]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/common/t4_hw.c
sys/dev: further adoption of SPDX licensing ID tags.
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / common / t4_hw.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_inet.h"
33
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41
42 #undef msleep
43 #define msleep(x) do { \
44         if (cold) \
45                 DELAY((x) * 1000); \
46         else \
47                 pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49
50 /**
51  *      t4_wait_op_done_val - wait until an operation is completed
52  *      @adapter: the adapter performing the operation
53  *      @reg: the register to check for completion
54  *      @mask: a single-bit field within @reg that indicates completion
55  *      @polarity: the value of the field when the operation is completed
56  *      @attempts: number of check iterations
57  *      @delay: delay in usecs between iterations
58  *      @valp: where to store the value of the register at completion time
59  *
60  *      Wait until an operation is completed by checking a bit in a register
61  *      up to @attempts times.  If @valp is not NULL the value of the register
62  *      at the time it indicated completion is stored there.  Returns 0 if the
63  *      operation completes and -EAGAIN otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66                                int polarity, int attempts, int delay, u32 *valp)
67 {
68         while (1) {
69                 u32 val = t4_read_reg(adapter, reg);
70
71                 if (!!(val & mask) == polarity) {
72                         if (valp)
73                                 *valp = val;
74                         return 0;
75                 }
76                 if (--attempts == 0)
77                         return -EAGAIN;
78                 if (delay)
79                         udelay(delay);
80         }
81 }
82
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84                                   int polarity, int attempts, int delay)
85 {
86         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87                                    delay, NULL);
88 }
89
90 /**
91  *      t4_set_reg_field - set a register field to a value
92  *      @adapter: the adapter to program
93  *      @addr: the register address
94  *      @mask: specifies the portion of the register to modify
95  *      @val: the new value for the register field
96  *
97  *      Sets a register field specified by the supplied mask to the
98  *      given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101                       u32 val)
102 {
103         u32 v = t4_read_reg(adapter, addr) & ~mask;
104
105         t4_write_reg(adapter, addr, v | val);
106         (void) t4_read_reg(adapter, addr);      /* flush */
107 }
108
109 /**
110  *      t4_read_indirect - read indirectly addressed registers
111  *      @adap: the adapter
112  *      @addr_reg: register holding the indirect address
113  *      @data_reg: register holding the value of the indirect register
114  *      @vals: where the read register values are stored
115  *      @nregs: how many indirect registers to read
116  *      @start_idx: index of first indirect register to read
117  *
118  *      Reads registers that are accessed indirectly through an address/data
119  *      register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122                              unsigned int data_reg, u32 *vals,
123                              unsigned int nregs, unsigned int start_idx)
124 {
125         while (nregs--) {
126                 t4_write_reg(adap, addr_reg, start_idx);
127                 *vals++ = t4_read_reg(adap, data_reg);
128                 start_idx++;
129         }
130 }
131
132 /**
133  *      t4_write_indirect - write indirectly addressed registers
134  *      @adap: the adapter
135  *      @addr_reg: register holding the indirect addresses
136  *      @data_reg: register holding the value for the indirect registers
137  *      @vals: values to write
138  *      @nregs: how many indirect registers to write
139  *      @start_idx: address of first indirect register to write
140  *
141  *      Writes a sequential block of registers that are accessed indirectly
142  *      through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145                        unsigned int data_reg, const u32 *vals,
146                        unsigned int nregs, unsigned int start_idx)
147 {
148         while (nregs--) {
149                 t4_write_reg(adap, addr_reg, start_idx++);
150                 t4_write_reg(adap, data_reg, *vals++);
151         }
152 }
153
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166         u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167         u32 val;
168
169         if (chip_id(adap) <= CHELSIO_T5)
170                 req |= F_ENABLE;
171         else
172                 req |= F_T6_ENABLE;
173
174         if (is_t4(adap))
175                 req |= F_LOCALCFG;
176
177         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178         val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179
180         /*
181          * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182          * Configuration Space read.  (None of the other fields matter when
183          * F_ENABLE is 0 so a simple register write is easier than a
184          * read-modify-write via t4_set_reg_field().)
185          */
186         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187
188         return val;
189 }
190
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201         static const char *const reason[] = {
202                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
203                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
204                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
205                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
206                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
208                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
209                 "Reserved",                     /* reserved */
210         };
211         u32 pcie_fw;
212
213         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214         if (pcie_fw & F_PCIE_FW_ERR)
215                 CH_ERR(adap, "Firmware reports adapter error: %s\n",
216                         reason[G_PCIE_FW_EVAL(pcie_fw)]);
217 }
218
219 /*
220  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
221  */
222 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
223                          u32 mbox_addr)
224 {
225         for ( ; nflit; nflit--, mbox_addr += 8)
226                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
227 }
228
229 /*
230  * Handle a FW assertion reported in a mailbox.
231  */
232 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
233 {
234         CH_ALERT(adap,
235                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
236                   asrt->u.assert.filename_0_7,
237                   be32_to_cpu(asrt->u.assert.line),
238                   be32_to_cpu(asrt->u.assert.x),
239                   be32_to_cpu(asrt->u.assert.y));
240 }
241
242 #define X_CIM_PF_NOACCESS 0xeeeeeeee
243 /**
244  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
245  *      @adap: the adapter
246  *      @mbox: index of the mailbox to use
247  *      @cmd: the command to write
248  *      @size: command length in bytes
249  *      @rpl: where to optionally store the reply
250  *      @sleep_ok: if true we may sleep while awaiting command completion
251  *      @timeout: time to wait for command to finish before timing out
252  *              (negative implies @sleep_ok=false)
253  *
254  *      Sends the given command to FW through the selected mailbox and waits
255  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
256  *      store the FW's reply to the command.  The command and its optional
257  *      reply are of the same length.  Some FW commands like RESET and
258  *      INITIALIZE can take a considerable amount of time to execute.
259  *      @sleep_ok determines whether we may sleep while awaiting the response.
260  *      If sleeping is allowed we use progressive backoff otherwise we spin.
261  *      Note that passing in a negative @timeout is an alternate mechanism
262  *      for specifying @sleep_ok=false.  This is useful when a higher level
263  *      interface allows for specification of @timeout but not @sleep_ok ...
264  *
265  *      The return value is 0 on success or a negative errno on failure.  A
266  *      failure can happen either because we are not able to execute the
267  *      command or FW executes it but signals an error.  In the latter case
268  *      the return value is the error code indicated by FW (negated).
269  */
270 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
271                             int size, void *rpl, bool sleep_ok, int timeout)
272 {
273         /*
274          * We delay in small increments at first in an effort to maintain
275          * responsiveness for simple, fast executing commands but then back
276          * off to larger delays to a maximum retry delay.
277          */
278         static const int delay[] = {
279                 1, 1, 3, 5, 10, 10, 20, 50, 100
280         };
281         u32 v;
282         u64 res;
283         int i, ms, delay_idx, ret;
284         const __be64 *p = cmd;
285         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
286         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
287         u32 ctl;
288         __be64 cmd_rpl[MBOX_LEN/8];
289         u32 pcie_fw;
290
291         if (adap->flags & CHK_MBOX_ACCESS)
292                 ASSERT_SYNCHRONIZED_OP(adap);
293
294         if ((size & 15) || size > MBOX_LEN)
295                 return -EINVAL;
296
297         if (adap->flags & IS_VF) {
298                 if (is_t6(adap))
299                         data_reg = FW_T6VF_MBDATA_BASE_ADDR;
300                 else
301                         data_reg = FW_T4VF_MBDATA_BASE_ADDR;
302                 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
303         }
304
305         /*
306          * If we have a negative timeout, that implies that we can't sleep.
307          */
308         if (timeout < 0) {
309                 sleep_ok = false;
310                 timeout = -timeout;
311         }
312
313         /*
314          * Attempt to gain access to the mailbox.
315          */
316         for (i = 0; i < 4; i++) {
317                 ctl = t4_read_reg(adap, ctl_reg);
318                 v = G_MBOWNER(ctl);
319                 if (v != X_MBOWNER_NONE)
320                         break;
321         }
322
323         /*
324          * If we were unable to gain access, dequeue ourselves from the
325          * mailbox atomic access list and report the error to our caller.
326          */
327         if (v != X_MBOWNER_PL) {
328                 t4_report_fw_error(adap);
329                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
330                 return ret;
331         }
332
333         /*
334          * If we gain ownership of the mailbox and there's a "valid" message
335          * in it, this is likely an asynchronous error message from the
336          * firmware.  So we'll report that and then proceed on with attempting
337          * to issue our own command ... which may well fail if the error
338          * presaged the firmware crashing ...
339          */
340         if (ctl & F_MBMSGVALID) {
341                 CH_ERR(adap, "found VALID command in mbox %u: %016llx %016llx "
342                        "%016llx %016llx %016llx %016llx %016llx %016llx\n",
343                        mbox, (unsigned long long)t4_read_reg64(adap, data_reg),
344                        (unsigned long long)t4_read_reg64(adap, data_reg + 8),
345                        (unsigned long long)t4_read_reg64(adap, data_reg + 16),
346                        (unsigned long long)t4_read_reg64(adap, data_reg + 24),
347                        (unsigned long long)t4_read_reg64(adap, data_reg + 32),
348                        (unsigned long long)t4_read_reg64(adap, data_reg + 40),
349                        (unsigned long long)t4_read_reg64(adap, data_reg + 48),
350                        (unsigned long long)t4_read_reg64(adap, data_reg + 56));
351         }
352
353         /*
354          * Copy in the new mailbox command and send it on its way ...
355          */
356         for (i = 0; i < size; i += 8, p++)
357                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
358
359         if (adap->flags & IS_VF) {
360                 /*
361                  * For the VFs, the Mailbox Data "registers" are
362                  * actually backed by T4's "MA" interface rather than
363                  * PL Registers (as is the case for the PFs).  Because
364                  * these are in different coherency domains, the write
365                  * to the VF's PL-register-backed Mailbox Control can
366                  * race in front of the writes to the MA-backed VF
367                  * Mailbox Data "registers".  So we need to do a
368                  * read-back on at least one byte of the VF Mailbox
369                  * Data registers before doing the write to the VF
370                  * Mailbox Control register.
371                  */
372                 t4_read_reg(adap, data_reg);
373         }
374
375         CH_DUMP_MBOX(adap, mbox, data_reg);
376
377         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
378         t4_read_reg(adap, ctl_reg);     /* flush write */
379
380         delay_idx = 0;
381         ms = delay[0];
382
383         /*
384          * Loop waiting for the reply; bail out if we time out or the firmware
385          * reports an error.
386          */
387         pcie_fw = 0;
388         for (i = 0; i < timeout; i += ms) {
389                 if (!(adap->flags & IS_VF)) {
390                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
391                         if (pcie_fw & F_PCIE_FW_ERR)
392                                 break;
393                 }
394                 if (sleep_ok) {
395                         ms = delay[delay_idx];  /* last element may repeat */
396                         if (delay_idx < ARRAY_SIZE(delay) - 1)
397                                 delay_idx++;
398                         msleep(ms);
399                 } else {
400                         mdelay(ms);
401                 }
402
403                 v = t4_read_reg(adap, ctl_reg);
404                 if (v == X_CIM_PF_NOACCESS)
405                         continue;
406                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
407                         if (!(v & F_MBMSGVALID)) {
408                                 t4_write_reg(adap, ctl_reg,
409                                              V_MBOWNER(X_MBOWNER_NONE));
410                                 continue;
411                         }
412
413                         /*
414                          * Retrieve the command reply and release the mailbox.
415                          */
416                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
417                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
418
419                         CH_DUMP_MBOX(adap, mbox, data_reg);
420
421                         res = be64_to_cpu(cmd_rpl[0]);
422                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
423                                 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
424                                 res = V_FW_CMD_RETVAL(EIO);
425                         } else if (rpl)
426                                 memcpy(rpl, cmd_rpl, size);
427                         return -G_FW_CMD_RETVAL((int)res);
428                 }
429         }
430
431         /*
432          * We timed out waiting for a reply to our mailbox command.  Report
433          * the error and also check to see if the firmware reported any
434          * errors ...
435          */
436         ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
437         CH_ERR(adap, "command %#x in mailbox %d timed out\n",
438                *(const u8 *)cmd, mbox);
439
440         /* If DUMP_MBOX is set the mbox has already been dumped */
441         if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
442                 p = cmd;
443                 CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
444                     "%016llx %016llx %016llx %016llx\n",
445                     (unsigned long long)be64_to_cpu(p[0]),
446                     (unsigned long long)be64_to_cpu(p[1]),
447                     (unsigned long long)be64_to_cpu(p[2]),
448                     (unsigned long long)be64_to_cpu(p[3]),
449                     (unsigned long long)be64_to_cpu(p[4]),
450                     (unsigned long long)be64_to_cpu(p[5]),
451                     (unsigned long long)be64_to_cpu(p[6]),
452                     (unsigned long long)be64_to_cpu(p[7]));
453         }
454
455         t4_report_fw_error(adap);
456         t4_fatal_err(adap);
457         return ret;
458 }
459
460 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
461                     void *rpl, bool sleep_ok)
462 {
463                 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
464                                                sleep_ok, FW_CMD_MAX_TIMEOUT);
465
466 }
467
468 static int t4_edc_err_read(struct adapter *adap, int idx)
469 {
470         u32 edc_ecc_err_addr_reg;
471         u32 edc_bist_status_rdata_reg;
472
473         if (is_t4(adap)) {
474                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
475                 return 0;
476         }
477         if (idx != MEM_EDC0 && idx != MEM_EDC1) {
478                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
479                 return 0;
480         }
481
482         edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
483         edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
484
485         CH_WARN(adap,
486                 "edc%d err addr 0x%x: 0x%x.\n",
487                 idx, edc_ecc_err_addr_reg,
488                 t4_read_reg(adap, edc_ecc_err_addr_reg));
489         CH_WARN(adap,
490                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
491                 edc_bist_status_rdata_reg,
492                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
493                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
494                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
495                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
496                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
497                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
498                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
499                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
500                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
501
502         return 0;
503 }
504
505 /**
506  *      t4_mc_read - read from MC through backdoor accesses
507  *      @adap: the adapter
508  *      @idx: which MC to access
509  *      @addr: address of first byte requested
510  *      @data: 64 bytes of data containing the requested address
511  *      @ecc: where to store the corresponding 64-bit ECC word
512  *
513  *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
514  *      that covers the requested address @addr.  If @parity is not %NULL it
515  *      is assigned the 64-bit ECC word for the read data.
516  */
517 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
518 {
519         int i;
520         u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
521         u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
522
523         if (is_t4(adap)) {
524                 mc_bist_cmd_reg = A_MC_BIST_CMD;
525                 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
526                 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
527                 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
528                 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
529         } else {
530                 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
531                 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
532                 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
533                 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
534                                                   idx);
535                 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
536                                                   idx);
537         }
538
539         if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
540                 return -EBUSY;
541         t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
542         t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
543         t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
544         t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
545                      F_START_BIST | V_BIST_CMD_GAP(1));
546         i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
547         if (i)
548                 return i;
549
550 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
551
552         for (i = 15; i >= 0; i--)
553                 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
554         if (ecc)
555                 *ecc = t4_read_reg64(adap, MC_DATA(16));
556 #undef MC_DATA
557         return 0;
558 }
559
560 /**
561  *      t4_edc_read - read from EDC through backdoor accesses
562  *      @adap: the adapter
563  *      @idx: which EDC to access
564  *      @addr: address of first byte requested
565  *      @data: 64 bytes of data containing the requested address
566  *      @ecc: where to store the corresponding 64-bit ECC word
567  *
568  *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
569  *      that covers the requested address @addr.  If @parity is not %NULL it
570  *      is assigned the 64-bit ECC word for the read data.
571  */
572 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
573 {
574         int i;
575         u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
576         u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
577
578         if (is_t4(adap)) {
579                 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
580                 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
581                 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
582                 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
583                                                     idx);
584                 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
585                                                     idx);
586         } else {
587 /*
588  * These macro are missing in t4_regs.h file.
589  * Added temporarily for testing.
590  */
591 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
592 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
593                 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
594                 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
595                 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
596                 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
597                                                     idx);
598                 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
599                                                     idx);
600 #undef EDC_REG_T5
601 #undef EDC_STRIDE_T5
602         }
603
604         if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
605                 return -EBUSY;
606         t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
607         t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
608         t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
609         t4_write_reg(adap, edc_bist_cmd_reg,
610                      V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
611         i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
612         if (i)
613                 return i;
614
615 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
616
617         for (i = 15; i >= 0; i--)
618                 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
619         if (ecc)
620                 *ecc = t4_read_reg64(adap, EDC_DATA(16));
621 #undef EDC_DATA
622         return 0;
623 }
624
625 /**
626  *      t4_mem_read - read EDC 0, EDC 1 or MC into buffer
627  *      @adap: the adapter
628  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
629  *      @addr: address within indicated memory type
630  *      @len: amount of memory to read
631  *      @buf: host memory buffer
632  *
633  *      Reads an [almost] arbitrary memory region in the firmware: the
634  *      firmware memory address, length and host buffer must be aligned on
635  *      32-bit boudaries.  The memory is returned as a raw byte sequence from
636  *      the firmware's memory.  If this memory contains data structures which
637  *      contain multi-byte integers, it's the callers responsibility to
638  *      perform appropriate byte order conversions.
639  */
640 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
641                 __be32 *buf)
642 {
643         u32 pos, start, end, offset;
644         int ret;
645
646         /*
647          * Argument sanity checks ...
648          */
649         if ((addr & 0x3) || (len & 0x3))
650                 return -EINVAL;
651
652         /*
653          * The underlaying EDC/MC read routines read 64 bytes at a time so we
654          * need to round down the start and round up the end.  We'll start
655          * copying out of the first line at (addr - start) a word at a time.
656          */
657         start = rounddown2(addr, 64);
658         end = roundup2(addr + len, 64);
659         offset = (addr - start)/sizeof(__be32);
660
661         for (pos = start; pos < end; pos += 64, offset = 0) {
662                 __be32 data[16];
663
664                 /*
665                  * Read the chip's memory block and bail if there's an error.
666                  */
667                 if ((mtype == MEM_MC) || (mtype == MEM_MC1))
668                         ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
669                 else
670                         ret = t4_edc_read(adap, mtype, pos, data, NULL);
671                 if (ret)
672                         return ret;
673
674                 /*
675                  * Copy the data into the caller's memory buffer.
676                  */
677                 while (offset < 16 && len > 0) {
678                         *buf++ = data[offset++];
679                         len -= sizeof(__be32);
680                 }
681         }
682
683         return 0;
684 }
685
686 /*
687  * Return the specified PCI-E Configuration Space register from our Physical
688  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
689  * since we prefer to let the firmware own all of these registers, but if that
690  * fails we go for it directly ourselves.
691  */
692 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
693 {
694
695         /*
696          * If fw_attach != 0, construct and send the Firmware LDST Command to
697          * retrieve the specified PCI-E Configuration Space register.
698          */
699         if (drv_fw_attach != 0) {
700                 struct fw_ldst_cmd ldst_cmd;
701                 int ret;
702
703                 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
704                 ldst_cmd.op_to_addrspace =
705                         cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
706                                     F_FW_CMD_REQUEST |
707                                     F_FW_CMD_READ |
708                                     V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
709                 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
710                 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
711                 ldst_cmd.u.pcie.ctrl_to_fn =
712                         (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
713                 ldst_cmd.u.pcie.r = reg;
714
715                 /*
716                  * If the LDST Command succeeds, return the result, otherwise
717                  * fall through to reading it directly ourselves ...
718                  */
719                 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
720                                  &ldst_cmd);
721                 if (ret == 0)
722                         return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
723
724                 CH_WARN(adap, "Firmware failed to return "
725                         "Configuration Space register %d, err = %d\n",
726                         reg, -ret);
727         }
728
729         /*
730          * Read the desired Configuration Space register via the PCI-E
731          * Backdoor mechanism.
732          */
733         return t4_hw_pci_read_cfg4(adap, reg);
734 }
735
736 /**
737  *      t4_get_regs_len - return the size of the chips register set
738  *      @adapter: the adapter
739  *
740  *      Returns the size of the chip's BAR0 register space.
741  */
742 unsigned int t4_get_regs_len(struct adapter *adapter)
743 {
744         unsigned int chip_version = chip_id(adapter);
745
746         switch (chip_version) {
747         case CHELSIO_T4:
748                 if (adapter->flags & IS_VF)
749                         return FW_T4VF_REGMAP_SIZE;
750                 return T4_REGMAP_SIZE;
751
752         case CHELSIO_T5:
753         case CHELSIO_T6:
754                 if (adapter->flags & IS_VF)
755                         return FW_T4VF_REGMAP_SIZE;
756                 return T5_REGMAP_SIZE;
757         }
758
759         CH_ERR(adapter,
760                 "Unsupported chip version %d\n", chip_version);
761         return 0;
762 }
763
764 /**
765  *      t4_get_regs - read chip registers into provided buffer
766  *      @adap: the adapter
767  *      @buf: register buffer
768  *      @buf_size: size (in bytes) of register buffer
769  *
770  *      If the provided register buffer isn't large enough for the chip's
771  *      full register range, the register dump will be truncated to the
772  *      register buffer's size.
773  */
774 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
775 {
776         static const unsigned int t4_reg_ranges[] = {
777                 0x1008, 0x1108,
778                 0x1180, 0x1184,
779                 0x1190, 0x1194,
780                 0x11a0, 0x11a4,
781                 0x11b0, 0x11b4,
782                 0x11fc, 0x123c,
783                 0x1300, 0x173c,
784                 0x1800, 0x18fc,
785                 0x3000, 0x30d8,
786                 0x30e0, 0x30e4,
787                 0x30ec, 0x5910,
788                 0x5920, 0x5924,
789                 0x5960, 0x5960,
790                 0x5968, 0x5968,
791                 0x5970, 0x5970,
792                 0x5978, 0x5978,
793                 0x5980, 0x5980,
794                 0x5988, 0x5988,
795                 0x5990, 0x5990,
796                 0x5998, 0x5998,
797                 0x59a0, 0x59d4,
798                 0x5a00, 0x5ae0,
799                 0x5ae8, 0x5ae8,
800                 0x5af0, 0x5af0,
801                 0x5af8, 0x5af8,
802                 0x6000, 0x6098,
803                 0x6100, 0x6150,
804                 0x6200, 0x6208,
805                 0x6240, 0x6248,
806                 0x6280, 0x62b0,
807                 0x62c0, 0x6338,
808                 0x6370, 0x638c,
809                 0x6400, 0x643c,
810                 0x6500, 0x6524,
811                 0x6a00, 0x6a04,
812                 0x6a14, 0x6a38,
813                 0x6a60, 0x6a70,
814                 0x6a78, 0x6a78,
815                 0x6b00, 0x6b0c,
816                 0x6b1c, 0x6b84,
817                 0x6bf0, 0x6bf8,
818                 0x6c00, 0x6c0c,
819                 0x6c1c, 0x6c84,
820                 0x6cf0, 0x6cf8,
821                 0x6d00, 0x6d0c,
822                 0x6d1c, 0x6d84,
823                 0x6df0, 0x6df8,
824                 0x6e00, 0x6e0c,
825                 0x6e1c, 0x6e84,
826                 0x6ef0, 0x6ef8,
827                 0x6f00, 0x6f0c,
828                 0x6f1c, 0x6f84,
829                 0x6ff0, 0x6ff8,
830                 0x7000, 0x700c,
831                 0x701c, 0x7084,
832                 0x70f0, 0x70f8,
833                 0x7100, 0x710c,
834                 0x711c, 0x7184,
835                 0x71f0, 0x71f8,
836                 0x7200, 0x720c,
837                 0x721c, 0x7284,
838                 0x72f0, 0x72f8,
839                 0x7300, 0x730c,
840                 0x731c, 0x7384,
841                 0x73f0, 0x73f8,
842                 0x7400, 0x7450,
843                 0x7500, 0x7530,
844                 0x7600, 0x760c,
845                 0x7614, 0x761c,
846                 0x7680, 0x76cc,
847                 0x7700, 0x7798,
848                 0x77c0, 0x77fc,
849                 0x7900, 0x79fc,
850                 0x7b00, 0x7b58,
851                 0x7b60, 0x7b84,
852                 0x7b8c, 0x7c38,
853                 0x7d00, 0x7d38,
854                 0x7d40, 0x7d80,
855                 0x7d8c, 0x7ddc,
856                 0x7de4, 0x7e04,
857                 0x7e10, 0x7e1c,
858                 0x7e24, 0x7e38,
859                 0x7e40, 0x7e44,
860                 0x7e4c, 0x7e78,
861                 0x7e80, 0x7ea4,
862                 0x7eac, 0x7edc,
863                 0x7ee8, 0x7efc,
864                 0x8dc0, 0x8e04,
865                 0x8e10, 0x8e1c,
866                 0x8e30, 0x8e78,
867                 0x8ea0, 0x8eb8,
868                 0x8ec0, 0x8f6c,
869                 0x8fc0, 0x9008,
870                 0x9010, 0x9058,
871                 0x9060, 0x9060,
872                 0x9068, 0x9074,
873                 0x90fc, 0x90fc,
874                 0x9400, 0x9408,
875                 0x9410, 0x9458,
876                 0x9600, 0x9600,
877                 0x9608, 0x9638,
878                 0x9640, 0x96bc,
879                 0x9800, 0x9808,
880                 0x9820, 0x983c,
881                 0x9850, 0x9864,
882                 0x9c00, 0x9c6c,
883                 0x9c80, 0x9cec,
884                 0x9d00, 0x9d6c,
885                 0x9d80, 0x9dec,
886                 0x9e00, 0x9e6c,
887                 0x9e80, 0x9eec,
888                 0x9f00, 0x9f6c,
889                 0x9f80, 0x9fec,
890                 0xd004, 0xd004,
891                 0xd010, 0xd03c,
892                 0xdfc0, 0xdfe0,
893                 0xe000, 0xea7c,
894                 0xf000, 0x11110,
895                 0x11118, 0x11190,
896                 0x19040, 0x1906c,
897                 0x19078, 0x19080,
898                 0x1908c, 0x190e4,
899                 0x190f0, 0x190f8,
900                 0x19100, 0x19110,
901                 0x19120, 0x19124,
902                 0x19150, 0x19194,
903                 0x1919c, 0x191b0,
904                 0x191d0, 0x191e8,
905                 0x19238, 0x1924c,
906                 0x193f8, 0x1943c,
907                 0x1944c, 0x19474,
908                 0x19490, 0x194e0,
909                 0x194f0, 0x194f8,
910                 0x19800, 0x19c08,
911                 0x19c10, 0x19c90,
912                 0x19ca0, 0x19ce4,
913                 0x19cf0, 0x19d40,
914                 0x19d50, 0x19d94,
915                 0x19da0, 0x19de8,
916                 0x19df0, 0x19e40,
917                 0x19e50, 0x19e90,
918                 0x19ea0, 0x19f4c,
919                 0x1a000, 0x1a004,
920                 0x1a010, 0x1a06c,
921                 0x1a0b0, 0x1a0e4,
922                 0x1a0ec, 0x1a0f4,
923                 0x1a100, 0x1a108,
924                 0x1a114, 0x1a120,
925                 0x1a128, 0x1a130,
926                 0x1a138, 0x1a138,
927                 0x1a190, 0x1a1c4,
928                 0x1a1fc, 0x1a1fc,
929                 0x1e040, 0x1e04c,
930                 0x1e284, 0x1e28c,
931                 0x1e2c0, 0x1e2c0,
932                 0x1e2e0, 0x1e2e0,
933                 0x1e300, 0x1e384,
934                 0x1e3c0, 0x1e3c8,
935                 0x1e440, 0x1e44c,
936                 0x1e684, 0x1e68c,
937                 0x1e6c0, 0x1e6c0,
938                 0x1e6e0, 0x1e6e0,
939                 0x1e700, 0x1e784,
940                 0x1e7c0, 0x1e7c8,
941                 0x1e840, 0x1e84c,
942                 0x1ea84, 0x1ea8c,
943                 0x1eac0, 0x1eac0,
944                 0x1eae0, 0x1eae0,
945                 0x1eb00, 0x1eb84,
946                 0x1ebc0, 0x1ebc8,
947                 0x1ec40, 0x1ec4c,
948                 0x1ee84, 0x1ee8c,
949                 0x1eec0, 0x1eec0,
950                 0x1eee0, 0x1eee0,
951                 0x1ef00, 0x1ef84,
952                 0x1efc0, 0x1efc8,
953                 0x1f040, 0x1f04c,
954                 0x1f284, 0x1f28c,
955                 0x1f2c0, 0x1f2c0,
956                 0x1f2e0, 0x1f2e0,
957                 0x1f300, 0x1f384,
958                 0x1f3c0, 0x1f3c8,
959                 0x1f440, 0x1f44c,
960                 0x1f684, 0x1f68c,
961                 0x1f6c0, 0x1f6c0,
962                 0x1f6e0, 0x1f6e0,
963                 0x1f700, 0x1f784,
964                 0x1f7c0, 0x1f7c8,
965                 0x1f840, 0x1f84c,
966                 0x1fa84, 0x1fa8c,
967                 0x1fac0, 0x1fac0,
968                 0x1fae0, 0x1fae0,
969                 0x1fb00, 0x1fb84,
970                 0x1fbc0, 0x1fbc8,
971                 0x1fc40, 0x1fc4c,
972                 0x1fe84, 0x1fe8c,
973                 0x1fec0, 0x1fec0,
974                 0x1fee0, 0x1fee0,
975                 0x1ff00, 0x1ff84,
976                 0x1ffc0, 0x1ffc8,
977                 0x20000, 0x2002c,
978                 0x20100, 0x2013c,
979                 0x20190, 0x201a0,
980                 0x201a8, 0x201b8,
981                 0x201c4, 0x201c8,
982                 0x20200, 0x20318,
983                 0x20400, 0x204b4,
984                 0x204c0, 0x20528,
985                 0x20540, 0x20614,
986                 0x21000, 0x21040,
987                 0x2104c, 0x21060,
988                 0x210c0, 0x210ec,
989                 0x21200, 0x21268,
990                 0x21270, 0x21284,
991                 0x212fc, 0x21388,
992                 0x21400, 0x21404,
993                 0x21500, 0x21500,
994                 0x21510, 0x21518,
995                 0x2152c, 0x21530,
996                 0x2153c, 0x2153c,
997                 0x21550, 0x21554,
998                 0x21600, 0x21600,
999                 0x21608, 0x2161c,
1000                 0x21624, 0x21628,
1001                 0x21630, 0x21634,
1002                 0x2163c, 0x2163c,
1003                 0x21700, 0x2171c,
1004                 0x21780, 0x2178c,
1005                 0x21800, 0x21818,
1006                 0x21820, 0x21828,
1007                 0x21830, 0x21848,
1008                 0x21850, 0x21854,
1009                 0x21860, 0x21868,
1010                 0x21870, 0x21870,
1011                 0x21878, 0x21898,
1012                 0x218a0, 0x218a8,
1013                 0x218b0, 0x218c8,
1014                 0x218d0, 0x218d4,
1015                 0x218e0, 0x218e8,
1016                 0x218f0, 0x218f0,
1017                 0x218f8, 0x21a18,
1018                 0x21a20, 0x21a28,
1019                 0x21a30, 0x21a48,
1020                 0x21a50, 0x21a54,
1021                 0x21a60, 0x21a68,
1022                 0x21a70, 0x21a70,
1023                 0x21a78, 0x21a98,
1024                 0x21aa0, 0x21aa8,
1025                 0x21ab0, 0x21ac8,
1026                 0x21ad0, 0x21ad4,
1027                 0x21ae0, 0x21ae8,
1028                 0x21af0, 0x21af0,
1029                 0x21af8, 0x21c18,
1030                 0x21c20, 0x21c20,
1031                 0x21c28, 0x21c30,
1032                 0x21c38, 0x21c38,
1033                 0x21c80, 0x21c98,
1034                 0x21ca0, 0x21ca8,
1035                 0x21cb0, 0x21cc8,
1036                 0x21cd0, 0x21cd4,
1037                 0x21ce0, 0x21ce8,
1038                 0x21cf0, 0x21cf0,
1039                 0x21cf8, 0x21d7c,
1040                 0x21e00, 0x21e04,
1041                 0x22000, 0x2202c,
1042                 0x22100, 0x2213c,
1043                 0x22190, 0x221a0,
1044                 0x221a8, 0x221b8,
1045                 0x221c4, 0x221c8,
1046                 0x22200, 0x22318,
1047                 0x22400, 0x224b4,
1048                 0x224c0, 0x22528,
1049                 0x22540, 0x22614,
1050                 0x23000, 0x23040,
1051                 0x2304c, 0x23060,
1052                 0x230c0, 0x230ec,
1053                 0x23200, 0x23268,
1054                 0x23270, 0x23284,
1055                 0x232fc, 0x23388,
1056                 0x23400, 0x23404,
1057                 0x23500, 0x23500,
1058                 0x23510, 0x23518,
1059                 0x2352c, 0x23530,
1060                 0x2353c, 0x2353c,
1061                 0x23550, 0x23554,
1062                 0x23600, 0x23600,
1063                 0x23608, 0x2361c,
1064                 0x23624, 0x23628,
1065                 0x23630, 0x23634,
1066                 0x2363c, 0x2363c,
1067                 0x23700, 0x2371c,
1068                 0x23780, 0x2378c,
1069                 0x23800, 0x23818,
1070                 0x23820, 0x23828,
1071                 0x23830, 0x23848,
1072                 0x23850, 0x23854,
1073                 0x23860, 0x23868,
1074                 0x23870, 0x23870,
1075                 0x23878, 0x23898,
1076                 0x238a0, 0x238a8,
1077                 0x238b0, 0x238c8,
1078                 0x238d0, 0x238d4,
1079                 0x238e0, 0x238e8,
1080                 0x238f0, 0x238f0,
1081                 0x238f8, 0x23a18,
1082                 0x23a20, 0x23a28,
1083                 0x23a30, 0x23a48,
1084                 0x23a50, 0x23a54,
1085                 0x23a60, 0x23a68,
1086                 0x23a70, 0x23a70,
1087                 0x23a78, 0x23a98,
1088                 0x23aa0, 0x23aa8,
1089                 0x23ab0, 0x23ac8,
1090                 0x23ad0, 0x23ad4,
1091                 0x23ae0, 0x23ae8,
1092                 0x23af0, 0x23af0,
1093                 0x23af8, 0x23c18,
1094                 0x23c20, 0x23c20,
1095                 0x23c28, 0x23c30,
1096                 0x23c38, 0x23c38,
1097                 0x23c80, 0x23c98,
1098                 0x23ca0, 0x23ca8,
1099                 0x23cb0, 0x23cc8,
1100                 0x23cd0, 0x23cd4,
1101                 0x23ce0, 0x23ce8,
1102                 0x23cf0, 0x23cf0,
1103                 0x23cf8, 0x23d7c,
1104                 0x23e00, 0x23e04,
1105                 0x24000, 0x2402c,
1106                 0x24100, 0x2413c,
1107                 0x24190, 0x241a0,
1108                 0x241a8, 0x241b8,
1109                 0x241c4, 0x241c8,
1110                 0x24200, 0x24318,
1111                 0x24400, 0x244b4,
1112                 0x244c0, 0x24528,
1113                 0x24540, 0x24614,
1114                 0x25000, 0x25040,
1115                 0x2504c, 0x25060,
1116                 0x250c0, 0x250ec,
1117                 0x25200, 0x25268,
1118                 0x25270, 0x25284,
1119                 0x252fc, 0x25388,
1120                 0x25400, 0x25404,
1121                 0x25500, 0x25500,
1122                 0x25510, 0x25518,
1123                 0x2552c, 0x25530,
1124                 0x2553c, 0x2553c,
1125                 0x25550, 0x25554,
1126                 0x25600, 0x25600,
1127                 0x25608, 0x2561c,
1128                 0x25624, 0x25628,
1129                 0x25630, 0x25634,
1130                 0x2563c, 0x2563c,
1131                 0x25700, 0x2571c,
1132                 0x25780, 0x2578c,
1133                 0x25800, 0x25818,
1134                 0x25820, 0x25828,
1135                 0x25830, 0x25848,
1136                 0x25850, 0x25854,
1137                 0x25860, 0x25868,
1138                 0x25870, 0x25870,
1139                 0x25878, 0x25898,
1140                 0x258a0, 0x258a8,
1141                 0x258b0, 0x258c8,
1142                 0x258d0, 0x258d4,
1143                 0x258e0, 0x258e8,
1144                 0x258f0, 0x258f0,
1145                 0x258f8, 0x25a18,
1146                 0x25a20, 0x25a28,
1147                 0x25a30, 0x25a48,
1148                 0x25a50, 0x25a54,
1149                 0x25a60, 0x25a68,
1150                 0x25a70, 0x25a70,
1151                 0x25a78, 0x25a98,
1152                 0x25aa0, 0x25aa8,
1153                 0x25ab0, 0x25ac8,
1154                 0x25ad0, 0x25ad4,
1155                 0x25ae0, 0x25ae8,
1156                 0x25af0, 0x25af0,
1157                 0x25af8, 0x25c18,
1158                 0x25c20, 0x25c20,
1159                 0x25c28, 0x25c30,
1160                 0x25c38, 0x25c38,
1161                 0x25c80, 0x25c98,
1162                 0x25ca0, 0x25ca8,
1163                 0x25cb0, 0x25cc8,
1164                 0x25cd0, 0x25cd4,
1165                 0x25ce0, 0x25ce8,
1166                 0x25cf0, 0x25cf0,
1167                 0x25cf8, 0x25d7c,
1168                 0x25e00, 0x25e04,
1169                 0x26000, 0x2602c,
1170                 0x26100, 0x2613c,
1171                 0x26190, 0x261a0,
1172                 0x261a8, 0x261b8,
1173                 0x261c4, 0x261c8,
1174                 0x26200, 0x26318,
1175                 0x26400, 0x264b4,
1176                 0x264c0, 0x26528,
1177                 0x26540, 0x26614,
1178                 0x27000, 0x27040,
1179                 0x2704c, 0x27060,
1180                 0x270c0, 0x270ec,
1181                 0x27200, 0x27268,
1182                 0x27270, 0x27284,
1183                 0x272fc, 0x27388,
1184                 0x27400, 0x27404,
1185                 0x27500, 0x27500,
1186                 0x27510, 0x27518,
1187                 0x2752c, 0x27530,
1188                 0x2753c, 0x2753c,
1189                 0x27550, 0x27554,
1190                 0x27600, 0x27600,
1191                 0x27608, 0x2761c,
1192                 0x27624, 0x27628,
1193                 0x27630, 0x27634,
1194                 0x2763c, 0x2763c,
1195                 0x27700, 0x2771c,
1196                 0x27780, 0x2778c,
1197                 0x27800, 0x27818,
1198                 0x27820, 0x27828,
1199                 0x27830, 0x27848,
1200                 0x27850, 0x27854,
1201                 0x27860, 0x27868,
1202                 0x27870, 0x27870,
1203                 0x27878, 0x27898,
1204                 0x278a0, 0x278a8,
1205                 0x278b0, 0x278c8,
1206                 0x278d0, 0x278d4,
1207                 0x278e0, 0x278e8,
1208                 0x278f0, 0x278f0,
1209                 0x278f8, 0x27a18,
1210                 0x27a20, 0x27a28,
1211                 0x27a30, 0x27a48,
1212                 0x27a50, 0x27a54,
1213                 0x27a60, 0x27a68,
1214                 0x27a70, 0x27a70,
1215                 0x27a78, 0x27a98,
1216                 0x27aa0, 0x27aa8,
1217                 0x27ab0, 0x27ac8,
1218                 0x27ad0, 0x27ad4,
1219                 0x27ae0, 0x27ae8,
1220                 0x27af0, 0x27af0,
1221                 0x27af8, 0x27c18,
1222                 0x27c20, 0x27c20,
1223                 0x27c28, 0x27c30,
1224                 0x27c38, 0x27c38,
1225                 0x27c80, 0x27c98,
1226                 0x27ca0, 0x27ca8,
1227                 0x27cb0, 0x27cc8,
1228                 0x27cd0, 0x27cd4,
1229                 0x27ce0, 0x27ce8,
1230                 0x27cf0, 0x27cf0,
1231                 0x27cf8, 0x27d7c,
1232                 0x27e00, 0x27e04,
1233         };
1234
1235         static const unsigned int t4vf_reg_ranges[] = {
1236                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1237                 VF_MPS_REG(A_MPS_VF_CTL),
1238                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1239                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1240                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1241                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1242                 FW_T4VF_MBDATA_BASE_ADDR,
1243                 FW_T4VF_MBDATA_BASE_ADDR +
1244                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1245         };
1246
1247         static const unsigned int t5_reg_ranges[] = {
1248                 0x1008, 0x10c0,
1249                 0x10cc, 0x10f8,
1250                 0x1100, 0x1100,
1251                 0x110c, 0x1148,
1252                 0x1180, 0x1184,
1253                 0x1190, 0x1194,
1254                 0x11a0, 0x11a4,
1255                 0x11b0, 0x11b4,
1256                 0x11fc, 0x123c,
1257                 0x1280, 0x173c,
1258                 0x1800, 0x18fc,
1259                 0x3000, 0x3028,
1260                 0x3060, 0x30b0,
1261                 0x30b8, 0x30d8,
1262                 0x30e0, 0x30fc,
1263                 0x3140, 0x357c,
1264                 0x35a8, 0x35cc,
1265                 0x35ec, 0x35ec,
1266                 0x3600, 0x5624,
1267                 0x56cc, 0x56ec,
1268                 0x56f4, 0x5720,
1269                 0x5728, 0x575c,
1270                 0x580c, 0x5814,
1271                 0x5890, 0x589c,
1272                 0x58a4, 0x58ac,
1273                 0x58b8, 0x58bc,
1274                 0x5940, 0x59c8,
1275                 0x59d0, 0x59dc,
1276                 0x59fc, 0x5a18,
1277                 0x5a60, 0x5a70,
1278                 0x5a80, 0x5a9c,
1279                 0x5b94, 0x5bfc,
1280                 0x6000, 0x6020,
1281                 0x6028, 0x6040,
1282                 0x6058, 0x609c,
1283                 0x60a8, 0x614c,
1284                 0x7700, 0x7798,
1285                 0x77c0, 0x78fc,
1286                 0x7b00, 0x7b58,
1287                 0x7b60, 0x7b84,
1288                 0x7b8c, 0x7c54,
1289                 0x7d00, 0x7d38,
1290                 0x7d40, 0x7d80,
1291                 0x7d8c, 0x7ddc,
1292                 0x7de4, 0x7e04,
1293                 0x7e10, 0x7e1c,
1294                 0x7e24, 0x7e38,
1295                 0x7e40, 0x7e44,
1296                 0x7e4c, 0x7e78,
1297                 0x7e80, 0x7edc,
1298                 0x7ee8, 0x7efc,
1299                 0x8dc0, 0x8de0,
1300                 0x8df8, 0x8e04,
1301                 0x8e10, 0x8e84,
1302                 0x8ea0, 0x8f84,
1303                 0x8fc0, 0x9058,
1304                 0x9060, 0x9060,
1305                 0x9068, 0x90f8,
1306                 0x9400, 0x9408,
1307                 0x9410, 0x9470,
1308                 0x9600, 0x9600,
1309                 0x9608, 0x9638,
1310                 0x9640, 0x96f4,
1311                 0x9800, 0x9808,
1312                 0x9820, 0x983c,
1313                 0x9850, 0x9864,
1314                 0x9c00, 0x9c6c,
1315                 0x9c80, 0x9cec,
1316                 0x9d00, 0x9d6c,
1317                 0x9d80, 0x9dec,
1318                 0x9e00, 0x9e6c,
1319                 0x9e80, 0x9eec,
1320                 0x9f00, 0x9f6c,
1321                 0x9f80, 0xa020,
1322                 0xd004, 0xd004,
1323                 0xd010, 0xd03c,
1324                 0xdfc0, 0xdfe0,
1325                 0xe000, 0x1106c,
1326                 0x11074, 0x11088,
1327                 0x1109c, 0x1117c,
1328                 0x11190, 0x11204,
1329                 0x19040, 0x1906c,
1330                 0x19078, 0x19080,
1331                 0x1908c, 0x190e8,
1332                 0x190f0, 0x190f8,
1333                 0x19100, 0x19110,
1334                 0x19120, 0x19124,
1335                 0x19150, 0x19194,
1336                 0x1919c, 0x191b0,
1337                 0x191d0, 0x191e8,
1338                 0x19238, 0x19290,
1339                 0x193f8, 0x19428,
1340                 0x19430, 0x19444,
1341                 0x1944c, 0x1946c,
1342                 0x19474, 0x19474,
1343                 0x19490, 0x194cc,
1344                 0x194f0, 0x194f8,
1345                 0x19c00, 0x19c08,
1346                 0x19c10, 0x19c60,
1347                 0x19c94, 0x19ce4,
1348                 0x19cf0, 0x19d40,
1349                 0x19d50, 0x19d94,
1350                 0x19da0, 0x19de8,
1351                 0x19df0, 0x19e10,
1352                 0x19e50, 0x19e90,
1353                 0x19ea0, 0x19f24,
1354                 0x19f34, 0x19f34,
1355                 0x19f40, 0x19f50,
1356                 0x19f90, 0x19fb4,
1357                 0x19fc4, 0x19fe4,
1358                 0x1a000, 0x1a004,
1359                 0x1a010, 0x1a06c,
1360                 0x1a0b0, 0x1a0e4,
1361                 0x1a0ec, 0x1a0f8,
1362                 0x1a100, 0x1a108,
1363                 0x1a114, 0x1a120,
1364                 0x1a128, 0x1a130,
1365                 0x1a138, 0x1a138,
1366                 0x1a190, 0x1a1c4,
1367                 0x1a1fc, 0x1a1fc,
1368                 0x1e008, 0x1e00c,
1369                 0x1e040, 0x1e044,
1370                 0x1e04c, 0x1e04c,
1371                 0x1e284, 0x1e290,
1372                 0x1e2c0, 0x1e2c0,
1373                 0x1e2e0, 0x1e2e0,
1374                 0x1e300, 0x1e384,
1375                 0x1e3c0, 0x1e3c8,
1376                 0x1e408, 0x1e40c,
1377                 0x1e440, 0x1e444,
1378                 0x1e44c, 0x1e44c,
1379                 0x1e684, 0x1e690,
1380                 0x1e6c0, 0x1e6c0,
1381                 0x1e6e0, 0x1e6e0,
1382                 0x1e700, 0x1e784,
1383                 0x1e7c0, 0x1e7c8,
1384                 0x1e808, 0x1e80c,
1385                 0x1e840, 0x1e844,
1386                 0x1e84c, 0x1e84c,
1387                 0x1ea84, 0x1ea90,
1388                 0x1eac0, 0x1eac0,
1389                 0x1eae0, 0x1eae0,
1390                 0x1eb00, 0x1eb84,
1391                 0x1ebc0, 0x1ebc8,
1392                 0x1ec08, 0x1ec0c,
1393                 0x1ec40, 0x1ec44,
1394                 0x1ec4c, 0x1ec4c,
1395                 0x1ee84, 0x1ee90,
1396                 0x1eec0, 0x1eec0,
1397                 0x1eee0, 0x1eee0,
1398                 0x1ef00, 0x1ef84,
1399                 0x1efc0, 0x1efc8,
1400                 0x1f008, 0x1f00c,
1401                 0x1f040, 0x1f044,
1402                 0x1f04c, 0x1f04c,
1403                 0x1f284, 0x1f290,
1404                 0x1f2c0, 0x1f2c0,
1405                 0x1f2e0, 0x1f2e0,
1406                 0x1f300, 0x1f384,
1407                 0x1f3c0, 0x1f3c8,
1408                 0x1f408, 0x1f40c,
1409                 0x1f440, 0x1f444,
1410                 0x1f44c, 0x1f44c,
1411                 0x1f684, 0x1f690,
1412                 0x1f6c0, 0x1f6c0,
1413                 0x1f6e0, 0x1f6e0,
1414                 0x1f700, 0x1f784,
1415                 0x1f7c0, 0x1f7c8,
1416                 0x1f808, 0x1f80c,
1417                 0x1f840, 0x1f844,
1418                 0x1f84c, 0x1f84c,
1419                 0x1fa84, 0x1fa90,
1420                 0x1fac0, 0x1fac0,
1421                 0x1fae0, 0x1fae0,
1422                 0x1fb00, 0x1fb84,
1423                 0x1fbc0, 0x1fbc8,
1424                 0x1fc08, 0x1fc0c,
1425                 0x1fc40, 0x1fc44,
1426                 0x1fc4c, 0x1fc4c,
1427                 0x1fe84, 0x1fe90,
1428                 0x1fec0, 0x1fec0,
1429                 0x1fee0, 0x1fee0,
1430                 0x1ff00, 0x1ff84,
1431                 0x1ffc0, 0x1ffc8,
1432                 0x30000, 0x30030,
1433                 0x30100, 0x30144,
1434                 0x30190, 0x301a0,
1435                 0x301a8, 0x301b8,
1436                 0x301c4, 0x301c8,
1437                 0x301d0, 0x301d0,
1438                 0x30200, 0x30318,
1439                 0x30400, 0x304b4,
1440                 0x304c0, 0x3052c,
1441                 0x30540, 0x3061c,
1442                 0x30800, 0x30828,
1443                 0x30834, 0x30834,
1444                 0x308c0, 0x30908,
1445                 0x30910, 0x309ac,
1446                 0x30a00, 0x30a14,
1447                 0x30a1c, 0x30a2c,
1448                 0x30a44, 0x30a50,
1449                 0x30a74, 0x30a74,
1450                 0x30a7c, 0x30afc,
1451                 0x30b08, 0x30c24,
1452                 0x30d00, 0x30d00,
1453                 0x30d08, 0x30d14,
1454                 0x30d1c, 0x30d20,
1455                 0x30d3c, 0x30d3c,
1456                 0x30d48, 0x30d50,
1457                 0x31200, 0x3120c,
1458                 0x31220, 0x31220,
1459                 0x31240, 0x31240,
1460                 0x31600, 0x3160c,
1461                 0x31a00, 0x31a1c,
1462                 0x31e00, 0x31e20,
1463                 0x31e38, 0x31e3c,
1464                 0x31e80, 0x31e80,
1465                 0x31e88, 0x31ea8,
1466                 0x31eb0, 0x31eb4,
1467                 0x31ec8, 0x31ed4,
1468                 0x31fb8, 0x32004,
1469                 0x32200, 0x32200,
1470                 0x32208, 0x32240,
1471                 0x32248, 0x32280,
1472                 0x32288, 0x322c0,
1473                 0x322c8, 0x322fc,
1474                 0x32600, 0x32630,
1475                 0x32a00, 0x32abc,
1476                 0x32b00, 0x32b10,
1477                 0x32b20, 0x32b30,
1478                 0x32b40, 0x32b50,
1479                 0x32b60, 0x32b70,
1480                 0x33000, 0x33028,
1481                 0x33030, 0x33048,
1482                 0x33060, 0x33068,
1483                 0x33070, 0x3309c,
1484                 0x330f0, 0x33128,
1485                 0x33130, 0x33148,
1486                 0x33160, 0x33168,
1487                 0x33170, 0x3319c,
1488                 0x331f0, 0x33238,
1489                 0x33240, 0x33240,
1490                 0x33248, 0x33250,
1491                 0x3325c, 0x33264,
1492                 0x33270, 0x332b8,
1493                 0x332c0, 0x332e4,
1494                 0x332f8, 0x33338,
1495                 0x33340, 0x33340,
1496                 0x33348, 0x33350,
1497                 0x3335c, 0x33364,
1498                 0x33370, 0x333b8,
1499                 0x333c0, 0x333e4,
1500                 0x333f8, 0x33428,
1501                 0x33430, 0x33448,
1502                 0x33460, 0x33468,
1503                 0x33470, 0x3349c,
1504                 0x334f0, 0x33528,
1505                 0x33530, 0x33548,
1506                 0x33560, 0x33568,
1507                 0x33570, 0x3359c,
1508                 0x335f0, 0x33638,
1509                 0x33640, 0x33640,
1510                 0x33648, 0x33650,
1511                 0x3365c, 0x33664,
1512                 0x33670, 0x336b8,
1513                 0x336c0, 0x336e4,
1514                 0x336f8, 0x33738,
1515                 0x33740, 0x33740,
1516                 0x33748, 0x33750,
1517                 0x3375c, 0x33764,
1518                 0x33770, 0x337b8,
1519                 0x337c0, 0x337e4,
1520                 0x337f8, 0x337fc,
1521                 0x33814, 0x33814,
1522                 0x3382c, 0x3382c,
1523                 0x33880, 0x3388c,
1524                 0x338e8, 0x338ec,
1525                 0x33900, 0x33928,
1526                 0x33930, 0x33948,
1527                 0x33960, 0x33968,
1528                 0x33970, 0x3399c,
1529                 0x339f0, 0x33a38,
1530                 0x33a40, 0x33a40,
1531                 0x33a48, 0x33a50,
1532                 0x33a5c, 0x33a64,
1533                 0x33a70, 0x33ab8,
1534                 0x33ac0, 0x33ae4,
1535                 0x33af8, 0x33b10,
1536                 0x33b28, 0x33b28,
1537                 0x33b3c, 0x33b50,
1538                 0x33bf0, 0x33c10,
1539                 0x33c28, 0x33c28,
1540                 0x33c3c, 0x33c50,
1541                 0x33cf0, 0x33cfc,
1542                 0x34000, 0x34030,
1543                 0x34100, 0x34144,
1544                 0x34190, 0x341a0,
1545                 0x341a8, 0x341b8,
1546                 0x341c4, 0x341c8,
1547                 0x341d0, 0x341d0,
1548                 0x34200, 0x34318,
1549                 0x34400, 0x344b4,
1550                 0x344c0, 0x3452c,
1551                 0x34540, 0x3461c,
1552                 0x34800, 0x34828,
1553                 0x34834, 0x34834,
1554                 0x348c0, 0x34908,
1555                 0x34910, 0x349ac,
1556                 0x34a00, 0x34a14,
1557                 0x34a1c, 0x34a2c,
1558                 0x34a44, 0x34a50,
1559                 0x34a74, 0x34a74,
1560                 0x34a7c, 0x34afc,
1561                 0x34b08, 0x34c24,
1562                 0x34d00, 0x34d00,
1563                 0x34d08, 0x34d14,
1564                 0x34d1c, 0x34d20,
1565                 0x34d3c, 0x34d3c,
1566                 0x34d48, 0x34d50,
1567                 0x35200, 0x3520c,
1568                 0x35220, 0x35220,
1569                 0x35240, 0x35240,
1570                 0x35600, 0x3560c,
1571                 0x35a00, 0x35a1c,
1572                 0x35e00, 0x35e20,
1573                 0x35e38, 0x35e3c,
1574                 0x35e80, 0x35e80,
1575                 0x35e88, 0x35ea8,
1576                 0x35eb0, 0x35eb4,
1577                 0x35ec8, 0x35ed4,
1578                 0x35fb8, 0x36004,
1579                 0x36200, 0x36200,
1580                 0x36208, 0x36240,
1581                 0x36248, 0x36280,
1582                 0x36288, 0x362c0,
1583                 0x362c8, 0x362fc,
1584                 0x36600, 0x36630,
1585                 0x36a00, 0x36abc,
1586                 0x36b00, 0x36b10,
1587                 0x36b20, 0x36b30,
1588                 0x36b40, 0x36b50,
1589                 0x36b60, 0x36b70,
1590                 0x37000, 0x37028,
1591                 0x37030, 0x37048,
1592                 0x37060, 0x37068,
1593                 0x37070, 0x3709c,
1594                 0x370f0, 0x37128,
1595                 0x37130, 0x37148,
1596                 0x37160, 0x37168,
1597                 0x37170, 0x3719c,
1598                 0x371f0, 0x37238,
1599                 0x37240, 0x37240,
1600                 0x37248, 0x37250,
1601                 0x3725c, 0x37264,
1602                 0x37270, 0x372b8,
1603                 0x372c0, 0x372e4,
1604                 0x372f8, 0x37338,
1605                 0x37340, 0x37340,
1606                 0x37348, 0x37350,
1607                 0x3735c, 0x37364,
1608                 0x37370, 0x373b8,
1609                 0x373c0, 0x373e4,
1610                 0x373f8, 0x37428,
1611                 0x37430, 0x37448,
1612                 0x37460, 0x37468,
1613                 0x37470, 0x3749c,
1614                 0x374f0, 0x37528,
1615                 0x37530, 0x37548,
1616                 0x37560, 0x37568,
1617                 0x37570, 0x3759c,
1618                 0x375f0, 0x37638,
1619                 0x37640, 0x37640,
1620                 0x37648, 0x37650,
1621                 0x3765c, 0x37664,
1622                 0x37670, 0x376b8,
1623                 0x376c0, 0x376e4,
1624                 0x376f8, 0x37738,
1625                 0x37740, 0x37740,
1626                 0x37748, 0x37750,
1627                 0x3775c, 0x37764,
1628                 0x37770, 0x377b8,
1629                 0x377c0, 0x377e4,
1630                 0x377f8, 0x377fc,
1631                 0x37814, 0x37814,
1632                 0x3782c, 0x3782c,
1633                 0x37880, 0x3788c,
1634                 0x378e8, 0x378ec,
1635                 0x37900, 0x37928,
1636                 0x37930, 0x37948,
1637                 0x37960, 0x37968,
1638                 0x37970, 0x3799c,
1639                 0x379f0, 0x37a38,
1640                 0x37a40, 0x37a40,
1641                 0x37a48, 0x37a50,
1642                 0x37a5c, 0x37a64,
1643                 0x37a70, 0x37ab8,
1644                 0x37ac0, 0x37ae4,
1645                 0x37af8, 0x37b10,
1646                 0x37b28, 0x37b28,
1647                 0x37b3c, 0x37b50,
1648                 0x37bf0, 0x37c10,
1649                 0x37c28, 0x37c28,
1650                 0x37c3c, 0x37c50,
1651                 0x37cf0, 0x37cfc,
1652                 0x38000, 0x38030,
1653                 0x38100, 0x38144,
1654                 0x38190, 0x381a0,
1655                 0x381a8, 0x381b8,
1656                 0x381c4, 0x381c8,
1657                 0x381d0, 0x381d0,
1658                 0x38200, 0x38318,
1659                 0x38400, 0x384b4,
1660                 0x384c0, 0x3852c,
1661                 0x38540, 0x3861c,
1662                 0x38800, 0x38828,
1663                 0x38834, 0x38834,
1664                 0x388c0, 0x38908,
1665                 0x38910, 0x389ac,
1666                 0x38a00, 0x38a14,
1667                 0x38a1c, 0x38a2c,
1668                 0x38a44, 0x38a50,
1669                 0x38a74, 0x38a74,
1670                 0x38a7c, 0x38afc,
1671                 0x38b08, 0x38c24,
1672                 0x38d00, 0x38d00,
1673                 0x38d08, 0x38d14,
1674                 0x38d1c, 0x38d20,
1675                 0x38d3c, 0x38d3c,
1676                 0x38d48, 0x38d50,
1677                 0x39200, 0x3920c,
1678                 0x39220, 0x39220,
1679                 0x39240, 0x39240,
1680                 0x39600, 0x3960c,
1681                 0x39a00, 0x39a1c,
1682                 0x39e00, 0x39e20,
1683                 0x39e38, 0x39e3c,
1684                 0x39e80, 0x39e80,
1685                 0x39e88, 0x39ea8,
1686                 0x39eb0, 0x39eb4,
1687                 0x39ec8, 0x39ed4,
1688                 0x39fb8, 0x3a004,
1689                 0x3a200, 0x3a200,
1690                 0x3a208, 0x3a240,
1691                 0x3a248, 0x3a280,
1692                 0x3a288, 0x3a2c0,
1693                 0x3a2c8, 0x3a2fc,
1694                 0x3a600, 0x3a630,
1695                 0x3aa00, 0x3aabc,
1696                 0x3ab00, 0x3ab10,
1697                 0x3ab20, 0x3ab30,
1698                 0x3ab40, 0x3ab50,
1699                 0x3ab60, 0x3ab70,
1700                 0x3b000, 0x3b028,
1701                 0x3b030, 0x3b048,
1702                 0x3b060, 0x3b068,
1703                 0x3b070, 0x3b09c,
1704                 0x3b0f0, 0x3b128,
1705                 0x3b130, 0x3b148,
1706                 0x3b160, 0x3b168,
1707                 0x3b170, 0x3b19c,
1708                 0x3b1f0, 0x3b238,
1709                 0x3b240, 0x3b240,
1710                 0x3b248, 0x3b250,
1711                 0x3b25c, 0x3b264,
1712                 0x3b270, 0x3b2b8,
1713                 0x3b2c0, 0x3b2e4,
1714                 0x3b2f8, 0x3b338,
1715                 0x3b340, 0x3b340,
1716                 0x3b348, 0x3b350,
1717                 0x3b35c, 0x3b364,
1718                 0x3b370, 0x3b3b8,
1719                 0x3b3c0, 0x3b3e4,
1720                 0x3b3f8, 0x3b428,
1721                 0x3b430, 0x3b448,
1722                 0x3b460, 0x3b468,
1723                 0x3b470, 0x3b49c,
1724                 0x3b4f0, 0x3b528,
1725                 0x3b530, 0x3b548,
1726                 0x3b560, 0x3b568,
1727                 0x3b570, 0x3b59c,
1728                 0x3b5f0, 0x3b638,
1729                 0x3b640, 0x3b640,
1730                 0x3b648, 0x3b650,
1731                 0x3b65c, 0x3b664,
1732                 0x3b670, 0x3b6b8,
1733                 0x3b6c0, 0x3b6e4,
1734                 0x3b6f8, 0x3b738,
1735                 0x3b740, 0x3b740,
1736                 0x3b748, 0x3b750,
1737                 0x3b75c, 0x3b764,
1738                 0x3b770, 0x3b7b8,
1739                 0x3b7c0, 0x3b7e4,
1740                 0x3b7f8, 0x3b7fc,
1741                 0x3b814, 0x3b814,
1742                 0x3b82c, 0x3b82c,
1743                 0x3b880, 0x3b88c,
1744                 0x3b8e8, 0x3b8ec,
1745                 0x3b900, 0x3b928,
1746                 0x3b930, 0x3b948,
1747                 0x3b960, 0x3b968,
1748                 0x3b970, 0x3b99c,
1749                 0x3b9f0, 0x3ba38,
1750                 0x3ba40, 0x3ba40,
1751                 0x3ba48, 0x3ba50,
1752                 0x3ba5c, 0x3ba64,
1753                 0x3ba70, 0x3bab8,
1754                 0x3bac0, 0x3bae4,
1755                 0x3baf8, 0x3bb10,
1756                 0x3bb28, 0x3bb28,
1757                 0x3bb3c, 0x3bb50,
1758                 0x3bbf0, 0x3bc10,
1759                 0x3bc28, 0x3bc28,
1760                 0x3bc3c, 0x3bc50,
1761                 0x3bcf0, 0x3bcfc,
1762                 0x3c000, 0x3c030,
1763                 0x3c100, 0x3c144,
1764                 0x3c190, 0x3c1a0,
1765                 0x3c1a8, 0x3c1b8,
1766                 0x3c1c4, 0x3c1c8,
1767                 0x3c1d0, 0x3c1d0,
1768                 0x3c200, 0x3c318,
1769                 0x3c400, 0x3c4b4,
1770                 0x3c4c0, 0x3c52c,
1771                 0x3c540, 0x3c61c,
1772                 0x3c800, 0x3c828,
1773                 0x3c834, 0x3c834,
1774                 0x3c8c0, 0x3c908,
1775                 0x3c910, 0x3c9ac,
1776                 0x3ca00, 0x3ca14,
1777                 0x3ca1c, 0x3ca2c,
1778                 0x3ca44, 0x3ca50,
1779                 0x3ca74, 0x3ca74,
1780                 0x3ca7c, 0x3cafc,
1781                 0x3cb08, 0x3cc24,
1782                 0x3cd00, 0x3cd00,
1783                 0x3cd08, 0x3cd14,
1784                 0x3cd1c, 0x3cd20,
1785                 0x3cd3c, 0x3cd3c,
1786                 0x3cd48, 0x3cd50,
1787                 0x3d200, 0x3d20c,
1788                 0x3d220, 0x3d220,
1789                 0x3d240, 0x3d240,
1790                 0x3d600, 0x3d60c,
1791                 0x3da00, 0x3da1c,
1792                 0x3de00, 0x3de20,
1793                 0x3de38, 0x3de3c,
1794                 0x3de80, 0x3de80,
1795                 0x3de88, 0x3dea8,
1796                 0x3deb0, 0x3deb4,
1797                 0x3dec8, 0x3ded4,
1798                 0x3dfb8, 0x3e004,
1799                 0x3e200, 0x3e200,
1800                 0x3e208, 0x3e240,
1801                 0x3e248, 0x3e280,
1802                 0x3e288, 0x3e2c0,
1803                 0x3e2c8, 0x3e2fc,
1804                 0x3e600, 0x3e630,
1805                 0x3ea00, 0x3eabc,
1806                 0x3eb00, 0x3eb10,
1807                 0x3eb20, 0x3eb30,
1808                 0x3eb40, 0x3eb50,
1809                 0x3eb60, 0x3eb70,
1810                 0x3f000, 0x3f028,
1811                 0x3f030, 0x3f048,
1812                 0x3f060, 0x3f068,
1813                 0x3f070, 0x3f09c,
1814                 0x3f0f0, 0x3f128,
1815                 0x3f130, 0x3f148,
1816                 0x3f160, 0x3f168,
1817                 0x3f170, 0x3f19c,
1818                 0x3f1f0, 0x3f238,
1819                 0x3f240, 0x3f240,
1820                 0x3f248, 0x3f250,
1821                 0x3f25c, 0x3f264,
1822                 0x3f270, 0x3f2b8,
1823                 0x3f2c0, 0x3f2e4,
1824                 0x3f2f8, 0x3f338,
1825                 0x3f340, 0x3f340,
1826                 0x3f348, 0x3f350,
1827                 0x3f35c, 0x3f364,
1828                 0x3f370, 0x3f3b8,
1829                 0x3f3c0, 0x3f3e4,
1830                 0x3f3f8, 0x3f428,
1831                 0x3f430, 0x3f448,
1832                 0x3f460, 0x3f468,
1833                 0x3f470, 0x3f49c,
1834                 0x3f4f0, 0x3f528,
1835                 0x3f530, 0x3f548,
1836                 0x3f560, 0x3f568,
1837                 0x3f570, 0x3f59c,
1838                 0x3f5f0, 0x3f638,
1839                 0x3f640, 0x3f640,
1840                 0x3f648, 0x3f650,
1841                 0x3f65c, 0x3f664,
1842                 0x3f670, 0x3f6b8,
1843                 0x3f6c0, 0x3f6e4,
1844                 0x3f6f8, 0x3f738,
1845                 0x3f740, 0x3f740,
1846                 0x3f748, 0x3f750,
1847                 0x3f75c, 0x3f764,
1848                 0x3f770, 0x3f7b8,
1849                 0x3f7c0, 0x3f7e4,
1850                 0x3f7f8, 0x3f7fc,
1851                 0x3f814, 0x3f814,
1852                 0x3f82c, 0x3f82c,
1853                 0x3f880, 0x3f88c,
1854                 0x3f8e8, 0x3f8ec,
1855                 0x3f900, 0x3f928,
1856                 0x3f930, 0x3f948,
1857                 0x3f960, 0x3f968,
1858                 0x3f970, 0x3f99c,
1859                 0x3f9f0, 0x3fa38,
1860                 0x3fa40, 0x3fa40,
1861                 0x3fa48, 0x3fa50,
1862                 0x3fa5c, 0x3fa64,
1863                 0x3fa70, 0x3fab8,
1864                 0x3fac0, 0x3fae4,
1865                 0x3faf8, 0x3fb10,
1866                 0x3fb28, 0x3fb28,
1867                 0x3fb3c, 0x3fb50,
1868                 0x3fbf0, 0x3fc10,
1869                 0x3fc28, 0x3fc28,
1870                 0x3fc3c, 0x3fc50,
1871                 0x3fcf0, 0x3fcfc,
1872                 0x40000, 0x4000c,
1873                 0x40040, 0x40050,
1874                 0x40060, 0x40068,
1875                 0x4007c, 0x4008c,
1876                 0x40094, 0x400b0,
1877                 0x400c0, 0x40144,
1878                 0x40180, 0x4018c,
1879                 0x40200, 0x40254,
1880                 0x40260, 0x40264,
1881                 0x40270, 0x40288,
1882                 0x40290, 0x40298,
1883                 0x402ac, 0x402c8,
1884                 0x402d0, 0x402e0,
1885                 0x402f0, 0x402f0,
1886                 0x40300, 0x4033c,
1887                 0x403f8, 0x403fc,
1888                 0x41304, 0x413c4,
1889                 0x41400, 0x4140c,
1890                 0x41414, 0x4141c,
1891                 0x41480, 0x414d0,
1892                 0x44000, 0x44054,
1893                 0x4405c, 0x44078,
1894                 0x440c0, 0x44174,
1895                 0x44180, 0x441ac,
1896                 0x441b4, 0x441b8,
1897                 0x441c0, 0x44254,
1898                 0x4425c, 0x44278,
1899                 0x442c0, 0x44374,
1900                 0x44380, 0x443ac,
1901                 0x443b4, 0x443b8,
1902                 0x443c0, 0x44454,
1903                 0x4445c, 0x44478,
1904                 0x444c0, 0x44574,
1905                 0x44580, 0x445ac,
1906                 0x445b4, 0x445b8,
1907                 0x445c0, 0x44654,
1908                 0x4465c, 0x44678,
1909                 0x446c0, 0x44774,
1910                 0x44780, 0x447ac,
1911                 0x447b4, 0x447b8,
1912                 0x447c0, 0x44854,
1913                 0x4485c, 0x44878,
1914                 0x448c0, 0x44974,
1915                 0x44980, 0x449ac,
1916                 0x449b4, 0x449b8,
1917                 0x449c0, 0x449fc,
1918                 0x45000, 0x45004,
1919                 0x45010, 0x45030,
1920                 0x45040, 0x45060,
1921                 0x45068, 0x45068,
1922                 0x45080, 0x45084,
1923                 0x450a0, 0x450b0,
1924                 0x45200, 0x45204,
1925                 0x45210, 0x45230,
1926                 0x45240, 0x45260,
1927                 0x45268, 0x45268,
1928                 0x45280, 0x45284,
1929                 0x452a0, 0x452b0,
1930                 0x460c0, 0x460e4,
1931                 0x47000, 0x4703c,
1932                 0x47044, 0x4708c,
1933                 0x47200, 0x47250,
1934                 0x47400, 0x47408,
1935                 0x47414, 0x47420,
1936                 0x47600, 0x47618,
1937                 0x47800, 0x47814,
1938                 0x48000, 0x4800c,
1939                 0x48040, 0x48050,
1940                 0x48060, 0x48068,
1941                 0x4807c, 0x4808c,
1942                 0x48094, 0x480b0,
1943                 0x480c0, 0x48144,
1944                 0x48180, 0x4818c,
1945                 0x48200, 0x48254,
1946                 0x48260, 0x48264,
1947                 0x48270, 0x48288,
1948                 0x48290, 0x48298,
1949                 0x482ac, 0x482c8,
1950                 0x482d0, 0x482e0,
1951                 0x482f0, 0x482f0,
1952                 0x48300, 0x4833c,
1953                 0x483f8, 0x483fc,
1954                 0x49304, 0x493c4,
1955                 0x49400, 0x4940c,
1956                 0x49414, 0x4941c,
1957                 0x49480, 0x494d0,
1958                 0x4c000, 0x4c054,
1959                 0x4c05c, 0x4c078,
1960                 0x4c0c0, 0x4c174,
1961                 0x4c180, 0x4c1ac,
1962                 0x4c1b4, 0x4c1b8,
1963                 0x4c1c0, 0x4c254,
1964                 0x4c25c, 0x4c278,
1965                 0x4c2c0, 0x4c374,
1966                 0x4c380, 0x4c3ac,
1967                 0x4c3b4, 0x4c3b8,
1968                 0x4c3c0, 0x4c454,
1969                 0x4c45c, 0x4c478,
1970                 0x4c4c0, 0x4c574,
1971                 0x4c580, 0x4c5ac,
1972                 0x4c5b4, 0x4c5b8,
1973                 0x4c5c0, 0x4c654,
1974                 0x4c65c, 0x4c678,
1975                 0x4c6c0, 0x4c774,
1976                 0x4c780, 0x4c7ac,
1977                 0x4c7b4, 0x4c7b8,
1978                 0x4c7c0, 0x4c854,
1979                 0x4c85c, 0x4c878,
1980                 0x4c8c0, 0x4c974,
1981                 0x4c980, 0x4c9ac,
1982                 0x4c9b4, 0x4c9b8,
1983                 0x4c9c0, 0x4c9fc,
1984                 0x4d000, 0x4d004,
1985                 0x4d010, 0x4d030,
1986                 0x4d040, 0x4d060,
1987                 0x4d068, 0x4d068,
1988                 0x4d080, 0x4d084,
1989                 0x4d0a0, 0x4d0b0,
1990                 0x4d200, 0x4d204,
1991                 0x4d210, 0x4d230,
1992                 0x4d240, 0x4d260,
1993                 0x4d268, 0x4d268,
1994                 0x4d280, 0x4d284,
1995                 0x4d2a0, 0x4d2b0,
1996                 0x4e0c0, 0x4e0e4,
1997                 0x4f000, 0x4f03c,
1998                 0x4f044, 0x4f08c,
1999                 0x4f200, 0x4f250,
2000                 0x4f400, 0x4f408,
2001                 0x4f414, 0x4f420,
2002                 0x4f600, 0x4f618,
2003                 0x4f800, 0x4f814,
2004                 0x50000, 0x50084,
2005                 0x50090, 0x500cc,
2006                 0x50400, 0x50400,
2007                 0x50800, 0x50884,
2008                 0x50890, 0x508cc,
2009                 0x50c00, 0x50c00,
2010                 0x51000, 0x5101c,
2011                 0x51300, 0x51308,
2012         };
2013
2014         static const unsigned int t5vf_reg_ranges[] = {
2015                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2016                 VF_MPS_REG(A_MPS_VF_CTL),
2017                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2018                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2019                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2020                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2021                 FW_T4VF_MBDATA_BASE_ADDR,
2022                 FW_T4VF_MBDATA_BASE_ADDR +
2023                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2024         };
2025
2026         static const unsigned int t6_reg_ranges[] = {
2027                 0x1008, 0x101c,
2028                 0x1024, 0x10a8,
2029                 0x10b4, 0x10f8,
2030                 0x1100, 0x1114,
2031                 0x111c, 0x112c,
2032                 0x1138, 0x113c,
2033                 0x1144, 0x114c,
2034                 0x1180, 0x1184,
2035                 0x1190, 0x1194,
2036                 0x11a0, 0x11a4,
2037                 0x11b0, 0x11b4,
2038                 0x11fc, 0x1274,
2039                 0x1280, 0x133c,
2040                 0x1800, 0x18fc,
2041                 0x3000, 0x302c,
2042                 0x3060, 0x30b0,
2043                 0x30b8, 0x30d8,
2044                 0x30e0, 0x30fc,
2045                 0x3140, 0x357c,
2046                 0x35a8, 0x35cc,
2047                 0x35ec, 0x35ec,
2048                 0x3600, 0x5624,
2049                 0x56cc, 0x56ec,
2050                 0x56f4, 0x5720,
2051                 0x5728, 0x575c,
2052                 0x580c, 0x5814,
2053                 0x5890, 0x589c,
2054                 0x58a4, 0x58ac,
2055                 0x58b8, 0x58bc,
2056                 0x5940, 0x595c,
2057                 0x5980, 0x598c,
2058                 0x59b0, 0x59c8,
2059                 0x59d0, 0x59dc,
2060                 0x59fc, 0x5a18,
2061                 0x5a60, 0x5a6c,
2062                 0x5a80, 0x5a8c,
2063                 0x5a94, 0x5a9c,
2064                 0x5b94, 0x5bfc,
2065                 0x5c10, 0x5e48,
2066                 0x5e50, 0x5e94,
2067                 0x5ea0, 0x5eb0,
2068                 0x5ec0, 0x5ec0,
2069                 0x5ec8, 0x5ed0,
2070                 0x5ee0, 0x5ee0,
2071                 0x5ef0, 0x5ef0,
2072                 0x5f00, 0x5f00,
2073                 0x6000, 0x6020,
2074                 0x6028, 0x6040,
2075                 0x6058, 0x609c,
2076                 0x60a8, 0x619c,
2077                 0x7700, 0x7798,
2078                 0x77c0, 0x7880,
2079                 0x78cc, 0x78fc,
2080                 0x7b00, 0x7b58,
2081                 0x7b60, 0x7b84,
2082                 0x7b8c, 0x7c54,
2083                 0x7d00, 0x7d38,
2084                 0x7d40, 0x7d84,
2085                 0x7d8c, 0x7ddc,
2086                 0x7de4, 0x7e04,
2087                 0x7e10, 0x7e1c,
2088                 0x7e24, 0x7e38,
2089                 0x7e40, 0x7e44,
2090                 0x7e4c, 0x7e78,
2091                 0x7e80, 0x7edc,
2092                 0x7ee8, 0x7efc,
2093                 0x8dc0, 0x8de4,
2094                 0x8df8, 0x8e04,
2095                 0x8e10, 0x8e84,
2096                 0x8ea0, 0x8f88,
2097                 0x8fb8, 0x9058,
2098                 0x9060, 0x9060,
2099                 0x9068, 0x90f8,
2100                 0x9100, 0x9124,
2101                 0x9400, 0x9470,
2102                 0x9600, 0x9600,
2103                 0x9608, 0x9638,
2104                 0x9640, 0x9704,
2105                 0x9710, 0x971c,
2106                 0x9800, 0x9808,
2107                 0x9820, 0x983c,
2108                 0x9850, 0x9864,
2109                 0x9c00, 0x9c6c,
2110                 0x9c80, 0x9cec,
2111                 0x9d00, 0x9d6c,
2112                 0x9d80, 0x9dec,
2113                 0x9e00, 0x9e6c,
2114                 0x9e80, 0x9eec,
2115                 0x9f00, 0x9f6c,
2116                 0x9f80, 0xa020,
2117                 0xd004, 0xd03c,
2118                 0xd100, 0xd118,
2119                 0xd200, 0xd214,
2120                 0xd220, 0xd234,
2121                 0xd240, 0xd254,
2122                 0xd260, 0xd274,
2123                 0xd280, 0xd294,
2124                 0xd2a0, 0xd2b4,
2125                 0xd2c0, 0xd2d4,
2126                 0xd2e0, 0xd2f4,
2127                 0xd300, 0xd31c,
2128                 0xdfc0, 0xdfe0,
2129                 0xe000, 0xf008,
2130                 0xf010, 0xf018,
2131                 0xf020, 0xf028,
2132                 0x11000, 0x11014,
2133                 0x11048, 0x1106c,
2134                 0x11074, 0x11088,
2135                 0x11098, 0x11120,
2136                 0x1112c, 0x1117c,
2137                 0x11190, 0x112e0,
2138                 0x11300, 0x1130c,
2139                 0x12000, 0x1206c,
2140                 0x19040, 0x1906c,
2141                 0x19078, 0x19080,
2142                 0x1908c, 0x190e8,
2143                 0x190f0, 0x190f8,
2144                 0x19100, 0x19110,
2145                 0x19120, 0x19124,
2146                 0x19150, 0x19194,
2147                 0x1919c, 0x191b0,
2148                 0x191d0, 0x191e8,
2149                 0x19238, 0x19290,
2150                 0x192a4, 0x192b0,
2151                 0x192bc, 0x192bc,
2152                 0x19348, 0x1934c,
2153                 0x193f8, 0x19418,
2154                 0x19420, 0x19428,
2155                 0x19430, 0x19444,
2156                 0x1944c, 0x1946c,
2157                 0x19474, 0x19474,
2158                 0x19490, 0x194cc,
2159                 0x194f0, 0x194f8,
2160                 0x19c00, 0x19c48,
2161                 0x19c50, 0x19c80,
2162                 0x19c94, 0x19c98,
2163                 0x19ca0, 0x19cbc,
2164                 0x19ce4, 0x19ce4,
2165                 0x19cf0, 0x19cf8,
2166                 0x19d00, 0x19d28,
2167                 0x19d50, 0x19d78,
2168                 0x19d94, 0x19d98,
2169                 0x19da0, 0x19dc8,
2170                 0x19df0, 0x19e10,
2171                 0x19e50, 0x19e6c,
2172                 0x19ea0, 0x19ebc,
2173                 0x19ec4, 0x19ef4,
2174                 0x19f04, 0x19f2c,
2175                 0x19f34, 0x19f34,
2176                 0x19f40, 0x19f50,
2177                 0x19f90, 0x19fac,
2178                 0x19fc4, 0x19fc8,
2179                 0x19fd0, 0x19fe4,
2180                 0x1a000, 0x1a004,
2181                 0x1a010, 0x1a06c,
2182                 0x1a0b0, 0x1a0e4,
2183                 0x1a0ec, 0x1a0f8,
2184                 0x1a100, 0x1a108,
2185                 0x1a114, 0x1a120,
2186                 0x1a128, 0x1a130,
2187                 0x1a138, 0x1a138,
2188                 0x1a190, 0x1a1c4,
2189                 0x1a1fc, 0x1a1fc,
2190                 0x1e008, 0x1e00c,
2191                 0x1e040, 0x1e044,
2192                 0x1e04c, 0x1e04c,
2193                 0x1e284, 0x1e290,
2194                 0x1e2c0, 0x1e2c0,
2195                 0x1e2e0, 0x1e2e0,
2196                 0x1e300, 0x1e384,
2197                 0x1e3c0, 0x1e3c8,
2198                 0x1e408, 0x1e40c,
2199                 0x1e440, 0x1e444,
2200                 0x1e44c, 0x1e44c,
2201                 0x1e684, 0x1e690,
2202                 0x1e6c0, 0x1e6c0,
2203                 0x1e6e0, 0x1e6e0,
2204                 0x1e700, 0x1e784,
2205                 0x1e7c0, 0x1e7c8,
2206                 0x1e808, 0x1e80c,
2207                 0x1e840, 0x1e844,
2208                 0x1e84c, 0x1e84c,
2209                 0x1ea84, 0x1ea90,
2210                 0x1eac0, 0x1eac0,
2211                 0x1eae0, 0x1eae0,
2212                 0x1eb00, 0x1eb84,
2213                 0x1ebc0, 0x1ebc8,
2214                 0x1ec08, 0x1ec0c,
2215                 0x1ec40, 0x1ec44,
2216                 0x1ec4c, 0x1ec4c,
2217                 0x1ee84, 0x1ee90,
2218                 0x1eec0, 0x1eec0,
2219                 0x1eee0, 0x1eee0,
2220                 0x1ef00, 0x1ef84,
2221                 0x1efc0, 0x1efc8,
2222                 0x1f008, 0x1f00c,
2223                 0x1f040, 0x1f044,
2224                 0x1f04c, 0x1f04c,
2225                 0x1f284, 0x1f290,
2226                 0x1f2c0, 0x1f2c0,
2227                 0x1f2e0, 0x1f2e0,
2228                 0x1f300, 0x1f384,
2229                 0x1f3c0, 0x1f3c8,
2230                 0x1f408, 0x1f40c,
2231                 0x1f440, 0x1f444,
2232                 0x1f44c, 0x1f44c,
2233                 0x1f684, 0x1f690,
2234                 0x1f6c0, 0x1f6c0,
2235                 0x1f6e0, 0x1f6e0,
2236                 0x1f700, 0x1f784,
2237                 0x1f7c0, 0x1f7c8,
2238                 0x1f808, 0x1f80c,
2239                 0x1f840, 0x1f844,
2240                 0x1f84c, 0x1f84c,
2241                 0x1fa84, 0x1fa90,
2242                 0x1fac0, 0x1fac0,
2243                 0x1fae0, 0x1fae0,
2244                 0x1fb00, 0x1fb84,
2245                 0x1fbc0, 0x1fbc8,
2246                 0x1fc08, 0x1fc0c,
2247                 0x1fc40, 0x1fc44,
2248                 0x1fc4c, 0x1fc4c,
2249                 0x1fe84, 0x1fe90,
2250                 0x1fec0, 0x1fec0,
2251                 0x1fee0, 0x1fee0,
2252                 0x1ff00, 0x1ff84,
2253                 0x1ffc0, 0x1ffc8,
2254                 0x30000, 0x30030,
2255                 0x30100, 0x30168,
2256                 0x30190, 0x301a0,
2257                 0x301a8, 0x301b8,
2258                 0x301c4, 0x301c8,
2259                 0x301d0, 0x301d0,
2260                 0x30200, 0x30320,
2261                 0x30400, 0x304b4,
2262                 0x304c0, 0x3052c,
2263                 0x30540, 0x3061c,
2264                 0x30800, 0x308a0,
2265                 0x308c0, 0x30908,
2266                 0x30910, 0x309b8,
2267                 0x30a00, 0x30a04,
2268                 0x30a0c, 0x30a14,
2269                 0x30a1c, 0x30a2c,
2270                 0x30a44, 0x30a50,
2271                 0x30a74, 0x30a74,
2272                 0x30a7c, 0x30afc,
2273                 0x30b08, 0x30c24,
2274                 0x30d00, 0x30d14,
2275                 0x30d1c, 0x30d3c,
2276                 0x30d44, 0x30d4c,
2277                 0x30d54, 0x30d74,
2278                 0x30d7c, 0x30d7c,
2279                 0x30de0, 0x30de0,
2280                 0x30e00, 0x30ed4,
2281                 0x30f00, 0x30fa4,
2282                 0x30fc0, 0x30fc4,
2283                 0x31000, 0x31004,
2284                 0x31080, 0x310fc,
2285                 0x31208, 0x31220,
2286                 0x3123c, 0x31254,
2287                 0x31300, 0x31300,
2288                 0x31308, 0x3131c,
2289                 0x31338, 0x3133c,
2290                 0x31380, 0x31380,
2291                 0x31388, 0x313a8,
2292                 0x313b4, 0x313b4,
2293                 0x31400, 0x31420,
2294                 0x31438, 0x3143c,
2295                 0x31480, 0x31480,
2296                 0x314a8, 0x314a8,
2297                 0x314b0, 0x314b4,
2298                 0x314c8, 0x314d4,
2299                 0x31a40, 0x31a4c,
2300                 0x31af0, 0x31b20,
2301                 0x31b38, 0x31b3c,
2302                 0x31b80, 0x31b80,
2303                 0x31ba8, 0x31ba8,
2304                 0x31bb0, 0x31bb4,
2305                 0x31bc8, 0x31bd4,
2306                 0x32140, 0x3218c,
2307                 0x321f0, 0x321f4,
2308                 0x32200, 0x32200,
2309                 0x32218, 0x32218,
2310                 0x32400, 0x32400,
2311                 0x32408, 0x3241c,
2312                 0x32618, 0x32620,
2313                 0x32664, 0x32664,
2314                 0x326a8, 0x326a8,
2315                 0x326ec, 0x326ec,
2316                 0x32a00, 0x32abc,
2317                 0x32b00, 0x32b18,
2318                 0x32b20, 0x32b38,
2319                 0x32b40, 0x32b58,
2320                 0x32b60, 0x32b78,
2321                 0x32c00, 0x32c00,
2322                 0x32c08, 0x32c3c,
2323                 0x33000, 0x3302c,
2324                 0x33034, 0x33050,
2325                 0x33058, 0x33058,
2326                 0x33060, 0x3308c,
2327                 0x3309c, 0x330ac,
2328                 0x330c0, 0x330c0,
2329                 0x330c8, 0x330d0,
2330                 0x330d8, 0x330e0,
2331                 0x330ec, 0x3312c,
2332                 0x33134, 0x33150,
2333                 0x33158, 0x33158,
2334                 0x33160, 0x3318c,
2335                 0x3319c, 0x331ac,
2336                 0x331c0, 0x331c0,
2337                 0x331c8, 0x331d0,
2338                 0x331d8, 0x331e0,
2339                 0x331ec, 0x33290,
2340                 0x33298, 0x332c4,
2341                 0x332e4, 0x33390,
2342                 0x33398, 0x333c4,
2343                 0x333e4, 0x3342c,
2344                 0x33434, 0x33450,
2345                 0x33458, 0x33458,
2346                 0x33460, 0x3348c,
2347                 0x3349c, 0x334ac,
2348                 0x334c0, 0x334c0,
2349                 0x334c8, 0x334d0,
2350                 0x334d8, 0x334e0,
2351                 0x334ec, 0x3352c,
2352                 0x33534, 0x33550,
2353                 0x33558, 0x33558,
2354                 0x33560, 0x3358c,
2355                 0x3359c, 0x335ac,
2356                 0x335c0, 0x335c0,
2357                 0x335c8, 0x335d0,
2358                 0x335d8, 0x335e0,
2359                 0x335ec, 0x33690,
2360                 0x33698, 0x336c4,
2361                 0x336e4, 0x33790,
2362                 0x33798, 0x337c4,
2363                 0x337e4, 0x337fc,
2364                 0x33814, 0x33814,
2365                 0x33854, 0x33868,
2366                 0x33880, 0x3388c,
2367                 0x338c0, 0x338d0,
2368                 0x338e8, 0x338ec,
2369                 0x33900, 0x3392c,
2370                 0x33934, 0x33950,
2371                 0x33958, 0x33958,
2372                 0x33960, 0x3398c,
2373                 0x3399c, 0x339ac,
2374                 0x339c0, 0x339c0,
2375                 0x339c8, 0x339d0,
2376                 0x339d8, 0x339e0,
2377                 0x339ec, 0x33a90,
2378                 0x33a98, 0x33ac4,
2379                 0x33ae4, 0x33b10,
2380                 0x33b24, 0x33b28,
2381                 0x33b38, 0x33b50,
2382                 0x33bf0, 0x33c10,
2383                 0x33c24, 0x33c28,
2384                 0x33c38, 0x33c50,
2385                 0x33cf0, 0x33cfc,
2386                 0x34000, 0x34030,
2387                 0x34100, 0x34168,
2388                 0x34190, 0x341a0,
2389                 0x341a8, 0x341b8,
2390                 0x341c4, 0x341c8,
2391                 0x341d0, 0x341d0,
2392                 0x34200, 0x34320,
2393                 0x34400, 0x344b4,
2394                 0x344c0, 0x3452c,
2395                 0x34540, 0x3461c,
2396                 0x34800, 0x348a0,
2397                 0x348c0, 0x34908,
2398                 0x34910, 0x349b8,
2399                 0x34a00, 0x34a04,
2400                 0x34a0c, 0x34a14,
2401                 0x34a1c, 0x34a2c,
2402                 0x34a44, 0x34a50,
2403                 0x34a74, 0x34a74,
2404                 0x34a7c, 0x34afc,
2405                 0x34b08, 0x34c24,
2406                 0x34d00, 0x34d14,
2407                 0x34d1c, 0x34d3c,
2408                 0x34d44, 0x34d4c,
2409                 0x34d54, 0x34d74,
2410                 0x34d7c, 0x34d7c,
2411                 0x34de0, 0x34de0,
2412                 0x34e00, 0x34ed4,
2413                 0x34f00, 0x34fa4,
2414                 0x34fc0, 0x34fc4,
2415                 0x35000, 0x35004,
2416                 0x35080, 0x350fc,
2417                 0x35208, 0x35220,
2418                 0x3523c, 0x35254,
2419                 0x35300, 0x35300,
2420                 0x35308, 0x3531c,
2421                 0x35338, 0x3533c,
2422                 0x35380, 0x35380,
2423                 0x35388, 0x353a8,
2424                 0x353b4, 0x353b4,
2425                 0x35400, 0x35420,
2426                 0x35438, 0x3543c,
2427                 0x35480, 0x35480,
2428                 0x354a8, 0x354a8,
2429                 0x354b0, 0x354b4,
2430                 0x354c8, 0x354d4,
2431                 0x35a40, 0x35a4c,
2432                 0x35af0, 0x35b20,
2433                 0x35b38, 0x35b3c,
2434                 0x35b80, 0x35b80,
2435                 0x35ba8, 0x35ba8,
2436                 0x35bb0, 0x35bb4,
2437                 0x35bc8, 0x35bd4,
2438                 0x36140, 0x3618c,
2439                 0x361f0, 0x361f4,
2440                 0x36200, 0x36200,
2441                 0x36218, 0x36218,
2442                 0x36400, 0x36400,
2443                 0x36408, 0x3641c,
2444                 0x36618, 0x36620,
2445                 0x36664, 0x36664,
2446                 0x366a8, 0x366a8,
2447                 0x366ec, 0x366ec,
2448                 0x36a00, 0x36abc,
2449                 0x36b00, 0x36b18,
2450                 0x36b20, 0x36b38,
2451                 0x36b40, 0x36b58,
2452                 0x36b60, 0x36b78,
2453                 0x36c00, 0x36c00,
2454                 0x36c08, 0x36c3c,
2455                 0x37000, 0x3702c,
2456                 0x37034, 0x37050,
2457                 0x37058, 0x37058,
2458                 0x37060, 0x3708c,
2459                 0x3709c, 0x370ac,
2460                 0x370c0, 0x370c0,
2461                 0x370c8, 0x370d0,
2462                 0x370d8, 0x370e0,
2463                 0x370ec, 0x3712c,
2464                 0x37134, 0x37150,
2465                 0x37158, 0x37158,
2466                 0x37160, 0x3718c,
2467                 0x3719c, 0x371ac,
2468                 0x371c0, 0x371c0,
2469                 0x371c8, 0x371d0,
2470                 0x371d8, 0x371e0,
2471                 0x371ec, 0x37290,
2472                 0x37298, 0x372c4,
2473                 0x372e4, 0x37390,
2474                 0x37398, 0x373c4,
2475                 0x373e4, 0x3742c,
2476                 0x37434, 0x37450,
2477                 0x37458, 0x37458,
2478                 0x37460, 0x3748c,
2479                 0x3749c, 0x374ac,
2480                 0x374c0, 0x374c0,
2481                 0x374c8, 0x374d0,
2482                 0x374d8, 0x374e0,
2483                 0x374ec, 0x3752c,
2484                 0x37534, 0x37550,
2485                 0x37558, 0x37558,
2486                 0x37560, 0x3758c,
2487                 0x3759c, 0x375ac,
2488                 0x375c0, 0x375c0,
2489                 0x375c8, 0x375d0,
2490                 0x375d8, 0x375e0,
2491                 0x375ec, 0x37690,
2492                 0x37698, 0x376c4,
2493                 0x376e4, 0x37790,
2494                 0x37798, 0x377c4,
2495                 0x377e4, 0x377fc,
2496                 0x37814, 0x37814,
2497                 0x37854, 0x37868,
2498                 0x37880, 0x3788c,
2499                 0x378c0, 0x378d0,
2500                 0x378e8, 0x378ec,
2501                 0x37900, 0x3792c,
2502                 0x37934, 0x37950,
2503                 0x37958, 0x37958,
2504                 0x37960, 0x3798c,
2505                 0x3799c, 0x379ac,
2506                 0x379c0, 0x379c0,
2507                 0x379c8, 0x379d0,
2508                 0x379d8, 0x379e0,
2509                 0x379ec, 0x37a90,
2510                 0x37a98, 0x37ac4,
2511                 0x37ae4, 0x37b10,
2512                 0x37b24, 0x37b28,
2513                 0x37b38, 0x37b50,
2514                 0x37bf0, 0x37c10,
2515                 0x37c24, 0x37c28,
2516                 0x37c38, 0x37c50,
2517                 0x37cf0, 0x37cfc,
2518                 0x40040, 0x40040,
2519                 0x40080, 0x40084,
2520                 0x40100, 0x40100,
2521                 0x40140, 0x401bc,
2522                 0x40200, 0x40214,
2523                 0x40228, 0x40228,
2524                 0x40240, 0x40258,
2525                 0x40280, 0x40280,
2526                 0x40304, 0x40304,
2527                 0x40330, 0x4033c,
2528                 0x41304, 0x413c8,
2529                 0x413d0, 0x413dc,
2530                 0x413f0, 0x413f0,
2531                 0x41400, 0x4140c,
2532                 0x41414, 0x4141c,
2533                 0x41480, 0x414d0,
2534                 0x44000, 0x4407c,
2535                 0x440c0, 0x441ac,
2536                 0x441b4, 0x4427c,
2537                 0x442c0, 0x443ac,
2538                 0x443b4, 0x4447c,
2539                 0x444c0, 0x445ac,
2540                 0x445b4, 0x4467c,
2541                 0x446c0, 0x447ac,
2542                 0x447b4, 0x4487c,
2543                 0x448c0, 0x449ac,
2544                 0x449b4, 0x44a7c,
2545                 0x44ac0, 0x44bac,
2546                 0x44bb4, 0x44c7c,
2547                 0x44cc0, 0x44dac,
2548                 0x44db4, 0x44e7c,
2549                 0x44ec0, 0x44fac,
2550                 0x44fb4, 0x4507c,
2551                 0x450c0, 0x451ac,
2552                 0x451b4, 0x451fc,
2553                 0x45800, 0x45804,
2554                 0x45810, 0x45830,
2555                 0x45840, 0x45860,
2556                 0x45868, 0x45868,
2557                 0x45880, 0x45884,
2558                 0x458a0, 0x458b0,
2559                 0x45a00, 0x45a04,
2560                 0x45a10, 0x45a30,
2561                 0x45a40, 0x45a60,
2562                 0x45a68, 0x45a68,
2563                 0x45a80, 0x45a84,
2564                 0x45aa0, 0x45ab0,
2565                 0x460c0, 0x460e4,
2566                 0x47000, 0x4703c,
2567                 0x47044, 0x4708c,
2568                 0x47200, 0x47250,
2569                 0x47400, 0x47408,
2570                 0x47414, 0x47420,
2571                 0x47600, 0x47618,
2572                 0x47800, 0x47814,
2573                 0x47820, 0x4782c,
2574                 0x50000, 0x50084,
2575                 0x50090, 0x500cc,
2576                 0x50300, 0x50384,
2577                 0x50400, 0x50400,
2578                 0x50800, 0x50884,
2579                 0x50890, 0x508cc,
2580                 0x50b00, 0x50b84,
2581                 0x50c00, 0x50c00,
2582                 0x51000, 0x51020,
2583                 0x51028, 0x510b0,
2584                 0x51300, 0x51324,
2585         };
2586
2587         static const unsigned int t6vf_reg_ranges[] = {
2588                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2589                 VF_MPS_REG(A_MPS_VF_CTL),
2590                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2591                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2592                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2593                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2594                 FW_T6VF_MBDATA_BASE_ADDR,
2595                 FW_T6VF_MBDATA_BASE_ADDR +
2596                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2597         };
2598
2599         u32 *buf_end = (u32 *)(buf + buf_size);
2600         const unsigned int *reg_ranges;
2601         int reg_ranges_size, range;
2602         unsigned int chip_version = chip_id(adap);
2603
2604         /*
2605          * Select the right set of register ranges to dump depending on the
2606          * adapter chip type.
2607          */
2608         switch (chip_version) {
2609         case CHELSIO_T4:
2610                 if (adap->flags & IS_VF) {
2611                         reg_ranges = t4vf_reg_ranges;
2612                         reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2613                 } else {
2614                         reg_ranges = t4_reg_ranges;
2615                         reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2616                 }
2617                 break;
2618
2619         case CHELSIO_T5:
2620                 if (adap->flags & IS_VF) {
2621                         reg_ranges = t5vf_reg_ranges;
2622                         reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2623                 } else {
2624                         reg_ranges = t5_reg_ranges;
2625                         reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2626                 }
2627                 break;
2628
2629         case CHELSIO_T6:
2630                 if (adap->flags & IS_VF) {
2631                         reg_ranges = t6vf_reg_ranges;
2632                         reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2633                 } else {
2634                         reg_ranges = t6_reg_ranges;
2635                         reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2636                 }
2637                 break;
2638
2639         default:
2640                 CH_ERR(adap,
2641                         "Unsupported chip version %d\n", chip_version);
2642                 return;
2643         }
2644
2645         /*
2646          * Clear the register buffer and insert the appropriate register
2647          * values selected by the above register ranges.
2648          */
2649         memset(buf, 0, buf_size);
2650         for (range = 0; range < reg_ranges_size; range += 2) {
2651                 unsigned int reg = reg_ranges[range];
2652                 unsigned int last_reg = reg_ranges[range + 1];
2653                 u32 *bufp = (u32 *)(buf + reg);
2654
2655                 /*
2656                  * Iterate across the register range filling in the register
2657                  * buffer but don't write past the end of the register buffer.
2658                  */
2659                 while (reg <= last_reg && bufp < buf_end) {
2660                         *bufp++ = t4_read_reg(adap, reg);
2661                         reg += sizeof(u32);
2662                 }
2663         }
2664 }
2665
2666 /*
2667  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2668  * VPD-R sections.
2669  */
2670 struct t4_vpd_hdr {
2671         u8  id_tag;
2672         u8  id_len[2];
2673         u8  id_data[ID_LEN];
2674         u8  vpdr_tag;
2675         u8  vpdr_len[2];
2676 };
2677
2678 /*
2679  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2680  */
2681 #define EEPROM_DELAY            10              /* 10us per poll spin */
2682 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
2683
2684 #define EEPROM_STAT_ADDR        0x7bfc
2685 #define VPD_SIZE                0x800
2686 #define VPD_BASE                0x400
2687 #define VPD_BASE_OLD            0
2688 #define VPD_LEN                 1024
2689 #define VPD_INFO_FLD_HDR_SIZE   3
2690 #define CHELSIO_VPD_UNIQUE_ID   0x82
2691
2692 /*
2693  * Small utility function to wait till any outstanding VPD Access is complete.
2694  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2695  * VPD Access in flight.  This allows us to handle the problem of having a
2696  * previous VPD Access time out and prevent an attempt to inject a new VPD
2697  * Request before any in-flight VPD reguest has completed.
2698  */
2699 static int t4_seeprom_wait(struct adapter *adapter)
2700 {
2701         unsigned int base = adapter->params.pci.vpd_cap_addr;
2702         int max_poll;
2703
2704         /*
2705          * If no VPD Access is in flight, we can just return success right
2706          * away.
2707          */
2708         if (!adapter->vpd_busy)
2709                 return 0;
2710
2711         /*
2712          * Poll the VPD Capability Address/Flag register waiting for it
2713          * to indicate that the operation is complete.
2714          */
2715         max_poll = EEPROM_MAX_POLL;
2716         do {
2717                 u16 val;
2718
2719                 udelay(EEPROM_DELAY);
2720                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2721
2722                 /*
2723                  * If the operation is complete, mark the VPD as no longer
2724                  * busy and return success.
2725                  */
2726                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2727                         adapter->vpd_busy = 0;
2728                         return 0;
2729                 }
2730         } while (--max_poll);
2731
2732         /*
2733          * Failure!  Note that we leave the VPD Busy status set in order to
2734          * avoid pushing a new VPD Access request into the VPD Capability till
2735          * the current operation eventually succeeds.  It's a bug to issue a
2736          * new request when an existing request is in flight and will result
2737          * in corrupt hardware state.
2738          */
2739         return -ETIMEDOUT;
2740 }
2741
2742 /**
2743  *      t4_seeprom_read - read a serial EEPROM location
2744  *      @adapter: adapter to read
2745  *      @addr: EEPROM virtual address
2746  *      @data: where to store the read data
2747  *
2748  *      Read a 32-bit word from a location in serial EEPROM using the card's PCI
2749  *      VPD capability.  Note that this function must be called with a virtual
2750  *      address.
2751  */
2752 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2753 {
2754         unsigned int base = adapter->params.pci.vpd_cap_addr;
2755         int ret;
2756
2757         /*
2758          * VPD Accesses must alway be 4-byte aligned!
2759          */
2760         if (addr >= EEPROMVSIZE || (addr & 3))
2761                 return -EINVAL;
2762
2763         /*
2764          * Wait for any previous operation which may still be in flight to
2765          * complete.
2766          */
2767         ret = t4_seeprom_wait(adapter);
2768         if (ret) {
2769                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2770                 return ret;
2771         }
2772
2773         /*
2774          * Issue our new VPD Read request, mark the VPD as being busy and wait
2775          * for our request to complete.  If it doesn't complete, note the
2776          * error and return it to our caller.  Note that we do not reset the
2777          * VPD Busy status!
2778          */
2779         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2780         adapter->vpd_busy = 1;
2781         adapter->vpd_flag = PCI_VPD_ADDR_F;
2782         ret = t4_seeprom_wait(adapter);
2783         if (ret) {
2784                 CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2785                 return ret;
2786         }
2787
2788         /*
2789          * Grab the returned data, swizzle it into our endianness and
2790          * return success.
2791          */
2792         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2793         *data = le32_to_cpu(*data);
2794         return 0;
2795 }
2796
2797 /**
2798  *      t4_seeprom_write - write a serial EEPROM location
2799  *      @adapter: adapter to write
2800  *      @addr: virtual EEPROM address
2801  *      @data: value to write
2802  *
2803  *      Write a 32-bit word to a location in serial EEPROM using the card's PCI
2804  *      VPD capability.  Note that this function must be called with a virtual
2805  *      address.
2806  */
2807 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2808 {
2809         unsigned int base = adapter->params.pci.vpd_cap_addr;
2810         int ret;
2811         u32 stats_reg;
2812         int max_poll;
2813
2814         /*
2815          * VPD Accesses must alway be 4-byte aligned!
2816          */
2817         if (addr >= EEPROMVSIZE || (addr & 3))
2818                 return -EINVAL;
2819
2820         /*
2821          * Wait for any previous operation which may still be in flight to
2822          * complete.
2823          */
2824         ret = t4_seeprom_wait(adapter);
2825         if (ret) {
2826                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2827                 return ret;
2828         }
2829
2830         /*
2831          * Issue our new VPD Read request, mark the VPD as being busy and wait
2832          * for our request to complete.  If it doesn't complete, note the
2833          * error and return it to our caller.  Note that we do not reset the
2834          * VPD Busy status!
2835          */
2836         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2837                                  cpu_to_le32(data));
2838         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2839                                  (u16)addr | PCI_VPD_ADDR_F);
2840         adapter->vpd_busy = 1;
2841         adapter->vpd_flag = 0;
2842         ret = t4_seeprom_wait(adapter);
2843         if (ret) {
2844                 CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2845                 return ret;
2846         }
2847
2848         /*
2849          * Reset PCI_VPD_DATA register after a transaction and wait for our
2850          * request to complete. If it doesn't complete, return error.
2851          */
2852         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2853         max_poll = EEPROM_MAX_POLL;
2854         do {
2855                 udelay(EEPROM_DELAY);
2856                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2857         } while ((stats_reg & 0x1) && --max_poll);
2858         if (!max_poll)
2859                 return -ETIMEDOUT;
2860
2861         /* Return success! */
2862         return 0;
2863 }
2864
2865 /**
2866  *      t4_eeprom_ptov - translate a physical EEPROM address to virtual
2867  *      @phys_addr: the physical EEPROM address
2868  *      @fn: the PCI function number
2869  *      @sz: size of function-specific area
2870  *
2871  *      Translate a physical EEPROM address to virtual.  The first 1K is
2872  *      accessed through virtual addresses starting at 31K, the rest is
2873  *      accessed through virtual addresses starting at 0.
2874  *
2875  *      The mapping is as follows:
2876  *      [0..1K) -> [31K..32K)
2877  *      [1K..1K+A) -> [ES-A..ES)
2878  *      [1K+A..ES) -> [0..ES-A-1K)
2879  *
2880  *      where A = @fn * @sz, and ES = EEPROM size.
2881  */
2882 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2883 {
2884         fn *= sz;
2885         if (phys_addr < 1024)
2886                 return phys_addr + (31 << 10);
2887         if (phys_addr < 1024 + fn)
2888                 return EEPROMSIZE - fn + phys_addr - 1024;
2889         if (phys_addr < EEPROMSIZE)
2890                 return phys_addr - 1024 - fn;
2891         return -EINVAL;
2892 }
2893
2894 /**
2895  *      t4_seeprom_wp - enable/disable EEPROM write protection
2896  *      @adapter: the adapter
2897  *      @enable: whether to enable or disable write protection
2898  *
2899  *      Enables or disables write protection on the serial EEPROM.
2900  */
2901 int t4_seeprom_wp(struct adapter *adapter, int enable)
2902 {
2903         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2904 }
2905
2906 /**
2907  *      get_vpd_keyword_val - Locates an information field keyword in the VPD
2908  *      @v: Pointer to buffered vpd data structure
2909  *      @kw: The keyword to search for
2910  *
2911  *      Returns the value of the information field keyword or
2912  *      -ENOENT otherwise.
2913  */
2914 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2915 {
2916         int i;
2917         unsigned int offset , len;
2918         const u8 *buf = (const u8 *)v;
2919         const u8 *vpdr_len = &v->vpdr_len[0];
2920         offset = sizeof(struct t4_vpd_hdr);
2921         len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2922
2923         if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2924                 return -ENOENT;
2925         }
2926
2927         for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2928                 if(memcmp(buf + i , kw , 2) == 0){
2929                         i += VPD_INFO_FLD_HDR_SIZE;
2930                         return i;
2931                 }
2932
2933                 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2934         }
2935
2936         return -ENOENT;
2937 }
2938
2939
2940 /**
2941  *      get_vpd_params - read VPD parameters from VPD EEPROM
2942  *      @adapter: adapter to read
2943  *      @p: where to store the parameters
2944  *      @vpd: caller provided temporary space to read the VPD into
2945  *
2946  *      Reads card parameters stored in VPD EEPROM.
2947  */
2948 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2949     u8 *vpd)
2950 {
2951         int i, ret, addr;
2952         int ec, sn, pn, na;
2953         u8 csum;
2954         const struct t4_vpd_hdr *v;
2955
2956         /*
2957          * Card information normally starts at VPD_BASE but early cards had
2958          * it at 0.
2959          */
2960         ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2961         if (ret)
2962                 return (ret);
2963
2964         /*
2965          * The VPD shall have a unique identifier specified by the PCI SIG.
2966          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2967          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2968          * is expected to automatically put this entry at the
2969          * beginning of the VPD.
2970          */
2971         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2972
2973         for (i = 0; i < VPD_LEN; i += 4) {
2974                 ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2975                 if (ret)
2976                         return ret;
2977         }
2978         v = (const struct t4_vpd_hdr *)vpd;
2979
2980 #define FIND_VPD_KW(var,name) do { \
2981         var = get_vpd_keyword_val(v , name); \
2982         if (var < 0) { \
2983                 CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2984                 return -EINVAL; \
2985         } \
2986 } while (0)
2987
2988         FIND_VPD_KW(i, "RV");
2989         for (csum = 0; i >= 0; i--)
2990                 csum += vpd[i];
2991
2992         if (csum) {
2993                 CH_ERR(adapter,
2994                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2995                 return -EINVAL;
2996         }
2997
2998         FIND_VPD_KW(ec, "EC");
2999         FIND_VPD_KW(sn, "SN");
3000         FIND_VPD_KW(pn, "PN");
3001         FIND_VPD_KW(na, "NA");
3002 #undef FIND_VPD_KW
3003
3004         memcpy(p->id, v->id_data, ID_LEN);
3005         strstrip(p->id);
3006         memcpy(p->ec, vpd + ec, EC_LEN);
3007         strstrip(p->ec);
3008         i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3009         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3010         strstrip(p->sn);
3011         i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3012         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3013         strstrip((char *)p->pn);
3014         i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3015         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3016         strstrip((char *)p->na);
3017
3018         return 0;
3019 }
3020
3021 /* serial flash and firmware constants and flash config file constants */
3022 enum {
3023         SF_ATTEMPTS = 10,       /* max retries for SF operations */
3024
3025         /* flash command opcodes */
3026         SF_PROG_PAGE    = 2,    /* program 256B page */
3027         SF_WR_DISABLE   = 4,    /* disable writes */
3028         SF_RD_STATUS    = 5,    /* read status register */
3029         SF_WR_ENABLE    = 6,    /* enable writes */
3030         SF_RD_DATA_FAST = 0xb,  /* read flash */
3031         SF_RD_ID        = 0x9f, /* read ID */
3032         SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */
3033 };
3034
3035 /**
3036  *      sf1_read - read data from the serial flash
3037  *      @adapter: the adapter
3038  *      @byte_cnt: number of bytes to read
3039  *      @cont: whether another operation will be chained
3040  *      @lock: whether to lock SF for PL access only
3041  *      @valp: where to store the read data
3042  *
3043  *      Reads up to 4 bytes of data from the serial flash.  The location of
3044  *      the read needs to be specified prior to calling this by issuing the
3045  *      appropriate commands to the serial flash.
3046  */
3047 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3048                     int lock, u32 *valp)
3049 {
3050         int ret;
3051
3052         if (!byte_cnt || byte_cnt > 4)
3053                 return -EINVAL;
3054         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3055                 return -EBUSY;
3056         t4_write_reg(adapter, A_SF_OP,
3057                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3058         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3059         if (!ret)
3060                 *valp = t4_read_reg(adapter, A_SF_DATA);
3061         return ret;
3062 }
3063
3064 /**
3065  *      sf1_write - write data to the serial flash
3066  *      @adapter: the adapter
3067  *      @byte_cnt: number of bytes to write
3068  *      @cont: whether another operation will be chained
3069  *      @lock: whether to lock SF for PL access only
3070  *      @val: value to write
3071  *
3072  *      Writes up to 4 bytes of data to the serial flash.  The location of
3073  *      the write needs to be specified prior to calling this by issuing the
3074  *      appropriate commands to the serial flash.
3075  */
3076 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3077                      int lock, u32 val)
3078 {
3079         if (!byte_cnt || byte_cnt > 4)
3080                 return -EINVAL;
3081         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3082                 return -EBUSY;
3083         t4_write_reg(adapter, A_SF_DATA, val);
3084         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3085                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3086         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3087 }
3088
3089 /**
3090  *      flash_wait_op - wait for a flash operation to complete
3091  *      @adapter: the adapter
3092  *      @attempts: max number of polls of the status register
3093  *      @delay: delay between polls in ms
3094  *
3095  *      Wait for a flash operation to complete by polling the status register.
3096  */
3097 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3098 {
3099         int ret;
3100         u32 status;
3101
3102         while (1) {
3103                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3104                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3105                         return ret;
3106                 if (!(status & 1))
3107                         return 0;
3108                 if (--attempts == 0)
3109                         return -EAGAIN;
3110                 if (delay)
3111                         msleep(delay);
3112         }
3113 }
3114
3115 /**
3116  *      t4_read_flash - read words from serial flash
3117  *      @adapter: the adapter
3118  *      @addr: the start address for the read
3119  *      @nwords: how many 32-bit words to read
3120  *      @data: where to store the read data
3121  *      @byte_oriented: whether to store data as bytes or as words
3122  *
3123  *      Read the specified number of 32-bit words from the serial flash.
3124  *      If @byte_oriented is set the read data is stored as a byte array
3125  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3126  *      natural endianness.
3127  */
3128 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3129                   unsigned int nwords, u32 *data, int byte_oriented)
3130 {
3131         int ret;
3132
3133         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3134                 return -EINVAL;
3135
3136         addr = swab32(addr) | SF_RD_DATA_FAST;
3137
3138         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3139             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3140                 return ret;
3141
3142         for ( ; nwords; nwords--, data++) {
3143                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3144                 if (nwords == 1)
3145                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3146                 if (ret)
3147                         return ret;
3148                 if (byte_oriented)
3149                         *data = (__force __u32)(cpu_to_be32(*data));
3150         }
3151         return 0;
3152 }
3153
3154 /**
3155  *      t4_write_flash - write up to a page of data to the serial flash
3156  *      @adapter: the adapter
3157  *      @addr: the start address to write
3158  *      @n: length of data to write in bytes
3159  *      @data: the data to write
3160  *      @byte_oriented: whether to store data as bytes or as words
3161  *
3162  *      Writes up to a page of data (256 bytes) to the serial flash starting
3163  *      at the given address.  All the data must be written to the same page.
3164  *      If @byte_oriented is set the write data is stored as byte stream
3165  *      (i.e. matches what on disk), otherwise in big-endian.
3166  */
3167 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3168                           unsigned int n, const u8 *data, int byte_oriented)
3169 {
3170         int ret;
3171         u32 buf[SF_PAGE_SIZE / 4];
3172         unsigned int i, c, left, val, offset = addr & 0xff;
3173
3174         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3175                 return -EINVAL;
3176
3177         val = swab32(addr) | SF_PROG_PAGE;
3178
3179         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3180             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3181                 goto unlock;
3182
3183         for (left = n; left; left -= c) {
3184                 c = min(left, 4U);
3185                 for (val = 0, i = 0; i < c; ++i)
3186                         val = (val << 8) + *data++;
3187
3188                 if (!byte_oriented)
3189                         val = cpu_to_be32(val);
3190
3191                 ret = sf1_write(adapter, c, c != left, 1, val);
3192                 if (ret)
3193                         goto unlock;
3194         }
3195         ret = flash_wait_op(adapter, 8, 1);
3196         if (ret)
3197                 goto unlock;
3198
3199         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3200
3201         /* Read the page to verify the write succeeded */
3202         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3203                             byte_oriented);
3204         if (ret)
3205                 return ret;
3206
3207         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3208                 CH_ERR(adapter,
3209                         "failed to correctly write the flash page at %#x\n",
3210                         addr);
3211                 return -EIO;
3212         }
3213         return 0;
3214
3215 unlock:
3216         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3217         return ret;
3218 }
3219
3220 /**
3221  *      t4_get_fw_version - read the firmware version
3222  *      @adapter: the adapter
3223  *      @vers: where to place the version
3224  *
3225  *      Reads the FW version from flash.
3226  */
3227 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3228 {
3229         return t4_read_flash(adapter, FLASH_FW_START +
3230                              offsetof(struct fw_hdr, fw_ver), 1,
3231                              vers, 0);
3232 }
3233
3234 /**
3235  *      t4_get_bs_version - read the firmware bootstrap version
3236  *      @adapter: the adapter
3237  *      @vers: where to place the version
3238  *
3239  *      Reads the FW Bootstrap version from flash.
3240  */
3241 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3242 {
3243         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3244                              offsetof(struct fw_hdr, fw_ver), 1,
3245                              vers, 0);
3246 }
3247
3248 /**
3249  *      t4_get_tp_version - read the TP microcode version
3250  *      @adapter: the adapter
3251  *      @vers: where to place the version
3252  *
3253  *      Reads the TP microcode version from flash.
3254  */
3255 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3256 {
3257         return t4_read_flash(adapter, FLASH_FW_START +
3258                              offsetof(struct fw_hdr, tp_microcode_ver),
3259                              1, vers, 0);
3260 }
3261
3262 /**
3263  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3264  *      @adapter: the adapter
3265  *      @vers: where to place the version
3266  *
3267  *      Reads the Expansion ROM header from FLASH and returns the version
3268  *      number (if present) through the @vers return value pointer.  We return
3269  *      this in the Firmware Version Format since it's convenient.  Return
3270  *      0 on success, -ENOENT if no Expansion ROM is present.
3271  */
3272 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3273 {
3274         struct exprom_header {
3275                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3276                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3277         } *hdr;
3278         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3279                                            sizeof(u32))];
3280         int ret;
3281
3282         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3283                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3284                             0);
3285         if (ret)
3286                 return ret;
3287
3288         hdr = (struct exprom_header *)exprom_header_buf;
3289         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3290                 return -ENOENT;
3291
3292         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3293                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3294                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3295                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3296         return 0;
3297 }
3298
3299 /**
3300  *      t4_get_scfg_version - return the Serial Configuration version
3301  *      @adapter: the adapter
3302  *      @vers: where to place the version
3303  *
3304  *      Reads the Serial Configuration Version via the Firmware interface
3305  *      (thus this can only be called once we're ready to issue Firmware
3306  *      commands).  The format of the Serial Configuration version is
3307  *      adapter specific.  Returns 0 on success, an error on failure.
3308  *
3309  *      Note that early versions of the Firmware didn't include the ability
3310  *      to retrieve the Serial Configuration version, so we zero-out the
3311  *      return-value parameter in that case to avoid leaving it with
3312  *      garbage in it.
3313  *
3314  *      Also note that the Firmware will return its cached copy of the Serial
3315  *      Initialization Revision ID, not the actual Revision ID as written in
3316  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3317  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3318  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3319  *      been issued if the Host Driver will be performing a full adapter
3320  *      initialization.
3321  */
3322 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3323 {
3324         u32 scfgrev_param;
3325         int ret;
3326
3327         scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3328                          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3329         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3330                               1, &scfgrev_param, vers);
3331         if (ret)
3332                 *vers = 0;
3333         return ret;
3334 }
3335
3336 /**
3337  *      t4_get_vpd_version - return the VPD version
3338  *      @adapter: the adapter
3339  *      @vers: where to place the version
3340  *
3341  *      Reads the VPD via the Firmware interface (thus this can only be called
3342  *      once we're ready to issue Firmware commands).  The format of the
3343  *      VPD version is adapter specific.  Returns 0 on success, an error on
3344  *      failure.
3345  *
3346  *      Note that early versions of the Firmware didn't include the ability
3347  *      to retrieve the VPD version, so we zero-out the return-value parameter
3348  *      in that case to avoid leaving it with garbage in it.
3349  *
3350  *      Also note that the Firmware will return its cached copy of the VPD
3351  *      Revision ID, not the actual Revision ID as written in the Serial
3352  *      EEPROM.  This is only an issue if a new VPD has been written and the
3353  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3354  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3355  *      if the Host Driver will be performing a full adapter initialization.
3356  */
3357 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3358 {
3359         u32 vpdrev_param;
3360         int ret;
3361
3362         vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3363                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3364         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3365                               1, &vpdrev_param, vers);
3366         if (ret)
3367                 *vers = 0;
3368         return ret;
3369 }
3370
3371 /**
3372  *      t4_get_version_info - extract various chip/firmware version information
3373  *      @adapter: the adapter
3374  *
3375  *      Reads various chip/firmware version numbers and stores them into the
3376  *      adapter Adapter Parameters structure.  If any of the efforts fails
3377  *      the first failure will be returned, but all of the version numbers
3378  *      will be read.
3379  */
3380 int t4_get_version_info(struct adapter *adapter)
3381 {
3382         int ret = 0;
3383
3384         #define FIRST_RET(__getvinfo) \
3385         do { \
3386                 int __ret = __getvinfo; \
3387                 if (__ret && !ret) \
3388                         ret = __ret; \
3389         } while (0)
3390
3391         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3392         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3393         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3394         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3395         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3396         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3397
3398         #undef FIRST_RET
3399
3400         return ret;
3401 }
3402
3403 /**
3404  *      t4_flash_erase_sectors - erase a range of flash sectors
3405  *      @adapter: the adapter
3406  *      @start: the first sector to erase
3407  *      @end: the last sector to erase
3408  *
3409  *      Erases the sectors in the given inclusive range.
3410  */
3411 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3412 {
3413         int ret = 0;
3414
3415         if (end >= adapter->params.sf_nsec)
3416                 return -EINVAL;
3417
3418         while (start <= end) {
3419                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3420                     (ret = sf1_write(adapter, 4, 0, 1,
3421                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3422                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3423                         CH_ERR(adapter,
3424                                 "erase of flash sector %d failed, error %d\n",
3425                                 start, ret);
3426                         break;
3427                 }
3428                 start++;
3429         }
3430         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3431         return ret;
3432 }
3433
3434 /**
3435  *      t4_flash_cfg_addr - return the address of the flash configuration file
3436  *      @adapter: the adapter
3437  *
3438  *      Return the address within the flash where the Firmware Configuration
3439  *      File is stored, or an error if the device FLASH is too small to contain
3440  *      a Firmware Configuration File.
3441  */
3442 int t4_flash_cfg_addr(struct adapter *adapter)
3443 {
3444         /*
3445          * If the device FLASH isn't large enough to hold a Firmware
3446          * Configuration File, return an error.
3447          */
3448         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3449                 return -ENOSPC;
3450
3451         return FLASH_CFG_START;
3452 }
3453
3454 /*
3455  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3456  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3457  * and emit an error message for mismatched firmware to save our caller the
3458  * effort ...
3459  */
3460 static int t4_fw_matches_chip(struct adapter *adap,
3461                               const struct fw_hdr *hdr)
3462 {
3463         /*
3464          * The expression below will return FALSE for any unsupported adapter
3465          * which will keep us "honest" in the future ...
3466          */
3467         if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3468             (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3469             (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3470                 return 1;
3471
3472         CH_ERR(adap,
3473                 "FW image (%d) is not suitable for this adapter (%d)\n",
3474                 hdr->chip, chip_id(adap));
3475         return 0;
3476 }
3477
3478 /**
3479  *      t4_load_fw - download firmware
3480  *      @adap: the adapter
3481  *      @fw_data: the firmware image to write
3482  *      @size: image size
3483  *
3484  *      Write the supplied firmware image to the card's serial flash.
3485  */
3486 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3487 {
3488         u32 csum;
3489         int ret, addr;
3490         unsigned int i;
3491         u8 first_page[SF_PAGE_SIZE];
3492         const u32 *p = (const u32 *)fw_data;
3493         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3494         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3495         unsigned int fw_start_sec;
3496         unsigned int fw_start;
3497         unsigned int fw_size;
3498
3499         if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3500                 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3501                 fw_start = FLASH_FWBOOTSTRAP_START;
3502                 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3503         } else {
3504                 fw_start_sec = FLASH_FW_START_SEC;
3505                 fw_start = FLASH_FW_START;
3506                 fw_size = FLASH_FW_MAX_SIZE;
3507         }
3508
3509         if (!size) {
3510                 CH_ERR(adap, "FW image has no data\n");
3511                 return -EINVAL;
3512         }
3513         if (size & 511) {
3514                 CH_ERR(adap,
3515                         "FW image size not multiple of 512 bytes\n");
3516                 return -EINVAL;
3517         }
3518         if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3519                 CH_ERR(adap,
3520                         "FW image size differs from size in FW header\n");
3521                 return -EINVAL;
3522         }
3523         if (size > fw_size) {
3524                 CH_ERR(adap, "FW image too large, max is %u bytes\n",
3525                         fw_size);
3526                 return -EFBIG;
3527         }
3528         if (!t4_fw_matches_chip(adap, hdr))
3529                 return -EINVAL;
3530
3531         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3532                 csum += be32_to_cpu(p[i]);
3533
3534         if (csum != 0xffffffff) {
3535                 CH_ERR(adap,
3536                         "corrupted firmware image, checksum %#x\n", csum);
3537                 return -EINVAL;
3538         }
3539
3540         i = DIV_ROUND_UP(size, sf_sec_size);    /* # of sectors spanned */
3541         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3542         if (ret)
3543                 goto out;
3544
3545         /*
3546          * We write the correct version at the end so the driver can see a bad
3547          * version if the FW write fails.  Start by writing a copy of the
3548          * first page with a bad version.
3549          */
3550         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3551         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3552         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3553         if (ret)
3554                 goto out;
3555
3556         addr = fw_start;
3557         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3558                 addr += SF_PAGE_SIZE;
3559                 fw_data += SF_PAGE_SIZE;
3560                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3561                 if (ret)
3562                         goto out;
3563         }
3564
3565         ret = t4_write_flash(adap,
3566                              fw_start + offsetof(struct fw_hdr, fw_ver),
3567                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3568 out:
3569         if (ret)
3570                 CH_ERR(adap, "firmware download failed, error %d\n",
3571                         ret);
3572         return ret;
3573 }
3574
3575 /**
3576  *      t4_fwcache - firmware cache operation
3577  *      @adap: the adapter
3578  *      @op  : the operation (flush or flush and invalidate)
3579  */
3580 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3581 {
3582         struct fw_params_cmd c;
3583
3584         memset(&c, 0, sizeof(c));
3585         c.op_to_vfn =
3586             cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3587                             F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3588                                 V_FW_PARAMS_CMD_PFN(adap->pf) |
3589                                 V_FW_PARAMS_CMD_VFN(0));
3590         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3591         c.param[0].mnem =
3592             cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3593                             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3594         c.param[0].val = (__force __be32)op;
3595
3596         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3597 }
3598
3599 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3600                         unsigned int *pif_req_wrptr,
3601                         unsigned int *pif_rsp_wrptr)
3602 {
3603         int i, j;
3604         u32 cfg, val, req, rsp;
3605
3606         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3607         if (cfg & F_LADBGEN)
3608                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3609
3610         val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3611         req = G_POLADBGWRPTR(val);
3612         rsp = G_PILADBGWRPTR(val);
3613         if (pif_req_wrptr)
3614                 *pif_req_wrptr = req;
3615         if (pif_rsp_wrptr)
3616                 *pif_rsp_wrptr = rsp;
3617
3618         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3619                 for (j = 0; j < 6; j++) {
3620                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3621                                      V_PILADBGRDPTR(rsp));
3622                         *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3623                         *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3624                         req++;
3625                         rsp++;
3626                 }
3627                 req = (req + 2) & M_POLADBGRDPTR;
3628                 rsp = (rsp + 2) & M_PILADBGRDPTR;
3629         }
3630         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3631 }
3632
3633 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3634 {
3635         u32 cfg;
3636         int i, j, idx;
3637
3638         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3639         if (cfg & F_LADBGEN)
3640                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3641
3642         for (i = 0; i < CIM_MALA_SIZE; i++) {
3643                 for (j = 0; j < 5; j++) {
3644                         idx = 8 * i + j;
3645                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3646                                      V_PILADBGRDPTR(idx));
3647                         *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3648                         *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3649                 }
3650         }
3651         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3652 }
3653
3654 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3655 {
3656         unsigned int i, j;
3657
3658         for (i = 0; i < 8; i++) {
3659                 u32 *p = la_buf + i;
3660
3661                 t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3662                 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3663                 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3664                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3665                         *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3666         }
3667 }
3668
3669 /**
3670  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3671  *      @phy: the PHY to setup
3672  *      @mac: the MAC to setup
3673  *      @lc: the requested link configuration
3674  *
3675  *      Set up a port's MAC and PHY according to a desired link configuration.
3676  *      - If the PHY can auto-negotiate first decide what to advertise, then
3677  *        enable/disable auto-negotiation as desired, and reset.
3678  *      - If the PHY does not auto-negotiate just reset it.
3679  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3680  *        otherwise do it later based on the outcome of auto-negotiation.
3681  */
3682 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3683                   struct link_config *lc)
3684 {
3685         struct fw_port_cmd c;
3686         unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3687         unsigned int aneg, fc, fec, speed, rcap;
3688
3689         fc = 0;
3690         if (lc->requested_fc & PAUSE_RX)
3691                 fc |= FW_PORT_CAP_FC_RX;
3692         if (lc->requested_fc & PAUSE_TX)
3693                 fc |= FW_PORT_CAP_FC_TX;
3694
3695         fec = 0;
3696         if (lc->requested_fec & FEC_RS)
3697                 fec = FW_PORT_CAP_FEC_RS;
3698         else if (lc->requested_fec & FEC_BASER_RS)
3699                 fec = FW_PORT_CAP_FEC_BASER_RS;
3700         else if (lc->requested_fec & FEC_RESERVED)
3701                 fec = FW_PORT_CAP_FEC_RESERVED;
3702
3703         if (!(lc->supported & FW_PORT_CAP_ANEG) ||
3704             lc->requested_aneg == AUTONEG_DISABLE) {
3705                 aneg = 0;
3706                 switch (lc->requested_speed) {
3707                 case 100:
3708                         speed = FW_PORT_CAP_SPEED_100G;
3709                         break;
3710                 case 40:
3711                         speed = FW_PORT_CAP_SPEED_40G;
3712                         break;
3713                 case 25:
3714                         speed = FW_PORT_CAP_SPEED_25G;
3715                         break;
3716                 case 10:
3717                         speed = FW_PORT_CAP_SPEED_10G;
3718                         break;
3719                 case 1:
3720                         speed = FW_PORT_CAP_SPEED_1G;
3721                         break;
3722                 default:
3723                         return -EINVAL;
3724                         break;
3725                 }
3726         } else {
3727                 aneg = FW_PORT_CAP_ANEG;
3728                 speed = lc->supported &
3729                     V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED);
3730         }
3731
3732         rcap = aneg | speed | fc | fec;
3733         if ((rcap | lc->supported) != lc->supported) {
3734                 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3735                     lc->supported);
3736                 rcap &= lc->supported;
3737         }
3738         rcap |= mdi;
3739
3740         memset(&c, 0, sizeof(c));
3741         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3742                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3743                                      V_FW_PORT_CMD_PORTID(port));
3744         c.action_to_len16 =
3745                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3746                             FW_LEN16(c));
3747         c.u.l1cfg.rcap = cpu_to_be32(rcap);
3748
3749         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3750 }
3751
3752 /**
3753  *      t4_restart_aneg - restart autonegotiation
3754  *      @adap: the adapter
3755  *      @mbox: mbox to use for the FW command
3756  *      @port: the port id
3757  *
3758  *      Restarts autonegotiation for the selected port.
3759  */
3760 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3761 {
3762         struct fw_port_cmd c;
3763
3764         memset(&c, 0, sizeof(c));
3765         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3766                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3767                                      V_FW_PORT_CMD_PORTID(port));
3768         c.action_to_len16 =
3769                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3770                             FW_LEN16(c));
3771         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3772         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3773 }
3774
3775 typedef void (*int_handler_t)(struct adapter *adap);
3776
3777 struct intr_info {
3778         unsigned int mask;      /* bits to check in interrupt status */
3779         const char *msg;        /* message to print or NULL */
3780         short stat_idx;         /* stat counter to increment or -1 */
3781         unsigned short fatal;   /* whether the condition reported is fatal */
3782         int_handler_t int_handler;      /* platform-specific int handler */
3783 };
3784
3785 /**
3786  *      t4_handle_intr_status - table driven interrupt handler
3787  *      @adapter: the adapter that generated the interrupt
3788  *      @reg: the interrupt status register to process
3789  *      @acts: table of interrupt actions
3790  *
3791  *      A table driven interrupt handler that applies a set of masks to an
3792  *      interrupt status word and performs the corresponding actions if the
3793  *      interrupts described by the mask have occurred.  The actions include
3794  *      optionally emitting a warning or alert message.  The table is terminated
3795  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
3796  *      conditions.
3797  */
3798 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3799                                  const struct intr_info *acts)
3800 {
3801         int fatal = 0;
3802         unsigned int mask = 0;
3803         unsigned int status = t4_read_reg(adapter, reg);
3804
3805         for ( ; acts->mask; ++acts) {
3806                 if (!(status & acts->mask))
3807                         continue;
3808                 if (acts->fatal) {
3809                         fatal++;
3810                         CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3811                                   status & acts->mask);
3812                 } else if (acts->msg)
3813                         CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3814                                  status & acts->mask);
3815                 if (acts->int_handler)
3816                         acts->int_handler(adapter);
3817                 mask |= acts->mask;
3818         }
3819         status &= mask;
3820         if (status)     /* clear processed interrupts */
3821                 t4_write_reg(adapter, reg, status);
3822         return fatal;
3823 }
3824
3825 /*
3826  * Interrupt handler for the PCIE module.
3827  */
3828 static void pcie_intr_handler(struct adapter *adapter)
3829 {
3830         static const struct intr_info sysbus_intr_info[] = {
3831                 { F_RNPP, "RXNP array parity error", -1, 1 },
3832                 { F_RPCP, "RXPC array parity error", -1, 1 },
3833                 { F_RCIP, "RXCIF array parity error", -1, 1 },
3834                 { F_RCCP, "Rx completions control array parity error", -1, 1 },
3835                 { F_RFTP, "RXFT array parity error", -1, 1 },
3836                 { 0 }
3837         };
3838         static const struct intr_info pcie_port_intr_info[] = {
3839                 { F_TPCP, "TXPC array parity error", -1, 1 },
3840                 { F_TNPP, "TXNP array parity error", -1, 1 },
3841                 { F_TFTP, "TXFT array parity error", -1, 1 },
3842                 { F_TCAP, "TXCA array parity error", -1, 1 },
3843                 { F_TCIP, "TXCIF array parity error", -1, 1 },
3844                 { F_RCAP, "RXCA array parity error", -1, 1 },
3845                 { F_OTDD, "outbound request TLP discarded", -1, 1 },
3846                 { F_RDPE, "Rx data parity error", -1, 1 },
3847                 { F_TDUE, "Tx uncorrectable data error", -1, 1 },
3848                 { 0 }
3849         };
3850         static const struct intr_info pcie_intr_info[] = {
3851                 { F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3852                 { F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3853                 { F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3854                 { F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3855                 { F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3856                 { F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3857                 { F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3858                 { F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3859                 { F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3860                 { F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3861                 { F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3862                 { F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3863                 { F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3864                 { F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3865                 { F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3866                 { F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3867                 { F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3868                 { F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3869                 { F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3870                 { F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3871                 { F_FIDPERR, "PCI FID parity error", -1, 1 },
3872                 { F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3873                 { F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3874                 { F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3875                 { F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3876                 { F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3877                 { F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3878                 { F_PCIESINT, "PCI core secondary fault", -1, 1 },
3879                 { F_PCIEPINT, "PCI core primary fault", -1, 1 },
3880                 { F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3881                   0 },
3882                 { 0 }
3883         };
3884
3885         static const struct intr_info t5_pcie_intr_info[] = {
3886                 { F_MSTGRPPERR, "Master Response Read Queue parity error",
3887                   -1, 1 },
3888                 { F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3889                 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3890                 { F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3891                 { F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3892                 { F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3893                 { F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3894                 { F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3895                   -1, 1 },
3896                 { F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3897                   -1, 1 },
3898                 { F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3899                 { F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3900                 { F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3901                 { F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3902                 { F_DREQWRPERR, "PCI DMA channel write request parity error",
3903                   -1, 1 },
3904                 { F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3905                 { F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3906                 { F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3907                 { F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3908                 { F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3909                 { F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3910                 { F_FIDPERR, "PCI FID parity error", -1, 1 },
3911                 { F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3912                 { F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3913                 { F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3914                 { F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3915                   -1, 1 },
3916                 { F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3917                   -1, 1 },
3918                 { F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3919                 { F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3920                 { F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3921                 { F_READRSPERR, "Outbound read error", -1,
3922                   0 },
3923                 { 0 }
3924         };
3925
3926         int fat;
3927
3928         if (is_t4(adapter))
3929                 fat = t4_handle_intr_status(adapter,
3930                                 A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3931                                 sysbus_intr_info) +
3932                         t4_handle_intr_status(adapter,
3933                                         A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3934                                         pcie_port_intr_info) +
3935                         t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3936                                               pcie_intr_info);
3937         else
3938                 fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3939                                             t5_pcie_intr_info);
3940         if (fat)
3941                 t4_fatal_err(adapter);
3942 }
3943
3944 /*
3945  * TP interrupt handler.
3946  */
3947 static void tp_intr_handler(struct adapter *adapter)
3948 {
3949         static const struct intr_info tp_intr_info[] = {
3950                 { 0x3fffffff, "TP parity error", -1, 1 },
3951                 { F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3952                 { 0 }
3953         };
3954
3955         if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3956                 t4_fatal_err(adapter);
3957 }
3958
3959 /*
3960  * SGE interrupt handler.
3961  */
3962 static void sge_intr_handler(struct adapter *adapter)
3963 {
3964         u64 v;
3965         u32 err;
3966
3967         static const struct intr_info sge_intr_info[] = {
3968                 { F_ERR_CPL_EXCEED_IQE_SIZE,
3969                   "SGE received CPL exceeding IQE size", -1, 1 },
3970                 { F_ERR_INVALID_CIDX_INC,
3971                   "SGE GTS CIDX increment too large", -1, 0 },
3972                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3973                 { F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3974                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3975                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
3976                 { F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3977                   0 },
3978                 { F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3979                   0 },
3980                 { F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3981                   0 },
3982                 { F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3983                   0 },
3984                 { F_ERR_ING_CTXT_PRIO,
3985                   "SGE too many priority ingress contexts", -1, 0 },
3986                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3987                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3988                 { F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
3989                   F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
3990                   "SGE PCIe error for a DBP thread", -1, 0 },
3991                 { 0 }
3992         };
3993
3994         static const struct intr_info t4t5_sge_intr_info[] = {
3995                 { F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3996                 { F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3997                 { F_ERR_EGR_CTXT_PRIO,
3998                   "SGE too many priority egress contexts", -1, 0 },
3999                 { 0 }
4000         };
4001
4002         /*
4003         * For now, treat below interrupts as fatal so that we disable SGE and
4004         * get better debug */
4005         static const struct intr_info t6_sge_intr_info[] = {
4006                 { F_FATAL_WRE_LEN,
4007                   "SGE Actual WRE packet is less than advertized length",
4008                   -1, 1 },
4009                 { 0 }
4010         };
4011
4012         v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4013                 ((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4014         if (v) {
4015                 CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4016                                 (unsigned long long)v);
4017                 t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4018                 t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4019         }
4020
4021         v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4022         if (chip_id(adapter) <= CHELSIO_T5)
4023                 v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4024                                            t4t5_sge_intr_info);
4025         else
4026                 v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4027                                            t6_sge_intr_info);
4028
4029         err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4030         if (err & F_ERROR_QID_VALID) {
4031                 CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4032                 if (err & F_UNCAPTURED_ERROR)
4033                         CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4034                 t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4035                              F_UNCAPTURED_ERROR);
4036         }
4037
4038         if (v != 0)
4039                 t4_fatal_err(adapter);
4040 }
4041
4042 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4043                       F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4044 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4045                       F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4046
4047 /*
4048  * CIM interrupt handler.
4049  */
4050 static void cim_intr_handler(struct adapter *adapter)
4051 {
4052         static const struct intr_info cim_intr_info[] = {
4053                 { F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4054                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4055                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4056                 { F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4057                 { F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4058                 { F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4059                 { F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4060                 { F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4061                 { 0 }
4062         };
4063         static const struct intr_info cim_upintr_info[] = {
4064                 { F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4065                 { F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4066                 { F_ILLWRINT, "CIM illegal write", -1, 1 },
4067                 { F_ILLRDINT, "CIM illegal read", -1, 1 },
4068                 { F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4069                 { F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4070                 { F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4071                 { F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4072                 { F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4073                 { F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4074                 { F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4075                 { F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4076                 { F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4077                 { F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4078                 { F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4079                 { F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4080                 { F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4081                 { F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4082                 { F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4083                 { F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4084                 { F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4085                 { F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4086                 { F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4087                 { F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4088                 { F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4089                 { F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4090                 { F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4091                 { F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4092                 { 0 }
4093         };
4094         u32 val, fw_err;
4095         int fat;
4096
4097         fw_err = t4_read_reg(adapter, A_PCIE_FW);
4098         if (fw_err & F_PCIE_FW_ERR)
4099                 t4_report_fw_error(adapter);
4100
4101         /* When the Firmware detects an internal error which normally wouldn't
4102          * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4103          * to make sure the Host sees the Firmware Crash.  So if we have a
4104          * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4105          * interrupt.
4106          */
4107         val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4108         if (val & F_TIMER0INT)
4109                 if (!(fw_err & F_PCIE_FW_ERR) ||
4110                     (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4111                         t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4112                                      F_TIMER0INT);
4113
4114         fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4115                                     cim_intr_info) +
4116               t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4117                                     cim_upintr_info);
4118         if (fat)
4119                 t4_fatal_err(adapter);
4120 }
4121
4122 /*
4123  * ULP RX interrupt handler.
4124  */
4125 static void ulprx_intr_handler(struct adapter *adapter)
4126 {
4127         static const struct intr_info ulprx_intr_info[] = {
4128                 { F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4129                 { F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4130                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4131                 { 0 }
4132         };
4133
4134         if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4135                 t4_fatal_err(adapter);
4136 }
4137
4138 /*
4139  * ULP TX interrupt handler.
4140  */
4141 static void ulptx_intr_handler(struct adapter *adapter)
4142 {
4143         static const struct intr_info ulptx_intr_info[] = {
4144                 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4145                   0 },
4146                 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4147                   0 },
4148                 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4149                   0 },
4150                 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4151                   0 },
4152                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4153                 { 0 }
4154         };
4155
4156         if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4157                 t4_fatal_err(adapter);
4158 }
4159
4160 /*
4161  * PM TX interrupt handler.
4162  */
4163 static void pmtx_intr_handler(struct adapter *adapter)
4164 {
4165         static const struct intr_info pmtx_intr_info[] = {
4166                 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4167                 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4168                 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4169                 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4170                 { 0xffffff0, "PMTX framing error", -1, 1 },
4171                 { F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4172                 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4173                   1 },
4174                 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4175                 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4176                 { 0 }
4177         };
4178
4179         if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4180                 t4_fatal_err(adapter);
4181 }
4182
4183 /*
4184  * PM RX interrupt handler.
4185  */
4186 static void pmrx_intr_handler(struct adapter *adapter)
4187 {
4188         static const struct intr_info pmrx_intr_info[] = {
4189                 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4190                 { 0x3ffff0, "PMRX framing error", -1, 1 },
4191                 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4192                 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4193                   1 },
4194                 { F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4195                 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4196                 { 0 }
4197         };
4198
4199         if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4200                 t4_fatal_err(adapter);
4201 }
4202
4203 /*
4204  * CPL switch interrupt handler.
4205  */
4206 static void cplsw_intr_handler(struct adapter *adapter)
4207 {
4208         static const struct intr_info cplsw_intr_info[] = {
4209                 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4210                 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4211                 { F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4212                 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4213                 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4214                 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4215                 { 0 }
4216         };
4217
4218         if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4219                 t4_fatal_err(adapter);
4220 }
4221
4222 /*
4223  * LE interrupt handler.
4224  */
4225 static void le_intr_handler(struct adapter *adap)
4226 {
4227         unsigned int chip_ver = chip_id(adap);
4228         static const struct intr_info le_intr_info[] = {
4229                 { F_LIPMISS, "LE LIP miss", -1, 0 },
4230                 { F_LIP0, "LE 0 LIP error", -1, 0 },
4231                 { F_PARITYERR, "LE parity error", -1, 1 },
4232                 { F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4233                 { F_REQQPARERR, "LE request queue parity error", -1, 1 },
4234                 { 0 }
4235         };
4236
4237         static const struct intr_info t6_le_intr_info[] = {
4238                 { F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4239                 { F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4240                 { F_TCAMINTPERR, "LE parity error", -1, 1 },
4241                 { F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4242                 { F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4243                 { 0 }
4244         };
4245
4246         if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4247                                   (chip_ver <= CHELSIO_T5) ?
4248                                   le_intr_info : t6_le_intr_info))
4249                 t4_fatal_err(adap);
4250 }
4251
4252 /*
4253  * MPS interrupt handler.
4254  */
4255 static void mps_intr_handler(struct adapter *adapter)
4256 {
4257         static const struct intr_info mps_rx_intr_info[] = {
4258                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4259                 { 0 }
4260         };
4261         static const struct intr_info mps_tx_intr_info[] = {
4262                 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4263                 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4264                 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4265                   -1, 1 },
4266                 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4267                   -1, 1 },
4268                 { F_BUBBLE, "MPS Tx underflow", -1, 1 },
4269                 { F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4270                 { F_FRMERR, "MPS Tx framing error", -1, 1 },
4271                 { 0 }
4272         };
4273         static const struct intr_info mps_trc_intr_info[] = {
4274                 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4275                 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4276                   1 },
4277                 { F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4278                 { 0 }
4279         };
4280         static const struct intr_info mps_stat_sram_intr_info[] = {
4281                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4282                 { 0 }
4283         };
4284         static const struct intr_info mps_stat_tx_intr_info[] = {
4285                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4286                 { 0 }
4287         };
4288         static const struct intr_info mps_stat_rx_intr_info[] = {
4289                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4290                 { 0 }
4291         };
4292         static const struct intr_info mps_cls_intr_info[] = {
4293                 { F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4294                 { F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4295                 { F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4296                 { 0 }
4297         };
4298
4299         int fat;
4300
4301         fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4302                                     mps_rx_intr_info) +
4303               t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4304                                     mps_tx_intr_info) +
4305               t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4306                                     mps_trc_intr_info) +
4307               t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4308                                     mps_stat_sram_intr_info) +
4309               t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4310                                     mps_stat_tx_intr_info) +
4311               t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4312                                     mps_stat_rx_intr_info) +
4313               t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4314                                     mps_cls_intr_info);
4315
4316         t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4317         t4_read_reg(adapter, A_MPS_INT_CAUSE);  /* flush */
4318         if (fat)
4319                 t4_fatal_err(adapter);
4320 }
4321
4322 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4323                       F_ECC_UE_INT_CAUSE)
4324
4325 /*
4326  * EDC/MC interrupt handler.
4327  */
4328 static void mem_intr_handler(struct adapter *adapter, int idx)
4329 {
4330         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4331
4332         unsigned int addr, cnt_addr, v;
4333
4334         if (idx <= MEM_EDC1) {
4335                 addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4336                 cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4337         } else if (idx == MEM_MC) {
4338                 if (is_t4(adapter)) {
4339                         addr = A_MC_INT_CAUSE;
4340                         cnt_addr = A_MC_ECC_STATUS;
4341                 } else {
4342                         addr = A_MC_P_INT_CAUSE;
4343                         cnt_addr = A_MC_P_ECC_STATUS;
4344                 }
4345         } else {
4346                 addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4347                 cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4348         }
4349
4350         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4351         if (v & F_PERR_INT_CAUSE)
4352                 CH_ALERT(adapter, "%s FIFO parity error\n",
4353                           name[idx]);
4354         if (v & F_ECC_CE_INT_CAUSE) {
4355                 u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4356
4357                 if (idx <= MEM_EDC1)
4358                         t4_edc_err_read(adapter, idx);
4359
4360                 t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4361                 CH_WARN_RATELIMIT(adapter,
4362                                   "%u %s correctable ECC data error%s\n",
4363                                   cnt, name[idx], cnt > 1 ? "s" : "");
4364         }
4365         if (v & F_ECC_UE_INT_CAUSE)
4366                 CH_ALERT(adapter,
4367                          "%s uncorrectable ECC data error\n", name[idx]);
4368
4369         t4_write_reg(adapter, addr, v);
4370         if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4371                 t4_fatal_err(adapter);
4372 }
4373
4374 /*
4375  * MA interrupt handler.
4376  */
4377 static void ma_intr_handler(struct adapter *adapter)
4378 {
4379         u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4380
4381         if (status & F_MEM_PERR_INT_CAUSE) {
4382                 CH_ALERT(adapter,
4383                           "MA parity error, parity status %#x\n",
4384                           t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4385                 if (is_t5(adapter))
4386                         CH_ALERT(adapter,
4387                                   "MA parity error, parity status %#x\n",
4388                                   t4_read_reg(adapter,
4389                                               A_MA_PARITY_ERROR_STATUS2));
4390         }
4391         if (status & F_MEM_WRAP_INT_CAUSE) {
4392                 v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4393                 CH_ALERT(adapter, "MA address wrap-around error by "
4394                           "client %u to address %#x\n",
4395                           G_MEM_WRAP_CLIENT_NUM(v),
4396                           G_MEM_WRAP_ADDRESS(v) << 4);
4397         }
4398         t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4399         t4_fatal_err(adapter);
4400 }
4401
4402 /*
4403  * SMB interrupt handler.
4404  */
4405 static void smb_intr_handler(struct adapter *adap)
4406 {
4407         static const struct intr_info smb_intr_info[] = {
4408                 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4409                 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4410                 { F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4411                 { 0 }
4412         };
4413
4414         if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4415                 t4_fatal_err(adap);
4416 }
4417
4418 /*
4419  * NC-SI interrupt handler.
4420  */
4421 static void ncsi_intr_handler(struct adapter *adap)
4422 {
4423         static const struct intr_info ncsi_intr_info[] = {
4424                 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4425                 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4426                 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4427                 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4428                 { 0 }
4429         };
4430
4431         if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4432                 t4_fatal_err(adap);
4433 }
4434
4435 /*
4436  * XGMAC interrupt handler.
4437  */
4438 static void xgmac_intr_handler(struct adapter *adap, int port)
4439 {
4440         u32 v, int_cause_reg;
4441
4442         if (is_t4(adap))
4443                 int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4444         else
4445                 int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4446
4447         v = t4_read_reg(adap, int_cause_reg);
4448
4449         v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4450         if (!v)
4451                 return;
4452
4453         if (v & F_TXFIFO_PRTY_ERR)
4454                 CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4455                           port);
4456         if (v & F_RXFIFO_PRTY_ERR)
4457                 CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4458                           port);
4459         t4_write_reg(adap, int_cause_reg, v);
4460         t4_fatal_err(adap);
4461 }
4462
4463 /*
4464  * PL interrupt handler.
4465  */
4466 static void pl_intr_handler(struct adapter *adap)
4467 {
4468         static const struct intr_info pl_intr_info[] = {
4469                 { F_FATALPERR, "Fatal parity error", -1, 1 },
4470                 { F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4471                 { 0 }
4472         };
4473
4474         static const struct intr_info t5_pl_intr_info[] = {
4475                 { F_FATALPERR, "Fatal parity error", -1, 1 },
4476                 { 0 }
4477         };
4478
4479         if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4480                                   is_t4(adap) ?
4481                                   pl_intr_info : t5_pl_intr_info))
4482                 t4_fatal_err(adap);
4483 }
4484
4485 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4486
4487 /**
4488  *      t4_slow_intr_handler - control path interrupt handler
4489  *      @adapter: the adapter
4490  *
4491  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4492  *      The designation 'slow' is because it involves register reads, while
4493  *      data interrupts typically don't involve any MMIOs.
4494  */
4495 int t4_slow_intr_handler(struct adapter *adapter)
4496 {
4497         u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4498
4499         if (!(cause & GLBL_INTR_MASK))
4500                 return 0;
4501         if (cause & F_CIM)
4502                 cim_intr_handler(adapter);
4503         if (cause & F_MPS)
4504                 mps_intr_handler(adapter);
4505         if (cause & F_NCSI)
4506                 ncsi_intr_handler(adapter);
4507         if (cause & F_PL)
4508                 pl_intr_handler(adapter);
4509         if (cause & F_SMB)
4510                 smb_intr_handler(adapter);
4511         if (cause & F_MAC0)
4512                 xgmac_intr_handler(adapter, 0);
4513         if (cause & F_MAC1)
4514                 xgmac_intr_handler(adapter, 1);
4515         if (cause & F_MAC2)
4516                 xgmac_intr_handler(adapter, 2);
4517         if (cause & F_MAC3)
4518                 xgmac_intr_handler(adapter, 3);
4519         if (cause & F_PCIE)
4520                 pcie_intr_handler(adapter);
4521         if (cause & F_MC0)
4522                 mem_intr_handler(adapter, MEM_MC);
4523         if (is_t5(adapter) && (cause & F_MC1))
4524                 mem_intr_handler(adapter, MEM_MC1);
4525         if (cause & F_EDC0)
4526                 mem_intr_handler(adapter, MEM_EDC0);
4527         if (cause & F_EDC1)
4528                 mem_intr_handler(adapter, MEM_EDC1);
4529         if (cause & F_LE)
4530                 le_intr_handler(adapter);
4531         if (cause & F_TP)
4532                 tp_intr_handler(adapter);
4533         if (cause & F_MA)
4534                 ma_intr_handler(adapter);
4535         if (cause & F_PM_TX)
4536                 pmtx_intr_handler(adapter);
4537         if (cause & F_PM_RX)
4538                 pmrx_intr_handler(adapter);
4539         if (cause & F_ULP_RX)
4540                 ulprx_intr_handler(adapter);
4541         if (cause & F_CPL_SWITCH)
4542                 cplsw_intr_handler(adapter);
4543         if (cause & F_SGE)
4544                 sge_intr_handler(adapter);
4545         if (cause & F_ULP_TX)
4546                 ulptx_intr_handler(adapter);
4547
4548         /* Clear the interrupts just processed for which we are the master. */
4549         t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4550         (void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4551         return 1;
4552 }
4553
4554 /**
4555  *      t4_intr_enable - enable interrupts
4556  *      @adapter: the adapter whose interrupts should be enabled
4557  *
4558  *      Enable PF-specific interrupts for the calling function and the top-level
4559  *      interrupt concentrator for global interrupts.  Interrupts are already
4560  *      enabled at each module, here we just enable the roots of the interrupt
4561  *      hierarchies.
4562  *
4563  *      Note: this function should be called only when the driver manages
4564  *      non PF-specific interrupts from the various HW modules.  Only one PCI
4565  *      function at a time should be doing this.
4566  */
4567 void t4_intr_enable(struct adapter *adapter)
4568 {
4569         u32 val = 0;
4570         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4571         u32 pf = (chip_id(adapter) <= CHELSIO_T5
4572                   ? G_SOURCEPF(whoami)
4573                   : G_T6_SOURCEPF(whoami));
4574
4575         if (chip_id(adapter) <= CHELSIO_T5)
4576                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4577         else
4578                 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4579         t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4580                      F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4581                      F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4582                      F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4583                      F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4584                      F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4585                      F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4586         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4587         t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4588 }
4589
4590 /**
4591  *      t4_intr_disable - disable interrupts
4592  *      @adapter: the adapter whose interrupts should be disabled
4593  *
4594  *      Disable interrupts.  We only disable the top-level interrupt
4595  *      concentrators.  The caller must be a PCI function managing global
4596  *      interrupts.
4597  */
4598 void t4_intr_disable(struct adapter *adapter)
4599 {
4600         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4601         u32 pf = (chip_id(adapter) <= CHELSIO_T5
4602                   ? G_SOURCEPF(whoami)
4603                   : G_T6_SOURCEPF(whoami));
4604
4605         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4606         t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4607 }
4608
4609 /**
4610  *      t4_intr_clear - clear all interrupts
4611  *      @adapter: the adapter whose interrupts should be cleared
4612  *
4613  *      Clears all interrupts.  The caller must be a PCI function managing
4614  *      global interrupts.
4615  */
4616 void t4_intr_clear(struct adapter *adapter)
4617 {
4618         static const unsigned int cause_reg[] = {
4619                 A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4620                 A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4621                 A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4622                 A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4623                 A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4624                 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4625                 A_TP_INT_CAUSE,
4626                 A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4627                 A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4628                 A_MPS_RX_PERR_INT_CAUSE,
4629                 A_CPL_INTR_CAUSE,
4630                 MYPF_REG(A_PL_PF_INT_CAUSE),
4631                 A_PL_PL_INT_CAUSE,
4632                 A_LE_DB_INT_CAUSE,
4633         };
4634
4635         unsigned int i;
4636
4637         for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4638                 t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4639
4640         t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4641                                 A_MC_P_INT_CAUSE, 0xffffffff);
4642
4643         if (is_t4(adapter)) {
4644                 t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4645                                 0xffffffff);
4646                 t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4647                                 0xffffffff);
4648         } else
4649                 t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4650
4651         t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4652         (void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4653 }
4654
4655 /**
4656  *      hash_mac_addr - return the hash value of a MAC address
4657  *      @addr: the 48-bit Ethernet MAC address
4658  *
4659  *      Hashes a MAC address according to the hash function used by HW inexact
4660  *      (hash) address matching.
4661  */
4662 static int hash_mac_addr(const u8 *addr)
4663 {
4664         u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4665         u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4666         a ^= b;
4667         a ^= (a >> 12);
4668         a ^= (a >> 6);
4669         return a & 0x3f;
4670 }
4671
4672 /**
4673  *      t4_config_rss_range - configure a portion of the RSS mapping table
4674  *      @adapter: the adapter
4675  *      @mbox: mbox to use for the FW command
4676  *      @viid: virtual interface whose RSS subtable is to be written
4677  *      @start: start entry in the table to write
4678  *      @n: how many table entries to write
4679  *      @rspq: values for the "response queue" (Ingress Queue) lookup table
4680  *      @nrspq: number of values in @rspq
4681  *
4682  *      Programs the selected part of the VI's RSS mapping table with the
4683  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
4684  *      until the full table range is populated.
4685  *
4686  *      The caller must ensure the values in @rspq are in the range allowed for
4687  *      @viid.
4688  */
4689 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4690                         int start, int n, const u16 *rspq, unsigned int nrspq)
4691 {
4692         int ret;
4693         const u16 *rsp = rspq;
4694         const u16 *rsp_end = rspq + nrspq;
4695         struct fw_rss_ind_tbl_cmd cmd;
4696
4697         memset(&cmd, 0, sizeof(cmd));
4698         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4699                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4700                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
4701         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4702
4703         /*
4704          * Each firmware RSS command can accommodate up to 32 RSS Ingress
4705          * Queue Identifiers.  These Ingress Queue IDs are packed three to
4706          * a 32-bit word as 10-bit values with the upper remaining 2 bits
4707          * reserved.
4708          */
4709         while (n > 0) {
4710                 int nq = min(n, 32);
4711                 int nq_packed = 0;
4712                 __be32 *qp = &cmd.iq0_to_iq2;
4713
4714                 /*
4715                  * Set up the firmware RSS command header to send the next
4716                  * "nq" Ingress Queue IDs to the firmware.
4717                  */
4718                 cmd.niqid = cpu_to_be16(nq);
4719                 cmd.startidx = cpu_to_be16(start);
4720
4721                 /*
4722                  * "nq" more done for the start of the next loop.
4723                  */
4724                 start += nq;
4725                 n -= nq;
4726
4727                 /*
4728                  * While there are still Ingress Queue IDs to stuff into the
4729                  * current firmware RSS command, retrieve them from the
4730                  * Ingress Queue ID array and insert them into the command.
4731                  */
4732                 while (nq > 0) {
4733                         /*
4734                          * Grab up to the next 3 Ingress Queue IDs (wrapping
4735                          * around the Ingress Queue ID array if necessary) and
4736                          * insert them into the firmware RSS command at the
4737                          * current 3-tuple position within the commad.
4738                          */
4739                         u16 qbuf[3];
4740                         u16 *qbp = qbuf;
4741                         int nqbuf = min(3, nq);
4742
4743                         nq -= nqbuf;
4744                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
4745                         while (nqbuf && nq_packed < 32) {
4746                                 nqbuf--;
4747                                 nq_packed++;
4748                                 *qbp++ = *rsp++;
4749                                 if (rsp >= rsp_end)
4750                                         rsp = rspq;
4751                         }
4752                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4753                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4754                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4755                 }
4756
4757                 /*
4758                  * Send this portion of the RRS table update to the firmware;
4759                  * bail out on any errors.
4760                  */
4761                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4762                 if (ret)
4763                         return ret;
4764         }
4765         return 0;
4766 }
4767
4768 /**
4769  *      t4_config_glbl_rss - configure the global RSS mode
4770  *      @adapter: the adapter
4771  *      @mbox: mbox to use for the FW command
4772  *      @mode: global RSS mode
4773  *      @flags: mode-specific flags
4774  *
4775  *      Sets the global RSS mode.
4776  */
4777 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4778                        unsigned int flags)
4779 {
4780         struct fw_rss_glb_config_cmd c;
4781
4782         memset(&c, 0, sizeof(c));
4783         c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4784                                     F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4785         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4786         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4787                 c.u.manual.mode_pkd =
4788                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4789         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4790                 c.u.basicvirtual.mode_keymode =
4791                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4792                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4793         } else
4794                 return -EINVAL;
4795         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4796 }
4797
4798 /**
4799  *      t4_config_vi_rss - configure per VI RSS settings
4800  *      @adapter: the adapter
4801  *      @mbox: mbox to use for the FW command
4802  *      @viid: the VI id
4803  *      @flags: RSS flags
4804  *      @defq: id of the default RSS queue for the VI.
4805  *      @skeyidx: RSS secret key table index for non-global mode
4806  *      @skey: RSS vf_scramble key for VI.
4807  *
4808  *      Configures VI-specific RSS properties.
4809  */
4810 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4811                      unsigned int flags, unsigned int defq, unsigned int skeyidx,
4812                      unsigned int skey)
4813 {
4814         struct fw_rss_vi_config_cmd c;
4815
4816         memset(&c, 0, sizeof(c));
4817         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4818                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4819                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4820         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4821         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4822                                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4823         c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4824                                         V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4825         c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4826
4827         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4828 }
4829
4830 /* Read an RSS table row */
4831 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4832 {
4833         t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4834         return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4835                                    5, 0, val);
4836 }
4837
4838 /**
4839  *      t4_read_rss - read the contents of the RSS mapping table
4840  *      @adapter: the adapter
4841  *      @map: holds the contents of the RSS mapping table
4842  *
4843  *      Reads the contents of the RSS hash->queue mapping table.
4844  */
4845 int t4_read_rss(struct adapter *adapter, u16 *map)
4846 {
4847         u32 val;
4848         int i, ret;
4849
4850         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4851                 ret = rd_rss_row(adapter, i, &val);
4852                 if (ret)
4853                         return ret;
4854                 *map++ = G_LKPTBLQUEUE0(val);
4855                 *map++ = G_LKPTBLQUEUE1(val);
4856         }
4857         return 0;
4858 }
4859
4860 /**
4861  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
4862  * @adap: the adapter
4863  * @cmd: TP fw ldst address space type
4864  * @vals: where the indirect register values are stored/written
4865  * @nregs: how many indirect registers to read/write
4866  * @start_idx: index of first indirect register to read/write
4867  * @rw: Read (1) or Write (0)
4868  * @sleep_ok: if true we may sleep while awaiting command completion
4869  *
4870  * Access TP indirect registers through LDST
4871  **/
4872 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
4873                             unsigned int nregs, unsigned int start_index,
4874                             unsigned int rw, bool sleep_ok)
4875 {
4876         int ret = 0;
4877         unsigned int i;
4878         struct fw_ldst_cmd c;
4879
4880         for (i = 0; i < nregs; i++) {
4881                 memset(&c, 0, sizeof(c));
4882                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4883                                                 F_FW_CMD_REQUEST |
4884                                                 (rw ? F_FW_CMD_READ :
4885                                                       F_FW_CMD_WRITE) |
4886                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
4887                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4888
4889                 c.u.addrval.addr = cpu_to_be32(start_index + i);
4890                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4891                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
4892                                       sleep_ok);
4893                 if (ret)
4894                         return ret;
4895
4896                 if (rw)
4897                         vals[i] = be32_to_cpu(c.u.addrval.val);
4898         }
4899         return 0;
4900 }
4901
4902 /**
4903  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
4904  * @adap: the adapter
4905  * @reg_addr: Address Register
4906  * @reg_data: Data register
4907  * @buff: where the indirect register values are stored/written
4908  * @nregs: how many indirect registers to read/write
4909  * @start_index: index of first indirect register to read/write
4910  * @rw: READ(1) or WRITE(0)
4911  * @sleep_ok: if true we may sleep while awaiting command completion
4912  *
4913  * Read/Write TP indirect registers through LDST if possible.
4914  * Else, use backdoor access
4915  **/
4916 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
4917                               u32 *buff, u32 nregs, u32 start_index, int rw,
4918                               bool sleep_ok)
4919 {
4920         int rc = -EINVAL;
4921         int cmd;
4922
4923         switch (reg_addr) {
4924         case A_TP_PIO_ADDR:
4925                 cmd = FW_LDST_ADDRSPC_TP_PIO;
4926                 break;
4927         case A_TP_TM_PIO_ADDR:
4928                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
4929                 break;
4930         case A_TP_MIB_INDEX:
4931                 cmd = FW_LDST_ADDRSPC_TP_MIB;
4932                 break;
4933         default:
4934                 goto indirect_access;
4935         }
4936
4937         if (t4_use_ldst(adap))
4938                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
4939                                       sleep_ok);
4940
4941 indirect_access:
4942
4943         if (rc) {
4944                 if (rw)
4945                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
4946                                          start_index);
4947                 else
4948                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
4949                                           start_index);
4950         }
4951 }
4952
4953 /**
4954  * t4_tp_pio_read - Read TP PIO registers
4955  * @adap: the adapter
4956  * @buff: where the indirect register values are written
4957  * @nregs: how many indirect registers to read
4958  * @start_index: index of first indirect register to read
4959  * @sleep_ok: if true we may sleep while awaiting command completion
4960  *
4961  * Read TP PIO Registers
4962  **/
4963 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
4964                     u32 start_index, bool sleep_ok)
4965 {
4966         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
4967                           start_index, 1, sleep_ok);
4968 }
4969
4970 /**
4971  * t4_tp_pio_write - Write TP PIO registers
4972  * @adap: the adapter
4973  * @buff: where the indirect register values are stored
4974  * @nregs: how many indirect registers to write
4975  * @start_index: index of first indirect register to write
4976  * @sleep_ok: if true we may sleep while awaiting command completion
4977  *
4978  * Write TP PIO Registers
4979  **/
4980 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
4981                      u32 start_index, bool sleep_ok)
4982 {
4983         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4984             __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
4985 }
4986
4987 /**
4988  * t4_tp_tm_pio_read - Read TP TM PIO registers
4989  * @adap: the adapter
4990  * @buff: where the indirect register values are written
4991  * @nregs: how many indirect registers to read
4992  * @start_index: index of first indirect register to read
4993  * @sleep_ok: if true we may sleep while awaiting command completion
4994  *
4995  * Read TP TM PIO Registers
4996  **/
4997 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
4998                        u32 start_index, bool sleep_ok)
4999 {
5000         t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5001                           nregs, start_index, 1, sleep_ok);
5002 }
5003
5004 /**
5005  * t4_tp_mib_read - Read TP MIB registers
5006  * @adap: the adapter
5007  * @buff: where the indirect register values are written
5008  * @nregs: how many indirect registers to read
5009  * @start_index: index of first indirect register to read
5010  * @sleep_ok: if true we may sleep while awaiting command completion
5011  *
5012  * Read TP MIB Registers
5013  **/
5014 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5015                     bool sleep_ok)
5016 {
5017         t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5018                           start_index, 1, sleep_ok);
5019 }
5020
5021 /**
5022  *      t4_read_rss_key - read the global RSS key
5023  *      @adap: the adapter
5024  *      @key: 10-entry array holding the 320-bit RSS key
5025  *      @sleep_ok: if true we may sleep while awaiting command completion
5026  *
5027  *      Reads the global 320-bit RSS key.
5028  */
5029 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5030 {
5031         t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5032 }
5033
5034 /**
5035  *      t4_write_rss_key - program one of the RSS keys
5036  *      @adap: the adapter
5037  *      @key: 10-entry array holding the 320-bit RSS key
5038  *      @idx: which RSS key to write
5039  *      @sleep_ok: if true we may sleep while awaiting command completion
5040  *
5041  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5042  *      0..15 the corresponding entry in the RSS key table is written,
5043  *      otherwise the global RSS key is written.
5044  */
5045 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5046                       bool sleep_ok)
5047 {
5048         u8 rss_key_addr_cnt = 16;
5049         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5050
5051         /*
5052          * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5053          * allows access to key addresses 16-63 by using KeyWrAddrX
5054          * as index[5:4](upper 2) into key table
5055          */
5056         if ((chip_id(adap) > CHELSIO_T5) &&
5057             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5058                 rss_key_addr_cnt = 32;
5059
5060         t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5061
5062         if (idx >= 0 && idx < rss_key_addr_cnt) {
5063                 if (rss_key_addr_cnt > 16)
5064                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5065                                      vrt | V_KEYWRADDRX(idx >> 4) |
5066                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
5067                 else
5068                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5069                                      vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5070         }
5071 }
5072
5073 /**
5074  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5075  *      @adapter: the adapter
5076  *      @index: the entry in the PF RSS table to read
5077  *      @valp: where to store the returned value
5078  *      @sleep_ok: if true we may sleep while awaiting command completion
5079  *
5080  *      Reads the PF RSS Configuration Table at the specified index and returns
5081  *      the value found there.
5082  */
5083 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5084                            u32 *valp, bool sleep_ok)
5085 {
5086         t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5087 }
5088
5089 /**
5090  *      t4_write_rss_pf_config - write PF RSS Configuration Table
5091  *      @adapter: the adapter
5092  *      @index: the entry in the VF RSS table to read
5093  *      @val: the value to store
5094  *      @sleep_ok: if true we may sleep while awaiting command completion
5095  *
5096  *      Writes the PF RSS Configuration Table at the specified index with the
5097  *      specified value.
5098  */
5099 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5100                             u32 val, bool sleep_ok)
5101 {
5102         t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5103                         sleep_ok);
5104 }
5105
5106 /**
5107  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5108  *      @adapter: the adapter
5109  *      @index: the entry in the VF RSS table to read
5110  *      @vfl: where to store the returned VFL
5111  *      @vfh: where to store the returned VFH
5112  *      @sleep_ok: if true we may sleep while awaiting command completion
5113  *
5114  *      Reads the VF RSS Configuration Table at the specified index and returns
5115  *      the (VFL, VFH) values found there.
5116  */
5117 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5118                            u32 *vfl, u32 *vfh, bool sleep_ok)
5119 {
5120         u32 vrt, mask, data;
5121
5122         if (chip_id(adapter) <= CHELSIO_T5) {
5123                 mask = V_VFWRADDR(M_VFWRADDR);
5124                 data = V_VFWRADDR(index);
5125         } else {
5126                  mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5127                  data = V_T6_VFWRADDR(index);
5128         }
5129         /*
5130          * Request that the index'th VF Table values be read into VFL/VFH.
5131          */
5132         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5133         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5134         vrt |= data | F_VFRDEN;
5135         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5136
5137         /*
5138          * Grab the VFL/VFH values ...
5139          */
5140         t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5141         t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5142 }
5143
5144 /**
5145  *      t4_write_rss_vf_config - write VF RSS Configuration Table
5146  *
5147  *      @adapter: the adapter
5148  *      @index: the entry in the VF RSS table to write
5149  *      @vfl: the VFL to store
5150  *      @vfh: the VFH to store
5151  *
5152  *      Writes the VF RSS Configuration Table at the specified index with the
5153  *      specified (VFL, VFH) values.
5154  */
5155 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5156                             u32 vfl, u32 vfh, bool sleep_ok)
5157 {
5158         u32 vrt, mask, data;
5159
5160         if (chip_id(adapter) <= CHELSIO_T5) {
5161                 mask = V_VFWRADDR(M_VFWRADDR);
5162                 data = V_VFWRADDR(index);
5163         } else {
5164                 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5165                 data = V_T6_VFWRADDR(index);
5166         }
5167
5168         /*
5169          * Load up VFL/VFH with the values to be written ...
5170          */
5171         t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5172         t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5173
5174         /*
5175          * Write the VFL/VFH into the VF Table at index'th location.
5176          */
5177         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5178         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5179         vrt |= data | F_VFRDEN;
5180         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5181 }
5182
5183 /**
5184  *      t4_read_rss_pf_map - read PF RSS Map
5185  *      @adapter: the adapter
5186  *      @sleep_ok: if true we may sleep while awaiting command completion
5187  *
5188  *      Reads the PF RSS Map register and returns its value.
5189  */
5190 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5191 {
5192         u32 pfmap;
5193
5194         t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5195
5196         return pfmap;
5197 }
5198
5199 /**
5200  *      t4_write_rss_pf_map - write PF RSS Map
5201  *      @adapter: the adapter
5202  *      @pfmap: PF RSS Map value
5203  *
5204  *      Writes the specified value to the PF RSS Map register.
5205  */
5206 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5207 {
5208         t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5209 }
5210
5211 /**
5212  *      t4_read_rss_pf_mask - read PF RSS Mask
5213  *      @adapter: the adapter
5214  *      @sleep_ok: if true we may sleep while awaiting command completion
5215  *
5216  *      Reads the PF RSS Mask register and returns its value.
5217  */
5218 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5219 {
5220         u32 pfmask;
5221
5222         t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5223
5224         return pfmask;
5225 }
5226
5227 /**
5228  *      t4_write_rss_pf_mask - write PF RSS Mask
5229  *      @adapter: the adapter
5230  *      @pfmask: PF RSS Mask value
5231  *
5232  *      Writes the specified value to the PF RSS Mask register.
5233  */
5234 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5235 {
5236         t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5237 }
5238
5239 /**
5240  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5241  *      @adap: the adapter
5242  *      @v4: holds the TCP/IP counter values
5243  *      @v6: holds the TCP/IPv6 counter values
5244  *      @sleep_ok: if true we may sleep while awaiting command completion
5245  *
5246  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5247  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5248  */
5249 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5250                          struct tp_tcp_stats *v6, bool sleep_ok)
5251 {
5252         u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5253
5254 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5255 #define STAT(x)     val[STAT_IDX(x)]
5256 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5257
5258         if (v4) {
5259                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5260                                A_TP_MIB_TCP_OUT_RST, sleep_ok);
5261                 v4->tcp_out_rsts = STAT(OUT_RST);
5262                 v4->tcp_in_segs  = STAT64(IN_SEG);
5263                 v4->tcp_out_segs = STAT64(OUT_SEG);
5264                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
5265         }
5266         if (v6) {
5267                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5268                                A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5269                 v6->tcp_out_rsts = STAT(OUT_RST);
5270                 v6->tcp_in_segs  = STAT64(IN_SEG);
5271                 v6->tcp_out_segs = STAT64(OUT_SEG);
5272                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
5273         }
5274 #undef STAT64
5275 #undef STAT
5276 #undef STAT_IDX
5277 }
5278
5279 /**
5280  *      t4_tp_get_err_stats - read TP's error MIB counters
5281  *      @adap: the adapter
5282  *      @st: holds the counter values
5283  *      @sleep_ok: if true we may sleep while awaiting command completion
5284  *
5285  *      Returns the values of TP's error counters.
5286  */
5287 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5288                          bool sleep_ok)
5289 {
5290         int nchan = adap->chip_params->nchan;
5291
5292         t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5293                        sleep_ok);
5294
5295         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5296                        sleep_ok);
5297
5298         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5299                        sleep_ok);
5300
5301         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5302                        A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5303
5304         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5305                        A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5306
5307         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5308                        sleep_ok);
5309
5310         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5311                        A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5312
5313         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5314                        A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5315
5316         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5317                        sleep_ok);
5318 }
5319
5320 /**
5321  *      t4_tp_get_proxy_stats - read TP's proxy MIB counters
5322  *      @adap: the adapter
5323  *      @st: holds the counter values
5324  *
5325  *      Returns the values of TP's proxy counters.
5326  */
5327 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5328     bool sleep_ok)
5329 {
5330         int nchan = adap->chip_params->nchan;
5331
5332         t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5333 }
5334
5335 /**
5336  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5337  *      @adap: the adapter
5338  *      @st: holds the counter values
5339  *      @sleep_ok: if true we may sleep while awaiting command completion
5340  *
5341  *      Returns the values of TP's CPL counters.
5342  */
5343 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5344                          bool sleep_ok)
5345 {
5346         int nchan = adap->chip_params->nchan;
5347
5348         t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5349
5350         t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5351 }
5352
5353 /**
5354  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5355  *      @adap: the adapter
5356  *      @st: holds the counter values
5357  *
5358  *      Returns the values of TP's RDMA counters.
5359  */
5360 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5361                           bool sleep_ok)
5362 {
5363         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5364                        sleep_ok);
5365 }
5366
5367 /**
5368  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5369  *      @adap: the adapter
5370  *      @idx: the port index
5371  *      @st: holds the counter values
5372  *      @sleep_ok: if true we may sleep while awaiting command completion
5373  *
5374  *      Returns the values of TP's FCoE counters for the selected port.
5375  */
5376 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5377                        struct tp_fcoe_stats *st, bool sleep_ok)
5378 {
5379         u32 val[2];
5380
5381         t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5382                        sleep_ok);
5383
5384         t4_tp_mib_read(adap, &st->frames_drop, 1,
5385                        A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5386
5387         t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5388                        sleep_ok);
5389
5390         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5391 }
5392
5393 /**
5394  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5395  *      @adap: the adapter
5396  *      @st: holds the counter values
5397  *      @sleep_ok: if true we may sleep while awaiting command completion
5398  *
5399  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5400  */
5401 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5402                       bool sleep_ok)
5403 {
5404         u32 val[4];
5405
5406         t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5407
5408         st->frames = val[0];
5409         st->drops = val[1];
5410         st->octets = ((u64)val[2] << 32) | val[3];
5411 }
5412
5413 /**
5414  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5415  *      @adap: the adapter
5416  *      @mtus: where to store the MTU values
5417  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5418  *
5419  *      Reads the HW path MTU table.
5420  */
5421 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5422 {
5423         u32 v;
5424         int i;
5425
5426         for (i = 0; i < NMTUS; ++i) {
5427                 t4_write_reg(adap, A_TP_MTU_TABLE,
5428                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
5429                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
5430                 mtus[i] = G_MTUVALUE(v);
5431                 if (mtu_log)
5432                         mtu_log[i] = G_MTUWIDTH(v);
5433         }
5434 }
5435
5436 /**
5437  *      t4_read_cong_tbl - reads the congestion control table
5438  *      @adap: the adapter
5439  *      @incr: where to store the alpha values
5440  *
5441  *      Reads the additive increments programmed into the HW congestion
5442  *      control table.
5443  */
5444 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5445 {
5446         unsigned int mtu, w;
5447
5448         for (mtu = 0; mtu < NMTUS; ++mtu)
5449                 for (w = 0; w < NCCTRL_WIN; ++w) {
5450                         t4_write_reg(adap, A_TP_CCTRL_TABLE,
5451                                      V_ROWINDEX(0xffff) | (mtu << 5) | w);
5452                         incr[mtu][w] = (u16)t4_read_reg(adap,
5453                                                 A_TP_CCTRL_TABLE) & 0x1fff;
5454                 }
5455 }
5456
5457 /**
5458  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5459  *      @adap: the adapter
5460  *      @addr: the indirect TP register address
5461  *      @mask: specifies the field within the register to modify
5462  *      @val: new value for the field
5463  *
5464  *      Sets a field of an indirect TP register to the given value.
5465  */
5466 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5467                             unsigned int mask, unsigned int val)
5468 {
5469         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5470         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5471         t4_write_reg(adap, A_TP_PIO_DATA, val);
5472 }
5473
5474 /**
5475  *      init_cong_ctrl - initialize congestion control parameters
5476  *      @a: the alpha values for congestion control
5477  *      @b: the beta values for congestion control
5478  *
5479  *      Initialize the congestion control parameters.
5480  */
5481 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5482 {
5483         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5484         a[9] = 2;
5485         a[10] = 3;
5486         a[11] = 4;
5487         a[12] = 5;
5488         a[13] = 6;
5489         a[14] = 7;
5490         a[15] = 8;
5491         a[16] = 9;
5492         a[17] = 10;
5493         a[18] = 14;
5494         a[19] = 17;
5495         a[20] = 21;
5496         a[21] = 25;
5497         a[22] = 30;
5498         a[23] = 35;
5499         a[24] = 45;
5500         a[25] = 60;
5501         a[26] = 80;
5502         a[27] = 100;
5503         a[28] = 200;
5504         a[29] = 300;
5505         a[30] = 400;
5506         a[31] = 500;
5507
5508         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5509         b[9] = b[10] = 1;
5510         b[11] = b[12] = 2;
5511         b[13] = b[14] = b[15] = b[16] = 3;
5512         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5513         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5514         b[28] = b[29] = 6;
5515         b[30] = b[31] = 7;
5516 }
5517
5518 /* The minimum additive increment value for the congestion control table */
5519 #define CC_MIN_INCR 2U
5520
5521 /**
5522  *      t4_load_mtus - write the MTU and congestion control HW tables
5523  *      @adap: the adapter
5524  *      @mtus: the values for the MTU table
5525  *      @alpha: the values for the congestion control alpha parameter
5526  *      @beta: the values for the congestion control beta parameter
5527  *
5528  *      Write the HW MTU table with the supplied MTUs and the high-speed
5529  *      congestion control table with the supplied alpha, beta, and MTUs.
5530  *      We write the two tables together because the additive increments
5531  *      depend on the MTUs.
5532  */
5533 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5534                   const unsigned short *alpha, const unsigned short *beta)
5535 {
5536         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5537                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5538                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5539                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5540         };
5541
5542         unsigned int i, w;
5543
5544         for (i = 0; i < NMTUS; ++i) {
5545                 unsigned int mtu = mtus[i];
5546                 unsigned int log2 = fls(mtu);
5547
5548                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5549                         log2--;
5550                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5551                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5552
5553                 for (w = 0; w < NCCTRL_WIN; ++w) {
5554                         unsigned int inc;
5555
5556                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5557                                   CC_MIN_INCR);
5558
5559                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5560                                      (w << 16) | (beta[w] << 13) | inc);
5561                 }
5562         }
5563 }
5564
5565 /**
5566  *      t4_set_pace_tbl - set the pace table
5567  *      @adap: the adapter
5568  *      @pace_vals: the pace values in microseconds
5569  *      @start: index of the first entry in the HW pace table to set
5570  *      @n: how many entries to set
5571  *
5572  *      Sets (a subset of the) HW pace table.
5573  */
5574 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5575                      unsigned int start, unsigned int n)
5576 {
5577         unsigned int vals[NTX_SCHED], i;
5578         unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5579
5580         if (n > NTX_SCHED)
5581             return -ERANGE;
5582
5583         /* convert values from us to dack ticks, rounding to closest value */
5584         for (i = 0; i < n; i++, pace_vals++) {
5585                 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5586                 if (vals[i] > 0x7ff)
5587                         return -ERANGE;
5588                 if (*pace_vals && vals[i] == 0)
5589                         return -ERANGE;
5590         }
5591         for (i = 0; i < n; i++, start++)
5592                 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5593         return 0;
5594 }
5595
5596 /**
5597  *      t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5598  *      @adap: the adapter
5599  *      @kbps: target rate in Kbps
5600  *      @sched: the scheduler index
5601  *
5602  *      Configure a Tx HW scheduler for the target rate.
5603  */
5604 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5605 {
5606         unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5607         unsigned int clk = adap->params.vpd.cclk * 1000;
5608         unsigned int selected_cpt = 0, selected_bpt = 0;
5609
5610         if (kbps > 0) {
5611                 kbps *= 125;     /* -> bytes */
5612                 for (cpt = 1; cpt <= 255; cpt++) {
5613                         tps = clk / cpt;
5614                         bpt = (kbps + tps / 2) / tps;
5615                         if (bpt > 0 && bpt <= 255) {
5616                                 v = bpt * tps;
5617                                 delta = v >= kbps ? v - kbps : kbps - v;
5618                                 if (delta < mindelta) {
5619                                         mindelta = delta;
5620                                         selected_cpt = cpt;
5621                                         selected_bpt = bpt;
5622                                 }
5623                         } else if (selected_cpt)
5624                                 break;
5625                 }
5626                 if (!selected_cpt)
5627                         return -EINVAL;
5628         }
5629         t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5630                      A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5631         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5632         if (sched & 1)
5633                 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5634         else
5635                 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5636         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5637         return 0;
5638 }
5639
5640 /**
5641  *      t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5642  *      @adap: the adapter
5643  *      @sched: the scheduler index
5644  *      @ipg: the interpacket delay in tenths of nanoseconds
5645  *
5646  *      Set the interpacket delay for a HW packet rate scheduler.
5647  */
5648 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5649 {
5650         unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5651
5652         /* convert ipg to nearest number of core clocks */
5653         ipg *= core_ticks_per_usec(adap);
5654         ipg = (ipg + 5000) / 10000;
5655         if (ipg > M_TXTIMERSEPQ0)
5656                 return -EINVAL;
5657
5658         t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5659         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5660         if (sched & 1)
5661                 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5662         else
5663                 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5664         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5665         t4_read_reg(adap, A_TP_TM_PIO_DATA);
5666         return 0;
5667 }
5668
5669 /*
5670  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5671  * clocks.  The formula is
5672  *
5673  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5674  *
5675  * which is equivalent to
5676  *
5677  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5678  */
5679 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5680 {
5681         u64 v = bytes256 * adap->params.vpd.cclk;
5682
5683         return v * 62 + v / 2;
5684 }
5685
5686 /**
5687  *      t4_get_chan_txrate - get the current per channel Tx rates
5688  *      @adap: the adapter
5689  *      @nic_rate: rates for NIC traffic
5690  *      @ofld_rate: rates for offloaded traffic
5691  *
5692  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5693  *      for each channel.
5694  */
5695 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5696 {
5697         u32 v;
5698
5699         v = t4_read_reg(adap, A_TP_TX_TRATE);
5700         nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5701         nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5702         if (adap->chip_params->nchan > 2) {
5703                 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5704                 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5705         }
5706
5707         v = t4_read_reg(adap, A_TP_TX_ORATE);
5708         ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5709         ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5710         if (adap->chip_params->nchan > 2) {
5711                 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5712                 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5713         }
5714 }
5715
5716 /**
5717  *      t4_set_trace_filter - configure one of the tracing filters
5718  *      @adap: the adapter
5719  *      @tp: the desired trace filter parameters
5720  *      @idx: which filter to configure
5721  *      @enable: whether to enable or disable the filter
5722  *
5723  *      Configures one of the tracing filters available in HW.  If @tp is %NULL
5724  *      it indicates that the filter is already written in the register and it
5725  *      just needs to be enabled or disabled.
5726  */
5727 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5728     int idx, int enable)
5729 {
5730         int i, ofst = idx * 4;
5731         u32 data_reg, mask_reg, cfg;
5732         u32 multitrc = F_TRCMULTIFILTER;
5733         u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5734
5735         if (idx < 0 || idx >= NTRACE)
5736                 return -EINVAL;
5737
5738         if (tp == NULL || !enable) {
5739                 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5740                     enable ? en : 0);
5741                 return 0;
5742         }
5743
5744         /*
5745          * TODO - After T4 data book is updated, specify the exact
5746          * section below.
5747          *
5748          * See T4 data book - MPS section for a complete description
5749          * of the below if..else handling of A_MPS_TRC_CFG register
5750          * value.
5751          */
5752         cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5753         if (cfg & F_TRCMULTIFILTER) {
5754                 /*
5755                  * If multiple tracers are enabled, then maximum
5756                  * capture size is 2.5KB (FIFO size of a single channel)
5757                  * minus 2 flits for CPL_TRACE_PKT header.
5758                  */
5759                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5760                         return -EINVAL;
5761         } else {
5762                 /*
5763                  * If multiple tracers are disabled, to avoid deadlocks
5764                  * maximum packet capture size of 9600 bytes is recommended.
5765                  * Also in this mode, only trace0 can be enabled and running.
5766                  */
5767                 multitrc = 0;
5768                 if (tp->snap_len > 9600 || idx)
5769                         return -EINVAL;
5770         }
5771
5772         if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5773             tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5774             tp->min_len > M_TFMINPKTSIZE)
5775                 return -EINVAL;
5776
5777         /* stop the tracer we'll be changing */
5778         t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5779
5780         idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5781         data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5782         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5783
5784         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5785                 t4_write_reg(adap, data_reg, tp->data[i]);
5786                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5787         }
5788         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5789                      V_TFCAPTUREMAX(tp->snap_len) |
5790                      V_TFMINPKTSIZE(tp->min_len));
5791         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5792                      V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5793                      (is_t4(adap) ?
5794                      V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5795                      V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5796
5797         return 0;
5798 }
5799
5800 /**
5801  *      t4_get_trace_filter - query one of the tracing filters
5802  *      @adap: the adapter
5803  *      @tp: the current trace filter parameters
5804  *      @idx: which trace filter to query
5805  *      @enabled: non-zero if the filter is enabled
5806  *
5807  *      Returns the current settings of one of the HW tracing filters.
5808  */
5809 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5810                          int *enabled)
5811 {
5812         u32 ctla, ctlb;
5813         int i, ofst = idx * 4;
5814         u32 data_reg, mask_reg;
5815
5816         ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5817         ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5818
5819         if (is_t4(adap)) {
5820                 *enabled = !!(ctla & F_TFEN);
5821                 tp->port =  G_TFPORT(ctla);
5822                 tp->invert = !!(ctla & F_TFINVERTMATCH);
5823         } else {
5824                 *enabled = !!(ctla & F_T5_TFEN);
5825                 tp->port = G_T5_TFPORT(ctla);
5826                 tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5827         }
5828         tp->snap_len = G_TFCAPTUREMAX(ctlb);
5829         tp->min_len = G_TFMINPKTSIZE(ctlb);
5830         tp->skip_ofst = G_TFOFFSET(ctla);
5831         tp->skip_len = G_TFLENGTH(ctla);
5832
5833         ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5834         data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5835         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5836
5837         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5838                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5839                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5840         }
5841 }
5842
5843 /**
5844  *      t4_pmtx_get_stats - returns the HW stats from PMTX
5845  *      @adap: the adapter
5846  *      @cnt: where to store the count statistics
5847  *      @cycles: where to store the cycle statistics
5848  *
5849  *      Returns performance statistics from PMTX.
5850  */
5851 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5852 {
5853         int i;
5854         u32 data[2];
5855
5856         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5857                 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5858                 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5859                 if (is_t4(adap))
5860                         cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5861                 else {
5862                         t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5863                                          A_PM_TX_DBG_DATA, data, 2,
5864                                          A_PM_TX_DBG_STAT_MSB);
5865                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5866                 }
5867         }
5868 }
5869
5870 /**
5871  *      t4_pmrx_get_stats - returns the HW stats from PMRX
5872  *      @adap: the adapter
5873  *      @cnt: where to store the count statistics
5874  *      @cycles: where to store the cycle statistics
5875  *
5876  *      Returns performance statistics from PMRX.
5877  */
5878 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5879 {
5880         int i;
5881         u32 data[2];
5882
5883         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5884                 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5885                 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5886                 if (is_t4(adap)) {
5887                         cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5888                 } else {
5889                         t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5890                                          A_PM_RX_DBG_DATA, data, 2,
5891                                          A_PM_RX_DBG_STAT_MSB);
5892                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5893                 }
5894         }
5895 }
5896
5897 /**
5898  *      t4_get_mps_bg_map - return the buffer groups associated with a port
5899  *      @adap: the adapter
5900  *      @idx: the port index
5901  *
5902  *      Returns a bitmap indicating which MPS buffer groups are associated
5903  *      with the given port.  Bit i is set if buffer group i is used by the
5904  *      port.
5905  */
5906 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5907 {
5908         u32 n;
5909
5910         if (adap->params.mps_bg_map)
5911                 return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
5912
5913         n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5914         if (n == 0)
5915                 return idx == 0 ? 0xf : 0;
5916         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5917                 return idx < 2 ? (3 << (2 * idx)) : 0;
5918         return 1 << idx;
5919 }
5920
5921 /*
5922  * TP RX e-channels associated with the port.
5923  */
5924 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
5925 {
5926         u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5927
5928         if (n == 0)
5929                 return idx == 0 ? 0xf : 0;
5930         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5931                 return idx < 2 ? (3 << (2 * idx)) : 0;
5932         return 1 << idx;
5933 }
5934
5935 /**
5936  *      t4_get_port_type_description - return Port Type string description
5937  *      @port_type: firmware Port Type enumeration
5938  */
5939 const char *t4_get_port_type_description(enum fw_port_type port_type)
5940 {
5941         static const char *const port_type_description[] = {
5942                 "Fiber_XFI",
5943                 "Fiber_XAUI",
5944                 "BT_SGMII",
5945                 "BT_XFI",
5946                 "BT_XAUI",
5947                 "KX4",
5948                 "CX4",
5949                 "KX",
5950                 "KR",
5951                 "SFP",
5952                 "BP_AP",
5953                 "BP4_AP",
5954                 "QSFP_10G",
5955                 "QSA",
5956                 "QSFP",
5957                 "BP40_BA",
5958                 "KR4_100G",
5959                 "CR4_QSFP",
5960                 "CR_QSFP",
5961                 "CR2_QSFP",
5962                 "SFP28",
5963                 "KR_SFP28",
5964         };
5965
5966         if (port_type < ARRAY_SIZE(port_type_description))
5967                 return port_type_description[port_type];
5968         return "UNKNOWN";
5969 }
5970
5971 /**
5972  *      t4_get_port_stats_offset - collect port stats relative to a previous
5973  *                                 snapshot
5974  *      @adap: The adapter
5975  *      @idx: The port
5976  *      @stats: Current stats to fill
5977  *      @offset: Previous stats snapshot
5978  */
5979 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5980                 struct port_stats *stats,
5981                 struct port_stats *offset)
5982 {
5983         u64 *s, *o;
5984         int i;
5985
5986         t4_get_port_stats(adap, idx, stats);
5987         for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5988                         i < (sizeof(struct port_stats)/sizeof(u64)) ;
5989                         i++, s++, o++)
5990                 *s -= *o;
5991 }
5992
5993 /**
5994  *      t4_get_port_stats - collect port statistics
5995  *      @adap: the adapter
5996  *      @idx: the port index
5997  *      @p: the stats structure to fill
5998  *
5999  *      Collect statistics related to the given port from HW.
6000  */
6001 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6002 {
6003         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6004         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6005
6006 #define GET_STAT(name) \
6007         t4_read_reg64(adap, \
6008         (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6009         T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6010 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6011
6012         p->tx_pause             = GET_STAT(TX_PORT_PAUSE);
6013         p->tx_octets            = GET_STAT(TX_PORT_BYTES);
6014         p->tx_frames            = GET_STAT(TX_PORT_FRAMES);
6015         p->tx_bcast_frames      = GET_STAT(TX_PORT_BCAST);
6016         p->tx_mcast_frames      = GET_STAT(TX_PORT_MCAST);
6017         p->tx_ucast_frames      = GET_STAT(TX_PORT_UCAST);
6018         p->tx_error_frames      = GET_STAT(TX_PORT_ERROR);
6019         p->tx_frames_64         = GET_STAT(TX_PORT_64B);
6020         p->tx_frames_65_127     = GET_STAT(TX_PORT_65B_127B);
6021         p->tx_frames_128_255    = GET_STAT(TX_PORT_128B_255B);
6022         p->tx_frames_256_511    = GET_STAT(TX_PORT_256B_511B);
6023         p->tx_frames_512_1023   = GET_STAT(TX_PORT_512B_1023B);
6024         p->tx_frames_1024_1518  = GET_STAT(TX_PORT_1024B_1518B);
6025         p->tx_frames_1519_max   = GET_STAT(TX_PORT_1519B_MAX);
6026         p->tx_drop              = GET_STAT(TX_PORT_DROP);
6027         p->tx_ppp0              = GET_STAT(TX_PORT_PPP0);
6028         p->tx_ppp1              = GET_STAT(TX_PORT_PPP1);
6029         p->tx_ppp2              = GET_STAT(TX_PORT_PPP2);
6030         p->tx_ppp3              = GET_STAT(TX_PORT_PPP3);
6031         p->tx_ppp4              = GET_STAT(TX_PORT_PPP4);
6032         p->tx_ppp5              = GET_STAT(TX_PORT_PPP5);
6033         p->tx_ppp6              = GET_STAT(TX_PORT_PPP6);
6034         p->tx_ppp7              = GET_STAT(TX_PORT_PPP7);
6035
6036         if (chip_id(adap) >= CHELSIO_T5) {
6037                 if (stat_ctl & F_COUNTPAUSESTATTX) {
6038                         p->tx_frames -= p->tx_pause;
6039                         p->tx_octets -= p->tx_pause * 64;
6040                 }
6041                 if (stat_ctl & F_COUNTPAUSEMCTX)
6042                         p->tx_mcast_frames -= p->tx_pause;
6043         }
6044
6045         p->rx_pause             = GET_STAT(RX_PORT_PAUSE);
6046         p->rx_octets            = GET_STAT(RX_PORT_BYTES);
6047         p->rx_frames            = GET_STAT(RX_PORT_FRAMES);
6048         p->rx_bcast_frames      = GET_STAT(RX_PORT_BCAST);
6049         p->rx_mcast_frames      = GET_STAT(RX_PORT_MCAST);
6050         p->rx_ucast_frames      = GET_STAT(RX_PORT_UCAST);
6051         p->rx_too_long          = GET_STAT(RX_PORT_MTU_ERROR);
6052         p->rx_jabber            = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6053         p->rx_fcs_err           = GET_STAT(RX_PORT_CRC_ERROR);
6054         p->rx_len_err           = GET_STAT(RX_PORT_LEN_ERROR);
6055         p->rx_symbol_err        = GET_STAT(RX_PORT_SYM_ERROR);
6056         p->rx_runt              = GET_STAT(RX_PORT_LESS_64B);
6057         p->rx_frames_64         = GET_STAT(RX_PORT_64B);
6058         p->rx_frames_65_127     = GET_STAT(RX_PORT_65B_127B);
6059         p->rx_frames_128_255    = GET_STAT(RX_PORT_128B_255B);
6060         p->rx_frames_256_511    = GET_STAT(RX_PORT_256B_511B);
6061         p->rx_frames_512_1023   = GET_STAT(RX_PORT_512B_1023B);
6062         p->rx_frames_1024_1518  = GET_STAT(RX_PORT_1024B_1518B);
6063         p->rx_frames_1519_max   = GET_STAT(RX_PORT_1519B_MAX);
6064         p->rx_ppp0              = GET_STAT(RX_PORT_PPP0);
6065         p->rx_ppp1              = GET_STAT(RX_PORT_PPP1);
6066         p->rx_ppp2              = GET_STAT(RX_PORT_PPP2);
6067         p->rx_ppp3              = GET_STAT(RX_PORT_PPP3);
6068         p->rx_ppp4              = GET_STAT(RX_PORT_PPP4);
6069         p->rx_ppp5              = GET_STAT(RX_PORT_PPP5);
6070         p->rx_ppp6              = GET_STAT(RX_PORT_PPP6);
6071         p->rx_ppp7              = GET_STAT(RX_PORT_PPP7);
6072
6073         if (chip_id(adap) >= CHELSIO_T5) {
6074                 if (stat_ctl & F_COUNTPAUSESTATRX) {
6075                         p->rx_frames -= p->rx_pause;
6076                         p->rx_octets -= p->rx_pause * 64;
6077                 }
6078                 if (stat_ctl & F_COUNTPAUSEMCRX)
6079                         p->rx_mcast_frames -= p->rx_pause;
6080         }
6081
6082         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6083         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6084         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6085         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6086         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6087         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6088         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6089         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6090
6091 #undef GET_STAT
6092 #undef GET_STAT_COM
6093 }
6094
6095 /**
6096  *      t4_get_lb_stats - collect loopback port statistics
6097  *      @adap: the adapter
6098  *      @idx: the loopback port index
6099  *      @p: the stats structure to fill
6100  *
6101  *      Return HW statistics for the given loopback port.
6102  */
6103 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6104 {
6105         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6106
6107 #define GET_STAT(name) \
6108         t4_read_reg64(adap, \
6109         (is_t4(adap) ? \
6110         PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6111         T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6112 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6113
6114         p->octets       = GET_STAT(BYTES);
6115         p->frames       = GET_STAT(FRAMES);
6116         p->bcast_frames = GET_STAT(BCAST);
6117         p->mcast_frames = GET_STAT(MCAST);
6118         p->ucast_frames = GET_STAT(UCAST);
6119         p->error_frames = GET_STAT(ERROR);
6120
6121         p->frames_64            = GET_STAT(64B);
6122         p->frames_65_127        = GET_STAT(65B_127B);
6123         p->frames_128_255       = GET_STAT(128B_255B);
6124         p->frames_256_511       = GET_STAT(256B_511B);
6125         p->frames_512_1023      = GET_STAT(512B_1023B);
6126         p->frames_1024_1518     = GET_STAT(1024B_1518B);
6127         p->frames_1519_max      = GET_STAT(1519B_MAX);
6128         p->drop                 = GET_STAT(DROP_FRAMES);
6129
6130         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6131         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6132         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6133         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6134         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6135         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6136         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6137         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6138
6139 #undef GET_STAT
6140 #undef GET_STAT_COM
6141 }
6142
6143 /**
6144  *      t4_wol_magic_enable - enable/disable magic packet WoL
6145  *      @adap: the adapter
6146  *      @port: the physical port index
6147  *      @addr: MAC address expected in magic packets, %NULL to disable
6148  *
6149  *      Enables/disables magic packet wake-on-LAN for the selected port.
6150  */
6151 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6152                          const u8 *addr)
6153 {
6154         u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6155
6156         if (is_t4(adap)) {
6157                 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6158                 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6159                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6160         } else {
6161                 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6162                 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6163                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6164         }
6165
6166         if (addr) {
6167                 t4_write_reg(adap, mag_id_reg_l,
6168                              (addr[2] << 24) | (addr[3] << 16) |
6169                              (addr[4] << 8) | addr[5]);
6170                 t4_write_reg(adap, mag_id_reg_h,
6171                              (addr[0] << 8) | addr[1]);
6172         }
6173         t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6174                          V_MAGICEN(addr != NULL));
6175 }
6176
6177 /**
6178  *      t4_wol_pat_enable - enable/disable pattern-based WoL
6179  *      @adap: the adapter
6180  *      @port: the physical port index
6181  *      @map: bitmap of which HW pattern filters to set
6182  *      @mask0: byte mask for bytes 0-63 of a packet
6183  *      @mask1: byte mask for bytes 64-127 of a packet
6184  *      @crc: Ethernet CRC for selected bytes
6185  *      @enable: enable/disable switch
6186  *
6187  *      Sets the pattern filters indicated in @map to mask out the bytes
6188  *      specified in @mask0/@mask1 in received packets and compare the CRC of
6189  *      the resulting packet against @crc.  If @enable is %true pattern-based
6190  *      WoL is enabled, otherwise disabled.
6191  */
6192 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6193                       u64 mask0, u64 mask1, unsigned int crc, bool enable)
6194 {
6195         int i;
6196         u32 port_cfg_reg;
6197
6198         if (is_t4(adap))
6199                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6200         else
6201                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6202
6203         if (!enable) {
6204                 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6205                 return 0;
6206         }
6207         if (map > 0xff)
6208                 return -EINVAL;
6209
6210 #define EPIO_REG(name) \
6211         (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6212         T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6213
6214         t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6215         t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6216         t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6217
6218         for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6219                 if (!(map & 1))
6220                         continue;
6221
6222                 /* write byte masks */
6223                 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6224                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6225                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6226                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6227                         return -ETIMEDOUT;
6228
6229                 /* write CRC */
6230                 t4_write_reg(adap, EPIO_REG(DATA0), crc);
6231                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6232                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6233                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6234                         return -ETIMEDOUT;
6235         }
6236 #undef EPIO_REG
6237
6238         t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6239         return 0;
6240 }
6241
6242 /*     t4_mk_filtdelwr - create a delete filter WR
6243  *     @ftid: the filter ID
6244  *     @wr: the filter work request to populate
6245  *     @qid: ingress queue to receive the delete notification
6246  *
6247  *     Creates a filter work request to delete the supplied filter.  If @qid is
6248  *     negative the delete notification is suppressed.
6249  */
6250 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6251 {
6252         memset(wr, 0, sizeof(*wr));
6253         wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6254         wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6255         wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6256                                     V_FW_FILTER_WR_NOREPLY(qid < 0));
6257         wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6258         if (qid >= 0)
6259                 wr->rx_chan_rx_rpl_iq =
6260                                 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6261 }
6262
6263 #define INIT_CMD(var, cmd, rd_wr) do { \
6264         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6265                                         F_FW_CMD_REQUEST | \
6266                                         F_FW_CMD_##rd_wr); \
6267         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6268 } while (0)
6269
6270 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6271                           u32 addr, u32 val)
6272 {
6273         u32 ldst_addrspace;
6274         struct fw_ldst_cmd c;
6275
6276         memset(&c, 0, sizeof(c));
6277         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6278         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6279                                         F_FW_CMD_REQUEST |
6280                                         F_FW_CMD_WRITE |
6281                                         ldst_addrspace);
6282         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6283         c.u.addrval.addr = cpu_to_be32(addr);
6284         c.u.addrval.val = cpu_to_be32(val);
6285
6286         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6287 }
6288
6289 /**
6290  *      t4_mdio_rd - read a PHY register through MDIO
6291  *      @adap: the adapter
6292  *      @mbox: mailbox to use for the FW command
6293  *      @phy_addr: the PHY address
6294  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6295  *      @reg: the register to read
6296  *      @valp: where to store the value
6297  *
6298  *      Issues a FW command through the given mailbox to read a PHY register.
6299  */
6300 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6301                unsigned int mmd, unsigned int reg, unsigned int *valp)
6302 {
6303         int ret;
6304         u32 ldst_addrspace;
6305         struct fw_ldst_cmd c;
6306
6307         memset(&c, 0, sizeof(c));
6308         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6309         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6310                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
6311                                         ldst_addrspace);
6312         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6313         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6314                                          V_FW_LDST_CMD_MMD(mmd));
6315         c.u.mdio.raddr = cpu_to_be16(reg);
6316
6317         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6318         if (ret == 0)
6319                 *valp = be16_to_cpu(c.u.mdio.rval);
6320         return ret;
6321 }
6322
6323 /**
6324  *      t4_mdio_wr - write a PHY register through MDIO
6325  *      @adap: the adapter
6326  *      @mbox: mailbox to use for the FW command
6327  *      @phy_addr: the PHY address
6328  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6329  *      @reg: the register to write
6330  *      @valp: value to write
6331  *
6332  *      Issues a FW command through the given mailbox to write a PHY register.
6333  */
6334 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6335                unsigned int mmd, unsigned int reg, unsigned int val)
6336 {
6337         u32 ldst_addrspace;
6338         struct fw_ldst_cmd c;
6339
6340         memset(&c, 0, sizeof(c));
6341         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6342         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6343                                         F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6344                                         ldst_addrspace);
6345         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6346         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6347                                          V_FW_LDST_CMD_MMD(mmd));
6348         c.u.mdio.raddr = cpu_to_be16(reg);
6349         c.u.mdio.rval = cpu_to_be16(val);
6350
6351         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6352 }
6353
6354 /**
6355  *
6356  *      t4_sge_decode_idma_state - decode the idma state
6357  *      @adap: the adapter
6358  *      @state: the state idma is stuck in
6359  */
6360 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6361 {
6362         static const char * const t4_decode[] = {
6363                 "IDMA_IDLE",
6364                 "IDMA_PUSH_MORE_CPL_FIFO",
6365                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6366                 "Not used",
6367                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6368                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6369                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6370                 "IDMA_SEND_FIFO_TO_IMSG",
6371                 "IDMA_FL_REQ_DATA_FL_PREP",
6372                 "IDMA_FL_REQ_DATA_FL",
6373                 "IDMA_FL_DROP",
6374                 "IDMA_FL_H_REQ_HEADER_FL",
6375                 "IDMA_FL_H_SEND_PCIEHDR",
6376                 "IDMA_FL_H_PUSH_CPL_FIFO",
6377                 "IDMA_FL_H_SEND_CPL",
6378                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6379                 "IDMA_FL_H_SEND_IP_HDR",
6380                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6381                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6382                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6383                 "IDMA_FL_D_SEND_PCIEHDR",
6384                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6385                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6386                 "IDMA_FL_SEND_PCIEHDR",
6387                 "IDMA_FL_PUSH_CPL_FIFO",
6388                 "IDMA_FL_SEND_CPL",
6389                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6390                 "IDMA_FL_SEND_PAYLOAD",
6391                 "IDMA_FL_REQ_NEXT_DATA_FL",
6392                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6393                 "IDMA_FL_SEND_PADDING",
6394                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6395                 "IDMA_FL_SEND_FIFO_TO_IMSG",
6396                 "IDMA_FL_REQ_DATAFL_DONE",
6397                 "IDMA_FL_REQ_HEADERFL_DONE",
6398         };
6399         static const char * const t5_decode[] = {
6400                 "IDMA_IDLE",
6401                 "IDMA_ALMOST_IDLE",
6402                 "IDMA_PUSH_MORE_CPL_FIFO",
6403                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6404                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6405                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6406                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6407                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6408                 "IDMA_SEND_FIFO_TO_IMSG",
6409                 "IDMA_FL_REQ_DATA_FL",
6410                 "IDMA_FL_DROP",
6411                 "IDMA_FL_DROP_SEND_INC",
6412                 "IDMA_FL_H_REQ_HEADER_FL",
6413                 "IDMA_FL_H_SEND_PCIEHDR",
6414                 "IDMA_FL_H_PUSH_CPL_FIFO",
6415                 "IDMA_FL_H_SEND_CPL",
6416                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6417                 "IDMA_FL_H_SEND_IP_HDR",
6418                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6419                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6420                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6421                 "IDMA_FL_D_SEND_PCIEHDR",
6422                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6423                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6424                 "IDMA_FL_SEND_PCIEHDR",
6425                 "IDMA_FL_PUSH_CPL_FIFO",
6426                 "IDMA_FL_SEND_CPL",
6427                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6428                 "IDMA_FL_SEND_PAYLOAD",
6429                 "IDMA_FL_REQ_NEXT_DATA_FL",
6430                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6431                 "IDMA_FL_SEND_PADDING",
6432                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6433         };
6434         static const char * const t6_decode[] = {
6435                 "IDMA_IDLE",
6436                 "IDMA_PUSH_MORE_CPL_FIFO",
6437                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6438                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6439                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6440                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6441                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6442                 "IDMA_FL_REQ_DATA_FL",
6443                 "IDMA_FL_DROP",
6444                 "IDMA_FL_DROP_SEND_INC",
6445                 "IDMA_FL_H_REQ_HEADER_FL",
6446                 "IDMA_FL_H_SEND_PCIEHDR",
6447                 "IDMA_FL_H_PUSH_CPL_FIFO",
6448                 "IDMA_FL_H_SEND_CPL",
6449                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6450                 "IDMA_FL_H_SEND_IP_HDR",
6451                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6452                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6453                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6454                 "IDMA_FL_D_SEND_PCIEHDR",
6455                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6456                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6457                 "IDMA_FL_SEND_PCIEHDR",
6458                 "IDMA_FL_PUSH_CPL_FIFO",
6459                 "IDMA_FL_SEND_CPL",
6460                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6461                 "IDMA_FL_SEND_PAYLOAD",
6462                 "IDMA_FL_REQ_NEXT_DATA_FL",
6463                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6464                 "IDMA_FL_SEND_PADDING",
6465                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6466         };
6467         static const u32 sge_regs[] = {
6468                 A_SGE_DEBUG_DATA_LOW_INDEX_2,
6469                 A_SGE_DEBUG_DATA_LOW_INDEX_3,
6470                 A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6471         };
6472         const char * const *sge_idma_decode;
6473         int sge_idma_decode_nstates;
6474         int i;
6475         unsigned int chip_version = chip_id(adapter);
6476
6477         /* Select the right set of decode strings to dump depending on the
6478          * adapter chip type.
6479          */
6480         switch (chip_version) {
6481         case CHELSIO_T4:
6482                 sge_idma_decode = (const char * const *)t4_decode;
6483                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6484                 break;
6485
6486         case CHELSIO_T5:
6487                 sge_idma_decode = (const char * const *)t5_decode;
6488                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6489                 break;
6490
6491         case CHELSIO_T6:
6492                 sge_idma_decode = (const char * const *)t6_decode;
6493                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6494                 break;
6495
6496         default:
6497                 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version);
6498                 return;
6499         }
6500
6501         if (state < sge_idma_decode_nstates)
6502                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6503         else
6504                 CH_WARN(adapter, "idma state %d unknown\n", state);
6505
6506         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6507                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6508                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6509 }
6510
6511 /**
6512  *      t4_sge_ctxt_flush - flush the SGE context cache
6513  *      @adap: the adapter
6514  *      @mbox: mailbox to use for the FW command
6515  *
6516  *      Issues a FW command through the given mailbox to flush the
6517  *      SGE context cache.
6518  */
6519 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6520 {
6521         int ret;
6522         u32 ldst_addrspace;
6523         struct fw_ldst_cmd c;
6524
6525         memset(&c, 0, sizeof(c));
6526         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6527         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6528                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
6529                                         ldst_addrspace);
6530         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6531         c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6532
6533         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6534         return ret;
6535 }
6536
6537 /**
6538  *      t4_fw_hello - establish communication with FW
6539  *      @adap: the adapter
6540  *      @mbox: mailbox to use for the FW command
6541  *      @evt_mbox: mailbox to receive async FW events
6542  *      @master: specifies the caller's willingness to be the device master
6543  *      @state: returns the current device state (if non-NULL)
6544  *
6545  *      Issues a command to establish communication with FW.  Returns either
6546  *      an error (negative integer) or the mailbox of the Master PF.
6547  */
6548 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6549                 enum dev_master master, enum dev_state *state)
6550 {
6551         int ret;
6552         struct fw_hello_cmd c;
6553         u32 v;
6554         unsigned int master_mbox;
6555         int retries = FW_CMD_HELLO_RETRIES;
6556
6557 retry:
6558         memset(&c, 0, sizeof(c));
6559         INIT_CMD(c, HELLO, WRITE);
6560         c.err_to_clearinit = cpu_to_be32(
6561                 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6562                 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6563                 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6564                                         mbox : M_FW_HELLO_CMD_MBMASTER) |
6565                 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6566                 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6567                 F_FW_HELLO_CMD_CLEARINIT);
6568
6569         /*
6570          * Issue the HELLO command to the firmware.  If it's not successful
6571          * but indicates that we got a "busy" or "timeout" condition, retry
6572          * the HELLO until we exhaust our retry limit.  If we do exceed our
6573          * retry limit, check to see if the firmware left us any error
6574          * information and report that if so ...
6575          */
6576         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6577         if (ret != FW_SUCCESS) {
6578                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6579                         goto retry;
6580                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6581                         t4_report_fw_error(adap);
6582                 return ret;
6583         }
6584
6585         v = be32_to_cpu(c.err_to_clearinit);
6586         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6587         if (state) {
6588                 if (v & F_FW_HELLO_CMD_ERR)
6589                         *state = DEV_STATE_ERR;
6590                 else if (v & F_FW_HELLO_CMD_INIT)
6591                         *state = DEV_STATE_INIT;
6592                 else
6593                         *state = DEV_STATE_UNINIT;
6594         }
6595
6596         /*
6597          * If we're not the Master PF then we need to wait around for the
6598          * Master PF Driver to finish setting up the adapter.
6599          *
6600          * Note that we also do this wait if we're a non-Master-capable PF and
6601          * there is no current Master PF; a Master PF may show up momentarily
6602          * and we wouldn't want to fail pointlessly.  (This can happen when an
6603          * OS loads lots of different drivers rapidly at the same time).  In
6604          * this case, the Master PF returned by the firmware will be
6605          * M_PCIE_FW_MASTER so the test below will work ...
6606          */
6607         if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6608             master_mbox != mbox) {
6609                 int waiting = FW_CMD_HELLO_TIMEOUT;
6610
6611                 /*
6612                  * Wait for the firmware to either indicate an error or
6613                  * initialized state.  If we see either of these we bail out
6614                  * and report the issue to the caller.  If we exhaust the
6615                  * "hello timeout" and we haven't exhausted our retries, try
6616                  * again.  Otherwise bail with a timeout error.
6617                  */
6618                 for (;;) {
6619                         u32 pcie_fw;
6620
6621                         msleep(50);
6622                         waiting -= 50;
6623
6624                         /*
6625                          * If neither Error nor Initialialized are indicated
6626                          * by the firmware keep waiting till we exhaust our
6627                          * timeout ... and then retry if we haven't exhausted
6628                          * our retries ...
6629                          */
6630                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6631                         if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6632                                 if (waiting <= 0) {
6633                                         if (retries-- > 0)
6634                                                 goto retry;
6635
6636                                         return -ETIMEDOUT;
6637                                 }
6638                                 continue;
6639                         }
6640
6641                         /*
6642                          * We either have an Error or Initialized condition
6643                          * report errors preferentially.
6644                          */
6645                         if (state) {
6646                                 if (pcie_fw & F_PCIE_FW_ERR)
6647                                         *state = DEV_STATE_ERR;
6648                                 else if (pcie_fw & F_PCIE_FW_INIT)
6649                                         *state = DEV_STATE_INIT;
6650                         }
6651
6652                         /*
6653                          * If we arrived before a Master PF was selected and
6654                          * there's not a valid Master PF, grab its identity
6655                          * for our caller.
6656                          */
6657                         if (master_mbox == M_PCIE_FW_MASTER &&
6658                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
6659                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6660                         break;
6661                 }
6662         }
6663
6664         return master_mbox;
6665 }
6666
6667 /**
6668  *      t4_fw_bye - end communication with FW
6669  *      @adap: the adapter
6670  *      @mbox: mailbox to use for the FW command
6671  *
6672  *      Issues a command to terminate communication with FW.
6673  */
6674 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6675 {
6676         struct fw_bye_cmd c;
6677
6678         memset(&c, 0, sizeof(c));
6679         INIT_CMD(c, BYE, WRITE);
6680         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6681 }
6682
6683 /**
6684  *      t4_fw_reset - issue a reset to FW
6685  *      @adap: the adapter
6686  *      @mbox: mailbox to use for the FW command
6687  *      @reset: specifies the type of reset to perform
6688  *
6689  *      Issues a reset command of the specified type to FW.
6690  */
6691 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6692 {
6693         struct fw_reset_cmd c;
6694
6695         memset(&c, 0, sizeof(c));
6696         INIT_CMD(c, RESET, WRITE);
6697         c.val = cpu_to_be32(reset);
6698         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6699 }
6700
6701 /**
6702  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6703  *      @adap: the adapter
6704  *      @mbox: mailbox to use for the FW RESET command (if desired)
6705  *      @force: force uP into RESET even if FW RESET command fails
6706  *
6707  *      Issues a RESET command to firmware (if desired) with a HALT indication
6708  *      and then puts the microprocessor into RESET state.  The RESET command
6709  *      will only be issued if a legitimate mailbox is provided (mbox <=
6710  *      M_PCIE_FW_MASTER).
6711  *
6712  *      This is generally used in order for the host to safely manipulate the
6713  *      adapter without fear of conflicting with whatever the firmware might
6714  *      be doing.  The only way out of this state is to RESTART the firmware
6715  *      ...
6716  */
6717 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6718 {
6719         int ret = 0;
6720
6721         /*
6722          * If a legitimate mailbox is provided, issue a RESET command
6723          * with a HALT indication.
6724          */
6725         if (mbox <= M_PCIE_FW_MASTER) {
6726                 struct fw_reset_cmd c;
6727
6728                 memset(&c, 0, sizeof(c));
6729                 INIT_CMD(c, RESET, WRITE);
6730                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6731                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6732                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6733         }
6734
6735         /*
6736          * Normally we won't complete the operation if the firmware RESET
6737          * command fails but if our caller insists we'll go ahead and put the
6738          * uP into RESET.  This can be useful if the firmware is hung or even
6739          * missing ...  We'll have to take the risk of putting the uP into
6740          * RESET without the cooperation of firmware in that case.
6741          *
6742          * We also force the firmware's HALT flag to be on in case we bypassed
6743          * the firmware RESET command above or we're dealing with old firmware
6744          * which doesn't have the HALT capability.  This will serve as a flag
6745          * for the incoming firmware to know that it's coming out of a HALT
6746          * rather than a RESET ... if it's new enough to understand that ...
6747          */
6748         if (ret == 0 || force) {
6749                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6750                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6751                                  F_PCIE_FW_HALT);
6752         }
6753
6754         /*
6755          * And we always return the result of the firmware RESET command
6756          * even when we force the uP into RESET ...
6757          */
6758         return ret;
6759 }
6760
6761 /**
6762  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
6763  *      @adap: the adapter
6764  *      @reset: if we want to do a RESET to restart things
6765  *
6766  *      Restart firmware previously halted by t4_fw_halt().  On successful
6767  *      return the previous PF Master remains as the new PF Master and there
6768  *      is no need to issue a new HELLO command, etc.
6769  *
6770  *      We do this in two ways:
6771  *
6772  *       1. If we're dealing with newer firmware we'll simply want to take
6773  *          the chip's microprocessor out of RESET.  This will cause the
6774  *          firmware to start up from its start vector.  And then we'll loop
6775  *          until the firmware indicates it's started again (PCIE_FW.HALT
6776  *          reset to 0) or we timeout.
6777  *
6778  *       2. If we're dealing with older firmware then we'll need to RESET
6779  *          the chip since older firmware won't recognize the PCIE_FW.HALT
6780  *          flag and automatically RESET itself on startup.
6781  */
6782 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6783 {
6784         if (reset) {
6785                 /*
6786                  * Since we're directing the RESET instead of the firmware
6787                  * doing it automatically, we need to clear the PCIE_FW.HALT
6788                  * bit.
6789                  */
6790                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6791
6792                 /*
6793                  * If we've been given a valid mailbox, first try to get the
6794                  * firmware to do the RESET.  If that works, great and we can
6795                  * return success.  Otherwise, if we haven't been given a
6796                  * valid mailbox or the RESET command failed, fall back to
6797                  * hitting the chip with a hammer.
6798                  */
6799                 if (mbox <= M_PCIE_FW_MASTER) {
6800                         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6801                         msleep(100);
6802                         if (t4_fw_reset(adap, mbox,
6803                                         F_PIORST | F_PIORSTMODE) == 0)
6804                                 return 0;
6805                 }
6806
6807                 t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6808                 msleep(2000);
6809         } else {
6810                 int ms;
6811
6812                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6813                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6814                         if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6815                                 return FW_SUCCESS;
6816                         msleep(100);
6817                         ms += 100;
6818                 }
6819                 return -ETIMEDOUT;
6820         }
6821         return 0;
6822 }
6823
6824 /**
6825  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6826  *      @adap: the adapter
6827  *      @mbox: mailbox to use for the FW RESET command (if desired)
6828  *      @fw_data: the firmware image to write
6829  *      @size: image size
6830  *      @force: force upgrade even if firmware doesn't cooperate
6831  *
6832  *      Perform all of the steps necessary for upgrading an adapter's
6833  *      firmware image.  Normally this requires the cooperation of the
6834  *      existing firmware in order to halt all existing activities
6835  *      but if an invalid mailbox token is passed in we skip that step
6836  *      (though we'll still put the adapter microprocessor into RESET in
6837  *      that case).
6838  *
6839  *      On successful return the new firmware will have been loaded and
6840  *      the adapter will have been fully RESET losing all previous setup
6841  *      state.  On unsuccessful return the adapter may be completely hosed ...
6842  *      positive errno indicates that the adapter is ~probably~ intact, a
6843  *      negative errno indicates that things are looking bad ...
6844  */
6845 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6846                   const u8 *fw_data, unsigned int size, int force)
6847 {
6848         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6849         unsigned int bootstrap =
6850             be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6851         int reset, ret;
6852
6853         if (!t4_fw_matches_chip(adap, fw_hdr))
6854                 return -EINVAL;
6855
6856         if (!bootstrap) {
6857                 ret = t4_fw_halt(adap, mbox, force);
6858                 if (ret < 0 && !force)
6859                         return ret;
6860         }
6861
6862         ret = t4_load_fw(adap, fw_data, size);
6863         if (ret < 0 || bootstrap)
6864                 return ret;
6865
6866         /*
6867          * Older versions of the firmware don't understand the new
6868          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6869          * restart.  So for newly loaded older firmware we'll have to do the
6870          * RESET for it so it starts up on a clean slate.  We can tell if
6871          * the newly loaded firmware will handle this right by checking
6872          * its header flags to see if it advertises the capability.
6873          */
6874         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6875         return t4_fw_restart(adap, mbox, reset);
6876 }
6877
6878 /*
6879  * Card doesn't have a firmware, install one.
6880  */
6881 int t4_fw_forceinstall(struct adapter *adap, const u8 *fw_data,
6882     unsigned int size)
6883 {
6884         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6885         unsigned int bootstrap =
6886             be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6887         int ret;
6888
6889         if (!t4_fw_matches_chip(adap, fw_hdr) || bootstrap)
6890                 return -EINVAL;
6891
6892         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6893         t4_write_reg(adap, A_PCIE_FW, 0);       /* Clobber internal state */
6894         ret = t4_load_fw(adap, fw_data, size);
6895         if (ret < 0)
6896                 return ret;
6897         t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6898         msleep(1000);
6899
6900         return (0);
6901 }
6902
6903 /**
6904  *      t4_fw_initialize - ask FW to initialize the device
6905  *      @adap: the adapter
6906  *      @mbox: mailbox to use for the FW command
6907  *
6908  *      Issues a command to FW to partially initialize the device.  This
6909  *      performs initialization that generally doesn't depend on user input.
6910  */
6911 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6912 {
6913         struct fw_initialize_cmd c;
6914
6915         memset(&c, 0, sizeof(c));
6916         INIT_CMD(c, INITIALIZE, WRITE);
6917         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6918 }
6919
6920 /**
6921  *      t4_query_params_rw - query FW or device parameters
6922  *      @adap: the adapter
6923  *      @mbox: mailbox to use for the FW command
6924  *      @pf: the PF
6925  *      @vf: the VF
6926  *      @nparams: the number of parameters
6927  *      @params: the parameter names
6928  *      @val: the parameter values
6929  *      @rw: Write and read flag
6930  *
6931  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
6932  *      queried at once.
6933  */
6934 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6935                        unsigned int vf, unsigned int nparams, const u32 *params,
6936                        u32 *val, int rw)
6937 {
6938         int i, ret;
6939         struct fw_params_cmd c;
6940         __be32 *p = &c.param[0].mnem;
6941
6942         if (nparams > 7)
6943                 return -EINVAL;
6944
6945         memset(&c, 0, sizeof(c));
6946         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6947                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
6948                                   V_FW_PARAMS_CMD_PFN(pf) |
6949                                   V_FW_PARAMS_CMD_VFN(vf));
6950         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6951
6952         for (i = 0; i < nparams; i++) {
6953                 *p++ = cpu_to_be32(*params++);
6954                 if (rw)
6955                         *p = cpu_to_be32(*(val + i));
6956                 p++;
6957         }
6958
6959         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6960         if (ret == 0)
6961                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6962                         *val++ = be32_to_cpu(*p);
6963         return ret;
6964 }
6965
6966 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6967                     unsigned int vf, unsigned int nparams, const u32 *params,
6968                     u32 *val)
6969 {
6970         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6971 }
6972
6973 /**
6974  *      t4_set_params_timeout - sets FW or device parameters
6975  *      @adap: the adapter
6976  *      @mbox: mailbox to use for the FW command
6977  *      @pf: the PF
6978  *      @vf: the VF
6979  *      @nparams: the number of parameters
6980  *      @params: the parameter names
6981  *      @val: the parameter values
6982  *      @timeout: the timeout time
6983  *
6984  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6985  *      specified at once.
6986  */
6987 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6988                           unsigned int pf, unsigned int vf,
6989                           unsigned int nparams, const u32 *params,
6990                           const u32 *val, int timeout)
6991 {
6992         struct fw_params_cmd c;
6993         __be32 *p = &c.param[0].mnem;
6994
6995         if (nparams > 7)
6996                 return -EINVAL;
6997
6998         memset(&c, 0, sizeof(c));
6999         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7000                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7001                                   V_FW_PARAMS_CMD_PFN(pf) |
7002                                   V_FW_PARAMS_CMD_VFN(vf));
7003         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7004
7005         while (nparams--) {
7006                 *p++ = cpu_to_be32(*params++);
7007                 *p++ = cpu_to_be32(*val++);
7008         }
7009
7010         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7011 }
7012
7013 /**
7014  *      t4_set_params - sets FW or device parameters
7015  *      @adap: the adapter
7016  *      @mbox: mailbox to use for the FW command
7017  *      @pf: the PF
7018  *      @vf: the VF
7019  *      @nparams: the number of parameters
7020  *      @params: the parameter names
7021  *      @val: the parameter values
7022  *
7023  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7024  *      specified at once.
7025  */
7026 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7027                   unsigned int vf, unsigned int nparams, const u32 *params,
7028                   const u32 *val)
7029 {
7030         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7031                                      FW_CMD_MAX_TIMEOUT);
7032 }
7033
7034 /**
7035  *      t4_cfg_pfvf - configure PF/VF resource limits
7036  *      @adap: the adapter
7037  *      @mbox: mailbox to use for the FW command
7038  *      @pf: the PF being configured
7039  *      @vf: the VF being configured
7040  *      @txq: the max number of egress queues
7041  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7042  *      @rxqi: the max number of interrupt-capable ingress queues
7043  *      @rxq: the max number of interruptless ingress queues
7044  *      @tc: the PCI traffic class
7045  *      @vi: the max number of virtual interfaces
7046  *      @cmask: the channel access rights mask for the PF/VF
7047  *      @pmask: the port access rights mask for the PF/VF
7048  *      @nexact: the maximum number of exact MPS filters
7049  *      @rcaps: read capabilities
7050  *      @wxcaps: write/execute capabilities
7051  *
7052  *      Configures resource limits and capabilities for a physical or virtual
7053  *      function.
7054  */
7055 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7056                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7057                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7058                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7059                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7060 {
7061         struct fw_pfvf_cmd c;
7062
7063         memset(&c, 0, sizeof(c));
7064         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7065                                   F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7066                                   V_FW_PFVF_CMD_VFN(vf));
7067         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7068         c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7069                                      V_FW_PFVF_CMD_NIQ(rxq));
7070         c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7071                                     V_FW_PFVF_CMD_PMASK(pmask) |
7072                                     V_FW_PFVF_CMD_NEQ(txq));
7073         c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7074                                       V_FW_PFVF_CMD_NVI(vi) |
7075                                       V_FW_PFVF_CMD_NEXACTF(nexact));
7076         c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7077                                      V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7078                                      V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7079         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7080 }
7081
7082 /**
7083  *      t4_alloc_vi_func - allocate a virtual interface
7084  *      @adap: the adapter
7085  *      @mbox: mailbox to use for the FW command
7086  *      @port: physical port associated with the VI
7087  *      @pf: the PF owning the VI
7088  *      @vf: the VF owning the VI
7089  *      @nmac: number of MAC addresses needed (1 to 5)
7090  *      @mac: the MAC addresses of the VI
7091  *      @rss_size: size of RSS table slice associated with this VI
7092  *      @portfunc: which Port Application Function MAC Address is desired
7093  *      @idstype: Intrusion Detection Type
7094  *
7095  *      Allocates a virtual interface for the given physical port.  If @mac is
7096  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7097  *      If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7098  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7099  *      stored consecutively so the space needed is @nmac * 6 bytes.
7100  *      Returns a negative error number or the non-negative VI id.
7101  */
7102 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7103                      unsigned int port, unsigned int pf, unsigned int vf,
7104                      unsigned int nmac, u8 *mac, u16 *rss_size,
7105                      unsigned int portfunc, unsigned int idstype)
7106 {
7107         int ret;
7108         struct fw_vi_cmd c;
7109
7110         memset(&c, 0, sizeof(c));
7111         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7112                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7113                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7114         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7115         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7116                                      V_FW_VI_CMD_FUNC(portfunc));
7117         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7118         c.nmac = nmac - 1;
7119         if(!rss_size)
7120                 c.norss_rsssize = F_FW_VI_CMD_NORSS;
7121
7122         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7123         if (ret)
7124                 return ret;
7125
7126         if (mac) {
7127                 memcpy(mac, c.mac, sizeof(c.mac));
7128                 switch (nmac) {
7129                 case 5:
7130                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7131                 case 4:
7132                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7133                 case 3:
7134                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7135                 case 2:
7136                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7137                 }
7138         }
7139         if (rss_size)
7140                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7141         return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7142 }
7143
7144 /**
7145  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7146  *      @adap: the adapter
7147  *      @mbox: mailbox to use for the FW command
7148  *      @port: physical port associated with the VI
7149  *      @pf: the PF owning the VI
7150  *      @vf: the VF owning the VI
7151  *      @nmac: number of MAC addresses needed (1 to 5)
7152  *      @mac: the MAC addresses of the VI
7153  *      @rss_size: size of RSS table slice associated with this VI
7154  *
7155  *      backwards compatible and convieniance routine to allocate a Virtual
7156  *      Interface with a Ethernet Port Application Function and Intrustion
7157  *      Detection System disabled.
7158  */
7159 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7160                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7161                 u16 *rss_size)
7162 {
7163         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7164                                 FW_VI_FUNC_ETH, 0);
7165 }
7166
7167 /**
7168  *      t4_free_vi - free a virtual interface
7169  *      @adap: the adapter
7170  *      @mbox: mailbox to use for the FW command
7171  *      @pf: the PF owning the VI
7172  *      @vf: the VF owning the VI
7173  *      @viid: virtual interface identifiler
7174  *
7175  *      Free a previously allocated virtual interface.
7176  */
7177 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7178                unsigned int vf, unsigned int viid)
7179 {
7180         struct fw_vi_cmd c;
7181
7182         memset(&c, 0, sizeof(c));
7183         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7184                                   F_FW_CMD_REQUEST |
7185                                   F_FW_CMD_EXEC |
7186                                   V_FW_VI_CMD_PFN(pf) |
7187                                   V_FW_VI_CMD_VFN(vf));
7188         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7189         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7190
7191         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7192 }
7193
7194 /**
7195  *      t4_set_rxmode - set Rx properties of a virtual interface
7196  *      @adap: the adapter
7197  *      @mbox: mailbox to use for the FW command
7198  *      @viid: the VI id
7199  *      @mtu: the new MTU or -1
7200  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7201  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7202  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7203  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7204  *      @sleep_ok: if true we may sleep while awaiting command completion
7205  *
7206  *      Sets Rx properties of a virtual interface.
7207  */
7208 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7209                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
7210                   bool sleep_ok)
7211 {
7212         struct fw_vi_rxmode_cmd c;
7213
7214         /* convert to FW values */
7215         if (mtu < 0)
7216                 mtu = M_FW_VI_RXMODE_CMD_MTU;
7217         if (promisc < 0)
7218                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7219         if (all_multi < 0)
7220                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7221         if (bcast < 0)
7222                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7223         if (vlanex < 0)
7224                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7225
7226         memset(&c, 0, sizeof(c));
7227         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7228                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7229                                    V_FW_VI_RXMODE_CMD_VIID(viid));
7230         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7231         c.mtu_to_vlanexen =
7232                 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7233                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7234                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7235                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7236                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7237         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7238 }
7239
7240 /**
7241  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7242  *      @adap: the adapter
7243  *      @mbox: mailbox to use for the FW command
7244  *      @viid: the VI id
7245  *      @free: if true any existing filters for this VI id are first removed
7246  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7247  *      @addr: the MAC address(es)
7248  *      @idx: where to store the index of each allocated filter
7249  *      @hash: pointer to hash address filter bitmap
7250  *      @sleep_ok: call is allowed to sleep
7251  *
7252  *      Allocates an exact-match filter for each of the supplied addresses and
7253  *      sets it to the corresponding address.  If @idx is not %NULL it should
7254  *      have at least @naddr entries, each of which will be set to the index of
7255  *      the filter allocated for the corresponding MAC address.  If a filter
7256  *      could not be allocated for an address its index is set to 0xffff.
7257  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7258  *      are hashed and update the hash filter bitmap pointed at by @hash.
7259  *
7260  *      Returns a negative error number or the number of filters allocated.
7261  */
7262 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7263                       unsigned int viid, bool free, unsigned int naddr,
7264                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7265 {
7266         int offset, ret = 0;
7267         struct fw_vi_mac_cmd c;
7268         unsigned int nfilters = 0;
7269         unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7270         unsigned int rem = naddr;
7271
7272         if (naddr > max_naddr)
7273                 return -EINVAL;
7274
7275         for (offset = 0; offset < naddr ; /**/) {
7276                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7277                                          ? rem
7278                                          : ARRAY_SIZE(c.u.exact));
7279                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7280                                                      u.exact[fw_naddr]), 16);
7281                 struct fw_vi_mac_exact *p;
7282                 int i;
7283
7284                 memset(&c, 0, sizeof(c));
7285                 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7286                                            F_FW_CMD_REQUEST |
7287                                            F_FW_CMD_WRITE |
7288                                            V_FW_CMD_EXEC(free) |
7289                                            V_FW_VI_MAC_CMD_VIID(viid));
7290                 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7291                                                   V_FW_CMD_LEN16(len16));
7292
7293                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7294                         p->valid_to_idx =
7295                                 cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7296                                             V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7297                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7298                 }
7299
7300                 /*
7301                  * It's okay if we run out of space in our MAC address arena.
7302                  * Some of the addresses we submit may get stored so we need
7303                  * to run through the reply to see what the results were ...
7304                  */
7305                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7306                 if (ret && ret != -FW_ENOMEM)
7307                         break;
7308
7309                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7310                         u16 index = G_FW_VI_MAC_CMD_IDX(
7311                                                 be16_to_cpu(p->valid_to_idx));
7312
7313                         if (idx)
7314                                 idx[offset+i] = (index >=  max_naddr
7315                                                  ? 0xffff
7316                                                  : index);
7317                         if (index < max_naddr)
7318                                 nfilters++;
7319                         else if (hash)
7320                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7321                 }
7322
7323                 free = false;
7324                 offset += fw_naddr;
7325                 rem -= fw_naddr;
7326         }
7327
7328         if (ret == 0 || ret == -FW_ENOMEM)
7329                 ret = nfilters;
7330         return ret;
7331 }
7332
7333 /**
7334  *      t4_change_mac - modifies the exact-match filter for a MAC address
7335  *      @adap: the adapter
7336  *      @mbox: mailbox to use for the FW command
7337  *      @viid: the VI id
7338  *      @idx: index of existing filter for old value of MAC address, or -1
7339  *      @addr: the new MAC address value
7340  *      @persist: whether a new MAC allocation should be persistent
7341  *      @add_smt: if true also add the address to the HW SMT
7342  *
7343  *      Modifies an exact-match filter and sets it to the new MAC address if
7344  *      @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7345  *      latter case the address is added persistently if @persist is %true.
7346  *
7347  *      Note that in general it is not possible to modify the value of a given
7348  *      filter so the generic way to modify an address filter is to free the one
7349  *      being used by the old address value and allocate a new filter for the
7350  *      new address value.
7351  *
7352  *      Returns a negative error number or the index of the filter with the new
7353  *      MAC value.  Note that this index may differ from @idx.
7354  */
7355 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7356                   int idx, const u8 *addr, bool persist, bool add_smt)
7357 {
7358         int ret, mode;
7359         struct fw_vi_mac_cmd c;
7360         struct fw_vi_mac_exact *p = c.u.exact;
7361         unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7362
7363         if (idx < 0)            /* new allocation */
7364                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7365         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7366
7367         memset(&c, 0, sizeof(c));
7368         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7369                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7370                                    V_FW_VI_MAC_CMD_VIID(viid));
7371         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7372         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7373                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7374                                       V_FW_VI_MAC_CMD_IDX(idx));
7375         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7376
7377         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7378         if (ret == 0) {
7379                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7380                 if (ret >= max_mac_addr)
7381                         ret = -ENOMEM;
7382         }
7383         return ret;
7384 }
7385
7386 /**
7387  *      t4_set_addr_hash - program the MAC inexact-match hash filter
7388  *      @adap: the adapter
7389  *      @mbox: mailbox to use for the FW command
7390  *      @viid: the VI id
7391  *      @ucast: whether the hash filter should also match unicast addresses
7392  *      @vec: the value to be written to the hash filter
7393  *      @sleep_ok: call is allowed to sleep
7394  *
7395  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
7396  */
7397 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7398                      bool ucast, u64 vec, bool sleep_ok)
7399 {
7400         struct fw_vi_mac_cmd c;
7401         u32 val;
7402
7403         memset(&c, 0, sizeof(c));
7404         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7405                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7406                                    V_FW_VI_ENABLE_CMD_VIID(viid));
7407         val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7408               V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7409         c.freemacs_to_len16 = cpu_to_be32(val);
7410         c.u.hash.hashvec = cpu_to_be64(vec);
7411         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7412 }
7413
7414 /**
7415  *      t4_enable_vi_params - enable/disable a virtual interface
7416  *      @adap: the adapter
7417  *      @mbox: mailbox to use for the FW command
7418  *      @viid: the VI id
7419  *      @rx_en: 1=enable Rx, 0=disable Rx
7420  *      @tx_en: 1=enable Tx, 0=disable Tx
7421  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7422  *
7423  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7424  *      only makes sense when enabling a Virtual Interface ...
7425  */
7426 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7427                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7428 {
7429         struct fw_vi_enable_cmd c;
7430
7431         memset(&c, 0, sizeof(c));
7432         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7433                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7434                                    V_FW_VI_ENABLE_CMD_VIID(viid));
7435         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7436                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7437                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7438                                      FW_LEN16(c));
7439         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7440 }
7441
7442 /**
7443  *      t4_enable_vi - enable/disable a virtual interface
7444  *      @adap: the adapter
7445  *      @mbox: mailbox to use for the FW command
7446  *      @viid: the VI id
7447  *      @rx_en: 1=enable Rx, 0=disable Rx
7448  *      @tx_en: 1=enable Tx, 0=disable Tx
7449  *
7450  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7451  *      only makes sense when enabling a Virtual Interface ...
7452  */
7453 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7454                  bool rx_en, bool tx_en)
7455 {
7456         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7457 }
7458
7459 /**
7460  *      t4_identify_port - identify a VI's port by blinking its LED
7461  *      @adap: the adapter
7462  *      @mbox: mailbox to use for the FW command
7463  *      @viid: the VI id
7464  *      @nblinks: how many times to blink LED at 2.5 Hz
7465  *
7466  *      Identifies a VI's port by blinking its LED.
7467  */
7468 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7469                      unsigned int nblinks)
7470 {
7471         struct fw_vi_enable_cmd c;
7472
7473         memset(&c, 0, sizeof(c));
7474         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7475                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7476                                    V_FW_VI_ENABLE_CMD_VIID(viid));
7477         c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7478         c.blinkdur = cpu_to_be16(nblinks);
7479         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7480 }
7481
7482 /**
7483  *      t4_iq_stop - stop an ingress queue and its FLs
7484  *      @adap: the adapter
7485  *      @mbox: mailbox to use for the FW command
7486  *      @pf: the PF owning the queues
7487  *      @vf: the VF owning the queues
7488  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7489  *      @iqid: ingress queue id
7490  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7491  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7492  *
7493  *      Stops an ingress queue and its associated FLs, if any.  This causes
7494  *      any current or future data/messages destined for these queues to be
7495  *      tossed.
7496  */
7497 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7498                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7499                unsigned int fl0id, unsigned int fl1id)
7500 {
7501         struct fw_iq_cmd c;
7502
7503         memset(&c, 0, sizeof(c));
7504         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7505                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7506                                   V_FW_IQ_CMD_VFN(vf));
7507         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7508         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7509         c.iqid = cpu_to_be16(iqid);
7510         c.fl0id = cpu_to_be16(fl0id);
7511         c.fl1id = cpu_to_be16(fl1id);
7512         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7513 }
7514
7515 /**
7516  *      t4_iq_free - free an ingress queue and its FLs
7517  *      @adap: the adapter
7518  *      @mbox: mailbox to use for the FW command
7519  *      @pf: the PF owning the queues
7520  *      @vf: the VF owning the queues
7521  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7522  *      @iqid: ingress queue id
7523  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7524  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7525  *
7526  *      Frees an ingress queue and its associated FLs, if any.
7527  */
7528 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7529                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7530                unsigned int fl0id, unsigned int fl1id)
7531 {
7532         struct fw_iq_cmd c;
7533
7534         memset(&c, 0, sizeof(c));
7535         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7536                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7537                                   V_FW_IQ_CMD_VFN(vf));
7538         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7539         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7540         c.iqid = cpu_to_be16(iqid);
7541         c.fl0id = cpu_to_be16(fl0id);
7542         c.fl1id = cpu_to_be16(fl1id);
7543         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7544 }
7545
7546 /**
7547  *      t4_eth_eq_free - free an Ethernet egress queue
7548  *      @adap: the adapter
7549  *      @mbox: mailbox to use for the FW command
7550  *      @pf: the PF owning the queue
7551  *      @vf: the VF owning the queue
7552  *      @eqid: egress queue id
7553  *
7554  *      Frees an Ethernet egress queue.
7555  */
7556 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7557                    unsigned int vf, unsigned int eqid)
7558 {
7559         struct fw_eq_eth_cmd c;
7560
7561         memset(&c, 0, sizeof(c));
7562         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7563                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7564                                   V_FW_EQ_ETH_CMD_PFN(pf) |
7565                                   V_FW_EQ_ETH_CMD_VFN(vf));
7566         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7567         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7568         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7569 }
7570
7571 /**
7572  *      t4_ctrl_eq_free - free a control egress queue
7573  *      @adap: the adapter
7574  *      @mbox: mailbox to use for the FW command
7575  *      @pf: the PF owning the queue
7576  *      @vf: the VF owning the queue
7577  *      @eqid: egress queue id
7578  *
7579  *      Frees a control egress queue.
7580  */
7581 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7582                     unsigned int vf, unsigned int eqid)
7583 {
7584         struct fw_eq_ctrl_cmd c;
7585
7586         memset(&c, 0, sizeof(c));
7587         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7588                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7589                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
7590                                   V_FW_EQ_CTRL_CMD_VFN(vf));
7591         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7592         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7593         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7594 }
7595
7596 /**
7597  *      t4_ofld_eq_free - free an offload egress queue
7598  *      @adap: the adapter
7599  *      @mbox: mailbox to use for the FW command
7600  *      @pf: the PF owning the queue
7601  *      @vf: the VF owning the queue
7602  *      @eqid: egress queue id
7603  *
7604  *      Frees a control egress queue.
7605  */
7606 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7607                     unsigned int vf, unsigned int eqid)
7608 {
7609         struct fw_eq_ofld_cmd c;
7610
7611         memset(&c, 0, sizeof(c));
7612         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7613                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7614                                   V_FW_EQ_OFLD_CMD_PFN(pf) |
7615                                   V_FW_EQ_OFLD_CMD_VFN(vf));
7616         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7617         c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7618         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7619 }
7620
7621 /**
7622  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
7623  *      @link_down_rc: Link Down Reason Code
7624  *
7625  *      Returns a string representation of the Link Down Reason Code.
7626  */
7627 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7628 {
7629         static const char *reason[] = {
7630                 "Link Down",
7631                 "Remote Fault",
7632                 "Auto-negotiation Failure",
7633                 "Reserved3",
7634                 "Insufficient Airflow",
7635                 "Unable To Determine Reason",
7636                 "No RX Signal Detected",
7637                 "Reserved7",
7638         };
7639
7640         if (link_down_rc >= ARRAY_SIZE(reason))
7641                 return "Bad Reason Code";
7642
7643         return reason[link_down_rc];
7644 }
7645
7646 /*
7647  * Updates all fields owned by the common code in port_info and link_config
7648  * based on information provided by the firmware.  Does not touch any
7649  * requested_* field.
7650  */
7651 static void handle_port_info(struct port_info *pi, const struct fw_port_info *p)
7652 {
7653         struct link_config *lc = &pi->link_cfg;
7654         int speed;
7655         unsigned char fc, fec;
7656         u32 stat = be32_to_cpu(p->lstatus_to_modtype);
7657
7658         pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7659         pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7660         pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7661             G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7662
7663         lc->supported = be16_to_cpu(p->pcap);
7664         lc->advertising = be16_to_cpu(p->acap);
7665         lc->lp_advertising = be16_to_cpu(p->lpacap);
7666         lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7667         lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7668
7669         speed = 0;
7670         if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7671                 speed = 100;
7672         else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7673                 speed = 1000;
7674         else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7675                 speed = 10000;
7676         else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7677                 speed = 25000;
7678         else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7679                 speed = 40000;
7680         else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7681                 speed = 100000;
7682         lc->speed = speed;
7683
7684         fc = 0;
7685         if (stat & F_FW_PORT_CMD_RXPAUSE)
7686                 fc |= PAUSE_RX;
7687         if (stat & F_FW_PORT_CMD_TXPAUSE)
7688                 fc |= PAUSE_TX;
7689         lc->fc = fc;
7690
7691         fec = 0;
7692         if (lc->advertising & FW_PORT_CAP_FEC_RS)
7693                 fec |= FEC_RS;
7694         if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
7695                 fec |= FEC_BASER_RS;
7696         if (lc->advertising & FW_PORT_CAP_FEC_RESERVED)
7697                 fec |= FEC_RESERVED;
7698         lc->fec = fec;
7699 }
7700
7701 /**
7702  *      t4_update_port_info - retrieve and update port information if changed
7703  *      @pi: the port_info
7704  *
7705  *      We issue a Get Port Information Command to the Firmware and, if
7706  *      successful, we check to see if anything is different from what we
7707  *      last recorded and update things accordingly.
7708  */
7709  int t4_update_port_info(struct port_info *pi)
7710  {
7711         struct fw_port_cmd port_cmd;
7712         int ret;
7713
7714         memset(&port_cmd, 0, sizeof port_cmd);
7715         port_cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
7716                                             F_FW_CMD_REQUEST | F_FW_CMD_READ |
7717                                             V_FW_PORT_CMD_PORTID(pi->tx_chan));
7718         port_cmd.action_to_len16 = cpu_to_be32(
7719                 V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7720                 FW_LEN16(port_cmd));
7721         ret = t4_wr_mbox_ns(pi->adapter, pi->adapter->mbox,
7722                          &port_cmd, sizeof(port_cmd), &port_cmd);
7723         if (ret)
7724                 return ret;
7725
7726         handle_port_info(pi, &port_cmd.u.info);
7727         return 0;
7728 }
7729
7730 /**
7731  *      t4_handle_fw_rpl - process a FW reply message
7732  *      @adap: the adapter
7733  *      @rpl: start of the FW message
7734  *
7735  *      Processes a FW message, such as link state change messages.
7736  */
7737 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7738 {
7739         u8 opcode = *(const u8 *)rpl;
7740         const struct fw_port_cmd *p = (const void *)rpl;
7741         unsigned int action =
7742                         G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7743
7744         if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7745                 /* link/module state change message */
7746                 int i, old_ptype, old_mtype;
7747                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7748                 struct port_info *pi = NULL;
7749                 struct link_config *lc, *old_lc;
7750
7751                 for_each_port(adap, i) {
7752                         pi = adap2pinfo(adap, i);
7753                         if (pi->tx_chan == chan)
7754                                 break;
7755                 }
7756
7757                 lc = &pi->link_cfg;
7758                 old_lc = &pi->old_link_cfg;
7759                 old_ptype = pi->port_type;
7760                 old_mtype = pi->mod_type;
7761
7762                 handle_port_info(pi, &p->u.info);
7763                 if (old_ptype != pi->port_type || old_mtype != pi->mod_type) {
7764                         t4_os_portmod_changed(pi);
7765                 }
7766                 if (old_lc->link_ok != lc->link_ok ||
7767                     old_lc->speed != lc->speed ||
7768                     old_lc->fec != lc->fec ||
7769                     old_lc->fc != lc->fc) {
7770                         t4_os_link_changed(pi);
7771                         *old_lc = *lc;
7772                 }
7773         } else {
7774                 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7775                 return -EINVAL;
7776         }
7777         return 0;
7778 }
7779
7780 /**
7781  *      get_pci_mode - determine a card's PCI mode
7782  *      @adapter: the adapter
7783  *      @p: where to store the PCI settings
7784  *
7785  *      Determines a card's PCI mode and associated parameters, such as speed
7786  *      and width.
7787  */
7788 static void get_pci_mode(struct adapter *adapter,
7789                                    struct pci_params *p)
7790 {
7791         u16 val;
7792         u32 pcie_cap;
7793
7794         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7795         if (pcie_cap) {
7796                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7797                 p->speed = val & PCI_EXP_LNKSTA_CLS;
7798                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7799         }
7800 }
7801
7802 struct flash_desc {
7803         u32 vendor_and_model_id;
7804         u32 size_mb;
7805 };
7806
7807 int t4_get_flash_params(struct adapter *adapter)
7808 {
7809         /*
7810          * Table for non-standard supported Flash parts.  Note, all Flash
7811          * parts must have 64KB sectors.
7812          */
7813         static struct flash_desc supported_flash[] = {
7814                 { 0x00150201, 4 << 20 },        /* Spansion 4MB S25FL032P */
7815         };
7816
7817         int ret;
7818         u32 flashid = 0;
7819         unsigned int part, manufacturer;
7820         unsigned int density, size;
7821
7822
7823         /*
7824          * Issue a Read ID Command to the Flash part.  We decode supported
7825          * Flash parts and their sizes from this.  There's a newer Query
7826          * Command which can retrieve detailed geometry information but many
7827          * Flash parts don't support it.
7828          */
7829         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7830         if (!ret)
7831                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
7832         t4_write_reg(adapter, A_SF_OP, 0);      /* unlock SF */
7833         if (ret < 0)
7834                 return ret;
7835
7836         /*
7837          * Check to see if it's one of our non-standard supported Flash parts.
7838          */
7839         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
7840                 if (supported_flash[part].vendor_and_model_id == flashid) {
7841                         adapter->params.sf_size =
7842                                 supported_flash[part].size_mb;
7843                         adapter->params.sf_nsec =
7844                                 adapter->params.sf_size / SF_SEC_SIZE;
7845                         goto found;
7846                 }
7847
7848         /*
7849          * Decode Flash part size.  The code below looks repetative with
7850          * common encodings, but that's not guaranteed in the JEDEC
7851          * specification for the Read JADEC ID command.  The only thing that
7852          * we're guaranteed by the JADEC specification is where the
7853          * Manufacturer ID is in the returned result.  After that each
7854          * Manufacturer ~could~ encode things completely differently.
7855          * Note, all Flash parts must have 64KB sectors.
7856          */
7857         manufacturer = flashid & 0xff;
7858         switch (manufacturer) {
7859         case 0x20: { /* Micron/Numonix */
7860                 /*
7861                  * This Density -> Size decoding table is taken from Micron
7862                  * Data Sheets.
7863                  */
7864                 density = (flashid >> 16) & 0xff;
7865                 switch (density) {
7866                 case 0x14: size = 1 << 20; break; /*   1MB */
7867                 case 0x15: size = 1 << 21; break; /*   2MB */
7868                 case 0x16: size = 1 << 22; break; /*   4MB */
7869                 case 0x17: size = 1 << 23; break; /*   8MB */
7870                 case 0x18: size = 1 << 24; break; /*  16MB */
7871                 case 0x19: size = 1 << 25; break; /*  32MB */
7872                 case 0x20: size = 1 << 26; break; /*  64MB */
7873                 case 0x21: size = 1 << 27; break; /* 128MB */
7874                 case 0x22: size = 1 << 28; break; /* 256MB */
7875
7876                 default:
7877                         CH_ERR(adapter, "Micron Flash Part has bad size, "
7878                                "ID = %#x, Density code = %#x\n",
7879                                flashid, density);
7880                         return -EINVAL;
7881                 }
7882                 break;
7883         }
7884
7885         case 0xef: { /* Winbond */
7886                 /*
7887                  * This Density -> Size decoding table is taken from Winbond
7888                  * Data Sheets.
7889                  */
7890                 density = (flashid >> 16) & 0xff;
7891                 switch (density) {
7892                 case 0x17: size = 1 << 23; break; /*   8MB */
7893                 case 0x18: size = 1 << 24; break; /*  16MB */
7894
7895                 default:
7896                         CH_ERR(adapter, "Winbond Flash Part has bad size, "
7897                                "ID = %#x, Density code = %#x\n",
7898                                flashid, density);
7899                         return -EINVAL;
7900                 }
7901                 break;
7902         }
7903
7904         default:
7905                 CH_ERR(adapter, "Unsupported Flash Part, ID = %#x\n", flashid);
7906                 return -EINVAL;
7907         }
7908
7909         /*
7910          * Store decoded Flash size and fall through into vetting code.
7911          */
7912         adapter->params.sf_size = size;
7913         adapter->params.sf_nsec = size / SF_SEC_SIZE;
7914
7915  found:
7916         /*
7917          * We should ~probably~ reject adapters with FLASHes which are too
7918          * small but we have some legacy FPGAs with small FLASHes that we'd
7919          * still like to use.  So instead we emit a scary message ...
7920          */
7921         if (adapter->params.sf_size < FLASH_MIN_SIZE)
7922                 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
7923                         flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
7924
7925         return 0;
7926 }
7927
7928 static void set_pcie_completion_timeout(struct adapter *adapter,
7929                                                   u8 range)
7930 {
7931         u16 val;
7932         u32 pcie_cap;
7933
7934         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7935         if (pcie_cap) {
7936                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7937                 val &= 0xfff0;
7938                 val |= range ;
7939                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7940         }
7941 }
7942
7943 const struct chip_params *t4_get_chip_params(int chipid)
7944 {
7945         static const struct chip_params chip_params[] = {
7946                 {
7947                         /* T4 */
7948                         .nchan = NCHAN,
7949                         .pm_stats_cnt = PM_NSTATS,
7950                         .cng_ch_bits_log = 2,
7951                         .nsched_cls = 15,
7952                         .cim_num_obq = CIM_NUM_OBQ,
7953                         .mps_rplc_size = 128,
7954                         .vfcount = 128,
7955                         .sge_fl_db = F_DBPRIO,
7956                         .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7957                 },
7958                 {
7959                         /* T5 */
7960                         .nchan = NCHAN,
7961                         .pm_stats_cnt = PM_NSTATS,
7962                         .cng_ch_bits_log = 2,
7963                         .nsched_cls = 16,
7964                         .cim_num_obq = CIM_NUM_OBQ_T5,
7965                         .mps_rplc_size = 128,
7966                         .vfcount = 128,
7967                         .sge_fl_db = F_DBPRIO | F_DBTYPE,
7968                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7969                 },
7970                 {
7971                         /* T6 */
7972                         .nchan = T6_NCHAN,
7973                         .pm_stats_cnt = T6_PM_NSTATS,
7974                         .cng_ch_bits_log = 3,
7975                         .nsched_cls = 16,
7976                         .cim_num_obq = CIM_NUM_OBQ_T5,
7977                         .mps_rplc_size = 256,
7978                         .vfcount = 256,
7979                         .sge_fl_db = 0,
7980                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7981                 },
7982         };
7983
7984         chipid -= CHELSIO_T4;
7985         if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7986                 return NULL;
7987
7988         return &chip_params[chipid];
7989 }
7990
7991 /**
7992  *      t4_prep_adapter - prepare SW and HW for operation
7993  *      @adapter: the adapter
7994  *      @buf: temporary space of at least VPD_LEN size provided by the caller.
7995  *
7996  *      Initialize adapter SW state for the various HW modules, set initial
7997  *      values for some adapter tunables, take PHYs out of reset, and
7998  *      initialize the MDIO interface.
7999  */
8000 int t4_prep_adapter(struct adapter *adapter, u8 *buf)
8001 {
8002         int ret;
8003         uint16_t device_id;
8004         uint32_t pl_rev;
8005
8006         get_pci_mode(adapter, &adapter->params.pci);
8007
8008         pl_rev = t4_read_reg(adapter, A_PL_REV);
8009         adapter->params.chipid = G_CHIPID(pl_rev);
8010         adapter->params.rev = G_REV(pl_rev);
8011         if (adapter->params.chipid == 0) {
8012                 /* T4 did not have chipid in PL_REV (T5 onwards do) */
8013                 adapter->params.chipid = CHELSIO_T4;
8014
8015                 /* T4A1 chip is not supported */
8016                 if (adapter->params.rev == 1) {
8017                         CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8018                         return -EINVAL;
8019                 }
8020         }
8021
8022         adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8023         if (adapter->chip_params == NULL)
8024                 return -EINVAL;
8025
8026         adapter->params.pci.vpd_cap_addr =
8027             t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8028
8029         ret = t4_get_flash_params(adapter);
8030         if (ret < 0)
8031                 return ret;
8032
8033         ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
8034         if (ret < 0)
8035                 return ret;
8036
8037         /* Cards with real ASICs have the chipid in the PCIe device id */
8038         t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8039         if (device_id >> 12 == chip_id(adapter))
8040                 adapter->params.cim_la_size = CIMLA_SIZE;
8041         else {
8042                 /* FPGA */
8043                 adapter->params.fpga = 1;
8044                 adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8045         }
8046
8047         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8048
8049         /*
8050          * Default port and clock for debugging in case we can't reach FW.
8051          */
8052         adapter->params.nports = 1;
8053         adapter->params.portvec = 1;
8054         adapter->params.vpd.cclk = 50000;
8055
8056         /* Set pci completion timeout value to 4 seconds. */
8057         set_pcie_completion_timeout(adapter, 0xd);
8058         return 0;
8059 }
8060
8061 /**
8062  *      t4_shutdown_adapter - shut down adapter, host & wire
8063  *      @adapter: the adapter
8064  *
8065  *      Perform an emergency shutdown of the adapter and stop it from
8066  *      continuing any further communication on the ports or DMA to the
8067  *      host.  This is typically used when the adapter and/or firmware
8068  *      have crashed and we want to prevent any further accidental
8069  *      communication with the rest of the world.  This will also force
8070  *      the port Link Status to go down -- if register writes work --
8071  *      which should help our peers figure out that we're down.
8072  */
8073 int t4_shutdown_adapter(struct adapter *adapter)
8074 {
8075         int port;
8076
8077         t4_intr_disable(adapter);
8078         t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8079         for_each_port(adapter, port) {
8080                 u32 a_port_cfg = is_t4(adapter) ?
8081                                  PORT_REG(port, A_XGMAC_PORT_CFG) :
8082                                  T5_PORT_REG(port, A_MAC_PORT_CFG);
8083
8084                 t4_write_reg(adapter, a_port_cfg,
8085                              t4_read_reg(adapter, a_port_cfg)
8086                              & ~V_SIGNAL_DET(1));
8087         }
8088         t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8089
8090         return 0;
8091 }
8092
8093 /**
8094  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8095  *      @adapter: the adapter
8096  *      @qid: the Queue ID
8097  *      @qtype: the Ingress or Egress type for @qid
8098  *      @user: true if this request is for a user mode queue
8099  *      @pbar2_qoffset: BAR2 Queue Offset
8100  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8101  *
8102  *      Returns the BAR2 SGE Queue Registers information associated with the
8103  *      indicated Absolute Queue ID.  These are passed back in return value
8104  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8105  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8106  *
8107  *      This may return an error which indicates that BAR2 SGE Queue
8108  *      registers aren't available.  If an error is not returned, then the
8109  *      following values are returned:
8110  *
8111  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8112  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8113  *
8114  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8115  *      require the "Inferred Queue ID" ability may be used.  E.g. the
8116  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8117  *      then these "Inferred Queue ID" register may not be used.
8118  */
8119 int t4_bar2_sge_qregs(struct adapter *adapter,
8120                       unsigned int qid,
8121                       enum t4_bar2_qtype qtype,
8122                       int user,
8123                       u64 *pbar2_qoffset,
8124                       unsigned int *pbar2_qid)
8125 {
8126         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8127         u64 bar2_page_offset, bar2_qoffset;
8128         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8129
8130         /* T4 doesn't support BAR2 SGE Queue registers for kernel
8131          * mode queues.
8132          */
8133         if (!user && is_t4(adapter))
8134                 return -EINVAL;
8135
8136         /* Get our SGE Page Size parameters.
8137          */
8138         page_shift = adapter->params.sge.page_shift;
8139         page_size = 1 << page_shift;
8140
8141         /* Get the right Queues per Page parameters for our Queue.
8142          */
8143         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8144                      ? adapter->params.sge.eq_s_qpp
8145                      : adapter->params.sge.iq_s_qpp);
8146         qpp_mask = (1 << qpp_shift) - 1;
8147
8148         /* Calculate the basics of the BAR2 SGE Queue register area:
8149          *  o The BAR2 page the Queue registers will be in.
8150          *  o The BAR2 Queue ID.
8151          *  o The BAR2 Queue ID Offset into the BAR2 page.
8152          */
8153         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8154         bar2_qid = qid & qpp_mask;
8155         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8156
8157         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
8158          * hardware will infer the Absolute Queue ID simply from the writes to
8159          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8160          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8161          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8162          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8163          * from the BAR2 Page and BAR2 Queue ID.
8164          *
8165          * One important censequence of this is that some BAR2 SGE registers
8166          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8167          * there.  But other registers synthesize the SGE Queue ID purely
8168          * from the writes to the registers -- the Write Combined Doorbell
8169          * Buffer is a good example.  These BAR2 SGE Registers are only
8170          * available for those BAR2 SGE Register areas where the SGE Absolute
8171          * Queue ID can be inferred from simple writes.
8172          */
8173         bar2_qoffset = bar2_page_offset;
8174         bar2_qinferred = (bar2_qid_offset < page_size);
8175         if (bar2_qinferred) {
8176                 bar2_qoffset += bar2_qid_offset;
8177                 bar2_qid = 0;
8178         }
8179
8180         *pbar2_qoffset = bar2_qoffset;
8181         *pbar2_qid = bar2_qid;
8182         return 0;
8183 }
8184
8185 /**
8186  *      t4_init_devlog_params - initialize adapter->params.devlog
8187  *      @adap: the adapter
8188  *      @fw_attach: whether we can talk to the firmware
8189  *
8190  *      Initialize various fields of the adapter's Firmware Device Log
8191  *      Parameters structure.
8192  */
8193 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8194 {
8195         struct devlog_params *dparams = &adap->params.devlog;
8196         u32 pf_dparams;
8197         unsigned int devlog_meminfo;
8198         struct fw_devlog_cmd devlog_cmd;
8199         int ret;
8200
8201         /* If we're dealing with newer firmware, the Device Log Paramerters
8202          * are stored in a designated register which allows us to access the
8203          * Device Log even if we can't talk to the firmware.
8204          */
8205         pf_dparams =
8206                 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8207         if (pf_dparams) {
8208                 unsigned int nentries, nentries128;
8209
8210                 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8211                 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8212
8213                 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8214                 nentries = (nentries128 + 1) * 128;
8215                 dparams->size = nentries * sizeof(struct fw_devlog_e);
8216
8217                 return 0;
8218         }
8219
8220         /*
8221          * For any failing returns ...
8222          */
8223         memset(dparams, 0, sizeof *dparams);
8224
8225         /*
8226          * If we can't talk to the firmware, there's really nothing we can do
8227          * at this point.
8228          */
8229         if (!fw_attach)
8230                 return -ENXIO;
8231
8232         /* Otherwise, ask the firmware for it's Device Log Parameters.
8233          */
8234         memset(&devlog_cmd, 0, sizeof devlog_cmd);
8235         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8236                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
8237         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8238         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8239                          &devlog_cmd);
8240         if (ret)
8241                 return ret;
8242
8243         devlog_meminfo =
8244                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8245         dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8246         dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8247         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8248
8249         return 0;
8250 }
8251
8252 /**
8253  *      t4_init_sge_params - initialize adap->params.sge
8254  *      @adapter: the adapter
8255  *
8256  *      Initialize various fields of the adapter's SGE Parameters structure.
8257  */
8258 int t4_init_sge_params(struct adapter *adapter)
8259 {
8260         u32 r;
8261         struct sge_params *sp = &adapter->params.sge;
8262         unsigned i, tscale = 1;
8263
8264         r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8265         sp->counter_val[0] = G_THRESHOLD_0(r);
8266         sp->counter_val[1] = G_THRESHOLD_1(r);
8267         sp->counter_val[2] = G_THRESHOLD_2(r);
8268         sp->counter_val[3] = G_THRESHOLD_3(r);
8269
8270         if (chip_id(adapter) >= CHELSIO_T6) {
8271                 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8272                 tscale = G_TSCALE(r);
8273                 if (tscale == 0)
8274                         tscale = 1;
8275                 else
8276                         tscale += 2;
8277         }
8278
8279         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8280         sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8281         sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8282         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8283         sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8284         sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8285         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8286         sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8287         sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8288
8289         r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8290         sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8291         if (is_t4(adapter))
8292                 sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8293         else if (is_t5(adapter))
8294                 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8295         else
8296                 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8297
8298         /* egress queues: log2 of # of doorbells per BAR2 page */
8299         r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8300         r >>= S_QUEUESPERPAGEPF0 +
8301             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8302         sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8303
8304         /* ingress queues: log2 of # of doorbells per BAR2 page */
8305         r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8306         r >>= S_QUEUESPERPAGEPF0 +
8307             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8308         sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8309
8310         r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8311         r >>= S_HOSTPAGESIZEPF0 +
8312             (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8313         sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8314
8315         r = t4_read_reg(adapter, A_SGE_CONTROL);
8316         sp->sge_control = r;
8317         sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8318         sp->fl_pktshift = G_PKTSHIFT(r);
8319         if (chip_id(adapter) <= CHELSIO_T5) {
8320                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8321                     X_INGPADBOUNDARY_SHIFT);
8322         } else {
8323                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8324                     X_T6_INGPADBOUNDARY_SHIFT);
8325         }
8326         if (is_t4(adapter))
8327                 sp->pack_boundary = sp->pad_boundary;
8328         else {
8329                 r = t4_read_reg(adapter, A_SGE_CONTROL2);
8330                 if (G_INGPACKBOUNDARY(r) == 0)
8331                         sp->pack_boundary = 16;
8332                 else
8333                         sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8334         }
8335         for (i = 0; i < SGE_FLBUF_SIZES; i++)
8336                 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8337                     A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8338
8339         return 0;
8340 }
8341
8342 /*
8343  * Read and cache the adapter's compressed filter mode and ingress config.
8344  */
8345 static void read_filter_mode_and_ingress_config(struct adapter *adap,
8346     bool sleep_ok)
8347 {
8348         struct tp_params *tpp = &adap->params.tp;
8349
8350         t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8351             sleep_ok);
8352         t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8353             sleep_ok);
8354
8355         /*
8356          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8357          * shift positions of several elements of the Compressed Filter Tuple
8358          * for this adapter which we need frequently ...
8359          */
8360         tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8361         tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8362         tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8363         tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8364         tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8365         tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8366         tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8367         tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8368         tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8369         tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8370
8371         /*
8372          * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8373          * represents the presence of an Outer VLAN instead of a VNIC ID.
8374          */
8375         if ((tpp->ingress_config & F_VNIC) == 0)
8376                 tpp->vnic_shift = -1;
8377 }
8378
8379 /**
8380  *      t4_init_tp_params - initialize adap->params.tp
8381  *      @adap: the adapter
8382  *
8383  *      Initialize various fields of the adapter's TP Parameters structure.
8384  */
8385 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8386 {
8387         int chan;
8388         u32 v;
8389         struct tp_params *tpp = &adap->params.tp;
8390
8391         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8392         tpp->tre = G_TIMERRESOLUTION(v);
8393         tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8394
8395         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8396         for (chan = 0; chan < MAX_NCHAN; chan++)
8397                 tpp->tx_modq[chan] = chan;
8398
8399         read_filter_mode_and_ingress_config(adap, sleep_ok);
8400
8401         /*
8402          * Cache a mask of the bits that represent the error vector portion of
8403          * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8404          * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8405          */
8406         tpp->err_vec_mask = htobe16(0xffff);
8407         if (chip_id(adap) > CHELSIO_T5) {
8408                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8409                 if (v & F_CRXPKTENC) {
8410                         tpp->err_vec_mask =
8411                             htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8412                 }
8413         }
8414
8415         return 0;
8416 }
8417
8418 /**
8419  *      t4_filter_field_shift - calculate filter field shift
8420  *      @adap: the adapter
8421  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8422  *
8423  *      Return the shift position of a filter field within the Compressed
8424  *      Filter Tuple.  The filter field is specified via its selection bit
8425  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8426  */
8427 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8428 {
8429         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8430         unsigned int sel;
8431         int field_shift;
8432
8433         if ((filter_mode & filter_sel) == 0)
8434                 return -1;
8435
8436         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8437                 switch (filter_mode & sel) {
8438                 case F_FCOE:
8439                         field_shift += W_FT_FCOE;
8440                         break;
8441                 case F_PORT:
8442                         field_shift += W_FT_PORT;
8443                         break;
8444                 case F_VNIC_ID:
8445                         field_shift += W_FT_VNIC_ID;
8446                         break;
8447                 case F_VLAN:
8448                         field_shift += W_FT_VLAN;
8449                         break;
8450                 case F_TOS:
8451                         field_shift += W_FT_TOS;
8452                         break;
8453                 case F_PROTOCOL:
8454                         field_shift += W_FT_PROTOCOL;
8455                         break;
8456                 case F_ETHERTYPE:
8457                         field_shift += W_FT_ETHERTYPE;
8458                         break;
8459                 case F_MACMATCH:
8460                         field_shift += W_FT_MACMATCH;
8461                         break;
8462                 case F_MPSHITTYPE:
8463                         field_shift += W_FT_MPSHITTYPE;
8464                         break;
8465                 case F_FRAGMENTATION:
8466                         field_shift += W_FT_FRAGMENTATION;
8467                         break;
8468                 }
8469         }
8470         return field_shift;
8471 }
8472
8473 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8474 {
8475         u8 addr[6];
8476         int ret, i, j;
8477         u16 rss_size;
8478         struct port_info *p = adap2pinfo(adap, port_id);
8479         u32 param, val;
8480
8481         for (i = 0, j = -1; i <= p->port_id; i++) {
8482                 do {
8483                         j++;
8484                 } while ((adap->params.portvec & (1 << j)) == 0);
8485         }
8486
8487         if (!(adap->flags & IS_VF) ||
8488             adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8489                 t4_update_port_info(p);
8490         }
8491
8492         ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8493         if (ret < 0)
8494                 return ret;
8495
8496         p->vi[0].viid = ret;
8497         if (chip_id(adap) <= CHELSIO_T5)
8498                 p->vi[0].smt_idx = (ret & 0x7f) << 1;
8499         else
8500                 p->vi[0].smt_idx = (ret & 0x7f);
8501         p->tx_chan = j;
8502         p->mps_bg_map = t4_get_mps_bg_map(adap, j);
8503         p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
8504         p->lport = j;
8505         p->vi[0].rss_size = rss_size;
8506         t4_os_set_hw_addr(p, addr);
8507
8508         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8509             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8510             V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8511         ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8512         if (ret)
8513                 p->vi[0].rss_base = 0xffff;
8514         else {
8515                 /* MPASS((val >> 16) == rss_size); */
8516                 p->vi[0].rss_base = val & 0xffff;
8517         }
8518
8519         return 0;
8520 }
8521
8522 /**
8523  *      t4_read_cimq_cfg - read CIM queue configuration
8524  *      @adap: the adapter
8525  *      @base: holds the queue base addresses in bytes
8526  *      @size: holds the queue sizes in bytes
8527  *      @thres: holds the queue full thresholds in bytes
8528  *
8529  *      Returns the current configuration of the CIM queues, starting with
8530  *      the IBQs, then the OBQs.
8531  */
8532 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8533 {
8534         unsigned int i, v;
8535         int cim_num_obq = adap->chip_params->cim_num_obq;
8536
8537         for (i = 0; i < CIM_NUM_IBQ; i++) {
8538                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8539                              V_QUENUMSELECT(i));
8540                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8541                 /* value is in 256-byte units */
8542                 *base++ = G_CIMQBASE(v) * 256;
8543                 *size++ = G_CIMQSIZE(v) * 256;
8544                 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8545         }
8546         for (i = 0; i < cim_num_obq; i++) {
8547                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8548                              V_QUENUMSELECT(i));
8549                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8550                 /* value is in 256-byte units */
8551                 *base++ = G_CIMQBASE(v) * 256;
8552                 *size++ = G_CIMQSIZE(v) * 256;
8553         }
8554 }
8555
8556 /**
8557  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
8558  *      @adap: the adapter
8559  *      @qid: the queue index
8560  *      @data: where to store the queue contents
8561  *      @n: capacity of @data in 32-bit words
8562  *
8563  *      Reads the contents of the selected CIM queue starting at address 0 up
8564  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8565  *      error and the number of 32-bit words actually read on success.
8566  */
8567 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8568 {
8569         int i, err, attempts;
8570         unsigned int addr;
8571         const unsigned int nwords = CIM_IBQ_SIZE * 4;
8572
8573         if (qid > 5 || (n & 3))
8574                 return -EINVAL;
8575
8576         addr = qid * nwords;
8577         if (n > nwords)
8578                 n = nwords;
8579
8580         /* It might take 3-10ms before the IBQ debug read access is allowed.
8581          * Wait for 1 Sec with a delay of 1 usec.
8582          */
8583         attempts = 1000000;
8584
8585         for (i = 0; i < n; i++, addr++) {
8586                 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8587                              F_IBQDBGEN);
8588                 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8589                                       attempts, 1);
8590                 if (err)
8591                         return err;
8592                 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8593         }
8594         t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8595         return i;
8596 }
8597
8598 /**
8599  *      t4_read_cim_obq - read the contents of a CIM outbound queue
8600  *      @adap: the adapter
8601  *      @qid: the queue index
8602  *      @data: where to store the queue contents
8603  *      @n: capacity of @data in 32-bit words
8604  *
8605  *      Reads the contents of the selected CIM queue starting at address 0 up
8606  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8607  *      error and the number of 32-bit words actually read on success.
8608  */
8609 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8610 {
8611         int i, err;
8612         unsigned int addr, v, nwords;
8613         int cim_num_obq = adap->chip_params->cim_num_obq;
8614
8615         if ((qid > (cim_num_obq - 1)) || (n & 3))
8616                 return -EINVAL;
8617
8618         t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8619                      V_QUENUMSELECT(qid));
8620         v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8621
8622         addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8623         nwords = G_CIMQSIZE(v) * 64;  /* same */
8624         if (n > nwords)
8625                 n = nwords;
8626
8627         for (i = 0; i < n; i++, addr++) {
8628                 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8629                              F_OBQDBGEN);
8630                 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8631                                       2, 1);
8632                 if (err)
8633                         return err;
8634                 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8635         }
8636         t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8637         return i;
8638 }
8639
8640 enum {
8641         CIM_QCTL_BASE     = 0,
8642         CIM_CTL_BASE      = 0x2000,
8643         CIM_PBT_ADDR_BASE = 0x2800,
8644         CIM_PBT_LRF_BASE  = 0x3000,
8645         CIM_PBT_DATA_BASE = 0x3800
8646 };
8647
8648 /**
8649  *      t4_cim_read - read a block from CIM internal address space
8650  *      @adap: the adapter
8651  *      @addr: the start address within the CIM address space
8652  *      @n: number of words to read
8653  *      @valp: where to store the result
8654  *
8655  *      Reads a block of 4-byte words from the CIM intenal address space.
8656  */
8657 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8658                 unsigned int *valp)
8659 {
8660         int ret = 0;
8661
8662         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8663                 return -EBUSY;
8664
8665         for ( ; !ret && n--; addr += 4) {
8666                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8667                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8668                                       0, 5, 2);
8669                 if (!ret)
8670                         *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8671         }
8672         return ret;
8673 }
8674
8675 /**
8676  *      t4_cim_write - write a block into CIM internal address space
8677  *      @adap: the adapter
8678  *      @addr: the start address within the CIM address space
8679  *      @n: number of words to write
8680  *      @valp: set of values to write
8681  *
8682  *      Writes a block of 4-byte words into the CIM intenal address space.
8683  */
8684 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8685                  const unsigned int *valp)
8686 {
8687         int ret = 0;
8688
8689         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8690                 return -EBUSY;
8691
8692         for ( ; !ret && n--; addr += 4) {
8693                 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8694                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8695                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8696                                       0, 5, 2);
8697         }
8698         return ret;
8699 }
8700
8701 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8702                          unsigned int val)
8703 {
8704         return t4_cim_write(adap, addr, 1, &val);
8705 }
8706
8707 /**
8708  *      t4_cim_ctl_read - read a block from CIM control region
8709  *      @adap: the adapter
8710  *      @addr: the start address within the CIM control region
8711  *      @n: number of words to read
8712  *      @valp: where to store the result
8713  *
8714  *      Reads a block of 4-byte words from the CIM control region.
8715  */
8716 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8717                     unsigned int *valp)
8718 {
8719         return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8720 }
8721
8722 /**
8723  *      t4_cim_read_la - read CIM LA capture buffer
8724  *      @adap: the adapter
8725  *      @la_buf: where to store the LA data
8726  *      @wrptr: the HW write pointer within the capture buffer
8727  *
8728  *      Reads the contents of the CIM LA buffer with the most recent entry at
8729  *      the end of the returned data and with the entry at @wrptr first.
8730  *      We try to leave the LA in the running state we find it in.
8731  */
8732 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8733 {
8734         int i, ret;
8735         unsigned int cfg, val, idx;
8736
8737         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8738         if (ret)
8739                 return ret;
8740
8741         if (cfg & F_UPDBGLAEN) {        /* LA is running, freeze it */
8742                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8743                 if (ret)
8744                         return ret;
8745         }
8746
8747         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8748         if (ret)
8749                 goto restart;
8750
8751         idx = G_UPDBGLAWRPTR(val);
8752         if (wrptr)
8753                 *wrptr = idx;
8754
8755         for (i = 0; i < adap->params.cim_la_size; i++) {
8756                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8757                                     V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8758                 if (ret)
8759                         break;
8760                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8761                 if (ret)
8762                         break;
8763                 if (val & F_UPDBGLARDEN) {
8764                         ret = -ETIMEDOUT;
8765                         break;
8766                 }
8767                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8768                 if (ret)
8769                         break;
8770
8771                 /* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8772                 idx = (idx + 1) & M_UPDBGLARDPTR;
8773                 /*
8774                  * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8775                  * identify the 32-bit portion of the full 312-bit data
8776                  */
8777                 if (is_t6(adap))
8778                         while ((idx & 0xf) > 9)
8779                                 idx = (idx + 1) % M_UPDBGLARDPTR;
8780         }
8781 restart:
8782         if (cfg & F_UPDBGLAEN) {
8783                 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8784                                       cfg & ~F_UPDBGLARDEN);
8785                 if (!ret)
8786                         ret = r;
8787         }
8788         return ret;
8789 }
8790
8791 /**
8792  *      t4_tp_read_la - read TP LA capture buffer
8793  *      @adap: the adapter
8794  *      @la_buf: where to store the LA data
8795  *      @wrptr: the HW write pointer within the capture buffer
8796  *
8797  *      Reads the contents of the TP LA buffer with the most recent entry at
8798  *      the end of the returned data and with the entry at @wrptr first.
8799  *      We leave the LA in the running state we find it in.
8800  */
8801 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8802 {
8803         bool last_incomplete;
8804         unsigned int i, cfg, val, idx;
8805
8806         cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8807         if (cfg & F_DBGLAENABLE)                        /* freeze LA */
8808                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8809                              adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8810
8811         val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8812         idx = G_DBGLAWPTR(val);
8813         last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8814         if (last_incomplete)
8815                 idx = (idx + 1) & M_DBGLARPTR;
8816         if (wrptr)
8817                 *wrptr = idx;
8818
8819         val &= 0xffff;
8820         val &= ~V_DBGLARPTR(M_DBGLARPTR);
8821         val |= adap->params.tp.la_mask;
8822
8823         for (i = 0; i < TPLA_SIZE; i++) {
8824                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8825                 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8826                 idx = (idx + 1) & M_DBGLARPTR;
8827         }
8828
8829         /* Wipe out last entry if it isn't valid */
8830         if (last_incomplete)
8831                 la_buf[TPLA_SIZE - 1] = ~0ULL;
8832
8833         if (cfg & F_DBGLAENABLE)                /* restore running state */
8834                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8835                              cfg | adap->params.tp.la_mask);
8836 }
8837
8838 /*
8839  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8840  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8841  * state for more than the Warning Threshold then we'll issue a warning about
8842  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8843  * appears to be hung every Warning Repeat second till the situation clears.
8844  * If the situation clears, we'll note that as well.
8845  */
8846 #define SGE_IDMA_WARN_THRESH 1
8847 #define SGE_IDMA_WARN_REPEAT 300
8848
8849 /**
8850  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8851  *      @adapter: the adapter
8852  *      @idma: the adapter IDMA Monitor state
8853  *
8854  *      Initialize the state of an SGE Ingress DMA Monitor.
8855  */
8856 void t4_idma_monitor_init(struct adapter *adapter,
8857                           struct sge_idma_monitor_state *idma)
8858 {
8859         /* Initialize the state variables for detecting an SGE Ingress DMA
8860          * hang.  The SGE has internal counters which count up on each clock
8861          * tick whenever the SGE finds its Ingress DMA State Engines in the
8862          * same state they were on the previous clock tick.  The clock used is
8863          * the Core Clock so we have a limit on the maximum "time" they can
8864          * record; typically a very small number of seconds.  For instance,
8865          * with a 600MHz Core Clock, we can only count up to a bit more than
8866          * 7s.  So we'll synthesize a larger counter in order to not run the
8867          * risk of having the "timers" overflow and give us the flexibility to
8868          * maintain a Hung SGE State Machine of our own which operates across
8869          * a longer time frame.
8870          */
8871         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8872         idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8873 }
8874
8875 /**
8876  *      t4_idma_monitor - monitor SGE Ingress DMA state
8877  *      @adapter: the adapter
8878  *      @idma: the adapter IDMA Monitor state
8879  *      @hz: number of ticks/second
8880  *      @ticks: number of ticks since the last IDMA Monitor call
8881  */
8882 void t4_idma_monitor(struct adapter *adapter,
8883                      struct sge_idma_monitor_state *idma,
8884                      int hz, int ticks)
8885 {
8886         int i, idma_same_state_cnt[2];
8887
8888          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8889           * are counters inside the SGE which count up on each clock when the
8890           * SGE finds its Ingress DMA State Engines in the same states they
8891           * were in the previous clock.  The counters will peg out at
8892           * 0xffffffff without wrapping around so once they pass the 1s
8893           * threshold they'll stay above that till the IDMA state changes.
8894           */
8895         t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8896         idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8897         idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8898
8899         for (i = 0; i < 2; i++) {
8900                 u32 debug0, debug11;
8901
8902                 /* If the Ingress DMA Same State Counter ("timer") is less
8903                  * than 1s, then we can reset our synthesized Stall Timer and
8904                  * continue.  If we have previously emitted warnings about a
8905                  * potential stalled Ingress Queue, issue a note indicating
8906                  * that the Ingress Queue has resumed forward progress.
8907                  */
8908                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8909                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8910                                 CH_WARN(adapter, "SGE idma%d, queue %u, "
8911                                         "resumed after %d seconds\n",
8912                                         i, idma->idma_qid[i],
8913                                         idma->idma_stalled[i]/hz);
8914                         idma->idma_stalled[i] = 0;
8915                         continue;
8916                 }
8917
8918                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8919                  * domain.  The first time we get here it'll be because we
8920                  * passed the 1s Threshold; each additional time it'll be
8921                  * because the RX Timer Callback is being fired on its regular
8922                  * schedule.
8923                  *
8924                  * If the stall is below our Potential Hung Ingress Queue
8925                  * Warning Threshold, continue.
8926                  */
8927                 if (idma->idma_stalled[i] == 0) {
8928                         idma->idma_stalled[i] = hz;
8929                         idma->idma_warn[i] = 0;
8930                 } else {
8931                         idma->idma_stalled[i] += ticks;
8932                         idma->idma_warn[i] -= ticks;
8933                 }
8934
8935                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8936                         continue;
8937
8938                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8939                  */
8940                 if (idma->idma_warn[i] > 0)
8941                         continue;
8942                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8943
8944                 /* Read and save the SGE IDMA State and Queue ID information.
8945                  * We do this every time in case it changes across time ...
8946                  * can't be too careful ...
8947                  */
8948                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8949                 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8950                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8951
8952                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8953                 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8954                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8955
8956                 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8957                         " state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8958                         i, idma->idma_qid[i], idma->idma_state[i],
8959                         idma->idma_stalled[i]/hz,
8960                         debug0, debug11);
8961                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8962         }
8963 }
8964
8965 /**
8966  *      t4_read_pace_tbl - read the pace table
8967  *      @adap: the adapter
8968  *      @pace_vals: holds the returned values
8969  *
8970  *      Returns the values of TP's pace table in microseconds.
8971  */
8972 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8973 {
8974         unsigned int i, v;
8975
8976         for (i = 0; i < NTX_SCHED; i++) {
8977                 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8978                 v = t4_read_reg(adap, A_TP_PACE_TABLE);
8979                 pace_vals[i] = dack_ticks_to_usec(adap, v);
8980         }
8981 }
8982
8983 /**
8984  *      t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8985  *      @adap: the adapter
8986  *      @sched: the scheduler index
8987  *      @kbps: the byte rate in Kbps
8988  *      @ipg: the interpacket delay in tenths of nanoseconds
8989  *
8990  *      Return the current configuration of a HW Tx scheduler.
8991  */
8992 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8993                      unsigned int *ipg, bool sleep_ok)
8994 {
8995         unsigned int v, addr, bpt, cpt;
8996
8997         if (kbps) {
8998                 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8999                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9000                 if (sched & 1)
9001                         v >>= 16;
9002                 bpt = (v >> 8) & 0xff;
9003                 cpt = v & 0xff;
9004                 if (!cpt)
9005                         *kbps = 0;      /* scheduler disabled */
9006                 else {
9007                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9008                         *kbps = (v * bpt) / 125;
9009                 }
9010         }
9011         if (ipg) {
9012                 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9013                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9014                 if (sched & 1)
9015                         v >>= 16;
9016                 v &= 0xffff;
9017                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
9018         }
9019 }
9020
9021 /**
9022  *      t4_load_cfg - download config file
9023  *      @adap: the adapter
9024  *      @cfg_data: the cfg text file to write
9025  *      @size: text file size
9026  *
9027  *      Write the supplied config text file to the card's serial flash.
9028  */
9029 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9030 {
9031         int ret, i, n, cfg_addr;
9032         unsigned int addr;
9033         unsigned int flash_cfg_start_sec;
9034         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9035
9036         cfg_addr = t4_flash_cfg_addr(adap);
9037         if (cfg_addr < 0)
9038                 return cfg_addr;
9039
9040         addr = cfg_addr;
9041         flash_cfg_start_sec = addr / SF_SEC_SIZE;
9042
9043         if (size > FLASH_CFG_MAX_SIZE) {
9044                 CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9045                        FLASH_CFG_MAX_SIZE);
9046                 return -EFBIG;
9047         }
9048
9049         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
9050                          sf_sec_size);
9051         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9052                                      flash_cfg_start_sec + i - 1);
9053         /*
9054          * If size == 0 then we're simply erasing the FLASH sectors associated
9055          * with the on-adapter Firmware Configuration File.
9056          */
9057         if (ret || size == 0)
9058                 goto out;
9059
9060         /* this will write to the flash up to SF_PAGE_SIZE at a time */
9061         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9062                 if ( (size - i) <  SF_PAGE_SIZE)
9063                         n = size - i;
9064                 else
9065                         n = SF_PAGE_SIZE;
9066                 ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9067                 if (ret)
9068                         goto out;
9069
9070                 addr += SF_PAGE_SIZE;
9071                 cfg_data += SF_PAGE_SIZE;
9072         }
9073
9074 out:
9075         if (ret)
9076                 CH_ERR(adap, "config file %s failed %d\n",
9077                        (size == 0 ? "clear" : "download"), ret);
9078         return ret;
9079 }
9080
9081 /**
9082  *      t5_fw_init_extern_mem - initialize the external memory
9083  *      @adap: the adapter
9084  *
9085  *      Initializes the external memory on T5.
9086  */
9087 int t5_fw_init_extern_mem(struct adapter *adap)
9088 {
9089         u32 params[1], val[1];
9090         int ret;
9091
9092         if (!is_t5(adap))
9093                 return 0;
9094
9095         val[0] = 0xff; /* Initialize all MCs */
9096         params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9097                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9098         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9099                         FW_CMD_MAX_TIMEOUT);
9100
9101         return ret;
9102 }
9103
9104 /* BIOS boot headers */
9105 typedef struct pci_expansion_rom_header {
9106         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
9107         u8      reserved[22]; /* Reserved per processor Architecture data */
9108         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
9109 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9110
9111 /* Legacy PCI Expansion ROM Header */
9112 typedef struct legacy_pci_expansion_rom_header {
9113         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
9114         u8      size512; /* Current Image Size in units of 512 bytes */
9115         u8      initentry_point[4];
9116         u8      cksum; /* Checksum computed on the entire Image */
9117         u8      reserved[16]; /* Reserved */
9118         u8      pcir_offset[2]; /* Offset to PCI Data Struture */
9119 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9120
9121 /* EFI PCI Expansion ROM Header */
9122 typedef struct efi_pci_expansion_rom_header {
9123         u8      signature[2]; // ROM signature. The value 0xaa55
9124         u8      initialization_size[2]; /* Units 512. Includes this header */
9125         u8      efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9126         u8      efi_subsystem[2]; /* Subsystem value for EFI image header */
9127         u8      efi_machine_type[2]; /* Machine type from EFI image header */
9128         u8      compression_type[2]; /* Compression type. */
9129                 /*
9130                  * Compression type definition
9131                  * 0x0: uncompressed
9132                  * 0x1: Compressed
9133                  * 0x2-0xFFFF: Reserved
9134                  */
9135         u8      reserved[8]; /* Reserved */
9136         u8      efi_image_header_offset[2]; /* Offset to EFI Image */
9137         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
9138 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9139
9140 /* PCI Data Structure Format */
9141 typedef struct pcir_data_structure { /* PCI Data Structure */
9142         u8      signature[4]; /* Signature. The string "PCIR" */
9143         u8      vendor_id[2]; /* Vendor Identification */
9144         u8      device_id[2]; /* Device Identification */
9145         u8      vital_product[2]; /* Pointer to Vital Product Data */
9146         u8      length[2]; /* PCIR Data Structure Length */
9147         u8      revision; /* PCIR Data Structure Revision */
9148         u8      class_code[3]; /* Class Code */
9149         u8      image_length[2]; /* Image Length. Multiple of 512B */
9150         u8      code_revision[2]; /* Revision Level of Code/Data */
9151         u8      code_type; /* Code Type. */
9152                 /*
9153                  * PCI Expansion ROM Code Types
9154                  * 0x00: Intel IA-32, PC-AT compatible. Legacy
9155                  * 0x01: Open Firmware standard for PCI. FCODE
9156                  * 0x02: Hewlett-Packard PA RISC. HP reserved
9157                  * 0x03: EFI Image. EFI
9158                  * 0x04-0xFF: Reserved.
9159                  */
9160         u8      indicator; /* Indicator. Identifies the last image in the ROM */
9161         u8      reserved[2]; /* Reserved */
9162 } pcir_data_t; /* PCI__DATA_STRUCTURE */
9163
9164 /* BOOT constants */
9165 enum {
9166         BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9167         BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9168         BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9169         BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9170         BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9171         VENDOR_ID = 0x1425, /* Vendor ID */
9172         PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9173 };
9174
9175 /*
9176  *      modify_device_id - Modifies the device ID of the Boot BIOS image
9177  *      @adatper: the device ID to write.
9178  *      @boot_data: the boot image to modify.
9179  *
9180  *      Write the supplied device ID to the boot BIOS image.
9181  */
9182 static void modify_device_id(int device_id, u8 *boot_data)
9183 {
9184         legacy_pci_exp_rom_header_t *header;
9185         pcir_data_t *pcir_header;
9186         u32 cur_header = 0;
9187
9188         /*
9189          * Loop through all chained images and change the device ID's
9190          */
9191         while (1) {
9192                 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9193                 pcir_header = (pcir_data_t *) &boot_data[cur_header +
9194                               le16_to_cpu(*(u16*)header->pcir_offset)];
9195
9196                 /*
9197                  * Only modify the Device ID if code type is Legacy or HP.
9198                  * 0x00: Okay to modify
9199                  * 0x01: FCODE. Do not be modify
9200                  * 0x03: Okay to modify
9201                  * 0x04-0xFF: Do not modify
9202                  */
9203                 if (pcir_header->code_type == 0x00) {
9204                         u8 csum = 0;
9205                         int i;
9206
9207                         /*
9208                          * Modify Device ID to match current adatper
9209                          */
9210                         *(u16*) pcir_header->device_id = device_id;
9211
9212                         /*
9213                          * Set checksum temporarily to 0.
9214                          * We will recalculate it later.
9215                          */
9216                         header->cksum = 0x0;
9217
9218                         /*
9219                          * Calculate and update checksum
9220                          */
9221                         for (i = 0; i < (header->size512 * 512); i++)
9222                                 csum += (u8)boot_data[cur_header + i];
9223
9224                         /*
9225                          * Invert summed value to create the checksum
9226                          * Writing new checksum value directly to the boot data
9227                          */
9228                         boot_data[cur_header + 7] = -csum;
9229
9230                 } else if (pcir_header->code_type == 0x03) {
9231
9232                         /*
9233                          * Modify Device ID to match current adatper
9234                          */
9235                         *(u16*) pcir_header->device_id = device_id;
9236
9237                 }
9238
9239
9240                 /*
9241                  * Check indicator element to identify if this is the last
9242                  * image in the ROM.
9243                  */
9244                 if (pcir_header->indicator & 0x80)
9245                         break;
9246
9247                 /*
9248                  * Move header pointer up to the next image in the ROM.
9249                  */
9250                 cur_header += header->size512 * 512;
9251         }
9252 }
9253
9254 /*
9255  *      t4_load_boot - download boot flash
9256  *      @adapter: the adapter
9257  *      @boot_data: the boot image to write
9258  *      @boot_addr: offset in flash to write boot_data
9259  *      @size: image size
9260  *
9261  *      Write the supplied boot image to the card's serial flash.
9262  *      The boot image has the following sections: a 28-byte header and the
9263  *      boot image.
9264  */
9265 int t4_load_boot(struct adapter *adap, u8 *boot_data,
9266                  unsigned int boot_addr, unsigned int size)
9267 {
9268         pci_exp_rom_header_t *header;
9269         int pcir_offset ;
9270         pcir_data_t *pcir_header;
9271         int ret, addr;
9272         uint16_t device_id;
9273         unsigned int i;
9274         unsigned int boot_sector = (boot_addr * 1024 );
9275         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9276
9277         /*
9278          * Make sure the boot image does not encroach on the firmware region
9279          */
9280         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9281                 CH_ERR(adap, "boot image encroaching on firmware region\n");
9282                 return -EFBIG;
9283         }
9284
9285         /*
9286          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9287          * and Boot configuration data sections. These 3 boot sections span
9288          * sectors 0 to 7 in flash and live right before the FW image location.
9289          */
9290         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9291                         sf_sec_size);
9292         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9293                                      (boot_sector >> 16) + i - 1);
9294
9295         /*
9296          * If size == 0 then we're simply erasing the FLASH sectors associated
9297          * with the on-adapter option ROM file
9298          */
9299         if (ret || (size == 0))
9300                 goto out;
9301
9302         /* Get boot header */
9303         header = (pci_exp_rom_header_t *)boot_data;
9304         pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9305         /* PCIR Data Structure */
9306         pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9307
9308         /*
9309          * Perform some primitive sanity testing to avoid accidentally
9310          * writing garbage over the boot sectors.  We ought to check for
9311          * more but it's not worth it for now ...
9312          */
9313         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9314                 CH_ERR(adap, "boot image too small/large\n");
9315                 return -EFBIG;
9316         }
9317
9318 #ifndef CHELSIO_T4_DIAGS
9319         /*
9320          * Check BOOT ROM header signature
9321          */
9322         if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9323                 CH_ERR(adap, "Boot image missing signature\n");
9324                 return -EINVAL;
9325         }
9326
9327         /*
9328          * Check PCI header signature
9329          */
9330         if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9331                 CH_ERR(adap, "PCI header missing signature\n");
9332                 return -EINVAL;
9333         }
9334
9335         /*
9336          * Check Vendor ID matches Chelsio ID
9337          */
9338         if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9339                 CH_ERR(adap, "Vendor ID missing signature\n");
9340                 return -EINVAL;
9341         }
9342 #endif
9343
9344         /*
9345          * Retrieve adapter's device ID
9346          */
9347         t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9348         /* Want to deal with PF 0 so I strip off PF 4 indicator */
9349         device_id = device_id & 0xf0ff;
9350
9351         /*
9352          * Check PCIE Device ID
9353          */
9354         if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9355                 /*
9356                  * Change the device ID in the Boot BIOS image to match
9357                  * the Device ID of the current adapter.
9358                  */
9359                 modify_device_id(device_id, boot_data);
9360         }
9361
9362         /*
9363          * Skip over the first SF_PAGE_SIZE worth of data and write it after
9364          * we finish copying the rest of the boot image. This will ensure
9365          * that the BIOS boot header will only be written if the boot image
9366          * was written in full.
9367          */
9368         addr = boot_sector;
9369         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9370                 addr += SF_PAGE_SIZE;
9371                 boot_data += SF_PAGE_SIZE;
9372                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9373                 if (ret)
9374                         goto out;
9375         }
9376
9377         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9378                              (const u8 *)header, 0);
9379
9380 out:
9381         if (ret)
9382                 CH_ERR(adap, "boot image download failed, error %d\n", ret);
9383         return ret;
9384 }
9385
9386 /*
9387  *      t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9388  *      @adapter: the adapter
9389  *
9390  *      Return the address within the flash where the OptionROM Configuration
9391  *      is stored, or an error if the device FLASH is too small to contain
9392  *      a OptionROM Configuration.
9393  */
9394 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9395 {
9396         /*
9397          * If the device FLASH isn't large enough to hold a Firmware
9398          * Configuration File, return an error.
9399          */
9400         if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9401                 return -ENOSPC;
9402
9403         return FLASH_BOOTCFG_START;
9404 }
9405
9406 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9407 {
9408         int ret, i, n, cfg_addr;
9409         unsigned int addr;
9410         unsigned int flash_cfg_start_sec;
9411         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9412
9413         cfg_addr = t4_flash_bootcfg_addr(adap);
9414         if (cfg_addr < 0)
9415                 return cfg_addr;
9416
9417         addr = cfg_addr;
9418         flash_cfg_start_sec = addr / SF_SEC_SIZE;
9419
9420         if (size > FLASH_BOOTCFG_MAX_SIZE) {
9421                 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9422                         FLASH_BOOTCFG_MAX_SIZE);
9423                 return -EFBIG;
9424         }
9425
9426         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9427                          sf_sec_size);
9428         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9429                                         flash_cfg_start_sec + i - 1);
9430
9431         /*
9432          * If size == 0 then we're simply erasing the FLASH sectors associated
9433          * with the on-adapter OptionROM Configuration File.
9434          */
9435         if (ret || size == 0)
9436                 goto out;
9437
9438         /* this will write to the flash up to SF_PAGE_SIZE at a time */
9439         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9440                 if ( (size - i) <  SF_PAGE_SIZE)
9441                         n = size - i;
9442                 else
9443                         n = SF_PAGE_SIZE;
9444                 ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9445                 if (ret)
9446                         goto out;
9447
9448                 addr += SF_PAGE_SIZE;
9449                 cfg_data += SF_PAGE_SIZE;
9450         }
9451
9452 out:
9453         if (ret)
9454                 CH_ERR(adap, "boot config data %s failed %d\n",
9455                                 (size == 0 ? "clear" : "download"), ret);
9456         return ret;
9457 }
9458
9459 /**
9460  *      t4_set_filter_mode - configure the optional components of filter tuples
9461  *      @adap: the adapter
9462  *      @mode_map: a bitmap selcting which optional filter components to enable
9463  *      @sleep_ok: if true we may sleep while awaiting command completion
9464  *
9465  *      Sets the filter mode by selecting the optional components to enable
9466  *      in filter tuples.  Returns 0 on success and a negative error if the
9467  *      requested mode needs more bits than are available for optional
9468  *      components.
9469  */
9470 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9471                        bool sleep_ok)
9472 {
9473         static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9474
9475         int i, nbits = 0;
9476
9477         for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9478                 if (mode_map & (1 << i))
9479                         nbits += width[i];
9480         if (nbits > FILTER_OPT_LEN)
9481                 return -EINVAL;
9482         t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9483         read_filter_mode_and_ingress_config(adap, sleep_ok);
9484
9485         return 0;
9486 }
9487
9488 /**
9489  *      t4_clr_port_stats - clear port statistics
9490  *      @adap: the adapter
9491  *      @idx: the port index
9492  *
9493  *      Clear HW statistics for the given port.
9494  */
9495 void t4_clr_port_stats(struct adapter *adap, int idx)
9496 {
9497         unsigned int i;
9498         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
9499         u32 port_base_addr;
9500
9501         if (is_t4(adap))
9502                 port_base_addr = PORT_BASE(idx);
9503         else
9504                 port_base_addr = T5_PORT_BASE(idx);
9505
9506         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9507                         i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9508                 t4_write_reg(adap, port_base_addr + i, 0);
9509         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9510                         i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9511                 t4_write_reg(adap, port_base_addr + i, 0);
9512         for (i = 0; i < 4; i++)
9513                 if (bgmap & (1 << i)) {
9514                         t4_write_reg(adap,
9515                         A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9516                         t4_write_reg(adap,
9517                         A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9518                 }
9519 }
9520
9521 /**
9522  *      t4_i2c_rd - read I2C data from adapter
9523  *      @adap: the adapter
9524  *      @port: Port number if per-port device; <0 if not
9525  *      @devid: per-port device ID or absolute device ID
9526  *      @offset: byte offset into device I2C space
9527  *      @len: byte length of I2C space data
9528  *      @buf: buffer in which to return I2C data
9529  *
9530  *      Reads the I2C data from the indicated device and location.
9531  */
9532 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9533               int port, unsigned int devid,
9534               unsigned int offset, unsigned int len,
9535               u8 *buf)
9536 {
9537         u32 ldst_addrspace;
9538         struct fw_ldst_cmd ldst;
9539         int ret;
9540
9541         if (port >= 4 ||
9542             devid >= 256 ||
9543             offset >= 256 ||
9544             len > sizeof ldst.u.i2c.data)
9545                 return -EINVAL;
9546
9547         memset(&ldst, 0, sizeof ldst);
9548         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9549         ldst.op_to_addrspace =
9550                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9551                             F_FW_CMD_REQUEST |
9552                             F_FW_CMD_READ |
9553                             ldst_addrspace);
9554         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9555         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9556         ldst.u.i2c.did = devid;
9557         ldst.u.i2c.boffset = offset;
9558         ldst.u.i2c.blen = len;
9559         ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9560         if (!ret)
9561                 memcpy(buf, ldst.u.i2c.data, len);
9562         return ret;
9563 }
9564
9565 /**
9566  *      t4_i2c_wr - write I2C data to adapter
9567  *      @adap: the adapter
9568  *      @port: Port number if per-port device; <0 if not
9569  *      @devid: per-port device ID or absolute device ID
9570  *      @offset: byte offset into device I2C space
9571  *      @len: byte length of I2C space data
9572  *      @buf: buffer containing new I2C data
9573  *
9574  *      Write the I2C data to the indicated device and location.
9575  */
9576 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9577               int port, unsigned int devid,
9578               unsigned int offset, unsigned int len,
9579               u8 *buf)
9580 {
9581         u32 ldst_addrspace;
9582         struct fw_ldst_cmd ldst;
9583
9584         if (port >= 4 ||
9585             devid >= 256 ||
9586             offset >= 256 ||
9587             len > sizeof ldst.u.i2c.data)
9588                 return -EINVAL;
9589
9590         memset(&ldst, 0, sizeof ldst);
9591         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9592         ldst.op_to_addrspace =
9593                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9594                             F_FW_CMD_REQUEST |
9595                             F_FW_CMD_WRITE |
9596                             ldst_addrspace);
9597         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9598         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9599         ldst.u.i2c.did = devid;
9600         ldst.u.i2c.boffset = offset;
9601         ldst.u.i2c.blen = len;
9602         memcpy(ldst.u.i2c.data, buf, len);
9603         return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9604 }
9605
9606 /**
9607  *      t4_sge_ctxt_rd - read an SGE context through FW
9608  *      @adap: the adapter
9609  *      @mbox: mailbox to use for the FW command
9610  *      @cid: the context id
9611  *      @ctype: the context type
9612  *      @data: where to store the context data
9613  *
9614  *      Issues a FW command through the given mailbox to read an SGE context.
9615  */
9616 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9617                    enum ctxt_type ctype, u32 *data)
9618 {
9619         int ret;
9620         struct fw_ldst_cmd c;
9621
9622         if (ctype == CTXT_EGRESS)
9623                 ret = FW_LDST_ADDRSPC_SGE_EGRC;
9624         else if (ctype == CTXT_INGRESS)
9625                 ret = FW_LDST_ADDRSPC_SGE_INGC;
9626         else if (ctype == CTXT_FLM)
9627                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
9628         else
9629                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
9630
9631         memset(&c, 0, sizeof(c));
9632         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9633                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
9634                                         V_FW_LDST_CMD_ADDRSPACE(ret));
9635         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9636         c.u.idctxt.physid = cpu_to_be32(cid);
9637
9638         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9639         if (ret == 0) {
9640                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9641                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9642                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9643                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9644                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9645                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9646         }
9647         return ret;
9648 }
9649
9650 /**
9651  *      t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9652  *      @adap: the adapter
9653  *      @cid: the context id
9654  *      @ctype: the context type
9655  *      @data: where to store the context data
9656  *
9657  *      Reads an SGE context directly, bypassing FW.  This is only for
9658  *      debugging when FW is unavailable.
9659  */
9660 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9661                       u32 *data)
9662 {
9663         int i, ret;
9664
9665         t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9666         ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9667         if (!ret)
9668                 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9669                         *data++ = t4_read_reg(adap, i);
9670         return ret;
9671 }
9672
9673 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9674     int sleep_ok)
9675 {
9676         struct fw_sched_cmd cmd;
9677
9678         memset(&cmd, 0, sizeof(cmd));
9679         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9680                                       F_FW_CMD_REQUEST |
9681                                       F_FW_CMD_WRITE);
9682         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9683
9684         cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9685         cmd.u.config.type = type;
9686         cmd.u.config.minmaxen = minmaxen;
9687
9688         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9689                                NULL, sleep_ok);
9690 }
9691
9692 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9693                     int rateunit, int ratemode, int channel, int cl,
9694                     int minrate, int maxrate, int weight, int pktsize,
9695                     int sleep_ok)
9696 {
9697         struct fw_sched_cmd cmd;
9698
9699         memset(&cmd, 0, sizeof(cmd));
9700         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9701                                       F_FW_CMD_REQUEST |
9702                                       F_FW_CMD_WRITE);
9703         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9704
9705         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9706         cmd.u.params.type = type;
9707         cmd.u.params.level = level;
9708         cmd.u.params.mode = mode;
9709         cmd.u.params.ch = channel;
9710         cmd.u.params.cl = cl;
9711         cmd.u.params.unit = rateunit;
9712         cmd.u.params.rate = ratemode;
9713         cmd.u.params.min = cpu_to_be32(minrate);
9714         cmd.u.params.max = cpu_to_be32(maxrate);
9715         cmd.u.params.weight = cpu_to_be16(weight);
9716         cmd.u.params.pktsize = cpu_to_be16(pktsize);
9717
9718         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9719                                NULL, sleep_ok);
9720 }
9721
9722 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
9723     unsigned int maxrate, int sleep_ok)
9724 {
9725         struct fw_sched_cmd cmd;
9726
9727         memset(&cmd, 0, sizeof(cmd));
9728         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9729                                       F_FW_CMD_REQUEST |
9730                                       F_FW_CMD_WRITE);
9731         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9732
9733         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9734         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9735         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
9736         cmd.u.params.ch = channel;
9737         cmd.u.params.rate = ratemode;           /* REL or ABS */
9738         cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
9739
9740         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9741                                NULL, sleep_ok);
9742 }
9743
9744 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
9745     int weight, int sleep_ok)
9746 {
9747         struct fw_sched_cmd cmd;
9748
9749         if (weight < 0 || weight > 100)
9750                 return -EINVAL;
9751
9752         memset(&cmd, 0, sizeof(cmd));
9753         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9754                                       F_FW_CMD_REQUEST |
9755                                       F_FW_CMD_WRITE);
9756         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9757
9758         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9759         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9760         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
9761         cmd.u.params.ch = channel;
9762         cmd.u.params.cl = cl;
9763         cmd.u.params.weight = cpu_to_be16(weight);
9764
9765         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9766                                NULL, sleep_ok);
9767 }
9768
9769 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
9770     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
9771 {
9772         struct fw_sched_cmd cmd;
9773
9774         memset(&cmd, 0, sizeof(cmd));
9775         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9776                                       F_FW_CMD_REQUEST |
9777                                       F_FW_CMD_WRITE);
9778         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9779
9780         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9781         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9782         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
9783         cmd.u.params.mode = mode;
9784         cmd.u.params.ch = channel;
9785         cmd.u.params.cl = cl;
9786         cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
9787         cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
9788         cmd.u.params.max = cpu_to_be32(maxrate);
9789         cmd.u.params.pktsize = cpu_to_be16(pktsize);
9790
9791         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9792                                NULL, sleep_ok);
9793 }
9794
9795 /*
9796  *      t4_config_watchdog - configure (enable/disable) a watchdog timer
9797  *      @adapter: the adapter
9798  *      @mbox: mailbox to use for the FW command
9799  *      @pf: the PF owning the queue
9800  *      @vf: the VF owning the queue
9801  *      @timeout: watchdog timeout in ms
9802  *      @action: watchdog timer / action
9803  *
9804  *      There are separate watchdog timers for each possible watchdog
9805  *      action.  Configure one of the watchdog timers by setting a non-zero
9806  *      timeout.  Disable a watchdog timer by using a timeout of zero.
9807  */
9808 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9809                        unsigned int pf, unsigned int vf,
9810                        unsigned int timeout, unsigned int action)
9811 {
9812         struct fw_watchdog_cmd wdog;
9813         unsigned int ticks;
9814
9815         /*
9816          * The watchdog command expects a timeout in units of 10ms so we need
9817          * to convert it here (via rounding) and force a minimum of one 10ms
9818          * "tick" if the timeout is non-zero but the conversion results in 0
9819          * ticks.
9820          */
9821         ticks = (timeout + 5)/10;
9822         if (timeout && !ticks)
9823                 ticks = 1;
9824
9825         memset(&wdog, 0, sizeof wdog);
9826         wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9827                                      F_FW_CMD_REQUEST |
9828                                      F_FW_CMD_WRITE |
9829                                      V_FW_PARAMS_CMD_PFN(pf) |
9830                                      V_FW_PARAMS_CMD_VFN(vf));
9831         wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9832         wdog.timeout = cpu_to_be32(ticks);
9833         wdog.action = cpu_to_be32(action);
9834
9835         return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9836 }
9837
9838 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9839 {
9840         struct fw_devlog_cmd devlog_cmd;
9841         int ret;
9842
9843         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9844         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9845                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
9846         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9847         ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9848                          sizeof(devlog_cmd), &devlog_cmd);
9849         if (ret)
9850                 return ret;
9851
9852         *level = devlog_cmd.level;
9853         return 0;
9854 }
9855
9856 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9857 {
9858         struct fw_devlog_cmd devlog_cmd;
9859
9860         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9861         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9862                                              F_FW_CMD_REQUEST |
9863                                              F_FW_CMD_WRITE);
9864         devlog_cmd.level = level;
9865         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9866         return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9867                           sizeof(devlog_cmd), &devlog_cmd);
9868 }