matches_chip(struct adapter *adap,
3549                               const struct fw_hdr *hdr)
3550 {
3551         /*
3552          * The expression below will return FALSE for any unsupported adapter
3553          * which will keep us "honest" in the future ...
3554          */
3555         if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3556             (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3557             (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3558                 return 1;
3559
3560         CH_ERR(adap,
3561                 "FW image (%d) is not suitable for this adapter (%d)\n",
3562                 hdr->chip, chip_id(adap));
3563         return 0;
3564 }
3565
3566 /**
3567  *      t4_load_fw - download firmware
3568  *      @adap: the adapter
3569  *      @fw_data: the firmware image to write
3570  *      @size: image size
3571  *
3572  *      Write the supplied firmware image to the card's serial flash.
3573  */
3574 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3575 {
3576         u32 csum;
3577         int ret, addr;
3578         unsigned int i;
3579         u8 first_page[SF_PAGE_SIZE];
3580         const u32 *p = (const u32 *)fw_data;
3581         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3582         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3583         unsigned int fw_start_sec;
3584         unsigned int fw_start;
3585         unsigned int fw_size;
3586
3587         if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3588                 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3589                 fw_start = FLASH_FWBOOTSTRAP_START;
3590                 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3591         } else {
3592                 fw_start_sec = FLASH_FW_START_SEC;
3593                 fw_start = FLASH_FW_START;
3594                 fw_size = FLASH_FW_MAX_SIZE;
3595         }
3596
3597         if (!size) {
3598                 CH_ERR(adap, "FW image has no data\n");
3599                 return -EINVAL;
3600         }
3601         if (size & 511) {
3602                 CH_ERR(adap,
3603                         "FW image size not multiple of 512 bytes\n");
3604                 return -EINVAL;
3605         }
3606         if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3607                 CH_ERR(adap,
3608                         "FW image size differs from size in FW header\n");
3609                 return -EINVAL;
3610         }
3611         if (size > fw_size) {
3612                 CH_ERR(adap, "FW image too large, max is %u bytes\n",
3613                         fw_size);
3614                 return -EFBIG;
3615         }
3616         if (!t4_fw_matches_chip(adap, hdr))
3617                 return -EINVAL;
3618
3619         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3620                 csum += be32_to_cpu(p[i]);
3621
3622         if (csum != 0xffffffff) {
3623                 CH_ERR(adap,
3624                         "corrupted firmware image, checksum %#x\n", csum);
3625                 return -EINVAL;
3626         }
3627
3628         i = DIV_ROUND_UP(size, sf_sec_size);    /* # of sectors spanned */
3629         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3630         if (ret)
3631                 goto out;
3632
3633         /*
3634          * We write the correct version at the end so the driver can see a bad
3635          * version if the FW write fails.  Start by writing a copy of the
3636          * first page with a bad version.
3637          */
3638         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3639         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3640         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3641         if (ret)
3642                 goto out;
3643
3644         addr = fw_start;
3645         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3646                 addr += SF_PAGE_SIZE;
3647                 fw_data += SF_PAGE_SIZE;
3648                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3649                 if (ret)
3650                         goto out;
3651         }
3652
3653         ret = t4_write_flash(adap,
3654                              fw_start + offsetof(struct fw_hdr, fw_ver),
3655                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3656 out:
3657         if (ret)
3658                 CH_ERR(adap, "firmware download failed, error %d\n",
3659                         ret);
3660         return ret;
3661 }
3662
3663 /**
3664  *      t4_fwcache - firmware cache operation
3665  *      @adap: the adapter
3666  *      @op  : the operation (flush or flush and invalidate)
3667  */
3668 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3669 {
3670         struct fw_params_cmd c;
3671
3672         memset(&c, 0, sizeof(c));
3673         c.op_to_vfn =
3674             cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3675                             F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3676                                 V_FW_PARAMS_CMD_PFN(adap->pf) |
3677                                 V_FW_PARAMS_CMD_VFN(0));
3678         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3679         c.param[0].mnem =
3680             cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3681                             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3682         c.param[0].val = (__force __be32)op;
3683
3684         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3685 }
3686
3687 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3688                         unsigned int *pif_req_wrptr,
3689                         unsigned int *pif_rsp_wrptr)
3690 {
3691         int i, j;
3692         u32 cfg, val, req, rsp;
3693
3694         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3695         if (cfg & F_LADBGEN)
3696                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3697
3698         val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3699         req = G_POLADBGWRPTR(val);
3700         rsp = G_PILADBGWRPTR(val);
3701         if (pif_req_wrptr)
3702                 *pif_req_wrptr = req;
3703         if (pif_rsp_wrptr)
3704                 *pif_rsp_wrptr = rsp;
3705
3706         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3707                 for (j = 0; j < 6; j++) {
3708                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3709                                      V_PILADBGRDPTR(rsp));
3710                         *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3711                         *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3712                         req++;
3713                         rsp++;
3714                 }
3715                 req = (req + 2) & M_POLADBGRDPTR;
3716                 rsp = (rsp + 2) & M_PILADBGRDPTR;
3717         }
3718         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3719 }
3720
3721 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3722 {
3723         u32 cfg;
3724         int i, j, idx;
3725
3726         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3727         if (cfg & F_LADBGEN)
3728                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3729
3730         for (i = 0; i < CIM_MALA_SIZE; i++) {
3731                 for (j = 0; j < 5; j++) {
3732                         idx = 8 * i + j;
3733                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3734                                      V_PILADBGRDPTR(idx));
3735                         *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3736                         *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3737                 }
3738         }
3739         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3740 }
3741
3742 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3743 {
3744         unsigned int i, j;
3745
3746         for (i = 0; i < 8; i++) {
3747                 u32 *p = la_buf + i;
3748
3749                 t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3750                 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3751                 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3752                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3753                         *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3754         }
3755 }
3756
3757 /**
3758  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3759  *      @caps16: a 16-bit Port Capabilities value
3760  *
3761  *      Returns the equivalent 32-bit Port Capabilities value.
3762  */
3763 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3764 {
3765         uint32_t caps32 = 0;
3766
3767         #define CAP16_TO_CAP32(__cap) \
3768                 do { \
3769                         if (caps16 & FW_PORT_CAP_##__cap) \
3770                                 caps32 |= FW_PORT_CAP32_##__cap; \
3771                 } while (0)
3772
3773         CAP16_TO_CAP32(SPEED_100M);
3774         CAP16_TO_CAP32(SPEED_1G);
3775         CAP16_TO_CAP32(SPEED_25G);
3776         CAP16_TO_CAP32(SPEED_10G);
3777         CAP16_TO_CAP32(SPEED_40G);
3778         CAP16_TO_CAP32(SPEED_100G);
3779         CAP16_TO_CAP32(FC_RX);
3780         CAP16_TO_CAP32(FC_TX);
3781         CAP16_TO_CAP32(ANEG);
3782         CAP16_TO_CAP32(FORCE_PAUSE);
3783         CAP16_TO_CAP32(MDIAUTO);
3784         CAP16_TO_CAP32(MDISTRAIGHT);
3785         CAP16_TO_CAP32(FEC_RS);
3786         CAP16_TO_CAP32(FEC_BASER_RS);
3787         CAP16_TO_CAP32(802_3_PAUSE);
3788         CAP16_TO_CAP32(802_3_ASM_DIR);
3789
3790         #undef CAP16_TO_CAP32
3791
3792         return caps32;
3793 }
3794
3795 /**
3796  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3797  *      @caps32: a 32-bit Port Capabilities value
3798  *
3799  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
3800  *      not all 32-bit Port Capabilities can be represented in the 16-bit
3801  *      Port Capabilities and some fields/values may not make it.
3802  */
3803 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3804 {
3805         uint16_t caps16 = 0;
3806
3807         #define CAP32_TO_CAP16(__cap) \
3808                 do { \
3809                         if (caps32 & FW_PORT_CAP32_##__cap) \
3810                                 caps16 |= FW_PORT_CAP_##__cap; \
3811                 } while (0)
3812
3813         CAP32_TO_CAP16(SPEED_100M);
3814         CAP32_TO_CAP16(SPEED_1G);
3815         CAP32_TO_CAP16(SPEED_10G);
3816         CAP32_TO_CAP16(SPEED_25G);
3817         CAP32_TO_CAP16(SPEED_40G);
3818         CAP32_TO_CAP16(SPEED_100G);
3819         CAP32_TO_CAP16(FC_RX);
3820         CAP32_TO_CAP16(FC_TX);
3821         CAP32_TO_CAP16(802_3_PAUSE);
3822         CAP32_TO_CAP16(802_3_ASM_DIR);
3823         CAP32_TO_CAP16(ANEG);
3824         CAP32_TO_CAP16(FORCE_PAUSE);
3825         CAP32_TO_CAP16(MDIAUTO);
3826         CAP32_TO_CAP16(MDISTRAIGHT);
3827         CAP32_TO_CAP16(FEC_RS);
3828         CAP32_TO_CAP16(FEC_BASER_RS);
3829
3830         #undef CAP32_TO_CAP16
3831
3832         return caps16;
3833 }
3834
3835 static bool
3836 is_bt(struct port_info *pi)
3837 {
3838
3839         return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3840             pi->port_type == FW_PORT_TYPE_BT_XFI ||
3841             pi->port_type == FW_PORT_TYPE_BT_XAUI);
3842 }
3843
3844 /**
3845  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3846  *      @phy: the PHY to setup
3847  *      @mac: the MAC to setup
3848  *      @lc: the requested link configuration
3849  *
3850  *      Set up a port's MAC and PHY according to a desired link configuration.
3851  *      - If the PHY can auto-negotiate first decide what to advertise, then
3852  *        enable/disable auto-negotiation as desired, and reset.
3853  *      - If the PHY does not auto-negotiate just reset it.
3854  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3855  *        otherwise do it later based on the outcome of auto-negotiation.
3856  */
3857 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3858                   struct link_config *lc)
3859 {
3860         struct fw_port_cmd c;
3861         unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3862         unsigned int aneg, fc, fec, speed, rcap;
3863
3864         fc = 0;
3865         if (lc->requested_fc & PAUSE_RX)
3866                 fc |= FW_PORT_CAP32_FC_RX;
3867         if (lc->requested_fc & PAUSE_TX)
3868                 fc |= FW_PORT_CAP32_FC_TX;
3869         if (!(lc->requested_fc & PAUSE_AUTONEG))
3870                 fc |= FW_PORT_CAP32_FORCE_PAUSE;
3871
3872         fec = 0;
3873         if (lc->requested_fec == FEC_AUTO)
3874                 fec = lc->fec_hint;
3875         else {
3876                 if (lc->requested_fec & FEC_RS)
3877                         fec |= FW_PORT_CAP32_FEC_RS;
3878                 if (lc->requested_fec & FEC_BASER_RS)
3879                         fec |= FW_PORT_CAP32_FEC_BASER_RS;
3880         }
3881
3882         if (lc->requested_aneg == AUTONEG_DISABLE)
3883                 aneg = 0;
3884         else if (lc->requested_aneg == AUTONEG_ENABLE)
3885                 aneg = FW_PORT_CAP32_ANEG;
3886         else
3887                 aneg = lc->supported & FW_PORT_CAP32_ANEG;
3888
3889         if (aneg) {
3890                 speed = lc->supported & V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3891         } else if (lc->requested_speed != 0)
3892                 speed = speed_to_fwcap(lc->requested_speed);
3893         else
3894                 speed = fwcap_top_speed(lc->supported);
3895
3896         /* Force AN on for BT cards. */
3897         if (is_bt(adap->port[port]))
3898                 aneg = lc->supported & FW_PORT_CAP32_ANEG;
3899
3900         rcap = aneg | speed | fc | fec;
3901         if ((rcap | lc->supported) != lc->supported) {
3902 #ifdef INVARIANTS
3903                 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3904                     lc->supported);
3905 #endif
3906                 rcap &= lc->supported;
3907         }
3908         rcap |= mdi;
3909
3910         memset(&c, 0, sizeof(c));
3911         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3912                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3913                                      V_FW_PORT_CMD_PORTID(port));
3914         if (adap->params.port_caps32) {
3915                 c.action_to_len16 =
3916                     cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3917                         FW_LEN16(c));
3918                 c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3919         } else {
3920                 c.action_to_len16 =
3921                     cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3922                             FW_LEN16(c));
3923                 c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3924         }
3925
3926         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3927 }
3928
3929 /**
3930  *      t4_restart_aneg - restart autonegotiation
3931  *      @adap: the adapter
3932  *      @mbox: mbox to use for the FW command
3933  *      @port: the port id
3934  *
3935  *      Restarts autonegotiation for the selected port.
3936  */
3937 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3938 {
3939         struct fw_port_cmd c;
3940
3941         memset(&c, 0, sizeof(c));
3942         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3943                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3944                                      V_FW_PORT_CMD_PORTID(port));
3945         c.action_to_len16 =
3946                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3947                             FW_LEN16(c));
3948         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3949         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3950 }
3951
3952 struct intr_details {
3953         u32 mask;
3954         const char *msg;
3955 };
3956
3957 struct intr_action {
3958         u32 mask;
3959         int arg;
3960         bool (*action)(struct adapter *, int, bool);
3961 };
3962
3963 struct intr_info {
3964         const char *name;       /* name of the INT_CAUSE register */
3965         int cause_reg;          /* INT_CAUSE register */
3966         int enable_reg;         /* INT_ENABLE register */
3967         u32 fatal;              /* bits that are fatal */
3968         const struct intr_details *details;
3969         const struct intr_action *actions;
3970 };
3971
3972 static inline char
3973 intr_alert_char(u32 cause, u32 enable, u32 fatal)
3974 {
3975
3976         if (cause & fatal)
3977                 return ('!');
3978         if (cause & enable)
3979                 return ('*');
3980         return ('-');
3981 }
3982
3983 static void
3984 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
3985 {
3986         u32 enable, leftover;
3987         const struct intr_details *details;
3988         char alert;
3989
3990         enable = t4_read_reg(adap, ii->enable_reg);
3991         alert = intr_alert_char(cause, enable, ii->fatal);
3992         CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
3993             alert, ii->name, ii->cause_reg, cause, enable, ii->fatal);
3994
3995         leftover = cause;
3996         for (details = ii->details; details && details->mask != 0; details++) {
3997                 u32 msgbits = details->mask & cause;
3998                 if (msgbits == 0)
3999                         continue;
4000                 alert = intr_alert_char(msgbits, enable, ii->fatal);
4001                 CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4002                     details->msg);
4003                 leftover &= ~msgbits;
4004         }
4005         if (leftover != 0 && leftover != cause)
4006                 CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4007 }
4008
4009 /*
4010  * Returns true for fatal error.
4011  */
4012 static bool
4013 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4014     u32 additional_cause, bool verbose)
4015 {
4016         u32 cause;
4017         bool fatal;
4018         const struct intr_action *action;
4019
4020         /* read and display cause. */
4021         cause = t4_read_reg(adap, ii->cause_reg);
4022         if (verbose || cause != 0)
4023                 t4_show_intr_info(adap, ii, cause);
4024         fatal = (cause & ii->fatal) != 0;
4025         cause |= additional_cause;
4026         if (cause == 0)
4027                 return (false);
4028
4029         for (action = ii->actions; action && action->mask != 0; action++) {
4030                 if (!(action->mask & cause))
4031                         continue;
4032                 fatal |= (action->action)(adap, action->arg, verbose);
4033         }
4034
4035         /* clear */
4036         t4_write_reg(adap, ii->cause_reg, cause);
4037         (void)t4_read_reg(adap, ii->cause_reg);
4038
4039         return (fatal);
4040 }
4041
4042 /*
4043  * Interrupt handler for the PCIE module.
4044  */
4045 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4046 {
4047         static const struct intr_details sysbus_intr_details[] = {
4048                 { F_RNPP, "RXNP array parity error" },
4049                 { F_RPCP, "RXPC array parity error" },
4050                 { F_RCIP, "RXCIF array parity error" },
4051                 { F_RCCP, "Rx completions control array parity error" },
4052                 { F_RFTP, "RXFT array parity error" },
4053                 { 0 }
4054         };
4055         static const struct intr_info sysbus_intr_info = {
4056                 .name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4057                 .cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4058                 .enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4059                 .fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4060                 .details = sysbus_intr_details,
4061                 .actions = NULL,
4062         };
4063         static const struct intr_details pcie_port_intr_details[] = {
4064                 { F_TPCP, "TXPC array parity error" },
4065                 { F_TNPP, "TXNP array parity error" },
4066                 { F_TFTP, "TXFT array parity error" },
4067                 { F_TCAP, "TXCA array parity error" },
4068                 { F_TCIP, "TXCIF array parity error" },
4069                 { F_RCAP, "RXCA array parity error" },
4070                 { F_OTDD, "outbound request TLP discarded" },
4071                 { F_RDPE, "Rx data parity error" },
4072                 { F_TDUE, "Tx uncorrectable data error" },
4073                 { 0 }
4074         };
4075         static const struct intr_info pcie_port_intr_info = {
4076                 .name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4077                 .cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4078                 .enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4079                 .fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4080                     F_OTDD | F_RDPE | F_TDUE,
4081                 .details = pcie_port_intr_details,
4082                 .actions = NULL,
4083         };
4084         static const struct intr_details pcie_intr_details[] = {
4085                 { F_MSIADDRLPERR, "MSI AddrL parity error" },
4086                 { F_MSIADDRHPERR, "MSI AddrH parity error" },
4087                 { F_MSIDATAPERR, "MSI data parity error" },
4088                 { F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4089                 { F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4090                 { F_MSIXDATAPERR, "MSI-X data parity error" },
4091                 { F_MSIXDIPERR, "MSI-X DI parity error" },
4092                 { F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4093                 { F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4094                 { F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4095                 { F_CCNTPERR, "PCIe CMD channel count parity error" },
4096                 { F_CREQPERR, "PCIe CMD channel request parity error" },
4097                 { F_CRSPPERR, "PCIe CMD channel response parity error" },
4098                 { F_DCNTPERR, "PCIe DMA channel count parity error" },
4099                 { F_DREQPERR, "PCIe DMA channel request parity error" },
4100                 { F_DRSPPERR, "PCIe DMA channel response parity error" },
4101                 { F_HCNTPERR, "PCIe HMA channel count parity error" },
4102                 { F_HREQPERR, "PCIe HMA channel request parity error" },
4103                 { F_HRSPPERR, "PCIe HMA channel response parity error" },
4104                 { F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4105                 { F_FIDPERR, "PCIe FID parity error" },
4106                 { F_INTXCLRPERR, "PCIe INTx clear parity error" },
4107                 { F_MATAGPERR, "PCIe MA tag parity error" },
4108                 { F_PIOTAGPERR, "PCIe PIO tag parity error" },
4109                 { F_RXCPLPERR, "PCIe Rx completion parity error" },
4110                 { F_RXWRPERR, "PCIe Rx write parity error" },
4111                 { F_RPLPERR, "PCIe replay buffer parity error" },
4112                 { F_PCIESINT, "PCIe core secondary fault" },
4113                 { F_PCIEPINT, "PCIe core primary fault" },
4114                 { F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4115                 { 0 }
4116         };
4117         static const struct intr_details t5_pcie_intr_details[] = {
4118                 { F_IPGRPPERR, "Parity errors observed by IP" },
4119                 { F_NONFATALERR, "PCIe non-fatal error" },
4120                 { F_READRSPERR, "Outbound read error" },
4121                 { F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4122                 { F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4123                 { F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4124                 { F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4125                 { F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4126                 { F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4127                 { F_MAGRPPERR, "MA group FIFO parity error" },
4128                 { F_VFIDPERR, "VFID SRAM parity error" },
4129                 { F_FIDPERR, "FID SRAM parity error" },
4130                 { F_CFGSNPPERR, "config snoop FIFO parity error" },
4131                 { F_HRSPPERR, "HMA channel response data SRAM parity error" },
4132                 { F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4133                 { F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4134                 { F_DRSPPERR, "DMA channel response data SRAM parity error" },
4135                 { F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4136                 { F_CRSPPERR, "CMD channel response data SRAM parity error" },
4137                 { F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4138                 { F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4139                 { F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4140                 { F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4141                 { F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4142                 { F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4143                 { F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4144                 { F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4145                 { F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4146                 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4147                 { F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4148                 { F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4149                 { 0 }
4150         };
4151         struct intr_info pcie_intr_info = {
4152                 .name = "PCIE_INT_CAUSE",
4153                 .cause_reg = A_PCIE_INT_CAUSE,
4154                 .enable_reg = A_PCIE_INT_ENABLE,
4155                 .fatal = 0,
4156                 .details = NULL,
4157                 .actions = NULL,
4158         };
4159         bool fatal = false;
4160
4161         if (is_t4(adap)) {
4162                 fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4163                 fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4164
4165                 pcie_intr_info.fatal =  0x3fffffc0;
4166                 pcie_intr_info.details = pcie_intr_details;
4167         } else {
4168                 pcie_intr_info.fatal = is_t5(adap) ? 0xbfffff40 : 0x9fffff40;
4169                 pcie_intr_info.details = t5_pcie_intr_details;
4170         }
4171         fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4172
4173         return (fatal);
4174 }
4175
4176 /*
4177  * TP interrupt handler.
4178  */
4179 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4180 {
4181         static const struct intr_details tp_intr_details[] = {
4182                 { 0x3fffffff, "TP parity error" },
4183                 { F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4184                 { 0 }
4185         };
4186         static const struct intr_info tp_intr_info = {
4187                 .name = "TP_INT_CAUSE",
4188                 .cause_reg = A_TP_INT_CAUSE,
4189                 .enable_reg = A_TP_INT_ENABLE,
4190                 .fatal = 0x7fffffff,
4191                 .details = tp_intr_details,
4192                 .actions = NULL,
4193         };
4194
4195         return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4196 }
4197
4198 /*
4199  * SGE interrupt handler.
4200  */
4201 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4202 {
4203         static const struct intr_info sge_int1_info = {
4204                 .name = "SGE_INT_CAUSE1",
4205                 .cause_reg = A_SGE_INT_CAUSE1,
4206                 .enable_reg = A_SGE_INT_ENABLE1,
4207                 .fatal = 0xffffffff,
4208                 .details = NULL,
4209                 .actions = NULL,
4210         };
4211         static const struct intr_info sge_int2_info = {
4212                 .name = "SGE_INT_CAUSE2",
4213                 .cause_reg = A_SGE_INT_CAUSE2,
4214                 .enable_reg = A_SGE_INT_ENABLE2,
4215                 .fatal = 0xffffffff,
4216                 .details = NULL,
4217                 .actions = NULL,
4218         };
4219         static const struct intr_details sge_int3_details[] = {
4220                 { F_ERR_FLM_DBP,
4221                         "DBP pointer delivery for invalid context or QID" },
4222                 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4223                         "Invalid QID or header request by IDMA" },
4224                 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4225                 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4226                 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4227                 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4228                 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4229                 { F_ERR_TIMER_ABOVE_MAX_QID,
4230                         "SGE GTS with timer 0-5 for IQID > 1023" },
4231                 { F_ERR_CPL_EXCEED_IQE_SIZE,
4232                         "SGE received CPL exceeding IQE size" },
4233                 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4234                 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4235                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4236                 { F_ERR_DROPPED_DB, "SGE DB dropped" },
4237                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4238                   "SGE IQID > 1023 received CPL for FL" },
4239                 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4240                         F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4241                 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4242                 { F_ERR_ING_CTXT_PRIO,
4243                         "Ingress context manager priority user error" },
4244                 { F_ERR_EGR_CTXT_PRIO,
4245                         "Egress context manager priority user error" },
4246                 { F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4247                 { F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4248                 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4249                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4250                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4251                 { 0x0000000f, "SGE context access for invalid queue" },
4252                 { 0 }
4253         };
4254         static const struct intr_details t6_sge_int3_details[] = {
4255                 { F_ERR_FLM_DBP,
4256                         "DBP pointer delivery for invalid context or QID" },
4257                 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4258                         "Invalid QID or header request by IDMA" },
4259                 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4260                 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4261                 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4262                 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4263                 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4264                 { F_ERR_TIMER_ABOVE_MAX_QID,
4265                         "SGE GTS with timer 0-5 for IQID > 1023" },
4266                 { F_ERR_CPL_EXCEED_IQE_SIZE,
4267                         "SGE received CPL exceeding IQE size" },
4268                 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4269                 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4270                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4271                 { F_ERR_DROPPED_DB, "SGE DB dropped" },
4272                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4273                         "SGE IQID > 1023 received CPL for FL" },
4274                 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4275                         F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4276                 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4277                 { F_ERR_ING_CTXT_PRIO,
4278                         "Ingress context manager priority user error" },
4279                 { F_ERR_EGR_CTXT_PRIO,
4280                         "Egress context manager priority user error" },
4281                 { F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4282                 { F_FATAL_WRE_LEN,
4283                         "SGE WRE packet less than advertized length" },
4284                 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4285                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4286                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4287                 { 0x0000000f, "SGE context access for invalid queue" },
4288                 { 0 }
4289         };
4290         struct intr_info sge_int3_info = {
4291                 .name = "SGE_INT_CAUSE3",
4292                 .cause_reg = A_SGE_INT_CAUSE3,
4293                 .enable_reg = A_SGE_INT_ENABLE3,
4294                 .fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4295                 .details = NULL,
4296                 .actions = NULL,
4297         };
4298         static const struct intr_info sge_int4_info = {
4299                 .name = "SGE_INT_CAUSE4",
4300                 .cause_reg = A_SGE_INT_CAUSE4,
4301                 .enable_reg = A_SGE_INT_ENABLE4,
4302                 .fatal = 0,
4303                 .details = NULL,
4304                 .actions = NULL,
4305         };
4306         static const struct intr_info sge_int5_info = {
4307                 .name = "SGE_INT_CAUSE5",
4308                 .cause_reg = A_SGE_INT_CAUSE5,
4309                 .enable_reg = A_SGE_INT_ENABLE5,
4310                 .fatal = 0xffffffff,
4311                 .details = NULL,
4312                 .actions = NULL,
4313         };
4314         static const struct intr_info sge_int6_info = {
4315                 .name = "SGE_INT_CAUSE6",
4316                 .cause_reg = A_SGE_INT_CAUSE6,
4317                 .enable_reg = A_SGE_INT_ENABLE6,
4318                 .fatal = 0,
4319                 .details = NULL,
4320                 .actions = NULL,
4321         };
4322
4323         bool fatal;
4324         u32 v;
4325
4326         if (chip_id(adap) <= CHELSIO_T5) {
4327                 sge_int3_info.details = sge_int3_details;
4328         } else {
4329                 sge_int3_info.details = t6_sge_int3_details;
4330         }
4331
4332         fatal = false;
4333         fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4334         fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4335         fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4336         fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4337         if (chip_id(adap) >= CHELSIO_T5)
4338                 fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4339         if (chip_id(adap) >= CHELSIO_T6)
4340                 fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4341
4342         v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4343         if (v & F_ERROR_QID_VALID) {
4344                 CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4345                 if (v & F_UNCAPTURED_ERROR)
4346                         CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4347                 t4_write_reg(adap, A_SGE_ERROR_STATS,
4348                     F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4349         }
4350
4351         return (fatal);
4352 }
4353
4354 /*
4355  * CIM interrupt handler.
4356  */
4357 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4358 {
4359         static const struct intr_action cim_host_intr_actions[] = {
4360                 { F_TIMER0INT, 0, t4_os_dump_cimla },
4361                 { 0 },
4362         };
4363         static const struct intr_details cim_host_intr_details[] = {
4364                 /* T6+ */
4365                 { F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4366
4367                 /* T5+ */
4368                 { F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4369                 { F_PLCIM_MSTRSPDATAPARERR,
4370                         "PL2CIM master response data parity error" },
4371                 { F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4372                 { F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4373                 { F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4374                 { F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4375                 { F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4376                 { F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4377
4378                 /* T4+ */
4379                 { F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4380                 { F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4381                 { F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4382                 { F_MBUPPARERR, "CIM mailbox uP parity error" },
4383                 { F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4384                 { F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4385                 { F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4386                 { F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4387                 { F_IBQSGEHIPARERR | F_IBQPCIEPARERR,   /* same bit */
4388                         "CIM IBQ PCIe/SGE_HI parity error" },
4389                 { F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4390                 { F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4391                 { F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4392                 { F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4393                 { F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4394                 { F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4395                 { F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4396                 { F_TIMER1INT, "CIM TIMER0 interrupt" },
4397                 { F_TIMER0INT, "CIM TIMER0 interrupt" },
4398                 { F_PREFDROPINT, "CIM control register prefetch drop" },
4399                 { 0}
4400         };
4401         struct intr_info cim_host_intr_info = {
4402                 .name = "CIM_HOST_INT_CAUSE",
4403                 .cause_reg = A_CIM_HOST_INT_CAUSE,
4404                 .enable_reg = A_CIM_HOST_INT_ENABLE,
4405                 .fatal = 0,
4406                 .details = cim_host_intr_details,
4407                 .actions = cim_host_intr_actions,
4408         };
4409         static const struct intr_details cim_host_upacc_intr_details[] = {
4410                 { F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4411                 { F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4412                 { F_TIMEOUTINT, "CIM PIF timeout" },
4413                 { F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4414                 { F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4415                 { F_BLKWRPLINT, "CIM block write to PL space" },
4416                 { F_BLKRDPLINT, "CIM block read from PL space" },
4417                 { F_SGLWRPLINT,
4418                         "CIM single write to PL space with illegal BEs" },
4419                 { F_SGLRDPLINT,
4420                         "CIM single read from PL space with illegal BEs" },
4421                 { F_BLKWRCTLINT, "CIM block write to CTL space" },
4422                 { F_BLKRDCTLINT, "CIM block read from CTL space" },
4423                 { F_SGLWRCTLINT,
4424                         "CIM single write to CTL space with illegal BEs" },
4425                 { F_SGLRDCTLINT,
4426                         "CIM single read from CTL space with illegal BEs" },
4427                 { F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4428                 { F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4429                 { F_SGLWREEPROMINT,
4430                         "CIM single write to EEPROM space with illegal BEs" },
4431                 { F_SGLRDEEPROMINT,
4432                         "CIM single read from EEPROM space with illegal BEs" },
4433                 { F_BLKWRFLASHINT, "CIM block write to flash space" },
4434                 { F_BLKRDFLASHINT, "CIM block read from flash space" },
4435                 { F_SGLWRFLASHINT, "CIM single write to flash space" },
4436                 { F_SGLRDFLASHINT,
4437                         "CIM single read from flash space with illegal BEs" },
4438                 { F_BLKWRBOOTINT, "CIM block write to boot space" },
4439                 { F_BLKRDBOOTINT, "CIM block read from boot space" },
4440                 { F_SGLWRBOOTINT, "CIM single write to boot space" },
4441                 { F_SGLRDBOOTINT,
4442                         "CIM single read from boot space with illegal BEs" },
4443                 { F_ILLWRBEINT, "CIM illegal write BEs" },
4444                 { F_ILLRDBEINT, "CIM illegal read BEs" },
4445                 { F_ILLRDINT, "CIM illegal read" },
4446                 { F_ILLWRINT, "CIM illegal write" },
4447                 { F_ILLTRANSINT, "CIM illegal transaction" },
4448                 { F_RSVDSPACEINT, "CIM reserved space access" },
4449                 {0}
4450         };
4451         static const struct intr_info cim_host_upacc_intr_info = {
4452                 .name = "CIM_HOST_UPACC_INT_CAUSE",
4453                 .cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4454                 .enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4455                 .fatal = 0x3fffeeff,
4456                 .details = cim_host_upacc_intr_details,
4457                 .actions = NULL,
4458         };
4459         static const struct intr_info cim_pf_host_intr_info = {
4460                 .name = "CIM_PF_HOST_INT_CAUSE",
4461                 .cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4462                 .enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4463                 .fatal = 0,
4464                 .details = NULL,
4465                 .actions = NULL,
4466         };
4467         u32 val, fw_err;
4468         bool fatal;
4469
4470         fw_err = t4_read_reg(adap, A_PCIE_FW);
4471         if (fw_err & F_PCIE_FW_ERR)
4472                 t4_report_fw_error(adap);
4473
4474         /*
4475          * When the Firmware detects an internal error which normally wouldn't
4476          * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4477          * to make sure the Host sees the Firmware Crash.  So if we have a
4478          * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4479          * interrupt.
4480          */
4481         val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4482         if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4483             G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4484                 t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4485         }
4486
4487         fatal = false;
4488         if (is_t4(adap))
4489                 cim_host_intr_info.fatal = 0x001fffe2;
4490         else if (is_t5(adap))
4491                 cim_host_intr_info.fatal = 0x007dffe2;
4492         else
4493                 cim_host_intr_info.fatal = 0x007dffe6;
4494         fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4495         fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4496         fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4497
4498         return (fatal);
4499 }
4500
4501 /*
4502  * ULP RX interrupt handler.
4503  */
4504 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4505 {
4506         static const struct intr_details ulprx_intr_details[] = {
4507                 /* T5+ */
4508                 { F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4509                 { F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4510
4511                 /* T4+ */
4512                 { F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4513                 { F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4514                 { 0x007fffff, "ULPRX parity error" },
4515                 { 0 }
4516         };
4517         static const struct intr_info ulprx_intr_info = {
4518                 .name = "ULP_RX_INT_CAUSE",
4519                 .cause_reg = A_ULP_RX_INT_CAUSE,
4520                 .enable_reg = A_ULP_RX_INT_ENABLE,
4521                 .fatal = 0x07ffffff,
4522                 .details = ulprx_intr_details,
4523                 .actions = NULL,
4524         };
4525         static const struct intr_info ulprx_intr2_info = {
4526                 .name = "ULP_RX_INT_CAUSE_2",
4527                 .cause_reg = A_ULP_RX_INT_CAUSE_2,
4528                 .enable_reg = A_ULP_RX_INT_ENABLE_2,
4529                 .fatal = 0,
4530                 .details = NULL,
4531                 .actions = NULL,
4532         };
4533         bool fatal = false;
4534
4535         fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4536         fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4537
4538         return (fatal);
4539 }
4540
4541 /*
4542  * ULP TX interrupt handler.
4543  */
4544 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4545 {
4546         static const struct intr_details ulptx_intr_details[] = {
4547                 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4548                 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4549                 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4550                 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4551                 { 0x0fffffff, "ULPTX parity error" },
4552                 { 0 }
4553         };
4554         static const struct intr_info ulptx_intr_info = {
4555                 .name = "ULP_TX_INT_CAUSE",
4556                 .cause_reg = A_ULP_TX_INT_CAUSE,
4557                 .enable_reg = A_ULP_TX_INT_ENABLE,
4558                 .fatal = 0x0fffffff,
4559                 .details = ulptx_intr_details,
4560                 .actions = NULL,
4561         };
4562         static const struct intr_info ulptx_intr2_info = {
4563                 .name = "ULP_TX_INT_CAUSE_2",
4564                 .cause_reg = A_ULP_TX_INT_CAUSE_2,
4565                 .enable_reg = A_ULP_TX_INT_ENABLE_2,
4566                 .fatal = 0,
4567                 .details = NULL,
4568                 .actions = NULL,
4569         };
4570         bool fatal = false;
4571
4572         fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4573         fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4574
4575         return (fatal);
4576 }
4577
4578 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4579 {
4580         int i;
4581         u32 data[17];
4582
4583         t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4584             ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4585         for (i = 0; i < ARRAY_SIZE(data); i++) {
4586                 CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4587                     A_PM_TX_DBG_STAT0 + i, data[i]);
4588         }
4589
4590         return (false);
4591 }
4592
4593 /*
4594  * PM TX interrupt handler.
4595  */
4596 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4597 {
4598         static const struct intr_action pmtx_intr_actions[] = {
4599                 { 0xffffffff, 0, pmtx_dump_dbg_stats },
4600                 { 0 },
4601         };
4602         static const struct intr_details pmtx_intr_details[] = {
4603                 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4604                 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4605                 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4606                 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4607                 { 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4608                 { 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4609                 { 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4610                 { 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4611                 { 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4612                 { 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4613                 { F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4614                 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4615                 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4616                 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4617                 { 0 }
4618         };
4619         static const struct intr_info pmtx_intr_info = {
4620                 .name = "PM_TX_INT_CAUSE",
4621                 .cause_reg = A_PM_TX_INT_CAUSE,
4622                 .enable_reg = A_PM_TX_INT_ENABLE,
4623                 .fatal = 0xffffffff,
4624                 .details = pmtx_intr_details,
4625                 .actions = pmtx_intr_actions,
4626         };
4627
4628         return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4629 }
4630
4631 /*
4632  * PM RX interrupt handler.
4633  */
4634 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4635 {
4636         static const struct intr_details pmrx_intr_details[] = {
4637                 /* T6+ */
4638                 { 0x18000000, "PMRX ospi overflow" },
4639                 { F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4640                 { F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4641                 { F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4642                 { F_SDC_ERR, "PMRX SDC error" },
4643
4644                 /* T4+ */
4645                 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4646                 { 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4647                 { 0x0003c000, "PMRX iespi Rx framing error" },
4648                 { 0x00003c00, "PMRX iespi Tx framing error" },
4649                 { 0x00000300, "PMRX ocspi Rx framing error" },
4650                 { 0x000000c0, "PMRX ocspi Tx framing error" },
4651                 { 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4652                 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4653                 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4654                 { F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4655                 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4656                 { 0 }
4657         };
4658         static const struct intr_info pmrx_intr_info = {
4659                 .name = "PM_RX_INT_CAUSE",
4660                 .cause_reg = A_PM_RX_INT_CAUSE,
4661                 .enable_reg = A_PM_RX_INT_ENABLE,
4662                 .fatal = 0x1fffffff,
4663                 .details = pmrx_intr_details,
4664                 .actions = NULL,
4665         };
4666
4667         return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4668 }
4669
4670 /*
4671  * CPL switch interrupt handler.
4672  */
4673 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4674 {
4675         static const struct intr_details cplsw_intr_details[] = {
4676                 /* T5+ */
4677                 { F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4678                 { F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4679
4680                 /* T4+ */
4681                 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4682                 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4683                 { F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4684                 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4685                 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4686                 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4687                 { 0 }
4688         };
4689         struct intr_info cplsw_intr_info = {
4690                 .name = "CPL_INTR_CAUSE",
4691                 .cause_reg = A_CPL_INTR_CAUSE,
4692                 .enable_reg = A_CPL_INTR_ENABLE,
4693                 .fatal = 0,
4694                 .details = cplsw_intr_details,
4695                 .actions = NULL,
4696         };
4697
4698         if (is_t4(adap))
4699                 cplsw_intr_info.fatal = 0x2f;
4700         else if (is_t5(adap))
4701                 cplsw_intr_info.fatal = 0xef;
4702         else
4703                 cplsw_intr_info.fatal = 0xff;
4704
4705         return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4706 }
4707
4708 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4709 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4710     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4711     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4712     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4713 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4714     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4715     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4716
4717 /*
4718  * LE interrupt handler.
4719  */
4720 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4721 {
4722         static const struct intr_details le_intr_details[] = {
4723                 { F_REQQPARERR, "LE request queue parity error" },
4724                 { F_UNKNOWNCMD, "LE unknown command" },
4725                 { F_ACTRGNFULL, "LE active region full" },
4726                 { F_PARITYERR, "LE parity error" },
4727                 { F_LIPMISS, "LE LIP miss" },
4728                 { F_LIP0, "LE 0 LIP error" },
4729                 { 0 }
4730         };
4731         static const struct intr_details t6_le_intr_details[] = {
4732                 { F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4733                 { F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4734                 { F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4735                 { F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4736                 { F_TOTCNTERR, "LE total active < TCAM count" },
4737                 { F_CMDPRSRINTERR, "LE internal error in parser" },
4738                 { F_CMDTIDERR, "Incorrect tid in LE command" },
4739                 { F_T6_ACTRGNFULL, "LE active region full" },
4740                 { F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4741                 { F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4742                 { F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4743                 { F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4744                 { F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4745                 { F_TCAMACCFAIL, "LE TCAM access failure" },
4746                 { F_T6_UNKNOWNCMD, "LE unknown command" },
4747                 { F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4748                 { F_T6_LIPMISS, "LE CLIP lookup miss" },
4749                 { T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4750                 { 0 }
4751         };
4752         struct intr_info le_intr_info = {
4753                 .name = "LE_DB_INT_CAUSE",
4754                 .cause_reg = A_LE_DB_INT_CAUSE,
4755                 .enable_reg = A_LE_DB_INT_ENABLE,
4756                 .fatal = 0,
4757                 .details = NULL,
4758                 .actions = NULL,
4759         };
4760
4761         if (chip_id(adap) <= CHELSIO_T5) {
4762                 le_intr_info.details = le_intr_details;
4763                 le_intr_info.fatal = T4_LE_FATAL_MASK;
4764                 if (is_t5(adap))
4765                         le_intr_info.fatal |= F_VFPARERR;
4766         } else {
4767                 le_intr_info.details = t6_le_intr_details;
4768                 le_intr_info.fatal = T6_LE_FATAL_MASK;
4769         }
4770
4771         return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4772 }
4773
4774 /*
4775  * MPS interrupt handler.
4776  */
4777 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4778 {
4779         static const struct intr_details mps_rx_perr_intr_details[] = {
4780                 { 0xffffffff, "MPS Rx parity error" },
4781                 { 0 }
4782         };
4783         static const struct intr_info mps_rx_perr_intr_info = {
4784                 .name = "MPS_RX_PERR_INT_CAUSE",
4785                 .cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4786                 .enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4787                 .fatal = 0xffffffff,
4788                 .details = mps_rx_perr_intr_details,
4789                 .actions = NULL,
4790         };
4791         static const struct intr_details mps_tx_intr_details[] = {
4792                 { F_PORTERR, "MPS Tx destination port is disabled" },
4793                 { F_FRMERR, "MPS Tx framing error" },
4794                 { F_SECNTERR, "MPS Tx SOP/EOP error" },
4795                 { F_BUBBLE, "MPS Tx underflow" },
4796                 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4797                 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4798                 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4799                 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4800                 { 0 }
4801         };
4802         struct intr_info mps_tx_intr_info = {
4803                 .name = "MPS_TX_INT_CAUSE",
4804                 .cause_reg = A_MPS_TX_INT_CAUSE,
4805                 .enable_reg = A_MPS_TX_INT_ENABLE,
4806                 .fatal = 0x1ffff,
4807                 .details = mps_tx_intr_details,
4808                 .actions = NULL,
4809         };
4810         static const struct intr_details mps_trc_intr_details[] = {
4811                 { F_MISCPERR, "MPS TRC misc parity error" },
4812                 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4813                 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4814                 { 0 }
4815         };
4816         static const struct intr_info mps_trc_intr_info = {
4817                 .name = "MPS_TRC_INT_CAUSE",
4818                 .cause_reg = A_MPS_TRC_INT_CAUSE,
4819                 .enable_reg = A_MPS_TRC_INT_ENABLE,
4820                 .fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4821                 .details = mps_trc_intr_details,
4822                 .actions = NULL,
4823         };
4824         static const struct intr_details mps_stat_sram_intr_details[] = {
4825                 { 0xffffffff, "MPS statistics SRAM parity error" },
4826                 { 0 }
4827         };
4828         static const struct intr_info mps_stat_sram_intr_info = {
4829                 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4830                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4831                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4832                 .fatal = 0x1fffffff,
4833                 .details = mps_stat_sram_intr_details,
4834                 .actions = NULL,
4835         };
4836         static const struct intr_details mps_stat_tx_intr_details[] = {
4837                 { 0xffffff, "MPS statistics Tx FIFO parity error" },
4838                 { 0 }
4839         };
4840         static const struct intr_info mps_stat_tx_intr_info = {
4841                 .name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4842                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4843                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4844                 .fatal =  0xffffff,
4845                 .details = mps_stat_tx_intr_details,
4846                 .actions = NULL,
4847         };
4848         static const struct intr_details mps_stat_rx_intr_details[] = {
4849                 { 0xffffff, "MPS statistics Rx FIFO parity error" },
4850                 { 0 }
4851         };
4852         static const struct intr_info mps_stat_rx_intr_info = {
4853                 .name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4854                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4855                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4856                 .fatal =  0xffffff,
4857                 .details = mps_stat_rx_intr_details,
4858                 .actions = NULL,
4859         };
4860         static const struct intr_details mps_cls_intr_details[] = {
4861                 { F_HASHSRAM, "MPS hash SRAM parity error" },
4862                 { F_MATCHTCAM, "MPS match TCAM parity error" },
4863                 { F_MATCHSRAM, "MPS match SRAM parity error" },
4864                 { 0 }
4865         };
4866         static const struct intr_info mps_cls_intr_info = {
4867                 .name = "MPS_CLS_INT_CAUSE",
4868                 .cause_reg = A_MPS_CLS_INT_CAUSE,
4869                 .enable_reg = A_MPS_CLS_INT_ENABLE,
4870                 .fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4871                 .details = mps_cls_intr_details,
4872                 .actions = NULL,
4873         };
4874         static const struct intr_details mps_stat_sram1_intr_details[] = {
4875                 { 0xff, "MPS statistics SRAM1 parity error" },
4876                 { 0 }
4877         };
4878         static const struct intr_info mps_stat_sram1_intr_info = {
4879                 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4880                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4881                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4882                 .fatal = 0xff,
4883                 .details = mps_stat_sram1_intr_details,
4884                 .actions = NULL,
4885         };
4886
4887         bool fatal;
4888
4889         if (chip_id(adap) == CHELSIO_T6)
4890                 mps_tx_intr_info.fatal &= ~F_BUBBLE;
4891
4892         fatal = false;
4893         fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4894         fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4895         fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4896         fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4897         fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4898         fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4899         fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4900         if (chip_id(adap) > CHELSIO_T4) {
4901                 fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4902                     verbose);
4903         }
4904
4905         t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4906         t4_read_reg(adap, A_MPS_INT_CAUSE);     /* flush */
4907
4908         return (fatal);
4909
4910 }
4911
4912 /*
4913  * EDC/MC interrupt handler.
4914  */
4915 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4916 {
4917         static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
4918         unsigned int count_reg, v;
4919         static const struct intr_details mem_intr_details[] = {
4920                 { F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
4921                 { F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
4922                 { F_PERR_INT_CAUSE, "FIFO parity error" },
4923                 { 0 }
4924         };
4925         struct intr_info ii = {
4926                 .fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
4927                 .details = mem_intr_details,
4928                 .actions = NULL,
4929         };
4930         bool fatal;
4931
4932         switch (idx) {
4933         case MEM_EDC0:
4934                 ii.name = "EDC0_INT_CAUSE";
4935                 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
4936                 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
4937                 count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
4938                 break;
4939         case MEM_EDC1:
4940                 ii.name = "EDC1_INT_CAUSE";
4941                 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
4942                 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
4943                 count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
4944                 break;
4945         case MEM_MC0:
4946                 ii.name = "MC0_INT_CAUSE";
4947                 if (is_t4(adap)) {
4948                         ii.cause_reg = A_MC_INT_CAUSE;
4949                         ii.enable_reg = A_MC_INT_ENABLE;
4950                         count_reg = A_MC_ECC_STATUS;
4951                 } else {
4952                         ii.cause_reg = A_MC_P_INT_CAUSE;
4953                         ii.enable_reg = A_MC_P_INT_ENABLE;
4954                         count_reg = A_MC_P_ECC_STATUS;
4955                 }
4956                 break;
4957         case MEM_MC1:
4958                 ii.name = "MC1_INT_CAUSE";
4959                 ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
4960                 ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
4961                 count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
4962                 break;
4963         }
4964
4965         fatal = t4_handle_intr(adap, &ii, 0, verbose);
4966
4967         v = t4_read_reg(adap, count_reg);
4968         if (v != 0) {
4969                 if (G_ECC_UECNT(v) != 0) {
4970                         CH_ALERT(adap,
4971                             "%s: %u uncorrectable ECC data error(s)\n",
4972                             name[idx], G_ECC_UECNT(v));
4973                 }
4974                 if (G_ECC_CECNT(v) != 0) {
4975                         if (idx <= MEM_EDC1)
4976                                 t4_edc_err_read(adap, idx);
4977                         CH_WARN_RATELIMIT(adap,
4978                             "%s: %u correctable ECC data error(s)\n",
4979                             name[idx], G_ECC_CECNT(v));
4980                 }
4981                 t4_write_reg(adap, count_reg, 0xffffffff);
4982         }
4983
4984         return (fatal);
4985 }
4986
4987 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
4988 {
4989         u32 v;
4990
4991         v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
4992         CH_ALERT(adap,
4993             "MA address wrap-around error by client %u to address %#x\n",
4994             G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
4995         t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
4996
4997         return (false);
4998 }
4999
5000
5001 /*
5002  * MA interrupt handler.
5003  */
5004 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5005 {
5006         static const struct intr_action ma_intr_actions[] = {
5007                 { F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5008                 { 0 },
5009         };
5010         static const struct intr_info ma_intr_info = {
5011                 .name = "MA_INT_CAUSE",
5012                 .cause_reg = A_MA_INT_CAUSE,
5013                 .enable_reg = A_MA_INT_ENABLE,
5014                 .fatal = F_MEM_WRAP_INT_CAUSE | F_MEM_PERR_INT_CAUSE |
5015                     F_MEM_TO_INT_CAUSE,
5016                 .details = NULL,
5017                 .actions = ma_intr_actions,
5018         };
5019         static const struct intr_info ma_perr_status1 = {
5020                 .name = "MA_PARITY_ERROR_STATUS1",
5021                 .cause_reg = A_MA_PARITY_ERROR_STATUS1,
5022                 .enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5023                 .fatal = 0xffffffff,
5024                 .details = NULL,
5025                 .actions = NULL,
5026         };
5027         static const struct intr_info ma_perr_status2 = {
5028                 .name = "MA_PARITY_ERROR_STATUS2",
5029                 .cause_reg = A_MA_PARITY_ERROR_STATUS2,
5030                 .enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5031                 .fatal = 0xffffffff,
5032                 .details = NULL,
5033                 .actions = NULL,
5034         };
5035         bool fatal;
5036
5037         fatal = false;
5038         fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5039         fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5040         if (chip_id(adap) > CHELSIO_T4)
5041                 fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5042
5043         return (fatal);
5044 }
5045
5046 /*
5047  * SMB interrupt handler.
5048  */
5049 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5050 {
5051         static const struct intr_details smb_intr_details[] = {
5052                 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5053                 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5054                 { F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5055                 { 0 }
5056         };
5057         static const struct intr_info smb_intr_info = {
5058                 .name = "SMB_INT_CAUSE",
5059                 .cause_reg = A_SMB_INT_CAUSE,
5060                 .enable_reg = A_SMB_INT_ENABLE,
5061                 .fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5062                 .details = smb_intr_details,
5063                 .actions = NULL,
5064         };
5065
5066         return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5067 }
5068
5069 /*
5070  * NC-SI interrupt handler.
5071  */
5072 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5073 {
5074         static const struct intr_details ncsi_intr_details[] = {
5075                 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5076                 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5077                 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5078                 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5079                 { 0 }
5080         };
5081         static const struct intr_info ncsi_intr_info = {
5082                 .name = "NCSI_INT_CAUSE",
5083                 .cause_reg = A_NCSI_INT_CAUSE,
5084                 .enable_reg = A_NCSI_INT_ENABLE,
5085                 .fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5086                     F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5087                 .details = ncsi_intr_details,
5088                 .actions = NULL,
5089         };
5090
5091         return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5092 }
5093
5094 /*
5095  * MAC interrupt handler.
5096  */
5097 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5098 {
5099         static const struct intr_details mac_intr_details[] = {
5100                 { F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5101                 { F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5102                 { 0 }
5103         };
5104         char name[32];
5105         struct intr_info ii;
5106         bool fatal = false;
5107
5108         if (is_t4(adap)) {
5109                 snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5110                 ii.name = &name[0];
5111                 ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5112                 ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5113                 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR,
5114                 ii.details = mac_intr_details,
5115                 ii.actions = NULL;
5116         } else {
5117                 snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5118                 ii.name = &name[0];
5119                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5120                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5121                 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR,
5122                 ii.details = mac_intr_details,
5123                 ii.actions = NULL;
5124         }
5125         fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5126
5127         if (chip_id(adap) >= CHELSIO_T5) {
5128                 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5129                 ii.name = &name[0];
5130                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5131                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5132                 ii.fatal = 0;
5133                 ii.details = NULL;
5134                 ii.actions = NULL;
5135                 fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5136         }
5137
5138         if (chip_id(adap) >= CHELSIO_T6) {
5139                 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5140                 ii.name = &name[0];
5141                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5142                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5143                 ii.fatal = 0;
5144                 ii.details = NULL;
5145                 ii.actions = NULL;
5146                 fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5147         }
5148
5149         return (fatal);
5150 }
5151
5152 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5153 {
5154         static const struct intr_details plpl_intr_details[] = {
5155                 { F_FATALPERR, "Fatal parity error" },
5156                 { F_PERRVFID, "VFID_MAP parity error" },
5157                 { 0 }
5158         };
5159         struct intr_info plpl_intr_info = {
5160                 .name = "PL_PL_INT_CAUSE",
5161                 .cause_reg = A_PL_PL_INT_CAUSE,
5162                 .enable_reg = A_PL_PL_INT_ENABLE,
5163                 .fatal = F_FATALPERR,
5164                 .details = plpl_intr_details,
5165                 .actions = NULL,
5166         };
5167
5168         if (is_t4(adap))
5169                 plpl_intr_info.fatal |= F_PERRVFID;
5170
5171         return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5172 }
5173
5174 /**
5175  *      t4_slow_intr_handler - control path interrupt handler
5176  *      @adap: the adapter
5177  *      @verbose: increased verbosity, for debug
5178  *
5179  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
5180  *      The designation 'slow' is because it involves register reads, while
5181  *      data interrupts typically don't involve any MMIOs.
5182  */
5183 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5184 {
5185         static const struct intr_details pl_intr_details[] = {
5186                 { F_MC1, "MC1" },
5187                 { F_UART, "UART" },
5188                 { F_ULP_TX, "ULP TX" },
5189                 { F_SGE, "SGE" },
5190                 { F_HMA, "HMA" },
5191                 { F_CPL_SWITCH, "CPL Switch" },
5192                 { F_ULP_RX, "ULP RX" },
5193                 { F_PM_RX, "PM RX" },
5194                 { F_PM_TX, "PM TX" },
5195                 { F_MA, "MA" },
5196                 { F_TP, "TP" },
5197                 { F_LE, "LE" },
5198                 { F_EDC1, "EDC1" },
5199                 { F_EDC0, "EDC0" },
5200                 { F_MC, "MC0" },
5201                 { F_PCIE, "PCIE" },
5202                 { F_PMU, "PMU" },
5203                 { F_MAC3, "MAC3" },
5204                 { F_MAC2, "MAC2" },
5205                 { F_MAC1, "MAC1" },
5206                 { F_MAC0, "MAC0" },
5207                 { F_SMB, "SMB" },
5208                 { F_SF, "SF" },
5209                 { F_PL, "PL" },
5210                 { F_NCSI, "NC-SI" },
5211                 { F_MPS, "MPS" },
5212                 { F_MI, "MI" },
5213                 { F_DBG, "DBG" },
5214                 { F_I2CM, "I2CM" },
5215                 { F_CIM, "CIM" },
5216                 { 0 }
5217         };
5218         static const struct intr_info pl_perr_cause = {
5219                 .name = "PL_PERR_CAUSE",
5220                 .cause_reg = A_PL_PERR_CAUSE,
5221                 .enable_reg = A_PL_PERR_ENABLE,
5222                 .fatal = 0xffffffff,
5223                 .details = pl_intr_details,
5224                 .actions = NULL,
5225         };
5226         static const struct intr_action pl_intr_action[] = {
5227                 { F_MC1, MEM_MC1, mem_intr_handler },
5228                 { F_ULP_TX, -1, ulptx_intr_handler },
5229                 { F_SGE, -1, sge_intr_handler },
5230                 { F_CPL_SWITCH, -1, cplsw_intr_handler },
5231                 { F_ULP_RX, -1, ulprx_intr_handler },
5232                 { F_PM_RX, -1, pmrx_intr_handler},
5233                 { F_PM_TX, -1, pmtx_intr_handler},
5234                 { F_MA, -1, ma_intr_handler },
5235                 { F_TP, -1, tp_intr_handler },
5236                 { F_LE, -1, le_intr_handler },
5237                 { F_EDC1, MEM_EDC1, mem_intr_handler },
5238                 { F_EDC0, MEM_EDC0, mem_intr_handler },
5239                 { F_MC0, MEM_MC0, mem_intr_handler },
5240                 { F_PCIE, -1, pcie_intr_handler },
5241                 { F_MAC3, 3, mac_intr_handler},
5242                 { F_MAC2, 2, mac_intr_handler},
5243                 { F_MAC1, 1, mac_intr_handler},
5244                 { F_MAC0, 0, mac_intr_handler},
5245                 { F_SMB, -1, smb_intr_handler},
5246                 { F_PL, -1, plpl_intr_handler },
5247                 { F_NCSI, -1, ncsi_intr_handler},
5248                 { F_MPS, -1, mps_intr_handler },
5249                 { F_CIM, -1, cim_intr_handler },
5250                 { 0 }
5251         };
5252         static const struct intr_info pl_intr_info = {
5253                 .name = "PL_INT_CAUSE",
5254                 .cause_reg = A_PL_INT_CAUSE,
5255                 .enable_reg = A_PL_INT_ENABLE,
5256                 .fatal = 0,
5257                 .details = pl_intr_details,
5258                 .actions = pl_intr_action,
5259         };
5260         bool fatal;
5261         u32 perr;
5262
5263         perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5264         if (verbose || perr != 0) {
5265                 t4_show_intr_info(adap, &pl_perr_cause, perr);
5266                 if (perr != 0)
5267                         t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5268                 if (verbose)
5269                         perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5270         }
5271         fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5272         if (fatal)
5273                 t4_fatal_err(adap, false);
5274
5275         return (0);
5276 }
5277
5278 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5279
5280 /**
5281  *      t4_intr_enable - enable interrupts
5282  *      @adapter: the adapter whose interrupts should be enabled
5283  *
5284  *      Enable PF-specific interrupts for the calling function and the top-level
5285  *      interrupt concentrator for global interrupts.  Interrupts are already
5286  *      enabled at each module, here we just enable the roots of the interrupt
5287  *      hierarchies.
5288  *
5289  *      Note: this function should be called only when the driver manages
5290  *      non PF-specific interrupts from the various HW modules.  Only one PCI
5291  *      function at a time should be doing this.
5292  */
5293 void t4_intr_enable(struct adapter *adap)
5294 {
5295         u32 val = 0;
5296
5297         if (chip_id(adap) <= CHELSIO_T5)
5298                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5299         else
5300                 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5301         val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5302             F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5303             F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5304             F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5305             F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5306             F_EGRESS_SIZE_ERR;
5307         t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5308         t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5309         t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5310         t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5311 }
5312
5313 /**
5314  *      t4_intr_disable - disable interrupts
5315  *      @adap: the adapter whose interrupts should be disabled
5316  *
5317  *      Disable interrupts.  We only disable the top-level interrupt
5318  *      concentrators.  The caller must be a PCI function managing global
5319  *      interrupts.
5320  */
5321 void t4_intr_disable(struct adapter *adap)
5322 {
5323
5324         t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5325         t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5326 }
5327
5328 /**
5329  *      t4_intr_clear - clear all interrupts
5330  *      @adap: the adapter whose interrupts should be cleared
5331  *
5332  *      Clears all interrupts.  The caller must be a PCI function managing
5333  *      global interrupts.
5334  */
5335 void t4_intr_clear(struct adapter *adap)
5336 {
5337         static const u32 cause_reg[] = {
5338                 A_CIM_HOST_INT_CAUSE,
5339                 A_CIM_HOST_UPACC_INT_CAUSE,
5340                 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5341                 A_CPL_INTR_CAUSE,
5342                 EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5343                 A_LE_DB_INT_CAUSE,
5344                 A_MA_INT_WRAP_STATUS,
5345                 A_MA_PARITY_ERROR_STATUS1,
5346                 A_MA_INT_CAUSE,
5347                 A_MPS_CLS_INT_CAUSE,
5348                 A_MPS_RX_PERR_INT_CAUSE,
5349                 A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5350                 A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5351                 A_MPS_TRC_INT_CAUSE,
5352                 A_MPS_TX_INT_CAUSE,
5353                 A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5354                 A_NCSI_INT_CAUSE,
5355                 A_PCIE_INT_CAUSE,
5356                 A_PCIE_NONFAT_ERR,
5357                 A_PL_PL_INT_CAUSE,
5358                 A_PM_RX_INT_CAUSE,
5359                 A_PM_TX_INT_CAUSE,
5360                 A_SGE_INT_CAUSE1,
5361                 A_SGE_INT_CAUSE2,
5362                 A_SGE_INT_CAUSE3,
5363                 A_SGE_INT_CAUSE4,
5364                 A_SMB_INT_CAUSE,
5365                 A_TP_INT_CAUSE,
5366                 A_ULP_RX_INT_CAUSE,
5367                 A_ULP_RX_INT_CAUSE_2,
5368                 A_ULP_TX_INT_CAUSE,
5369                 A_ULP_TX_INT_CAUSE_2,
5370
5371                 MYPF_REG(A_PL_PF_INT_CAUSE),
5372         };
5373         int i;
5374         const int nchan = adap->chip_params->nchan;
5375
5376         for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5377                 t4_write_reg(adap, cause_reg[i], 0xffffffff);
5378
5379         if (is_t4(adap)) {
5380                 t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5381                     0xffffffff);
5382                 t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5383                     0xffffffff);
5384                 t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5385                 for (i = 0; i < nchan; i++) {
5386                         t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5387                             0xffffffff);
5388                 }
5389         }
5390         if (chip_id(adap) >= CHELSIO_T5) {
5391                 t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5392                 t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5393                 t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5394                 t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5395                 if (is_t5(adap)) {
5396                         t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5397                             0xffffffff);
5398                 }
5399                 for (i = 0; i < nchan; i++) {
5400                         t4_write_reg(adap, T5_PORT_REG(i,
5401                             A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5402                         if (chip_id(adap) > CHELSIO_T5) {
5403                                 t4_write_reg(adap, T5_PORT_REG(i,
5404                                     A_MAC_PORT_PERR_INT_CAUSE_100G),
5405                                     0xffffffff);
5406                         }
5407                         t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5408                             0xffffffff);
5409                 }
5410         }
5411         if (chip_id(adap) >= CHELSIO_T6) {
5412                 t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5413         }
5414
5415         t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5416         t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5417         t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5418         (void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5419 }
5420
5421 /**
5422  *      hash_mac_addr - return the hash value of a MAC address
5423  *      @addr: the 48-bit Ethernet MAC address
5424  *
5425  *      Hashes a MAC address according to the hash function used by HW inexact
5426  *      (hash) address matching.
5427  */
5428 static int hash_mac_addr(const u8 *addr)
5429 {
5430         u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5431         u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5432         a ^= b;
5433         a ^= (a >> 12);
5434         a ^= (a >> 6);
5435         return a & 0x3f;
5436 }
5437
5438 /**
5439  *      t4_config_rss_range - configure a portion of the RSS mapping table
5440  *      @adapter: the adapter
5441  *      @mbox: mbox to use for the FW command
5442  *      @viid: virtual interface whose RSS subtable is to be written
5443  *      @start: start entry in the table to write
5444  *      @n: how many table entries to write
5445  *      @rspq: values for the "response queue" (Ingress Queue) lookup table
5446  *      @nrspq: number of values in @rspq
5447  *
5448  *      Programs the selected part of the VI's RSS mapping table with the
5449  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5450  *      until the full table range is populated.
5451  *
5452  *      The caller must ensure the values in @rspq are in the range allowed for
5453  *      @viid.
5454  */
5455 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5456                         int start, int n, const u16 *rspq, unsigned int nrspq)
5457 {
5458         int ret;
5459         const u16 *rsp = rspq;
5460         const u16 *rsp_end = rspq + nrspq;
5461         struct fw_rss_ind_tbl_cmd cmd;
5462
5463         memset(&cmd, 0, sizeof(cmd));
5464         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5465                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5466                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
5467         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5468
5469         /*
5470          * Each firmware RSS command can accommodate up to 32 RSS Ingress
5471          * Queue Identifiers.  These Ingress Queue IDs are packed three to
5472          * a 32-bit word as 10-bit values with the upper remaining 2 bits
5473          * reserved.
5474          */
5475         while (n > 0) {
5476                 int nq = min(n, 32);
5477                 int nq_packed = 0;
5478                 __be32 *qp = &cmd.iq0_to_iq2;
5479
5480                 /*
5481                  * Set up the firmware RSS command header to send the next
5482                  * "nq" Ingress Queue IDs to the firmware.
5483                  */
5484                 cmd.niqid = cpu_to_be16(nq);
5485                 cmd.startidx = cpu_to_be16(start);
5486
5487                 /*
5488                  * "nq" more done for the start of the next loop.
5489                  */
5490                 start += nq;
5491                 n -= nq;
5492
5493                 /*
5494                  * While there are still Ingress Queue IDs to stuff into the
5495                  * current firmware RSS command, retrieve them from the
5496                  * Ingress Queue ID array and insert them into the command.
5497                  */
5498                 while (nq > 0) {
5499                         /*
5500                          * Grab up to the next 3 Ingress Queue IDs (wrapping
5501                          * around the Ingress Queue ID array if necessary) and
5502                          * insert them into the firmware RSS command at the
5503                          * current 3-tuple position within the commad.
5504                          */
5505                         u16 qbuf[3];
5506                         u16 *qbp = qbuf;
5507                         int nqbuf = min(3, nq);
5508
5509                         nq -= nqbuf;
5510                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
5511                         while (nqbuf && nq_packed < 32) {
5512                                 nqbuf--;
5513                                 nq_packed++;
5514                                 *qbp++ = *rsp++;
5515                                 if (rsp >= rsp_end)
5516                                         rsp = rspq;
5517                         }
5518                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5519                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5520                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5521                 }
5522
5523                 /*
5524                  * Send this portion of the RRS table update to the firmware;
5525                  * bail out on any errors.
5526                  */
5527                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5528                 if (ret)
5529                         return ret;
5530         }
5531         return 0;
5532 }
5533
5534 /**
5535  *      t4_config_glbl_rss - configure the global RSS mode
5536  *      @adapter: the adapter
5537  *      @mbox: mbox to use for the FW command
5538  *      @mode: global RSS mode
5539  *      @flags: mode-specific flags
5540  *
5541  *      Sets the global RSS mode.
5542  */
5543 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5544                        unsigned int flags)
5545 {
5546         struct fw_rss_glb_config_cmd c;
5547
5548         memset(&c, 0, sizeof(c));
5549         c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5550                                     F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5551         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5552         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5553                 c.u.manual.mode_pkd =
5554                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5555         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5556                 c.u.basicvirtual.mode_keymode =
5557                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5558                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5559         } else
5560                 return -EINVAL;
5561         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5562 }
5563
5564 /**
5565  *      t4_config_vi_rss - configure per VI RSS settings
5566  *      @adapter: the adapter
5567  *      @mbox: mbox to use for the FW command
5568  *      @viid: the VI id
5569  *      @flags: RSS flags
5570  *      @defq: id of the default RSS queue for the VI.
5571  *      @skeyidx: RSS secret key table index for non-global mode
5572  *      @skey: RSS vf_scramble key for VI.
5573  *
5574  *      Configures VI-specific RSS properties.
5575  */
5576 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5577                      unsigned int flags, unsigned int defq, unsigned int skeyidx,
5578                      unsigned int skey)
5579 {
5580         struct fw_rss_vi_config_cmd c;
5581
5582         memset(&c, 0, sizeof(c));
5583         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5584                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5585                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5586         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5587         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5588                                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5589         c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5590                                         V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5591         c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5592
5593         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5594 }
5595
5596 /* Read an RSS table row */
5597 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5598 {
5599         t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5600         return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5601                                    5, 0, val);
5602 }
5603
5604 /**
5605  *      t4_read_rss - read the contents of the RSS mapping table
5606  *      @adapter: the adapter
5607  *      @map: holds the contents of the RSS mapping table
5608  *
5609  *      Reads the contents of the RSS hash->queue mapping table.
5610  */
5611 int t4_read_rss(struct adapter *adapter, u16 *map)
5612 {
5613         u32 val;
5614         int i, ret;
5615
5616         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5617                 ret = rd_rss_row(adapter, i, &val);
5618                 if (ret)
5619                         return ret;
5620                 *map++ = G_LKPTBLQUEUE0(val);
5621                 *map++ = G_LKPTBLQUEUE1(val);
5622         }
5623         return 0;
5624 }
5625
5626 /**
5627  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5628  * @adap: the adapter
5629  * @cmd: TP fw ldst address space type
5630  * @vals: where the indirect register values are stored/written
5631  * @nregs: how many indirect registers to read/write
5632  * @start_idx: index of first indirect register to read/write
5633  * @rw: Read (1) or Write (0)
5634  * @sleep_ok: if true we may sleep while awaiting command completion
5635  *
5636  * Access TP indirect registers through LDST
5637  **/
5638 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5639                             unsigned int nregs, unsigned int start_index,
5640                             unsigned int rw, bool sleep_ok)
5641 {
5642         int ret = 0;
5643         unsigned int i;
5644         struct fw_ldst_cmd c;
5645
5646         for (i = 0; i < nregs; i++) {
5647                 memset(&c, 0, sizeof(c));
5648                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5649                                                 F_FW_CMD_REQUEST |
5650                                                 (rw ? F_FW_CMD_READ :
5651                                                       F_FW_CMD_WRITE) |
5652                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
5653                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5654
5655                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5656                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5657                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5658                                       sleep_ok);
5659                 if (ret)
5660                         return ret;
5661
5662                 if (rw)
5663                         vals[i] = be32_to_cpu(c.u.addrval.val);
5664         }
5665         return 0;
5666 }
5667
5668 /**
5669  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5670  * @adap: the adapter
5671  * @reg_addr: Address Register
5672  * @reg_data: Data register
5673  * @buff: where the indirect register values are stored/written
5674  * @nregs: how many indirect registers to read/write
5675  * @start_index: index of first indirect register to read/write
5676  * @rw: READ(1) or WRITE(0)
5677  * @sleep_ok: if true we may sleep while awaiting command completion
5678  *
5679  * Read/Write TP indirect registers through LDST if possible.
5680  * Else, use backdoor access
5681  **/
5682 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5683                               u32 *buff, u32 nregs, u32 start_index, int rw,
5684                               bool sleep_ok)
5685 {
5686         int rc = -EINVAL;
5687         int cmd;
5688
5689         switch (reg_addr) {
5690         case A_TP_PIO_ADDR:
5691                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5692                 break;
5693         case A_TP_TM_PIO_ADDR:
5694                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5695                 break;
5696         case A_TP_MIB_INDEX:
5697                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5698                 break;
5699         default:
5700                 goto indirect_access;
5701         }
5702
5703         if (t4_use_ldst(adap))
5704                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5705                                       sleep_ok);
5706
5707 indirect_access:
5708
5709         if (rc) {
5710                 if (rw)
5711                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5712                                          start_index);
5713                 else
5714                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5715                                           start_index);
5716         }
5717 }
5718
5719 /**
5720  * t4_tp_pio_read - Read TP PIO registers
5721  * @adap: the adapter
5722  * @buff: where the indirect register values are written
5723  * @nregs: how many indirect registers to read
5724  * @start_index: index of first indirect register to read
5725  * @sleep_ok: if true we may sleep while awaiting command completion
5726  *
5727  * Read TP PIO Registers
5728  **/
5729 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5730                     u32 start_index, bool sleep_ok)
5731 {
5732         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5733                           start_index, 1, sleep_ok);
5734 }
5735
5736 /**
5737  * t4_tp_pio_write - Write TP PIO registers
5738  * @adap: the adapter
5739  * @buff: where the indirect register values are stored
5740  * @nregs: how many indirect registers to write
5741  * @start_index: index of first indirect register to write
5742  * @sleep_ok: if true we may sleep while awaiting command completion
5743  *
5744  * Write TP PIO Registers
5745  **/
5746 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5747                      u32 start_index, bool sleep_ok)
5748 {
5749         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5750             __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5751 }
5752
5753 /**
5754  * t4_tp_tm_pio_read - Read TP TM PIO registers
5755  * @adap: the adapter
5756  * @buff: where the indirect register values are written
5757  * @nregs: how many indirect registers to read
5758  * @start_index: index of first indirect register to read
5759  * @sleep_ok: if true we may sleep while awaiting command completion
5760  *
5761  * Read TP TM PIO Registers
5762  **/
5763 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5764                        u32 start_index, bool sleep_ok)
5765 {
5766         t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5767                           nregs, start_index, 1, sleep_ok);
5768 }
5769
5770 /**
5771  * t4_tp_mib_read - Read TP MIB registers
5772  * @adap: the adapter
5773  * @buff: where the indirect register values are written
5774  * @nregs: how many indirect registers to read
5775  * @start_index: index of first indirect register to read
5776  * @sleep_ok: if true we may sleep while awaiting command completion
5777  *
5778  * Read TP MIB Registers
5779  **/
5780 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5781                     bool sleep_ok)
5782 {
5783         t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5784                           start_index, 1, sleep_ok);
5785 }
5786
5787 /**
5788  *      t4_read_rss_key - read the global RSS key
5789  *      @adap: the adapter
5790  *      @key: 10-entry array holding the 320-bit RSS key
5791  *      @sleep_ok: if true we may sleep while awaiting command completion
5792  *
5793  *      Reads the global 320-bit RSS key.
5794  */
5795 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5796 {
5797         t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5798 }
5799
5800 /**
5801  *      t4_write_rss_key - program one of the RSS keys
5802  *      @adap: the adapter
5803  *      @key: 10-entry array holding the 320-bit RSS key
5804  *      @idx: which RSS key to write
5805  *      @sleep_ok: if true we may sleep while awaiting command completion
5806  *
5807  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5808  *      0..15 the corresponding entry in the RSS key table is written,
5809  *      otherwise the global RSS key is written.
5810  */
5811 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5812                       bool sleep_ok)
5813 {
5814         u8 rss_key_addr_cnt = 16;
5815         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5816
5817         /*
5818          * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5819          * allows access to key addresses 16-63 by using KeyWrAddrX
5820          * as index[5:4](upper 2) into key table
5821          */
5822         if ((chip_id(adap) > CHELSIO_T5) &&
5823             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5824                 rss_key_addr_cnt = 32;
5825
5826         t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5827
5828         if (idx >= 0 && idx < rss_key_addr_cnt) {
5829                 if (rss_key_addr_cnt > 16)
5830                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5831                                      vrt | V_KEYWRADDRX(idx >> 4) |
5832                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
5833                 else
5834                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5835                                      vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5836         }
5837 }
5838
5839 /**
5840  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5841  *      @adapter: the adapter
5842  *      @index: the entry in the PF RSS table to read
5843  *      @valp: where to store the returned value
5844  *      @sleep_ok: if true we may sleep while awaiting command completion
5845  *
5846  *      Reads the PF RSS Configuration Table at the specified index and returns
5847  *      the value found there.
5848  */
5849 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5850                            u32 *valp, bool sleep_ok)
5851 {
5852         t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5853 }
5854
5855 /**
5856  *      t4_write_rss_pf_config - write PF RSS Configuration Table
5857  *      @adapter: the adapter
5858  *      @index: the entry in the VF RSS table to read
5859  *      @val: the value to store
5860  *      @sleep_ok: if true we may sleep while awaiting command completion
5861  *
5862  *      Writes the PF RSS Configuration Table at the specified index with the
5863  *      specified value.
5864  */
5865 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5866                             u32 val, bool sleep_ok)
5867 {
5868         t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5869                         sleep_ok);
5870 }
5871
5872 /**
5873  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5874  *      @adapter: the adapter
5875  *      @index: the entry in the VF RSS table to read
5876  *      @vfl: where to store the returned VFL
5877  *      @vfh: where to store the returned VFH
5878  *      @sleep_ok: if true we may sleep while awaiting command completion
5879  *
5880  *      Reads the VF RSS Configuration Table at the specified index and returns
5881  *      the (VFL, VFH) values found there.
5882  */
5883 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5884                            u32 *vfl, u32 *vfh, bool sleep_ok)
5885 {
5886         u32 vrt, mask, data;
5887
5888         if (chip_id(adapter) <= CHELSIO_T5) {
5889                 mask = V_VFWRADDR(M_VFWRADDR);
5890                 data = V_VFWRADDR(index);
5891         } else {
5892                  mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5893                  data = V_T6_VFWRADDR(index);
5894         }
5895         /*
5896          * Request that the index'th VF Table values be read into VFL/VFH.
5897          */
5898         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5899         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5900         vrt |= data | F_VFRDEN;
5901         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5902
5903         /*
5904          * Grab the VFL/VFH values ...
5905          */
5906         t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5907         t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5908 }
5909
5910 /**
5911  *      t4_write_rss_vf_config - write VF RSS Configuration Table
5912  *
5913  *      @adapter: the adapter
5914  *      @index: the entry in the VF RSS table to write
5915  *      @vfl: the VFL to store
5916  *      @vfh: the VFH to store
5917  *
5918  *      Writes the VF RSS Configuration Table at the specified index with the
5919  *      specified (VFL, VFH) values.
5920  */
5921 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5922                             u32 vfl, u32 vfh, bool sleep_ok)
5923 {
5924         u32 vrt, mask, data;
5925
5926         if (chip_id(adapter) <= CHELSIO_T5) {
5927                 mask = V_VFWRADDR(M_VFWRADDR);
5928                 data = V_VFWRADDR(index);
5929         } else {
5930                 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5931                 data = V_T6_VFWRADDR(index);
5932         }
5933
5934         /*
5935          * Load up VFL/VFH with the values to be written ...
5936          */
5937         t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5938         t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5939
5940         /*
5941          * Write the VFL/VFH into the VF Table at index'th location.
5942          */
5943         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5944         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5945         vrt |= data | F_VFRDEN;
5946         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5947 }
5948
5949 /**
5950  *      t4_read_rss_pf_map - read PF RSS Map
5951  *      @adapter: the adapter
5952  *      @sleep_ok: if true we may sleep while awaiting command completion
5953  *
5954  *      Reads the PF RSS Map register and returns its value.
5955  */
5956 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5957 {
5958         u32 pfmap;
5959
5960         t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5961
5962         return pfmap;
5963 }
5964
5965 /**
5966  *      t4_write_rss_pf_map - write PF RSS Map
5967  *      @adapter: the adapter
5968  *      @pfmap: PF RSS Map value
5969  *
5970  *      Writes the specified value to the PF RSS Map register.
5971  */
5972 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5973 {
5974         t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5975 }
5976
5977 /**
5978  *      t4_read_rss_pf_mask - read PF RSS Mask
5979  *      @adapter: the adapter
5980  *      @sleep_ok: if true we may sleep while awaiting command completion
5981  *
5982  *      Reads the PF RSS Mask register and returns its value.
5983  */
5984 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5985 {
5986         u32 pfmask;
5987
5988         t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5989
5990         return pfmask;
5991 }
5992
5993 /**
5994  *      t4_write_rss_pf_mask - write PF RSS Mask
5995  *      @adapter: the adapter
5996  *      @pfmask: PF RSS Mask value
5997  *
5998  *      Writes the specified value to the PF RSS Mask register.
5999  */
6000 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6001 {
6002         t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6003 }
6004
6005 /**
6006  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
6007  *      @adap: the adapter
6008  *      @v4: holds the TCP/IP counter values
6009  *      @v6: holds the TCP/IPv6 counter values
6010  *      @sleep_ok: if true we may sleep while awaiting command completion
6011  *
6012  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6013  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6014  */
6015 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6016                          struct tp_tcp_stats *v6, bool sleep_ok)
6017 {
6018         u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6019
6020 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6021 #define STAT(x)     val[STAT_IDX(x)]
6022 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6023
6024         if (v4) {
6025                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6026                                A_TP_MIB_TCP_OUT_RST, sleep_ok);
6027                 v4->tcp_out_rsts = STAT(OUT_RST);
6028                 v4->tcp_in_segs  = STAT64(IN_SEG);
6029                 v4->tcp_out_segs = STAT64(OUT_SEG);
6030                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
6031         }
6032         if (v6) {
6033                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6034                                A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6035                 v6->tcp_out_rsts = STAT(OUT_RST);
6036                 v6->tcp_in_segs  = STAT64(IN_SEG);
6037                 v6->tcp_out_segs = STAT64(OUT_SEG);
6038                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
6039         }
6040 #undef STAT64
6041 #undef STAT
6042 #undef STAT_IDX
6043 }
6044
6045 /**
6046  *      t4_tp_get_err_stats - read TP's error MIB counters
6047  *      @adap: the adapter
6048  *      @st: holds the counter values
6049  *      @sleep_ok: if true we may sleep while awaiting command completion
6050  *
6051  *      Returns the values of TP's error counters.
6052  */
6053 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6054                          bool sleep_ok)
6055 {
6056         int nchan = adap->chip_params->nchan;
6057
6058         t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6059                        sleep_ok);
6060
6061         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6062                        sleep_ok);
6063
6064         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6065                        sleep_ok);
6066
6067         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6068                        A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6069
6070         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6071                        A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6072
6073         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6074                        sleep_ok);
6075
6076         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6077                        A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6078
6079         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6080                        A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6081
6082         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6083                        sleep_ok);
6084 }
6085
6086 /**
6087  *      t4_tp_get_proxy_stats - read TP's proxy MIB counters
6088  *      @adap: the adapter
6089  *      @st: holds the counter values
6090  *
6091  *      Returns the values of TP's proxy counters.
6092  */
6093 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6094     bool sleep_ok)
6095 {
6096         int nchan = adap->chip_params->nchan;
6097
6098         t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6099 }
6100
6101 /**
6102  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
6103  *      @adap: the adapter
6104  *      @st: holds the counter values
6105  *      @sleep_ok: if true we may sleep while awaiting command completion
6106  *
6107  *      Returns the values of TP's CPL counters.
6108  */
6109 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6110                          bool sleep_ok)
6111 {
6112         int nchan = adap->chip_params->nchan;
6113
6114         t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6115
6116         t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6117 }
6118
6119 /**
6120  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6121  *      @adap: the adapter
6122  *      @st: holds the counter values
6123  *
6124  *      Returns the values of TP's RDMA counters.
6125  */
6126 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6127                           bool sleep_ok)
6128 {
6129         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6130                        sleep_ok);
6131 }
6132
6133 /**
6134  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6135  *      @adap: the adapter
6136  *      @idx: the port index
6137  *      @st: holds the counter values
6138  *      @sleep_ok: if true we may sleep while awaiting command completion
6139  *
6140  *      Returns the values of TP's FCoE counters for the selected port.
6141  */
6142 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6143                        struct tp_fcoe_stats *st, bool sleep_ok)
6144 {
6145         u32 val[2];
6146
6147         t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6148                        sleep_ok);
6149
6150         t4_tp_mib_read(adap, &st->frames_drop, 1,
6151                        A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6152
6153         t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6154                        sleep_ok);
6155
6156         st->octets_ddp = ((u64)val[0] << 32) | val[1];
6157 }
6158
6159 /**
6160  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6161  *      @adap: the adapter
6162  *      @st: holds the counter values
6163  *      @sleep_ok: if true we may sleep while awaiting command completion
6164  *
6165  *      Returns the values of TP's counters for non-TCP directly-placed packets.
6166  */
6167 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6168                       bool sleep_ok)
6169 {
6170         u32 val[4];
6171
6172         t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6173
6174         st->frames = val[0];
6175         st->drops = val[1];
6176         st->octets = ((u64)val[2] << 32) | val[3];
6177 }
6178
6179 /**
6180  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
6181  *      @adap: the adapter
6182  *      @mtus: where to store the MTU values
6183  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
6184  *
6185  *      Reads the HW path MTU table.
6186  */
6187 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6188 {
6189         u32 v;
6190         int i;
6191
6192         for (i = 0; i < NMTUS; ++i) {
6193                 t4_write_reg(adap, A_TP_MTU_TABLE,
6194                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
6195                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
6196                 mtus[i] = G_MTUVALUE(v);
6197                 if (mtu_log)
6198                         mtu_log[i] = G_MTUWIDTH(v);
6199         }
6200 }
6201
6202 /**
6203  *      t4_read_cong_tbl - reads the congestion control table
6204  *      @adap: the adapter
6205  *      @incr: where to store the alpha values
6206  *
6207  *      Reads the additive increments programmed into the HW congestion
6208  *      control table.
6209  */
6210 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6211 {
6212         unsigned int mtu, w;
6213
6214         for (mtu = 0; mtu < NMTUS; ++mtu)
6215                 for (w = 0; w < NCCTRL_WIN; ++w) {
6216                         t4_write_reg(adap, A_TP_CCTRL_TABLE,
6217                                      V_ROWINDEX(0xffff) | (mtu << 5) | w);
6218                         incr[mtu][w] = (u16)t4_read_reg(adap,
6219                                                 A_TP_CCTRL_TABLE) & 0x1fff;
6220                 }
6221 }
6222
6223 /**
6224  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6225  *      @adap: the adapter
6226  *      @addr: the indirect TP register address
6227  *      @mask: specifies the field within the register to modify
6228  *      @val: new value for the field
6229  *
6230  *      Sets a field of an indirect TP register to the given value.
6231  */
6232 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6233                             unsigned int mask, unsigned int val)
6234 {
6235         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6236         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6237         t4_write_reg(adap, A_TP_PIO_DATA, val);
6238 }
6239
6240 /**
6241  *      init_cong_ctrl - initialize congestion control parameters
6242  *      @a: the alpha values for congestion control
6243  *      @b: the beta values for congestion control
6244  *
6245  *      Initialize the congestion control parameters.
6246  */
6247 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6248 {
6249         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6250         a[9] = 2;
6251         a[10] = 3;
6252         a[11] = 4;
6253         a[12] = 5;
6254         a[13] = 6;
6255         a[14] = 7;
6256         a[15] = 8;
6257         a[16] = 9;
6258         a[17] = 10;
6259         a[18] = 14;
6260         a[19] = 17;
6261         a[20] = 21;
6262         a[21] = 25;
6263         a[22] = 30;
6264         a[23] = 35;
6265         a[24] = 45;
6266         a[25] = 60;
6267         a[26] = 80;
6268         a[27] = 100;
6269         a[28] = 200;
6270         a[29] = 300;
6271         a[30] = 400;
6272         a[31] = 500;
6273
6274         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6275         b[9] = b[10] = 1;
6276         b[11] = b[12] = 2;
6277         b[13] = b[14] = b[15] = b[16] = 3;
6278         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6279         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6280         b[28] = b[29] = 6;
6281         b[30] = b[31] = 7;
6282 }
6283
6284 /* The minimum additive increment value for the congestion control table */
6285 #define CC_MIN_INCR 2U
6286
6287 /**
6288  *      t4_load_mtus - write the MTU and congestion control HW tables
6289  *      @adap: the adapter
6290  *      @mtus: the values for the MTU table
6291  *      @alpha: the values for the congestion control alpha parameter
6292  *      @beta: the values for the congestion control beta parameter
6293  *
6294  *      Write the HW MTU table with the supplied MTUs and the high-speed
6295  *      congestion control table with the supplied alpha, beta, and MTUs.
6296  *      We write the two tables together because the additive increments
6297  *      depend on the MTUs.
6298  */
6299 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6300                   const unsigned short *alpha, const unsigned short *beta)
6301 {
6302         static const unsigned int avg_pkts[NCCTRL_WIN] = {
6303                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6304                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6305                 28672, 40960, 57344, 81920, 114688, 163840, 229376
6306         };
6307
6308         unsigned int i, w;
6309
6310         for (i = 0; i < NMTUS; ++i) {
6311                 unsigned int mtu = mtus[i];
6312                 unsigned int log2 = fls(mtu);
6313
6314                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
6315                         log2--;
6316                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6317                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6318
6319                 for (w = 0; w < NCCTRL_WIN; ++w) {
6320                         unsigned int inc;
6321
6322                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6323                                   CC_MIN_INCR);
6324
6325                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6326                                      (w << 16) | (beta[w] << 13) | inc);
6327                 }
6328         }
6329 }
6330
6331 /**
6332  *      t4_set_pace_tbl - set the pace table
6333  *      @adap: the adapter
6334  *      @pace_vals: the pace values in microseconds
6335  *      @start: index of the first entry in the HW pace table to set
6336  *      @n: how many entries to set
6337  *
6338  *      Sets (a subset of the) HW pace table.
6339  */
6340 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6341                      unsigned int start, unsigned int n)
6342 {
6343         unsigned int vals[NTX_SCHED], i;
6344         unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6345
6346         if (n > NTX_SCHED)
6347             return -ERANGE;
6348
6349         /* convert values from us to dack ticks, rounding to closest value */
6350         for (i = 0; i < n; i++, pace_vals++) {
6351                 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6352                 if (vals[i] > 0x7ff)
6353                         return -ERANGE;
6354                 if (*pace_vals && vals[i] == 0)
6355                         return -ERANGE;
6356         }
6357         for (i = 0; i < n; i++, start++)
6358                 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6359         return 0;
6360 }
6361
6362 /**
6363  *      t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6364  *      @adap: the adapter
6365  *      @kbps: target rate in Kbps
6366  *      @sched: the scheduler index
6367  *
6368  *      Configure a Tx HW scheduler for the target rate.
6369  */
6370 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6371 {
6372         unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6373         unsigned int clk = adap->params.vpd.cclk * 1000;
6374         unsigned int selected_cpt = 0, selected_bpt = 0;
6375
6376         if (kbps > 0) {
6377                 kbps *= 125;     /* -> bytes */
6378                 for (cpt = 1; cpt <= 255; cpt++) {
6379                         tps = clk / cpt;
6380                         bpt = (kbps + tps / 2) / tps;
6381                         if (bpt > 0 && bpt <= 255) {
6382                                 v = bpt * tps;
6383                                 delta = v >= kbps ? v - kbps : kbps - v;
6384                                 if (delta < mindelta) {
6385                                         mindelta = delta;
6386                                         selected_cpt = cpt;
6387                                         selected_bpt = bpt;
6388                                 }
6389                         } else if (selected_cpt)
6390                                 break;
6391                 }
6392                 if (!selected_cpt)
6393                         return -EINVAL;
6394         }
6395         t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6396                      A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6397         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6398         if (sched & 1)
6399                 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6400         else
6401                 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6402         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6403         return 0;
6404 }
6405
6406 /**
6407  *      t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6408  *      @adap: the adapter
6409  *      @sched: the scheduler index
6410  *      @ipg: the interpacket delay in tenths of nanoseconds
6411  *
6412  *      Set the interpacket delay for a HW packet rate scheduler.
6413  */
6414 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6415 {
6416         unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6417
6418         /* convert ipg to nearest number of core clocks */
6419         ipg *= core_ticks_per_usec(adap);
6420         ipg = (ipg + 5000) / 10000;
6421         if (ipg > M_TXTIMERSEPQ0)
6422                 return -EINVAL;
6423
6424         t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6425         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6426         if (sched & 1)
6427                 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6428         else
6429                 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6430         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6431         t4_read_reg(adap, A_TP_TM_PIO_DATA);
6432         return 0;
6433 }
6434
6435 /*
6436  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6437  * clocks.  The formula is
6438  *
6439  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6440  *
6441  * which is equivalent to
6442  *
6443  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6444  */
6445 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6446 {
6447         u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6448
6449         return v * 62 + v / 2;
6450 }
6451
6452 /**
6453  *      t4_get_chan_txrate - get the current per channel Tx rates
6454  *      @adap: the adapter
6455  *      @nic_rate: rates for NIC traffic
6456  *      @ofld_rate: rates for offloaded traffic
6457  *
6458  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
6459  *      for each channel.
6460  */
6461 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6462 {
6463         u32 v;
6464
6465         v = t4_read_reg(adap, A_TP_TX_TRATE);
6466         nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6467         nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6468         if (adap->chip_params->nchan > 2) {
6469                 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6470                 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6471         }
6472
6473         v = t4_read_reg(adap, A_TP_TX_ORATE);
6474         ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6475         ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6476         if (adap->chip_params->nchan > 2) {
6477                 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6478                 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6479         }
6480 }
6481
6482 /**
6483  *      t4_set_trace_filter - configure one of the tracing filters
6484  *      @adap: the adapter
6485  *      @tp: the desired trace filter parameters
6486  *      @idx: which filter to configure
6487  *      @enable: whether to enable or disable the filter
6488  *
6489  *      Configures one of the tracing filters available in HW.  If @tp is %NULL
6490  *      it indicates that the filter is already written in the register and it
6491  *      just needs to be enabled or disabled.
6492  */
6493 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6494     int idx, int enable)
6495 {
6496         int i, ofst = idx * 4;
6497         u32 data_reg, mask_reg, cfg;
6498         u32 multitrc = F_TRCMULTIFILTER;
6499         u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6500
6501         if (idx < 0 || idx >= NTRACE)
6502                 return -EINVAL;
6503
6504         if (tp == NULL || !enable) {
6505                 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6506                     enable ? en : 0);
6507                 return 0;
6508         }
6509
6510         /*
6511          * TODO - After T4 data book is updated, specify the exact
6512          * section below.
6513          *
6514          * See T4 data book - MPS section for a complete description
6515          * of the below if..else handling of A_MPS_TRC_CFG register
6516          * value.
6517          */
6518         cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6519         if (cfg & F_TRCMULTIFILTER) {
6520                 /*
6521                  * If multiple tracers are enabled, then maximum
6522                  * capture size is 2.5KB (FIFO size of a single channel)
6523                  * minus 2 flits for CPL_TRACE_PKT header.
6524                  */
6525                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6526                         return -EINVAL;
6527         } else {
6528                 /*
6529                  * If multiple tracers are disabled, to avoid deadlocks
6530                  * maximum packet capture size of 9600 bytes is recommended.
6531                  * Also in this mode, only trace0 can be enabled and running.
6532                  */
6533                 multitrc = 0;
6534                 if (tp->snap_len > 9600 || idx)
6535                         return -EINVAL;
6536         }
6537
6538         if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6539             tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6540             tp->min_len > M_TFMINPKTSIZE)
6541                 return -EINVAL;
6542
6543         /* stop the tracer we'll be changing */
6544         t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6545
6546         idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6547         data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6548         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6549
6550         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6551                 t4_write_reg(adap, data_reg, tp->data[i]);
6552                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6553         }
6554         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6555                      V_TFCAPTUREMAX(tp->snap_len) |
6556                      V_TFMINPKTSIZE(tp->min_len));
6557         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6558                      V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6559                      (is_t4(adap) ?
6560                      V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6561                      V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6562
6563         return 0;
6564 }
6565
6566 /**
6567  *      t4_get_trace_filter - query one of the tracing filters
6568  *      @adap: the adapter
6569  *      @tp: the current trace filter parameters
6570  *      @idx: which trace filter to query
6571  *      @enabled: non-zero if the filter is enabled
6572  *
6573  *      Returns the current settings of one of the HW tracing filters.
6574  */
6575 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6576                          int *enabled)
6577 {
6578         u32 ctla, ctlb;
6579         int i, ofst = idx * 4;
6580         u32 data_reg, mask_reg;
6581
6582         ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6583         ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6584
6585         if (is_t4(adap)) {
6586                 *enabled = !!(ctla & F_TFEN);
6587                 tp->port =  G_TFPORT(ctla);
6588                 tp->invert = !!(ctla & F_TFINVERTMATCH);
6589         } else {
6590                 *enabled = !!(ctla & F_T5_TFEN);
6591                 tp->port = G_T5_TFPORT(ctla);
6592                 tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6593         }
6594         tp->snap_len = G_TFCAPTUREMAX(ctlb);
6595         tp->min_len = G_TFMINPKTSIZE(ctlb);
6596         tp->skip_ofst = G_TFOFFSET(ctla);
6597         tp->skip_len = G_TFLENGTH(ctla);
6598
6599         ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6600         data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6601         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6602
6603         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6604                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6605                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6606         }
6607 }
6608
6609 /**
6610  *      t4_pmtx_get_stats - returns the HW stats from PMTX
6611  *      @adap: the adapter
6612  *      @cnt: where to store the count statistics
6613  *      @cycles: where to store the cycle statistics
6614  *
6615  *      Returns performance statistics from PMTX.
6616  */
6617 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6618 {
6619         int i;
6620         u32 data[2];
6621
6622         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6623                 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6624                 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6625                 if (is_t4(adap))
6626                         cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6627                 else {
6628                         t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6629                                          A_PM_TX_DBG_DATA, data, 2,
6630                                          A_PM_TX_DBG_STAT_MSB);
6631                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6632                 }
6633         }
6634 }
6635
6636 /**
6637  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6638  *      @adap: the adapter
6639  *      @cnt: where to store the count statistics
6640  *      @cycles: where to store the cycle statistics
6641  *
6642  *      Returns performance statistics from PMRX.
6643  */
6644 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6645 {
6646         int i;
6647         u32 data[2];
6648
6649         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6650                 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6651                 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6652                 if (is_t4(adap)) {
6653                         cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6654                 } else {
6655                         t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6656                                          A_PM_RX_DBG_DATA, data, 2,
6657                                          A_PM_RX_DBG_STAT_MSB);
6658                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6659                 }
6660         }
6661 }
6662
6663 /**
6664  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6665  *      @adap: the adapter
6666  *      @idx: the port index
6667  *
6668  *      Returns a bitmap indicating which MPS buffer groups are associated
6669  *      with the given port.  Bit i is set if buffer group i is used by the
6670  *      port.
6671  */
6672 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6673 {
6674         u32 n;
6675
6676         if (adap->params.mps_bg_map)
6677                 return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6678
6679         n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6680         if (n == 0)
6681                 return idx == 0 ? 0xf : 0;
6682         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6683                 return idx < 2 ? (3 << (2 * idx)) : 0;
6684         return 1 << idx;
6685 }
6686
6687 /*
6688  * TP RX e-channels associated with the port.
6689  */
6690 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6691 {
6692         u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6693
6694         if (n == 0)
6695                 return idx == 0 ? 0xf : 0;
6696         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6697                 return idx < 2 ? (3 << (2 * idx)) : 0;
6698         return 1 << idx;
6699 }
6700
6701 /**
6702  *      t4_get_port_type_description - return Port Type string description
6703  *      @port_type: firmware Port Type enumeration
6704  */
6705 const char *t4_get_port_type_description(enum fw_port_type port_type)
6706 {
6707         static const char *const port_type_description[] = {
6708                 "Fiber_XFI",
6709                 "Fiber_XAUI",
6710                 "BT_SGMII",
6711                 "BT_XFI",
6712                 "BT_XAUI",
6713                 "KX4",
6714                 "CX4",
6715                 "KX",
6716                 "KR",
6717                 "SFP",
6718                 "BP_AP",
6719                 "BP4_AP",
6720                 "QSFP_10G",
6721                 "QSA",
6722                 "QSFP",
6723                 "BP40_BA",
6724                 "KR4_100G",
6725                 "CR4_QSFP",
6726                 "CR_QSFP",
6727                 "CR2_QSFP",
6728                 "SFP28",
6729                 "KR_SFP28",
6730         };
6731
6732         if (port_type < ARRAY_SIZE(port_type_description))
6733                 return port_type_description[port_type];
6734         return "UNKNOWN";
6735 }
6736
6737 /**
6738  *      t4_get_port_stats_offset - collect port stats relative to a previous
6739  *                                 snapshot
6740  *      @adap: The adapter
6741  *      @idx: The port
6742  *      @stats: Current stats to fill
6743  *      @offset: Previous stats snapshot
6744  */
6745 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6746                 struct port_stats *stats,
6747                 struct port_stats *offset)
6748 {
6749         u64 *s, *o;
6750         int i;
6751
6752         t4_get_port_stats(adap, idx, stats);
6753         for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6754                         i < (sizeof(struct port_stats)/sizeof(u64)) ;
6755                         i++, s++, o++)
6756                 *s -= *o;
6757 }
6758
6759 /**
6760  *      t4_get_port_stats - collect port statistics
6761  *      @adap: the adapter
6762  *      @idx: the port index
6763  *      @p: the stats structure to fill
6764  *
6765  *      Collect statistics related to the given port from HW.
6766  */
6767 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6768 {
6769         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6770         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6771
6772 #define GET_STAT(name) \
6773         t4_read_reg64(adap, \
6774         (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6775         T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6776 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6777
6778         p->tx_pause             = GET_STAT(TX_PORT_PAUSE);
6779         p->tx_octets            = GET_STAT(TX_PORT_BYTES);
6780         p->tx_frames            = GET_STAT(TX_PORT_FRAMES);
6781         p->tx_bcast_frames      = GET_STAT(TX_PORT_BCAST);
6782         p->tx_mcast_frames      = GET_STAT(TX_PORT_MCAST);
6783         p->tx_ucast_frames      = GET_STAT(TX_PORT_UCAST);
6784         p->tx_error_frames      = GET_STAT(TX_PORT_ERROR);
6785         p->tx_frames_64         = GET_STAT(TX_PORT_64B);
6786         p->tx_frames_65_127     = GET_STAT(TX_PORT_65B_127B);
6787         p->tx_frames_128_255    = GET_STAT(TX_PORT_128B_255B);
6788         p->tx_frames_256_511    = GET_STAT(TX_PORT_256B_511B);
6789         p->tx_frames_512_1023   = GET_STAT(TX_PORT_512B_1023B);
6790         p->tx_frames_1024_1518  = GET_STAT(TX_PORT_1024B_1518B);
6791         p->tx_frames_1519_max   = GET_STAT(TX_PORT_1519B_MAX);
6792         p->tx_drop              = GET_STAT(TX_PORT_DROP);
6793         p->tx_ppp0              = GET_STAT(TX_PORT_PPP0);
6794         p->tx_ppp1              = GET_STAT(TX_PORT_PPP1);
6795         p->tx_ppp2              = GET_STAT(TX_PORT_PPP2);
6796         p->tx_ppp3              = GET_STAT(TX_PORT_PPP3);
6797         p->tx_ppp4              = GET_STAT(TX_PORT_PPP4);
6798         p->tx_ppp5              = GET_STAT(TX_PORT_PPP5);
6799         p->tx_ppp6              = GET_STAT(TX_PORT_PPP6);
6800         p->tx_ppp7              = GET_STAT(TX_PORT_PPP7);
6801
6802         if (chip_id(adap) >= CHELSIO_T5) {
6803                 if (stat_ctl & F_COUNTPAUSESTATTX) {
6804                         p->tx_frames -= p->tx_pause;
6805                         p->tx_octets -= p->tx_pause * 64;
6806                 }
6807                 if (stat_ctl & F_COUNTPAUSEMCTX)
6808                         p->tx_mcast_frames -= p->tx_pause;
6809         }
6810
6811         p->rx_pause             = GET_STAT(RX_PORT_PAUSE);
6812         p->rx_octets            = GET_STAT(RX_PORT_BYTES);
6813         p->rx_frames            = GET_STAT(RX_PORT_FRAMES);
6814         p->rx_bcast_frames      = GET_STAT(RX_PORT_BCAST);
6815         p->rx_mcast_frames      = GET_STAT(RX_PORT_MCAST);
6816         p->rx_ucast_frames      = GET_STAT(RX_PORT_UCAST);
6817         p->rx_too_long          = GET_STAT(RX_PORT_MTU_ERROR);
6818         p->rx_jabber            = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6819         p->rx_fcs_err           = GET_STAT(RX_PORT_CRC_ERROR);
6820         p->rx_len_err           = GET_STAT(RX_PORT_LEN_ERROR);
6821         p->rx_symbol_err        = GET_STAT(RX_PORT_SYM_ERROR);
6822         p->rx_runt              = GET_STAT(RX_PORT_LESS_64B);
6823         p->rx_frames_64         = GET_STAT(RX_PORT_64B);
6824         p->rx_frames_65_127     = GET_STAT(RX_PORT_65B_127B);
6825         p->rx_frames_128_255    = GET_STAT(RX_PORT_128B_255B);
6826         p->rx_frames_256_511    = GET_STAT(RX_PORT_256B_511B);
6827         p->rx_frames_512_1023   = GET_STAT(RX_PORT_512B_1023B);
6828         p->rx_frames_1024_1518  = GET_STAT(RX_PORT_1024B_1518B);
6829         p->rx_frames_1519_max   = GET_STAT(RX_PORT_1519B_MAX);
6830         p->rx_ppp0              = GET_STAT(RX_PORT_PPP0);
6831         p->rx_ppp1              = GET_STAT(RX_PORT_PPP1);
6832         p->rx_ppp2              = GET_STAT(RX_PORT_PPP2);
6833         p->rx_ppp3              = GET_STAT(RX_PORT_PPP3);
6834         p->rx_ppp4              = GET_STAT(RX_PORT_PPP4);
6835         p->rx_ppp5              = GET_STAT(RX_PORT_PPP5);
6836         p->rx_ppp6              = GET_STAT(RX_PORT_PPP6);
6837         p->rx_ppp7              = GET_STAT(RX_PORT_PPP7);
6838
6839         if (chip_id(adap) >= CHELSIO_T5) {
6840                 if (stat_ctl & F_COUNTPAUSESTATRX) {
6841                         p->rx_frames -= p->rx_pause;
6842                         p->rx_octets -= p->rx_pause * 64;
6843                 }
6844                 if (stat_ctl & F_COUNTPAUSEMCRX)
6845                         p->rx_mcast_frames -= p->rx_pause;
6846         }
6847
6848         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6849         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6850         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6851         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6852         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6853         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6854         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6855         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6856
6857 #undef GET_STAT
6858 #undef GET_STAT_COM
6859 }
6860
6861 /**
6862  *      t4_get_lb_stats - collect loopback port statistics
6863  *      @adap: the adapter
6864  *      @idx: the loopback port index
6865  *      @p: the stats structure to fill
6866  *
6867  *      Return HW statistics for the given loopback port.
6868  */
6869 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6870 {
6871         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6872
6873 #define GET_STAT(name) \
6874         t4_read_reg64(adap, \
6875         (is_t4(adap) ? \
6876         PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6877         T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6878 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6879
6880         p->octets       = GET_STAT(BYTES);
6881         p->frames       = GET_STAT(FRAMES);
6882         p->bcast_frames = GET_STAT(BCAST);
6883         p->mcast_frames = GET_STAT(MCAST);
6884         p->ucast_frames = GET_STAT(UCAST);
6885         p->error_frames = GET_STAT(ERROR);
6886
6887         p->frames_64            = GET_STAT(64B);
6888         p->frames_65_127        = GET_STAT(65B_127B);
6889         p->frames_128_255       = GET_STAT(128B_255B);
6890         p->frames_256_511       = GET_STAT(256B_511B);
6891         p->frames_512_1023      = GET_STAT(512B_1023B);
6892         p->frames_1024_1518     = GET_STAT(1024B_1518B);
6893         p->frames_1519_max      = GET_STAT(1519B_MAX);
6894         p->drop                 = GET_STAT(DROP_FRAMES);
6895
6896         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6897         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6898         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6899         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6900         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6901         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6902         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6903         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6904
6905 #undef GET_STAT
6906 #undef GET_STAT_COM
6907 }
6908
6909 /**
6910  *      t4_wol_magic_enable - enable/disable magic packet WoL
6911  *      @adap: the adapter
6912  *      @port: the physical port index
6913  *      @addr: MAC address expected in magic packets, %NULL to disable
6914  *
6915  *      Enables/disables magic packet wake-on-LAN for the selected port.
6916  */
6917 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6918                          const u8 *addr)
6919 {
6920         u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6921
6922         if (is_t4(adap)) {
6923                 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6924                 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6925                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6926         } else {
6927                 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6928                 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6929                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6930         }
6931
6932         if (addr) {
6933                 t4_write_reg(adap, mag_id_reg_l,
6934                              (addr[2] << 24) | (addr[3] << 16) |
6935                              (addr[4] << 8) | addr[5]);
6936                 t4_write_reg(adap, mag_id_reg_h,
6937                              (addr[0] << 8) | addr[1]);
6938         }
6939         t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6940                          V_MAGICEN(addr != NULL));
6941 }
6942
6943 /**
6944  *      t4_wol_pat_enable - enable/disable pattern-based WoL
6945  *      @adap: the adapter
6946  *      @port: the physical port index
6947  *      @map: bitmap of which HW pattern filters to set
6948  *      @mask0: byte mask for bytes 0-63 of a packet
6949  *      @mask1: byte mask for bytes 64-127 of a packet
6950  *      @crc: Ethernet CRC for selected bytes
6951  *      @enable: enable/disable switch
6952  *
6953  *      Sets the pattern filters indicated in @map to mask out the bytes
6954  *      specified in @mask0/@mask1 in received packets and compare the CRC of
6955  *      the resulting packet against @crc.  If @enable is %true pattern-based
6956  *      WoL is enabled, otherwise disabled.
6957  */
6958 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6959                       u64 mask0, u64 mask1, unsigned int crc, bool enable)
6960 {
6961         int i;
6962         u32 port_cfg_reg;
6963
6964         if (is_t4(adap))
6965                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6966         else
6967                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6968
6969         if (!enable) {
6970                 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6971                 return 0;
6972         }
6973         if (map > 0xff)
6974                 return -EINVAL;
6975
6976 #define EPIO_REG(name) \
6977         (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6978         T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6979
6980         t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6981         t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6982         t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6983
6984         for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6985                 if (!(map & 1))
6986                         continue;
6987
6988                 /* write byte masks */
6989                 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6990                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6991                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6992                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6993                         return -ETIMEDOUT;
6994
6995                 /* write CRC */
6996                 t4_write_reg(adap, EPIO_REG(DATA0), crc);
6997                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6998                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6999                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7000                         return -ETIMEDOUT;
7001         }
7002 #undef EPIO_REG
7003
7004         t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7005         return 0;
7006 }
7007
7008 /*     t4_mk_filtdelwr - create a delete filter WR
7009  *     @ftid: the filter ID
7010  *     @wr: the filter work request to populate
7011  *     @qid: ingress queue to receive the delete notification
7012  *
7013  *     Creates a filter work request to delete the supplied filter.  If @qid is
7014  *     negative the delete notification is suppressed.
7015  */
7016 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7017 {
7018         memset(wr, 0, sizeof(*wr));
7019         wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7020         wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7021         wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7022                                     V_FW_FILTER_WR_NOREPLY(qid < 0));
7023         wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7024         if (qid >= 0)
7025                 wr->rx_chan_rx_rpl_iq =
7026                                 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7027 }
7028
7029 #define INIT_CMD(var, cmd, rd_wr) do { \
7030         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7031                                         F_FW_CMD_REQUEST | \
7032                                         F_FW_CMD_##rd_wr); \
7033         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7034 } while (0)
7035
7036 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7037                           u32 addr, u32 val)
7038 {
7039         u32 ldst_addrspace;
7040         struct fw_ldst_cmd c;
7041
7042         memset(&c, 0, sizeof(c));
7043         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7044         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7045                                         F_FW_CMD_REQUEST |
7046                                         F_FW_CMD_WRITE |
7047                                         ldst_addrspace);
7048         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7049         c.u.addrval.addr = cpu_to_be32(addr);
7050         c.u.addrval.val = cpu_to_be32(val);
7051
7052         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7053 }
7054
7055 /**
7056  *      t4_mdio_rd - read a PHY register through MDIO
7057  *      @adap: the adapter
7058  *      @mbox: mailbox to use for the FW command
7059  *      @phy_addr: the PHY address
7060  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
7061  *      @reg: the register to read
7062  *      @valp: where to store the value
7063  *
7064  *      Issues a FW command through the given mailbox to read a PHY register.
7065  */
7066 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7067                unsigned int mmd, unsigned int reg, unsigned int *valp)
7068 {
7069         int ret;
7070         u32 ldst_addrspace;
7071         struct fw_ldst_cmd c;
7072
7073         memset(&c, 0, sizeof(c));
7074         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7075         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7076                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
7077                                         ldst_addrspace);
7078         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7079         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7080                                          V_FW_LDST_CMD_MMD(mmd));
7081         c.u.mdio.raddr = cpu_to_be16(reg);
7082
7083         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7084         if (ret == 0)
7085                 *valp = be16_to_cpu(c.u.mdio.rval);
7086         return ret;
7087 }
7088
7089 /**
7090  *      t4_mdio_wr - write a PHY register through MDIO
7091  *      @adap: the adapter
7092  *      @mbox: mailbox to use for the FW command
7093  *      @phy_addr: the PHY address
7094  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
7095  *      @reg: the register to write
7096  *      @valp: value to write
7097  *
7098  *      Issues a FW command through the given mailbox to write a PHY register.
7099  */
7100 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7101                unsigned int mmd, unsigned int reg, unsigned int val)
7102 {
7103         u32 ldst_addrspace;
7104         struct fw_ldst_cmd c;
7105
7106         memset(&c, 0, sizeof(c));
7107         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7108         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7109                                         F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7110                                         ldst_addrspace);
7111         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7112         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7113                                          V_FW_LDST_CMD_MMD(mmd));
7114         c.u.mdio.raddr = cpu_to_be16(reg);
7115         c.u.mdio.rval = cpu_to_be16(val);
7116
7117         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7118 }
7119
7120 /**
7121  *
7122  *      t4_sge_decode_idma_state - decode the idma state
7123  *      @adap: the adapter
7124  *      @state: the state idma is stuck in
7125  */
7126 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7127 {
7128         static const char * const t4_decode[] = {
7129                 "IDMA_IDLE",
7130                 "IDMA_PUSH_MORE_CPL_FIFO",
7131                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7132                 "Not used",
7133                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7134                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7135                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7136                 "IDMA_SEND_FIFO_TO_IMSG",
7137                 "IDMA_FL_REQ_DATA_FL_PREP",
7138                 "IDMA_FL_REQ_DATA_FL",
7139                 "IDMA_FL_DROP",
7140                 "IDMA_FL_H_REQ_HEADER_FL",
7141                 "IDMA_FL_H_SEND_PCIEHDR",
7142                 "IDMA_FL_H_PUSH_CPL_FIFO",
7143                 "IDMA_FL_H_SEND_CPL",
7144                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7145                 "IDMA_FL_H_SEND_IP_HDR",
7146                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7147                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7148                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7149                 "IDMA_FL_D_SEND_PCIEHDR",
7150                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7151                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7152                 "IDMA_FL_SEND_PCIEHDR",
7153                 "IDMA_FL_PUSH_CPL_FIFO",
7154                 "IDMA_FL_SEND_CPL",
7155                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7156                 "IDMA_FL_SEND_PAYLOAD",
7157                 "IDMA_FL_REQ_NEXT_DATA_FL",
7158                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7159                 "IDMA_FL_SEND_PADDING",
7160                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7161                 "IDMA_FL_SEND_FIFO_TO_IMSG",
7162                 "IDMA_FL_REQ_DATAFL_DONE",
7163                 "IDMA_FL_REQ_HEADERFL_DONE",
7164         };
7165         static const char * const t5_decode[] = {
7166                 "IDMA_IDLE",
7167                 "IDMA_ALMOST_IDLE",
7168                 "IDMA_PUSH_MORE_CPL_FIFO",
7169                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7170                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7171                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7172                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7173                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7174                 "IDMA_SEND_FIFO_TO_IMSG",
7175                 "IDMA_FL_REQ_DATA_FL",
7176                 "IDMA_FL_DROP",
7177                 "IDMA_FL_DROP_SEND_INC",
7178                 "IDMA_FL_H_REQ_HEADER_FL",
7179                 "IDMA_FL_H_SEND_PCIEHDR",
7180                 "IDMA_FL_H_PUSH_CPL_FIFO",
7181                 "IDMA_FL_H_SEND_CPL",
7182                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7183                 "IDMA_FL_H_SEND_IP_HDR",
7184                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7185                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7186                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7187                 "IDMA_FL_D_SEND_PCIEHDR",
7188                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7189                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7190                 "IDMA_FL_SEND_PCIEHDR",
7191                 "IDMA_FL_PUSH_CPL_FIFO",
7192                 "IDMA_FL_SEND_CPL",
7193                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7194                 "IDMA_FL_SEND_PAYLOAD",
7195                 "IDMA_FL_REQ_NEXT_DATA_FL",
7196                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7197                 "IDMA_FL_SEND_PADDING",
7198                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7199         };
7200         static const char * const t6_decode[] = {
7201                 "IDMA_IDLE",
7202                 "IDMA_PUSH_MORE_CPL_FIFO",
7203                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7204                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7205                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7206                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7207                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7208                 "IDMA_FL_REQ_DATA_FL",
7209                 "IDMA_FL_DROP",
7210                 "IDMA_FL_DROP_SEND_INC",
7211                 "IDMA_FL_H_REQ_HEADER_FL",
7212                 "IDMA_FL_H_SEND_PCIEHDR",
7213                 "IDMA_FL_H_PUSH_CPL_FIFO",
7214                 "IDMA_FL_H_SEND_CPL",
7215                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7216                 "IDMA_FL_H_SEND_IP_HDR",
7217                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7218                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7219                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7220                 "IDMA_FL_D_SEND_PCIEHDR",
7221                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7222                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7223                 "IDMA_FL_SEND_PCIEHDR",
7224                 "IDMA_FL_PUSH_CPL_FIFO",
7225                 "IDMA_FL_SEND_CPL",
7226                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7227                 "IDMA_FL_SEND_PAYLOAD",
7228                 "IDMA_FL_REQ_NEXT_DATA_FL",
7229                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7230                 "IDMA_FL_SEND_PADDING",
7231                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7232         };
7233         static const u32 sge_regs[] = {
7234                 A_SGE_DEBUG_DATA_LOW_INDEX_2,
7235                 A_SGE_DEBUG_DATA_LOW_INDEX_3,
7236                 A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7237         };
7238         const char * const *sge_idma_decode;
7239         int sge_idma_decode_nstates;
7240         int i;
7241         unsigned int chip_version = chip_id(adapter);
7242
7243         /* Select the right set of decode strings to dump depending on the
7244          * adapter chip type.
7245          */
7246         switch (chip_version) {
7247         case CHELSIO_T4:
7248                 sge_idma_decode = (const char * const *)t4_decode;
7249                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7250                 break;
7251
7252         case CHELSIO_T5:
7253                 sge_idma_decode = (const char * const *)t5_decode;
7254                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7255                 break;
7256
7257         case CHELSIO_T6:
7258                 sge_idma_decode = (const char * const *)t6_decode;
7259                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7260                 break;
7261
7262         default:
7263                 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version);
7264                 return;
7265         }
7266
7267         if (state < sge_idma_decode_nstates)
7268                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7269         else
7270                 CH_WARN(adapter, "idma state %d unknown\n", state);
7271
7272         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7273                 CH_WARN(adapter, "SGE register %#x value %#x\n",
7274                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7275 }
7276
7277 /**
7278  *      t4_sge_ctxt_flush - flush the SGE context cache
7279  *      @adap: the adapter
7280  *      @mbox: mailbox to use for the FW command
7281  *
7282  *      Issues a FW command through the given mailbox to flush the
7283  *      SGE context cache.
7284  */
7285 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
7286 {
7287         int ret;
7288         u32 ldst_addrspace;
7289         struct fw_ldst_cmd c;
7290
7291         memset(&c, 0, sizeof(c));
7292         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
7293         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7294                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
7295                                         ldst_addrspace);
7296         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7297         c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7298
7299         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7300         return ret;
7301 }
7302
7303 /**
7304  *      t4_fw_hello - establish communication with FW
7305  *      @adap: the adapter
7306  *      @mbox: mailbox to use for the FW command
7307  *      @evt_mbox: mailbox to receive async FW events
7308  *      @master: specifies the caller's willingness to be the device master
7309  *      @state: returns the current device state (if non-NULL)
7310  *
7311  *      Issues a command to establish communication with FW.  Returns either
7312  *      an error (negative integer) or the mailbox of the Master PF.
7313  */
7314 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7315                 enum dev_master master, enum dev_state *state)
7316 {
7317         int ret;
7318         struct fw_hello_cmd c;
7319         u32 v;
7320         unsigned int master_mbox;
7321         int retries = FW_CMD_HELLO_RETRIES;
7322
7323 retry:
7324         memset(&c, 0, sizeof(c));
7325         INIT_CMD(c, HELLO, WRITE);
7326         c.err_to_clearinit = cpu_to_be32(
7327                 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7328                 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7329                 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7330                                         mbox : M_FW_HELLO_CMD_MBMASTER) |
7331                 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7332                 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7333                 F_FW_HELLO_CMD_CLEARINIT);
7334
7335         /*
7336          * Issue the HELLO command to the firmware.  If it's not successful
7337          * but indicates that we got a "busy" or "timeout" condition, retry
7338          * the HELLO until we exhaust our retry limit.  If we do exceed our
7339          * retry limit, check to see if the firmware left us any error
7340          * information and report that if so ...
7341          */
7342         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7343         if (ret != FW_SUCCESS) {
7344                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7345                         goto retry;
7346                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7347                         t4_report_fw_error(adap);
7348                 return ret;
7349         }
7350
7351         v = be32_to_cpu(c.err_to_clearinit);
7352         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7353         if (state) {
7354                 if (v & F_FW_HELLO_CMD_ERR)
7355                         *state = DEV_STATE_ERR;
7356                 else if (v & F_FW_HELLO_CMD_INIT)
7357                         *state = DEV_STATE_INIT;
7358                 else
7359                         *state = DEV_STATE_UNINIT;
7360         }
7361
7362         /*
7363          * If we're not the Master PF then we need to wait around for the
7364          * Master PF Driver to finish setting up the adapter.
7365          *
7366          * Note that we also do this wait if we're a non-Master-capable PF and
7367          * there is no current Master PF; a Master PF may show up momentarily
7368          * and we wouldn't want to fail pointlessly.  (This can happen when an
7369          * OS loads lots of different drivers rapidly at the same time).  In
7370          * this case, the Master PF returned by the firmware will be
7371          * M_PCIE_FW_MASTER so the test below will work ...
7372          */
7373         if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7374             master_mbox != mbox) {
7375                 int waiting = FW_CMD_HELLO_TIMEOUT;
7376
7377                 /*
7378                  * Wait for the firmware to either indicate an error or
7379                  * initialized state.  If we see either of these we bail out
7380                  * and report the issue to the caller.  If we exhaust the
7381                  * "hello timeout" and we haven't exhausted our retries, try
7382                  * again.  Otherwise bail with a timeout error.
7383                  */
7384                 for (;;) {
7385                         u32 pcie_fw;
7386
7387                         msleep(50);
7388                         waiting -= 50;
7389
7390                         /*
7391                          * If neither Error nor Initialialized are indicated
7392                          * by the firmware keep waiting till we exhaust our
7393                          * timeout ... and then retry if we haven't exhausted
7394                          * our retries ...
7395                          */
7396                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7397                         if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7398                                 if (waiting <= 0) {
7399                                         if (retries-- > 0)
7400                                                 goto retry;
7401
7402                                         return -ETIMEDOUT;
7403                                 }
7404                                 continue;
7405                         }
7406
7407                         /*
7408                          * We either have an Error or Initialized condition
7409                          * report errors preferentially.
7410                          */
7411                         if (state) {
7412                                 if (pcie_fw & F_PCIE_FW_ERR)
7413                                         *state = DEV_STATE_ERR;
7414                                 else if (pcie_fw & F_PCIE_FW_INIT)
7415                                         *state = DEV_STATE_INIT;
7416                         }
7417
7418                         /*
7419                          * If we arrived before a Master PF was selected and
7420                          * there's not a valid Master PF, grab its identity
7421                          * for our caller.
7422                          */
7423                         if (master_mbox == M_PCIE_FW_MASTER &&
7424                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
7425                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7426                         break;
7427                 }
7428         }
7429
7430         return master_mbox;
7431 }
7432
7433 /**
7434  *      t4_fw_bye - end communication with FW
7435  *      @adap: the adapter
7436  *      @mbox: mailbox to use for the FW command
7437  *
7438  *      Issues a command to terminate communication with FW.
7439  */
7440 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7441 {
7442         struct fw_bye_cmd c;
7443
7444         memset(&c, 0, sizeof(c));
7445         INIT_CMD(c, BYE, WRITE);
7446         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7447 }
7448
7449 /**
7450  *      t4_fw_reset - issue a reset to FW
7451  *      @adap: the adapter
7452  *      @mbox: mailbox to use for the FW command
7453  *      @reset: specifies the type of reset to perform
7454  *
7455  *      Issues a reset command of the specified type to FW.
7456  */
7457 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7458 {
7459         struct fw_reset_cmd c;
7460
7461         memset(&c, 0, sizeof(c));
7462         INIT_CMD(c, RESET, WRITE);
7463         c.val = cpu_to_be32(reset);
7464         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7465 }
7466
7467 /**
7468  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7469  *      @adap: the adapter
7470  *      @mbox: mailbox to use for the FW RESET command (if desired)
7471  *      @force: force uP into RESET even if FW RESET command fails
7472  *
7473  *      Issues a RESET command to firmware (if desired) with a HALT indication
7474  *      and then puts the microprocessor into RESET state.  The RESET command
7475  *      will only be issued if a legitimate mailbox is provided (mbox <=
7476  *      M_PCIE_FW_MASTER).
7477  *
7478  *      This is generally used in order for the host to safely manipulate the
7479  *      adapter without fear of conflicting with whatever the firmware might
7480  *      be doing.  The only way out of this state is to RESTART the firmware
7481  *      ...
7482  */
7483 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7484 {
7485         int ret = 0;
7486
7487         /*
7488          * If a legitimate mailbox is provided, issue a RESET command
7489          * with a HALT indication.
7490          */
7491         if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7492                 struct fw_reset_cmd c;
7493
7494                 memset(&c, 0, sizeof(c));
7495                 INIT_CMD(c, RESET, WRITE);
7496                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7497                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7498                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7499         }
7500
7501         /*
7502          * Normally we won't complete the operation if the firmware RESET
7503          * command fails but if our caller insists we'll go ahead and put the
7504          * uP into RESET.  This can be useful if the firmware is hung or even
7505          * missing ...  We'll have to take the risk of putting the uP into
7506          * RESET without the cooperation of firmware in that case.
7507          *
7508          * We also force the firmware's HALT flag to be on in case we bypassed
7509          * the firmware RESET command above or we're dealing with old firmware
7510          * which doesn't have the HALT capability.  This will serve as a flag
7511          * for the incoming firmware to know that it's coming out of a HALT
7512          * rather than a RESET ... if it's new enough to understand that ...
7513          */
7514         if (ret == 0 || force) {
7515                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7516                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7517                                  F_PCIE_FW_HALT);
7518         }
7519
7520         /*
7521          * And we always return the result of the firmware RESET command
7522          * even when we force the uP into RESET ...
7523          */
7524         return ret;
7525 }
7526
7527 /**
7528  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7529  *      @adap: the adapter
7530  *
7531  *      Restart firmware previously halted by t4_fw_halt().  On successful
7532  *      return the previous PF Master remains as the new PF Master and there
7533  *      is no need to issue a new HELLO command, etc.
7534  */
7535 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7536 {
7537         int ms;
7538
7539         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7540         for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7541                 if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7542                         return FW_SUCCESS;
7543                 msleep(100);
7544                 ms += 100;
7545         }
7546
7547         return -ETIMEDOUT;
7548 }
7549
7550 /**
7551  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7552  *      @adap: the adapter
7553  *      @mbox: mailbox to use for the FW RESET command (if desired)
7554  *      @fw_data: the firmware image to write
7555  *      @size: image size
7556  *      @force: force upgrade even if firmware doesn't cooperate
7557  *
7558  *      Perform all of the steps necessary for upgrading an adapter's
7559  *      firmware image.  Normally this requires the cooperation of the
7560  *      existing firmware in order to halt all existing activities
7561  *      but if an invalid mailbox token is passed in we skip that step
7562  *      (though we'll still put the adapter microprocessor into RESET in
7563  *      that case).
7564  *
7565  *      On successful return the new firmware will have been loaded and
7566  *      the adapter will have been fully RESET losing all previous setup
7567  *      state.  On unsuccessful return the adapter may be completely hosed ...
7568  *      positive errno indicates that the adapter is ~probably~ intact, a
7569  *      negative errno indicates that things are looking bad ...
7570  */
7571 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7572                   const u8 *fw_data, unsigned int size, int force)
7573 {
7574         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7575         unsigned int bootstrap =
7576             be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7577         int ret;
7578
7579         if (!t4_fw_matches_chip(adap, fw_hdr))
7580                 return -EINVAL;
7581
7582         if (!bootstrap) {
7583                 ret = t4_fw_halt(adap, mbox, force);
7584                 if (ret < 0 && !force)
7585                         return ret;
7586         }
7587
7588         ret = t4_load_fw(adap, fw_data, size);
7589         if (ret < 0 || bootstrap)
7590                 return ret;
7591
7592         return t4_fw_restart(adap, mbox);
7593 }
7594
7595 /**
7596  *      t4_fw_initialize - ask FW to initialize the device
7597  *      @adap: the adapter
7598  *      @mbox: mailbox to use for the FW command
7599  *
7600  *      Issues a command to FW to partially initialize the device.  This
7601  *      performs initialization that generally doesn't depend on user input.
7602  */
7603 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7604 {
7605         struct fw_initialize_cmd c;
7606
7607         memset(&c, 0, sizeof(c));
7608         INIT_CMD(c, INITIALIZE, WRITE);
7609         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7610 }
7611
7612 /**
7613  *      t4_query_params_rw - query FW or device parameters
7614  *      @adap: the adapter
7615  *      @mbox: mailbox to use for the FW command
7616  *      @pf: the PF
7617  *      @vf: the VF
7618  *      @nparams: the number of parameters
7619  *      @params: the parameter names
7620  *      @val: the parameter values
7621  *      @rw: Write and read flag
7622  *
7623  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7624  *      queried at once.
7625  */
7626 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7627                        unsigned int vf, unsigned int nparams, const u32 *params,
7628                        u32 *val, int rw)
7629 {
7630         int i, ret;
7631         struct fw_params_cmd c;
7632         __be32 *p = &c.param[0].mnem;
7633
7634         if (nparams > 7)
7635                 return -EINVAL;
7636
7637         memset(&c, 0, sizeof(c));
7638         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7639                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
7640                                   V_FW_PARAMS_CMD_PFN(pf) |
7641                                   V_FW_PARAMS_CMD_VFN(vf));
7642         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7643
7644         for (i = 0; i < nparams; i++) {
7645                 *p++ = cpu_to_be32(*params++);
7646                 if (rw)
7647                         *p = cpu_to_be32(*(val + i));
7648                 p++;
7649         }
7650
7651         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7652         if (ret == 0)
7653                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7654                         *val++ = be32_to_cpu(*p);
7655         return ret;
7656 }
7657
7658 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7659                     unsigned int vf, unsigned int nparams, const u32 *params,
7660                     u32 *val)
7661 {
7662         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7663 }
7664
7665 /**
7666  *      t4_set_params_timeout - sets FW or device parameters
7667  *      @adap: the adapter
7668  *      @mbox: mailbox to use for the FW command
7669  *      @pf: the PF
7670  *      @vf: the VF
7671  *      @nparams: the number of parameters
7672  *      @params: the parameter names
7673  *      @val: the parameter values
7674  *      @timeout: the timeout time
7675  *
7676  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7677  *      specified at once.
7678  */
7679 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7680                           unsigned int pf, unsigned int vf,
7681                           unsigned int nparams, const u32 *params,
7682                           const u32 *val, int timeout)
7683 {
7684         struct fw_params_cmd c;
7685         __be32 *p = &c.param[0].mnem;
7686
7687         if (nparams > 7)
7688                 return -EINVAL;
7689
7690         memset(&c, 0, sizeof(c));
7691         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7692                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7693                                   V_FW_PARAMS_CMD_PFN(pf) |
7694                                   V_FW_PARAMS_CMD_VFN(vf));
7695         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7696
7697         while (nparams--) {
7698                 *p++ = cpu_to_be32(*params++);
7699                 *p++ = cpu_to_be32(*val++);
7700         }
7701
7702         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7703 }
7704
7705 /**
7706  *      t4_set_params - sets FW or device parameters
7707  *      @adap: the adapter
7708  *      @mbox: mailbox to use for the FW command
7709  *      @pf: the PF
7710  *      @vf: the VF
7711  *      @nparams: the number of parameters
7712  *      @params: the parameter names
7713  *      @val: the parameter values
7714  *
7715  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7716  *      specified at once.
7717  */
7718 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7719                   unsigned int vf, unsigned int nparams, const u32 *params,
7720                   const u32 *val)
7721 {
7722         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7723                                      FW_CMD_MAX_TIMEOUT);
7724 }
7725
7726 /**
7727  *      t4_cfg_pfvf - configure PF/VF resource limits
7728  *      @adap: the adapter
7729  *      @mbox: mailbox to use for the FW command
7730  *      @pf: the PF being configured
7731  *      @vf: the VF being configured
7732  *      @txq: the max number of egress queues
7733  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7734  *      @rxqi: the max number of interrupt-capable ingress queues
7735  *      @rxq: the max number of interruptless ingress queues
7736  *      @tc: the PCI traffic class
7737  *      @vi: the max number of virtual interfaces
7738  *      @cmask: the channel access rights mask for the PF/VF
7739  *      @pmask: the port access rights mask for the PF/VF
7740  *      @nexact: the maximum number of exact MPS filters
7741  *      @rcaps: read capabilities
7742  *      @wxcaps: write/execute capabilities
7743  *
7744  *      Configures resource limits and capabilities for a physical or virtual
7745  *      function.
7746  */
7747 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7748                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7749                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7750                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7751                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7752 {
7753         struct fw_pfvf_cmd c;
7754
7755         memset(&c, 0, sizeof(c));
7756         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7757                                   F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7758                                   V_FW_PFVF_CMD_VFN(vf));
7759         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7760         c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7761                                      V_FW_PFVF_CMD_NIQ(rxq));
7762         c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7763                                     V_FW_PFVF_CMD_PMASK(pmask) |
7764                                     V_FW_PFVF_CMD_NEQ(txq));
7765         c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7766                                       V_FW_PFVF_CMD_NVI(vi) |
7767                                       V_FW_PFVF_CMD_NEXACTF(nexact));
7768         c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7769                                      V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7770                                      V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7771         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7772 }
7773
7774 /**
7775  *      t4_alloc_vi_func - allocate a virtual interface
7776  *      @adap: the adapter
7777  *      @mbox: mailbox to use for the FW command
7778  *      @port: physical port associated with the VI
7779  *      @pf: the PF owning the VI
7780  *      @vf: the VF owning the VI
7781  *      @nmac: number of MAC addresses needed (1 to 5)
7782  *      @mac: the MAC addresses of the VI
7783  *      @rss_size: size of RSS table slice associated with this VI
7784  *      @portfunc: which Port Application Function MAC Address is desired
7785  *      @idstype: Intrusion Detection Type
7786  *
7787  *      Allocates a virtual interface for the given physical port.  If @mac is
7788  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7789  *      If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7790  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7791  *      stored consecutively so the space needed is @nmac * 6 bytes.
7792  *      Returns a negative error number or the non-negative VI id.
7793  */
7794 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7795                      unsigned int port, unsigned int pf, unsigned int vf,
7796                      unsigned int nmac, u8 *mac, u16 *rss_size,
7797                      unsigned int portfunc, unsigned int idstype)
7798 {
7799         int ret;
7800         struct fw_vi_cmd c;
7801
7802         memset(&c, 0, sizeof(c));
7803         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7804                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7805                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7806         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7807         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7808                                      V_FW_VI_CMD_FUNC(portfunc));
7809         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7810         c.nmac = nmac - 1;
7811         if(!rss_size)
7812                 c.norss_rsssize = F_FW_VI_CMD_NORSS;
7813
7814         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7815         if (ret)
7816                 return ret;
7817
7818         if (mac) {
7819                 memcpy(mac, c.mac, sizeof(c.mac));
7820                 switch (nmac) {
7821                 case 5:
7822                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7823                 case 4:
7824                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7825                 case 3:
7826                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7827                 case 2:
7828                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7829                 }
7830         }
7831         if (rss_size)
7832                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7833         return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7834 }
7835
7836 /**
7837  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7838  *      @adap: the adapter
7839  *      @mbox: mailbox to use for the FW command
7840  *      @port: physical port associated with the VI
7841  *      @pf: the PF owning the VI
7842  *      @vf: the VF owning the VI
7843  *      @nmac: number of MAC addresses needed (1 to 5)
7844  *      @mac: the MAC addresses of the VI
7845  *      @rss_size: size of RSS table slice associated with this VI
7846  *
7847  *      backwards compatible and convieniance routine to allocate a Virtual
7848  *      Interface with a Ethernet Port Application Function and Intrustion
7849  *      Detection System disabled.
7850  */
7851 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7852                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7853                 u16 *rss_size)
7854 {
7855         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7856                                 FW_VI_FUNC_ETH, 0);
7857 }
7858
7859 /**
7860  *      t4_free_vi - free a virtual interface
7861  *      @adap: the adapter
7862  *      @mbox: mailbox to use for the FW command
7863  *      @pf: the PF owning the VI
7864  *      @vf: the VF owning the VI
7865  *      @viid: virtual interface identifiler
7866  *
7867  *      Free a previously allocated virtual interface.
7868  */
7869 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7870                unsigned int vf, unsigned int viid)
7871 {
7872         struct fw_vi_cmd c;
7873
7874         memset(&c, 0, sizeof(c));
7875         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7876                                   F_FW_CMD_REQUEST |
7877                                   F_FW_CMD_EXEC |
7878                                   V_FW_VI_CMD_PFN(pf) |
7879                                   V_FW_VI_CMD_VFN(vf));
7880         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7881         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7882
7883         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7884 }
7885
7886 /**
7887  *      t4_set_rxmode - set Rx properties of a virtual interface
7888  *      @adap: the adapter
7889  *      @mbox: mailbox to use for the FW command
7890  *      @viid: the VI id
7891  *      @mtu: the new MTU or -1
7892  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7893  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7894  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7895  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7896  *      @sleep_ok: if true we may sleep while awaiting command completion
7897  *
7898  *      Sets Rx properties of a virtual interface.
7899  */
7900 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7901                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
7902                   bool sleep_ok)
7903 {
7904         struct fw_vi_rxmode_cmd c;
7905
7906         /* convert to FW values */
7907         if (mtu < 0)
7908                 mtu = M_FW_VI_RXMODE_CMD_MTU;
7909         if (promisc < 0)
7910                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7911         if (all_multi < 0)
7912                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7913         if (bcast < 0)
7914                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7915         if (vlanex < 0)
7916                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7917
7918         memset(&c, 0, sizeof(c));
7919         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7920                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7921                                    V_FW_VI_RXMODE_CMD_VIID(viid));
7922         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7923         c.mtu_to_vlanexen =
7924                 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7925                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7926                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7927                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7928                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7929         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7930 }
7931
7932 /**
7933  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7934  *      @adap: the adapter
7935  *      @mbox: mailbox to use for the FW command
7936  *      @viid: the VI id
7937  *      @free: if true any existing filters for this VI id are first removed
7938  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7939  *      @addr: the MAC address(es)
7940  *      @idx: where to store the index of each allocated filter
7941  *      @hash: pointer to hash address filter bitmap
7942  *      @sleep_ok: call is allowed to sleep
7943  *
7944  *      Allocates an exact-match filter for each of the supplied addresses and
7945  *      sets it to the corresponding address.  If @idx is not %NULL it should
7946  *      have at least @naddr entries, each of which will be set to the index of
7947  *      the filter allocated for the corresponding MAC address.  If a filter
7948  *      could not be allocated for an address its index is set to 0xffff.
7949  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7950  *      are hashed and update the hash filter bitmap pointed at by @hash.
7951  *
7952  *      Returns a negative error number or the number of filters allocated.
7953  */
7954 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7955                       unsigned int viid, bool free, unsigned int naddr,
7956                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7957 {
7958         int offset, ret = 0;
7959         struct fw_vi_mac_cmd c;
7960         unsigned int nfilters = 0;
7961         unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7962         unsigned int rem = naddr;
7963
7964         if (naddr > max_naddr)
7965                 return -EINVAL;
7966
7967         for (offset = 0; offset < naddr ; /**/) {
7968                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7969                                          ? rem
7970                                          : ARRAY_SIZE(c.u.exact));
7971                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7972                                                      u.exact[fw_naddr]), 16);
7973                 struct fw_vi_mac_exact *p;
7974                 int i;
7975
7976                 memset(&c, 0, sizeof(c));
7977                 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7978                                            F_FW_CMD_REQUEST |
7979                                            F_FW_CMD_WRITE |
7980                                            V_FW_CMD_EXEC(free) |
7981                                            V_FW_VI_MAC_CMD_VIID(viid));
7982                 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7983                                                   V_FW_CMD_LEN16(len16));
7984
7985                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7986                         p->valid_to_idx =
7987                                 cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7988                                             V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7989                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7990                 }
7991
7992                 /*
7993                  * It's okay if we run out of space in our MAC address arena.
7994                  * Some of the addresses we submit may get stored so we need
7995                  * to run through the reply to see what the results were ...
7996                  */
7997                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7998                 if (ret && ret != -FW_ENOMEM)
7999                         break;
8000
8001                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8002                         u16 index = G_FW_VI_MAC_CMD_IDX(
8003                                                 be16_to_cpu(p->valid_to_idx));
8004
8005                         if (idx)
8006                                 idx[offset+i] = (index >=  max_naddr
8007                                                  ? 0xffff
8008                                                  : index);
8009                         if (index < max_naddr)
8010                                 nfilters++;
8011                         else if (hash)
8012                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8013                 }
8014
8015                 free = false;
8016                 offset += fw_naddr;
8017                 rem -= fw_naddr;
8018         }
8019
8020         if (ret == 0 || ret == -FW_ENOMEM)
8021                 ret = nfilters;
8022         return ret;
8023 }
8024
8025 /**
8026  *      t4_change_mac - modifies the exact-match filter for a MAC address
8027  *      @adap: the adapter
8028  *      @mbox: mailbox to use for the FW command
8029  *      @viid: the VI id
8030  *      @idx: index of existing filter for old value of MAC address, or -1
8031  *      @addr: the new MAC address value
8032  *      @persist: whether a new MAC allocation should be persistent
8033  *      @add_smt: if true also add the address to the HW SMT
8034  *
8035  *      Modifies an exact-match filter and sets it to the new MAC address if
8036  *      @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8037  *      latter case the address is added persistently if @persist is %true.
8038  *
8039  *      Note that in general it is not possible to modify the value of a given
8040  *      filter so the generic way to modify an address filter is to free the one
8041  *      being used by the old address value and allocate a new filter for the
8042  *      new address value.
8043  *
8044  *      Returns a negative error number or the index of the filter with the new
8045  *      MAC value.  Note that this index may differ from @idx.
8046  */
8047 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8048                   int idx, const u8 *addr, bool persist, bool add_smt)
8049 {
8050         int ret, mode;
8051         struct fw_vi_mac_cmd c;
8052         struct fw_vi_mac_exact *p = c.u.exact;
8053         unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8054
8055         if (idx < 0)            /* new allocation */
8056                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8057         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8058
8059         memset(&c, 0, sizeof(c));
8060         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8061                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8062                                    V_FW_VI_MAC_CMD_VIID(viid));
8063         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8064         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8065                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8066                                       V_FW_VI_MAC_CMD_IDX(idx));
8067         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8068
8069         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8070         if (ret == 0) {
8071                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8072                 if (ret >= max_mac_addr)
8073                         ret = -ENOMEM;
8074         }
8075         return ret;
8076 }
8077
8078 /**
8079  *      t4_set_addr_hash - program the MAC inexact-match hash filter
8080  *      @adap: the adapter
8081  *      @mbox: mailbox to use for the FW command
8082  *      @viid: the VI id
8083  *      @ucast: whether the hash filter should also match unicast addresses
8084  *      @vec: the value to be written to the hash filter
8085  *      @sleep_ok: call is allowed to sleep
8086  *
8087  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8088  */
8089 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8090                      bool ucast, u64 vec, bool sleep_ok)
8091 {
8092         struct fw_vi_mac_cmd c;
8093         u32 val;
8094
8095         memset(&c, 0, sizeof(c));
8096         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8097                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8098                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8099         val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8100               V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8101         c.freemacs_to_len16 = cpu_to_be32(val);
8102         c.u.hash.hashvec = cpu_to_be64(vec);
8103         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8104 }
8105
8106 /**
8107  *      t4_enable_vi_params - enable/disable a virtual interface
8108  *      @adap: the adapter
8109  *      @mbox: mailbox to use for the FW command
8110  *      @viid: the VI id
8111  *      @rx_en: 1=enable Rx, 0=disable Rx
8112  *      @tx_en: 1=enable Tx, 0=disable Tx
8113  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8114  *
8115  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8116  *      only makes sense when enabling a Virtual Interface ...
8117  */
8118 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8119                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8120 {
8121         struct fw_vi_enable_cmd c;
8122
8123         memset(&c, 0, sizeof(c));
8124         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8125                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8126                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8127         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8128                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8129                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8130                                      FW_LEN16(c));
8131         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8132 }
8133
8134 /**
8135  *      t4_enable_vi - enable/disable a virtual interface
8136  *      @adap: the adapter
8137  *      @mbox: mailbox to use for the FW command
8138  *      @viid: the VI id
8139  *      @rx_en: 1=enable Rx, 0=disable Rx
8140  *      @tx_en: 1=enable Tx, 0=disable Tx
8141  *
8142  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8143  *      only makes sense when enabling a Virtual Interface ...
8144  */
8145 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8146                  bool rx_en, bool tx_en)
8147 {
8148         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8149 }
8150
8151 /**
8152  *      t4_identify_port - identify a VI's port by blinking its LED
8153  *      @adap: the adapter
8154  *      @mbox: mailbox to use for the FW command
8155  *      @viid: the VI id
8156  *      @nblinks: how many times to blink LED at 2.5 Hz
8157  *
8158  *      Identifies a VI's port by blinking its LED.
8159  */
8160 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8161                      unsigned int nblinks)
8162 {
8163         struct fw_vi_enable_cmd c;
8164
8165         memset(&c, 0, sizeof(c));
8166         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8167                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8168                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8169         c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8170         c.blinkdur = cpu_to_be16(nblinks);
8171         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8172 }
8173
8174 /**
8175  *      t4_iq_stop - stop an ingress queue and its FLs
8176  *      @adap: the adapter
8177  *      @mbox: mailbox to use for the FW command
8178  *      @pf: the PF owning the queues
8179  *      @vf: the VF owning the queues
8180  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8181  *      @iqid: ingress queue id
8182  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8183  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8184  *
8185  *      Stops an ingress queue and its associated FLs, if any.  This causes
8186  *      any current or future data/messages destined for these queues to be
8187  *      tossed.
8188  */
8189 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8190                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8191                unsigned int fl0id, unsigned int fl1id)
8192 {
8193         struct fw_iq_cmd c;
8194
8195         memset(&c, 0, sizeof(c));
8196         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8197                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8198                                   V_FW_IQ_CMD_VFN(vf));
8199         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8200         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8201         c.iqid = cpu_to_be16(iqid);
8202         c.fl0id = cpu_to_be16(fl0id);
8203         c.fl1id = cpu_to_be16(fl1id);
8204         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8205 }
8206
8207 /**
8208  *      t4_iq_free - free an ingress queue and its FLs
8209  *      @adap: the adapter
8210  *      @mbox: mailbox to use for the FW command
8211  *      @pf: the PF owning the queues
8212  *      @vf: the VF owning the queues
8213  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8214  *      @iqid: ingress queue id
8215  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8216  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8217  *
8218  *      Frees an ingress queue and its associated FLs, if any.
8219  */
8220 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8221                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8222                unsigned int fl0id, unsigned int fl1id)
8223 {
8224         struct fw_iq_cmd c;
8225
8226         memset(&c, 0, sizeof(c));
8227         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8228                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8229                                   V_FW_IQ_CMD_VFN(vf));
8230         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8231         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8232         c.iqid = cpu_to_be16(iqid);
8233         c.fl0id = cpu_to_be16(fl0id);
8234         c.fl1id = cpu_to_be16(fl1id);
8235         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8236 }
8237
8238 /**
8239  *      t4_eth_eq_free - free an Ethernet egress queue
8240  *      @adap: the adapter
8241  *      @mbox: mailbox to use for the FW command
8242  *      @pf: the PF owning the queue
8243  *      @vf: the VF owning the queue
8244  *      @eqid: egress queue id
8245  *
8246  *      Frees an Ethernet egress queue.
8247  */
8248 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8249                    unsigned int vf, unsigned int eqid)
8250 {
8251         struct fw_eq_eth_cmd c;
8252
8253         memset(&c, 0, sizeof(c));
8254         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8255                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8256                                   V_FW_EQ_ETH_CMD_PFN(pf) |
8257                                   V_FW_EQ_ETH_CMD_VFN(vf));
8258         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8259         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8260         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8261 }
8262
8263 /**
8264  *      t4_ctrl_eq_free - free a control egress queue
8265  *      @adap: the adapter
8266  *      @mbox: mailbox to use for the FW command
8267  *      @pf: the PF owning the queue
8268  *      @vf: the VF owning the queue
8269  *      @eqid: egress queue id
8270  *
8271  *      Frees a control egress queue.
8272  */
8273 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8274                     unsigned int vf, unsigned int eqid)
8275 {
8276         struct fw_eq_ctrl_cmd c;
8277
8278         memset(&c, 0, sizeof(c));
8279         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8280                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8281                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
8282                                   V_FW_EQ_CTRL_CMD_VFN(vf));
8283         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8284         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8285         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8286 }
8287
8288 /**
8289  *      t4_ofld_eq_free - free an offload egress queue
8290  *      @adap: the adapter
8291  *      @mbox: mailbox to use for the FW command
8292  *      @pf: the PF owning the queue
8293  *      @vf: the VF owning the queue
8294  *      @eqid: egress queue id
8295  *
8296  *      Frees a control egress queue.
8297  */
8298 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8299                     unsigned int vf, unsigned int eqid)
8300 {
8301         struct fw_eq_ofld_cmd c;
8302
8303         memset(&c, 0, sizeof(c));
8304         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8305                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8306                                   V_FW_EQ_OFLD_CMD_PFN(pf) |
8307                                   V_FW_EQ_OFLD_CMD_VFN(vf));
8308         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8309         c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8310         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8311 }
8312
8313 /**
8314  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8315  *      @link_down_rc: Link Down Reason Code
8316  *
8317  *      Returns a string representation of the Link Down Reason Code.
8318  */
8319 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8320 {
8321         static const char *reason[] = {
8322                 "Link Down",
8323                 "Remote Fault",
8324                 "Auto-negotiation Failure",
8325                 "Reserved3",
8326                 "Insufficient Airflow",
8327                 "Unable To Determine Reason",
8328                 "No RX Signal Detected",
8329                 "Reserved7",
8330         };
8331
8332         if (link_down_rc >= ARRAY_SIZE(reason))
8333                 return "Bad Reason Code";
8334
8335         return reason[link_down_rc];
8336 }
8337
8338 /*
8339  * Return the highest speed set in the port capabilities, in Mb/s.
8340  */
8341 unsigned int fwcap_to_speed(uint32_t caps)
8342 {
8343         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8344                 do { \
8345                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8346                                 return __speed; \
8347                 } while (0)
8348
8349         TEST_SPEED_RETURN(400G, 400000);
8350         TEST_SPEED_RETURN(200G, 200000);
8351         TEST_SPEED_RETURN(100G, 100000);
8352         TEST_SPEED_RETURN(50G,   50000);
8353         TEST_SPEED_RETURN(40G,   40000);
8354         TEST_SPEED_RETURN(25G,   25000);
8355         TEST_SPEED_RETURN(10G,   10000);
8356         TEST_SPEED_RETURN(1G,     1000);
8357         TEST_SPEED_RETURN(100M,    100);
8358
8359         #undef TEST_SPEED_RETURN
8360
8361         return 0;
8362 }
8363
8364 /*
8365  * Return the port capabilities bit for the given speed, which is in Mb/s.
8366  */
8367 uint32_t speed_to_fwcap(unsigned int speed)
8368 {
8369         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8370                 do { \
8371                         if (speed == __speed) \
8372                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8373                 } while (0)
8374
8375         TEST_SPEED_RETURN(400G, 400000);
8376         TEST_SPEED_RETURN(200G, 200000);
8377         TEST_SPEED_RETURN(100G, 100000);
8378         TEST_SPEED_RETURN(50G,   50000);
8379         TEST_SPEED_RETURN(40G,   40000);
8380         TEST_SPEED_RETURN(25G,   25000);
8381         TEST_SPEED_RETURN(10G,   10000);
8382         TEST_SPEED_RETURN(1G,     1000);
8383         TEST_SPEED_RETURN(100M,    100);
8384
8385         #undef TEST_SPEED_RETURN
8386
8387         return 0;
8388 }
8389
8390 /*
8391  * Return the port capabilities bit for the highest speed in the capabilities.
8392  */
8393 uint32_t fwcap_top_speed(uint32_t caps)
8394 {
8395         #define TEST_SPEED_RETURN(__caps_speed) \
8396                 do { \
8397                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8398                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8399                 } while (0)
8400
8401         TEST_SPEED_RETURN(400G);
8402         TEST_SPEED_RETURN(200G);
8403         TEST_SPEED_RETURN(100G);
8404         TEST_SPEED_RETURN(50G);
8405         TEST_SPEED_RETURN(40G);
8406         TEST_SPEED_RETURN(25G);
8407         TEST_SPEED_RETURN(10G);
8408         TEST_SPEED_RETURN(1G);
8409         TEST_SPEED_RETURN(100M);
8410
8411         #undef TEST_SPEED_RETURN
8412
8413         return 0;
8414 }
8415
8416
8417 /**
8418  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8419  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8420  *
8421  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8422  *      32-bit Port Capabilities value.
8423  */
8424 static uint32_t lstatus_to_fwcap(u32 lstatus)
8425 {
8426         uint32_t linkattr = 0;
8427
8428         /*
8429          * Unfortunately the format of the Link Status in the old
8430          * 16-bit Port Information message isn't the same as the
8431          * 16-bit Port Capabilities bitfield used everywhere else ...
8432          */
8433         if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8434                 linkattr |= FW_PORT_CAP32_FC_RX;
8435         if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8436                 linkattr |= FW_PORT_CAP32_FC_TX;
8437         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8438                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8439         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8440                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8441         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8442                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8443         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8444                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8445         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8446                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8447         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8448                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8449
8450         return linkattr;
8451 }
8452
8453 /*
8454  * Updates all fields owned by the common code in port_info and link_config
8455  * based on information provided by the firmware.  Does not touch any
8456  * requested_* field.
8457  */
8458 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8459     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8460 {
8461         struct link_config old_lc, *lc = &pi->link_cfg;
8462         unsigned char fc, fec;
8463         u32 stat, linkattr;
8464         int old_ptype, old_mtype;
8465
8466         old_ptype = pi->port_type;
8467         old_mtype = pi->mod_type;
8468         old_lc = *lc;
8469         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8470                 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8471
8472                 pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8473                 pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8474                 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8475                     G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8476
8477                 lc->supported = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8478                 lc->advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8479                 lc->lp_advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8480                 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8481                 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8482
8483                 linkattr = lstatus_to_fwcap(stat);
8484         } else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8485                 stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8486
8487                 pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8488                 pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8489                 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8490                     G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8491
8492                 lc->supported = be32_to_cpu(p->u.info32.pcaps32);
8493                 lc->advertising = be32_to_cpu(p->u.info32.acaps32);
8494                 lc->lp_advertising = be16_to_cpu(p->u.info32.lpacaps32);
8495                 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8496                 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8497
8498                 linkattr = be32_to_cpu(p->u.info32.linkattr32);
8499         } else {
8500                 CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8501                 return;
8502         }
8503
8504         lc->speed = fwcap_to_speed(linkattr);
8505
8506         fc = 0;
8507         if (linkattr & FW_PORT_CAP32_FC_RX)
8508                 fc |= PAUSE_RX;
8509         if (linkattr & FW_PORT_CAP32_FC_TX)
8510                 fc |= PAUSE_TX;
8511         lc->fc = fc;
8512
8513         fec = FEC_NONE;
8514         if (linkattr & FW_PORT_CAP32_FEC_RS)
8515                 fec |= FEC_RS;
8516         if (linkattr & FW_PORT_CAP32_FEC_BASER_RS)
8517                 fec |= FEC_BASER_RS;
8518         lc->fec = fec;
8519
8520         if (mod_changed != NULL)
8521                 *mod_changed = false;
8522         if (link_changed != NULL)
8523                 *link_changed = false;
8524         if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8525             old_lc.supported != lc->supported) {
8526                 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
8527                         lc->fec_hint = lc->advertising &
8528                             V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
8529                 }
8530                 if (mod_changed != NULL)
8531                         *mod_changed = true;
8532         }
8533         if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8534             old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8535                 if (link_changed != NULL)
8536                         *link_changed = true;
8537         }
8538 }
8539
8540 /**
8541  *      t4_update_port_info - retrieve and update port information if changed
8542  *      @pi: the port_info
8543  *
8544  *      We issue a Get Port Information Command to the Firmware and, if
8545  *      successful, we check to see if anything is different from what we
8546  *      last recorded and update things accordingly.
8547  */
8548  int t4_update_port_info(struct port_info *pi)
8549  {
8550         struct adapter *sc = pi->adapter;
8551         struct fw_port_cmd cmd;
8552         enum fw_port_action action;
8553         int ret;
8554
8555         memset(&cmd, 0, sizeof(cmd));
8556         cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8557             F_FW_CMD_REQUEST | F_FW_CMD_READ |
8558             V_FW_PORT_CMD_PORTID(pi->tx_chan));
8559         action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8560             FW_PORT_ACTION_GET_PORT_INFO;
8561         cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8562             FW_LEN16(cmd));
8563         ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8564         if (ret)
8565                 return ret;
8566
8567         handle_port_info(pi, &cmd, action, NULL, NULL);
8568         return 0;
8569 }
8570
8571 /**
8572  *      t4_handle_fw_rpl - process a FW reply message
8573  *      @adap: the adapter
8574  *      @rpl: start of the FW message
8575  *
8576  *      Processes a FW message, such as link state change messages.
8577  */
8578 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8579 {
8580         u8 opcode = *(const u8 *)rpl;
8581         const struct fw_port_cmd *p = (const void *)rpl;
8582         enum fw_port_action action =
8583             G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8584         bool mod_changed, link_changed;
8585
8586         if (opcode == FW_PORT_CMD &&
8587             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8588             action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8589                 /* link/module state change message */
8590                 int i;
8591                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8592                 struct port_info *pi = NULL;
8593                 struct link_config *lc;
8594
8595                 for_each_port(adap, i) {
8596                         pi = adap2pinfo(adap, i);
8597                         if (pi->tx_chan == chan)
8598                                 break;
8599                 }
8600
8601                 lc = &pi->link_cfg;
8602                 PORT_LOCK(pi);
8603                 handle_port_info(pi, p, action, &mod_changed, &link_changed);
8604                 PORT_UNLOCK(pi);
8605                 if (mod_changed)
8606                         t4_os_portmod_changed(pi);
8607                 if (link_changed) {
8608                         PORT_LOCK(pi);
8609                         t4_os_link_changed(pi);
8610                         PORT_UNLOCK(pi);
8611                 }
8612         } else {
8613                 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
8614                 return -EINVAL;
8615         }
8616         return 0;
8617 }
8618
8619 /**
8620  *      get_pci_mode - determine a card's PCI mode
8621  *      @adapter: the adapter
8622  *      @p: where to store the PCI settings
8623  *
8624  *      Determines a card's PCI mode and associated parameters, such as speed
8625  *      and width.
8626  */
8627 static void get_pci_mode(struct adapter *adapter,
8628                                    struct pci_params *p)
8629 {
8630         u16 val;
8631         u32 pcie_cap;
8632
8633         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8634         if (pcie_cap) {
8635                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
8636                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8637                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8638         }
8639 }
8640
8641 struct flash_desc {
8642         u32 vendor_and_model_id;
8643         u32 size_mb;
8644 };
8645
8646 int t4_get_flash_params(struct adapter *adapter)
8647 {
8648         /*
8649          * Table for non-standard supported Flash parts.  Note, all Flash
8650          * parts must have 64KB sectors.
8651          */
8652         static struct flash_desc supported_flash[] = {
8653                 { 0x00150201, 4 << 20 },        /* Spansion 4MB S25FL032P */
8654         };
8655
8656         int ret;
8657         u32 flashid = 0;
8658         unsigned int part, manufacturer;
8659         unsigned int density, size = 0;
8660
8661
8662         /*
8663          * Issue a Read ID Command to the Flash part.  We decode supported
8664          * Flash parts and their sizes from this.  There's a newer Query
8665          * Command which can retrieve detailed geometry information but many
8666          * Flash parts don't support it.
8667          */
8668         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
8669         if (!ret)
8670                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
8671         t4_write_reg(adapter, A_SF_OP, 0);      /* unlock SF */
8672         if (ret < 0)
8673                 return ret;
8674
8675         /*
8676          * Check to see if it's one of our non-standard supported Flash parts.
8677          */
8678         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8679                 if (supported_flash[part].vendor_and_model_id == flashid) {
8680                         adapter->params.sf_size =
8681                                 supported_flash[part].size_mb;
8682                         adapter->params.sf_nsec =
8683                                 adapter->params.sf_size / SF_SEC_SIZE;
8684                         goto found;
8685                 }
8686
8687         /*
8688          * Decode Flash part size.  The code below looks repetative with
8689          * common encodings, but that's not guaranteed in the JEDEC
8690          * specification for the Read JADEC ID command.  The only thing that
8691          * we're guaranteed by the JADEC specification is where the
8692          * Manufacturer ID is in the returned result.  After that each
8693          * Manufacturer ~could~ encode things completely differently.
8694          * Note, all Flash parts must have 64KB sectors.
8695          */
8696         manufacturer = flashid & 0xff;
8697         switch (manufacturer) {
8698         case 0x20: /* Micron/Numonix */
8699                 /*
8700                  * This Density -> Size decoding table is taken from Micron
8701                  * Data Sheets.
8702                  */
8703                 density = (flashid >> 16) & 0xff;
8704                 switch (density) {
8705                 case 0x14: size = 1 << 20; break; /*   1MB */
8706                 case 0x15: size = 1 << 21; break; /*   2MB */
8707                 case 0x16: size = 1 << 22; break; /*   4MB */
8708                 case 0x17: size = 1 << 23; break; /*   8MB */
8709                 case 0x18: size = 1 << 24; break; /*  16MB */
8710                 case 0x19: size = 1 << 25; break; /*  32MB */
8711                 case 0x20: size = 1 << 26; break; /*  64MB */
8712                 case 0x21: size = 1 << 27; break; /* 128MB */
8713                 case 0x22: size = 1 << 28; break; /* 256MB */
8714                 }
8715                 break;
8716
8717         case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
8718                 /*
8719                  * This Density -> Size decoding table is taken from ISSI
8720                  * Data Sheets.
8721                  */
8722                 density = (flashid >> 16) & 0xff;
8723                 switch (density) {
8724                 case 0x16: size = 1 << 25; break; /*  32MB */
8725                 case 0x17: size = 1 << 26; break; /*  64MB */
8726                 }
8727                 break;
8728
8729         case 0xc2: /* Macronix */
8730                 /*
8731                  * This Density -> Size decoding table is taken from Macronix
8732                  * Data Sheets.
8733                  */
8734                 density = (flashid >> 16) & 0xff;
8735                 switch (density) {
8736                 case 0x17: size = 1 << 23; break; /*   8MB */
8737                 case 0x18: size = 1 << 24; break; /*  16MB */
8738                 }
8739                 break;
8740
8741         case 0xef: /* Winbond */
8742                 /*
8743                  * This Density -> Size decoding table is taken from Winbond
8744                  * Data Sheets.
8745                  */
8746                 density = (flashid >> 16) & 0xff;
8747                 switch (density) {
8748                 case 0x17: size = 1 << 23; break; /*   8MB */
8749                 case 0x18: size = 1 << 24; break; /*  16MB */
8750                 }
8751                 break;
8752         }
8753
8754         /* If we didn't recognize the FLASH part, that's no real issue: the
8755          * Hardware/Software contract says that Hardware will _*ALWAYS*_
8756          * use a FLASH part which is at least 4MB in size and has 64KB
8757          * sectors.  The unrecognized FLASH part is likely to be much larger
8758          * than 4MB, but that's all we really need.
8759          */
8760         if (size == 0) {
8761                 CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
8762                 size = 1 << 22;
8763         }
8764
8765         /*
8766          * Store decoded Flash size and fall through into vetting code.
8767          */
8768         adapter->params.sf_size = size;
8769         adapter->params.sf_nsec = size / SF_SEC_SIZE;
8770
8771  found:
8772         /*
8773          * We should ~probably~ reject adapters with FLASHes which are too
8774          * small but we have some legacy FPGAs with small FLASHes that we'd
8775          * still like to use.  So instead we emit a scary message ...
8776          */
8777         if (adapter->params.sf_size < FLASH_MIN_SIZE)
8778                 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8779                         flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
8780
8781         return 0;
8782 }
8783
8784 static void set_pcie_completion_timeout(struct adapter *adapter,
8785                                                   u8 range)
8786 {
8787         u16 val;
8788         u32 pcie_cap;
8789
8790         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8791         if (pcie_cap) {
8792                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
8793                 val &= 0xfff0;
8794                 val |= range ;
8795                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8796         }
8797 }
8798
8799 const struct chip_params *t4_get_chip_params(int chipid)
8800 {
8801         static const struct chip_params chip_params[] = {
8802                 {
8803                         /* T4 */
8804                         .nchan = NCHAN,
8805                         .pm_stats_cnt = PM_NSTATS,
8806                         .cng_ch_bits_log = 2,
8807                         .nsched_cls = 15,
8808                         .cim_num_obq = CIM_NUM_OBQ,
8809                         .mps_rplc_size = 128,
8810                         .vfcount = 128,
8811                         .sge_fl_db = F_DBPRIO,
8812                         .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8813                 },
8814                 {
8815                         /* T5 */
8816                         .nchan = NCHAN,
8817                         .pm_stats_cnt = PM_NSTATS,
8818                         .cng_ch_bits_log = 2,
8819                         .nsched_cls = 16,
8820                         .cim_num_obq = CIM_NUM_OBQ_T5,
8821                         .mps_rplc_size = 128,
8822                         .vfcount = 128,
8823                         .sge_fl_db = F_DBPRIO | F_DBTYPE,
8824                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8825                 },
8826                 {
8827                         /* T6 */
8828                         .nchan = T6_NCHAN,
8829                         .pm_stats_cnt = T6_PM_NSTATS,
8830                         .cng_ch_bits_log = 3,
8831                         .nsched_cls = 16,
8832                         .cim_num_obq = CIM_NUM_OBQ_T5,
8833                         .mps_rplc_size = 256,
8834                         .vfcount = 256,
8835                         .sge_fl_db = 0,
8836                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8837                 },
8838         };
8839
8840         chipid -= CHELSIO_T4;
8841         if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8842                 return NULL;
8843
8844         return &chip_params[chipid];
8845 }
8846
8847 /**
8848  *      t4_prep_adapter - prepare SW and HW for operation
8849  *      @adapter: the adapter
8850  *      @buf: temporary space of at least VPD_LEN size provided by the caller.
8851  *
8852  *      Initialize adapter SW state for the various HW modules, set initial
8853  *      values for some adapter tunables, take PHYs out of reset, and
8854  *      initialize the MDIO interface.
8855  */
8856 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8857 {
8858         int ret;
8859         uint16_t device_id;
8860         uint32_t pl_rev;
8861
8862         get_pci_mode(adapter, &adapter->params.pci);
8863
8864         pl_rev = t4_read_reg(adapter, A_PL_REV);
8865         adapter->params.chipid = G_CHIPID(pl_rev);
8866         adapter->params.rev = G_REV(pl_rev);
8867         if (adapter->params.chipid == 0) {
8868                 /* T4 did not have chipid in PL_REV (T5 onwards do) */
8869                 adapter->params.chipid = CHELSIO_T4;
8870
8871                 /* T4A1 chip is not supported */
8872                 if (adapter->params.rev == 1) {
8873                         CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8874                         return -EINVAL;
8875                 }
8876         }
8877
8878         adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8879         if (adapter->chip_params == NULL)
8880                 return -EINVAL;
8881
8882         adapter->params.pci.vpd_cap_addr =
8883             t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8884
8885         ret = t4_get_flash_params(adapter);
8886         if (ret < 0)
8887                 return ret;
8888
8889         /* Cards with real ASICs have the chipid in the PCIe device id */
8890         t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8891         if (device_id >> 12 == chip_id(adapter))
8892                 adapter->params.cim_la_size = CIMLA_SIZE;
8893         else {
8894                 /* FPGA */
8895                 adapter->params.fpga = 1;
8896                 adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8897         }
8898
8899         ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8900         if (ret < 0)
8901                 return ret;
8902
8903         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8904
8905         /*
8906          * Default port and clock for debugging in case we can't reach FW.
8907          */
8908         adapter->params.nports = 1;
8909         adapter->params.portvec = 1;
8910         adapter->params.vpd.cclk = 50000;
8911
8912         /* Set pci completion timeout value to 4 seconds. */
8913         set_pcie_completion_timeout(adapter, 0xd);
8914         return 0;
8915 }
8916
8917 /**
8918  *      t4_shutdown_adapter - shut down adapter, host & wire
8919  *      @adapter: the adapter
8920  *
8921  *      Perform an emergency shutdown of the adapter and stop it from
8922  *      continuing any further communication on the ports or DMA to the
8923  *      host.  This is typically used when the adapter and/or firmware
8924  *      have crashed and we want to prevent any further accidental
8925  *      communication with the rest of the world.  This will also force
8926  *      the port Link Status to go down -- if register writes work --
8927  *      which should help our peers figure out that we're down.
8928  */
8929 int t4_shutdown_adapter(struct adapter *adapter)
8930 {
8931         int port;
8932
8933         t4_intr_disable(adapter);
8934         t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8935         for_each_port(adapter, port) {
8936                 u32 a_port_cfg = is_t4(adapter) ?
8937                                  PORT_REG(port, A_XGMAC_PORT_CFG) :
8938                                  T5_PORT_REG(port, A_MAC_PORT_CFG);
8939
8940                 t4_write_reg(adapter, a_port_cfg,
8941                              t4_read_reg(adapter, a_port_cfg)
8942                              & ~V_SIGNAL_DET(1));
8943         }
8944         t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8945
8946         return 0;
8947 }
8948
8949 /**
8950  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8951  *      @adapter: the adapter
8952  *      @qid: the Queue ID
8953  *      @qtype: the Ingress or Egress type for @qid
8954  *      @user: true if this request is for a user mode queue
8955  *      @pbar2_qoffset: BAR2 Queue Offset
8956  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8957  *
8958  *      Returns the BAR2 SGE Queue Registers information associated with the
8959  *      indicated Absolute Queue ID.  These are passed back in return value
8960  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8961  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8962  *
8963  *      This may return an error which indicates that BAR2 SGE Queue
8964  *      registers aren't available.  If an error is not returned, then the
8965  *      following values are returned:
8966  *
8967  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8968  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8969  *
8970  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8971  *      require the "Inferred Queue ID" ability may be used.  E.g. the
8972  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8973  *      then these "Inferred Queue ID" register may not be used.
8974  */
8975 int t4_bar2_sge_qregs(struct adapter *adapter,
8976                       unsigned int qid,
8977                       enum t4_bar2_qtype qtype,
8978                       int user,
8979                       u64 *pbar2_qoffset,
8980                       unsigned int *pbar2_qid)
8981 {
8982         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8983         u64 bar2_page_offset, bar2_qoffset;
8984         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8985
8986         /* T4 doesn't support BAR2 SGE Queue registers for kernel
8987          * mode queues.
8988          */
8989         if (!user && is_t4(adapter))
8990                 return -EINVAL;
8991
8992         /* Get our SGE Page Size parameters.
8993          */
8994         page_shift = adapter->params.sge.page_shift;
8995         page_size = 1 << page_shift;
8996
8997         /* Get the right Queues per Page parameters for our Queue.
8998          */
8999         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9000                      ? adapter->params.sge.eq_s_qpp
9001                      : adapter->params.sge.iq_s_qpp);
9002         qpp_mask = (1 << qpp_shift) - 1;
9003
9004         /* Calculate the basics of the BAR2 SGE Queue register area:
9005          *  o The BAR2 page the Queue registers will be in.
9006          *  o The BAR2 Queue ID.
9007          *  o The BAR2 Queue ID Offset into the BAR2 page.
9008          */
9009         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9010         bar2_qid = qid & qpp_mask;
9011         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9012
9013         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9014          * hardware will infer the Absolute Queue ID simply from the writes to
9015          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9016          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9017          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9018          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9019          * from the BAR2 Page and BAR2 Queue ID.
9020          *
9021          * One important censequence of this is that some BAR2 SGE registers
9022          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9023          * there.  But other registers synthesize the SGE Queue ID purely
9024          * from the writes to the registers -- the Write Combined Doorbell
9025          * Buffer is a good example.  These BAR2 SGE Registers are only
9026          * available for those BAR2 SGE Register areas where the SGE Absolute
9027          * Queue ID can be inferred from simple writes.
9028          */
9029         bar2_qoffset = bar2_page_offset;
9030         bar2_qinferred = (bar2_qid_offset < page_size);
9031         if (bar2_qinferred) {
9032                 bar2_qoffset += bar2_qid_offset;
9033                 bar2_qid = 0;
9034         }
9035
9036         *pbar2_qoffset = bar2_qoffset;
9037         *pbar2_qid = bar2_qid;
9038         return 0;
9039 }
9040
9041 /**
9042  *      t4_init_devlog_params - initialize adapter->params.devlog
9043  *      @adap: the adapter
9044  *      @fw_attach: whether we can talk to the firmware
9045  *
9046  *      Initialize various fields of the adapter's Firmware Device Log
9047  *      Parameters structure.
9048  */
9049 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9050 {
9051         struct devlog_params *dparams = &adap->params.devlog;
9052         u32 pf_dparams;
9053         unsigned int devlog_meminfo;
9054         struct fw_devlog_cmd devlog_cmd;
9055         int ret;
9056
9057         /* If we're dealing with newer firmware, the Device Log Paramerters
9058          * are stored in a designated register which allows us to access the
9059          * Device Log even if we can't talk to the firmware.
9060          */
9061         pf_dparams =
9062                 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9063         if (pf_dparams) {
9064                 unsigned int nentries, nentries128;
9065
9066                 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9067                 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9068
9069                 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9070                 nentries = (nentries128 + 1) * 128;
9071                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9072
9073                 return 0;
9074         }
9075
9076         /*
9077          * For any failing returns ...
9078          */
9079         memset(dparams, 0, sizeof *dparams);
9080
9081         /*
9082          * If we can't talk to the firmware, there's really nothing we can do
9083          * at this point.
9084          */
9085         if (!fw_attach)
9086                 return -ENXIO;
9087
9088         /* Otherwise, ask the firmware for it's Device Log Parameters.
9089          */
9090         memset(&devlog_cmd, 0, sizeof devlog_cmd);
9091         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9092                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
9093         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9094         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9095                          &devlog_cmd);
9096         if (ret)
9097                 return ret;
9098
9099         devlog_meminfo =
9100                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9101         dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9102         dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9103         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9104
9105         return 0;
9106 }
9107
9108 /**
9109  *      t4_init_sge_params - initialize adap->params.sge
9110  *      @adapter: the adapter
9111  *
9112  *      Initialize various fields of the adapter's SGE Parameters structure.
9113  */
9114 int t4_init_sge_params(struct adapter *adapter)
9115 {
9116         u32 r;
9117         struct sge_params *sp = &adapter->params.sge;
9118         unsigned i, tscale = 1;
9119
9120         r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9121         sp->counter_val[0] = G_THRESHOLD_0(r);
9122         sp->counter_val[1] = G_THRESHOLD_1(r);
9123         sp->counter_val[2] = G_THRESHOLD_2(r);
9124         sp->counter_val[3] = G_THRESHOLD_3(r);
9125
9126         if (chip_id(adapter) >= CHELSIO_T6) {
9127                 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9128                 tscale = G_TSCALE(r);
9129                 if (tscale == 0)
9130                         tscale = 1;
9131                 else
9132                         tscale += 2;
9133         }
9134
9135         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9136         sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9137         sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9138         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9139         sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9140         sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9141         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9142         sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9143         sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9144
9145         r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9146         sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9147         if (is_t4(adapter))
9148                 sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9149         else if (is_t5(adapter))
9150                 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9151         else
9152                 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9153
9154         /* egress queues: log2 of # of doorbells per BAR2 page */
9155         r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9156         r >>= S_QUEUESPERPAGEPF0 +
9157             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9158         sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9159
9160         /* ingress queues: log2 of # of doorbells per BAR2 page */
9161         r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9162         r >>= S_QUEUESPERPAGEPF0 +
9163             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9164         sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9165
9166         r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9167         r >>= S_HOSTPAGESIZEPF0 +
9168             (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9169         sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9170
9171         r = t4_read_reg(adapter, A_SGE_CONTROL);
9172         sp->sge_control = r;
9173         sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9174         sp->fl_pktshift = G_PKTSHIFT(r);
9175         if (chip_id(adapter) <= CHELSIO_T5) {
9176                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9177                     X_INGPADBOUNDARY_SHIFT);
9178         } else {
9179                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9180                     X_T6_INGPADBOUNDARY_SHIFT);
9181         }
9182         if (is_t4(adapter))
9183                 sp->pack_boundary = sp->pad_boundary;
9184         else {
9185                 r = t4_read_reg(adapter, A_SGE_CONTROL2);
9186                 if (G_INGPACKBOUNDARY(r) == 0)
9187                         sp->pack_boundary = 16;
9188                 else
9189                         sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9190         }
9191         for (i = 0; i < SGE_FLBUF_SIZES; i++)
9192                 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9193                     A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9194
9195         return 0;
9196 }
9197
9198 /*
9199  * Read and cache the adapter's compressed filter mode and ingress config.
9200  */
9201 static void read_filter_mode_and_ingress_config(struct adapter *adap,
9202     bool sleep_ok)
9203 {
9204         uint32_t v;
9205         struct tp_params *tpp = &adap->params.tp;
9206
9207         t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
9208             sleep_ok);
9209         t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
9210             sleep_ok);
9211
9212         /*
9213          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9214          * shift positions of several elements of the Compressed Filter Tuple
9215          * for this adapter which we need frequently ...
9216          */
9217         tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9218         tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9219         tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9220         tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9221         tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9222         tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9223         tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9224         tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9225         tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9226         tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9227
9228         if (chip_id(adap) > CHELSIO_T4) {
9229                 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9230                 adap->params.tp.hash_filter_mask = v;
9231                 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9232                 adap->params.tp.hash_filter_mask |= (u64)v << 32;
9233         }
9234 }
9235
9236 /**
9237  *      t4_init_tp_params - initialize adap->params.tp
9238  *      @adap: the adapter
9239  *
9240  *      Initialize various fields of the adapter's TP Parameters structure.
9241  */
9242 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9243 {
9244         int chan;
9245         u32 v;
9246         struct tp_params *tpp = &adap->params.tp;
9247
9248         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9249         tpp->tre = G_TIMERRESOLUTION(v);
9250         tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9251
9252         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9253         for (chan = 0; chan < MAX_NCHAN; chan++)
9254                 tpp->tx_modq[chan] = chan;
9255
9256         read_filter_mode_and_ingress_config(adap, sleep_ok);
9257
9258         /*
9259          * Cache a mask of the bits that represent the error vector portion of
9260          * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
9261          * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
9262          */
9263         tpp->err_vec_mask = htobe16(0xffff);
9264         if (chip_id(adap) > CHELSIO_T5) {
9265                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9266                 if (v & F_CRXPKTENC) {
9267                         tpp->err_vec_mask =
9268                             htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
9269                 }
9270         }
9271
9272         return 0;
9273 }
9274
9275 /**
9276  *      t4_filter_field_shift - calculate filter field shift
9277  *      @adap: the adapter
9278  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9279  *
9280  *      Return the shift position of a filter field within the Compressed
9281  *      Filter Tuple.  The filter field is specified via its selection bit
9282  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9283  */
9284 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9285 {
9286         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9287         unsigned int sel;
9288         int field_shift;
9289
9290         if ((filter_mode & filter_sel) == 0)
9291                 return -1;
9292
9293         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9294                 switch (filter_mode & sel) {
9295                 case F_FCOE:
9296                         field_shift += W_FT_FCOE;
9297                         break;
9298                 case F_PORT:
9299                         field_shift += W_FT_PORT;
9300                         break;
9301                 case F_VNIC_ID:
9302                         field_shift += W_FT_VNIC_ID;
9303                         break;
9304                 case F_VLAN:
9305                         field_shift += W_FT_VLAN;
9306                         break;
9307                 case F_TOS:
9308                         field_shift += W_FT_TOS;
9309                         break;
9310                 case F_PROTOCOL:
9311                         field_shift += W_FT_PROTOCOL;
9312                         break;
9313                 case F_ETHERTYPE:
9314                         field_shift += W_FT_ETHERTYPE;
9315                         break;
9316                 case F_MACMATCH:
9317                         field_shift += W_FT_MACMATCH;
9318                         break;
9319                 case F_MPSHITTYPE:
9320                         field_shift += W_FT_MPSHITTYPE;
9321                         break;
9322                 case F_FRAGMENTATION:
9323                         field_shift += W_FT_FRAGMENTATION;
9324                         break;
9325                 }
9326         }
9327         return field_shift;
9328 }
9329
9330 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9331 {
9332         u8 addr[6];
9333         int ret, i, j;
9334         u16 rss_size;
9335         struct port_info *p = adap2pinfo(adap, port_id);
9336         u32 param, val;
9337
9338         for (i = 0, j = -1; i <= p->port_id; i++) {
9339                 do {
9340                         j++;
9341                 } while ((adap->params.portvec & (1 << j)) == 0);
9342         }
9343
9344         p->tx_chan = j;
9345         p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9346         p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9347         p->lport = j;
9348
9349         if (!(adap->flags & IS_VF) ||
9350             adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9351                 t4_update_port_info(p);
9352         }
9353
9354         ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
9355         if (ret < 0)
9356                 return ret;
9357
9358         p->vi[0].viid = ret;
9359         if (chip_id(adap) <= CHELSIO_T5)
9360                 p->vi[0].smt_idx = (ret & 0x7f) << 1;
9361         else
9362                 p->vi[0].smt_idx = (ret & 0x7f);
9363         p->vi[0].rss_size = rss_size;
9364         t4_os_set_hw_addr(p, addr);
9365
9366         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9367             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9368             V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
9369         ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9370         if (ret)
9371                 p->vi[0].rss_base = 0xffff;
9372         else {
9373                 /* MPASS((val >> 16) == rss_size); */
9374                 p->vi[0].rss_base = val & 0xffff;
9375         }
9376
9377         return 0;
9378 }
9379
9380 /**
9381  *      t4_read_cimq_cfg - read CIM queue configuration
9382  *      @adap: the adapter
9383  *      @base: holds the queue base addresses in bytes
9384  *      @size: holds the queue sizes in bytes
9385  *      @thres: holds the queue full thresholds in bytes
9386  *
9387  *      Returns the current configuration of the CIM queues, starting with
9388  *      the IBQs, then the OBQs.
9389  */
9390 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9391 {
9392         unsigned int i, v;
9393         int cim_num_obq = adap->chip_params->cim_num_obq;
9394
9395         for (i = 0; i < CIM_NUM_IBQ; i++) {
9396                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9397                              V_QUENUMSELECT(i));
9398                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9399                 /* value is in 256-byte units */
9400                 *base++ = G_CIMQBASE(v) * 256;
9401                 *size++ = G_CIMQSIZE(v) * 256;
9402                 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9403         }
9404         for (i = 0; i < cim_num_obq; i++) {
9405                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9406                              V_QUENUMSELECT(i));
9407                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9408                 /* value is in 256-byte units */
9409                 *base++ = G_CIMQBASE(v) * 256;
9410                 *size++ = G_CIMQSIZE(v) * 256;
9411         }
9412 }
9413
9414 /**
9415  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9416  *      @adap: the adapter
9417  *      @qid: the queue index
9418  *      @data: where to store the queue contents
9419  *      @n: capacity of @data in 32-bit words
9420  *
9421  *      Reads the contents of the selected CIM queue starting at address 0 up
9422  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9423  *      error and the number of 32-bit words actually read on success.
9424  */
9425 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9426 {
9427         int i, err, attempts;
9428         unsigned int addr;
9429         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9430
9431         if (qid > 5 || (n & 3))
9432                 return -EINVAL;
9433
9434         addr = qid * nwords;
9435         if (n > nwords)
9436                 n = nwords;
9437
9438         /* It might take 3-10ms before the IBQ debug read access is allowed.
9439          * Wait for 1 Sec with a delay of 1 usec.
9440          */
9441         attempts = 1000000;
9442
9443         for (i = 0; i < n; i++, addr++) {
9444                 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9445                              F_IBQDBGEN);
9446                 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9447                                       attempts, 1);
9448                 if (err)
9449                         return err;
9450                 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9451         }
9452         t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9453         return i;
9454 }
9455
9456 /**
9457  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9458  *      @adap: the adapter
9459  *      @qid: the queue index
9460  *      @data: where to store the queue contents
9461  *      @n: capacity of @data in 32-bit words
9462  *
9463  *      Reads the contents of the selected CIM queue starting at address 0 up
9464  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9465  *      error and the number of 32-bit words actually read on success.
9466  */
9467 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9468 {
9469         int i, err;
9470         unsigned int addr, v, nwords;
9471         int cim_num_obq = adap->chip_params->cim_num_obq;
9472
9473         if ((qid > (cim_num_obq - 1)) || (n & 3))
9474                 return -EINVAL;
9475
9476         t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9477                      V_QUENUMSELECT(qid));
9478         v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9479
9480         addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9481         nwords = G_CIMQSIZE(v) * 64;  /* same */
9482         if (n > nwords)
9483                 n = nwords;
9484
9485         for (i = 0; i < n; i++, addr++) {
9486                 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9487                              F_OBQDBGEN);
9488                 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
9489                                       2, 1);
9490                 if (err)
9491                         return err;
9492                 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
9493         }
9494         t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
9495         return i;
9496 }
9497
9498 enum {
9499         CIM_QCTL_BASE     = 0,
9500         CIM_CTL_BASE      = 0x2000,
9501         CIM_PBT_ADDR_BASE = 0x2800,
9502         CIM_PBT_LRF_BASE  = 0x3000,
9503         CIM_PBT_DATA_BASE = 0x3800
9504 };
9505
9506 /**
9507  *      t4_cim_read - read a block from CIM internal address space
9508  *      @adap: the adapter
9509  *      @addr: the start address within the CIM address space
9510  *      @n: number of words to read
9511  *      @valp: where to store the result
9512  *
9513  *      Reads a block of 4-byte words from the CIM intenal address space.
9514  */
9515 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9516                 unsigned int *valp)
9517 {
9518         int ret = 0;
9519
9520         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9521                 return -EBUSY;
9522
9523         for ( ; !ret && n--; addr += 4) {
9524                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9525                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9526                                       0, 5, 2);
9527                 if (!ret)
9528                         *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9529         }
9530         return ret;
9531 }
9532
9533 /**
9534  *      t4_cim_write - write a block into CIM internal address space
9535  *      @adap: the adapter
9536  *      @addr: the start address within the CIM address space
9537  *      @n: number of words to write
9538  *      @valp: set of values to write
9539  *
9540  *      Writes a block of 4-byte words into the CIM intenal address space.
9541  */
9542 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9543                  const unsigned int *valp)
9544 {
9545         int ret = 0;
9546
9547         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9548                 return -EBUSY;
9549
9550         for ( ; !ret && n--; addr += 4) {
9551                 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9552                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9553                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9554                                       0, 5, 2);
9555         }
9556         return ret;
9557 }
9558
9559 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9560                          unsigned int val)
9561 {
9562         return t4_cim_write(adap, addr, 1, &val);
9563 }
9564
9565 /**
9566  *      t4_cim_ctl_read - read a block from CIM control region
9567  *      @adap: the adapter
9568  *      @addr: the start address within the CIM control region
9569  *      @n: number of words to read
9570  *      @valp: where to store the result
9571  *
9572  *      Reads a block of 4-byte words from the CIM control region.
9573  */
9574 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9575                     unsigned int *valp)
9576 {
9577         return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9578 }
9579
9580 /**
9581  *      t4_cim_read_la - read CIM LA capture buffer
9582  *      @adap: the adapter
9583  *      @la_buf: where to store the LA data
9584  *      @wrptr: the HW write pointer within the capture buffer
9585  *
9586  *      Reads the contents of the CIM LA buffer with the most recent entry at
9587  *      the end of the returned data and with the entry at @wrptr first.
9588  *      We try to leave the LA in the running state we find it in.
9589  */
9590 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9591 {
9592         int i, ret;
9593         unsigned int cfg, val, idx;
9594
9595         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9596         if (ret)
9597                 return ret;
9598
9599         if (cfg & F_UPDBGLAEN) {        /* LA is running, freeze it */
9600                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
9601                 if (ret)
9602                         return ret;
9603         }
9604
9605         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9606         if (ret)
9607                 goto restart;
9608
9609         idx = G_UPDBGLAWRPTR(val);
9610         if (wrptr)
9611                 *wrptr = idx;
9612
9613         for (i = 0; i < adap->params.cim_la_size; i++) {
9614                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9615                                     V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
9616                 if (ret)
9617                         break;
9618                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9619                 if (ret)
9620                         break;
9621                 if (val & F_UPDBGLARDEN) {
9622                         ret = -ETIMEDOUT;
9623                         break;
9624                 }
9625                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
9626                 if (ret)
9627                         break;
9628
9629                 /* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
9630                 idx = (idx + 1) & M_UPDBGLARDPTR;
9631                 /*
9632                  * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9633                  * identify the 32-bit portion of the full 312-bit data
9634                  */
9635                 if (is_t6(adap))
9636                         while ((idx & 0xf) > 9)
9637                                 idx = (idx + 1) % M_UPDBGLARDPTR;
9638         }
9639 restart:
9640         if (cfg & F_UPDBGLAEN) {
9641                 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9642                                       cfg & ~F_UPDBGLARDEN);
9643                 if (!ret)
9644                         ret = r;
9645         }
9646         return ret;
9647 }
9648
9649 /**
9650  *      t4_tp_read_la - read TP LA capture buffer
9651  *      @adap: the adapter
9652  *      @la_buf: where to store the LA data
9653  *      @wrptr: the HW write pointer within the capture buffer
9654  *
9655  *      Reads the contents of the TP LA buffer with the most recent entry at
9656  *      the end of the returned data and with the entry at @wrptr first.
9657  *      We leave the LA in the running state we find it in.
9658  */
9659 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9660 {
9661         bool last_incomplete;
9662         unsigned int i, cfg, val, idx;
9663
9664         cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
9665         if (cfg & F_DBGLAENABLE)                        /* freeze LA */
9666                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9667                              adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
9668
9669         val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
9670         idx = G_DBGLAWPTR(val);
9671         last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
9672         if (last_incomplete)
9673                 idx = (idx + 1) & M_DBGLARPTR;
9674         if (wrptr)
9675                 *wrptr = idx;
9676
9677         val &= 0xffff;
9678         val &= ~V_DBGLARPTR(M_DBGLARPTR);
9679         val |= adap->params.tp.la_mask;
9680
9681         for (i = 0; i < TPLA_SIZE; i++) {
9682                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
9683                 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
9684                 idx = (idx + 1) & M_DBGLARPTR;
9685         }
9686
9687         /* Wipe out last entry if it isn't valid */
9688         if (last_incomplete)
9689                 la_buf[TPLA_SIZE - 1] = ~0ULL;
9690
9691         if (cfg & F_DBGLAENABLE)                /* restore running state */
9692                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9693                              cfg | adap->params.tp.la_mask);
9694 }
9695
9696 /*
9697  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9698  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9699  * state for more than the Warning Threshold then we'll issue a warning about
9700  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9701  * appears to be hung every Warning Repeat second till the situation clears.
9702  * If the situation clears, we'll note that as well.
9703  */
9704 #define SGE_IDMA_WARN_THRESH 1
9705 #define SGE_IDMA_WARN_REPEAT 300
9706
9707 /**
9708  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9709  *      @adapter: the adapter
9710  *      @idma: the adapter IDMA Monitor state
9711  *
9712  *      Initialize the state of an SGE Ingress DMA Monitor.
9713  */
9714 void t4_idma_monitor_init(struct adapter *adapter,
9715                           struct sge_idma_monitor_state *idma)
9716 {
9717         /* Initialize the state variables for detecting an SGE Ingress DMA
9718          * hang.  The SGE has internal counters which count up on each clock
9719          * tick whenever the SGE finds its Ingress DMA State Engines in the
9720          * same state they were on the previous clock tick.  The clock used is
9721          * the Core Clock so we have a limit on the maximum "time" they can
9722          * record; typically a very small number of seconds.  For instance,
9723          * with a 600MHz Core Clock, we can only count up to a bit more than
9724          * 7s.  So we'll synthesize a larger counter in order to not run the
9725          * risk of having the "timers" overflow and give us the flexibility to
9726          * maintain a Hung SGE State Machine of our own which operates across
9727          * a longer time frame.
9728          */
9729         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9730         idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
9731 }
9732
9733 /**
9734  *      t4_idma_monitor - monitor SGE Ingress DMA state
9735  *      @adapter: the adapter
9736  *      @idma: the adapter IDMA Monitor state
9737  *      @hz: number of ticks/second
9738  *      @ticks: number of ticks since the last IDMA Monitor call
9739  */
9740 void t4_idma_monitor(struct adapter *adapter,
9741                      struct sge_idma_monitor_state *idma,
9742                      int hz, int ticks)
9743 {
9744         int i, idma_same_state_cnt[2];
9745
9746          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9747           * are counters inside the SGE which count up on each clock when the
9748           * SGE finds its Ingress DMA State Engines in the same states they
9749           * were in the previous clock.  The counters will peg out at
9750           * 0xffffffff without wrapping around so once they pass the 1s
9751           * threshold they'll stay above that till the IDMA state changes.
9752           */
9753         t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
9754         idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
9755         idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9756
9757         for (i = 0; i < 2; i++) {
9758                 u32 debug0, debug11;
9759
9760                 /* If the Ingress DMA Same State Counter ("timer") is less
9761                  * than 1s, then we can reset our synthesized Stall Timer and
9762                  * continue.  If we have previously emitted warnings about a
9763                  * potential stalled Ingress Queue, issue a note indicating
9764                  * that the Ingress Queue has resumed forward progress.
9765                  */
9766                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9767                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
9768                                 CH_WARN(adapter, "SGE idma%d, queue %u, "
9769                                         "resumed after %d seconds\n",
9770                                         i, idma->idma_qid[i],
9771                                         idma->idma_stalled[i]/hz);
9772                         idma->idma_stalled[i] = 0;
9773                         continue;
9774                 }
9775
9776                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9777                  * domain.  The first time we get here it'll be because we
9778                  * passed the 1s Threshold; each additional time it'll be
9779                  * because the RX Timer Callback is being fired on its regular
9780                  * schedule.
9781                  *
9782                  * If the stall is below our Potential Hung Ingress Queue
9783                  * Warning Threshold, continue.
9784                  */
9785                 if (idma->idma_stalled[i] == 0) {
9786                         idma->idma_stalled[i] = hz;
9787                         idma->idma_warn[i] = 0;
9788                 } else {
9789                         idma->idma_stalled[i] += ticks;
9790                         idma->idma_warn[i] -= ticks;
9791                 }
9792
9793                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
9794                         continue;
9795
9796                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9797                  */
9798                 if (idma->idma_warn[i] > 0)
9799                         continue;
9800                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9801
9802                 /* Read and save the SGE IDMA State and Queue ID information.
9803                  * We do this every time in case it changes across time ...
9804                  * can't be too careful ...
9805                  */
9806                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9807                 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9808                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9809
9810                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9811                 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9812                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9813
9814                 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9815                         " state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9816                         i, idma->idma_qid[i], idma->idma_state[i],
9817                         idma->idma_stalled[i]/hz,
9818                         debug0, debug11);
9819                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9820         }
9821 }
9822
9823 /**
9824  *      t4_read_pace_tbl - read the pace table
9825  *      @adap: the adapter
9826  *      @pace_vals: holds the returned values
9827  *
9828  *      Returns the values of TP's pace table in microseconds.
9829  */
9830 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9831 {
9832         unsigned int i, v;
9833
9834         for (i = 0; i < NTX_SCHED; i++) {
9835                 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9836                 v = t4_read_reg(adap, A_TP_PACE_TABLE);
9837                 pace_vals[i] = dack_ticks_to_usec(adap, v);
9838         }
9839 }
9840
9841 /**
9842  *      t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9843  *      @adap: the adapter
9844  *      @sched: the scheduler index
9845  *      @kbps: the byte rate in Kbps
9846  *      @ipg: the interpacket delay in tenths of nanoseconds
9847  *
9848  *      Return the current configuration of a HW Tx scheduler.
9849  */
9850 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9851                      unsigned int *ipg, bool sleep_ok)
9852 {
9853         unsigned int v, addr, bpt, cpt;
9854
9855         if (kbps) {
9856                 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9857                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9858                 if (sched & 1)
9859                         v >>= 16;
9860                 bpt = (v >> 8) & 0xff;
9861                 cpt = v & 0xff;
9862                 if (!cpt)
9863                         *kbps = 0;      /* scheduler disabled */
9864                 else {
9865                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9866                         *kbps = (v * bpt) / 125;
9867                 }
9868         }
9869         if (ipg) {
9870                 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9871                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9872                 if (sched & 1)
9873                         v >>= 16;
9874                 v &= 0xffff;
9875                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
9876         }
9877 }
9878
9879 /**
9880  *      t4_load_cfg - download config file
9881  *      @adap: the adapter
9882  *      @cfg_data: the cfg text file to write
9883  *      @size: text file size
9884  *
9885  *      Write the supplied config text file to the card's serial flash.
9886  */
9887 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9888 {
9889         int ret, i, n, cfg_addr;
9890         unsigned int addr;
9891         unsigned int flash_cfg_start_sec;
9892         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9893
9894         cfg_addr = t4_flash_cfg_addr(adap);
9895         if (cfg_addr < 0)
9896                 return cfg_addr;
9897
9898         addr = cfg_addr;
9899         flash_cfg_start_sec = addr / SF_SEC_SIZE;
9900
9901         if (size > FLASH_CFG_MAX_SIZE) {
9902                 CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9903                        FLASH_CFG_MAX_SIZE);
9904                 return -EFBIG;
9905         }
9906
9907         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
9908                          sf_sec_size);
9909         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9910                                      flash_cfg_start_sec + i - 1);
9911         /*
9912          * If size == 0 then we're simply erasing the FLASH sectors associated
9913          * with the on-adapter Firmware Configuration File.
9914          */
9915         if (ret || size == 0)
9916                 goto out;
9917
9918         /* this will write to the flash up to SF_PAGE_SIZE at a time */
9919         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9920                 if ( (size - i) <  SF_PAGE_SIZE)
9921                         n = size - i;
9922                 else
9923                         n = SF_PAGE_SIZE;
9924                 ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9925                 if (ret)
9926                         goto out;
9927
9928                 addr += SF_PAGE_SIZE;
9929                 cfg_data += SF_PAGE_SIZE;
9930         }
9931
9932 out:
9933         if (ret)
9934                 CH_ERR(adap, "config file %s failed %d\n",
9935                        (size == 0 ? "clear" : "download"), ret);
9936         return ret;
9937 }
9938
9939 /**
9940  *      t5_fw_init_extern_mem - initialize the external memory
9941  *      @adap: the adapter
9942  *
9943  *      Initializes the external memory on T5.
9944  */
9945 int t5_fw_init_extern_mem(struct adapter *adap)
9946 {
9947         u32 params[1], val[1];
9948         int ret;
9949
9950         if (!is_t5(adap))
9951                 return 0;
9952
9953         val[0] = 0xff; /* Initialize all MCs */
9954         params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9955                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9956         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9957                         FW_CMD_MAX_TIMEOUT);
9958
9959         return ret;
9960 }
9961
9962 /* BIOS boot headers */
9963 typedef struct pci_expansion_rom_header {
9964         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
9965         u8      reserved[22]; /* Reserved per processor Architecture data */
9966         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
9967 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9968
9969 /* Legacy PCI Expansion ROM Header */
9970 typedef struct legacy_pci_expansion_rom_header {
9971         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
9972         u8      size512; /* Current Image Size in units of 512 bytes */
9973         u8      initentry_point[4];
9974         u8      cksum; /* Checksum computed on the entire Image */
9975         u8      reserved[16]; /* Reserved */
9976         u8      pcir_offset[2]; /* Offset to PCI Data Struture */
9977 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9978
9979 /* EFI PCI Expansion ROM Header */
9980 typedef struct efi_pci_expansion_rom_header {
9981         u8      signature[2]; // ROM signature. The value 0xaa55
9982         u8      initialization_size[2]; /* Units 512. Includes this header */
9983         u8      efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9984         u8      efi_subsystem[2]; /* Subsystem value for EFI image header */
9985         u8      efi_machine_type[2]; /* Machine type from EFI image header */
9986         u8      compression_type[2]; /* Compression type. */
9987                 /*
9988                  * Compression type definition
9989                  * 0x0: uncompressed
9990                  * 0x1: Compressed
9991                  * 0x2-0xFFFF: Reserved
9992                  */
9993         u8      reserved[8]; /* Reserved */
9994         u8      efi_image_header_offset[2]; /* Offset to EFI Image */
9995         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
9996 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9997
9998 /* PCI Data Structure Format */
9999 typedef struct pcir_data_structure { /* PCI Data Structure */
10000         u8      signature[4]; /* Signature. The string "PCIR" */
10001         u8      vendor_id[2]; /* Vendor Identification */
10002         u8      device_id[2]; /* Device Identification */
10003         u8      vital_product[2]; /* Pointer to Vital Product Data */
10004         u8      length[2]; /* PCIR Data Structure Length */
10005         u8      revision; /* PCIR Data Structure Revision */
10006         u8      class_code[3]; /* Class Code */
10007         u8      image_length[2]; /* Image Length. Multiple of 512B */
10008         u8      code_revision[2]; /* Revision Level of Code/Data */
10009         u8      code_type; /* Code Type. */
10010                 /*
10011                  * PCI Expansion ROM Code Types
10012                  * 0x00: Intel IA-32, PC-AT compatible. Legacy
10013                  * 0x01: Open Firmware standard for PCI. FCODE
10014                  * 0x02: Hewlett-Packard PA RISC. HP reserved
10015                  * 0x03: EFI Image. EFI
10016                  * 0x04-0xFF: Reserved.
10017                  */
10018         u8      indicator; /* Indicator. Identifies the last image in the ROM */
10019         u8      reserved[2]; /* Reserved */
10020 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10021
10022 /* BOOT constants */
10023 enum {
10024         BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10025         BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10026         BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10027         BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10028         BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10029         VENDOR_ID = 0x1425, /* Vendor ID */
10030         PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10031 };
10032
10033 /*
10034  *      modify_device_id - Modifies the device ID of the Boot BIOS image
10035  *      @adatper: the device ID to write.
10036  *      @boot_data: the boot image to modify.
10037  *
10038  *      Write the supplied device ID to the boot BIOS image.
10039  */
10040 static void modify_device_id(int device_id, u8 *boot_data)
10041 {
10042         legacy_pci_exp_rom_header_t *header;
10043         pcir_data_t *pcir_header;
10044         u32 cur_header = 0;
10045
10046         /*
10047          * Loop through all chained images and change the device ID's
10048          */
10049         while (1) {
10050                 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10051                 pcir_header = (pcir_data_t *) &boot_data[cur_header +
10052                               le16_to_cpu(*(u16*)header->pcir_offset)];
10053
10054                 /*
10055                  * Only modify the Device ID if code type is Legacy or HP.
10056                  * 0x00: Okay to modify
10057                  * 0x01: FCODE. Do not be modify
10058                  * 0x03: Okay to modify
10059                  * 0x04-0xFF: Do not modify
10060                  */
10061                 if (pcir_header->code_type == 0x00) {
10062                         u8 csum = 0;
10063                         int i;
10064
10065                         /*
10066                          * Modify Device ID to match current adatper
10067                          */
10068                         *(u16*) pcir_header->device_id = device_id;
10069
10070                         /*
10071                          * Set checksum temporarily to 0.
10072                          * We will recalculate it later.
10073                          */
10074                         header->cksum = 0x0;
10075
10076                         /*
10077                          * Calculate and update checksum
10078                          */
10079                         for (i = 0; i < (header->size512 * 512); i++)
10080                                 csum += (u8)boot_data[cur_header + i];
10081
10082                         /*
10083                          * Invert summed value to create the checksum
10084                          * Writing new checksum value directly to the boot data
10085                          */
10086                         boot_data[cur_header + 7] = -csum;
10087
10088                 } else if (pcir_header->code_type == 0x03) {
10089
10090                         /*
10091                          * Modify Device ID to match current adatper
10092                          */
10093                         *(u16*) pcir_header->device_id = device_id;
10094
10095                 }
10096
10097
10098                 /*
10099                  * Check indicator element to identify if this is the last
10100                  * image in the ROM.
10101                  */
10102                 if (pcir_header->indicator & 0x80)
10103                         break;
10104
10105                 /*
10106                  * Move header pointer up to the next image in the ROM.
10107                  */
10108                 cur_header += header->size512 * 512;
10109         }
10110 }
10111
10112 /*
10113  *      t4_load_boot - download boot flash
10114  *      @adapter: the adapter
10115  *      @boot_data: the boot image to write
10116  *      @boot_addr: offset in flash to write boot_data
10117  *      @size: image size
10118  *
10119  *      Write the supplied boot image to the card's serial flash.
10120  *      The boot image has the following sections: a 28-byte header and the
10121  *      boot image.
10122  */
10123 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10124                  unsigned int boot_addr, unsigned int size)
10125 {
10126         pci_exp_rom_header_t *header;
10127         int pcir_offset ;
10128         pcir_data_t *pcir_header;
10129         int ret, addr;
10130         uint16_t device_id;
10131         unsigned int i;
10132         unsigned int boot_sector = (boot_addr * 1024 );
10133         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10134
10135         /*
10136          * Make sure the boot image does not encroach on the firmware region
10137          */
10138         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10139                 CH_ERR(adap, "boot image encroaching on firmware region\n");
10140                 return -EFBIG;
10141         }
10142
10143         /*
10144          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10145          * and Boot configuration data sections. These 3 boot sections span
10146          * sectors 0 to 7 in flash and live right before the FW image location.
10147          */
10148         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10149                         sf_sec_size);
10150         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10151                                      (boot_sector >> 16) + i - 1);
10152
10153         /*
10154          * If size == 0 then we're simply erasing the FLASH sectors associated
10155          * with the on-adapter option ROM file
10156          */
10157         if (ret || (size == 0))
10158                 goto out;
10159
10160         /* Get boot header */
10161         header = (pci_exp_rom_header_t *)boot_data;
10162         pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10163         /* PCIR Data Structure */
10164         pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10165
10166         /*
10167          * Perform some primitive sanity testing to avoid accidentally
10168          * writing garbage over the boot sectors.  We ought to check for
10169          * more but it's not worth it for now ...
10170          */
10171         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10172                 CH_ERR(adap, "boot image too small/large\n");
10173                 return -EFBIG;
10174         }
10175
10176 #ifndef CHELSIO_T4_DIAGS
10177         /*
10178          * Check BOOT ROM header signature
10179          */
10180         if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10181                 CH_ERR(adap, "Boot image missing signature\n");
10182                 return -EINVAL;
10183         }
10184
10185         /*
10186          * Check PCI header signature
10187          */
10188         if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10189                 CH_ERR(adap, "PCI header missing signature\n");
10190                 return -EINVAL;
10191         }
10192
10193         /*
10194          * Check Vendor ID matches Chelsio ID
10195          */
10196         if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10197                 CH_ERR(adap, "Vendor ID missing signature\n");
10198                 return -EINVAL;
10199         }
10200 #endif
10201
10202         /*
10203          * Retrieve adapter's device ID
10204          */
10205         t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10206         /* Want to deal with PF 0 so I strip off PF 4 indicator */
10207         device_id = device_id & 0xf0ff;
10208
10209         /*
10210          * Check PCIE Device ID
10211          */
10212         if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10213                 /*
10214                  * Change the device ID in the Boot BIOS image to match
10215                  * the Device ID of the current adapter.
10216                  */
10217                 modify_device_id(device_id, boot_data);
10218         }
10219
10220         /*
10221          * Skip over the first SF_PAGE_SIZE worth of data and write it after
10222          * we finish copying the rest of the boot image. This will ensure
10223          * that the BIOS boot header will only be written if the boot image
10224          * was written in full.
10225          */
10226         addr = boot_sector;
10227         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10228                 addr += SF_PAGE_SIZE;
10229                 boot_data += SF_PAGE_SIZE;
10230                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10231                 if (ret)
10232                         goto out;
10233         }
10234
10235         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10236                              (const u8 *)header, 0);
10237
10238 out:
10239         if (ret)
10240                 CH_ERR(adap, "boot image download failed, error %d\n", ret);
10241         return ret;
10242 }
10243
10244 /*
10245  *      t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10246  *      @adapter: the adapter
10247  *
10248  *      Return the address within the flash where the OptionROM Configuration
10249  *      is stored, or an error if the device FLASH is too small to contain
10250  *      a OptionROM Configuration.
10251  */
10252 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10253 {
10254         /*
10255          * If the device FLASH isn't large enough to hold a Firmware
10256          * Configuration File, return an error.
10257          */
10258         if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10259                 return -ENOSPC;
10260
10261         return FLASH_BOOTCFG_START;
10262 }
10263
10264 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10265 {
10266         int ret, i, n, cfg_addr;
10267         unsigned int addr;
10268         unsigned int flash_cfg_start_sec;
10269         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10270
10271         cfg_addr = t4_flash_bootcfg_addr(adap);
10272         if (cfg_addr < 0)
10273                 return cfg_addr;
10274
10275         addr = cfg_addr;
10276         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10277
10278         if (size > FLASH_BOOTCFG_MAX_SIZE) {
10279                 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10280                         FLASH_BOOTCFG_MAX_SIZE);
10281                 return -EFBIG;
10282         }
10283
10284         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10285                          sf_sec_size);
10286         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10287                                         flash_cfg_start_sec + i - 1);
10288
10289         /*
10290          * If size == 0 then we're simply erasing the FLASH sectors associated
10291          * with the on-adapter OptionROM Configuration File.
10292          */
10293         if (ret || size == 0)
10294                 goto out;
10295
10296         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10297         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10298                 if ( (size - i) <  SF_PAGE_SIZE)
10299                         n = size - i;
10300                 else
10301                         n = SF_PAGE_SIZE;
10302                 ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10303                 if (ret)
10304                         goto out;
10305
10306                 addr += SF_PAGE_SIZE;
10307                 cfg_data += SF_PAGE_SIZE;
10308         }
10309
10310 out:
10311         if (ret)
10312                 CH_ERR(adap, "boot config data %s failed %d\n",
10313                                 (size == 0 ? "clear" : "download"), ret);
10314         return ret;
10315 }
10316
10317 /**
10318  *      t4_set_filter_mode - configure the optional components of filter tuples
10319  *      @adap: the adapter
10320  *      @mode_map: a bitmap selcting which optional filter components to enable
10321  *      @sleep_ok: if true we may sleep while awaiting command completion
10322  *
10323  *      Sets the filter mode by selecting the optional components to enable
10324  *      in filter tuples.  Returns 0 on success and a negative error if the
10325  *      requested mode needs more bits than are available for optional
10326  *      components.
10327  */
10328 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
10329                        bool sleep_ok)
10330 {
10331         static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
10332
10333         int i, nbits = 0;
10334
10335         for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
10336                 if (mode_map & (1 << i))
10337                         nbits += width[i];
10338         if (nbits > FILTER_OPT_LEN)
10339                 return -EINVAL;
10340         t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
10341         read_filter_mode_and_ingress_config(adap, sleep_ok);
10342
10343         return 0;
10344 }
10345
10346 /**
10347  *      t4_clr_port_stats - clear port statistics
10348  *      @adap: the adapter
10349  *      @idx: the port index
10350  *
10351  *      Clear HW statistics for the given port.
10352  */
10353 void t4_clr_port_stats(struct adapter *adap, int idx)
10354 {
10355         unsigned int i;
10356         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10357         u32 port_base_addr;
10358
10359         if (is_t4(adap))
10360                 port_base_addr = PORT_BASE(idx);
10361         else
10362                 port_base_addr = T5_PORT_BASE(idx);
10363
10364         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10365                         i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10366                 t4_write_reg(adap, port_base_addr + i, 0);
10367         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10368                         i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10369                 t4_write_reg(adap, port_base_addr + i, 0);
10370         for (i = 0; i < 4; i++)
10371                 if (bgmap & (1 << i)) {
10372                         t4_write_reg(adap,
10373                         A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10374                         t4_write_reg(adap,
10375                         A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10376                 }
10377 }
10378
10379 /**
10380  *      t4_i2c_rd - read I2C data from adapter
10381  *      @adap: the adapter
10382  *      @port: Port number if per-port device; <0 if not
10383  *      @devid: per-port device ID or absolute device ID
10384  *      @offset: byte offset into device I2C space
10385  *      @len: byte length of I2C space data
10386  *      @buf: buffer in which to return I2C data
10387  *
10388  *      Reads the I2C data from the indicated device and location.
10389  */
10390 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
10391               int port, unsigned int devid,
10392               unsigned int offset, unsigned int len,
10393               u8 *buf)
10394 {
10395         u32 ldst_addrspace;
10396         struct fw_ldst_cmd ldst;
10397         int ret;
10398
10399         if (port >= 4 ||
10400             devid >= 256 ||
10401             offset >= 256 ||
10402             len > sizeof ldst.u.i2c.data)
10403                 return -EINVAL;
10404
10405         memset(&ldst, 0, sizeof ldst);
10406         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10407         ldst.op_to_addrspace =
10408                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10409                             F_FW_CMD_REQUEST |
10410                             F_FW_CMD_READ |
10411                             ldst_addrspace);
10412         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10413         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10414         ldst.u.i2c.did = devid;
10415         ldst.u.i2c.boffset = offset;
10416         ldst.u.i2c.blen = len;
10417         ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10418         if (!ret)
10419                 memcpy(buf, ldst.u.i2c.data, len);
10420         return ret;
10421 }
10422
10423 /**
10424  *      t4_i2c_wr - write I2C data to adapter
10425  *      @adap: the adapter
10426  *      @port: Port number if per-port device; <0 if not
10427  *      @devid: per-port device ID or absolute device ID
10428  *      @offset: byte offset into device I2C space
10429  *      @len: byte length of I2C space data
10430  *      @buf: buffer containing new I2C data
10431  *
10432  *      Write the I2C data to the indicated device and location.
10433  */
10434 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
10435               int port, unsigned int devid,
10436               unsigned int offset, unsigned int len,
10437               u8 *buf)
10438 {
10439         u32 ldst_addrspace;
10440         struct fw_ldst_cmd ldst;
10441
10442         if (port >= 4 ||
10443             devid >= 256 ||
10444             offset >= 256 ||
10445             len > sizeof ldst.u.i2c.data)
10446                 return -EINVAL;
10447
10448         memset(&ldst, 0, sizeof ldst);
10449         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10450         ldst.op_to_addrspace =
10451                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10452                             F_FW_CMD_REQUEST |
10453                             F_FW_CMD_WRITE |
10454                             ldst_addrspace);
10455         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10456         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10457         ldst.u.i2c.did = devid;
10458         ldst.u.i2c.boffset = offset;
10459         ldst.u.i2c.blen = len;
10460         memcpy(ldst.u.i2c.data, buf, len);
10461         return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10462 }
10463
10464 /**
10465  *      t4_sge_ctxt_rd - read an SGE context through FW
10466  *      @adap: the adapter
10467  *      @mbox: mailbox to use for the FW command
10468  *      @cid: the context id
10469  *      @ctype: the context type
10470  *      @data: where to store the context data
10471  *
10472  *      Issues a FW command through the given mailbox to read an SGE context.
10473  */
10474 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10475                    enum ctxt_type ctype, u32 *data)
10476 {
10477         int ret;
10478         struct fw_ldst_cmd c;
10479
10480         if (ctype == CTXT_EGRESS)
10481                 ret = FW_LDST_ADDRSPC_SGE_EGRC;
10482         else if (ctype == CTXT_INGRESS)
10483                 ret = FW_LDST_ADDRSPC_SGE_INGC;
10484         else if (ctype == CTXT_FLM)
10485                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10486         else
10487                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10488
10489         memset(&c, 0, sizeof(c));
10490         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10491                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
10492                                         V_FW_LDST_CMD_ADDRSPACE(ret));
10493         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10494         c.u.idctxt.physid = cpu_to_be32(cid);
10495
10496         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10497         if (ret == 0) {
10498                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10499                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10500                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10501                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10502                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10503                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10504         }
10505         return ret;
10506 }
10507
10508 /**
10509  *      t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10510  *      @adap: the adapter
10511  *      @cid: the context id
10512  *      @ctype: the context type
10513  *      @data: where to store the context data
10514  *
10515  *      Reads an SGE context directly, bypassing FW.  This is only for
10516  *      debugging when FW is unavailable.
10517  */
10518 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10519                       u32 *data)
10520 {
10521         int i, ret;
10522
10523         t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
10524         ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
10525         if (!ret)
10526                 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
10527                         *data++ = t4_read_reg(adap, i);
10528         return ret;
10529 }
10530
10531 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
10532     int sleep_ok)
10533 {
10534         struct fw_sched_cmd cmd;
10535
10536         memset(&cmd, 0, sizeof(cmd));
10537         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10538                                       F_FW_CMD_REQUEST |
10539                                       F_FW_CMD_WRITE);
10540         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10541
10542         cmd.u.config.sc = FW_SCHED_SC_CONFIG;
10543         cmd.u.config.type = type;
10544         cmd.u.config.minmaxen = minmaxen;
10545
10546         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10547                                NULL, sleep_ok);
10548 }
10549
10550 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10551                     int rateunit, int ratemode, int channel, int cl,
10552                     int minrate, int maxrate, int weight, int pktsize,
10553                     int burstsize, int sleep_ok)
10554 {
10555         struct fw_sched_cmd cmd;
10556
10557         memset(&cmd, 0, sizeof(cmd));
10558         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10559                                       F_FW_CMD_REQUEST |
10560                                       F_FW_CMD_WRITE);
10561         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10562
10563         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10564         cmd.u.params.type = type;
10565         cmd.u.params.level = level;
10566         cmd.u.params.mode = mode;
10567         cmd.u.params.ch = channel;
10568         cmd.u.params.cl = cl;
10569         cmd.u.params.unit = rateunit;
10570         cmd.u.params.rate = ratemode;
10571         cmd.u.params.min = cpu_to_be32(minrate);
10572         cmd.u.params.max = cpu_to_be32(maxrate);
10573         cmd.u.params.weight = cpu_to_be16(weight);
10574         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10575         cmd.u.params.burstsize = cpu_to_be16(burstsize);
10576
10577         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10578                                NULL, sleep_ok);
10579 }
10580
10581 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
10582     unsigned int maxrate, int sleep_ok)
10583 {
10584         struct fw_sched_cmd cmd;
10585
10586         memset(&cmd, 0, sizeof(cmd));
10587         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10588                                       F_FW_CMD_REQUEST |
10589                                       F_FW_CMD_WRITE);
10590         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10591
10592         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10593         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10594         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
10595         cmd.u.params.ch = channel;
10596         cmd.u.params.rate = ratemode;           /* REL or ABS */
10597         cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
10598
10599         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10600                                NULL, sleep_ok);
10601 }
10602
10603 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
10604     int weight, int sleep_ok)
10605 {
10606         struct fw_sched_cmd cmd;
10607
10608         if (weight < 0 || weight > 100)
10609                 return -EINVAL;
10610
10611         memset(&cmd, 0, sizeof(cmd));
10612         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10613                                       F_FW_CMD_REQUEST |
10614                                       F_FW_CMD_WRITE);
10615         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10616
10617         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10618         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10619         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
10620         cmd.u.params.ch = channel;
10621         cmd.u.params.cl = cl;
10622         cmd.u.params.weight = cpu_to_be16(weight);
10623
10624         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10625                                NULL, sleep_ok);
10626 }
10627
10628 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
10629     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
10630 {
10631         struct fw_sched_cmd cmd;
10632
10633         memset(&cmd, 0, sizeof(cmd));
10634         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10635                                       F_FW_CMD_REQUEST |
10636                                       F_FW_CMD_WRITE);
10637         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10638
10639         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10640         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10641         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
10642         cmd.u.params.mode = mode;
10643         cmd.u.params.ch = channel;
10644         cmd.u.params.cl = cl;
10645         cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
10646         cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
10647         cmd.u.params.max = cpu_to_be32(maxrate);
10648         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10649
10650         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10651                                NULL, sleep_ok);
10652 }
10653
10654 /*
10655  *      t4_config_watchdog - configure (enable/disable) a watchdog timer
10656  *      @adapter: the adapter
10657  *      @mbox: mailbox to use for the FW command
10658  *      @pf: the PF owning the queue
10659  *      @vf: the VF owning the queue
10660  *      @timeout: watchdog timeout in ms
10661  *      @action: watchdog timer / action
10662  *
10663  *      There are separate watchdog timers for each possible watchdog
10664  *      action.  Configure one of the watchdog timers by setting a non-zero
10665  *      timeout.  Disable a watchdog timer by using a timeout of zero.
10666  */
10667 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
10668                        unsigned int pf, unsigned int vf,
10669                        unsigned int timeout, unsigned int action)
10670 {
10671         struct fw_watchdog_cmd wdog;
10672         unsigned int ticks;
10673
10674         /*
10675          * The watchdog command expects a timeout in units of 10ms so we need
10676          * to convert it here (via rounding) and force a minimum of one 10ms
10677          * "tick" if the timeout is non-zero but the conversion results in 0
10678          * ticks.
10679          */
10680         ticks = (timeout + 5)/10;
10681         if (timeout && !ticks)
10682                 ticks = 1;
10683
10684         memset(&wdog, 0, sizeof wdog);
10685         wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
10686                                      F_FW_CMD_REQUEST |
10687                                      F_FW_CMD_WRITE |
10688                                      V_FW_PARAMS_CMD_PFN(pf) |
10689                                      V_FW_PARAMS_CMD_VFN(vf));
10690         wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
10691         wdog.timeout = cpu_to_be32(ticks);
10692         wdog.action = cpu_to_be32(action);
10693
10694         return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
10695 }
10696
10697 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
10698 {
10699         struct fw_devlog_cmd devlog_cmd;
10700         int ret;
10701
10702         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10703         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10704                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
10705         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10706         ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10707                          sizeof(devlog_cmd), &devlog_cmd);
10708         if (ret)
10709                 return ret;
10710
10711         *level = devlog_cmd.level;
10712         return 0;
10713 }
10714
10715 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
10716 {
10717         struct fw_devlog_cmd devlog_cmd;
10718
10719         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10720         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10721                                              F_FW_CMD_REQUEST |
10722                                              F_FW_CMD_WRITE);
10723         devlog_cmd.level = level;
10724         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10725         return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10726                           sizeof(devlog_cmd), &devlog_cmd);
10727 }