]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/common/t4_hw.c
MFV r302218: file 5.28.
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / common / t4_hw.c
1 /*-
2  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include "opt_inet.h"
31
32 #include <sys/param.h>
33 #include <sys/eventhandler.h>
34
35 #include "common.h"
36 #include "t4_regs.h"
37 #include "t4_regs_values.h"
38 #include "firmware/t4fw_interface.h"
39
40 #undef msleep
41 #define msleep(x) do { \
42         if (cold) \
43                 DELAY((x) * 1000); \
44         else \
45                 pause("t4hw", (x) * hz / 1000); \
46 } while (0)
47
48 /**
49  *      t4_wait_op_done_val - wait until an operation is completed
50  *      @adapter: the adapter performing the operation
51  *      @reg: the register to check for completion
52  *      @mask: a single-bit field within @reg that indicates completion
53  *      @polarity: the value of the field when the operation is completed
54  *      @attempts: number of check iterations
55  *      @delay: delay in usecs between iterations
56  *      @valp: where to store the value of the register at completion time
57  *
58  *      Wait until an operation is completed by checking a bit in a register
59  *      up to @attempts times.  If @valp is not NULL the value of the register
60  *      at the time it indicated completion is stored there.  Returns 0 if the
61  *      operation completes and -EAGAIN otherwise.
62  */
63 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64                                int polarity, int attempts, int delay, u32 *valp)
65 {
66         while (1) {
67                 u32 val = t4_read_reg(adapter, reg);
68
69                 if (!!(val & mask) == polarity) {
70                         if (valp)
71                                 *valp = val;
72                         return 0;
73                 }
74                 if (--attempts == 0)
75                         return -EAGAIN;
76                 if (delay)
77                         udelay(delay);
78         }
79 }
80
81 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82                                   int polarity, int attempts, int delay)
83 {
84         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85                                    delay, NULL);
86 }
87
88 /**
89  *      t4_set_reg_field - set a register field to a value
90  *      @adapter: the adapter to program
91  *      @addr: the register address
92  *      @mask: specifies the portion of the register to modify
93  *      @val: the new value for the register field
94  *
95  *      Sets a register field specified by the supplied mask to the
96  *      given value.
97  */
98 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99                       u32 val)
100 {
101         u32 v = t4_read_reg(adapter, addr) & ~mask;
102
103         t4_write_reg(adapter, addr, v | val);
104         (void) t4_read_reg(adapter, addr);      /* flush */
105 }
106
107 /**
108  *      t4_read_indirect - read indirectly addressed registers
109  *      @adap: the adapter
110  *      @addr_reg: register holding the indirect address
111  *      @data_reg: register holding the value of the indirect register
112  *      @vals: where the read register values are stored
113  *      @nregs: how many indirect registers to read
114  *      @start_idx: index of first indirect register to read
115  *
116  *      Reads registers that are accessed indirectly through an address/data
117  *      register pair.
118  */
119 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120                              unsigned int data_reg, u32 *vals,
121                              unsigned int nregs, unsigned int start_idx)
122 {
123         while (nregs--) {
124                 t4_write_reg(adap, addr_reg, start_idx);
125                 *vals++ = t4_read_reg(adap, data_reg);
126                 start_idx++;
127         }
128 }
129
130 /**
131  *      t4_write_indirect - write indirectly addressed registers
132  *      @adap: the adapter
133  *      @addr_reg: register holding the indirect addresses
134  *      @data_reg: register holding the value for the indirect registers
135  *      @vals: values to write
136  *      @nregs: how many indirect registers to write
137  *      @start_idx: address of first indirect register to write
138  *
139  *      Writes a sequential block of registers that are accessed indirectly
140  *      through an address/data register pair.
141  */
142 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143                        unsigned int data_reg, const u32 *vals,
144                        unsigned int nregs, unsigned int start_idx)
145 {
146         while (nregs--) {
147                 t4_write_reg(adap, addr_reg, start_idx++);
148                 t4_write_reg(adap, data_reg, *vals++);
149         }
150 }
151
152 /*
153  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154  * mechanism.  This guarantees that we get the real value even if we're
155  * operating within a Virtual Machine and the Hypervisor is trapping our
156  * Configuration Space accesses.
157  *
158  * N.B. This routine should only be used as a last resort: the firmware uses
159  *      the backdoor registers on a regular basis and we can end up
160  *      conflicting with it's uses!
161  */
162 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163 {
164         u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165         u32 val;
166
167         if (chip_id(adap) <= CHELSIO_T5)
168                 req |= F_ENABLE;
169         else
170                 req |= F_T6_ENABLE;
171
172         if (is_t4(adap))
173                 req |= F_LOCALCFG;
174
175         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176         val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177
178         /*
179          * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180          * Configuration Space read.  (None of the other fields matter when
181          * F_ENABLE is 0 so a simple register write is easier than a
182          * read-modify-write via t4_set_reg_field().)
183          */
184         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185
186         return val;
187 }
188
189 /*
190  * t4_report_fw_error - report firmware error
191  * @adap: the adapter
192  *
193  * The adapter firmware can indicate error conditions to the host.
194  * If the firmware has indicated an error, print out the reason for
195  * the firmware error.
196  */
197 static void t4_report_fw_error(struct adapter *adap)
198 {
199         static const char *const reason[] = {
200                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
201                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
202                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
203                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
204                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
206                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
207                 "Reserved",                     /* reserved */
208         };
209         u32 pcie_fw;
210
211         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212         if (pcie_fw & F_PCIE_FW_ERR)
213                 CH_ERR(adap, "Firmware reports adapter error: %s\n",
214                         reason[G_PCIE_FW_EVAL(pcie_fw)]);
215 }
216
217 /*
218  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
219  */
220 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
221                          u32 mbox_addr)
222 {
223         for ( ; nflit; nflit--, mbox_addr += 8)
224                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
225 }
226
227 /*
228  * Handle a FW assertion reported in a mailbox.
229  */
230 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
231 {
232         CH_ALERT(adap,
233                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
234                   asrt->u.assert.filename_0_7,
235                   be32_to_cpu(asrt->u.assert.line),
236                   be32_to_cpu(asrt->u.assert.x),
237                   be32_to_cpu(asrt->u.assert.y));
238 }
239
240 #define X_CIM_PF_NOACCESS 0xeeeeeeee
241 /**
242  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *      @adap: the adapter
244  *      @mbox: index of the mailbox to use
245  *      @cmd: the command to write
246  *      @size: command length in bytes
247  *      @rpl: where to optionally store the reply
248  *      @sleep_ok: if true we may sleep while awaiting command completion
249  *      @timeout: time to wait for command to finish before timing out
250  *              (negative implies @sleep_ok=false)
251  *
252  *      Sends the given command to FW through the selected mailbox and waits
253  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
254  *      store the FW's reply to the command.  The command and its optional
255  *      reply are of the same length.  Some FW commands like RESET and
256  *      INITIALIZE can take a considerable amount of time to execute.
257  *      @sleep_ok determines whether we may sleep while awaiting the response.
258  *      If sleeping is allowed we use progressive backoff otherwise we spin.
259  *      Note that passing in a negative @timeout is an alternate mechanism
260  *      for specifying @sleep_ok=false.  This is useful when a higher level
261  *      interface allows for specification of @timeout but not @sleep_ok ...
262  *
263  *      The return value is 0 on success or a negative errno on failure.  A
264  *      failure can happen either because we are not able to execute the
265  *      command or FW executes it but signals an error.  In the latter case
266  *      the return value is the error code indicated by FW (negated).
267  */
268 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
269                             int size, void *rpl, bool sleep_ok, int timeout)
270 {
271         /*
272          * We delay in small increments at first in an effort to maintain
273          * responsiveness for simple, fast executing commands but then back
274          * off to larger delays to a maximum retry delay.
275          */
276         static const int delay[] = {
277                 1, 1, 3, 5, 10, 10, 20, 50, 100
278         };
279         u32 v;
280         u64 res;
281         int i, ms, delay_idx, ret;
282         const __be64 *p = cmd;
283         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
284         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
285         u32 ctl;
286         __be64 cmd_rpl[MBOX_LEN/8];
287         u32 pcie_fw;
288
289         if ((size & 15) || size > MBOX_LEN)
290                 return -EINVAL;
291
292         /*
293          * If we have a negative timeout, that implies that we can't sleep.
294          */
295         if (timeout < 0) {
296                 sleep_ok = false;
297                 timeout = -timeout;
298         }
299
300         /*
301          * Attempt to gain access to the mailbox.
302          */
303         for (i = 0; i < 4; i++) {
304                 ctl = t4_read_reg(adap, ctl_reg);
305                 v = G_MBOWNER(ctl);
306                 if (v != X_MBOWNER_NONE)
307                         break;
308         }
309
310         /*
311          * If we were unable to gain access, dequeue ourselves from the
312          * mailbox atomic access list and report the error to our caller.
313          */
314         if (v != X_MBOWNER_PL) {
315                 t4_report_fw_error(adap);
316                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
317                 return ret;
318         }
319
320         /*
321          * If we gain ownership of the mailbox and there's a "valid" message
322          * in it, this is likely an asynchronous error message from the
323          * firmware.  So we'll report that and then proceed on with attempting
324          * to issue our own command ... which may well fail if the error
325          * presaged the firmware crashing ...
326          */
327         if (ctl & F_MBMSGVALID) {
328                 CH_ERR(adap, "found VALID command in mbox %u: "
329                        "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
330                        (unsigned long long)t4_read_reg64(adap, data_reg),
331                        (unsigned long long)t4_read_reg64(adap, data_reg + 8),
332                        (unsigned long long)t4_read_reg64(adap, data_reg + 16),
333                        (unsigned long long)t4_read_reg64(adap, data_reg + 24),
334                        (unsigned long long)t4_read_reg64(adap, data_reg + 32),
335                        (unsigned long long)t4_read_reg64(adap, data_reg + 40),
336                        (unsigned long long)t4_read_reg64(adap, data_reg + 48),
337                        (unsigned long long)t4_read_reg64(adap, data_reg + 56));
338         }
339
340         /*
341          * Copy in the new mailbox command and send it on its way ...
342          */
343         for (i = 0; i < size; i += 8, p++)
344                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
345
346         CH_DUMP_MBOX(adap, mbox, data_reg);
347
348         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
349         t4_read_reg(adap, ctl_reg);     /* flush write */
350
351         delay_idx = 0;
352         ms = delay[0];
353
354         /*
355          * Loop waiting for the reply; bail out if we time out or the firmware
356          * reports an error.
357          */
358         for (i = 0;
359              !((pcie_fw = t4_read_reg(adap, A_PCIE_FW)) & F_PCIE_FW_ERR) &&
360              i < timeout;
361              i += ms) {
362                 if (sleep_ok) {
363                         ms = delay[delay_idx];  /* last element may repeat */
364                         if (delay_idx < ARRAY_SIZE(delay) - 1)
365                                 delay_idx++;
366                         msleep(ms);
367                 } else {
368                         mdelay(ms);
369                 }
370
371                 v = t4_read_reg(adap, ctl_reg);
372                 if (v == X_CIM_PF_NOACCESS)
373                         continue;
374                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
375                         if (!(v & F_MBMSGVALID)) {
376                                 t4_write_reg(adap, ctl_reg,
377                                              V_MBOWNER(X_MBOWNER_NONE));
378                                 continue;
379                         }
380
381                         /*
382                          * Retrieve the command reply and release the mailbox.
383                          */
384                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
385                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
386
387                         CH_DUMP_MBOX(adap, mbox, data_reg);
388
389                         res = be64_to_cpu(cmd_rpl[0]);
390                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
391                                 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
392                                 res = V_FW_CMD_RETVAL(EIO);
393                         } else if (rpl)
394                                 memcpy(rpl, cmd_rpl, size);
395                         return -G_FW_CMD_RETVAL((int)res);
396                 }
397         }
398
399         /*
400          * We timed out waiting for a reply to our mailbox command.  Report
401          * the error and also check to see if the firmware reported any
402          * errors ...
403          */
404         ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
405         CH_ERR(adap, "command %#x in mailbox %d timed out\n",
406                *(const u8 *)cmd, mbox);
407
408         t4_report_fw_error(adap);
409         t4_fatal_err(adap);
410         return ret;
411 }
412
413 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
414                     void *rpl, bool sleep_ok)
415 {
416                 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
417                                                sleep_ok, FW_CMD_MAX_TIMEOUT);
418
419 }
420
421 static int t4_edc_err_read(struct adapter *adap, int idx)
422 {
423         u32 edc_ecc_err_addr_reg;
424         u32 edc_bist_status_rdata_reg;
425
426         if (is_t4(adap)) {
427                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
428                 return 0;
429         }
430         if (idx != 0 && idx != 1) {
431                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
432                 return 0;
433         }
434
435         edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
436         edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
437
438         CH_WARN(adap,
439                 "edc%d err addr 0x%x: 0x%x.\n",
440                 idx, edc_ecc_err_addr_reg,
441                 t4_read_reg(adap, edc_ecc_err_addr_reg));
442         CH_WARN(adap,
443                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
444                 edc_bist_status_rdata_reg,
445                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
446                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
447                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
448                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
449                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
450                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
451                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
452                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
453                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
454
455         return 0;
456 }
457
458 /**
459  *      t4_mc_read - read from MC through backdoor accesses
460  *      @adap: the adapter
461  *      @idx: which MC to access
462  *      @addr: address of first byte requested
463  *      @data: 64 bytes of data containing the requested address
464  *      @ecc: where to store the corresponding 64-bit ECC word
465  *
466  *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
467  *      that covers the requested address @addr.  If @parity is not %NULL it
468  *      is assigned the 64-bit ECC word for the read data.
469  */
470 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
471 {
472         int i;
473         u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
474         u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
475
476         if (is_t4(adap)) {
477                 mc_bist_cmd_reg = A_MC_BIST_CMD;
478                 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
479                 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
480                 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
481                 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
482         } else {
483                 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
484                 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
485                 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
486                 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
487                                                   idx);
488                 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
489                                                   idx);
490         }
491
492         if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
493                 return -EBUSY;
494         t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
495         t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
496         t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
497         t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
498                      F_START_BIST | V_BIST_CMD_GAP(1));
499         i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
500         if (i)
501                 return i;
502
503 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
504
505         for (i = 15; i >= 0; i--)
506                 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
507         if (ecc)
508                 *ecc = t4_read_reg64(adap, MC_DATA(16));
509 #undef MC_DATA
510         return 0;
511 }
512
513 /**
514  *      t4_edc_read - read from EDC through backdoor accesses
515  *      @adap: the adapter
516  *      @idx: which EDC to access
517  *      @addr: address of first byte requested
518  *      @data: 64 bytes of data containing the requested address
519  *      @ecc: where to store the corresponding 64-bit ECC word
520  *
521  *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
522  *      that covers the requested address @addr.  If @parity is not %NULL it
523  *      is assigned the 64-bit ECC word for the read data.
524  */
525 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
526 {
527         int i;
528         u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
529         u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
530
531         if (is_t4(adap)) {
532                 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
533                 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
534                 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
535                 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
536                                                     idx);
537                 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
538                                                     idx);
539         } else {
540 /*
541  * These macro are missing in t4_regs.h file.
542  * Added temporarily for testing.
543  */
544 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
545 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
546                 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
547                 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
548                 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
549                 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
550                                                     idx);
551                 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
552                                                     idx);
553 #undef EDC_REG_T5
554 #undef EDC_STRIDE_T5
555         }
556
557         if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
558                 return -EBUSY;
559         t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
560         t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
561         t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
562         t4_write_reg(adap, edc_bist_cmd_reg,
563                      V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
564         i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
565         if (i)
566                 return i;
567
568 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
569
570         for (i = 15; i >= 0; i--)
571                 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
572         if (ecc)
573                 *ecc = t4_read_reg64(adap, EDC_DATA(16));
574 #undef EDC_DATA
575         return 0;
576 }
577
578 /**
579  *      t4_mem_read - read EDC 0, EDC 1 or MC into buffer
580  *      @adap: the adapter
581  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
582  *      @addr: address within indicated memory type
583  *      @len: amount of memory to read
584  *      @buf: host memory buffer
585  *
586  *      Reads an [almost] arbitrary memory region in the firmware: the
587  *      firmware memory address, length and host buffer must be aligned on
588  *      32-bit boudaries.  The memory is returned as a raw byte sequence from
589  *      the firmware's memory.  If this memory contains data structures which
590  *      contain multi-byte integers, it's the callers responsibility to
591  *      perform appropriate byte order conversions.
592  */
593 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
594                 __be32 *buf)
595 {
596         u32 pos, start, end, offset;
597         int ret;
598
599         /*
600          * Argument sanity checks ...
601          */
602         if ((addr & 0x3) || (len & 0x3))
603                 return -EINVAL;
604
605         /*
606          * The underlaying EDC/MC read routines read 64 bytes at a time so we
607          * need to round down the start and round up the end.  We'll start
608          * copying out of the first line at (addr - start) a word at a time.
609          */
610         start = rounddown2(addr, 64);
611         end = roundup2(addr + len, 64);
612         offset = (addr - start)/sizeof(__be32);
613
614         for (pos = start; pos < end; pos += 64, offset = 0) {
615                 __be32 data[16];
616
617                 /*
618                  * Read the chip's memory block and bail if there's an error.
619                  */
620                 if ((mtype == MEM_MC) || (mtype == MEM_MC1))
621                         ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
622                 else
623                         ret = t4_edc_read(adap, mtype, pos, data, NULL);
624                 if (ret)
625                         return ret;
626
627                 /*
628                  * Copy the data into the caller's memory buffer.
629                  */
630                 while (offset < 16 && len > 0) {
631                         *buf++ = data[offset++];
632                         len -= sizeof(__be32);
633                 }
634         }
635
636         return 0;
637 }
638
639 /*
640  * Return the specified PCI-E Configuration Space register from our Physical
641  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
642  * since we prefer to let the firmware own all of these registers, but if that
643  * fails we go for it directly ourselves.
644  */
645 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
646 {
647
648         /*
649          * If fw_attach != 0, construct and send the Firmware LDST Command to
650          * retrieve the specified PCI-E Configuration Space register.
651          */
652         if (drv_fw_attach != 0) {
653                 struct fw_ldst_cmd ldst_cmd;
654                 int ret;
655
656                 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
657                 ldst_cmd.op_to_addrspace =
658                         cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
659                                     F_FW_CMD_REQUEST |
660                                     F_FW_CMD_READ |
661                                     V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
662                 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
663                 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
664                 ldst_cmd.u.pcie.ctrl_to_fn =
665                         (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
666                 ldst_cmd.u.pcie.r = reg;
667
668                 /*
669                  * If the LDST Command succeeds, return the result, otherwise
670                  * fall through to reading it directly ourselves ...
671                  */
672                 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
673                                  &ldst_cmd);
674                 if (ret == 0)
675                         return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
676
677                 CH_WARN(adap, "Firmware failed to return "
678                         "Configuration Space register %d, err = %d\n",
679                         reg, -ret);
680         }
681
682         /*
683          * Read the desired Configuration Space register via the PCI-E
684          * Backdoor mechanism.
685          */
686         return t4_hw_pci_read_cfg4(adap, reg);
687 }
688
689 /**
690  *      t4_get_regs_len - return the size of the chips register set
691  *      @adapter: the adapter
692  *
693  *      Returns the size of the chip's BAR0 register space.
694  */
695 unsigned int t4_get_regs_len(struct adapter *adapter)
696 {
697         unsigned int chip_version = chip_id(adapter);
698
699         switch (chip_version) {
700         case CHELSIO_T4:
701                 return T4_REGMAP_SIZE;
702
703         case CHELSIO_T5:
704         case CHELSIO_T6:
705                 return T5_REGMAP_SIZE;
706         }
707
708         CH_ERR(adapter,
709                 "Unsupported chip version %d\n", chip_version);
710         return 0;
711 }
712
713 /**
714  *      t4_get_regs - read chip registers into provided buffer
715  *      @adap: the adapter
716  *      @buf: register buffer
717  *      @buf_size: size (in bytes) of register buffer
718  *
719  *      If the provided register buffer isn't large enough for the chip's
720  *      full register range, the register dump will be truncated to the
721  *      register buffer's size.
722  */
723 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
724 {
725         static const unsigned int t4_reg_ranges[] = {
726                 0x1008, 0x1108,
727                 0x1180, 0x1184,
728                 0x1190, 0x1194,
729                 0x11a0, 0x11a4,
730                 0x11b0, 0x11b4,
731                 0x11fc, 0x123c,
732                 0x1300, 0x173c,
733                 0x1800, 0x18fc,
734                 0x3000, 0x30d8,
735                 0x30e0, 0x30e4,
736                 0x30ec, 0x5910,
737                 0x5920, 0x5924,
738                 0x5960, 0x5960,
739                 0x5968, 0x5968,
740                 0x5970, 0x5970,
741                 0x5978, 0x5978,
742                 0x5980, 0x5980,
743                 0x5988, 0x5988,
744                 0x5990, 0x5990,
745                 0x5998, 0x5998,
746                 0x59a0, 0x59d4,
747                 0x5a00, 0x5ae0,
748                 0x5ae8, 0x5ae8,
749                 0x5af0, 0x5af0,
750                 0x5af8, 0x5af8,
751                 0x6000, 0x6098,
752                 0x6100, 0x6150,
753                 0x6200, 0x6208,
754                 0x6240, 0x6248,
755                 0x6280, 0x62b0,
756                 0x62c0, 0x6338,
757                 0x6370, 0x638c,
758                 0x6400, 0x643c,
759                 0x6500, 0x6524,
760                 0x6a00, 0x6a04,
761                 0x6a14, 0x6a38,
762                 0x6a60, 0x6a70,
763                 0x6a78, 0x6a78,
764                 0x6b00, 0x6b0c,
765                 0x6b1c, 0x6b84,
766                 0x6bf0, 0x6bf8,
767                 0x6c00, 0x6c0c,
768                 0x6c1c, 0x6c84,
769                 0x6cf0, 0x6cf8,
770                 0x6d00, 0x6d0c,
771                 0x6d1c, 0x6d84,
772                 0x6df0, 0x6df8,
773                 0x6e00, 0x6e0c,
774                 0x6e1c, 0x6e84,
775                 0x6ef0, 0x6ef8,
776                 0x6f00, 0x6f0c,
777                 0x6f1c, 0x6f84,
778                 0x6ff0, 0x6ff8,
779                 0x7000, 0x700c,
780                 0x701c, 0x7084,
781                 0x70f0, 0x70f8,
782                 0x7100, 0x710c,
783                 0x711c, 0x7184,
784                 0x71f0, 0x71f8,
785                 0x7200, 0x720c,
786                 0x721c, 0x7284,
787                 0x72f0, 0x72f8,
788                 0x7300, 0x730c,
789                 0x731c, 0x7384,
790                 0x73f0, 0x73f8,
791                 0x7400, 0x7450,
792                 0x7500, 0x7530,
793                 0x7600, 0x760c,
794                 0x7614, 0x761c,
795                 0x7680, 0x76cc,
796                 0x7700, 0x7798,
797                 0x77c0, 0x77fc,
798                 0x7900, 0x79fc,
799                 0x7b00, 0x7b58,
800                 0x7b60, 0x7b84,
801                 0x7b8c, 0x7c38,
802                 0x7d00, 0x7d38,
803                 0x7d40, 0x7d80,
804                 0x7d8c, 0x7ddc,
805                 0x7de4, 0x7e04,
806                 0x7e10, 0x7e1c,
807                 0x7e24, 0x7e38,
808                 0x7e40, 0x7e44,
809                 0x7e4c, 0x7e78,
810                 0x7e80, 0x7ea4,
811                 0x7eac, 0x7edc,
812                 0x7ee8, 0x7efc,
813                 0x8dc0, 0x8e04,
814                 0x8e10, 0x8e1c,
815                 0x8e30, 0x8e78,
816                 0x8ea0, 0x8eb8,
817                 0x8ec0, 0x8f6c,
818                 0x8fc0, 0x9008,
819                 0x9010, 0x9058,
820                 0x9060, 0x9060,
821                 0x9068, 0x9074,
822                 0x90fc, 0x90fc,
823                 0x9400, 0x9408,
824                 0x9410, 0x9458,
825                 0x9600, 0x9600,
826                 0x9608, 0x9638,
827                 0x9640, 0x96bc,
828                 0x9800, 0x9808,
829                 0x9820, 0x983c,
830                 0x9850, 0x9864,
831                 0x9c00, 0x9c6c,
832                 0x9c80, 0x9cec,
833                 0x9d00, 0x9d6c,
834                 0x9d80, 0x9dec,
835                 0x9e00, 0x9e6c,
836                 0x9e80, 0x9eec,
837                 0x9f00, 0x9f6c,
838                 0x9f80, 0x9fec,
839                 0xd004, 0xd004,
840                 0xd010, 0xd03c,
841                 0xdfc0, 0xdfe0,
842                 0xe000, 0xea7c,
843                 0xf000, 0x11190,
844                 0x19040, 0x1906c,
845                 0x19078, 0x19080,
846                 0x1908c, 0x190e4,
847                 0x190f0, 0x190f8,
848                 0x19100, 0x19110,
849                 0x19120, 0x19124,
850                 0x19150, 0x19194,
851                 0x1919c, 0x191b0,
852                 0x191d0, 0x191e8,
853                 0x19238, 0x1924c,
854                 0x193f8, 0x1943c,
855                 0x1944c, 0x19474,
856                 0x19490, 0x194e0,
857                 0x194f0, 0x194f8,
858                 0x19800, 0x19c08,
859                 0x19c10, 0x19c90,
860                 0x19ca0, 0x19ce4,
861                 0x19cf0, 0x19d40,
862                 0x19d50, 0x19d94,
863                 0x19da0, 0x19de8,
864                 0x19df0, 0x19e40,
865                 0x19e50, 0x19e90,
866                 0x19ea0, 0x19f4c,
867                 0x1a000, 0x1a004,
868                 0x1a010, 0x1a06c,
869                 0x1a0b0, 0x1a0e4,
870                 0x1a0ec, 0x1a0f4,
871                 0x1a100, 0x1a108,
872                 0x1a114, 0x1a120,
873                 0x1a128, 0x1a130,
874                 0x1a138, 0x1a138,
875                 0x1a190, 0x1a1c4,
876                 0x1a1fc, 0x1a1fc,
877                 0x1e040, 0x1e04c,
878                 0x1e284, 0x1e28c,
879                 0x1e2c0, 0x1e2c0,
880                 0x1e2e0, 0x1e2e0,
881                 0x1e300, 0x1e384,
882                 0x1e3c0, 0x1e3c8,
883                 0x1e440, 0x1e44c,
884                 0x1e684, 0x1e68c,
885                 0x1e6c0, 0x1e6c0,
886                 0x1e6e0, 0x1e6e0,
887                 0x1e700, 0x1e784,
888                 0x1e7c0, 0x1e7c8,
889                 0x1e840, 0x1e84c,
890                 0x1ea84, 0x1ea8c,
891                 0x1eac0, 0x1eac0,
892                 0x1eae0, 0x1eae0,
893                 0x1eb00, 0x1eb84,
894                 0x1ebc0, 0x1ebc8,
895                 0x1ec40, 0x1ec4c,
896                 0x1ee84, 0x1ee8c,
897                 0x1eec0, 0x1eec0,
898                 0x1eee0, 0x1eee0,
899                 0x1ef00, 0x1ef84,
900                 0x1efc0, 0x1efc8,
901                 0x1f040, 0x1f04c,
902                 0x1f284, 0x1f28c,
903                 0x1f2c0, 0x1f2c0,
904                 0x1f2e0, 0x1f2e0,
905                 0x1f300, 0x1f384,
906                 0x1f3c0, 0x1f3c8,
907                 0x1f440, 0x1f44c,
908                 0x1f684, 0x1f68c,
909                 0x1f6c0, 0x1f6c0,
910                 0x1f6e0, 0x1f6e0,
911                 0x1f700, 0x1f784,
912                 0x1f7c0, 0x1f7c8,
913                 0x1f840, 0x1f84c,
914                 0x1fa84, 0x1fa8c,
915                 0x1fac0, 0x1fac0,
916                 0x1fae0, 0x1fae0,
917                 0x1fb00, 0x1fb84,
918                 0x1fbc0, 0x1fbc8,
919                 0x1fc40, 0x1fc4c,
920                 0x1fe84, 0x1fe8c,
921                 0x1fec0, 0x1fec0,
922                 0x1fee0, 0x1fee0,
923                 0x1ff00, 0x1ff84,
924                 0x1ffc0, 0x1ffc8,
925                 0x20000, 0x2002c,
926                 0x20100, 0x2013c,
927                 0x20190, 0x201a0,
928                 0x201a8, 0x201b8,
929                 0x201c4, 0x201c8,
930                 0x20200, 0x20318,
931                 0x20400, 0x204b4,
932                 0x204c0, 0x20528,
933                 0x20540, 0x20614,
934                 0x21000, 0x21040,
935                 0x2104c, 0x21060,
936                 0x210c0, 0x210ec,
937                 0x21200, 0x21268,
938                 0x21270, 0x21284,
939                 0x212fc, 0x21388,
940                 0x21400, 0x21404,
941                 0x21500, 0x21500,
942                 0x21510, 0x21518,
943                 0x2152c, 0x21530,
944                 0x2153c, 0x2153c,
945                 0x21550, 0x21554,
946                 0x21600, 0x21600,
947                 0x21608, 0x2161c,
948                 0x21624, 0x21628,
949                 0x21630, 0x21634,
950                 0x2163c, 0x2163c,
951                 0x21700, 0x2171c,
952                 0x21780, 0x2178c,
953                 0x21800, 0x21818,
954                 0x21820, 0x21828,
955                 0x21830, 0x21848,
956                 0x21850, 0x21854,
957                 0x21860, 0x21868,
958                 0x21870, 0x21870,
959                 0x21878, 0x21898,
960                 0x218a0, 0x218a8,
961                 0x218b0, 0x218c8,
962                 0x218d0, 0x218d4,
963                 0x218e0, 0x218e8,
964                 0x218f0, 0x218f0,
965                 0x218f8, 0x21a18,
966                 0x21a20, 0x21a28,
967                 0x21a30, 0x21a48,
968                 0x21a50, 0x21a54,
969                 0x21a60, 0x21a68,
970                 0x21a70, 0x21a70,
971                 0x21a78, 0x21a98,
972                 0x21aa0, 0x21aa8,
973                 0x21ab0, 0x21ac8,
974                 0x21ad0, 0x21ad4,
975                 0x21ae0, 0x21ae8,
976                 0x21af0, 0x21af0,
977                 0x21af8, 0x21c18,
978                 0x21c20, 0x21c20,
979                 0x21c28, 0x21c30,
980                 0x21c38, 0x21c38,
981                 0x21c80, 0x21c98,
982                 0x21ca0, 0x21ca8,
983                 0x21cb0, 0x21cc8,
984                 0x21cd0, 0x21cd4,
985                 0x21ce0, 0x21ce8,
986                 0x21cf0, 0x21cf0,
987                 0x21cf8, 0x21d7c,
988                 0x21e00, 0x21e04,
989                 0x22000, 0x2202c,
990                 0x22100, 0x2213c,
991                 0x22190, 0x221a0,
992                 0x221a8, 0x221b8,
993                 0x221c4, 0x221c8,
994                 0x22200, 0x22318,
995                 0x22400, 0x224b4,
996                 0x224c0, 0x22528,
997                 0x22540, 0x22614,
998                 0x23000, 0x23040,
999                 0x2304c, 0x23060,
1000                 0x230c0, 0x230ec,
1001                 0x23200, 0x23268,
1002                 0x23270, 0x23284,
1003                 0x232fc, 0x23388,
1004                 0x23400, 0x23404,
1005                 0x23500, 0x23500,
1006                 0x23510, 0x23518,
1007                 0x2352c, 0x23530,
1008                 0x2353c, 0x2353c,
1009                 0x23550, 0x23554,
1010                 0x23600, 0x23600,
1011                 0x23608, 0x2361c,
1012                 0x23624, 0x23628,
1013                 0x23630, 0x23634,
1014                 0x2363c, 0x2363c,
1015                 0x23700, 0x2371c,
1016                 0x23780, 0x2378c,
1017                 0x23800, 0x23818,
1018                 0x23820, 0x23828,
1019                 0x23830, 0x23848,
1020                 0x23850, 0x23854,
1021                 0x23860, 0x23868,
1022                 0x23870, 0x23870,
1023                 0x23878, 0x23898,
1024                 0x238a0, 0x238a8,
1025                 0x238b0, 0x238c8,
1026                 0x238d0, 0x238d4,
1027                 0x238e0, 0x238e8,
1028                 0x238f0, 0x238f0,
1029                 0x238f8, 0x23a18,
1030                 0x23a20, 0x23a28,
1031                 0x23a30, 0x23a48,
1032                 0x23a50, 0x23a54,
1033                 0x23a60, 0x23a68,
1034                 0x23a70, 0x23a70,
1035                 0x23a78, 0x23a98,
1036                 0x23aa0, 0x23aa8,
1037                 0x23ab0, 0x23ac8,
1038                 0x23ad0, 0x23ad4,
1039                 0x23ae0, 0x23ae8,
1040                 0x23af0, 0x23af0,
1041                 0x23af8, 0x23c18,
1042                 0x23c20, 0x23c20,
1043                 0x23c28, 0x23c30,
1044                 0x23c38, 0x23c38,
1045                 0x23c80, 0x23c98,
1046                 0x23ca0, 0x23ca8,
1047                 0x23cb0, 0x23cc8,
1048                 0x23cd0, 0x23cd4,
1049                 0x23ce0, 0x23ce8,
1050                 0x23cf0, 0x23cf0,
1051                 0x23cf8, 0x23d7c,
1052                 0x23e00, 0x23e04,
1053                 0x24000, 0x2402c,
1054                 0x24100, 0x2413c,
1055                 0x24190, 0x241a0,
1056                 0x241a8, 0x241b8,
1057                 0x241c4, 0x241c8,
1058                 0x24200, 0x24318,
1059                 0x24400, 0x244b4,
1060                 0x244c0, 0x24528,
1061                 0x24540, 0x24614,
1062                 0x25000, 0x25040,
1063                 0x2504c, 0x25060,
1064                 0x250c0, 0x250ec,
1065                 0x25200, 0x25268,
1066                 0x25270, 0x25284,
1067                 0x252fc, 0x25388,
1068                 0x25400, 0x25404,
1069                 0x25500, 0x25500,
1070                 0x25510, 0x25518,
1071                 0x2552c, 0x25530,
1072                 0x2553c, 0x2553c,
1073                 0x25550, 0x25554,
1074                 0x25600, 0x25600,
1075                 0x25608, 0x2561c,
1076                 0x25624, 0x25628,
1077                 0x25630, 0x25634,
1078                 0x2563c, 0x2563c,
1079                 0x25700, 0x2571c,
1080                 0x25780, 0x2578c,
1081                 0x25800, 0x25818,
1082                 0x25820, 0x25828,
1083                 0x25830, 0x25848,
1084                 0x25850, 0x25854,
1085                 0x25860, 0x25868,
1086                 0x25870, 0x25870,
1087                 0x25878, 0x25898,
1088                 0x258a0, 0x258a8,
1089                 0x258b0, 0x258c8,
1090                 0x258d0, 0x258d4,
1091                 0x258e0, 0x258e8,
1092                 0x258f0, 0x258f0,
1093                 0x258f8, 0x25a18,
1094                 0x25a20, 0x25a28,
1095                 0x25a30, 0x25a48,
1096                 0x25a50, 0x25a54,
1097                 0x25a60, 0x25a68,
1098                 0x25a70, 0x25a70,
1099                 0x25a78, 0x25a98,
1100                 0x25aa0, 0x25aa8,
1101                 0x25ab0, 0x25ac8,
1102                 0x25ad0, 0x25ad4,
1103                 0x25ae0, 0x25ae8,
1104                 0x25af0, 0x25af0,
1105                 0x25af8, 0x25c18,
1106                 0x25c20, 0x25c20,
1107                 0x25c28, 0x25c30,
1108                 0x25c38, 0x25c38,
1109                 0x25c80, 0x25c98,
1110                 0x25ca0, 0x25ca8,
1111                 0x25cb0, 0x25cc8,
1112                 0x25cd0, 0x25cd4,
1113                 0x25ce0, 0x25ce8,
1114                 0x25cf0, 0x25cf0,
1115                 0x25cf8, 0x25d7c,
1116                 0x25e00, 0x25e04,
1117                 0x26000, 0x2602c,
1118                 0x26100, 0x2613c,
1119                 0x26190, 0x261a0,
1120                 0x261a8, 0x261b8,
1121                 0x261c4, 0x261c8,
1122                 0x26200, 0x26318,
1123                 0x26400, 0x264b4,
1124                 0x264c0, 0x26528,
1125                 0x26540, 0x26614,
1126                 0x27000, 0x27040,
1127                 0x2704c, 0x27060,
1128                 0x270c0, 0x270ec,
1129                 0x27200, 0x27268,
1130                 0x27270, 0x27284,
1131                 0x272fc, 0x27388,
1132                 0x27400, 0x27404,
1133                 0x27500, 0x27500,
1134                 0x27510, 0x27518,
1135                 0x2752c, 0x27530,
1136                 0x2753c, 0x2753c,
1137                 0x27550, 0x27554,
1138                 0x27600, 0x27600,
1139                 0x27608, 0x2761c,
1140                 0x27624, 0x27628,
1141                 0x27630, 0x27634,
1142                 0x2763c, 0x2763c,
1143                 0x27700, 0x2771c,
1144                 0x27780, 0x2778c,
1145                 0x27800, 0x27818,
1146                 0x27820, 0x27828,
1147                 0x27830, 0x27848,
1148                 0x27850, 0x27854,
1149                 0x27860, 0x27868,
1150                 0x27870, 0x27870,
1151                 0x27878, 0x27898,
1152                 0x278a0, 0x278a8,
1153                 0x278b0, 0x278c8,
1154                 0x278d0, 0x278d4,
1155                 0x278e0, 0x278e8,
1156                 0x278f0, 0x278f0,
1157                 0x278f8, 0x27a18,
1158                 0x27a20, 0x27a28,
1159                 0x27a30, 0x27a48,
1160                 0x27a50, 0x27a54,
1161                 0x27a60, 0x27a68,
1162                 0x27a70, 0x27a70,
1163                 0x27a78, 0x27a98,
1164                 0x27aa0, 0x27aa8,
1165                 0x27ab0, 0x27ac8,
1166                 0x27ad0, 0x27ad4,
1167                 0x27ae0, 0x27ae8,
1168                 0x27af0, 0x27af0,
1169                 0x27af8, 0x27c18,
1170                 0x27c20, 0x27c20,
1171                 0x27c28, 0x27c30,
1172                 0x27c38, 0x27c38,
1173                 0x27c80, 0x27c98,
1174                 0x27ca0, 0x27ca8,
1175                 0x27cb0, 0x27cc8,
1176                 0x27cd0, 0x27cd4,
1177                 0x27ce0, 0x27ce8,
1178                 0x27cf0, 0x27cf0,
1179                 0x27cf8, 0x27d7c,
1180                 0x27e00, 0x27e04,
1181         };
1182
1183         static const unsigned int t5_reg_ranges[] = {
1184                 0x1008, 0x10c0,
1185                 0x10cc, 0x10f8,
1186                 0x1100, 0x1100,
1187                 0x110c, 0x1148,
1188                 0x1180, 0x1184,
1189                 0x1190, 0x1194,
1190                 0x11a0, 0x11a4,
1191                 0x11b0, 0x11b4,
1192                 0x11fc, 0x123c,
1193                 0x1280, 0x173c,
1194                 0x1800, 0x18fc,
1195                 0x3000, 0x3028,
1196                 0x3060, 0x30b0,
1197                 0x30b8, 0x30d8,
1198                 0x30e0, 0x30fc,
1199                 0x3140, 0x357c,
1200                 0x35a8, 0x35cc,
1201                 0x35ec, 0x35ec,
1202                 0x3600, 0x5624,
1203                 0x56cc, 0x56ec,
1204                 0x56f4, 0x5720,
1205                 0x5728, 0x575c,
1206                 0x580c, 0x5814,
1207                 0x5890, 0x589c,
1208                 0x58a4, 0x58ac,
1209                 0x58b8, 0x58bc,
1210                 0x5940, 0x59c8,
1211                 0x59d0, 0x59dc,
1212                 0x59fc, 0x5a18,
1213                 0x5a60, 0x5a70,
1214                 0x5a80, 0x5a9c,
1215                 0x5b94, 0x5bfc,
1216                 0x6000, 0x6020,
1217                 0x6028, 0x6040,
1218                 0x6058, 0x609c,
1219                 0x60a8, 0x614c,
1220                 0x7700, 0x7798,
1221                 0x77c0, 0x78fc,
1222                 0x7b00, 0x7b58,
1223                 0x7b60, 0x7b84,
1224                 0x7b8c, 0x7c54,
1225                 0x7d00, 0x7d38,
1226                 0x7d40, 0x7d80,
1227                 0x7d8c, 0x7ddc,
1228                 0x7de4, 0x7e04,
1229                 0x7e10, 0x7e1c,
1230                 0x7e24, 0x7e38,
1231                 0x7e40, 0x7e44,
1232                 0x7e4c, 0x7e78,
1233                 0x7e80, 0x7edc,
1234                 0x7ee8, 0x7efc,
1235                 0x8dc0, 0x8de0,
1236                 0x8df8, 0x8e04,
1237                 0x8e10, 0x8e84,
1238                 0x8ea0, 0x8f84,
1239                 0x8fc0, 0x9058,
1240                 0x9060, 0x9060,
1241                 0x9068, 0x90f8,
1242                 0x9400, 0x9408,
1243                 0x9410, 0x9470,
1244                 0x9600, 0x9600,
1245                 0x9608, 0x9638,
1246                 0x9640, 0x96f4,
1247                 0x9800, 0x9808,
1248                 0x9820, 0x983c,
1249                 0x9850, 0x9864,
1250                 0x9c00, 0x9c6c,
1251                 0x9c80, 0x9cec,
1252                 0x9d00, 0x9d6c,
1253                 0x9d80, 0x9dec,
1254                 0x9e00, 0x9e6c,
1255                 0x9e80, 0x9eec,
1256                 0x9f00, 0x9f6c,
1257                 0x9f80, 0xa020,
1258                 0xd004, 0xd004,
1259                 0xd010, 0xd03c,
1260                 0xdfc0, 0xdfe0,
1261                 0xe000, 0x1106c,
1262                 0x11074, 0x11088,
1263                 0x1109c, 0x1117c,
1264                 0x11190, 0x11204,
1265                 0x19040, 0x1906c,
1266                 0x19078, 0x19080,
1267                 0x1908c, 0x190e8,
1268                 0x190f0, 0x190f8,
1269                 0x19100, 0x19110,
1270                 0x19120, 0x19124,
1271                 0x19150, 0x19194,
1272                 0x1919c, 0x191b0,
1273                 0x191d0, 0x191e8,
1274                 0x19238, 0x19290,
1275                 0x193f8, 0x19428,
1276                 0x19430, 0x19444,
1277                 0x1944c, 0x1946c,
1278                 0x19474, 0x19474,
1279                 0x19490, 0x194cc,
1280                 0x194f0, 0x194f8,
1281                 0x19c00, 0x19c08,
1282                 0x19c10, 0x19c60,
1283                 0x19c94, 0x19ce4,
1284                 0x19cf0, 0x19d40,
1285                 0x19d50, 0x19d94,
1286                 0x19da0, 0x19de8,
1287                 0x19df0, 0x19e10,
1288                 0x19e50, 0x19e90,
1289                 0x19ea0, 0x19f24,
1290                 0x19f34, 0x19f34,
1291                 0x19f40, 0x19f50,
1292                 0x19f90, 0x19fb4,
1293                 0x19fc4, 0x19fe4,
1294                 0x1a000, 0x1a004,
1295                 0x1a010, 0x1a06c,
1296                 0x1a0b0, 0x1a0e4,
1297                 0x1a0ec, 0x1a0f8,
1298                 0x1a100, 0x1a108,
1299                 0x1a114, 0x1a120,
1300                 0x1a128, 0x1a130,
1301                 0x1a138, 0x1a138,
1302                 0x1a190, 0x1a1c4,
1303                 0x1a1fc, 0x1a1fc,
1304                 0x1e008, 0x1e00c,
1305                 0x1e040, 0x1e044,
1306                 0x1e04c, 0x1e04c,
1307                 0x1e284, 0x1e290,
1308                 0x1e2c0, 0x1e2c0,
1309                 0x1e2e0, 0x1e2e0,
1310                 0x1e300, 0x1e384,
1311                 0x1e3c0, 0x1e3c8,
1312                 0x1e408, 0x1e40c,
1313                 0x1e440, 0x1e444,
1314                 0x1e44c, 0x1e44c,
1315                 0x1e684, 0x1e690,
1316                 0x1e6c0, 0x1e6c0,
1317                 0x1e6e0, 0x1e6e0,
1318                 0x1e700, 0x1e784,
1319                 0x1e7c0, 0x1e7c8,
1320                 0x1e808, 0x1e80c,
1321                 0x1e840, 0x1e844,
1322                 0x1e84c, 0x1e84c,
1323                 0x1ea84, 0x1ea90,
1324                 0x1eac0, 0x1eac0,
1325                 0x1eae0, 0x1eae0,
1326                 0x1eb00, 0x1eb84,
1327                 0x1ebc0, 0x1ebc8,
1328                 0x1ec08, 0x1ec0c,
1329                 0x1ec40, 0x1ec44,
1330                 0x1ec4c, 0x1ec4c,
1331                 0x1ee84, 0x1ee90,
1332                 0x1eec0, 0x1eec0,
1333                 0x1eee0, 0x1eee0,
1334                 0x1ef00, 0x1ef84,
1335                 0x1efc0, 0x1efc8,
1336                 0x1f008, 0x1f00c,
1337                 0x1f040, 0x1f044,
1338                 0x1f04c, 0x1f04c,
1339                 0x1f284, 0x1f290,
1340                 0x1f2c0, 0x1f2c0,
1341                 0x1f2e0, 0x1f2e0,
1342                 0x1f300, 0x1f384,
1343                 0x1f3c0, 0x1f3c8,
1344                 0x1f408, 0x1f40c,
1345                 0x1f440, 0x1f444,
1346                 0x1f44c, 0x1f44c,
1347                 0x1f684, 0x1f690,
1348                 0x1f6c0, 0x1f6c0,
1349                 0x1f6e0, 0x1f6e0,
1350                 0x1f700, 0x1f784,
1351                 0x1f7c0, 0x1f7c8,
1352                 0x1f808, 0x1f80c,
1353                 0x1f840, 0x1f844,
1354                 0x1f84c, 0x1f84c,
1355                 0x1fa84, 0x1fa90,
1356                 0x1fac0, 0x1fac0,
1357                 0x1fae0, 0x1fae0,
1358                 0x1fb00, 0x1fb84,
1359                 0x1fbc0, 0x1fbc8,
1360                 0x1fc08, 0x1fc0c,
1361                 0x1fc40, 0x1fc44,
1362                 0x1fc4c, 0x1fc4c,
1363                 0x1fe84, 0x1fe90,
1364                 0x1fec0, 0x1fec0,
1365                 0x1fee0, 0x1fee0,
1366                 0x1ff00, 0x1ff84,
1367                 0x1ffc0, 0x1ffc8,
1368                 0x30000, 0x30030,
1369                 0x30038, 0x30038,
1370                 0x30040, 0x30040,
1371                 0x30100, 0x30144,
1372                 0x30190, 0x301a0,
1373                 0x301a8, 0x301b8,
1374                 0x301c4, 0x301c8,
1375                 0x301d0, 0x301d0,
1376                 0x30200, 0x30318,
1377                 0x30400, 0x304b4,
1378                 0x304c0, 0x3052c,
1379                 0x30540, 0x3061c,
1380                 0x30800, 0x30828,
1381                 0x30834, 0x30834,
1382                 0x308c0, 0x30908,
1383                 0x30910, 0x309ac,
1384                 0x30a00, 0x30a14,
1385                 0x30a1c, 0x30a2c,
1386                 0x30a44, 0x30a50,
1387                 0x30a74, 0x30a74,
1388                 0x30a7c, 0x30afc,
1389                 0x30b08, 0x30c24,
1390                 0x30d00, 0x30d00,
1391                 0x30d08, 0x30d14,
1392                 0x30d1c, 0x30d20,
1393                 0x30d3c, 0x30d3c,
1394                 0x30d48, 0x30d50,
1395                 0x31200, 0x3120c,
1396                 0x31220, 0x31220,
1397                 0x31240, 0x31240,
1398                 0x31600, 0x3160c,
1399                 0x31a00, 0x31a1c,
1400                 0x31e00, 0x31e20,
1401                 0x31e38, 0x31e3c,
1402                 0x31e80, 0x31e80,
1403                 0x31e88, 0x31ea8,
1404                 0x31eb0, 0x31eb4,
1405                 0x31ec8, 0x31ed4,
1406                 0x31fb8, 0x32004,
1407                 0x32200, 0x32200,
1408                 0x32208, 0x32240,
1409                 0x32248, 0x32280,
1410                 0x32288, 0x322c0,
1411                 0x322c8, 0x322fc,
1412                 0x32600, 0x32630,
1413                 0x32a00, 0x32abc,
1414                 0x32b00, 0x32b10,
1415                 0x32b20, 0x32b30,
1416                 0x32b40, 0x32b50,
1417                 0x32b60, 0x32b70,
1418                 0x33000, 0x33028,
1419                 0x33030, 0x33048,
1420                 0x33060, 0x33068,
1421                 0x33070, 0x3309c,
1422                 0x330f0, 0x33128,
1423                 0x33130, 0x33148,
1424                 0x33160, 0x33168,
1425                 0x33170, 0x3319c,
1426                 0x331f0, 0x33238,
1427                 0x33240, 0x33240,
1428                 0x33248, 0x33250,
1429                 0x3325c, 0x33264,
1430                 0x33270, 0x332b8,
1431                 0x332c0, 0x332e4,
1432                 0x332f8, 0x33338,
1433                 0x33340, 0x33340,
1434                 0x33348, 0x33350,
1435                 0x3335c, 0x33364,
1436                 0x33370, 0x333b8,
1437                 0x333c0, 0x333e4,
1438                 0x333f8, 0x33428,
1439                 0x33430, 0x33448,
1440                 0x33460, 0x33468,
1441                 0x33470, 0x3349c,
1442                 0x334f0, 0x33528,
1443                 0x33530, 0x33548,
1444                 0x33560, 0x33568,
1445                 0x33570, 0x3359c,
1446                 0x335f0, 0x33638,
1447                 0x33640, 0x33640,
1448                 0x33648, 0x33650,
1449                 0x3365c, 0x33664,
1450                 0x33670, 0x336b8,
1451                 0x336c0, 0x336e4,
1452                 0x336f8, 0x33738,
1453                 0x33740, 0x33740,
1454                 0x33748, 0x33750,
1455                 0x3375c, 0x33764,
1456                 0x33770, 0x337b8,
1457                 0x337c0, 0x337e4,
1458                 0x337f8, 0x337fc,
1459                 0x33814, 0x33814,
1460                 0x3382c, 0x3382c,
1461                 0x33880, 0x3388c,
1462                 0x338e8, 0x338ec,
1463                 0x33900, 0x33928,
1464                 0x33930, 0x33948,
1465                 0x33960, 0x33968,
1466                 0x33970, 0x3399c,
1467                 0x339f0, 0x33a38,
1468                 0x33a40, 0x33a40,
1469                 0x33a48, 0x33a50,
1470                 0x33a5c, 0x33a64,
1471                 0x33a70, 0x33ab8,
1472                 0x33ac0, 0x33ae4,
1473                 0x33af8, 0x33b10,
1474                 0x33b28, 0x33b28,
1475                 0x33b3c, 0x33b50,
1476                 0x33bf0, 0x33c10,
1477                 0x33c28, 0x33c28,
1478                 0x33c3c, 0x33c50,
1479                 0x33cf0, 0x33cfc,
1480                 0x34000, 0x34030,
1481                 0x34038, 0x34038,
1482                 0x34040, 0x34040,
1483                 0x34100, 0x34144,
1484                 0x34190, 0x341a0,
1485                 0x341a8, 0x341b8,
1486                 0x341c4, 0x341c8,
1487                 0x341d0, 0x341d0,
1488                 0x34200, 0x34318,
1489                 0x34400, 0x344b4,
1490                 0x344c0, 0x3452c,
1491                 0x34540, 0x3461c,
1492                 0x34800, 0x34828,
1493                 0x34834, 0x34834,
1494                 0x348c0, 0x34908,
1495                 0x34910, 0x349ac,
1496                 0x34a00, 0x34a14,
1497                 0x34a1c, 0x34a2c,
1498                 0x34a44, 0x34a50,
1499                 0x34a74, 0x34a74,
1500                 0x34a7c, 0x34afc,
1501                 0x34b08, 0x34c24,
1502                 0x34d00, 0x34d00,
1503                 0x34d08, 0x34d14,
1504                 0x34d1c, 0x34d20,
1505                 0x34d3c, 0x34d3c,
1506                 0x34d48, 0x34d50,
1507                 0x35200, 0x3520c,
1508                 0x35220, 0x35220,
1509                 0x35240, 0x35240,
1510                 0x35600, 0x3560c,
1511                 0x35a00, 0x35a1c,
1512                 0x35e00, 0x35e20,
1513                 0x35e38, 0x35e3c,
1514                 0x35e80, 0x35e80,
1515                 0x35e88, 0x35ea8,
1516                 0x35eb0, 0x35eb4,
1517                 0x35ec8, 0x35ed4,
1518                 0x35fb8, 0x36004,
1519                 0x36200, 0x36200,
1520                 0x36208, 0x36240,
1521                 0x36248, 0x36280,
1522                 0x36288, 0x362c0,
1523                 0x362c8, 0x362fc,
1524                 0x36600, 0x36630,
1525                 0x36a00, 0x36abc,
1526                 0x36b00, 0x36b10,
1527                 0x36b20, 0x36b30,
1528                 0x36b40, 0x36b50,
1529                 0x36b60, 0x36b70,
1530                 0x37000, 0x37028,
1531                 0x37030, 0x37048,
1532                 0x37060, 0x37068,
1533                 0x37070, 0x3709c,
1534                 0x370f0, 0x37128,
1535                 0x37130, 0x37148,
1536                 0x37160, 0x37168,
1537                 0x37170, 0x3719c,
1538                 0x371f0, 0x37238,
1539                 0x37240, 0x37240,
1540                 0x37248, 0x37250,
1541                 0x3725c, 0x37264,
1542                 0x37270, 0x372b8,
1543                 0x372c0, 0x372e4,
1544                 0x372f8, 0x37338,
1545                 0x37340, 0x37340,
1546                 0x37348, 0x37350,
1547                 0x3735c, 0x37364,
1548                 0x37370, 0x373b8,
1549                 0x373c0, 0x373e4,
1550                 0x373f8, 0x37428,
1551                 0x37430, 0x37448,
1552                 0x37460, 0x37468,
1553                 0x37470, 0x3749c,
1554                 0x374f0, 0x37528,
1555                 0x37530, 0x37548,
1556                 0x37560, 0x37568,
1557                 0x37570, 0x3759c,
1558                 0x375f0, 0x37638,
1559                 0x37640, 0x37640,
1560                 0x37648, 0x37650,
1561                 0x3765c, 0x37664,
1562                 0x37670, 0x376b8,
1563                 0x376c0, 0x376e4,
1564                 0x376f8, 0x37738,
1565                 0x37740, 0x37740,
1566                 0x37748, 0x37750,
1567                 0x3775c, 0x37764,
1568                 0x37770, 0x377b8,
1569                 0x377c0, 0x377e4,
1570                 0x377f8, 0x377fc,
1571                 0x37814, 0x37814,
1572                 0x3782c, 0x3782c,
1573                 0x37880, 0x3788c,
1574                 0x378e8, 0x378ec,
1575                 0x37900, 0x37928,
1576                 0x37930, 0x37948,
1577                 0x37960, 0x37968,
1578                 0x37970, 0x3799c,
1579                 0x379f0, 0x37a38,
1580                 0x37a40, 0x37a40,
1581                 0x37a48, 0x37a50,
1582                 0x37a5c, 0x37a64,
1583                 0x37a70, 0x37ab8,
1584                 0x37ac0, 0x37ae4,
1585                 0x37af8, 0x37b10,
1586                 0x37b28, 0x37b28,
1587                 0x37b3c, 0x37b50,
1588                 0x37bf0, 0x37c10,
1589                 0x37c28, 0x37c28,
1590                 0x37c3c, 0x37c50,
1591                 0x37cf0, 0x37cfc,
1592                 0x38000, 0x38030,
1593                 0x38038, 0x38038,
1594                 0x38040, 0x38040,
1595                 0x38100, 0x38144,
1596                 0x38190, 0x381a0,
1597                 0x381a8, 0x381b8,
1598                 0x381c4, 0x381c8,
1599                 0x381d0, 0x381d0,
1600                 0x38200, 0x38318,
1601                 0x38400, 0x384b4,
1602                 0x384c0, 0x3852c,
1603                 0x38540, 0x3861c,
1604                 0x38800, 0x38828,
1605                 0x38834, 0x38834,
1606                 0x388c0, 0x38908,
1607                 0x38910, 0x389ac,
1608                 0x38a00, 0x38a14,
1609                 0x38a1c, 0x38a2c,
1610                 0x38a44, 0x38a50,
1611                 0x38a74, 0x38a74,
1612                 0x38a7c, 0x38afc,
1613                 0x38b08, 0x38c24,
1614                 0x38d00, 0x38d00,
1615                 0x38d08, 0x38d14,
1616                 0x38d1c, 0x38d20,
1617                 0x38d3c, 0x38d3c,
1618                 0x38d48, 0x38d50,
1619                 0x39200, 0x3920c,
1620                 0x39220, 0x39220,
1621                 0x39240, 0x39240,
1622                 0x39600, 0x3960c,
1623                 0x39a00, 0x39a1c,
1624                 0x39e00, 0x39e20,
1625                 0x39e38, 0x39e3c,
1626                 0x39e80, 0x39e80,
1627                 0x39e88, 0x39ea8,
1628                 0x39eb0, 0x39eb4,
1629                 0x39ec8, 0x39ed4,
1630                 0x39fb8, 0x3a004,
1631                 0x3a200, 0x3a200,
1632                 0x3a208, 0x3a240,
1633                 0x3a248, 0x3a280,
1634                 0x3a288, 0x3a2c0,
1635                 0x3a2c8, 0x3a2fc,
1636                 0x3a600, 0x3a630,
1637                 0x3aa00, 0x3aabc,
1638                 0x3ab00, 0x3ab10,
1639                 0x3ab20, 0x3ab30,
1640                 0x3ab40, 0x3ab50,
1641                 0x3ab60, 0x3ab70,
1642                 0x3b000, 0x3b028,
1643                 0x3b030, 0x3b048,
1644                 0x3b060, 0x3b068,
1645                 0x3b070, 0x3b09c,
1646                 0x3b0f0, 0x3b128,
1647                 0x3b130, 0x3b148,
1648                 0x3b160, 0x3b168,
1649                 0x3b170, 0x3b19c,
1650                 0x3b1f0, 0x3b238,
1651                 0x3b240, 0x3b240,
1652                 0x3b248, 0x3b250,
1653                 0x3b25c, 0x3b264,
1654                 0x3b270, 0x3b2b8,
1655                 0x3b2c0, 0x3b2e4,
1656                 0x3b2f8, 0x3b338,
1657                 0x3b340, 0x3b340,
1658                 0x3b348, 0x3b350,
1659                 0x3b35c, 0x3b364,
1660                 0x3b370, 0x3b3b8,
1661                 0x3b3c0, 0x3b3e4,
1662                 0x3b3f8, 0x3b428,
1663                 0x3b430, 0x3b448,
1664                 0x3b460, 0x3b468,
1665                 0x3b470, 0x3b49c,
1666                 0x3b4f0, 0x3b528,
1667                 0x3b530, 0x3b548,
1668                 0x3b560, 0x3b568,
1669                 0x3b570, 0x3b59c,
1670                 0x3b5f0, 0x3b638,
1671                 0x3b640, 0x3b640,
1672                 0x3b648, 0x3b650,
1673                 0x3b65c, 0x3b664,
1674                 0x3b670, 0x3b6b8,
1675                 0x3b6c0, 0x3b6e4,
1676                 0x3b6f8, 0x3b738,
1677                 0x3b740, 0x3b740,
1678                 0x3b748, 0x3b750,
1679                 0x3b75c, 0x3b764,
1680                 0x3b770, 0x3b7b8,
1681                 0x3b7c0, 0x3b7e4,
1682                 0x3b7f8, 0x3b7fc,
1683                 0x3b814, 0x3b814,
1684                 0x3b82c, 0x3b82c,
1685                 0x3b880, 0x3b88c,
1686                 0x3b8e8, 0x3b8ec,
1687                 0x3b900, 0x3b928,
1688                 0x3b930, 0x3b948,
1689                 0x3b960, 0x3b968,
1690                 0x3b970, 0x3b99c,
1691                 0x3b9f0, 0x3ba38,
1692                 0x3ba40, 0x3ba40,
1693                 0x3ba48, 0x3ba50,
1694                 0x3ba5c, 0x3ba64,
1695                 0x3ba70, 0x3bab8,
1696                 0x3bac0, 0x3bae4,
1697                 0x3baf8, 0x3bb10,
1698                 0x3bb28, 0x3bb28,
1699                 0x3bb3c, 0x3bb50,
1700                 0x3bbf0, 0x3bc10,
1701                 0x3bc28, 0x3bc28,
1702                 0x3bc3c, 0x3bc50,
1703                 0x3bcf0, 0x3bcfc,
1704                 0x3c000, 0x3c030,
1705                 0x3c038, 0x3c038,
1706                 0x3c040, 0x3c040,
1707                 0x3c100, 0x3c144,
1708                 0x3c190, 0x3c1a0,
1709                 0x3c1a8, 0x3c1b8,
1710                 0x3c1c4, 0x3c1c8,
1711                 0x3c1d0, 0x3c1d0,
1712                 0x3c200, 0x3c318,
1713                 0x3c400, 0x3c4b4,
1714                 0x3c4c0, 0x3c52c,
1715                 0x3c540, 0x3c61c,
1716                 0x3c800, 0x3c828,
1717                 0x3c834, 0x3c834,
1718                 0x3c8c0, 0x3c908,
1719                 0x3c910, 0x3c9ac,
1720                 0x3ca00, 0x3ca14,
1721                 0x3ca1c, 0x3ca2c,
1722                 0x3ca44, 0x3ca50,
1723                 0x3ca74, 0x3ca74,
1724                 0x3ca7c, 0x3cafc,
1725                 0x3cb08, 0x3cc24,
1726                 0x3cd00, 0x3cd00,
1727                 0x3cd08, 0x3cd14,
1728                 0x3cd1c, 0x3cd20,
1729                 0x3cd3c, 0x3cd3c,
1730                 0x3cd48, 0x3cd50,
1731                 0x3d200, 0x3d20c,
1732                 0x3d220, 0x3d220,
1733                 0x3d240, 0x3d240,
1734                 0x3d600, 0x3d60c,
1735                 0x3da00, 0x3da1c,
1736                 0x3de00, 0x3de20,
1737                 0x3de38, 0x3de3c,
1738                 0x3de80, 0x3de80,
1739                 0x3de88, 0x3dea8,
1740                 0x3deb0, 0x3deb4,
1741                 0x3dec8, 0x3ded4,
1742                 0x3dfb8, 0x3e004,
1743                 0x3e200, 0x3e200,
1744                 0x3e208, 0x3e240,
1745                 0x3e248, 0x3e280,
1746                 0x3e288, 0x3e2c0,
1747                 0x3e2c8, 0x3e2fc,
1748                 0x3e600, 0x3e630,
1749                 0x3ea00, 0x3eabc,
1750                 0x3eb00, 0x3eb10,
1751                 0x3eb20, 0x3eb30,
1752                 0x3eb40, 0x3eb50,
1753                 0x3eb60, 0x3eb70,
1754                 0x3f000, 0x3f028,
1755                 0x3f030, 0x3f048,
1756                 0x3f060, 0x3f068,
1757                 0x3f070, 0x3f09c,
1758                 0x3f0f0, 0x3f128,
1759                 0x3f130, 0x3f148,
1760                 0x3f160, 0x3f168,
1761                 0x3f170, 0x3f19c,
1762                 0x3f1f0, 0x3f238,
1763                 0x3f240, 0x3f240,
1764                 0x3f248, 0x3f250,
1765                 0x3f25c, 0x3f264,
1766                 0x3f270, 0x3f2b8,
1767                 0x3f2c0, 0x3f2e4,
1768                 0x3f2f8, 0x3f338,
1769                 0x3f340, 0x3f340,
1770                 0x3f348, 0x3f350,
1771                 0x3f35c, 0x3f364,
1772                 0x3f370, 0x3f3b8,
1773                 0x3f3c0, 0x3f3e4,
1774                 0x3f3f8, 0x3f428,
1775                 0x3f430, 0x3f448,
1776                 0x3f460, 0x3f468,
1777                 0x3f470, 0x3f49c,
1778                 0x3f4f0, 0x3f528,
1779                 0x3f530, 0x3f548,
1780                 0x3f560, 0x3f568,
1781                 0x3f570, 0x3f59c,
1782                 0x3f5f0, 0x3f638,
1783                 0x3f640, 0x3f640,
1784                 0x3f648, 0x3f650,
1785                 0x3f65c, 0x3f664,
1786                 0x3f670, 0x3f6b8,
1787                 0x3f6c0, 0x3f6e4,
1788                 0x3f6f8, 0x3f738,
1789                 0x3f740, 0x3f740,
1790                 0x3f748, 0x3f750,
1791                 0x3f75c, 0x3f764,
1792                 0x3f770, 0x3f7b8,
1793                 0x3f7c0, 0x3f7e4,
1794                 0x3f7f8, 0x3f7fc,
1795                 0x3f814, 0x3f814,
1796                 0x3f82c, 0x3f82c,
1797                 0x3f880, 0x3f88c,
1798                 0x3f8e8, 0x3f8ec,
1799                 0x3f900, 0x3f928,
1800                 0x3f930, 0x3f948,
1801                 0x3f960, 0x3f968,
1802                 0x3f970, 0x3f99c,
1803                 0x3f9f0, 0x3fa38,
1804                 0x3fa40, 0x3fa40,
1805                 0x3fa48, 0x3fa50,
1806                 0x3fa5c, 0x3fa64,
1807                 0x3fa70, 0x3fab8,
1808                 0x3fac0, 0x3fae4,
1809                 0x3faf8, 0x3fb10,
1810                 0x3fb28, 0x3fb28,
1811                 0x3fb3c, 0x3fb50,
1812                 0x3fbf0, 0x3fc10,
1813                 0x3fc28, 0x3fc28,
1814                 0x3fc3c, 0x3fc50,
1815                 0x3fcf0, 0x3fcfc,
1816                 0x40000, 0x4000c,
1817                 0x40040, 0x40050,
1818                 0x40060, 0x40068,
1819                 0x4007c, 0x4008c,
1820                 0x40094, 0x400b0,
1821                 0x400c0, 0x40144,
1822                 0x40180, 0x4018c,
1823                 0x40200, 0x40254,
1824                 0x40260, 0x40264,
1825                 0x40270, 0x40288,
1826                 0x40290, 0x40298,
1827                 0x402ac, 0x402c8,
1828                 0x402d0, 0x402e0,
1829                 0x402f0, 0x402f0,
1830                 0x40300, 0x4033c,
1831                 0x403f8, 0x403fc,
1832                 0x41304, 0x413c4,
1833                 0x41400, 0x4140c,
1834                 0x41414, 0x4141c,
1835                 0x41480, 0x414d0,
1836                 0x44000, 0x44054,
1837                 0x4405c, 0x44078,
1838                 0x440c0, 0x44174,
1839                 0x44180, 0x441ac,
1840                 0x441b4, 0x441b8,
1841                 0x441c0, 0x44254,
1842                 0x4425c, 0x44278,
1843                 0x442c0, 0x44374,
1844                 0x44380, 0x443ac,
1845                 0x443b4, 0x443b8,
1846                 0x443c0, 0x44454,
1847                 0x4445c, 0x44478,
1848                 0x444c0, 0x44574,
1849                 0x44580, 0x445ac,
1850                 0x445b4, 0x445b8,
1851                 0x445c0, 0x44654,
1852                 0x4465c, 0x44678,
1853                 0x446c0, 0x44774,
1854                 0x44780, 0x447ac,
1855                 0x447b4, 0x447b8,
1856                 0x447c0, 0x44854,
1857                 0x4485c, 0x44878,
1858                 0x448c0, 0x44974,
1859                 0x44980, 0x449ac,
1860                 0x449b4, 0x449b8,
1861                 0x449c0, 0x449fc,
1862                 0x45000, 0x45004,
1863                 0x45010, 0x45030,
1864                 0x45040, 0x45060,
1865                 0x45068, 0x45068,
1866                 0x45080, 0x45084,
1867                 0x450a0, 0x450b0,
1868                 0x45200, 0x45204,
1869                 0x45210, 0x45230,
1870                 0x45240, 0x45260,
1871                 0x45268, 0x45268,
1872                 0x45280, 0x45284,
1873                 0x452a0, 0x452b0,
1874                 0x460c0, 0x460e4,
1875                 0x47000, 0x4703c,
1876                 0x47044, 0x4708c,
1877                 0x47200, 0x47250,
1878                 0x47400, 0x47408,
1879                 0x47414, 0x47420,
1880                 0x47600, 0x47618,
1881                 0x47800, 0x47814,
1882                 0x48000, 0x4800c,
1883                 0x48040, 0x48050,
1884                 0x48060, 0x48068,
1885                 0x4807c, 0x4808c,
1886                 0x48094, 0x480b0,
1887                 0x480c0, 0x48144,
1888                 0x48180, 0x4818c,
1889                 0x48200, 0x48254,
1890                 0x48260, 0x48264,
1891                 0x48270, 0x48288,
1892                 0x48290, 0x48298,
1893                 0x482ac, 0x482c8,
1894                 0x482d0, 0x482e0,
1895                 0x482f0, 0x482f0,
1896                 0x48300, 0x4833c,
1897                 0x483f8, 0x483fc,
1898                 0x49304, 0x493c4,
1899                 0x49400, 0x4940c,
1900                 0x49414, 0x4941c,
1901                 0x49480, 0x494d0,
1902                 0x4c000, 0x4c054,
1903                 0x4c05c, 0x4c078,
1904                 0x4c0c0, 0x4c174,
1905                 0x4c180, 0x4c1ac,
1906                 0x4c1b4, 0x4c1b8,
1907                 0x4c1c0, 0x4c254,
1908                 0x4c25c, 0x4c278,
1909                 0x4c2c0, 0x4c374,
1910                 0x4c380, 0x4c3ac,
1911                 0x4c3b4, 0x4c3b8,
1912                 0x4c3c0, 0x4c454,
1913                 0x4c45c, 0x4c478,
1914                 0x4c4c0, 0x4c574,
1915                 0x4c580, 0x4c5ac,
1916                 0x4c5b4, 0x4c5b8,
1917                 0x4c5c0, 0x4c654,
1918                 0x4c65c, 0x4c678,
1919                 0x4c6c0, 0x4c774,
1920                 0x4c780, 0x4c7ac,
1921                 0x4c7b4, 0x4c7b8,
1922                 0x4c7c0, 0x4c854,
1923                 0x4c85c, 0x4c878,
1924                 0x4c8c0, 0x4c974,
1925                 0x4c980, 0x4c9ac,
1926                 0x4c9b4, 0x4c9b8,
1927                 0x4c9c0, 0x4c9fc,
1928                 0x4d000, 0x4d004,
1929                 0x4d010, 0x4d030,
1930                 0x4d040, 0x4d060,
1931                 0x4d068, 0x4d068,
1932                 0x4d080, 0x4d084,
1933                 0x4d0a0, 0x4d0b0,
1934                 0x4d200, 0x4d204,
1935                 0x4d210, 0x4d230,
1936                 0x4d240, 0x4d260,
1937                 0x4d268, 0x4d268,
1938                 0x4d280, 0x4d284,
1939                 0x4d2a0, 0x4d2b0,
1940                 0x4e0c0, 0x4e0e4,
1941                 0x4f000, 0x4f03c,
1942                 0x4f044, 0x4f08c,
1943                 0x4f200, 0x4f250,
1944                 0x4f400, 0x4f408,
1945                 0x4f414, 0x4f420,
1946                 0x4f600, 0x4f618,
1947                 0x4f800, 0x4f814,
1948                 0x50000, 0x50084,
1949                 0x50090, 0x500cc,
1950                 0x50400, 0x50400,
1951                 0x50800, 0x50884,
1952                 0x50890, 0x508cc,
1953                 0x50c00, 0x50c00,
1954                 0x51000, 0x5101c,
1955                 0x51300, 0x51308,
1956         };
1957
1958         static const unsigned int t6_reg_ranges[] = {
1959                 0x1008, 0x101c,
1960                 0x1024, 0x10a8,
1961                 0x10b4, 0x10f8,
1962                 0x1100, 0x1114,
1963                 0x111c, 0x112c,
1964                 0x1138, 0x113c,
1965                 0x1144, 0x114c,
1966                 0x1180, 0x1184,
1967                 0x1190, 0x1194,
1968                 0x11a0, 0x11a4,
1969                 0x11b0, 0x11b4,
1970                 0x11fc, 0x1274,
1971                 0x1280, 0x133c,
1972                 0x1800, 0x18fc,
1973                 0x3000, 0x302c,
1974                 0x3060, 0x30b0,
1975                 0x30b8, 0x30d8,
1976                 0x30e0, 0x30fc,
1977                 0x3140, 0x357c,
1978                 0x35a8, 0x35cc,
1979                 0x35ec, 0x35ec,
1980                 0x3600, 0x5624,
1981                 0x56cc, 0x56ec,
1982                 0x56f4, 0x5720,
1983                 0x5728, 0x575c,
1984                 0x580c, 0x5814,
1985                 0x5890, 0x589c,
1986                 0x58a4, 0x58ac,
1987                 0x58b8, 0x58bc,
1988                 0x5940, 0x595c,
1989                 0x5980, 0x598c,
1990                 0x59b0, 0x59c8,
1991                 0x59d0, 0x59dc,
1992                 0x59fc, 0x5a18,
1993                 0x5a60, 0x5a6c,
1994                 0x5a80, 0x5a8c,
1995                 0x5a94, 0x5a9c,
1996                 0x5b94, 0x5bfc,
1997                 0x5c10, 0x5e48,
1998                 0x5e50, 0x5e94,
1999                 0x5ea0, 0x5eb0,
2000                 0x5ec0, 0x5ec0,
2001                 0x5ec8, 0x5ed0,
2002                 0x5ee0, 0x5ee0,
2003                 0x5ef0, 0x5ef0,
2004                 0x5f00, 0x5f00,
2005                 0x6000, 0x6020,
2006                 0x6028, 0x6040,
2007                 0x6058, 0x609c,
2008                 0x60a8, 0x619c,
2009                 0x7700, 0x7798,
2010                 0x77c0, 0x7880,
2011                 0x78cc, 0x78fc,
2012                 0x7b00, 0x7b58,
2013                 0x7b60, 0x7b84,
2014                 0x7b8c, 0x7c54,
2015                 0x7d00, 0x7d38,
2016                 0x7d40, 0x7d84,
2017                 0x7d8c, 0x7ddc,
2018                 0x7de4, 0x7e04,
2019                 0x7e10, 0x7e1c,
2020                 0x7e24, 0x7e38,
2021                 0x7e40, 0x7e44,
2022                 0x7e4c, 0x7e78,
2023                 0x7e80, 0x7edc,
2024                 0x7ee8, 0x7efc,
2025                 0x8dc0, 0x8de4,
2026                 0x8df8, 0x8e04,
2027                 0x8e10, 0x8e84,
2028                 0x8ea0, 0x8f88,
2029                 0x8fb8, 0x9058,
2030                 0x9060, 0x9060,
2031                 0x9068, 0x90f8,
2032                 0x9100, 0x9124,
2033                 0x9400, 0x9470,
2034                 0x9600, 0x9600,
2035                 0x9608, 0x9638,
2036                 0x9640, 0x9704,
2037                 0x9710, 0x971c,
2038                 0x9800, 0x9808,
2039                 0x9820, 0x983c,
2040                 0x9850, 0x9864,
2041                 0x9c00, 0x9c6c,
2042                 0x9c80, 0x9cec,
2043                 0x9d00, 0x9d6c,
2044                 0x9d80, 0x9dec,
2045                 0x9e00, 0x9e6c,
2046                 0x9e80, 0x9eec,
2047                 0x9f00, 0x9f6c,
2048                 0x9f80, 0xa020,
2049                 0xd004, 0xd03c,
2050                 0xd100, 0xd118,
2051                 0xd200, 0xd214,
2052                 0xd220, 0xd234,
2053                 0xd240, 0xd254,
2054                 0xd260, 0xd274,
2055                 0xd280, 0xd294,
2056                 0xd2a0, 0xd2b4,
2057                 0xd2c0, 0xd2d4,
2058                 0xd2e0, 0xd2f4,
2059                 0xd300, 0xd31c,
2060                 0xdfc0, 0xdfe0,
2061                 0xe000, 0xf008,
2062                 0xf010, 0xf018,
2063                 0xf020, 0xf028,
2064                 0x11000, 0x11014,
2065                 0x11048, 0x1106c,
2066                 0x11074, 0x11088,
2067                 0x11098, 0x11120,
2068                 0x1112c, 0x1117c,
2069                 0x11190, 0x112e0,
2070                 0x11300, 0x1130c,
2071                 0x12000, 0x1206c,
2072                 0x19040, 0x1906c,
2073                 0x19078, 0x19080,
2074                 0x1908c, 0x190e8,
2075                 0x190f0, 0x190f8,
2076                 0x19100, 0x19110,
2077                 0x19120, 0x19124,
2078                 0x19150, 0x19194,
2079                 0x1919c, 0x191b0,
2080                 0x191d0, 0x191e8,
2081                 0x19238, 0x19290,
2082                 0x192a4, 0x192b0,
2083                 0x192bc, 0x192bc,
2084                 0x19348, 0x1934c,
2085                 0x193f8, 0x19418,
2086                 0x19420, 0x19428,
2087                 0x19430, 0x19444,
2088                 0x1944c, 0x1946c,
2089                 0x19474, 0x19474,
2090                 0x19490, 0x194cc,
2091                 0x194f0, 0x194f8,
2092                 0x19c00, 0x19c48,
2093                 0x19c50, 0x19c80,
2094                 0x19c94, 0x19c98,
2095                 0x19ca0, 0x19cbc,
2096                 0x19ce4, 0x19ce4,
2097                 0x19cf0, 0x19cf8,
2098                 0x19d00, 0x19d28,
2099                 0x19d50, 0x19d78,
2100                 0x19d94, 0x19d98,
2101                 0x19da0, 0x19dc8,
2102                 0x19df0, 0x19e10,
2103                 0x19e50, 0x19e6c,
2104                 0x19ea0, 0x19ebc,
2105                 0x19ec4, 0x19ef4,
2106                 0x19f04, 0x19f2c,
2107                 0x19f34, 0x19f34,
2108                 0x19f40, 0x19f50,
2109                 0x19f90, 0x19fac,
2110                 0x19fc4, 0x19fc8,
2111                 0x19fd0, 0x19fe4,
2112                 0x1a000, 0x1a004,
2113                 0x1a010, 0x1a06c,
2114                 0x1a0b0, 0x1a0e4,
2115                 0x1a0ec, 0x1a0f8,
2116                 0x1a100, 0x1a108,
2117                 0x1a114, 0x1a120,
2118                 0x1a128, 0x1a130,
2119                 0x1a138, 0x1a138,
2120                 0x1a190, 0x1a1c4,
2121                 0x1a1fc, 0x1a1fc,
2122                 0x1e008, 0x1e00c,
2123                 0x1e040, 0x1e044,
2124                 0x1e04c, 0x1e04c,
2125                 0x1e284, 0x1e290,
2126                 0x1e2c0, 0x1e2c0,
2127                 0x1e2e0, 0x1e2e0,
2128                 0x1e300, 0x1e384,
2129                 0x1e3c0, 0x1e3c8,
2130                 0x1e408, 0x1e40c,
2131                 0x1e440, 0x1e444,
2132                 0x1e44c, 0x1e44c,
2133                 0x1e684, 0x1e690,
2134                 0x1e6c0, 0x1e6c0,
2135                 0x1e6e0, 0x1e6e0,
2136                 0x1e700, 0x1e784,
2137                 0x1e7c0, 0x1e7c8,
2138                 0x1e808, 0x1e80c,
2139                 0x1e840, 0x1e844,
2140                 0x1e84c, 0x1e84c,
2141                 0x1ea84, 0x1ea90,
2142                 0x1eac0, 0x1eac0,
2143                 0x1eae0, 0x1eae0,
2144                 0x1eb00, 0x1eb84,
2145                 0x1ebc0, 0x1ebc8,
2146                 0x1ec08, 0x1ec0c,
2147                 0x1ec40, 0x1ec44,
2148                 0x1ec4c, 0x1ec4c,
2149                 0x1ee84, 0x1ee90,
2150                 0x1eec0, 0x1eec0,
2151                 0x1eee0, 0x1eee0,
2152                 0x1ef00, 0x1ef84,
2153                 0x1efc0, 0x1efc8,
2154                 0x1f008, 0x1f00c,
2155                 0x1f040, 0x1f044,
2156                 0x1f04c, 0x1f04c,
2157                 0x1f284, 0x1f290,
2158                 0x1f2c0, 0x1f2c0,
2159                 0x1f2e0, 0x1f2e0,
2160                 0x1f300, 0x1f384,
2161                 0x1f3c0, 0x1f3c8,
2162                 0x1f408, 0x1f40c,
2163                 0x1f440, 0x1f444,
2164                 0x1f44c, 0x1f44c,
2165                 0x1f684, 0x1f690,
2166                 0x1f6c0, 0x1f6c0,
2167                 0x1f6e0, 0x1f6e0,
2168                 0x1f700, 0x1f784,
2169                 0x1f7c0, 0x1f7c8,
2170                 0x1f808, 0x1f80c,
2171                 0x1f840, 0x1f844,
2172                 0x1f84c, 0x1f84c,
2173                 0x1fa84, 0x1fa90,
2174                 0x1fac0, 0x1fac0,
2175                 0x1fae0, 0x1fae0,
2176                 0x1fb00, 0x1fb84,
2177                 0x1fbc0, 0x1fbc8,
2178                 0x1fc08, 0x1fc0c,
2179                 0x1fc40, 0x1fc44,
2180                 0x1fc4c, 0x1fc4c,
2181                 0x1fe84, 0x1fe90,
2182                 0x1fec0, 0x1fec0,
2183                 0x1fee0, 0x1fee0,
2184                 0x1ff00, 0x1ff84,
2185                 0x1ffc0, 0x1ffc8,
2186                 0x30000, 0x30030,
2187                 0x30038, 0x30038,
2188                 0x30040, 0x30040,
2189                 0x30048, 0x30048,
2190                 0x30050, 0x30050,
2191                 0x3005c, 0x30060,
2192                 0x30068, 0x30068,
2193                 0x30070, 0x30070,
2194                 0x30100, 0x30168,
2195                 0x30190, 0x301a0,
2196                 0x301a8, 0x301b8,
2197                 0x301c4, 0x301c8,
2198                 0x301d0, 0x301d0,
2199                 0x30200, 0x30320,
2200                 0x30400, 0x304b4,
2201                 0x304c0, 0x3052c,
2202                 0x30540, 0x3061c,
2203                 0x30800, 0x308a0,
2204                 0x308c0, 0x30908,
2205                 0x30910, 0x309b8,
2206                 0x30a00, 0x30a04,
2207                 0x30a0c, 0x30a14,
2208                 0x30a1c, 0x30a2c,
2209                 0x30a44, 0x30a50,
2210                 0x30a74, 0x30a74,
2211                 0x30a7c, 0x30afc,
2212                 0x30b08, 0x30c24,
2213                 0x30d00, 0x30d14,
2214                 0x30d1c, 0x30d3c,
2215                 0x30d44, 0x30d4c,
2216                 0x30d54, 0x30d74,
2217                 0x30d7c, 0x30d7c,
2218                 0x30de0, 0x30de0,
2219                 0x30e00, 0x30ed4,
2220                 0x30f00, 0x30fa4,
2221                 0x30fc0, 0x30fc4,
2222                 0x31000, 0x31004,
2223                 0x31080, 0x310fc,
2224                 0x31208, 0x31220,
2225                 0x3123c, 0x31254,
2226                 0x31300, 0x31300,
2227                 0x31308, 0x3131c,
2228                 0x31338, 0x3133c,
2229                 0x31380, 0x31380,
2230                 0x31388, 0x313a8,
2231                 0x313b4, 0x313b4,
2232                 0x31400, 0x31420,
2233                 0x31438, 0x3143c,
2234                 0x31480, 0x31480,
2235                 0x314a8, 0x314a8,
2236                 0x314b0, 0x314b4,
2237                 0x314c8, 0x314d4,
2238                 0x31a40, 0x31a4c,
2239                 0x31af0, 0x31b20,
2240                 0x31b38, 0x31b3c,
2241                 0x31b80, 0x31b80,
2242                 0x31ba8, 0x31ba8,
2243                 0x31bb0, 0x31bb4,
2244                 0x31bc8, 0x31bd4,
2245                 0x32140, 0x3218c,
2246                 0x321f0, 0x321f4,
2247                 0x32200, 0x32200,
2248                 0x32218, 0x32218,
2249                 0x32400, 0x32400,
2250                 0x32408, 0x3241c,
2251                 0x32618, 0x32620,
2252                 0x32664, 0x32664,
2253                 0x326a8, 0x326a8,
2254                 0x326ec, 0x326ec,
2255                 0x32a00, 0x32abc,
2256                 0x32b00, 0x32b38,
2257                 0x32b40, 0x32b58,
2258                 0x32b60, 0x32b78,
2259                 0x32c00, 0x32c00,
2260                 0x32c08, 0x32c3c,
2261                 0x32e00, 0x32e2c,
2262                 0x32f00, 0x32f2c,
2263                 0x33000, 0x3302c,
2264                 0x33034, 0x33050,
2265                 0x33058, 0x33058,
2266                 0x33060, 0x3308c,
2267                 0x3309c, 0x330ac,
2268                 0x330c0, 0x330c0,
2269                 0x330c8, 0x330d0,
2270                 0x330d8, 0x330e0,
2271                 0x330ec, 0x3312c,
2272                 0x33134, 0x33150,
2273                 0x33158, 0x33158,
2274                 0x33160, 0x3318c,
2275                 0x3319c, 0x331ac,
2276                 0x331c0, 0x331c0,
2277                 0x331c8, 0x331d0,
2278                 0x331d8, 0x331e0,
2279                 0x331ec, 0x33290,
2280                 0x33298, 0x332c4,
2281                 0x332e4, 0x33390,
2282                 0x33398, 0x333c4,
2283                 0x333e4, 0x3342c,
2284                 0x33434, 0x33450,
2285                 0x33458, 0x33458,
2286                 0x33460, 0x3348c,
2287                 0x3349c, 0x334ac,
2288                 0x334c0, 0x334c0,
2289                 0x334c8, 0x334d0,
2290                 0x334d8, 0x334e0,
2291                 0x334ec, 0x3352c,
2292                 0x33534, 0x33550,
2293                 0x33558, 0x33558,
2294                 0x33560, 0x3358c,
2295                 0x3359c, 0x335ac,
2296                 0x335c0, 0x335c0,
2297                 0x335c8, 0x335d0,
2298                 0x335d8, 0x335e0,
2299                 0x335ec, 0x33690,
2300                 0x33698, 0x336c4,
2301                 0x336e4, 0x33790,
2302                 0x33798, 0x337c4,
2303                 0x337e4, 0x337fc,
2304                 0x33814, 0x33814,
2305                 0x33854, 0x33868,
2306                 0x33880, 0x3388c,
2307                 0x338c0, 0x338d0,
2308                 0x338e8, 0x338ec,
2309                 0x33900, 0x3392c,
2310                 0x33934, 0x33950,
2311                 0x33958, 0x33958,
2312                 0x33960, 0x3398c,
2313                 0x3399c, 0x339ac,
2314                 0x339c0, 0x339c0,
2315                 0x339c8, 0x339d0,
2316                 0x339d8, 0x339e0,
2317                 0x339ec, 0x33a90,
2318                 0x33a98, 0x33ac4,
2319                 0x33ae4, 0x33b10,
2320                 0x33b24, 0x33b28,
2321                 0x33b38, 0x33b50,
2322                 0x33bf0, 0x33c10,
2323                 0x33c24, 0x33c28,
2324                 0x33c38, 0x33c50,
2325                 0x33cf0, 0x33cfc,
2326                 0x34000, 0x34030,
2327                 0x34038, 0x34038,
2328                 0x34040, 0x34040,
2329                 0x34048, 0x34048,
2330                 0x34050, 0x34050,
2331                 0x3405c, 0x34060,
2332                 0x34068, 0x34068,
2333                 0x34070, 0x34070,
2334                 0x34100, 0x34168,
2335                 0x34190, 0x341a0,
2336                 0x341a8, 0x341b8,
2337                 0x341c4, 0x341c8,
2338                 0x341d0, 0x341d0,
2339                 0x34200, 0x34320,
2340                 0x34400, 0x344b4,
2341                 0x344c0, 0x3452c,
2342                 0x34540, 0x3461c,
2343                 0x34800, 0x348a0,
2344                 0x348c0, 0x34908,
2345                 0x34910, 0x349b8,
2346                 0x34a00, 0x34a04,
2347                 0x34a0c, 0x34a14,
2348                 0x34a1c, 0x34a2c,
2349                 0x34a44, 0x34a50,
2350                 0x34a74, 0x34a74,
2351                 0x34a7c, 0x34afc,
2352                 0x34b08, 0x34c24,
2353                 0x34d00, 0x34d14,
2354                 0x34d1c, 0x34d3c,
2355                 0x34d44, 0x34d4c,
2356                 0x34d54, 0x34d74,
2357                 0x34d7c, 0x34d7c,
2358                 0x34de0, 0x34de0,
2359                 0x34e00, 0x34ed4,
2360                 0x34f00, 0x34fa4,
2361                 0x34fc0, 0x34fc4,
2362                 0x35000, 0x35004,
2363                 0x35080, 0x350fc,
2364                 0x35208, 0x35220,
2365                 0x3523c, 0x35254,
2366                 0x35300, 0x35300,
2367                 0x35308, 0x3531c,
2368                 0x35338, 0x3533c,
2369                 0x35380, 0x35380,
2370                 0x35388, 0x353a8,
2371                 0x353b4, 0x353b4,
2372                 0x35400, 0x35420,
2373                 0x35438, 0x3543c,
2374                 0x35480, 0x35480,
2375                 0x354a8, 0x354a8,
2376                 0x354b0, 0x354b4,
2377                 0x354c8, 0x354d4,
2378                 0x35a40, 0x35a4c,
2379                 0x35af0, 0x35b20,
2380                 0x35b38, 0x35b3c,
2381                 0x35b80, 0x35b80,
2382                 0x35ba8, 0x35ba8,
2383                 0x35bb0, 0x35bb4,
2384                 0x35bc8, 0x35bd4,
2385                 0x36140, 0x3618c,
2386                 0x361f0, 0x361f4,
2387                 0x36200, 0x36200,
2388                 0x36218, 0x36218,
2389                 0x36400, 0x36400,
2390                 0x36408, 0x3641c,
2391                 0x36618, 0x36620,
2392                 0x36664, 0x36664,
2393                 0x366a8, 0x366a8,
2394                 0x366ec, 0x366ec,
2395                 0x36a00, 0x36abc,
2396                 0x36b00, 0x36b38,
2397                 0x36b40, 0x36b58,
2398                 0x36b60, 0x36b78,
2399                 0x36c00, 0x36c00,
2400                 0x36c08, 0x36c3c,
2401                 0x36e00, 0x36e2c,
2402                 0x36f00, 0x36f2c,
2403                 0x37000, 0x3702c,
2404                 0x37034, 0x37050,
2405                 0x37058, 0x37058,
2406                 0x37060, 0x3708c,
2407                 0x3709c, 0x370ac,
2408                 0x370c0, 0x370c0,
2409                 0x370c8, 0x370d0,
2410                 0x370d8, 0x370e0,
2411                 0x370ec, 0x3712c,
2412                 0x37134, 0x37150,
2413                 0x37158, 0x37158,
2414                 0x37160, 0x3718c,
2415                 0x3719c, 0x371ac,
2416                 0x371c0, 0x371c0,
2417                 0x371c8, 0x371d0,
2418                 0x371d8, 0x371e0,
2419                 0x371ec, 0x37290,
2420                 0x37298, 0x372c4,
2421                 0x372e4, 0x37390,
2422                 0x37398, 0x373c4,
2423                 0x373e4, 0x3742c,
2424                 0x37434, 0x37450,
2425                 0x37458, 0x37458,
2426                 0x37460, 0x3748c,
2427                 0x3749c, 0x374ac,
2428                 0x374c0, 0x374c0,
2429                 0x374c8, 0x374d0,
2430                 0x374d8, 0x374e0,
2431                 0x374ec, 0x3752c,
2432                 0x37534, 0x37550,
2433                 0x37558, 0x37558,
2434                 0x37560, 0x3758c,
2435                 0x3759c, 0x375ac,
2436                 0x375c0, 0x375c0,
2437                 0x375c8, 0x375d0,
2438                 0x375d8, 0x375e0,
2439                 0x375ec, 0x37690,
2440                 0x37698, 0x376c4,
2441                 0x376e4, 0x37790,
2442                 0x37798, 0x377c4,
2443                 0x377e4, 0x377fc,
2444                 0x37814, 0x37814,
2445                 0x37854, 0x37868,
2446                 0x37880, 0x3788c,
2447                 0x378c0, 0x378d0,
2448                 0x378e8, 0x378ec,
2449                 0x37900, 0x3792c,
2450                 0x37934, 0x37950,
2451                 0x37958, 0x37958,
2452                 0x37960, 0x3798c,
2453                 0x3799c, 0x379ac,
2454                 0x379c0, 0x379c0,
2455                 0x379c8, 0x379d0,
2456                 0x379d8, 0x379e0,
2457                 0x379ec, 0x37a90,
2458                 0x37a98, 0x37ac4,
2459                 0x37ae4, 0x37b10,
2460                 0x37b24, 0x37b28,
2461                 0x37b38, 0x37b50,
2462                 0x37bf0, 0x37c10,
2463                 0x37c24, 0x37c28,
2464                 0x37c38, 0x37c50,
2465                 0x37cf0, 0x37cfc,
2466                 0x40040, 0x40040,
2467                 0x40080, 0x40084,
2468                 0x40100, 0x40100,
2469                 0x40140, 0x401bc,
2470                 0x40200, 0x40214,
2471                 0x40228, 0x40228,
2472                 0x40240, 0x40258,
2473                 0x40280, 0x40280,
2474                 0x40304, 0x40304,
2475                 0x40330, 0x4033c,
2476                 0x41304, 0x413c8,
2477                 0x413d0, 0x413dc,
2478                 0x413f0, 0x413f0,
2479                 0x41400, 0x4140c,
2480                 0x41414, 0x4141c,
2481                 0x41480, 0x414d0,
2482                 0x44000, 0x4407c,
2483                 0x440c0, 0x441ac,
2484                 0x441b4, 0x4427c,
2485                 0x442c0, 0x443ac,
2486                 0x443b4, 0x4447c,
2487                 0x444c0, 0x445ac,
2488                 0x445b4, 0x4467c,
2489                 0x446c0, 0x447ac,
2490                 0x447b4, 0x4487c,
2491                 0x448c0, 0x449ac,
2492                 0x449b4, 0x44a7c,
2493                 0x44ac0, 0x44bac,
2494                 0x44bb4, 0x44c7c,
2495                 0x44cc0, 0x44dac,
2496                 0x44db4, 0x44e7c,
2497                 0x44ec0, 0x44fac,
2498                 0x44fb4, 0x4507c,
2499                 0x450c0, 0x451ac,
2500                 0x451b4, 0x451fc,
2501                 0x45800, 0x45804,
2502                 0x45810, 0x45830,
2503                 0x45840, 0x45860,
2504                 0x45868, 0x45868,
2505                 0x45880, 0x45884,
2506                 0x458a0, 0x458b0,
2507                 0x45a00, 0x45a04,
2508                 0x45a10, 0x45a30,
2509                 0x45a40, 0x45a60,
2510                 0x45a68, 0x45a68,
2511                 0x45a80, 0x45a84,
2512                 0x45aa0, 0x45ab0,
2513                 0x460c0, 0x460e4,
2514                 0x47000, 0x4703c,
2515                 0x47044, 0x4708c,
2516                 0x47200, 0x47250,
2517                 0x47400, 0x47408,
2518                 0x47414, 0x47420,
2519                 0x47600, 0x47618,
2520                 0x47800, 0x47814,
2521                 0x47820, 0x4782c,
2522                 0x50000, 0x50084,
2523                 0x50090, 0x500cc,
2524                 0x50300, 0x50384,
2525                 0x50400, 0x50400,
2526                 0x50800, 0x50884,
2527                 0x50890, 0x508cc,
2528                 0x50b00, 0x50b84,
2529                 0x50c00, 0x50c00,
2530                 0x51000, 0x51020,
2531                 0x51028, 0x510b0,
2532                 0x51300, 0x51324,
2533         };
2534
2535         u32 *buf_end = (u32 *)(buf + buf_size);
2536         const unsigned int *reg_ranges;
2537         int reg_ranges_size, range;
2538         unsigned int chip_version = chip_id(adap);
2539
2540         /*
2541          * Select the right set of register ranges to dump depending on the
2542          * adapter chip type.
2543          */
2544         switch (chip_version) {
2545         case CHELSIO_T4:
2546                 reg_ranges = t4_reg_ranges;
2547                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2548                 break;
2549
2550         case CHELSIO_T5:
2551                 reg_ranges = t5_reg_ranges;
2552                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2553                 break;
2554
2555         case CHELSIO_T6:
2556                 reg_ranges = t6_reg_ranges;
2557                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2558                 break;
2559
2560         default:
2561                 CH_ERR(adap,
2562                         "Unsupported chip version %d\n", chip_version);
2563                 return;
2564         }
2565
2566         /*
2567          * Clear the register buffer and insert the appropriate register
2568          * values selected by the above register ranges.
2569          */
2570         memset(buf, 0, buf_size);
2571         for (range = 0; range < reg_ranges_size; range += 2) {
2572                 unsigned int reg = reg_ranges[range];
2573                 unsigned int last_reg = reg_ranges[range + 1];
2574                 u32 *bufp = (u32 *)(buf + reg);
2575
2576                 /*
2577                  * Iterate across the register range filling in the register
2578                  * buffer but don't write past the end of the register buffer.
2579                  */
2580                 while (reg <= last_reg && bufp < buf_end) {
2581                         *bufp++ = t4_read_reg(adap, reg);
2582                         reg += sizeof(u32);
2583                 }
2584         }
2585 }
2586
2587 /*
2588  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2589  * VPD-R sections.
2590  */
2591 struct t4_vpd_hdr {
2592         u8  id_tag;
2593         u8  id_len[2];
2594         u8  id_data[ID_LEN];
2595         u8  vpdr_tag;
2596         u8  vpdr_len[2];
2597 };
2598
2599 /*
2600  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2601  */
2602 #define EEPROM_DELAY            10              /* 10us per poll spin */
2603 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
2604
2605 #define EEPROM_STAT_ADDR        0x7bfc
2606 #define VPD_BASE                0x400
2607 #define VPD_BASE_OLD            0
2608 #define VPD_LEN                 1024
2609 #define VPD_INFO_FLD_HDR_SIZE   3
2610 #define CHELSIO_VPD_UNIQUE_ID   0x82
2611
2612 /*
2613  * Small utility function to wait till any outstanding VPD Access is complete.
2614  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2615  * VPD Access in flight.  This allows us to handle the problem of having a
2616  * previous VPD Access time out and prevent an attempt to inject a new VPD
2617  * Request before any in-flight VPD reguest has completed.
2618  */
2619 static int t4_seeprom_wait(struct adapter *adapter)
2620 {
2621         unsigned int base = adapter->params.pci.vpd_cap_addr;
2622         int max_poll;
2623
2624         /*
2625          * If no VPD Access is in flight, we can just return success right
2626          * away.
2627          */
2628         if (!adapter->vpd_busy)
2629                 return 0;
2630
2631         /*
2632          * Poll the VPD Capability Address/Flag register waiting for it
2633          * to indicate that the operation is complete.
2634          */
2635         max_poll = EEPROM_MAX_POLL;
2636         do {
2637                 u16 val;
2638
2639                 udelay(EEPROM_DELAY);
2640                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2641
2642                 /*
2643                  * If the operation is complete, mark the VPD as no longer
2644                  * busy and return success.
2645                  */
2646                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2647                         adapter->vpd_busy = 0;
2648                         return 0;
2649                 }
2650         } while (--max_poll);
2651
2652         /*
2653          * Failure!  Note that we leave the VPD Busy status set in order to
2654          * avoid pushing a new VPD Access request into the VPD Capability till
2655          * the current operation eventually succeeds.  It's a bug to issue a
2656          * new request when an existing request is in flight and will result
2657          * in corrupt hardware state.
2658          */
2659         return -ETIMEDOUT;
2660 }
2661
2662 /**
2663  *      t4_seeprom_read - read a serial EEPROM location
2664  *      @adapter: adapter to read
2665  *      @addr: EEPROM virtual address
2666  *      @data: where to store the read data
2667  *
2668  *      Read a 32-bit word from a location in serial EEPROM using the card's PCI
2669  *      VPD capability.  Note that this function must be called with a virtual
2670  *      address.
2671  */
2672 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2673 {
2674         unsigned int base = adapter->params.pci.vpd_cap_addr;
2675         int ret;
2676
2677         /*
2678          * VPD Accesses must alway be 4-byte aligned!
2679          */
2680         if (addr >= EEPROMVSIZE || (addr & 3))
2681                 return -EINVAL;
2682
2683         /*
2684          * Wait for any previous operation which may still be in flight to
2685          * complete.
2686          */
2687         ret = t4_seeprom_wait(adapter);
2688         if (ret) {
2689                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2690                 return ret;
2691         }
2692
2693         /*
2694          * Issue our new VPD Read request, mark the VPD as being busy and wait
2695          * for our request to complete.  If it doesn't complete, note the
2696          * error and return it to our caller.  Note that we do not reset the
2697          * VPD Busy status!
2698          */
2699         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2700         adapter->vpd_busy = 1;
2701         adapter->vpd_flag = PCI_VPD_ADDR_F;
2702         ret = t4_seeprom_wait(adapter);
2703         if (ret) {
2704                 CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2705                 return ret;
2706         }
2707
2708         /*
2709          * Grab the returned data, swizzle it into our endianness and
2710          * return success.
2711          */
2712         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2713         *data = le32_to_cpu(*data);
2714         return 0;
2715 }
2716
2717 /**
2718  *      t4_seeprom_write - write a serial EEPROM location
2719  *      @adapter: adapter to write
2720  *      @addr: virtual EEPROM address
2721  *      @data: value to write
2722  *
2723  *      Write a 32-bit word to a location in serial EEPROM using the card's PCI
2724  *      VPD capability.  Note that this function must be called with a virtual
2725  *      address.
2726  */
2727 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2728 {
2729         unsigned int base = adapter->params.pci.vpd_cap_addr;
2730         int ret;
2731         u32 stats_reg;
2732         int max_poll;
2733
2734         /*
2735          * VPD Accesses must alway be 4-byte aligned!
2736          */
2737         if (addr >= EEPROMVSIZE || (addr & 3))
2738                 return -EINVAL;
2739
2740         /*
2741          * Wait for any previous operation which may still be in flight to
2742          * complete.
2743          */
2744         ret = t4_seeprom_wait(adapter);
2745         if (ret) {
2746                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2747                 return ret;
2748         }
2749
2750         /*
2751          * Issue our new VPD Read request, mark the VPD as being busy and wait
2752          * for our request to complete.  If it doesn't complete, note the
2753          * error and return it to our caller.  Note that we do not reset the
2754          * VPD Busy status!
2755          */
2756         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2757                                  cpu_to_le32(data));
2758         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2759                                  (u16)addr | PCI_VPD_ADDR_F);
2760         adapter->vpd_busy = 1;
2761         adapter->vpd_flag = 0;
2762         ret = t4_seeprom_wait(adapter);
2763         if (ret) {
2764                 CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2765                 return ret;
2766         }
2767
2768         /*
2769          * Reset PCI_VPD_DATA register after a transaction and wait for our
2770          * request to complete. If it doesn't complete, return error.
2771          */
2772         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2773         max_poll = EEPROM_MAX_POLL;
2774         do {
2775                 udelay(EEPROM_DELAY);
2776                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2777         } while ((stats_reg & 0x1) && --max_poll);
2778         if (!max_poll)
2779                 return -ETIMEDOUT;
2780
2781         /* Return success! */
2782         return 0;
2783 }
2784
2785 /**
2786  *      t4_eeprom_ptov - translate a physical EEPROM address to virtual
2787  *      @phys_addr: the physical EEPROM address
2788  *      @fn: the PCI function number
2789  *      @sz: size of function-specific area
2790  *
2791  *      Translate a physical EEPROM address to virtual.  The first 1K is
2792  *      accessed through virtual addresses starting at 31K, the rest is
2793  *      accessed through virtual addresses starting at 0.
2794  *
2795  *      The mapping is as follows:
2796  *      [0..1K) -> [31K..32K)
2797  *      [1K..1K+A) -> [ES-A..ES)
2798  *      [1K+A..ES) -> [0..ES-A-1K)
2799  *
2800  *      where A = @fn * @sz, and ES = EEPROM size.
2801  */
2802 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2803 {
2804         fn *= sz;
2805         if (phys_addr < 1024)
2806                 return phys_addr + (31 << 10);
2807         if (phys_addr < 1024 + fn)
2808                 return EEPROMSIZE - fn + phys_addr - 1024;
2809         if (phys_addr < EEPROMSIZE)
2810                 return phys_addr - 1024 - fn;
2811         return -EINVAL;
2812 }
2813
2814 /**
2815  *      t4_seeprom_wp - enable/disable EEPROM write protection
2816  *      @adapter: the adapter
2817  *      @enable: whether to enable or disable write protection
2818  *
2819  *      Enables or disables write protection on the serial EEPROM.
2820  */
2821 int t4_seeprom_wp(struct adapter *adapter, int enable)
2822 {
2823         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2824 }
2825
2826 /**
2827  *      get_vpd_keyword_val - Locates an information field keyword in the VPD
2828  *      @v: Pointer to buffered vpd data structure
2829  *      @kw: The keyword to search for
2830  *
2831  *      Returns the value of the information field keyword or
2832  *      -ENOENT otherwise.
2833  */
2834 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2835 {
2836         int i;
2837         unsigned int offset , len;
2838         const u8 *buf = (const u8 *)v;
2839         const u8 *vpdr_len = &v->vpdr_len[0];
2840         offset = sizeof(struct t4_vpd_hdr);
2841         len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2842
2843         if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2844                 return -ENOENT;
2845         }
2846
2847         for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2848                 if(memcmp(buf + i , kw , 2) == 0){
2849                         i += VPD_INFO_FLD_HDR_SIZE;
2850                         return i;
2851                 }
2852
2853                 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2854         }
2855
2856         return -ENOENT;
2857 }
2858
2859
2860 /**
2861  *      get_vpd_params - read VPD parameters from VPD EEPROM
2862  *      @adapter: adapter to read
2863  *      @p: where to store the parameters
2864  *      @vpd: caller provided temporary space to read the VPD into
2865  *
2866  *      Reads card parameters stored in VPD EEPROM.
2867  */
2868 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2869     u8 *vpd)
2870 {
2871         int i, ret, addr;
2872         int ec, sn, pn, na;
2873         u8 csum;
2874         const struct t4_vpd_hdr *v;
2875
2876         /*
2877          * Card information normally starts at VPD_BASE but early cards had
2878          * it at 0.
2879          */
2880         ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2881         if (ret)
2882                 return (ret);
2883
2884         /*
2885          * The VPD shall have a unique identifier specified by the PCI SIG.
2886          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2887          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2888          * is expected to automatically put this entry at the
2889          * beginning of the VPD.
2890          */
2891         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2892
2893         for (i = 0; i < VPD_LEN; i += 4) {
2894                 ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2895                 if (ret)
2896                         return ret;
2897         }
2898         v = (const struct t4_vpd_hdr *)vpd;
2899
2900 #define FIND_VPD_KW(var,name) do { \
2901         var = get_vpd_keyword_val(v , name); \
2902         if (var < 0) { \
2903                 CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2904                 return -EINVAL; \
2905         } \
2906 } while (0)
2907
2908         FIND_VPD_KW(i, "RV");
2909         for (csum = 0; i >= 0; i--)
2910                 csum += vpd[i];
2911
2912         if (csum) {
2913                 CH_ERR(adapter,
2914                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2915                 return -EINVAL;
2916         }
2917
2918         FIND_VPD_KW(ec, "EC");
2919         FIND_VPD_KW(sn, "SN");
2920         FIND_VPD_KW(pn, "PN");
2921         FIND_VPD_KW(na, "NA");
2922 #undef FIND_VPD_KW
2923
2924         memcpy(p->id, v->id_data, ID_LEN);
2925         strstrip(p->id);
2926         memcpy(p->ec, vpd + ec, EC_LEN);
2927         strstrip(p->ec);
2928         i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
2929         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2930         strstrip(p->sn);
2931         i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
2932         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2933         strstrip((char *)p->pn);
2934         i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
2935         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2936         strstrip((char *)p->na);
2937
2938         return 0;
2939 }
2940
2941 /* serial flash and firmware constants and flash config file constants */
2942 enum {
2943         SF_ATTEMPTS = 10,       /* max retries for SF operations */
2944
2945         /* flash command opcodes */
2946         SF_PROG_PAGE    = 2,    /* program page */
2947         SF_WR_DISABLE   = 4,    /* disable writes */
2948         SF_RD_STATUS    = 5,    /* read status register */
2949         SF_WR_ENABLE    = 6,    /* enable writes */
2950         SF_RD_DATA_FAST = 0xb,  /* read flash */
2951         SF_RD_ID        = 0x9f, /* read ID */
2952         SF_ERASE_SECTOR = 0xd8, /* erase sector */
2953 };
2954
2955 /**
2956  *      sf1_read - read data from the serial flash
2957  *      @adapter: the adapter
2958  *      @byte_cnt: number of bytes to read
2959  *      @cont: whether another operation will be chained
2960  *      @lock: whether to lock SF for PL access only
2961  *      @valp: where to store the read data
2962  *
2963  *      Reads up to 4 bytes of data from the serial flash.  The location of
2964  *      the read needs to be specified prior to calling this by issuing the
2965  *      appropriate commands to the serial flash.
2966  */
2967 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2968                     int lock, u32 *valp)
2969 {
2970         int ret;
2971
2972         if (!byte_cnt || byte_cnt > 4)
2973                 return -EINVAL;
2974         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2975                 return -EBUSY;
2976         t4_write_reg(adapter, A_SF_OP,
2977                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
2978         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2979         if (!ret)
2980                 *valp = t4_read_reg(adapter, A_SF_DATA);
2981         return ret;
2982 }
2983
2984 /**
2985  *      sf1_write - write data to the serial flash
2986  *      @adapter: the adapter
2987  *      @byte_cnt: number of bytes to write
2988  *      @cont: whether another operation will be chained
2989  *      @lock: whether to lock SF for PL access only
2990  *      @val: value to write
2991  *
2992  *      Writes up to 4 bytes of data to the serial flash.  The location of
2993  *      the write needs to be specified prior to calling this by issuing the
2994  *      appropriate commands to the serial flash.
2995  */
2996 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2997                      int lock, u32 val)
2998 {
2999         if (!byte_cnt || byte_cnt > 4)
3000                 return -EINVAL;
3001         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3002                 return -EBUSY;
3003         t4_write_reg(adapter, A_SF_DATA, val);
3004         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3005                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3006         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3007 }
3008
3009 /**
3010  *      flash_wait_op - wait for a flash operation to complete
3011  *      @adapter: the adapter
3012  *      @attempts: max number of polls of the status register
3013  *      @delay: delay between polls in ms
3014  *
3015  *      Wait for a flash operation to complete by polling the status register.
3016  */
3017 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3018 {
3019         int ret;
3020         u32 status;
3021
3022         while (1) {
3023                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3024                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3025                         return ret;
3026                 if (!(status & 1))
3027                         return 0;
3028                 if (--attempts == 0)
3029                         return -EAGAIN;
3030                 if (delay)
3031                         msleep(delay);
3032         }
3033 }
3034
3035 /**
3036  *      t4_read_flash - read words from serial flash
3037  *      @adapter: the adapter
3038  *      @addr: the start address for the read
3039  *      @nwords: how many 32-bit words to read
3040  *      @data: where to store the read data
3041  *      @byte_oriented: whether to store data as bytes or as words
3042  *
3043  *      Read the specified number of 32-bit words from the serial flash.
3044  *      If @byte_oriented is set the read data is stored as a byte array
3045  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3046  *      natural endianness.
3047  */
3048 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3049                   unsigned int nwords, u32 *data, int byte_oriented)
3050 {
3051         int ret;
3052
3053         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3054                 return -EINVAL;
3055
3056         addr = swab32(addr) | SF_RD_DATA_FAST;
3057
3058         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3059             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3060                 return ret;
3061
3062         for ( ; nwords; nwords--, data++) {
3063                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3064                 if (nwords == 1)
3065                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3066                 if (ret)
3067                         return ret;
3068                 if (byte_oriented)
3069                         *data = (__force __u32)(cpu_to_be32(*data));
3070         }
3071         return 0;
3072 }
3073
3074 /**
3075  *      t4_write_flash - write up to a page of data to the serial flash
3076  *      @adapter: the adapter
3077  *      @addr: the start address to write
3078  *      @n: length of data to write in bytes
3079  *      @data: the data to write
3080  *      @byte_oriented: whether to store data as bytes or as words
3081  *
3082  *      Writes up to a page of data (256 bytes) to the serial flash starting
3083  *      at the given address.  All the data must be written to the same page.
3084  *      If @byte_oriented is set the write data is stored as byte stream
3085  *      (i.e. matches what on disk), otherwise in big-endian.
3086  */
3087 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3088                           unsigned int n, const u8 *data, int byte_oriented)
3089 {
3090         int ret;
3091         u32 buf[SF_PAGE_SIZE / 4];
3092         unsigned int i, c, left, val, offset = addr & 0xff;
3093
3094         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3095                 return -EINVAL;
3096
3097         val = swab32(addr) | SF_PROG_PAGE;
3098
3099         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3100             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3101                 goto unlock;
3102
3103         for (left = n; left; left -= c) {
3104                 c = min(left, 4U);
3105                 for (val = 0, i = 0; i < c; ++i)
3106                         val = (val << 8) + *data++;
3107
3108                 if (!byte_oriented)
3109                         val = cpu_to_be32(val);
3110
3111                 ret = sf1_write(adapter, c, c != left, 1, val);
3112                 if (ret)
3113                         goto unlock;
3114         }
3115         ret = flash_wait_op(adapter, 8, 1);
3116         if (ret)
3117                 goto unlock;
3118
3119         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3120
3121         /* Read the page to verify the write succeeded */
3122         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3123                             byte_oriented);
3124         if (ret)
3125                 return ret;
3126
3127         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3128                 CH_ERR(adapter,
3129                         "failed to correctly write the flash page at %#x\n",
3130                         addr);
3131                 return -EIO;
3132         }
3133         return 0;
3134
3135 unlock:
3136         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3137         return ret;
3138 }
3139
3140 /**
3141  *      t4_get_fw_version - read the firmware version
3142  *      @adapter: the adapter
3143  *      @vers: where to place the version
3144  *
3145  *      Reads the FW version from flash.
3146  */
3147 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3148 {
3149         return t4_read_flash(adapter, FLASH_FW_START +
3150                              offsetof(struct fw_hdr, fw_ver), 1,
3151                              vers, 0);
3152 }
3153
3154 /**
3155  *      t4_get_tp_version - read the TP microcode version
3156  *      @adapter: the adapter
3157  *      @vers: where to place the version
3158  *
3159  *      Reads the TP microcode version from flash.
3160  */
3161 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3162 {
3163         return t4_read_flash(adapter, FLASH_FW_START +
3164                              offsetof(struct fw_hdr, tp_microcode_ver),
3165                              1, vers, 0);
3166 }
3167
3168 /**
3169  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3170  *      @adapter: the adapter
3171  *      @vers: where to place the version
3172  *
3173  *      Reads the Expansion ROM header from FLASH and returns the version
3174  *      number (if present) through the @vers return value pointer.  We return
3175  *      this in the Firmware Version Format since it's convenient.  Return
3176  *      0 on success, -ENOENT if no Expansion ROM is present.
3177  */
3178 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3179 {
3180         struct exprom_header {
3181                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3182                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3183         } *hdr;
3184         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3185                                            sizeof(u32))];
3186         int ret;
3187
3188         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3189                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3190                             0);
3191         if (ret)
3192                 return ret;
3193
3194         hdr = (struct exprom_header *)exprom_header_buf;
3195         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3196                 return -ENOENT;
3197
3198         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3199                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3200                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3201                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3202         return 0;
3203 }
3204
3205 /**
3206  *      t4_flash_erase_sectors - erase a range of flash sectors
3207  *      @adapter: the adapter
3208  *      @start: the first sector to erase
3209  *      @end: the last sector to erase
3210  *
3211  *      Erases the sectors in the given inclusive range.
3212  */
3213 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3214 {
3215         int ret = 0;
3216
3217         if (end >= adapter->params.sf_nsec)
3218                 return -EINVAL;
3219
3220         while (start <= end) {
3221                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3222                     (ret = sf1_write(adapter, 4, 0, 1,
3223                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3224                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3225                         CH_ERR(adapter,
3226                                 "erase of flash sector %d failed, error %d\n",
3227                                 start, ret);
3228                         break;
3229                 }
3230                 start++;
3231         }
3232         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3233         return ret;
3234 }
3235
3236 /**
3237  *      t4_flash_cfg_addr - return the address of the flash configuration file
3238  *      @adapter: the adapter
3239  *
3240  *      Return the address within the flash where the Firmware Configuration
3241  *      File is stored, or an error if the device FLASH is too small to contain
3242  *      a Firmware Configuration File.
3243  */
3244 int t4_flash_cfg_addr(struct adapter *adapter)
3245 {
3246         /*
3247          * If the device FLASH isn't large enough to hold a Firmware
3248          * Configuration File, return an error.
3249          */
3250         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3251                 return -ENOSPC;
3252
3253         return FLASH_CFG_START;
3254 }
3255
3256 /*
3257  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3258  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3259  * and emit an error message for mismatched firmware to save our caller the
3260  * effort ...
3261  */
3262 static int t4_fw_matches_chip(struct adapter *adap,
3263                               const struct fw_hdr *hdr)
3264 {
3265         /*
3266          * The expression below will return FALSE for any unsupported adapter
3267          * which will keep us "honest" in the future ...
3268          */
3269         if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3270             (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3271             (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3272                 return 1;
3273
3274         CH_ERR(adap,
3275                 "FW image (%d) is not suitable for this adapter (%d)\n",
3276                 hdr->chip, chip_id(adap));
3277         return 0;
3278 }
3279
3280 /**
3281  *      t4_load_fw - download firmware
3282  *      @adap: the adapter
3283  *      @fw_data: the firmware image to write
3284  *      @size: image size
3285  *
3286  *      Write the supplied firmware image to the card's serial flash.
3287  */
3288 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3289 {
3290         u32 csum;
3291         int ret, addr;
3292         unsigned int i;
3293         u8 first_page[SF_PAGE_SIZE];
3294         const u32 *p = (const u32 *)fw_data;
3295         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3296         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3297         unsigned int fw_start_sec;
3298         unsigned int fw_start;
3299         unsigned int fw_size;
3300
3301         if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3302                 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3303                 fw_start = FLASH_FWBOOTSTRAP_START;
3304                 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3305         } else {
3306                 fw_start_sec = FLASH_FW_START_SEC;
3307                 fw_start = FLASH_FW_START;
3308                 fw_size = FLASH_FW_MAX_SIZE;
3309         }
3310
3311         if (!size) {
3312                 CH_ERR(adap, "FW image has no data\n");
3313                 return -EINVAL;
3314         }
3315         if (size & 511) {
3316                 CH_ERR(adap,
3317                         "FW image size not multiple of 512 bytes\n");
3318                 return -EINVAL;
3319         }
3320         if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3321                 CH_ERR(adap,
3322                         "FW image size differs from size in FW header\n");
3323                 return -EINVAL;
3324         }
3325         if (size > fw_size) {
3326                 CH_ERR(adap, "FW image too large, max is %u bytes\n",
3327                         fw_size);
3328                 return -EFBIG;
3329         }
3330         if (!t4_fw_matches_chip(adap, hdr))
3331                 return -EINVAL;
3332
3333         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3334                 csum += be32_to_cpu(p[i]);
3335
3336         if (csum != 0xffffffff) {
3337                 CH_ERR(adap,
3338                         "corrupted firmware image, checksum %#x\n", csum);
3339                 return -EINVAL;
3340         }
3341
3342         i = DIV_ROUND_UP(size, sf_sec_size);    /* # of sectors spanned */
3343         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3344         if (ret)
3345                 goto out;
3346
3347         /*
3348          * We write the correct version at the end so the driver can see a bad
3349          * version if the FW write fails.  Start by writing a copy of the
3350          * first page with a bad version.
3351          */
3352         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3353         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3354         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3355         if (ret)
3356                 goto out;
3357
3358         addr = fw_start;
3359         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3360                 addr += SF_PAGE_SIZE;
3361                 fw_data += SF_PAGE_SIZE;
3362                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3363                 if (ret)
3364                         goto out;
3365         }
3366
3367         ret = t4_write_flash(adap,
3368                              fw_start + offsetof(struct fw_hdr, fw_ver),
3369                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3370 out:
3371         if (ret)
3372                 CH_ERR(adap, "firmware download failed, error %d\n",
3373                         ret);
3374         return ret;
3375 }
3376
3377 /**
3378  *      t4_fwcache - firmware cache operation
3379  *      @adap: the adapter
3380  *      @op  : the operation (flush or flush and invalidate)
3381  */
3382 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3383 {
3384         struct fw_params_cmd c;
3385
3386         memset(&c, 0, sizeof(c));
3387         c.op_to_vfn =
3388             cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3389                             F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3390                                 V_FW_PARAMS_CMD_PFN(adap->pf) |
3391                                 V_FW_PARAMS_CMD_VFN(0));
3392         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3393         c.param[0].mnem =
3394             cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3395                             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3396         c.param[0].val = (__force __be32)op;
3397
3398         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3399 }
3400
3401 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3402                         unsigned int *pif_req_wrptr,
3403                         unsigned int *pif_rsp_wrptr)
3404 {
3405         int i, j;
3406         u32 cfg, val, req, rsp;
3407
3408         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3409         if (cfg & F_LADBGEN)
3410                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3411
3412         val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3413         req = G_POLADBGWRPTR(val);
3414         rsp = G_PILADBGWRPTR(val);
3415         if (pif_req_wrptr)
3416                 *pif_req_wrptr = req;
3417         if (pif_rsp_wrptr)
3418                 *pif_rsp_wrptr = rsp;
3419
3420         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3421                 for (j = 0; j < 6; j++) {
3422                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3423                                      V_PILADBGRDPTR(rsp));
3424                         *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3425                         *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3426                         req++;
3427                         rsp++;
3428                 }
3429                 req = (req + 2) & M_POLADBGRDPTR;
3430                 rsp = (rsp + 2) & M_PILADBGRDPTR;
3431         }
3432         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3433 }
3434
3435 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3436 {
3437         u32 cfg;
3438         int i, j, idx;
3439
3440         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3441         if (cfg & F_LADBGEN)
3442                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3443
3444         for (i = 0; i < CIM_MALA_SIZE; i++) {
3445                 for (j = 0; j < 5; j++) {
3446                         idx = 8 * i + j;
3447                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3448                                      V_PILADBGRDPTR(idx));
3449                         *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3450                         *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3451                 }
3452         }
3453         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3454 }
3455
3456 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3457 {
3458         unsigned int i, j;
3459
3460         for (i = 0; i < 8; i++) {
3461                 u32 *p = la_buf + i;
3462
3463                 t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3464                 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3465                 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3466                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3467                         *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3468         }
3469 }
3470
3471 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3472                      FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3473                      FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
3474
3475 /**
3476  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3477  *      @phy: the PHY to setup
3478  *      @mac: the MAC to setup
3479  *      @lc: the requested link configuration
3480  *
3481  *      Set up a port's MAC and PHY according to a desired link configuration.
3482  *      - If the PHY can auto-negotiate first decide what to advertise, then
3483  *        enable/disable auto-negotiation as desired, and reset.
3484  *      - If the PHY does not auto-negotiate just reset it.
3485  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3486  *        otherwise do it later based on the outcome of auto-negotiation.
3487  */
3488 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3489                   struct link_config *lc)
3490 {
3491         struct fw_port_cmd c;
3492         unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3493
3494         lc->link_ok = 0;
3495         if (lc->requested_fc & PAUSE_RX)
3496                 fc |= FW_PORT_CAP_FC_RX;
3497         if (lc->requested_fc & PAUSE_TX)
3498                 fc |= FW_PORT_CAP_FC_TX;
3499
3500         memset(&c, 0, sizeof(c));
3501         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3502                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3503                                      V_FW_PORT_CMD_PORTID(port));
3504         c.action_to_len16 =
3505                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3506                             FW_LEN16(c));
3507
3508         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3509                 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3510                                              fc);
3511                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3512         } else if (lc->autoneg == AUTONEG_DISABLE) {
3513                 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3514                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3515         } else
3516                 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3517
3518         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3519 }
3520
3521 /**
3522  *      t4_restart_aneg - restart autonegotiation
3523  *      @adap: the adapter
3524  *      @mbox: mbox to use for the FW command
3525  *      @port: the port id
3526  *
3527  *      Restarts autonegotiation for the selected port.
3528  */
3529 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3530 {
3531         struct fw_port_cmd c;
3532
3533         memset(&c, 0, sizeof(c));
3534         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3535                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3536                                      V_FW_PORT_CMD_PORTID(port));
3537         c.action_to_len16 =
3538                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3539                             FW_LEN16(c));
3540         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3541         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3542 }
3543
3544 typedef void (*int_handler_t)(struct adapter *adap);
3545
3546 struct intr_info {
3547         unsigned int mask;      /* bits to check in interrupt status */
3548         const char *msg;        /* message to print or NULL */
3549         short stat_idx;         /* stat counter to increment or -1 */
3550         unsigned short fatal;   /* whether the condition reported is fatal */
3551         int_handler_t int_handler;      /* platform-specific int handler */
3552 };
3553
3554 /**
3555  *      t4_handle_intr_status - table driven interrupt handler
3556  *      @adapter: the adapter that generated the interrupt
3557  *      @reg: the interrupt status register to process
3558  *      @acts: table of interrupt actions
3559  *
3560  *      A table driven interrupt handler that applies a set of masks to an
3561  *      interrupt status word and performs the corresponding actions if the
3562  *      interrupts described by the mask have occurred.  The actions include
3563  *      optionally emitting a warning or alert message.  The table is terminated
3564  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
3565  *      conditions.
3566  */
3567 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3568                                  const struct intr_info *acts)
3569 {
3570         int fatal = 0;
3571         unsigned int mask = 0;
3572         unsigned int status = t4_read_reg(adapter, reg);
3573
3574         for ( ; acts->mask; ++acts) {
3575                 if (!(status & acts->mask))
3576                         continue;
3577                 if (acts->fatal) {
3578                         fatal++;
3579                         CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3580                                   status & acts->mask);
3581                 } else if (acts->msg)
3582                         CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3583                                  status & acts->mask);
3584                 if (acts->int_handler)
3585                         acts->int_handler(adapter);
3586                 mask |= acts->mask;
3587         }
3588         status &= mask;
3589         if (status)     /* clear processed interrupts */
3590                 t4_write_reg(adapter, reg, status);
3591         return fatal;
3592 }
3593
3594 /*
3595  * Interrupt handler for the PCIE module.
3596  */
3597 static void pcie_intr_handler(struct adapter *adapter)
3598 {
3599         static const struct intr_info sysbus_intr_info[] = {
3600                 { F_RNPP, "RXNP array parity error", -1, 1 },
3601                 { F_RPCP, "RXPC array parity error", -1, 1 },
3602                 { F_RCIP, "RXCIF array parity error", -1, 1 },
3603                 { F_RCCP, "Rx completions control array parity error", -1, 1 },
3604                 { F_RFTP, "RXFT array parity error", -1, 1 },
3605                 { 0 }
3606         };
3607         static const struct intr_info pcie_port_intr_info[] = {
3608                 { F_TPCP, "TXPC array parity error", -1, 1 },
3609                 { F_TNPP, "TXNP array parity error", -1, 1 },
3610                 { F_TFTP, "TXFT array parity error", -1, 1 },
3611                 { F_TCAP, "TXCA array parity error", -1, 1 },
3612                 { F_TCIP, "TXCIF array parity error", -1, 1 },
3613                 { F_RCAP, "RXCA array parity error", -1, 1 },
3614                 { F_OTDD, "outbound request TLP discarded", -1, 1 },
3615                 { F_RDPE, "Rx data parity error", -1, 1 },
3616                 { F_TDUE, "Tx uncorrectable data error", -1, 1 },
3617                 { 0 }
3618         };
3619         static const struct intr_info pcie_intr_info[] = {
3620                 { F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3621                 { F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3622                 { F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3623                 { F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3624                 { F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3625                 { F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3626                 { F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3627                 { F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3628                 { F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3629                 { F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3630                 { F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3631                 { F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3632                 { F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3633                 { F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3634                 { F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3635                 { F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3636                 { F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3637                 { F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3638                 { F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3639                 { F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3640                 { F_FIDPERR, "PCI FID parity error", -1, 1 },
3641                 { F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3642                 { F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3643                 { F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3644                 { F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3645                 { F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3646                 { F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3647                 { F_PCIESINT, "PCI core secondary fault", -1, 1 },
3648                 { F_PCIEPINT, "PCI core primary fault", -1, 1 },
3649                 { F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3650                   0 },
3651                 { 0 }
3652         };
3653
3654         static const struct intr_info t5_pcie_intr_info[] = {
3655                 { F_MSTGRPPERR, "Master Response Read Queue parity error",
3656                   -1, 1 },
3657                 { F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3658                 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3659                 { F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3660                 { F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3661                 { F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3662                 { F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3663                 { F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3664                   -1, 1 },
3665                 { F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3666                   -1, 1 },
3667                 { F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3668                 { F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3669                 { F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3670                 { F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3671                 { F_DREQWRPERR, "PCI DMA channel write request parity error",
3672                   -1, 1 },
3673                 { F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3674                 { F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3675                 { F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3676                 { F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3677                 { F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3678                 { F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3679                 { F_FIDPERR, "PCI FID parity error", -1, 1 },
3680                 { F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3681                 { F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3682                 { F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3683                 { F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3684                   -1, 1 },
3685                 { F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3686                   -1, 1 },
3687                 { F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3688                 { F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3689                 { F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3690                 { F_READRSPERR, "Outbound read error", -1,
3691                   0 },
3692                 { 0 }
3693         };
3694
3695         int fat;
3696
3697         if (is_t4(adapter))
3698                 fat = t4_handle_intr_status(adapter,
3699                                 A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3700                                 sysbus_intr_info) +
3701                         t4_handle_intr_status(adapter,
3702                                         A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3703                                         pcie_port_intr_info) +
3704                         t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3705                                               pcie_intr_info);
3706         else
3707                 fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3708                                             t5_pcie_intr_info);
3709         if (fat)
3710                 t4_fatal_err(adapter);
3711 }
3712
3713 /*
3714  * TP interrupt handler.
3715  */
3716 static void tp_intr_handler(struct adapter *adapter)
3717 {
3718         static const struct intr_info tp_intr_info[] = {
3719                 { 0x3fffffff, "TP parity error", -1, 1 },
3720                 { F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3721                 { 0 }
3722         };
3723
3724         if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3725                 t4_fatal_err(adapter);
3726 }
3727
3728 /*
3729  * SGE interrupt handler.
3730  */
3731 static void sge_intr_handler(struct adapter *adapter)
3732 {
3733         u64 v;
3734         u32 err;
3735
3736         static const struct intr_info sge_intr_info[] = {
3737                 { F_ERR_CPL_EXCEED_IQE_SIZE,
3738                   "SGE received CPL exceeding IQE size", -1, 1 },
3739                 { F_ERR_INVALID_CIDX_INC,
3740                   "SGE GTS CIDX increment too large", -1, 0 },
3741                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3742                 { F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3743                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3744                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
3745                 { F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3746                   0 },
3747                 { F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3748                   0 },
3749                 { F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3750                   0 },
3751                 { F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3752                   0 },
3753                 { F_ERR_ING_CTXT_PRIO,
3754                   "SGE too many priority ingress contexts", -1, 0 },
3755                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3756                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3757                 { 0 }
3758         };
3759
3760         static const struct intr_info t4t5_sge_intr_info[] = {
3761                 { F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3762                 { F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3763                 { F_ERR_EGR_CTXT_PRIO,
3764                   "SGE too many priority egress contexts", -1, 0 },
3765                 { 0 }
3766         };
3767
3768         /*
3769         * For now, treat below interrupts as fatal so that we disable SGE and
3770         * get better debug */
3771         static const struct intr_info t6_sge_intr_info[] = {
3772                 { F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1,
3773                   "SGE PCIe error for a DBP thread", -1, 1 },
3774                 { F_FATAL_WRE_LEN,
3775                   "SGE Actual WRE packet is less than advertized length",
3776                   -1, 1 },
3777                 { 0 }
3778         };
3779
3780         v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
3781                 ((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
3782         if (v) {
3783                 CH_ALERT(adapter, "SGE parity error (%#llx)\n",
3784                                 (unsigned long long)v);
3785                 t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
3786                 t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
3787         }
3788
3789         v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
3790         if (chip_id(adapter) <= CHELSIO_T5)
3791                 v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3792                                            t4t5_sge_intr_info);
3793         else
3794                 v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3795                                            t6_sge_intr_info);
3796
3797         err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
3798         if (err & F_ERROR_QID_VALID) {
3799                 CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
3800                 if (err & F_UNCAPTURED_ERROR)
3801                         CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
3802                 t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
3803                              F_UNCAPTURED_ERROR);
3804         }
3805
3806         if (v != 0)
3807                 t4_fatal_err(adapter);
3808 }
3809
3810 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
3811                       F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
3812 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
3813                       F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
3814
3815 /*
3816  * CIM interrupt handler.
3817  */
3818 static void cim_intr_handler(struct adapter *adapter)
3819 {
3820         static const struct intr_info cim_intr_info[] = {
3821                 { F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
3822                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3823                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3824                 { F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
3825                 { F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
3826                 { F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
3827                 { F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
3828                 { 0 }
3829         };
3830         static const struct intr_info cim_upintr_info[] = {
3831                 { F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
3832                 { F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
3833                 { F_ILLWRINT, "CIM illegal write", -1, 1 },
3834                 { F_ILLRDINT, "CIM illegal read", -1, 1 },
3835                 { F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
3836                 { F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
3837                 { F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
3838                 { F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
3839                 { F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
3840                 { F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
3841                 { F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
3842                 { F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
3843                 { F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
3844                 { F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
3845                 { F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
3846                 { F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
3847                 { F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
3848                 { F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
3849                 { F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
3850                 { F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
3851                 { F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
3852                 { F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
3853                 { F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
3854                 { F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
3855                 { F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
3856                 { F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
3857                 { F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
3858                 { F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
3859                 { 0 }
3860         };
3861         int fat;
3862
3863         if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
3864                 t4_report_fw_error(adapter);
3865
3866         fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
3867                                     cim_intr_info) +
3868               t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
3869                                     cim_upintr_info);
3870         if (fat)
3871                 t4_fatal_err(adapter);
3872 }
3873
3874 /*
3875  * ULP RX interrupt handler.
3876  */
3877 static void ulprx_intr_handler(struct adapter *adapter)
3878 {
3879         static const struct intr_info ulprx_intr_info[] = {
3880                 { F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
3881                 { F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
3882                 { 0x7fffff, "ULPRX parity error", -1, 1 },
3883                 { 0 }
3884         };
3885
3886         if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
3887                 t4_fatal_err(adapter);
3888 }
3889
3890 /*
3891  * ULP TX interrupt handler.
3892  */
3893 static void ulptx_intr_handler(struct adapter *adapter)
3894 {
3895         static const struct intr_info ulptx_intr_info[] = {
3896                 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
3897                   0 },
3898                 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
3899                   0 },
3900                 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
3901                   0 },
3902                 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
3903                   0 },
3904                 { 0xfffffff, "ULPTX parity error", -1, 1 },
3905                 { 0 }
3906         };
3907
3908         if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
3909                 t4_fatal_err(adapter);
3910 }
3911
3912 /*
3913  * PM TX interrupt handler.
3914  */
3915 static void pmtx_intr_handler(struct adapter *adapter)
3916 {
3917         static const struct intr_info pmtx_intr_info[] = {
3918                 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
3919                 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
3920                 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
3921                 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
3922                 { 0xffffff0, "PMTX framing error", -1, 1 },
3923                 { F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
3924                 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
3925                   1 },
3926                 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
3927                 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
3928                 { 0 }
3929         };
3930
3931         if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
3932                 t4_fatal_err(adapter);
3933 }
3934
3935 /*
3936  * PM RX interrupt handler.
3937  */
3938 static void pmrx_intr_handler(struct adapter *adapter)
3939 {
3940         static const struct intr_info pmrx_intr_info[] = {
3941                 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
3942                 { 0x3ffff0, "PMRX framing error", -1, 1 },
3943                 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
3944                 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
3945                   1 },
3946                 { F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
3947                 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
3948                 { 0 }
3949         };
3950
3951         if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
3952                 t4_fatal_err(adapter);
3953 }
3954
3955 /*
3956  * CPL switch interrupt handler.
3957  */
3958 static void cplsw_intr_handler(struct adapter *adapter)
3959 {
3960         static const struct intr_info cplsw_intr_info[] = {
3961                 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
3962                 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
3963                 { F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
3964                 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
3965                 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
3966                 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
3967                 { 0 }
3968         };
3969
3970         if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
3971                 t4_fatal_err(adapter);
3972 }
3973
3974 /*
3975  * LE interrupt handler.
3976  */
3977 static void le_intr_handler(struct adapter *adap)
3978 {
3979         unsigned int chip_ver = chip_id(adap);
3980         static const struct intr_info le_intr_info[] = {
3981                 { F_LIPMISS, "LE LIP miss", -1, 0 },
3982                 { F_LIP0, "LE 0 LIP error", -1, 0 },
3983                 { F_PARITYERR, "LE parity error", -1, 1 },
3984                 { F_UNKNOWNCMD, "LE unknown command", -1, 1 },
3985                 { F_REQQPARERR, "LE request queue parity error", -1, 1 },
3986                 { 0 }
3987         };
3988
3989         static const struct intr_info t6_le_intr_info[] = {
3990                 { F_T6_LIPMISS, "LE LIP miss", -1, 0 },
3991                 { F_T6_LIP0, "LE 0 LIP error", -1, 0 },
3992                 { F_TCAMINTPERR, "LE parity error", -1, 1 },
3993                 { F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
3994                 { F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
3995                 { 0 }
3996         };
3997
3998         if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
3999                                   (chip_ver <= CHELSIO_T5) ?
4000                                   le_intr_info : t6_le_intr_info))
4001                 t4_fatal_err(adap);
4002 }
4003
4004 /*
4005  * MPS interrupt handler.
4006  */
4007 static void mps_intr_handler(struct adapter *adapter)
4008 {
4009         static const struct intr_info mps_rx_intr_info[] = {
4010                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4011                 { 0 }
4012         };
4013         static const struct intr_info mps_tx_intr_info[] = {
4014                 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4015                 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4016                 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4017                   -1, 1 },
4018                 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4019                   -1, 1 },
4020                 { F_BUBBLE, "MPS Tx underflow", -1, 1 },
4021                 { F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4022                 { F_FRMERR, "MPS Tx framing error", -1, 1 },
4023                 { 0 }
4024         };
4025         static const struct intr_info mps_trc_intr_info[] = {
4026                 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4027                 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4028                   1 },
4029                 { F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4030                 { 0 }
4031         };
4032         static const struct intr_info mps_stat_sram_intr_info[] = {
4033                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4034                 { 0 }
4035         };
4036         static const struct intr_info mps_stat_tx_intr_info[] = {
4037                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4038                 { 0 }
4039         };
4040         static const struct intr_info mps_stat_rx_intr_info[] = {
4041                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4042                 { 0 }
4043         };
4044         static const struct intr_info mps_cls_intr_info[] = {
4045                 { F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4046                 { F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4047                 { F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4048                 { 0 }
4049         };
4050
4051         int fat;
4052
4053         fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4054                                     mps_rx_intr_info) +
4055               t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4056                                     mps_tx_intr_info) +
4057               t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4058                                     mps_trc_intr_info) +
4059               t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4060                                     mps_stat_sram_intr_info) +
4061               t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4062                                     mps_stat_tx_intr_info) +
4063               t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4064                                     mps_stat_rx_intr_info) +
4065               t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4066                                     mps_cls_intr_info);
4067
4068         t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4069         t4_read_reg(adapter, A_MPS_INT_CAUSE);  /* flush */
4070         if (fat)
4071                 t4_fatal_err(adapter);
4072 }
4073
4074 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4075                       F_ECC_UE_INT_CAUSE)
4076
4077 /*
4078  * EDC/MC interrupt handler.
4079  */
4080 static void mem_intr_handler(struct adapter *adapter, int idx)
4081 {
4082         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4083
4084         unsigned int addr, cnt_addr, v;
4085
4086         if (idx <= MEM_EDC1) {
4087                 addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4088                 cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4089         } else if (idx == MEM_MC) {
4090                 if (is_t4(adapter)) {
4091                         addr = A_MC_INT_CAUSE;
4092                         cnt_addr = A_MC_ECC_STATUS;
4093                 } else {
4094                         addr = A_MC_P_INT_CAUSE;
4095                         cnt_addr = A_MC_P_ECC_STATUS;
4096                 }
4097         } else {
4098                 addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4099                 cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4100         }
4101
4102         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4103         if (v & F_PERR_INT_CAUSE)
4104                 CH_ALERT(adapter, "%s FIFO parity error\n",
4105                           name[idx]);
4106         if (v & F_ECC_CE_INT_CAUSE) {
4107                 u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4108
4109                 t4_edc_err_read(adapter, idx);
4110
4111                 t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4112                 CH_WARN_RATELIMIT(adapter,
4113                                   "%u %s correctable ECC data error%s\n",
4114                                   cnt, name[idx], cnt > 1 ? "s" : "");
4115         }
4116         if (v & F_ECC_UE_INT_CAUSE)
4117                 CH_ALERT(adapter,
4118                          "%s uncorrectable ECC data error\n", name[idx]);
4119
4120         t4_write_reg(adapter, addr, v);
4121         if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4122                 t4_fatal_err(adapter);
4123 }
4124
4125 /*
4126  * MA interrupt handler.
4127  */
4128 static void ma_intr_handler(struct adapter *adapter)
4129 {
4130         u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4131
4132         if (status & F_MEM_PERR_INT_CAUSE) {
4133                 CH_ALERT(adapter,
4134                           "MA parity error, parity status %#x\n",
4135                           t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4136                 if (is_t5(adapter))
4137                         CH_ALERT(adapter,
4138                                   "MA parity error, parity status %#x\n",
4139                                   t4_read_reg(adapter,
4140                                               A_MA_PARITY_ERROR_STATUS2));
4141         }
4142         if (status & F_MEM_WRAP_INT_CAUSE) {
4143                 v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4144                 CH_ALERT(adapter, "MA address wrap-around error by "
4145                           "client %u to address %#x\n",
4146                           G_MEM_WRAP_CLIENT_NUM(v),
4147                           G_MEM_WRAP_ADDRESS(v) << 4);
4148         }
4149         t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4150         t4_fatal_err(adapter);
4151 }
4152
4153 /*
4154  * SMB interrupt handler.
4155  */
4156 static void smb_intr_handler(struct adapter *adap)
4157 {
4158         static const struct intr_info smb_intr_info[] = {
4159                 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4160                 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4161                 { F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4162                 { 0 }
4163         };
4164
4165         if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4166                 t4_fatal_err(adap);
4167 }
4168
4169 /*
4170  * NC-SI interrupt handler.
4171  */
4172 static void ncsi_intr_handler(struct adapter *adap)
4173 {
4174         static const struct intr_info ncsi_intr_info[] = {
4175                 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4176                 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4177                 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4178                 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4179                 { 0 }
4180         };
4181
4182         if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4183                 t4_fatal_err(adap);
4184 }
4185
4186 /*
4187  * XGMAC interrupt handler.
4188  */
4189 static void xgmac_intr_handler(struct adapter *adap, int port)
4190 {
4191         u32 v, int_cause_reg;
4192
4193         if (is_t4(adap))
4194                 int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4195         else
4196                 int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4197
4198         v = t4_read_reg(adap, int_cause_reg);
4199
4200         v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4201         if (!v)
4202                 return;
4203
4204         if (v & F_TXFIFO_PRTY_ERR)
4205                 CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4206                           port);
4207         if (v & F_RXFIFO_PRTY_ERR)
4208                 CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4209                           port);
4210         t4_write_reg(adap, int_cause_reg, v);
4211         t4_fatal_err(adap);
4212 }
4213
4214 /*
4215  * PL interrupt handler.
4216  */
4217 static void pl_intr_handler(struct adapter *adap)
4218 {
4219         static const struct intr_info pl_intr_info[] = {
4220                 { F_FATALPERR, "Fatal parity error", -1, 1 },
4221                 { F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4222                 { 0 }
4223         };
4224
4225         static const struct intr_info t5_pl_intr_info[] = {
4226                 { F_FATALPERR, "Fatal parity error", -1, 1 },
4227                 { 0 }
4228         };
4229
4230         if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4231                                   is_t4(adap) ?
4232                                   pl_intr_info : t5_pl_intr_info))
4233                 t4_fatal_err(adap);
4234 }
4235
4236 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4237
4238 /**
4239  *      t4_slow_intr_handler - control path interrupt handler
4240  *      @adapter: the adapter
4241  *
4242  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4243  *      The designation 'slow' is because it involves register reads, while
4244  *      data interrupts typically don't involve any MMIOs.
4245  */
4246 int t4_slow_intr_handler(struct adapter *adapter)
4247 {
4248         u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4249
4250         if (!(cause & GLBL_INTR_MASK))
4251                 return 0;
4252         if (cause & F_CIM)
4253                 cim_intr_handler(adapter);
4254         if (cause & F_MPS)
4255                 mps_intr_handler(adapter);
4256         if (cause & F_NCSI)
4257                 ncsi_intr_handler(adapter);
4258         if (cause & F_PL)
4259                 pl_intr_handler(adapter);
4260         if (cause & F_SMB)
4261                 smb_intr_handler(adapter);
4262         if (cause & F_MAC0)
4263                 xgmac_intr_handler(adapter, 0);
4264         if (cause & F_MAC1)
4265                 xgmac_intr_handler(adapter, 1);
4266         if (cause & F_MAC2)
4267                 xgmac_intr_handler(adapter, 2);
4268         if (cause & F_MAC3)
4269                 xgmac_intr_handler(adapter, 3);
4270         if (cause & F_PCIE)
4271                 pcie_intr_handler(adapter);
4272         if (cause & F_MC0)
4273                 mem_intr_handler(adapter, MEM_MC);
4274         if (is_t5(adapter) && (cause & F_MC1))
4275                 mem_intr_handler(adapter, MEM_MC1);
4276         if (cause & F_EDC0)
4277                 mem_intr_handler(adapter, MEM_EDC0);
4278         if (cause & F_EDC1)
4279                 mem_intr_handler(adapter, MEM_EDC1);
4280         if (cause & F_LE)
4281                 le_intr_handler(adapter);
4282         if (cause & F_TP)
4283                 tp_intr_handler(adapter);
4284         if (cause & F_MA)
4285                 ma_intr_handler(adapter);
4286         if (cause & F_PM_TX)
4287                 pmtx_intr_handler(adapter);
4288         if (cause & F_PM_RX)
4289                 pmrx_intr_handler(adapter);
4290         if (cause & F_ULP_RX)
4291                 ulprx_intr_handler(adapter);
4292         if (cause & F_CPL_SWITCH)
4293                 cplsw_intr_handler(adapter);
4294         if (cause & F_SGE)
4295                 sge_intr_handler(adapter);
4296         if (cause & F_ULP_TX)
4297                 ulptx_intr_handler(adapter);
4298
4299         /* Clear the interrupts just processed for which we are the master. */
4300         t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4301         (void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4302         return 1;
4303 }
4304
4305 /**
4306  *      t4_intr_enable - enable interrupts
4307  *      @adapter: the adapter whose interrupts should be enabled
4308  *
4309  *      Enable PF-specific interrupts for the calling function and the top-level
4310  *      interrupt concentrator for global interrupts.  Interrupts are already
4311  *      enabled at each module, here we just enable the roots of the interrupt
4312  *      hierarchies.
4313  *
4314  *      Note: this function should be called only when the driver manages
4315  *      non PF-specific interrupts from the various HW modules.  Only one PCI
4316  *      function at a time should be doing this.
4317  */
4318 void t4_intr_enable(struct adapter *adapter)
4319 {
4320         u32 val = 0;
4321         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4322         u32 pf = (chip_id(adapter) <= CHELSIO_T5
4323                   ? G_SOURCEPF(whoami)
4324                   : G_T6_SOURCEPF(whoami));
4325
4326         if (chip_id(adapter) <= CHELSIO_T5)
4327                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4328         else
4329                 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4330         t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4331                      F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4332                      F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4333                      F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4334                      F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4335                      F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4336                      F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4337         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4338         t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4339 }
4340
4341 /**
4342  *      t4_intr_disable - disable interrupts
4343  *      @adapter: the adapter whose interrupts should be disabled
4344  *
4345  *      Disable interrupts.  We only disable the top-level interrupt
4346  *      concentrators.  The caller must be a PCI function managing global
4347  *      interrupts.
4348  */
4349 void t4_intr_disable(struct adapter *adapter)
4350 {
4351         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4352         u32 pf = (chip_id(adapter) <= CHELSIO_T5
4353                   ? G_SOURCEPF(whoami)
4354                   : G_T6_SOURCEPF(whoami));
4355
4356         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4357         t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4358 }
4359
4360 /**
4361  *      t4_intr_clear - clear all interrupts
4362  *      @adapter: the adapter whose interrupts should be cleared
4363  *
4364  *      Clears all interrupts.  The caller must be a PCI function managing
4365  *      global interrupts.
4366  */
4367 void t4_intr_clear(struct adapter *adapter)
4368 {
4369         static const unsigned int cause_reg[] = {
4370                 A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4371                 A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4372                 A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4373                 A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4374                 A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4375                 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4376                 A_TP_INT_CAUSE,
4377                 A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4378                 A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4379                 A_MPS_RX_PERR_INT_CAUSE,
4380                 A_CPL_INTR_CAUSE,
4381                 MYPF_REG(A_PL_PF_INT_CAUSE),
4382                 A_PL_PL_INT_CAUSE,
4383                 A_LE_DB_INT_CAUSE,
4384         };
4385
4386         unsigned int i;
4387
4388         for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4389                 t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4390
4391         t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4392                                 A_MC_P_INT_CAUSE, 0xffffffff);
4393
4394         if (is_t4(adapter)) {
4395                 t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4396                                 0xffffffff);
4397                 t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4398                                 0xffffffff);
4399         } else
4400                 t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4401
4402         t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4403         (void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4404 }
4405
4406 /**
4407  *      hash_mac_addr - return the hash value of a MAC address
4408  *      @addr: the 48-bit Ethernet MAC address
4409  *
4410  *      Hashes a MAC address according to the hash function used by HW inexact
4411  *      (hash) address matching.
4412  */
4413 static int hash_mac_addr(const u8 *addr)
4414 {
4415         u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4416         u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4417         a ^= b;
4418         a ^= (a >> 12);
4419         a ^= (a >> 6);
4420         return a & 0x3f;
4421 }
4422
4423 /**
4424  *      t4_config_rss_range - configure a portion of the RSS mapping table
4425  *      @adapter: the adapter
4426  *      @mbox: mbox to use for the FW command
4427  *      @viid: virtual interface whose RSS subtable is to be written
4428  *      @start: start entry in the table to write
4429  *      @n: how many table entries to write
4430  *      @rspq: values for the "response queue" (Ingress Queue) lookup table
4431  *      @nrspq: number of values in @rspq
4432  *
4433  *      Programs the selected part of the VI's RSS mapping table with the
4434  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
4435  *      until the full table range is populated.
4436  *
4437  *      The caller must ensure the values in @rspq are in the range allowed for
4438  *      @viid.
4439  */
4440 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4441                         int start, int n, const u16 *rspq, unsigned int nrspq)
4442 {
4443         int ret;
4444         const u16 *rsp = rspq;
4445         const u16 *rsp_end = rspq + nrspq;
4446         struct fw_rss_ind_tbl_cmd cmd;
4447
4448         memset(&cmd, 0, sizeof(cmd));
4449         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4450                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4451                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
4452         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4453
4454         /*
4455          * Each firmware RSS command can accommodate up to 32 RSS Ingress
4456          * Queue Identifiers.  These Ingress Queue IDs are packed three to
4457          * a 32-bit word as 10-bit values with the upper remaining 2 bits
4458          * reserved.
4459          */
4460         while (n > 0) {
4461                 int nq = min(n, 32);
4462                 int nq_packed = 0;
4463                 __be32 *qp = &cmd.iq0_to_iq2;
4464
4465                 /*
4466                  * Set up the firmware RSS command header to send the next
4467                  * "nq" Ingress Queue IDs to the firmware.
4468                  */
4469                 cmd.niqid = cpu_to_be16(nq);
4470                 cmd.startidx = cpu_to_be16(start);
4471
4472                 /*
4473                  * "nq" more done for the start of the next loop.
4474                  */
4475                 start += nq;
4476                 n -= nq;
4477
4478                 /*
4479                  * While there are still Ingress Queue IDs to stuff into the
4480                  * current firmware RSS command, retrieve them from the
4481                  * Ingress Queue ID array and insert them into the command.
4482                  */
4483                 while (nq > 0) {
4484                         /*
4485                          * Grab up to the next 3 Ingress Queue IDs (wrapping
4486                          * around the Ingress Queue ID array if necessary) and
4487                          * insert them into the firmware RSS command at the
4488                          * current 3-tuple position within the commad.
4489                          */
4490                         u16 qbuf[3];
4491                         u16 *qbp = qbuf;
4492                         int nqbuf = min(3, nq);
4493
4494                         nq -= nqbuf;
4495                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
4496                         while (nqbuf && nq_packed < 32) {
4497                                 nqbuf--;
4498                                 nq_packed++;
4499                                 *qbp++ = *rsp++;
4500                                 if (rsp >= rsp_end)
4501                                         rsp = rspq;
4502                         }
4503                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4504                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4505                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4506                 }
4507
4508                 /*
4509                  * Send this portion of the RRS table update to the firmware;
4510                  * bail out on any errors.
4511                  */
4512                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4513                 if (ret)
4514                         return ret;
4515         }
4516         return 0;
4517 }
4518
4519 /**
4520  *      t4_config_glbl_rss - configure the global RSS mode
4521  *      @adapter: the adapter
4522  *      @mbox: mbox to use for the FW command
4523  *      @mode: global RSS mode
4524  *      @flags: mode-specific flags
4525  *
4526  *      Sets the global RSS mode.
4527  */
4528 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4529                        unsigned int flags)
4530 {
4531         struct fw_rss_glb_config_cmd c;
4532
4533         memset(&c, 0, sizeof(c));
4534         c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4535                                     F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4536         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4537         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4538                 c.u.manual.mode_pkd =
4539                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4540         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4541                 c.u.basicvirtual.mode_pkd =
4542                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4543                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4544         } else
4545                 return -EINVAL;
4546         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4547 }
4548
4549 /**
4550  *      t4_config_vi_rss - configure per VI RSS settings
4551  *      @adapter: the adapter
4552  *      @mbox: mbox to use for the FW command
4553  *      @viid: the VI id
4554  *      @flags: RSS flags
4555  *      @defq: id of the default RSS queue for the VI.
4556  *
4557  *      Configures VI-specific RSS properties.
4558  */
4559 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4560                      unsigned int flags, unsigned int defq)
4561 {
4562         struct fw_rss_vi_config_cmd c;
4563
4564         memset(&c, 0, sizeof(c));
4565         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4566                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4567                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4568         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4569         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4570                                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4571         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4572 }
4573
4574 /* Read an RSS table row */
4575 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4576 {
4577         t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4578         return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4579                                    5, 0, val);
4580 }
4581
4582 /**
4583  *      t4_read_rss - read the contents of the RSS mapping table
4584  *      @adapter: the adapter
4585  *      @map: holds the contents of the RSS mapping table
4586  *
4587  *      Reads the contents of the RSS hash->queue mapping table.
4588  */
4589 int t4_read_rss(struct adapter *adapter, u16 *map)
4590 {
4591         u32 val;
4592         int i, ret;
4593
4594         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4595                 ret = rd_rss_row(adapter, i, &val);
4596                 if (ret)
4597                         return ret;
4598                 *map++ = G_LKPTBLQUEUE0(val);
4599                 *map++ = G_LKPTBLQUEUE1(val);
4600         }
4601         return 0;
4602 }
4603
4604 /**
4605  *      t4_fw_tp_pio_rw - Access TP PIO through LDST
4606  *      @adap: the adapter
4607  *      @vals: where the indirect register values are stored/written
4608  *      @nregs: how many indirect registers to read/write
4609  *      @start_idx: index of first indirect register to read/write
4610  *      @rw: Read (1) or Write (0)
4611  *
4612  *      Access TP PIO registers through LDST
4613  */
4614 void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4615                      unsigned int start_index, unsigned int rw)
4616 {
4617         int ret, i;
4618         int cmd = FW_LDST_ADDRSPC_TP_PIO;
4619         struct fw_ldst_cmd c;
4620
4621         for (i = 0 ; i < nregs; i++) {
4622                 memset(&c, 0, sizeof(c));
4623                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4624                                                 F_FW_CMD_REQUEST |
4625                                                 (rw ? F_FW_CMD_READ :
4626                                                      F_FW_CMD_WRITE) |
4627                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
4628                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4629
4630                 c.u.addrval.addr = cpu_to_be32(start_index + i);
4631                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4632                 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4633                 if (ret == 0) {
4634                         if (rw)
4635                                 vals[i] = be32_to_cpu(c.u.addrval.val);
4636                 }
4637         }
4638 }
4639
4640 /**
4641  *      t4_read_rss_key - read the global RSS key
4642  *      @adap: the adapter
4643  *      @key: 10-entry array holding the 320-bit RSS key
4644  *
4645  *      Reads the global 320-bit RSS key.
4646  */
4647 void t4_read_rss_key(struct adapter *adap, u32 *key)
4648 {
4649         if (t4_use_ldst(adap))
4650                 t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
4651         else
4652                 t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4653                                  A_TP_RSS_SECRET_KEY0);
4654 }
4655
4656 /**
4657  *      t4_write_rss_key - program one of the RSS keys
4658  *      @adap: the adapter
4659  *      @key: 10-entry array holding the 320-bit RSS key
4660  *      @idx: which RSS key to write
4661  *
4662  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
4663  *      0..15 the corresponding entry in the RSS key table is written,
4664  *      otherwise the global RSS key is written.
4665  */
4666 void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
4667 {
4668         u8 rss_key_addr_cnt = 16;
4669         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
4670
4671         /*
4672          * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4673          * allows access to key addresses 16-63 by using KeyWrAddrX
4674          * as index[5:4](upper 2) into key table
4675          */
4676         if ((chip_id(adap) > CHELSIO_T5) &&
4677             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
4678                 rss_key_addr_cnt = 32;
4679
4680         if (t4_use_ldst(adap))
4681                 t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
4682         else
4683                 t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4684                                   A_TP_RSS_SECRET_KEY0);
4685
4686         if (idx >= 0 && idx < rss_key_addr_cnt) {
4687                 if (rss_key_addr_cnt > 16)
4688                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4689                                      V_KEYWRADDRX(idx >> 4) |
4690                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
4691                 else
4692                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4693                                      V_KEYWRADDR(idx) | F_KEYWREN);
4694         }
4695 }
4696
4697 /**
4698  *      t4_read_rss_pf_config - read PF RSS Configuration Table
4699  *      @adapter: the adapter
4700  *      @index: the entry in the PF RSS table to read
4701  *      @valp: where to store the returned value
4702  *
4703  *      Reads the PF RSS Configuration Table at the specified index and returns
4704  *      the value found there.
4705  */
4706 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4707                            u32 *valp)
4708 {
4709         if (t4_use_ldst(adapter))
4710                 t4_fw_tp_pio_rw(adapter, valp, 1,
4711                                 A_TP_RSS_PF0_CONFIG + index, 1);
4712         else
4713                 t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4714                                  valp, 1, A_TP_RSS_PF0_CONFIG + index);
4715 }
4716
4717 /**
4718  *      t4_write_rss_pf_config - write PF RSS Configuration Table
4719  *      @adapter: the adapter
4720  *      @index: the entry in the VF RSS table to read
4721  *      @val: the value to store
4722  *
4723  *      Writes the PF RSS Configuration Table at the specified index with the
4724  *      specified value.
4725  */
4726 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
4727                             u32 val)
4728 {
4729         if (t4_use_ldst(adapter))
4730                 t4_fw_tp_pio_rw(adapter, &val, 1,
4731                                 A_TP_RSS_PF0_CONFIG + index, 0);
4732         else
4733                 t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4734                                   &val, 1, A_TP_RSS_PF0_CONFIG + index);
4735 }
4736
4737 /**
4738  *      t4_read_rss_vf_config - read VF RSS Configuration Table
4739  *      @adapter: the adapter
4740  *      @index: the entry in the VF RSS table to read
4741  *      @vfl: where to store the returned VFL
4742  *      @vfh: where to store the returned VFH
4743  *
4744  *      Reads the VF RSS Configuration Table at the specified index and returns
4745  *      the (VFL, VFH) values found there.
4746  */
4747 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4748                            u32 *vfl, u32 *vfh)
4749 {
4750         u32 vrt, mask, data;
4751
4752         if (chip_id(adapter) <= CHELSIO_T5) {
4753                 mask = V_VFWRADDR(M_VFWRADDR);
4754                 data = V_VFWRADDR(index);
4755         } else {
4756                  mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4757                  data = V_T6_VFWRADDR(index);
4758         }
4759         /*
4760          * Request that the index'th VF Table values be read into VFL/VFH.
4761          */
4762         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4763         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4764         vrt |= data | F_VFRDEN;
4765         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4766
4767         /*
4768          * Grab the VFL/VFH values ...
4769          */
4770         if (t4_use_ldst(adapter)) {
4771                 t4_fw_tp_pio_rw(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, 1);
4772                 t4_fw_tp_pio_rw(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, 1);
4773         } else {
4774                 t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4775                                  vfl, 1, A_TP_RSS_VFL_CONFIG);
4776                 t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4777                                  vfh, 1, A_TP_RSS_VFH_CONFIG);
4778         }
4779 }
4780
4781 /**
4782  *      t4_write_rss_vf_config - write VF RSS Configuration Table
4783  *
4784  *      @adapter: the adapter
4785  *      @index: the entry in the VF RSS table to write
4786  *      @vfl: the VFL to store
4787  *      @vfh: the VFH to store
4788  *
4789  *      Writes the VF RSS Configuration Table at the specified index with the
4790  *      specified (VFL, VFH) values.
4791  */
4792 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
4793                             u32 vfl, u32 vfh)
4794 {
4795         u32 vrt, mask, data;
4796
4797         if (chip_id(adapter) <= CHELSIO_T5) {
4798                 mask = V_VFWRADDR(M_VFWRADDR);
4799                 data = V_VFWRADDR(index);
4800         } else {
4801                 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4802                 data = V_T6_VFWRADDR(index);
4803         }
4804
4805         /*
4806          * Load up VFL/VFH with the values to be written ...
4807          */
4808         if (t4_use_ldst(adapter)) {
4809                 t4_fw_tp_pio_rw(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, 0);
4810                 t4_fw_tp_pio_rw(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, 0);
4811         } else {
4812                 t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4813                                   &vfl, 1, A_TP_RSS_VFL_CONFIG);
4814                 t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4815                                   &vfh, 1, A_TP_RSS_VFH_CONFIG);
4816         }
4817
4818         /*
4819          * Write the VFL/VFH into the VF Table at index'th location.
4820          */
4821         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4822         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4823         vrt |= data | F_VFRDEN;
4824         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4825 }
4826
4827 /**
4828  *      t4_read_rss_pf_map - read PF RSS Map
4829  *      @adapter: the adapter
4830  *
4831  *      Reads the PF RSS Map register and returns its value.
4832  */
4833 u32 t4_read_rss_pf_map(struct adapter *adapter)
4834 {
4835         u32 pfmap;
4836
4837         if (t4_use_ldst(adapter))
4838                 t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 1);
4839         else
4840                 t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4841                                  &pfmap, 1, A_TP_RSS_PF_MAP);
4842         return pfmap;
4843 }
4844
4845 /**
4846  *      t4_write_rss_pf_map - write PF RSS Map
4847  *      @adapter: the adapter
4848  *      @pfmap: PF RSS Map value
4849  *
4850  *      Writes the specified value to the PF RSS Map register.
4851  */
4852 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
4853 {
4854         if (t4_use_ldst(adapter))
4855                 t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 0);
4856         else
4857                 t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4858                                   &pfmap, 1, A_TP_RSS_PF_MAP);
4859 }
4860
4861 /**
4862  *      t4_read_rss_pf_mask - read PF RSS Mask
4863  *      @adapter: the adapter
4864  *
4865  *      Reads the PF RSS Mask register and returns its value.
4866  */
4867 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4868 {
4869         u32 pfmask;
4870
4871         if (t4_use_ldst(adapter))
4872                 t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 1);
4873         else
4874                 t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4875                                  &pfmask, 1, A_TP_RSS_PF_MSK);
4876         return pfmask;
4877 }
4878
4879 /**
4880  *      t4_write_rss_pf_mask - write PF RSS Mask
4881  *      @adapter: the adapter
4882  *      @pfmask: PF RSS Mask value
4883  *
4884  *      Writes the specified value to the PF RSS Mask register.
4885  */
4886 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
4887 {
4888         if (t4_use_ldst(adapter))
4889                 t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 0);
4890         else
4891                 t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4892                                   &pfmask, 1, A_TP_RSS_PF_MSK);
4893 }
4894
4895 /**
4896  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
4897  *      @adap: the adapter
4898  *      @v4: holds the TCP/IP counter values
4899  *      @v6: holds the TCP/IPv6 counter values
4900  *
4901  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4902  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4903  */
4904 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4905                          struct tp_tcp_stats *v6)
4906 {
4907         u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
4908
4909 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
4910 #define STAT(x)     val[STAT_IDX(x)]
4911 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4912
4913         if (v4) {
4914                 t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
4915                                  ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
4916                 v4->tcp_out_rsts = STAT(OUT_RST);
4917                 v4->tcp_in_segs  = STAT64(IN_SEG);
4918                 v4->tcp_out_segs = STAT64(OUT_SEG);
4919                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
4920         }
4921         if (v6) {
4922                 t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
4923                                  ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
4924                 v6->tcp_out_rsts = STAT(OUT_RST);
4925                 v6->tcp_in_segs  = STAT64(IN_SEG);
4926                 v6->tcp_out_segs = STAT64(OUT_SEG);
4927                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
4928         }
4929 #undef STAT64
4930 #undef STAT
4931 #undef STAT_IDX
4932 }
4933
4934 /**
4935  *      t4_tp_get_err_stats - read TP's error MIB counters
4936  *      @adap: the adapter
4937  *      @st: holds the counter values
4938  *
4939  *      Returns the values of TP's error counters.
4940  */
4941 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4942 {
4943         int nchan = adap->chip_params->nchan;
4944
4945         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4946                         st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0);
4947         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4948                         st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0);
4949         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4950                         st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0);
4951         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4952                         st->tnl_cong_drops, nchan, A_TP_MIB_TNL_CNG_DROP_0);
4953         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4954                         st->ofld_chan_drops, nchan, A_TP_MIB_OFD_CHN_DROP_0);
4955         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4956                         st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0);
4957         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4958                         st->ofld_vlan_drops, nchan, A_TP_MIB_OFD_VLN_DROP_0);
4959         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4960                         st->tcp6_in_errs, nchan, A_TP_MIB_TCP_V6IN_ERR_0);
4961
4962         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
4963                          &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP);
4964 }
4965
4966 /**
4967  *      t4_tp_get_proxy_stats - read TP's proxy MIB counters
4968  *      @adap: the adapter
4969  *      @st: holds the counter values
4970  *
4971  *      Returns the values of TP's proxy counters.
4972  */
4973 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
4974 {
4975         int nchan = adap->chip_params->nchan;
4976
4977         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
4978                          nchan, A_TP_MIB_TNL_LPBK_0);
4979 }
4980
4981 /**
4982  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
4983  *      @adap: the adapter
4984  *      @st: holds the counter values
4985  *
4986  *      Returns the values of TP's CPL counters.
4987  */
4988 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4989 {
4990         int nchan = adap->chip_params->nchan;
4991
4992         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
4993                          nchan, A_TP_MIB_CPL_IN_REQ_0);
4994         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->rsp,
4995                          nchan, A_TP_MIB_CPL_OUT_RSP_0);
4996 }
4997
4998 /**
4999  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5000  *      @adap: the adapter
5001  *      @st: holds the counter values
5002  *
5003  *      Returns the values of TP's RDMA counters.
5004  */
5005 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5006 {
5007         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_pkt,
5008                          2, A_TP_MIB_RQE_DFR_PKT);
5009 }
5010
5011 /**
5012  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5013  *      @adap: the adapter
5014  *      @idx: the port index
5015  *      @st: holds the counter values
5016  *
5017  *      Returns the values of TP's FCoE counters for the selected port.
5018  */
5019 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5020                        struct tp_fcoe_stats *st)
5021 {
5022         u32 val[2];
5023
5024         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_ddp,
5025                          1, A_TP_MIB_FCOE_DDP_0 + idx);
5026         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_drop,
5027                          1, A_TP_MIB_FCOE_DROP_0 + idx);
5028         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5029                          2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
5030         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5031 }
5032
5033 /**
5034  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5035  *      @adap: the adapter
5036  *      @st: holds the counter values
5037  *
5038  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5039  */
5040 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5041 {
5042         u32 val[4];
5043
5044         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
5045                          A_TP_MIB_USM_PKTS);
5046         st->frames = val[0];
5047         st->drops = val[1];
5048         st->octets = ((u64)val[2] << 32) | val[3];
5049 }
5050
5051 /**
5052  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5053  *      @adap: the adapter
5054  *      @mtus: where to store the MTU values
5055  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5056  *
5057  *      Reads the HW path MTU table.
5058  */
5059 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5060 {
5061         u32 v;
5062         int i;
5063
5064         for (i = 0; i < NMTUS; ++i) {
5065                 t4_write_reg(adap, A_TP_MTU_TABLE,
5066                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
5067                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
5068                 mtus[i] = G_MTUVALUE(v);
5069                 if (mtu_log)
5070                         mtu_log[i] = G_MTUWIDTH(v);
5071         }
5072 }
5073
5074 /**
5075  *      t4_read_cong_tbl - reads the congestion control table
5076  *      @adap: the adapter
5077  *      @incr: where to store the alpha values
5078  *
5079  *      Reads the additive increments programmed into the HW congestion
5080  *      control table.
5081  */
5082 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5083 {
5084         unsigned int mtu, w;
5085
5086         for (mtu = 0; mtu < NMTUS; ++mtu)
5087                 for (w = 0; w < NCCTRL_WIN; ++w) {
5088                         t4_write_reg(adap, A_TP_CCTRL_TABLE,
5089                                      V_ROWINDEX(0xffff) | (mtu << 5) | w);
5090                         incr[mtu][w] = (u16)t4_read_reg(adap,
5091                                                 A_TP_CCTRL_TABLE) & 0x1fff;
5092                 }
5093 }
5094
5095 /**
5096  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5097  *      @adap: the adapter
5098  *      @addr: the indirect TP register address
5099  *      @mask: specifies the field within the register to modify
5100  *      @val: new value for the field
5101  *
5102  *      Sets a field of an indirect TP register to the given value.
5103  */
5104 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5105                             unsigned int mask, unsigned int val)
5106 {
5107         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5108         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5109         t4_write_reg(adap, A_TP_PIO_DATA, val);
5110 }
5111
5112 /**
5113  *      init_cong_ctrl - initialize congestion control parameters
5114  *      @a: the alpha values for congestion control
5115  *      @b: the beta values for congestion control
5116  *
5117  *      Initialize the congestion control parameters.
5118  */
5119 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5120 {
5121         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5122         a[9] = 2;
5123         a[10] = 3;
5124         a[11] = 4;
5125         a[12] = 5;
5126         a[13] = 6;
5127         a[14] = 7;
5128         a[15] = 8;
5129         a[16] = 9;
5130         a[17] = 10;
5131         a[18] = 14;
5132         a[19] = 17;
5133         a[20] = 21;
5134         a[21] = 25;
5135         a[22] = 30;
5136         a[23] = 35;
5137         a[24] = 45;
5138         a[25] = 60;
5139         a[26] = 80;
5140         a[27] = 100;
5141         a[28] = 200;
5142         a[29] = 300;
5143         a[30] = 400;
5144         a[31] = 500;
5145
5146         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5147         b[9] = b[10] = 1;
5148         b[11] = b[12] = 2;
5149         b[13] = b[14] = b[15] = b[16] = 3;
5150         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5151         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5152         b[28] = b[29] = 6;
5153         b[30] = b[31] = 7;
5154 }
5155
5156 /* The minimum additive increment value for the congestion control table */
5157 #define CC_MIN_INCR 2U
5158
5159 /**
5160  *      t4_load_mtus - write the MTU and congestion control HW tables
5161  *      @adap: the adapter
5162  *      @mtus: the values for the MTU table
5163  *      @alpha: the values for the congestion control alpha parameter
5164  *      @beta: the values for the congestion control beta parameter
5165  *
5166  *      Write the HW MTU table with the supplied MTUs and the high-speed
5167  *      congestion control table with the supplied alpha, beta, and MTUs.
5168  *      We write the two tables together because the additive increments
5169  *      depend on the MTUs.
5170  */
5171 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5172                   const unsigned short *alpha, const unsigned short *beta)
5173 {
5174         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5175                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5176                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5177                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5178         };
5179
5180         unsigned int i, w;
5181
5182         for (i = 0; i < NMTUS; ++i) {
5183                 unsigned int mtu = mtus[i];
5184                 unsigned int log2 = fls(mtu);
5185
5186                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5187                         log2--;
5188                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5189                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5190
5191                 for (w = 0; w < NCCTRL_WIN; ++w) {
5192                         unsigned int inc;
5193
5194                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5195                                   CC_MIN_INCR);
5196
5197                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5198                                      (w << 16) | (beta[w] << 13) | inc);
5199                 }
5200         }
5201 }
5202
5203 /**
5204  *      t4_set_pace_tbl - set the pace table
5205  *      @adap: the adapter
5206  *      @pace_vals: the pace values in microseconds
5207  *      @start: index of the first entry in the HW pace table to set
5208  *      @n: how many entries to set
5209  *
5210  *      Sets (a subset of the) HW pace table.
5211  */
5212 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5213                      unsigned int start, unsigned int n)
5214 {
5215         unsigned int vals[NTX_SCHED], i;
5216         unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5217
5218         if (n > NTX_SCHED)
5219             return -ERANGE;
5220
5221         /* convert values from us to dack ticks, rounding to closest value */
5222         for (i = 0; i < n; i++, pace_vals++) {
5223                 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5224                 if (vals[i] > 0x7ff)
5225                         return -ERANGE;
5226                 if (*pace_vals && vals[i] == 0)
5227                         return -ERANGE;
5228         }
5229         for (i = 0; i < n; i++, start++)
5230                 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5231         return 0;
5232 }
5233
5234 /**
5235  *      t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5236  *      @adap: the adapter
5237  *      @kbps: target rate in Kbps
5238  *      @sched: the scheduler index
5239  *
5240  *      Configure a Tx HW scheduler for the target rate.
5241  */
5242 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5243 {
5244         unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5245         unsigned int clk = adap->params.vpd.cclk * 1000;
5246         unsigned int selected_cpt = 0, selected_bpt = 0;
5247
5248         if (kbps > 0) {
5249                 kbps *= 125;     /* -> bytes */
5250                 for (cpt = 1; cpt <= 255; cpt++) {
5251                         tps = clk / cpt;
5252                         bpt = (kbps + tps / 2) / tps;
5253                         if (bpt > 0 && bpt <= 255) {
5254                                 v = bpt * tps;
5255                                 delta = v >= kbps ? v - kbps : kbps - v;
5256                                 if (delta < mindelta) {
5257                                         mindelta = delta;
5258                                         selected_cpt = cpt;
5259                                         selected_bpt = bpt;
5260                                 }
5261                         } else if (selected_cpt)
5262                                 break;
5263                 }
5264                 if (!selected_cpt)
5265                         return -EINVAL;
5266         }
5267         t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5268                      A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5269         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5270         if (sched & 1)
5271                 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5272         else
5273                 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5274         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5275         return 0;
5276 }
5277
5278 /**
5279  *      t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5280  *      @adap: the adapter
5281  *      @sched: the scheduler index
5282  *      @ipg: the interpacket delay in tenths of nanoseconds
5283  *
5284  *      Set the interpacket delay for a HW packet rate scheduler.
5285  */
5286 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5287 {
5288         unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5289
5290         /* convert ipg to nearest number of core clocks */
5291         ipg *= core_ticks_per_usec(adap);
5292         ipg = (ipg + 5000) / 10000;
5293         if (ipg > M_TXTIMERSEPQ0)
5294                 return -EINVAL;
5295
5296         t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5297         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5298         if (sched & 1)
5299                 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5300         else
5301                 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5302         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5303         t4_read_reg(adap, A_TP_TM_PIO_DATA);
5304         return 0;
5305 }
5306
5307 /*
5308  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5309  * clocks.  The formula is
5310  *
5311  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5312  *
5313  * which is equivalent to
5314  *
5315  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5316  */
5317 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5318 {
5319         u64 v = bytes256 * adap->params.vpd.cclk;
5320
5321         return v * 62 + v / 2;
5322 }
5323
5324 /**
5325  *      t4_get_chan_txrate - get the current per channel Tx rates
5326  *      @adap: the adapter
5327  *      @nic_rate: rates for NIC traffic
5328  *      @ofld_rate: rates for offloaded traffic
5329  *
5330  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5331  *      for each channel.
5332  */
5333 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5334 {
5335         u32 v;
5336
5337         v = t4_read_reg(adap, A_TP_TX_TRATE);
5338         nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5339         nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5340         if (adap->chip_params->nchan > 2) {
5341                 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5342                 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5343         }
5344
5345         v = t4_read_reg(adap, A_TP_TX_ORATE);
5346         ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5347         ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5348         if (adap->chip_params->nchan > 2) {
5349                 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5350                 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5351         }
5352 }
5353
5354 /**
5355  *      t4_set_trace_filter - configure one of the tracing filters
5356  *      @adap: the adapter
5357  *      @tp: the desired trace filter parameters
5358  *      @idx: which filter to configure
5359  *      @enable: whether to enable or disable the filter
5360  *
5361  *      Configures one of the tracing filters available in HW.  If @tp is %NULL
5362  *      it indicates that the filter is already written in the register and it
5363  *      just needs to be enabled or disabled.
5364  */
5365 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5366     int idx, int enable)
5367 {
5368         int i, ofst = idx * 4;
5369         u32 data_reg, mask_reg, cfg;
5370         u32 multitrc = F_TRCMULTIFILTER;
5371         u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5372
5373         if (idx < 0 || idx >= NTRACE)
5374                 return -EINVAL;
5375
5376         if (tp == NULL || !enable) {
5377                 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5378                     enable ? en : 0);
5379                 return 0;
5380         }
5381
5382         /*
5383          * TODO - After T4 data book is updated, specify the exact
5384          * section below.
5385          *
5386          * See T4 data book - MPS section for a complete description
5387          * of the below if..else handling of A_MPS_TRC_CFG register
5388          * value.
5389          */
5390         cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5391         if (cfg & F_TRCMULTIFILTER) {
5392                 /*
5393                  * If multiple tracers are enabled, then maximum
5394                  * capture size is 2.5KB (FIFO size of a single channel)
5395                  * minus 2 flits for CPL_TRACE_PKT header.
5396                  */
5397                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5398                         return -EINVAL;
5399         } else {
5400                 /*
5401                  * If multiple tracers are disabled, to avoid deadlocks
5402                  * maximum packet capture size of 9600 bytes is recommended.
5403                  * Also in this mode, only trace0 can be enabled and running.
5404                  */
5405                 multitrc = 0;
5406                 if (tp->snap_len > 9600 || idx)
5407                         return -EINVAL;
5408         }
5409
5410         if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5411             tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5412             tp->min_len > M_TFMINPKTSIZE)
5413                 return -EINVAL;
5414
5415         /* stop the tracer we'll be changing */
5416         t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5417
5418         idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5419         data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5420         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5421
5422         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5423                 t4_write_reg(adap, data_reg, tp->data[i]);
5424                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5425         }
5426         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5427                      V_TFCAPTUREMAX(tp->snap_len) |
5428                      V_TFMINPKTSIZE(tp->min_len));
5429         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5430                      V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5431                      (is_t4(adap) ?
5432                      V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5433                      V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5434
5435         return 0;
5436 }
5437
5438 /**
5439  *      t4_get_trace_filter - query one of the tracing filters
5440  *      @adap: the adapter
5441  *      @tp: the current trace filter parameters
5442  *      @idx: which trace filter to query
5443  *      @enabled: non-zero if the filter is enabled
5444  *
5445  *      Returns the current settings of one of the HW tracing filters.
5446  */
5447 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5448                          int *enabled)
5449 {
5450         u32 ctla, ctlb;
5451         int i, ofst = idx * 4;
5452         u32 data_reg, mask_reg;
5453
5454         ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5455         ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5456
5457         if (is_t4(adap)) {
5458                 *enabled = !!(ctla & F_TFEN);
5459                 tp->port =  G_TFPORT(ctla);
5460                 tp->invert = !!(ctla & F_TFINVERTMATCH);
5461         } else {
5462                 *enabled = !!(ctla & F_T5_TFEN);
5463                 tp->port = G_T5_TFPORT(ctla);
5464                 tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5465         }
5466         tp->snap_len = G_TFCAPTUREMAX(ctlb);
5467         tp->min_len = G_TFMINPKTSIZE(ctlb);
5468         tp->skip_ofst = G_TFOFFSET(ctla);
5469         tp->skip_len = G_TFLENGTH(ctla);
5470
5471         ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5472         data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5473         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5474
5475         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5476                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5477                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5478         }
5479 }
5480
5481 /**
5482  *      t4_pmtx_get_stats - returns the HW stats from PMTX
5483  *      @adap: the adapter
5484  *      @cnt: where to store the count statistics
5485  *      @cycles: where to store the cycle statistics
5486  *
5487  *      Returns performance statistics from PMTX.
5488  */
5489 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5490 {
5491         int i;
5492         u32 data[2];
5493
5494         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5495                 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5496                 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5497                 if (is_t4(adap))
5498                         cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5499                 else {
5500                         t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5501                                          A_PM_TX_DBG_DATA, data, 2,
5502                                          A_PM_TX_DBG_STAT_MSB);
5503                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5504                 }
5505         }
5506 }
5507
5508 /**
5509  *      t4_pmrx_get_stats - returns the HW stats from PMRX
5510  *      @adap: the adapter
5511  *      @cnt: where to store the count statistics
5512  *      @cycles: where to store the cycle statistics
5513  *
5514  *      Returns performance statistics from PMRX.
5515  */
5516 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5517 {
5518         int i;
5519         u32 data[2];
5520
5521         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5522                 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5523                 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5524                 if (is_t4(adap)) {
5525                         cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5526                 } else {
5527                         t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5528                                          A_PM_RX_DBG_DATA, data, 2,
5529                                          A_PM_RX_DBG_STAT_MSB);
5530                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5531                 }
5532         }
5533 }
5534
5535 /**
5536  *      t4_get_mps_bg_map - return the buffer groups associated with a port
5537  *      @adap: the adapter
5538  *      @idx: the port index
5539  *
5540  *      Returns a bitmap indicating which MPS buffer groups are associated
5541  *      with the given port.  Bit i is set if buffer group i is used by the
5542  *      port.
5543  */
5544 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5545 {
5546         u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5547
5548         if (n == 0)
5549                 return idx == 0 ? 0xf : 0;
5550         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5551                 return idx < 2 ? (3 << (2 * idx)) : 0;
5552         return 1 << idx;
5553 }
5554
5555 /**
5556  *      t4_get_port_type_description - return Port Type string description
5557  *      @port_type: firmware Port Type enumeration
5558  */
5559 const char *t4_get_port_type_description(enum fw_port_type port_type)
5560 {
5561         static const char *const port_type_description[] = {
5562                 "Fiber_XFI",
5563                 "Fiber_XAUI",
5564                 "BT_SGMII",
5565                 "BT_XFI",
5566                 "BT_XAUI",
5567                 "KX4",
5568                 "CX4",
5569                 "KX",
5570                 "KR",
5571                 "SFP",
5572                 "BP_AP",
5573                 "BP4_AP",
5574                 "QSFP_10G",
5575                 "QSA",
5576                 "QSFP",
5577                 "BP40_BA",
5578         };
5579
5580         if (port_type < ARRAY_SIZE(port_type_description))
5581                 return port_type_description[port_type];
5582         return "UNKNOWN";
5583 }
5584
5585 /**
5586  *      t4_get_port_stats_offset - collect port stats relative to a previous
5587  *                                 snapshot
5588  *      @adap: The adapter
5589  *      @idx: The port
5590  *      @stats: Current stats to fill
5591  *      @offset: Previous stats snapshot
5592  */
5593 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5594                 struct port_stats *stats,
5595                 struct port_stats *offset)
5596 {
5597         u64 *s, *o;
5598         int i;
5599
5600         t4_get_port_stats(adap, idx, stats);
5601         for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5602                         i < (sizeof(struct port_stats)/sizeof(u64)) ;
5603                         i++, s++, o++)
5604                 *s -= *o;
5605 }
5606
5607 /**
5608  *      t4_get_port_stats - collect port statistics
5609  *      @adap: the adapter
5610  *      @idx: the port index
5611  *      @p: the stats structure to fill
5612  *
5613  *      Collect statistics related to the given port from HW.
5614  */
5615 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5616 {
5617         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5618         u32 stat_ctl;
5619
5620 #define GET_STAT(name) \
5621         t4_read_reg64(adap, \
5622         (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
5623         T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
5624 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5625
5626         stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
5627
5628         p->tx_pause             = GET_STAT(TX_PORT_PAUSE);
5629         p->tx_octets            = GET_STAT(TX_PORT_BYTES);
5630         p->tx_frames            = GET_STAT(TX_PORT_FRAMES);
5631         p->tx_bcast_frames      = GET_STAT(TX_PORT_BCAST);
5632         p->tx_mcast_frames      = GET_STAT(TX_PORT_MCAST);
5633         p->tx_ucast_frames      = GET_STAT(TX_PORT_UCAST);
5634         p->tx_error_frames      = GET_STAT(TX_PORT_ERROR);
5635         p->tx_frames_64         = GET_STAT(TX_PORT_64B);
5636         p->tx_frames_65_127     = GET_STAT(TX_PORT_65B_127B);
5637         p->tx_frames_128_255    = GET_STAT(TX_PORT_128B_255B);
5638         p->tx_frames_256_511    = GET_STAT(TX_PORT_256B_511B);
5639         p->tx_frames_512_1023   = GET_STAT(TX_PORT_512B_1023B);
5640         p->tx_frames_1024_1518  = GET_STAT(TX_PORT_1024B_1518B);
5641         p->tx_frames_1519_max   = GET_STAT(TX_PORT_1519B_MAX);
5642         p->tx_drop              = GET_STAT(TX_PORT_DROP);
5643         p->tx_ppp0              = GET_STAT(TX_PORT_PPP0);
5644         p->tx_ppp1              = GET_STAT(TX_PORT_PPP1);
5645         p->tx_ppp2              = GET_STAT(TX_PORT_PPP2);
5646         p->tx_ppp3              = GET_STAT(TX_PORT_PPP3);
5647         p->tx_ppp4              = GET_STAT(TX_PORT_PPP4);
5648         p->tx_ppp5              = GET_STAT(TX_PORT_PPP5);
5649         p->tx_ppp6              = GET_STAT(TX_PORT_PPP6);
5650         p->tx_ppp7              = GET_STAT(TX_PORT_PPP7);
5651
5652         if (stat_ctl & F_COUNTPAUSESTATTX) {
5653                 p->tx_frames -= p->tx_pause;
5654                 p->tx_octets -= p->tx_pause * 64;
5655                 p->tx_mcast_frames -= p->tx_pause;
5656         }
5657
5658         p->rx_pause             = GET_STAT(RX_PORT_PAUSE);
5659         p->rx_octets            = GET_STAT(RX_PORT_BYTES);
5660         p->rx_frames            = GET_STAT(RX_PORT_FRAMES);
5661         p->rx_bcast_frames      = GET_STAT(RX_PORT_BCAST);
5662         p->rx_mcast_frames      = GET_STAT(RX_PORT_MCAST);
5663         p->rx_ucast_frames      = GET_STAT(RX_PORT_UCAST);
5664         p->rx_too_long          = GET_STAT(RX_PORT_MTU_ERROR);
5665         p->rx_jabber            = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5666         p->rx_fcs_err           = GET_STAT(RX_PORT_CRC_ERROR);
5667         p->rx_len_err           = GET_STAT(RX_PORT_LEN_ERROR);
5668         p->rx_symbol_err        = GET_STAT(RX_PORT_SYM_ERROR);
5669         p->rx_runt              = GET_STAT(RX_PORT_LESS_64B);
5670         p->rx_frames_64         = GET_STAT(RX_PORT_64B);
5671         p->rx_frames_65_127     = GET_STAT(RX_PORT_65B_127B);
5672         p->rx_frames_128_255    = GET_STAT(RX_PORT_128B_255B);
5673         p->rx_frames_256_511    = GET_STAT(RX_PORT_256B_511B);
5674         p->rx_frames_512_1023   = GET_STAT(RX_PORT_512B_1023B);
5675         p->rx_frames_1024_1518  = GET_STAT(RX_PORT_1024B_1518B);
5676         p->rx_frames_1519_max   = GET_STAT(RX_PORT_1519B_MAX);
5677         p->rx_ppp0              = GET_STAT(RX_PORT_PPP0);
5678         p->rx_ppp1              = GET_STAT(RX_PORT_PPP1);
5679         p->rx_ppp2              = GET_STAT(RX_PORT_PPP2);
5680         p->rx_ppp3              = GET_STAT(RX_PORT_PPP3);
5681         p->rx_ppp4              = GET_STAT(RX_PORT_PPP4);
5682         p->rx_ppp5              = GET_STAT(RX_PORT_PPP5);
5683         p->rx_ppp6              = GET_STAT(RX_PORT_PPP6);
5684         p->rx_ppp7              = GET_STAT(RX_PORT_PPP7);
5685
5686         if (stat_ctl & F_COUNTPAUSESTATRX) {
5687                 p->rx_frames -= p->rx_pause;
5688                 p->rx_octets -= p->rx_pause * 64;
5689                 p->rx_mcast_frames -= p->rx_pause;
5690         }
5691
5692         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5693         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5694         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5695         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5696         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5697         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5698         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5699         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5700
5701 #undef GET_STAT
5702 #undef GET_STAT_COM
5703 }
5704
5705 /**
5706  *      t4_get_lb_stats - collect loopback port statistics
5707  *      @adap: the adapter
5708  *      @idx: the loopback port index
5709  *      @p: the stats structure to fill
5710  *
5711  *      Return HW statistics for the given loopback port.
5712  */
5713 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5714 {
5715         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5716
5717 #define GET_STAT(name) \
5718         t4_read_reg64(adap, \
5719         (is_t4(adap) ? \
5720         PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
5721         T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
5722 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5723
5724         p->octets       = GET_STAT(BYTES);
5725         p->frames       = GET_STAT(FRAMES);
5726         p->bcast_frames = GET_STAT(BCAST);
5727         p->mcast_frames = GET_STAT(MCAST);
5728         p->ucast_frames = GET_STAT(UCAST);
5729         p->error_frames = GET_STAT(ERROR);
5730
5731         p->frames_64            = GET_STAT(64B);
5732         p->frames_65_127        = GET_STAT(65B_127B);
5733         p->frames_128_255       = GET_STAT(128B_255B);
5734         p->frames_256_511       = GET_STAT(256B_511B);
5735         p->frames_512_1023      = GET_STAT(512B_1023B);
5736         p->frames_1024_1518     = GET_STAT(1024B_1518B);
5737         p->frames_1519_max      = GET_STAT(1519B_MAX);
5738         p->drop                 = GET_STAT(DROP_FRAMES);
5739
5740         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5741         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5742         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5743         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5744         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5745         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5746         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5747         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5748
5749 #undef GET_STAT
5750 #undef GET_STAT_COM
5751 }
5752
5753 /**
5754  *      t4_wol_magic_enable - enable/disable magic packet WoL
5755  *      @adap: the adapter
5756  *      @port: the physical port index
5757  *      @addr: MAC address expected in magic packets, %NULL to disable
5758  *
5759  *      Enables/disables magic packet wake-on-LAN for the selected port.
5760  */
5761 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
5762                          const u8 *addr)
5763 {
5764         u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
5765
5766         if (is_t4(adap)) {
5767                 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
5768                 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
5769                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
5770         } else {
5771                 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
5772                 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
5773                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
5774         }
5775
5776         if (addr) {
5777                 t4_write_reg(adap, mag_id_reg_l,
5778                              (addr[2] << 24) | (addr[3] << 16) |
5779                              (addr[4] << 8) | addr[5]);
5780                 t4_write_reg(adap, mag_id_reg_h,
5781                              (addr[0] << 8) | addr[1]);
5782         }
5783         t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
5784                          V_MAGICEN(addr != NULL));
5785 }
5786
5787 /**
5788  *      t4_wol_pat_enable - enable/disable pattern-based WoL
5789  *      @adap: the adapter
5790  *      @port: the physical port index
5791  *      @map: bitmap of which HW pattern filters to set
5792  *      @mask0: byte mask for bytes 0-63 of a packet
5793  *      @mask1: byte mask for bytes 64-127 of a packet
5794  *      @crc: Ethernet CRC for selected bytes
5795  *      @enable: enable/disable switch
5796  *
5797  *      Sets the pattern filters indicated in @map to mask out the bytes
5798  *      specified in @mask0/@mask1 in received packets and compare the CRC of
5799  *      the resulting packet against @crc.  If @enable is %true pattern-based
5800  *      WoL is enabled, otherwise disabled.
5801  */
5802 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
5803                       u64 mask0, u64 mask1, unsigned int crc, bool enable)
5804 {
5805         int i;
5806         u32 port_cfg_reg;
5807
5808         if (is_t4(adap))
5809                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
5810         else
5811                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
5812
5813         if (!enable) {
5814                 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
5815                 return 0;
5816         }
5817         if (map > 0xff)
5818                 return -EINVAL;
5819
5820 #define EPIO_REG(name) \
5821         (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
5822         T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
5823
5824         t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
5825         t4_write_reg(adap, EPIO_REG(DATA2), mask1);
5826         t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
5827
5828         for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
5829                 if (!(map & 1))
5830                         continue;
5831
5832                 /* write byte masks */
5833                 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
5834                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
5835                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
5836                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
5837                         return -ETIMEDOUT;
5838
5839                 /* write CRC */
5840                 t4_write_reg(adap, EPIO_REG(DATA0), crc);
5841                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
5842                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
5843                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
5844                         return -ETIMEDOUT;
5845         }
5846 #undef EPIO_REG
5847
5848         t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
5849         return 0;
5850 }
5851
5852 /*     t4_mk_filtdelwr - create a delete filter WR
5853  *     @ftid: the filter ID
5854  *     @wr: the filter work request to populate
5855  *     @qid: ingress queue to receive the delete notification
5856  *
5857  *     Creates a filter work request to delete the supplied filter.  If @qid is
5858  *     negative the delete notification is suppressed.
5859  */
5860 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5861 {
5862         memset(wr, 0, sizeof(*wr));
5863         wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
5864         wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
5865         wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
5866                                     V_FW_FILTER_WR_NOREPLY(qid < 0));
5867         wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
5868         if (qid >= 0)
5869                 wr->rx_chan_rx_rpl_iq =
5870                                 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
5871 }
5872
5873 #define INIT_CMD(var, cmd, rd_wr) do { \
5874         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
5875                                         F_FW_CMD_REQUEST | \
5876                                         F_FW_CMD_##rd_wr); \
5877         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5878 } while (0)
5879
5880 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5881                           u32 addr, u32 val)
5882 {
5883         u32 ldst_addrspace;
5884         struct fw_ldst_cmd c;
5885
5886         memset(&c, 0, sizeof(c));
5887         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
5888         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5889                                         F_FW_CMD_REQUEST |
5890                                         F_FW_CMD_WRITE |
5891                                         ldst_addrspace);
5892         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5893         c.u.addrval.addr = cpu_to_be32(addr);
5894         c.u.addrval.val = cpu_to_be32(val);
5895
5896         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5897 }
5898
5899 /**
5900  *      t4_mdio_rd - read a PHY register through MDIO
5901  *      @adap: the adapter
5902  *      @mbox: mailbox to use for the FW command
5903  *      @phy_addr: the PHY address
5904  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5905  *      @reg: the register to read
5906  *      @valp: where to store the value
5907  *
5908  *      Issues a FW command through the given mailbox to read a PHY register.
5909  */
5910 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5911                unsigned int mmd, unsigned int reg, unsigned int *valp)
5912 {
5913         int ret;
5914         u32 ldst_addrspace;
5915         struct fw_ldst_cmd c;
5916
5917         memset(&c, 0, sizeof(c));
5918         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
5919         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5920                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
5921                                         ldst_addrspace);
5922         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5923         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
5924                                          V_FW_LDST_CMD_MMD(mmd));
5925         c.u.mdio.raddr = cpu_to_be16(reg);
5926
5927         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5928         if (ret == 0)
5929                 *valp = be16_to_cpu(c.u.mdio.rval);
5930         return ret;
5931 }
5932
5933 /**
5934  *      t4_mdio_wr - write a PHY register through MDIO
5935  *      @adap: the adapter
5936  *      @mbox: mailbox to use for the FW command
5937  *      @phy_addr: the PHY address
5938  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5939  *      @reg: the register to write
5940  *      @valp: value to write
5941  *
5942  *      Issues a FW command through the given mailbox to write a PHY register.
5943  */
5944 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5945                unsigned int mmd, unsigned int reg, unsigned int val)
5946 {
5947         u32 ldst_addrspace;
5948         struct fw_ldst_cmd c;
5949
5950         memset(&c, 0, sizeof(c));
5951         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
5952         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5953                                         F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5954                                         ldst_addrspace);
5955         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5956         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
5957                                          V_FW_LDST_CMD_MMD(mmd));
5958         c.u.mdio.raddr = cpu_to_be16(reg);
5959         c.u.mdio.rval = cpu_to_be16(val);
5960
5961         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5962 }
5963
5964 /**
5965  *
5966  *      t4_sge_decode_idma_state - decode the idma state
5967  *      @adap: the adapter
5968  *      @state: the state idma is stuck in
5969  */
5970 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5971 {
5972         static const char * const t4_decode[] = {
5973                 "IDMA_IDLE",
5974                 "IDMA_PUSH_MORE_CPL_FIFO",
5975                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5976                 "Not used",
5977                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5978                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5979                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5980                 "IDMA_SEND_FIFO_TO_IMSG",
5981                 "IDMA_FL_REQ_DATA_FL_PREP",
5982                 "IDMA_FL_REQ_DATA_FL",
5983                 "IDMA_FL_DROP",
5984                 "IDMA_FL_H_REQ_HEADER_FL",
5985                 "IDMA_FL_H_SEND_PCIEHDR",
5986                 "IDMA_FL_H_PUSH_CPL_FIFO",
5987                 "IDMA_FL_H_SEND_CPL",
5988                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5989                 "IDMA_FL_H_SEND_IP_HDR",
5990                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5991                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5992                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5993                 "IDMA_FL_D_SEND_PCIEHDR",
5994                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5995                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5996                 "IDMA_FL_SEND_PCIEHDR",
5997                 "IDMA_FL_PUSH_CPL_FIFO",
5998                 "IDMA_FL_SEND_CPL",
5999                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6000                 "IDMA_FL_SEND_PAYLOAD",
6001                 "IDMA_FL_REQ_NEXT_DATA_FL",
6002                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6003                 "IDMA_FL_SEND_PADDING",
6004                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6005                 "IDMA_FL_SEND_FIFO_TO_IMSG",
6006                 "IDMA_FL_REQ_DATAFL_DONE",
6007                 "IDMA_FL_REQ_HEADERFL_DONE",
6008         };
6009         static const char * const t5_decode[] = {
6010                 "IDMA_IDLE",
6011                 "IDMA_ALMOST_IDLE",
6012                 "IDMA_PUSH_MORE_CPL_FIFO",
6013                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6014                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6015                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6016                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6017                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6018                 "IDMA_SEND_FIFO_TO_IMSG",
6019                 "IDMA_FL_REQ_DATA_FL",
6020                 "IDMA_FL_DROP",
6021                 "IDMA_FL_DROP_SEND_INC",
6022                 "IDMA_FL_H_REQ_HEADER_FL",
6023                 "IDMA_FL_H_SEND_PCIEHDR",
6024                 "IDMA_FL_H_PUSH_CPL_FIFO",
6025                 "IDMA_FL_H_SEND_CPL",
6026                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6027                 "IDMA_FL_H_SEND_IP_HDR",
6028                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6029                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6030                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6031                 "IDMA_FL_D_SEND_PCIEHDR",
6032                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6033                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6034                 "IDMA_FL_SEND_PCIEHDR",
6035                 "IDMA_FL_PUSH_CPL_FIFO",
6036                 "IDMA_FL_SEND_CPL",
6037                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6038                 "IDMA_FL_SEND_PAYLOAD",
6039                 "IDMA_FL_REQ_NEXT_DATA_FL",
6040                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6041                 "IDMA_FL_SEND_PADDING",
6042                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6043         };
6044         static const char * const t6_decode[] = {
6045                 "IDMA_IDLE",
6046                 "IDMA_PUSH_MORE_CPL_FIFO",
6047                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6048                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6049                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6050                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6051                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6052                 "IDMA_FL_REQ_DATA_FL",
6053                 "IDMA_FL_DROP",
6054                 "IDMA_FL_DROP_SEND_INC",
6055                 "IDMA_FL_H_REQ_HEADER_FL",
6056                 "IDMA_FL_H_SEND_PCIEHDR",
6057                 "IDMA_FL_H_PUSH_CPL_FIFO",
6058                 "IDMA_FL_H_SEND_CPL",
6059                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6060                 "IDMA_FL_H_SEND_IP_HDR",
6061                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6062                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6063                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6064                 "IDMA_FL_D_SEND_PCIEHDR",
6065                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6066                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6067                 "IDMA_FL_SEND_PCIEHDR",
6068                 "IDMA_FL_PUSH_CPL_FIFO",
6069                 "IDMA_FL_SEND_CPL",
6070                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6071                 "IDMA_FL_SEND_PAYLOAD",
6072                 "IDMA_FL_REQ_NEXT_DATA_FL",
6073                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6074                 "IDMA_FL_SEND_PADDING",
6075                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6076         };
6077         static const u32 sge_regs[] = {
6078                 A_SGE_DEBUG_DATA_LOW_INDEX_2,
6079                 A_SGE_DEBUG_DATA_LOW_INDEX_3,
6080                 A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6081         };
6082         const char * const *sge_idma_decode;
6083         int sge_idma_decode_nstates;
6084         int i;
6085         unsigned int chip_version = chip_id(adapter);
6086
6087         /* Select the right set of decode strings to dump depending on the
6088          * adapter chip type.
6089          */
6090         switch (chip_version) {
6091         case CHELSIO_T4:
6092                 sge_idma_decode = (const char * const *)t4_decode;
6093                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6094                 break;
6095
6096         case CHELSIO_T5:
6097                 sge_idma_decode = (const char * const *)t5_decode;
6098                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6099                 break;
6100
6101         case CHELSIO_T6:
6102                 sge_idma_decode = (const char * const *)t6_decode;
6103                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6104                 break;
6105
6106         default:
6107                 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version);
6108                 return;
6109         }
6110
6111         if (state < sge_idma_decode_nstates)
6112                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6113         else
6114                 CH_WARN(adapter, "idma state %d unknown\n", state);
6115
6116         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6117                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6118                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6119 }
6120
6121 /**
6122  *      t4_sge_ctxt_flush - flush the SGE context cache
6123  *      @adap: the adapter
6124  *      @mbox: mailbox to use for the FW command
6125  *
6126  *      Issues a FW command through the given mailbox to flush the
6127  *      SGE context cache.
6128  */
6129 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6130 {
6131         int ret;
6132         u32 ldst_addrspace;
6133         struct fw_ldst_cmd c;
6134
6135         memset(&c, 0, sizeof(c));
6136         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6137         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6138                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
6139                                         ldst_addrspace);
6140         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6141         c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6142
6143         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6144         return ret;
6145 }
6146
6147 /**
6148  *      t4_fw_hello - establish communication with FW
6149  *      @adap: the adapter
6150  *      @mbox: mailbox to use for the FW command
6151  *      @evt_mbox: mailbox to receive async FW events
6152  *      @master: specifies the caller's willingness to be the device master
6153  *      @state: returns the current device state (if non-NULL)
6154  *
6155  *      Issues a command to establish communication with FW.  Returns either
6156  *      an error (negative integer) or the mailbox of the Master PF.
6157  */
6158 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6159                 enum dev_master master, enum dev_state *state)
6160 {
6161         int ret;
6162         struct fw_hello_cmd c;
6163         u32 v;
6164         unsigned int master_mbox;
6165         int retries = FW_CMD_HELLO_RETRIES;
6166
6167 retry:
6168         memset(&c, 0, sizeof(c));
6169         INIT_CMD(c, HELLO, WRITE);
6170         c.err_to_clearinit = cpu_to_be32(
6171                 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6172                 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6173                 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6174                                         mbox : M_FW_HELLO_CMD_MBMASTER) |
6175                 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6176                 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6177                 F_FW_HELLO_CMD_CLEARINIT);
6178
6179         /*
6180          * Issue the HELLO command to the firmware.  If it's not successful
6181          * but indicates that we got a "busy" or "timeout" condition, retry
6182          * the HELLO until we exhaust our retry limit.  If we do exceed our
6183          * retry limit, check to see if the firmware left us any error
6184          * information and report that if so ...
6185          */
6186         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6187         if (ret != FW_SUCCESS) {
6188                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6189                         goto retry;
6190                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6191                         t4_report_fw_error(adap);
6192                 return ret;
6193         }
6194
6195         v = be32_to_cpu(c.err_to_clearinit);
6196         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6197         if (state) {
6198                 if (v & F_FW_HELLO_CMD_ERR)
6199                         *state = DEV_STATE_ERR;
6200                 else if (v & F_FW_HELLO_CMD_INIT)
6201                         *state = DEV_STATE_INIT;
6202                 else
6203                         *state = DEV_STATE_UNINIT;
6204         }
6205
6206         /*
6207          * If we're not the Master PF then we need to wait around for the
6208          * Master PF Driver to finish setting up the adapter.
6209          *
6210          * Note that we also do this wait if we're a non-Master-capable PF and
6211          * there is no current Master PF; a Master PF may show up momentarily
6212          * and we wouldn't want to fail pointlessly.  (This can happen when an
6213          * OS loads lots of different drivers rapidly at the same time).  In
6214          * this case, the Master PF returned by the firmware will be
6215          * M_PCIE_FW_MASTER so the test below will work ...
6216          */
6217         if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6218             master_mbox != mbox) {
6219                 int waiting = FW_CMD_HELLO_TIMEOUT;
6220
6221                 /*
6222                  * Wait for the firmware to either indicate an error or
6223                  * initialized state.  If we see either of these we bail out
6224                  * and report the issue to the caller.  If we exhaust the
6225                  * "hello timeout" and we haven't exhausted our retries, try
6226                  * again.  Otherwise bail with a timeout error.
6227                  */
6228                 for (;;) {
6229                         u32 pcie_fw;
6230
6231                         msleep(50);
6232                         waiting -= 50;
6233
6234                         /*
6235                          * If neither Error nor Initialialized are indicated
6236                          * by the firmware keep waiting till we exhaust our
6237                          * timeout ... and then retry if we haven't exhausted
6238                          * our retries ...
6239                          */
6240                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6241                         if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6242                                 if (waiting <= 0) {
6243                                         if (retries-- > 0)
6244                                                 goto retry;
6245
6246                                         return -ETIMEDOUT;
6247                                 }
6248                                 continue;
6249                         }
6250
6251                         /*
6252                          * We either have an Error or Initialized condition
6253                          * report errors preferentially.
6254                          */
6255                         if (state) {
6256                                 if (pcie_fw & F_PCIE_FW_ERR)
6257                                         *state = DEV_STATE_ERR;
6258                                 else if (pcie_fw & F_PCIE_FW_INIT)
6259                                         *state = DEV_STATE_INIT;
6260                         }
6261
6262                         /*
6263                          * If we arrived before a Master PF was selected and
6264                          * there's not a valid Master PF, grab its identity
6265                          * for our caller.
6266                          */
6267                         if (master_mbox == M_PCIE_FW_MASTER &&
6268                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
6269                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6270                         break;
6271                 }
6272         }
6273
6274         return master_mbox;
6275 }
6276
6277 /**
6278  *      t4_fw_bye - end communication with FW
6279  *      @adap: the adapter
6280  *      @mbox: mailbox to use for the FW command
6281  *
6282  *      Issues a command to terminate communication with FW.
6283  */
6284 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6285 {
6286         struct fw_bye_cmd c;
6287
6288         memset(&c, 0, sizeof(c));
6289         INIT_CMD(c, BYE, WRITE);
6290         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6291 }
6292
6293 /**
6294  *      t4_fw_reset - issue a reset to FW
6295  *      @adap: the adapter
6296  *      @mbox: mailbox to use for the FW command
6297  *      @reset: specifies the type of reset to perform
6298  *
6299  *      Issues a reset command of the specified type to FW.
6300  */
6301 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6302 {
6303         struct fw_reset_cmd c;
6304
6305         memset(&c, 0, sizeof(c));
6306         INIT_CMD(c, RESET, WRITE);
6307         c.val = cpu_to_be32(reset);
6308         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6309 }
6310
6311 /**
6312  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6313  *      @adap: the adapter
6314  *      @mbox: mailbox to use for the FW RESET command (if desired)
6315  *      @force: force uP into RESET even if FW RESET command fails
6316  *
6317  *      Issues a RESET command to firmware (if desired) with a HALT indication
6318  *      and then puts the microprocessor into RESET state.  The RESET command
6319  *      will only be issued if a legitimate mailbox is provided (mbox <=
6320  *      M_PCIE_FW_MASTER).
6321  *
6322  *      This is generally used in order for the host to safely manipulate the
6323  *      adapter without fear of conflicting with whatever the firmware might
6324  *      be doing.  The only way out of this state is to RESTART the firmware
6325  *      ...
6326  */
6327 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6328 {
6329         int ret = 0;
6330
6331         /*
6332          * If a legitimate mailbox is provided, issue a RESET command
6333          * with a HALT indication.
6334          */
6335         if (mbox <= M_PCIE_FW_MASTER) {
6336                 struct fw_reset_cmd c;
6337
6338                 memset(&c, 0, sizeof(c));
6339                 INIT_CMD(c, RESET, WRITE);
6340                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6341                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6342                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6343         }
6344
6345         /*
6346          * Normally we won't complete the operation if the firmware RESET
6347          * command fails but if our caller insists we'll go ahead and put the
6348          * uP into RESET.  This can be useful if the firmware is hung or even
6349          * missing ...  We'll have to take the risk of putting the uP into
6350          * RESET without the cooperation of firmware in that case.
6351          *
6352          * We also force the firmware's HALT flag to be on in case we bypassed
6353          * the firmware RESET command above or we're dealing with old firmware
6354          * which doesn't have the HALT capability.  This will serve as a flag
6355          * for the incoming firmware to know that it's coming out of a HALT
6356          * rather than a RESET ... if it's new enough to understand that ...
6357          */
6358         if (ret == 0 || force) {
6359                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6360                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6361                                  F_PCIE_FW_HALT);
6362         }
6363
6364         /*
6365          * And we always return the result of the firmware RESET command
6366          * even when we force the uP into RESET ...
6367          */
6368         return ret;
6369 }
6370
6371 /**
6372  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
6373  *      @adap: the adapter
6374  *      @reset: if we want to do a RESET to restart things
6375  *
6376  *      Restart firmware previously halted by t4_fw_halt().  On successful
6377  *      return the previous PF Master remains as the new PF Master and there
6378  *      is no need to issue a new HELLO command, etc.
6379  *
6380  *      We do this in two ways:
6381  *
6382  *       1. If we're dealing with newer firmware we'll simply want to take
6383  *          the chip's microprocessor out of RESET.  This will cause the
6384  *          firmware to start up from its start vector.  And then we'll loop
6385  *          until the firmware indicates it's started again (PCIE_FW.HALT
6386  *          reset to 0) or we timeout.
6387  *
6388  *       2. If we're dealing with older firmware then we'll need to RESET
6389  *          the chip since older firmware won't recognize the PCIE_FW.HALT
6390  *          flag and automatically RESET itself on startup.
6391  */
6392 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6393 {
6394         if (reset) {
6395                 /*
6396                  * Since we're directing the RESET instead of the firmware
6397                  * doing it automatically, we need to clear the PCIE_FW.HALT
6398                  * bit.
6399                  */
6400                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6401
6402                 /*
6403                  * If we've been given a valid mailbox, first try to get the
6404                  * firmware to do the RESET.  If that works, great and we can
6405                  * return success.  Otherwise, if we haven't been given a
6406                  * valid mailbox or the RESET command failed, fall back to
6407                  * hitting the chip with a hammer.
6408                  */
6409                 if (mbox <= M_PCIE_FW_MASTER) {
6410                         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6411                         msleep(100);
6412                         if (t4_fw_reset(adap, mbox,
6413                                         F_PIORST | F_PIORSTMODE) == 0)
6414                                 return 0;
6415                 }
6416
6417                 t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6418                 msleep(2000);
6419         } else {
6420                 int ms;
6421
6422                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6423                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6424                         if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6425                                 return FW_SUCCESS;
6426                         msleep(100);
6427                         ms += 100;
6428                 }
6429                 return -ETIMEDOUT;
6430         }
6431         return 0;
6432 }
6433
6434 /**
6435  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6436  *      @adap: the adapter
6437  *      @mbox: mailbox to use for the FW RESET command (if desired)
6438  *      @fw_data: the firmware image to write
6439  *      @size: image size
6440  *      @force: force upgrade even if firmware doesn't cooperate
6441  *
6442  *      Perform all of the steps necessary for upgrading an adapter's
6443  *      firmware image.  Normally this requires the cooperation of the
6444  *      existing firmware in order to halt all existing activities
6445  *      but if an invalid mailbox token is passed in we skip that step
6446  *      (though we'll still put the adapter microprocessor into RESET in
6447  *      that case).
6448  *
6449  *      On successful return the new firmware will have been loaded and
6450  *      the adapter will have been fully RESET losing all previous setup
6451  *      state.  On unsuccessful return the adapter may be completely hosed ...
6452  *      positive errno indicates that the adapter is ~probably~ intact, a
6453  *      negative errno indicates that things are looking bad ...
6454  */
6455 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6456                   const u8 *fw_data, unsigned int size, int force)
6457 {
6458         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6459         unsigned int bootstrap =
6460             be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6461         int reset, ret;
6462
6463         if (!t4_fw_matches_chip(adap, fw_hdr))
6464                 return -EINVAL;
6465
6466         if (!bootstrap) {
6467                 ret = t4_fw_halt(adap, mbox, force);
6468                 if (ret < 0 && !force)
6469                         return ret;
6470         }
6471
6472         ret = t4_load_fw(adap, fw_data, size);
6473         if (ret < 0 || bootstrap)
6474                 return ret;
6475
6476         /*
6477          * Older versions of the firmware don't understand the new
6478          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6479          * restart.  So for newly loaded older firmware we'll have to do the
6480          * RESET for it so it starts up on a clean slate.  We can tell if
6481          * the newly loaded firmware will handle this right by checking
6482          * its header flags to see if it advertises the capability.
6483          */
6484         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6485         return t4_fw_restart(adap, mbox, reset);
6486 }
6487
6488 /**
6489  *      t4_fw_initialize - ask FW to initialize the device
6490  *      @adap: the adapter
6491  *      @mbox: mailbox to use for the FW command
6492  *
6493  *      Issues a command to FW to partially initialize the device.  This
6494  *      performs initialization that generally doesn't depend on user input.
6495  */
6496 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6497 {
6498         struct fw_initialize_cmd c;
6499
6500         memset(&c, 0, sizeof(c));
6501         INIT_CMD(c, INITIALIZE, WRITE);
6502         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6503 }
6504
6505 /**
6506  *      t4_query_params_rw - query FW or device parameters
6507  *      @adap: the adapter
6508  *      @mbox: mailbox to use for the FW command
6509  *      @pf: the PF
6510  *      @vf: the VF
6511  *      @nparams: the number of parameters
6512  *      @params: the parameter names
6513  *      @val: the parameter values
6514  *      @rw: Write and read flag
6515  *
6516  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
6517  *      queried at once.
6518  */
6519 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6520                        unsigned int vf, unsigned int nparams, const u32 *params,
6521                        u32 *val, int rw)
6522 {
6523         int i, ret;
6524         struct fw_params_cmd c;
6525         __be32 *p = &c.param[0].mnem;
6526
6527         if (nparams > 7)
6528                 return -EINVAL;
6529
6530         memset(&c, 0, sizeof(c));
6531         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6532                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
6533                                   V_FW_PARAMS_CMD_PFN(pf) |
6534                                   V_FW_PARAMS_CMD_VFN(vf));
6535         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6536
6537         for (i = 0; i < nparams; i++) {
6538                 *p++ = cpu_to_be32(*params++);
6539                 if (rw)
6540                         *p = cpu_to_be32(*(val + i));
6541                 p++;
6542         }
6543
6544         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6545         if (ret == 0)
6546                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6547                         *val++ = be32_to_cpu(*p);
6548         return ret;
6549 }
6550
6551 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6552                     unsigned int vf, unsigned int nparams, const u32 *params,
6553                     u32 *val)
6554 {
6555         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6556 }
6557
6558 /**
6559  *      t4_set_params_timeout - sets FW or device parameters
6560  *      @adap: the adapter
6561  *      @mbox: mailbox to use for the FW command
6562  *      @pf: the PF
6563  *      @vf: the VF
6564  *      @nparams: the number of parameters
6565  *      @params: the parameter names
6566  *      @val: the parameter values
6567  *      @timeout: the timeout time
6568  *
6569  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6570  *      specified at once.
6571  */
6572 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6573                           unsigned int pf, unsigned int vf,
6574                           unsigned int nparams, const u32 *params,
6575                           const u32 *val, int timeout)
6576 {
6577         struct fw_params_cmd c;
6578         __be32 *p = &c.param[0].mnem;
6579
6580         if (nparams > 7)
6581                 return -EINVAL;
6582
6583         memset(&c, 0, sizeof(c));
6584         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6585                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6586                                   V_FW_PARAMS_CMD_PFN(pf) |
6587                                   V_FW_PARAMS_CMD_VFN(vf));
6588         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6589
6590         while (nparams--) {
6591                 *p++ = cpu_to_be32(*params++);
6592                 *p++ = cpu_to_be32(*val++);
6593         }
6594
6595         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6596 }
6597
6598 /**
6599  *      t4_set_params - sets FW or device parameters
6600  *      @adap: the adapter
6601  *      @mbox: mailbox to use for the FW command
6602  *      @pf: the PF
6603  *      @vf: the VF
6604  *      @nparams: the number of parameters
6605  *      @params: the parameter names
6606  *      @val: the parameter values
6607  *
6608  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6609  *      specified at once.
6610  */
6611 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6612                   unsigned int vf, unsigned int nparams, const u32 *params,
6613                   const u32 *val)
6614 {
6615         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6616                                      FW_CMD_MAX_TIMEOUT);
6617 }
6618
6619 /**
6620  *      t4_cfg_pfvf - configure PF/VF resource limits
6621  *      @adap: the adapter
6622  *      @mbox: mailbox to use for the FW command
6623  *      @pf: the PF being configured
6624  *      @vf: the VF being configured
6625  *      @txq: the max number of egress queues
6626  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
6627  *      @rxqi: the max number of interrupt-capable ingress queues
6628  *      @rxq: the max number of interruptless ingress queues
6629  *      @tc: the PCI traffic class
6630  *      @vi: the max number of virtual interfaces
6631  *      @cmask: the channel access rights mask for the PF/VF
6632  *      @pmask: the port access rights mask for the PF/VF
6633  *      @nexact: the maximum number of exact MPS filters
6634  *      @rcaps: read capabilities
6635  *      @wxcaps: write/execute capabilities
6636  *
6637  *      Configures resource limits and capabilities for a physical or virtual
6638  *      function.
6639  */
6640 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6641                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6642                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6643                 unsigned int vi, unsigned int cmask, unsigned int pmask,
6644                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6645 {
6646         struct fw_pfvf_cmd c;
6647
6648         memset(&c, 0, sizeof(c));
6649         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
6650                                   F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
6651                                   V_FW_PFVF_CMD_VFN(vf));
6652         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6653         c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
6654                                      V_FW_PFVF_CMD_NIQ(rxq));
6655         c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
6656                                     V_FW_PFVF_CMD_PMASK(pmask) |
6657                                     V_FW_PFVF_CMD_NEQ(txq));
6658         c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
6659                                       V_FW_PFVF_CMD_NVI(vi) |
6660                                       V_FW_PFVF_CMD_NEXACTF(nexact));
6661         c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
6662                                      V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
6663                                      V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
6664         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6665 }
6666
6667 /**
6668  *      t4_alloc_vi_func - allocate a virtual interface
6669  *      @adap: the adapter
6670  *      @mbox: mailbox to use for the FW command
6671  *      @port: physical port associated with the VI
6672  *      @pf: the PF owning the VI
6673  *      @vf: the VF owning the VI
6674  *      @nmac: number of MAC addresses needed (1 to 5)
6675  *      @mac: the MAC addresses of the VI
6676  *      @rss_size: size of RSS table slice associated with this VI
6677  *      @portfunc: which Port Application Function MAC Address is desired
6678  *      @idstype: Intrusion Detection Type
6679  *
6680  *      Allocates a virtual interface for the given physical port.  If @mac is
6681  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
6682  *      If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
6683  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
6684  *      stored consecutively so the space needed is @nmac * 6 bytes.
6685  *      Returns a negative error number or the non-negative VI id.
6686  */
6687 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
6688                      unsigned int port, unsigned int pf, unsigned int vf,
6689                      unsigned int nmac, u8 *mac, u16 *rss_size,
6690                      unsigned int portfunc, unsigned int idstype)
6691 {
6692         int ret;
6693         struct fw_vi_cmd c;
6694
6695         memset(&c, 0, sizeof(c));
6696         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
6697                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
6698                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
6699         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
6700         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
6701                                      V_FW_VI_CMD_FUNC(portfunc));
6702         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
6703         c.nmac = nmac - 1;
6704         if(!rss_size)
6705                 c.norss_rsssize = F_FW_VI_CMD_NORSS;
6706
6707         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6708         if (ret)
6709                 return ret;
6710
6711         if (mac) {
6712                 memcpy(mac, c.mac, sizeof(c.mac));
6713                 switch (nmac) {
6714                 case 5:
6715                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6716                 case 4:
6717                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6718                 case 3:
6719                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6720                 case 2:
6721                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6722                 }
6723         }
6724         if (rss_size)
6725                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
6726         return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
6727 }
6728
6729 /**
6730  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
6731  *      @adap: the adapter
6732  *      @mbox: mailbox to use for the FW command
6733  *      @port: physical port associated with the VI
6734  *      @pf: the PF owning the VI
6735  *      @vf: the VF owning the VI
6736  *      @nmac: number of MAC addresses needed (1 to 5)
6737  *      @mac: the MAC addresses of the VI
6738  *      @rss_size: size of RSS table slice associated with this VI
6739  *
6740  *      backwards compatible and convieniance routine to allocate a Virtual
6741  *      Interface with a Ethernet Port Application Function and Intrustion
6742  *      Detection System disabled.
6743  */
6744 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6745                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6746                 u16 *rss_size)
6747 {
6748         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
6749                                 FW_VI_FUNC_ETH, 0);
6750 }
6751
6752 /**
6753  *      t4_free_vi - free a virtual interface
6754  *      @adap: the adapter
6755  *      @mbox: mailbox to use for the FW command
6756  *      @pf: the PF owning the VI
6757  *      @vf: the VF owning the VI
6758  *      @viid: virtual interface identifiler
6759  *
6760  *      Free a previously allocated virtual interface.
6761  */
6762 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6763                unsigned int vf, unsigned int viid)
6764 {
6765         struct fw_vi_cmd c;
6766
6767         memset(&c, 0, sizeof(c));
6768         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
6769                                   F_FW_CMD_REQUEST |
6770                                   F_FW_CMD_EXEC |
6771                                   V_FW_VI_CMD_PFN(pf) |
6772                                   V_FW_VI_CMD_VFN(vf));
6773         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
6774         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
6775
6776         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6777 }
6778
6779 /**
6780  *      t4_set_rxmode - set Rx properties of a virtual interface
6781  *      @adap: the adapter
6782  *      @mbox: mailbox to use for the FW command
6783  *      @viid: the VI id
6784  *      @mtu: the new MTU or -1
6785  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6786  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6787  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6788  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6789  *      @sleep_ok: if true we may sleep while awaiting command completion
6790  *
6791  *      Sets Rx properties of a virtual interface.
6792  */
6793 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6794                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
6795                   bool sleep_ok)
6796 {
6797         struct fw_vi_rxmode_cmd c;
6798
6799         /* convert to FW values */
6800         if (mtu < 0)
6801                 mtu = M_FW_VI_RXMODE_CMD_MTU;
6802         if (promisc < 0)
6803                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
6804         if (all_multi < 0)
6805                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
6806         if (bcast < 0)
6807                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
6808         if (vlanex < 0)
6809                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
6810
6811         memset(&c, 0, sizeof(c));
6812         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
6813                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6814                                    V_FW_VI_RXMODE_CMD_VIID(viid));
6815         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6816         c.mtu_to_vlanexen =
6817                 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
6818                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
6819                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
6820                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
6821                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
6822         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6823 }
6824
6825 /**
6826  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6827  *      @adap: the adapter
6828  *      @mbox: mailbox to use for the FW command
6829  *      @viid: the VI id
6830  *      @free: if true any existing filters for this VI id are first removed
6831  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
6832  *      @addr: the MAC address(es)
6833  *      @idx: where to store the index of each allocated filter
6834  *      @hash: pointer to hash address filter bitmap
6835  *      @sleep_ok: call is allowed to sleep
6836  *
6837  *      Allocates an exact-match filter for each of the supplied addresses and
6838  *      sets it to the corresponding address.  If @idx is not %NULL it should
6839  *      have at least @naddr entries, each of which will be set to the index of
6840  *      the filter allocated for the corresponding MAC address.  If a filter
6841  *      could not be allocated for an address its index is set to 0xffff.
6842  *      If @hash is not %NULL addresses that fail to allocate an exact filter
6843  *      are hashed and update the hash filter bitmap pointed at by @hash.
6844  *
6845  *      Returns a negative error number or the number of filters allocated.
6846  */
6847 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6848                       unsigned int viid, bool free, unsigned int naddr,
6849                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6850 {
6851         int offset, ret = 0;
6852         struct fw_vi_mac_cmd c;
6853         unsigned int nfilters = 0;
6854         unsigned int max_naddr = adap->chip_params->mps_tcam_size;
6855         unsigned int rem = naddr;
6856
6857         if (naddr > max_naddr)
6858                 return -EINVAL;
6859
6860         for (offset = 0; offset < naddr ; /**/) {
6861                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6862                                          ? rem
6863                                          : ARRAY_SIZE(c.u.exact));
6864                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6865                                                      u.exact[fw_naddr]), 16);
6866                 struct fw_vi_mac_exact *p;
6867                 int i;
6868
6869                 memset(&c, 0, sizeof(c));
6870                 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
6871                                            F_FW_CMD_REQUEST |
6872                                            F_FW_CMD_WRITE |
6873                                            V_FW_CMD_EXEC(free) |
6874                                            V_FW_VI_MAC_CMD_VIID(viid));
6875                 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
6876                                                   V_FW_CMD_LEN16(len16));
6877
6878                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6879                         p->valid_to_idx =
6880                                 cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
6881                                             V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
6882                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6883                 }
6884
6885                 /*
6886                  * It's okay if we run out of space in our MAC address arena.
6887                  * Some of the addresses we submit may get stored so we need
6888                  * to run through the reply to see what the results were ...
6889                  */
6890                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6891                 if (ret && ret != -FW_ENOMEM)
6892                         break;
6893
6894                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6895                         u16 index = G_FW_VI_MAC_CMD_IDX(
6896                                                 be16_to_cpu(p->valid_to_idx));
6897
6898                         if (idx)
6899                                 idx[offset+i] = (index >=  max_naddr
6900                                                  ? 0xffff
6901                                                  : index);
6902                         if (index < max_naddr)
6903                                 nfilters++;
6904                         else if (hash)
6905                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
6906                 }
6907
6908                 free = false;
6909                 offset += fw_naddr;
6910                 rem -= fw_naddr;
6911         }
6912
6913         if (ret == 0 || ret == -FW_ENOMEM)
6914                 ret = nfilters;
6915         return ret;
6916 }
6917
6918 /**
6919  *      t4_change_mac - modifies the exact-match filter for a MAC address
6920  *      @adap: the adapter
6921  *      @mbox: mailbox to use for the FW command
6922  *      @viid: the VI id
6923  *      @idx: index of existing filter for old value of MAC address, or -1
6924  *      @addr: the new MAC address value
6925  *      @persist: whether a new MAC allocation should be persistent
6926  *      @add_smt: if true also add the address to the HW SMT
6927  *
6928  *      Modifies an exact-match filter and sets it to the new MAC address if
6929  *      @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
6930  *      latter case the address is added persistently if @persist is %true.
6931  *
6932  *      Note that in general it is not possible to modify the value of a given
6933  *      filter so the generic way to modify an address filter is to free the one
6934  *      being used by the old address value and allocate a new filter for the
6935  *      new address value.
6936  *
6937  *      Returns a negative error number or the index of the filter with the new
6938  *      MAC value.  Note that this index may differ from @idx.
6939  */
6940 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6941                   int idx, const u8 *addr, bool persist, bool add_smt)
6942 {
6943         int ret, mode;
6944         struct fw_vi_mac_cmd c;
6945         struct fw_vi_mac_exact *p = c.u.exact;
6946         unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
6947
6948         if (idx < 0)            /* new allocation */
6949                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6950         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6951
6952         memset(&c, 0, sizeof(c));
6953         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
6954                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6955                                    V_FW_VI_MAC_CMD_VIID(viid));
6956         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
6957         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
6958                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
6959                                       V_FW_VI_MAC_CMD_IDX(idx));
6960         memcpy(p->macaddr, addr, sizeof(p->macaddr));
6961
6962         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6963         if (ret == 0) {
6964                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
6965                 if (ret >= max_mac_addr)
6966                         ret = -ENOMEM;
6967         }
6968         return ret;
6969 }
6970
6971 /**
6972  *      t4_set_addr_hash - program the MAC inexact-match hash filter
6973  *      @adap: the adapter
6974  *      @mbox: mailbox to use for the FW command
6975  *      @viid: the VI id
6976  *      @ucast: whether the hash filter should also match unicast addresses
6977  *      @vec: the value to be written to the hash filter
6978  *      @sleep_ok: call is allowed to sleep
6979  *
6980  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
6981  */
6982 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6983                      bool ucast, u64 vec, bool sleep_ok)
6984 {
6985         struct fw_vi_mac_cmd c;
6986         u32 val;
6987
6988         memset(&c, 0, sizeof(c));
6989         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
6990                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6991                                    V_FW_VI_ENABLE_CMD_VIID(viid));
6992         val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
6993               V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
6994         c.freemacs_to_len16 = cpu_to_be32(val);
6995         c.u.hash.hashvec = cpu_to_be64(vec);
6996         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6997 }
6998
6999 /**
7000  *      t4_enable_vi_params - enable/disable a virtual interface
7001  *      @adap: the adapter
7002  *      @mbox: mailbox to use for the FW command
7003  *      @viid: the VI id
7004  *      @rx_en: 1=enable Rx, 0=disable Rx
7005  *      @tx_en: 1=enable Tx, 0=disable Tx
7006  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7007  *
7008  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7009  *      only makes sense when enabling a Virtual Interface ...
7010  */
7011 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7012                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7013 {
7014         struct fw_vi_enable_cmd c;
7015
7016         memset(&c, 0, sizeof(c));
7017         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7018                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7019                                    V_FW_VI_ENABLE_CMD_VIID(viid));
7020         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7021                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7022                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7023                                      FW_LEN16(c));
7024         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7025 }
7026
7027 /**
7028  *      t4_enable_vi - enable/disable a virtual interface
7029  *      @adap: the adapter
7030  *      @mbox: mailbox to use for the FW command
7031  *      @viid: the VI id
7032  *      @rx_en: 1=enable Rx, 0=disable Rx
7033  *      @tx_en: 1=enable Tx, 0=disable Tx
7034  *
7035  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7036  *      only makes sense when enabling a Virtual Interface ...
7037  */
7038 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7039                  bool rx_en, bool tx_en)
7040 {
7041         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7042 }
7043
7044 /**
7045  *      t4_identify_port - identify a VI's port by blinking its LED
7046  *      @adap: the adapter
7047  *      @mbox: mailbox to use for the FW command
7048  *      @viid: the VI id
7049  *      @nblinks: how many times to blink LED at 2.5 Hz
7050  *
7051  *      Identifies a VI's port by blinking its LED.
7052  */
7053 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7054                      unsigned int nblinks)
7055 {
7056         struct fw_vi_enable_cmd c;
7057
7058         memset(&c, 0, sizeof(c));
7059         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7060                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7061                                    V_FW_VI_ENABLE_CMD_VIID(viid));
7062         c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7063         c.blinkdur = cpu_to_be16(nblinks);
7064         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7065 }
7066
7067 /**
7068  *      t4_iq_stop - stop an ingress queue and its FLs
7069  *      @adap: the adapter
7070  *      @mbox: mailbox to use for the FW command
7071  *      @pf: the PF owning the queues
7072  *      @vf: the VF owning the queues
7073  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7074  *      @iqid: ingress queue id
7075  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7076  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7077  *
7078  *      Stops an ingress queue and its associated FLs, if any.  This causes
7079  *      any current or future data/messages destined for these queues to be
7080  *      tossed.
7081  */
7082 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7083                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7084                unsigned int fl0id, unsigned int fl1id)
7085 {
7086         struct fw_iq_cmd c;
7087
7088         memset(&c, 0, sizeof(c));
7089         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7090                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7091                                   V_FW_IQ_CMD_VFN(vf));
7092         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7093         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7094         c.iqid = cpu_to_be16(iqid);
7095         c.fl0id = cpu_to_be16(fl0id);
7096         c.fl1id = cpu_to_be16(fl1id);
7097         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7098 }
7099
7100 /**
7101  *      t4_iq_free - free an ingress queue and its FLs
7102  *      @adap: the adapter
7103  *      @mbox: mailbox to use for the FW command
7104  *      @pf: the PF owning the queues
7105  *      @vf: the VF owning the queues
7106  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7107  *      @iqid: ingress queue id
7108  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7109  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7110  *
7111  *      Frees an ingress queue and its associated FLs, if any.
7112  */
7113 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7114                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7115                unsigned int fl0id, unsigned int fl1id)
7116 {
7117         struct fw_iq_cmd c;
7118
7119         memset(&c, 0, sizeof(c));
7120         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7121                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7122                                   V_FW_IQ_CMD_VFN(vf));
7123         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7124         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7125         c.iqid = cpu_to_be16(iqid);
7126         c.fl0id = cpu_to_be16(fl0id);
7127         c.fl1id = cpu_to_be16(fl1id);
7128         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7129 }
7130
7131 /**
7132  *      t4_eth_eq_free - free an Ethernet egress queue
7133  *      @adap: the adapter
7134  *      @mbox: mailbox to use for the FW command
7135  *      @pf: the PF owning the queue
7136  *      @vf: the VF owning the queue
7137  *      @eqid: egress queue id
7138  *
7139  *      Frees an Ethernet egress queue.
7140  */
7141 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7142                    unsigned int vf, unsigned int eqid)
7143 {
7144         struct fw_eq_eth_cmd c;
7145
7146         memset(&c, 0, sizeof(c));
7147         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7148                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7149                                   V_FW_EQ_ETH_CMD_PFN(pf) |
7150                                   V_FW_EQ_ETH_CMD_VFN(vf));
7151         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7152         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7153         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7154 }
7155
7156 /**
7157  *      t4_ctrl_eq_free - free a control egress queue
7158  *      @adap: the adapter
7159  *      @mbox: mailbox to use for the FW command
7160  *      @pf: the PF owning the queue
7161  *      @vf: the VF owning the queue
7162  *      @eqid: egress queue id
7163  *
7164  *      Frees a control egress queue.
7165  */
7166 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7167                     unsigned int vf, unsigned int eqid)
7168 {
7169         struct fw_eq_ctrl_cmd c;
7170
7171         memset(&c, 0, sizeof(c));
7172         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7173                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7174                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
7175                                   V_FW_EQ_CTRL_CMD_VFN(vf));
7176         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7177         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7178         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7179 }
7180
7181 /**
7182  *      t4_ofld_eq_free - free an offload egress queue
7183  *      @adap: the adapter
7184  *      @mbox: mailbox to use for the FW command
7185  *      @pf: the PF owning the queue
7186  *      @vf: the VF owning the queue
7187  *      @eqid: egress queue id
7188  *
7189  *      Frees a control egress queue.
7190  */
7191 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7192                     unsigned int vf, unsigned int eqid)
7193 {
7194         struct fw_eq_ofld_cmd c;
7195
7196         memset(&c, 0, sizeof(c));
7197         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7198                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7199                                   V_FW_EQ_OFLD_CMD_PFN(pf) |
7200                                   V_FW_EQ_OFLD_CMD_VFN(vf));
7201         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7202         c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7203         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7204 }
7205
7206 /**
7207  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
7208  *      @link_down_rc: Link Down Reason Code
7209  *
7210  *      Returns a string representation of the Link Down Reason Code.
7211  */
7212 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7213 {
7214         static const char *reason[] = {
7215                 "Link Down",
7216                 "Remote Fault",
7217                 "Auto-negotiation Failure",
7218                 "Reserved3",
7219                 "Insufficient Airflow",
7220                 "Unable To Determine Reason",
7221                 "No RX Signal Detected",
7222                 "Reserved7",
7223         };
7224
7225         if (link_down_rc >= ARRAY_SIZE(reason))
7226                 return "Bad Reason Code";
7227
7228         return reason[link_down_rc];
7229 }
7230
7231 /**
7232  *      t4_handle_fw_rpl - process a FW reply message
7233  *      @adap: the adapter
7234  *      @rpl: start of the FW message
7235  *
7236  *      Processes a FW message, such as link state change messages.
7237  */
7238 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7239 {
7240         u8 opcode = *(const u8 *)rpl;
7241         const struct fw_port_cmd *p = (const void *)rpl;
7242         unsigned int action =
7243                         G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7244
7245         if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7246                 /* link/module state change message */
7247                 int speed = 0, fc = 0, i;
7248                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7249                 struct port_info *pi = NULL;
7250                 struct link_config *lc;
7251                 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7252                 int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7253                 u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
7254
7255                 if (stat & F_FW_PORT_CMD_RXPAUSE)
7256                         fc |= PAUSE_RX;
7257                 if (stat & F_FW_PORT_CMD_TXPAUSE)
7258                         fc |= PAUSE_TX;
7259                 if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7260                         speed = 100;
7261                 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7262                         speed = 1000;
7263                 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7264                         speed = 10000;
7265                 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7266                         speed = 40000;
7267
7268                 for_each_port(adap, i) {
7269                         pi = adap2pinfo(adap, i);
7270                         if (pi->tx_chan == chan)
7271                                 break;
7272                 }
7273                 lc = &pi->link_cfg;
7274
7275                 if (mod != pi->mod_type) {
7276                         pi->mod_type = mod;
7277                         t4_os_portmod_changed(adap, i);
7278                 }
7279                 if (link_ok != lc->link_ok || speed != lc->speed ||
7280                     fc != lc->fc) {                    /* something changed */
7281                         int reason;
7282
7283                         if (!link_ok && lc->link_ok)
7284                                 reason = G_FW_PORT_CMD_LINKDNRC(stat);
7285                         else
7286                                 reason = -1;
7287
7288                         lc->link_ok = link_ok;
7289                         lc->speed = speed;
7290                         lc->fc = fc;
7291                         lc->supported = be16_to_cpu(p->u.info.pcap);
7292                         t4_os_link_changed(adap, i, link_ok, reason);
7293                 }
7294         } else {
7295                 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7296                 return -EINVAL;
7297         }
7298         return 0;
7299 }
7300
7301 /**
7302  *      get_pci_mode - determine a card's PCI mode
7303  *      @adapter: the adapter
7304  *      @p: where to store the PCI settings
7305  *
7306  *      Determines a card's PCI mode and associated parameters, such as speed
7307  *      and width.
7308  */
7309 static void get_pci_mode(struct adapter *adapter,
7310                                    struct pci_params *p)
7311 {
7312         u16 val;
7313         u32 pcie_cap;
7314
7315         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7316         if (pcie_cap) {
7317                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7318                 p->speed = val & PCI_EXP_LNKSTA_CLS;
7319                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7320         }
7321 }
7322
7323 /**
7324  *      init_link_config - initialize a link's SW state
7325  *      @lc: structure holding the link state
7326  *      @caps: link capabilities
7327  *
7328  *      Initializes the SW state maintained for each link, including the link's
7329  *      capabilities and default speed/flow-control/autonegotiation settings.
7330  */
7331 static void init_link_config(struct link_config *lc, unsigned int caps)
7332 {
7333         lc->supported = caps;
7334         lc->requested_speed = 0;
7335         lc->speed = 0;
7336         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7337         if (lc->supported & FW_PORT_CAP_ANEG) {
7338                 lc->advertising = lc->supported & ADVERT_MASK;
7339                 lc->autoneg = AUTONEG_ENABLE;
7340                 lc->requested_fc |= PAUSE_AUTONEG;
7341         } else {
7342                 lc->advertising = 0;
7343                 lc->autoneg = AUTONEG_DISABLE;
7344         }
7345 }
7346
7347 struct flash_desc {
7348         u32 vendor_and_model_id;
7349         u32 size_mb;
7350 };
7351
7352 int t4_get_flash_params(struct adapter *adapter)
7353 {
7354         /*
7355          * Table for non-Numonix supported flash parts.  Numonix parts are left
7356          * to the preexisting well-tested code.  All flash parts have 64KB
7357          * sectors.
7358          */
7359         static struct flash_desc supported_flash[] = {
7360                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7361         };
7362
7363         int ret;
7364         u32 info = 0;
7365
7366         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7367         if (!ret)
7368                 ret = sf1_read(adapter, 3, 0, 1, &info);
7369         t4_write_reg(adapter, A_SF_OP, 0);      /* unlock SF */
7370         if (ret < 0)
7371                 return ret;
7372
7373         for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7374                 if (supported_flash[ret].vendor_and_model_id == info) {
7375                         adapter->params.sf_size = supported_flash[ret].size_mb;
7376                         adapter->params.sf_nsec =
7377                                 adapter->params.sf_size / SF_SEC_SIZE;
7378                         return 0;
7379                 }
7380
7381         if ((info & 0xff) != 0x20)              /* not a Numonix flash */
7382                 return -EINVAL;
7383         info >>= 16;                            /* log2 of size */
7384         if (info >= 0x14 && info < 0x18)
7385                 adapter->params.sf_nsec = 1 << (info - 16);
7386         else if (info == 0x18)
7387                 adapter->params.sf_nsec = 64;
7388         else
7389                 return -EINVAL;
7390         adapter->params.sf_size = 1 << info;
7391
7392         /*
7393          * We should ~probably~ reject adapters with FLASHes which are too
7394          * small but we have some legacy FPGAs with small FLASHes that we'd
7395          * still like to use.  So instead we emit a scary message ...
7396          */
7397         if (adapter->params.sf_size < FLASH_MIN_SIZE)
7398                 CH_WARN(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
7399                         adapter->params.sf_size, FLASH_MIN_SIZE);
7400
7401         return 0;
7402 }
7403
7404 static void set_pcie_completion_timeout(struct adapter *adapter,
7405                                                   u8 range)
7406 {
7407         u16 val;
7408         u32 pcie_cap;
7409
7410         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7411         if (pcie_cap) {
7412                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7413                 val &= 0xfff0;
7414                 val |= range ;
7415                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7416         }
7417 }
7418
7419 static const struct chip_params *get_chip_params(int chipid)
7420 {
7421         static const struct chip_params chip_params[] = {
7422                 {
7423                         /* T4 */
7424                         .nchan = NCHAN,
7425                         .pm_stats_cnt = PM_NSTATS,
7426                         .cng_ch_bits_log = 2,
7427                         .nsched_cls = 15,
7428                         .cim_num_obq = CIM_NUM_OBQ,
7429                         .mps_rplc_size = 128,
7430                         .vfcount = 128,
7431                         .sge_fl_db = F_DBPRIO,
7432                         .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7433                 },
7434                 {
7435                         /* T5 */
7436                         .nchan = NCHAN,
7437                         .pm_stats_cnt = PM_NSTATS,
7438                         .cng_ch_bits_log = 2,
7439                         .nsched_cls = 16,
7440                         .cim_num_obq = CIM_NUM_OBQ_T5,
7441                         .mps_rplc_size = 128,
7442                         .vfcount = 128,
7443                         .sge_fl_db = F_DBPRIO | F_DBTYPE,
7444                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7445                 },
7446                 {
7447                         /* T6 */
7448                         .nchan = T6_NCHAN,
7449                         .pm_stats_cnt = T6_PM_NSTATS,
7450                         .cng_ch_bits_log = 3,
7451                         .nsched_cls = 16,
7452                         .cim_num_obq = CIM_NUM_OBQ_T5,
7453                         .mps_rplc_size = 256,
7454                         .vfcount = 256,
7455                         .sge_fl_db = 0,
7456                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7457                 },
7458         };
7459
7460         chipid -= CHELSIO_T4;
7461         if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7462                 return NULL;
7463
7464         return &chip_params[chipid];
7465 }
7466
7467 /**
7468  *      t4_prep_adapter - prepare SW and HW for operation
7469  *      @adapter: the adapter
7470  *      @buf: temporary space of at least VPD_LEN size provided by the caller.
7471  *
7472  *      Initialize adapter SW state for the various HW modules, set initial
7473  *      values for some adapter tunables, take PHYs out of reset, and
7474  *      initialize the MDIO interface.
7475  */
7476 int t4_prep_adapter(struct adapter *adapter, u8 *buf)
7477 {
7478         int ret;
7479         uint16_t device_id;
7480         uint32_t pl_rev;
7481
7482         get_pci_mode(adapter, &adapter->params.pci);
7483
7484         pl_rev = t4_read_reg(adapter, A_PL_REV);
7485         adapter->params.chipid = G_CHIPID(pl_rev);
7486         adapter->params.rev = G_REV(pl_rev);
7487         if (adapter->params.chipid == 0) {
7488                 /* T4 did not have chipid in PL_REV (T5 onwards do) */
7489                 adapter->params.chipid = CHELSIO_T4;
7490
7491                 /* T4A1 chip is not supported */
7492                 if (adapter->params.rev == 1) {
7493                         CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
7494                         return -EINVAL;
7495                 }
7496         }
7497
7498         adapter->chip_params = get_chip_params(chip_id(adapter));
7499         if (adapter->chip_params == NULL)
7500                 return -EINVAL;
7501
7502         adapter->params.pci.vpd_cap_addr =
7503             t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
7504
7505         ret = t4_get_flash_params(adapter);
7506         if (ret < 0)
7507                 return ret;
7508
7509         ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
7510         if (ret < 0)
7511                 return ret;
7512
7513         /* Cards with real ASICs have the chipid in the PCIe device id */
7514         t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
7515         if (device_id >> 12 == chip_id(adapter))
7516                 adapter->params.cim_la_size = CIMLA_SIZE;
7517         else {
7518                 /* FPGA */
7519                 adapter->params.fpga = 1;
7520                 adapter->params.cim_la_size = 2 * CIMLA_SIZE;
7521         }
7522
7523         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7524
7525         /*
7526          * Default port and clock for debugging in case we can't reach FW.
7527          */
7528         adapter->params.nports = 1;
7529         adapter->params.portvec = 1;
7530         adapter->params.vpd.cclk = 50000;
7531
7532         /* Set pci completion timeout value to 4 seconds. */
7533         set_pcie_completion_timeout(adapter, 0xd);
7534         return 0;
7535 }
7536
7537 /**
7538  *      t4_shutdown_adapter - shut down adapter, host & wire
7539  *      @adapter: the adapter
7540  *
7541  *      Perform an emergency shutdown of the adapter and stop it from
7542  *      continuing any further communication on the ports or DMA to the
7543  *      host.  This is typically used when the adapter and/or firmware
7544  *      have crashed and we want to prevent any further accidental
7545  *      communication with the rest of the world.  This will also force
7546  *      the port Link Status to go down -- if register writes work --
7547  *      which should help our peers figure out that we're down.
7548  */
7549 int t4_shutdown_adapter(struct adapter *adapter)
7550 {
7551         int port;
7552
7553         t4_intr_disable(adapter);
7554         t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
7555         for_each_port(adapter, port) {
7556                 u32 a_port_cfg = PORT_REG(port,
7557                                           is_t4(adapter)
7558                                           ? A_XGMAC_PORT_CFG
7559                                           : A_MAC_PORT_CFG);
7560
7561                 t4_write_reg(adapter, a_port_cfg,
7562                              t4_read_reg(adapter, a_port_cfg)
7563                              & ~V_SIGNAL_DET(1));
7564         }
7565         t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
7566
7567         return 0;
7568 }
7569
7570 /**
7571  *      t4_init_devlog_params - initialize adapter->params.devlog
7572  *      @adap: the adapter
7573  *      @fw_attach: whether we can talk to the firmware
7574  *
7575  *      Initialize various fields of the adapter's Firmware Device Log
7576  *      Parameters structure.
7577  */
7578 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
7579 {
7580         struct devlog_params *dparams = &adap->params.devlog;
7581         u32 pf_dparams;
7582         unsigned int devlog_meminfo;
7583         struct fw_devlog_cmd devlog_cmd;
7584         int ret;
7585
7586         /* If we're dealing with newer firmware, the Device Log Paramerters
7587          * are stored in a designated register which allows us to access the
7588          * Device Log even if we can't talk to the firmware.
7589          */
7590         pf_dparams =
7591                 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
7592         if (pf_dparams) {
7593                 unsigned int nentries, nentries128;
7594
7595                 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
7596                 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
7597
7598                 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
7599                 nentries = (nentries128 + 1) * 128;
7600                 dparams->size = nentries * sizeof(struct fw_devlog_e);
7601
7602                 return 0;
7603         }
7604
7605         /*
7606          * For any failing returns ...
7607          */
7608         memset(dparams, 0, sizeof *dparams);
7609
7610         /*
7611          * If we can't talk to the firmware, there's really nothing we can do
7612          * at this point.
7613          */
7614         if (!fw_attach)
7615                 return -ENXIO;
7616
7617         /* Otherwise, ask the firmware for it's Device Log Parameters.
7618          */
7619         memset(&devlog_cmd, 0, sizeof devlog_cmd);
7620         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
7621                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
7622         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7623         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7624                          &devlog_cmd);
7625         if (ret)
7626                 return ret;
7627
7628         devlog_meminfo =
7629                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7630         dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
7631         dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
7632         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7633
7634         return 0;
7635 }
7636
7637 /**
7638  *      t4_init_sge_params - initialize adap->params.sge
7639  *      @adapter: the adapter
7640  *
7641  *      Initialize various fields of the adapter's SGE Parameters structure.
7642  */
7643 int t4_init_sge_params(struct adapter *adapter)
7644 {
7645         u32 r;
7646         struct sge_params *sp = &adapter->params.sge;
7647
7648         r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
7649         sp->counter_val[0] = G_THRESHOLD_0(r);
7650         sp->counter_val[1] = G_THRESHOLD_1(r);
7651         sp->counter_val[2] = G_THRESHOLD_2(r);
7652         sp->counter_val[3] = G_THRESHOLD_3(r);
7653
7654         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
7655         sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r));
7656         sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r));
7657         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
7658         sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r));
7659         sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r));
7660         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
7661         sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r));
7662         sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r));
7663
7664         r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
7665         sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
7666         if (is_t4(adapter))
7667                 sp->fl_starve_threshold2 = sp->fl_starve_threshold;
7668         else
7669                 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
7670
7671         /* egress queues: log2 of # of doorbells per BAR2 page */
7672         r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
7673         r >>= S_QUEUESPERPAGEPF0 +
7674             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7675         sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
7676
7677         /* ingress queues: log2 of # of doorbells per BAR2 page */
7678         r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
7679         r >>= S_QUEUESPERPAGEPF0 +
7680             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7681         sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
7682
7683         r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
7684         r >>= S_HOSTPAGESIZEPF0 +
7685             (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
7686         sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
7687
7688         r = t4_read_reg(adapter, A_SGE_CONTROL);
7689         sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
7690         sp->fl_pktshift = G_PKTSHIFT(r);
7691         sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 5);
7692         if (is_t4(adapter))
7693                 sp->pack_boundary = sp->pad_boundary;
7694         else {
7695                 r = t4_read_reg(adapter, A_SGE_CONTROL2);
7696                 if (G_INGPACKBOUNDARY(r) == 0)
7697                         sp->pack_boundary = 16;
7698                 else
7699                         sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
7700         }
7701
7702         return 0;
7703 }
7704
7705 /*
7706  * Read and cache the adapter's compressed filter mode and ingress config.
7707  */
7708 static void read_filter_mode_and_ingress_config(struct adapter *adap)
7709 {
7710         struct tp_params *tpp = &adap->params.tp;
7711
7712         if (t4_use_ldst(adap)) {
7713                 t4_fw_tp_pio_rw(adap, &tpp->vlan_pri_map, 1,
7714                                 A_TP_VLAN_PRI_MAP, 1);
7715                 t4_fw_tp_pio_rw(adap, &tpp->ingress_config, 1,
7716                                 A_TP_INGRESS_CONFIG, 1);
7717         } else {
7718                 t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7719                                  &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
7720                 t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7721                                  &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG);
7722         }
7723
7724         /*
7725          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7726          * shift positions of several elements of the Compressed Filter Tuple
7727          * for this adapter which we need frequently ...
7728          */
7729         tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
7730         tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
7731         tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
7732         tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
7733         tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
7734         tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
7735         tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
7736         tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
7737         tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
7738         tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
7739
7740         /*
7741          * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7742          * represents the presence of an Outer VLAN instead of a VNIC ID.
7743          */
7744         if ((tpp->ingress_config & F_VNIC) == 0)
7745                 tpp->vnic_shift = -1;
7746 }
7747
7748 /**
7749  *      t4_init_tp_params - initialize adap->params.tp
7750  *      @adap: the adapter
7751  *
7752  *      Initialize various fields of the adapter's TP Parameters structure.
7753  */
7754 int t4_init_tp_params(struct adapter *adap)
7755 {
7756         int chan;
7757         u32 v;
7758         struct tp_params *tpp = &adap->params.tp;
7759
7760         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
7761         tpp->tre = G_TIMERRESOLUTION(v);
7762         tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
7763
7764         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7765         for (chan = 0; chan < MAX_NCHAN; chan++)
7766                 tpp->tx_modq[chan] = chan;
7767
7768         read_filter_mode_and_ingress_config(adap);
7769
7770         /*
7771          * For T6, cache the adapter's compressed error vector
7772          * and passing outer header info for encapsulated packets.
7773          */
7774         if (chip_id(adap) > CHELSIO_T5) {
7775                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
7776                 tpp->rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
7777         }
7778
7779         return 0;
7780 }
7781
7782 /**
7783  *      t4_filter_field_shift - calculate filter field shift
7784  *      @adap: the adapter
7785  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7786  *
7787  *      Return the shift position of a filter field within the Compressed
7788  *      Filter Tuple.  The filter field is specified via its selection bit
7789  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7790  */
7791 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7792 {
7793         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7794         unsigned int sel;
7795         int field_shift;
7796
7797         if ((filter_mode & filter_sel) == 0)
7798                 return -1;
7799
7800         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7801                 switch (filter_mode & sel) {
7802                 case F_FCOE:
7803                         field_shift += W_FT_FCOE;
7804                         break;
7805                 case F_PORT:
7806                         field_shift += W_FT_PORT;
7807                         break;
7808                 case F_VNIC_ID:
7809                         field_shift += W_FT_VNIC_ID;
7810                         break;
7811                 case F_VLAN:
7812                         field_shift += W_FT_VLAN;
7813                         break;
7814                 case F_TOS:
7815                         field_shift += W_FT_TOS;
7816                         break;
7817                 case F_PROTOCOL:
7818                         field_shift += W_FT_PROTOCOL;
7819                         break;
7820                 case F_ETHERTYPE:
7821                         field_shift += W_FT_ETHERTYPE;
7822                         break;
7823                 case F_MACMATCH:
7824                         field_shift += W_FT_MACMATCH;
7825                         break;
7826                 case F_MPSHITTYPE:
7827                         field_shift += W_FT_MPSHITTYPE;
7828                         break;
7829                 case F_FRAGMENTATION:
7830                         field_shift += W_FT_FRAGMENTATION;
7831                         break;
7832                 }
7833         }
7834         return field_shift;
7835 }
7836
7837 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
7838 {
7839         u8 addr[6];
7840         int ret, i, j;
7841         struct fw_port_cmd c;
7842         u16 rss_size;
7843         struct port_info *p = adap2pinfo(adap, port_id);
7844         u32 param, val;
7845
7846         memset(&c, 0, sizeof(c));
7847
7848         for (i = 0, j = -1; i <= p->port_id; i++) {
7849                 do {
7850                         j++;
7851                 } while ((adap->params.portvec & (1 << j)) == 0);
7852         }
7853
7854         c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
7855                                F_FW_CMD_REQUEST | F_FW_CMD_READ |
7856                                V_FW_PORT_CMD_PORTID(j));
7857         c.action_to_len16 = htonl(
7858                 V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7859                 FW_LEN16(c));
7860         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7861         if (ret)
7862                 return ret;
7863
7864         ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7865         if (ret < 0)
7866                 return ret;
7867
7868         p->vi[0].viid = ret;
7869         p->tx_chan = j;
7870         p->rx_chan_map = t4_get_mps_bg_map(adap, j);
7871         p->lport = j;
7872         p->vi[0].rss_size = rss_size;
7873         t4_os_set_hw_addr(adap, p->port_id, addr);
7874
7875         ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7876         p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
7877                 G_FW_PORT_CMD_MDIOADDR(ret) : -1;
7878         p->port_type = G_FW_PORT_CMD_PTYPE(ret);
7879         p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
7880
7881         init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7882
7883         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7884             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
7885             V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
7886         ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
7887         if (ret)
7888                 p->vi[0].rss_base = 0xffff;
7889         else {
7890                 /* MPASS((val >> 16) == rss_size); */
7891                 p->vi[0].rss_base = val & 0xffff;
7892         }
7893
7894         return 0;
7895 }
7896
7897 /**
7898  *      t4_read_cimq_cfg - read CIM queue configuration
7899  *      @adap: the adapter
7900  *      @base: holds the queue base addresses in bytes
7901  *      @size: holds the queue sizes in bytes
7902  *      @thres: holds the queue full thresholds in bytes
7903  *
7904  *      Returns the current configuration of the CIM queues, starting with
7905  *      the IBQs, then the OBQs.
7906  */
7907 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7908 {
7909         unsigned int i, v;
7910         int cim_num_obq = adap->chip_params->cim_num_obq;
7911
7912         for (i = 0; i < CIM_NUM_IBQ; i++) {
7913                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
7914                              V_QUENUMSELECT(i));
7915                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
7916                 /* value is in 256-byte units */
7917                 *base++ = G_CIMQBASE(v) * 256;
7918                 *size++ = G_CIMQSIZE(v) * 256;
7919                 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
7920         }
7921         for (i = 0; i < cim_num_obq; i++) {
7922                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
7923                              V_QUENUMSELECT(i));
7924                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
7925                 /* value is in 256-byte units */
7926                 *base++ = G_CIMQBASE(v) * 256;
7927                 *size++ = G_CIMQSIZE(v) * 256;
7928         }
7929 }
7930
7931 /**
7932  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
7933  *      @adap: the adapter
7934  *      @qid: the queue index
7935  *      @data: where to store the queue contents
7936  *      @n: capacity of @data in 32-bit words
7937  *
7938  *      Reads the contents of the selected CIM queue starting at address 0 up
7939  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7940  *      error and the number of 32-bit words actually read on success.
7941  */
7942 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7943 {
7944         int i, err, attempts;
7945         unsigned int addr;
7946         const unsigned int nwords = CIM_IBQ_SIZE * 4;
7947
7948         if (qid > 5 || (n & 3))
7949                 return -EINVAL;
7950
7951         addr = qid * nwords;
7952         if (n > nwords)
7953                 n = nwords;
7954
7955         /* It might take 3-10ms before the IBQ debug read access is allowed.
7956          * Wait for 1 Sec with a delay of 1 usec.
7957          */
7958         attempts = 1000000;
7959
7960         for (i = 0; i < n; i++, addr++) {
7961                 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
7962                              F_IBQDBGEN);
7963                 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
7964                                       attempts, 1);
7965                 if (err)
7966                         return err;
7967                 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
7968         }
7969         t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
7970         return i;
7971 }
7972
7973 /**
7974  *      t4_read_cim_obq - read the contents of a CIM outbound queue
7975  *      @adap: the adapter
7976  *      @qid: the queue index
7977  *      @data: where to store the queue contents
7978  *      @n: capacity of @data in 32-bit words
7979  *
7980  *      Reads the contents of the selected CIM queue starting at address 0 up
7981  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7982  *      error and the number of 32-bit words actually read on success.
7983  */
7984 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7985 {
7986         int i, err;
7987         unsigned int addr, v, nwords;
7988         int cim_num_obq = adap->chip_params->cim_num_obq;
7989
7990         if ((qid > (cim_num_obq - 1)) || (n & 3))
7991                 return -EINVAL;
7992
7993         t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
7994                      V_QUENUMSELECT(qid));
7995         v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
7996
7997         addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
7998         nwords = G_CIMQSIZE(v) * 64;  /* same */
7999         if (n > nwords)
8000                 n = nwords;
8001
8002         for (i = 0; i < n; i++, addr++) {
8003                 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8004                              F_OBQDBGEN);
8005                 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8006                                       2, 1);
8007                 if (err)
8008                         return err;
8009                 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8010         }
8011         t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8012         return i;
8013 }
8014
8015 enum {
8016         CIM_QCTL_BASE     = 0,
8017         CIM_CTL_BASE      = 0x2000,
8018         CIM_PBT_ADDR_BASE = 0x2800,
8019         CIM_PBT_LRF_BASE  = 0x3000,
8020         CIM_PBT_DATA_BASE = 0x3800
8021 };
8022
8023 /**
8024  *      t4_cim_read - read a block from CIM internal address space
8025  *      @adap: the adapter
8026  *      @addr: the start address within the CIM address space
8027  *      @n: number of words to read
8028  *      @valp: where to store the result
8029  *
8030  *      Reads a block of 4-byte words from the CIM intenal address space.
8031  */
8032 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8033                 unsigned int *valp)
8034 {
8035         int ret = 0;
8036
8037         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8038                 return -EBUSY;
8039
8040         for ( ; !ret && n--; addr += 4) {
8041                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8042                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8043                                       0, 5, 2);
8044                 if (!ret)
8045                         *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8046         }
8047         return ret;
8048 }
8049
8050 /**
8051  *      t4_cim_write - write a block into CIM internal address space
8052  *      @adap: the adapter
8053  *      @addr: the start address within the CIM address space
8054  *      @n: number of words to write
8055  *      @valp: set of values to write
8056  *
8057  *      Writes a block of 4-byte words into the CIM intenal address space.
8058  */
8059 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8060                  const unsigned int *valp)
8061 {
8062         int ret = 0;
8063
8064         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8065                 return -EBUSY;
8066
8067         for ( ; !ret && n--; addr += 4) {
8068                 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8069                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8070                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8071                                       0, 5, 2);
8072         }
8073         return ret;
8074 }
8075
8076 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8077                          unsigned int val)
8078 {
8079         return t4_cim_write(adap, addr, 1, &val);
8080 }
8081
8082 /**
8083  *      t4_cim_ctl_read - read a block from CIM control region
8084  *      @adap: the adapter
8085  *      @addr: the start address within the CIM control region
8086  *      @n: number of words to read
8087  *      @valp: where to store the result
8088  *
8089  *      Reads a block of 4-byte words from the CIM control region.
8090  */
8091 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8092                     unsigned int *valp)
8093 {
8094         return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8095 }
8096
8097 /**
8098  *      t4_cim_read_la - read CIM LA capture buffer
8099  *      @adap: the adapter
8100  *      @la_buf: where to store the LA data
8101  *      @wrptr: the HW write pointer within the capture buffer
8102  *
8103  *      Reads the contents of the CIM LA buffer with the most recent entry at
8104  *      the end of the returned data and with the entry at @wrptr first.
8105  *      We try to leave the LA in the running state we find it in.
8106  */
8107 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8108 {
8109         int i, ret;
8110         unsigned int cfg, val, idx;
8111
8112         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8113         if (ret)
8114                 return ret;
8115
8116         if (cfg & F_UPDBGLAEN) {        /* LA is running, freeze it */
8117                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8118                 if (ret)
8119                         return ret;
8120         }
8121
8122         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8123         if (ret)
8124                 goto restart;
8125
8126         idx = G_UPDBGLAWRPTR(val);
8127         if (wrptr)
8128                 *wrptr = idx;
8129
8130         for (i = 0; i < adap->params.cim_la_size; i++) {
8131                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8132                                     V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8133                 if (ret)
8134                         break;
8135                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8136                 if (ret)
8137                         break;
8138                 if (val & F_UPDBGLARDEN) {
8139                         ret = -ETIMEDOUT;
8140                         break;
8141                 }
8142                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8143                 if (ret)
8144                         break;
8145
8146                 /* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8147                 idx = (idx + 1) & M_UPDBGLARDPTR;
8148                 /*
8149                  * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8150                  * identify the 32-bit portion of the full 312-bit data
8151                  */
8152                 if (is_t6(adap))
8153                         while ((idx & 0xf) > 9)
8154                                 idx = (idx + 1) % M_UPDBGLARDPTR;
8155         }
8156 restart:
8157         if (cfg & F_UPDBGLAEN) {
8158                 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8159                                       cfg & ~F_UPDBGLARDEN);
8160                 if (!ret)
8161                         ret = r;
8162         }
8163         return ret;
8164 }
8165
8166 /**
8167  *      t4_tp_read_la - read TP LA capture buffer
8168  *      @adap: the adapter
8169  *      @la_buf: where to store the LA data
8170  *      @wrptr: the HW write pointer within the capture buffer
8171  *
8172  *      Reads the contents of the TP LA buffer with the most recent entry at
8173  *      the end of the returned data and with the entry at @wrptr first.
8174  *      We leave the LA in the running state we find it in.
8175  */
8176 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8177 {
8178         bool last_incomplete;
8179         unsigned int i, cfg, val, idx;
8180
8181         cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8182         if (cfg & F_DBGLAENABLE)                        /* freeze LA */
8183                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8184                              adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8185
8186         val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8187         idx = G_DBGLAWPTR(val);
8188         last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8189         if (last_incomplete)
8190                 idx = (idx + 1) & M_DBGLARPTR;
8191         if (wrptr)
8192                 *wrptr = idx;
8193
8194         val &= 0xffff;
8195         val &= ~V_DBGLARPTR(M_DBGLARPTR);
8196         val |= adap->params.tp.la_mask;
8197
8198         for (i = 0; i < TPLA_SIZE; i++) {
8199                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8200                 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8201                 idx = (idx + 1) & M_DBGLARPTR;
8202         }
8203
8204         /* Wipe out last entry if it isn't valid */
8205         if (last_incomplete)
8206                 la_buf[TPLA_SIZE - 1] = ~0ULL;
8207
8208         if (cfg & F_DBGLAENABLE)                /* restore running state */
8209                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8210                              cfg | adap->params.tp.la_mask);
8211 }
8212
8213 /*
8214  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8215  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8216  * state for more than the Warning Threshold then we'll issue a warning about
8217  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8218  * appears to be hung every Warning Repeat second till the situation clears.
8219  * If the situation clears, we'll note that as well.
8220  */
8221 #define SGE_IDMA_WARN_THRESH 1
8222 #define SGE_IDMA_WARN_REPEAT 300
8223
8224 /**
8225  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8226  *      @adapter: the adapter
8227  *      @idma: the adapter IDMA Monitor state
8228  *
8229  *      Initialize the state of an SGE Ingress DMA Monitor.
8230  */
8231 void t4_idma_monitor_init(struct adapter *adapter,
8232                           struct sge_idma_monitor_state *idma)
8233 {
8234         /* Initialize the state variables for detecting an SGE Ingress DMA
8235          * hang.  The SGE has internal counters which count up on each clock
8236          * tick whenever the SGE finds its Ingress DMA State Engines in the
8237          * same state they were on the previous clock tick.  The clock used is
8238          * the Core Clock so we have a limit on the maximum "time" they can
8239          * record; typically a very small number of seconds.  For instance,
8240          * with a 600MHz Core Clock, we can only count up to a bit more than
8241          * 7s.  So we'll synthesize a larger counter in order to not run the
8242          * risk of having the "timers" overflow and give us the flexibility to
8243          * maintain a Hung SGE State Machine of our own which operates across
8244          * a longer time frame.
8245          */
8246         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8247         idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8248 }
8249
8250 /**
8251  *      t4_idma_monitor - monitor SGE Ingress DMA state
8252  *      @adapter: the adapter
8253  *      @idma: the adapter IDMA Monitor state
8254  *      @hz: number of ticks/second
8255  *      @ticks: number of ticks since the last IDMA Monitor call
8256  */
8257 void t4_idma_monitor(struct adapter *adapter,
8258                      struct sge_idma_monitor_state *idma,
8259                      int hz, int ticks)
8260 {
8261         int i, idma_same_state_cnt[2];
8262
8263          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8264           * are counters inside the SGE which count up on each clock when the
8265           * SGE finds its Ingress DMA State Engines in the same states they
8266           * were in the previous clock.  The counters will peg out at
8267           * 0xffffffff without wrapping around so once they pass the 1s
8268           * threshold they'll stay above that till the IDMA state changes.
8269           */
8270         t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8271         idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8272         idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8273
8274         for (i = 0; i < 2; i++) {
8275                 u32 debug0, debug11;
8276
8277                 /* If the Ingress DMA Same State Counter ("timer") is less
8278                  * than 1s, then we can reset our synthesized Stall Timer and
8279                  * continue.  If we have previously emitted warnings about a
8280                  * potential stalled Ingress Queue, issue a note indicating
8281                  * that the Ingress Queue has resumed forward progress.
8282                  */
8283                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8284                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8285                                 CH_WARN(adapter, "SGE idma%d, queue %u, "
8286                                         "resumed after %d seconds\n",
8287                                         i, idma->idma_qid[i],
8288                                         idma->idma_stalled[i]/hz);
8289                         idma->idma_stalled[i] = 0;
8290                         continue;
8291                 }
8292
8293                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8294                  * domain.  The first time we get here it'll be because we
8295                  * passed the 1s Threshold; each additional time it'll be
8296                  * because the RX Timer Callback is being fired on its regular
8297                  * schedule.
8298                  *
8299                  * If the stall is below our Potential Hung Ingress Queue
8300                  * Warning Threshold, continue.
8301                  */
8302                 if (idma->idma_stalled[i] == 0) {
8303                         idma->idma_stalled[i] = hz;
8304                         idma->idma_warn[i] = 0;
8305                 } else {
8306                         idma->idma_stalled[i] += ticks;
8307                         idma->idma_warn[i] -= ticks;
8308                 }
8309
8310                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8311                         continue;
8312
8313                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8314                  */
8315                 if (idma->idma_warn[i] > 0)
8316                         continue;
8317                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8318
8319                 /* Read and save the SGE IDMA State and Queue ID information.
8320                  * We do this every time in case it changes across time ...
8321                  * can't be too careful ...
8322                  */
8323                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8324                 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8325                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8326
8327                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8328                 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8329                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8330
8331                 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8332                         " state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8333                         i, idma->idma_qid[i], idma->idma_state[i],
8334                         idma->idma_stalled[i]/hz,
8335                         debug0, debug11);
8336                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8337         }
8338 }
8339
8340 /**
8341  *      t4_read_pace_tbl - read the pace table
8342  *      @adap: the adapter
8343  *      @pace_vals: holds the returned values
8344  *
8345  *      Returns the values of TP's pace table in microseconds.
8346  */
8347 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8348 {
8349         unsigned int i, v;
8350
8351         for (i = 0; i < NTX_SCHED; i++) {
8352                 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8353                 v = t4_read_reg(adap, A_TP_PACE_TABLE);
8354                 pace_vals[i] = dack_ticks_to_usec(adap, v);
8355         }
8356 }
8357
8358 /**
8359  *      t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8360  *      @adap: the adapter
8361  *      @sched: the scheduler index
8362  *      @kbps: the byte rate in Kbps
8363  *      @ipg: the interpacket delay in tenths of nanoseconds
8364  *
8365  *      Return the current configuration of a HW Tx scheduler.
8366  */
8367 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8368                      unsigned int *ipg)
8369 {
8370         unsigned int v, addr, bpt, cpt;
8371
8372         if (kbps) {
8373                 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8374                 t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8375                 v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8376                 if (sched & 1)
8377                         v >>= 16;
8378                 bpt = (v >> 8) & 0xff;
8379                 cpt = v & 0xff;
8380                 if (!cpt)
8381                         *kbps = 0;      /* scheduler disabled */
8382                 else {
8383                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
8384                         *kbps = (v * bpt) / 125;
8385                 }
8386         }
8387         if (ipg) {
8388                 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8389                 t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8390                 v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8391                 if (sched & 1)
8392                         v >>= 16;
8393                 v &= 0xffff;
8394                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
8395         }
8396 }
8397
8398 /**
8399  *      t4_load_cfg - download config file
8400  *      @adap: the adapter
8401  *      @cfg_data: the cfg text file to write
8402  *      @size: text file size
8403  *
8404  *      Write the supplied config text file to the card's serial flash.
8405  */
8406 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
8407 {
8408         int ret, i, n, cfg_addr;
8409         unsigned int addr;
8410         unsigned int flash_cfg_start_sec;
8411         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8412
8413         cfg_addr = t4_flash_cfg_addr(adap);
8414         if (cfg_addr < 0)
8415                 return cfg_addr;
8416
8417         addr = cfg_addr;
8418         flash_cfg_start_sec = addr / SF_SEC_SIZE;
8419
8420         if (size > FLASH_CFG_MAX_SIZE) {
8421                 CH_ERR(adap, "cfg file too large, max is %u bytes\n",
8422                        FLASH_CFG_MAX_SIZE);
8423                 return -EFBIG;
8424         }
8425
8426         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
8427                          sf_sec_size);
8428         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8429                                      flash_cfg_start_sec + i - 1);
8430         /*
8431          * If size == 0 then we're simply erasing the FLASH sectors associated
8432          * with the on-adapter Firmware Configuration File.
8433          */
8434         if (ret || size == 0)
8435                 goto out;
8436
8437         /* this will write to the flash up to SF_PAGE_SIZE at a time */
8438         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8439                 if ( (size - i) <  SF_PAGE_SIZE)
8440                         n = size - i;
8441                 else
8442                         n = SF_PAGE_SIZE;
8443                 ret = t4_write_flash(adap, addr, n, cfg_data, 1);
8444                 if (ret)
8445                         goto out;
8446
8447                 addr += SF_PAGE_SIZE;
8448                 cfg_data += SF_PAGE_SIZE;
8449         }
8450
8451 out:
8452         if (ret)
8453                 CH_ERR(adap, "config file %s failed %d\n",
8454                        (size == 0 ? "clear" : "download"), ret);
8455         return ret;
8456 }
8457
8458 /**
8459  *      t5_fw_init_extern_mem - initialize the external memory
8460  *      @adap: the adapter
8461  *
8462  *      Initializes the external memory on T5.
8463  */
8464 int t5_fw_init_extern_mem(struct adapter *adap)
8465 {
8466         u32 params[1], val[1];
8467         int ret;
8468
8469         if (!is_t5(adap))
8470                 return 0;
8471
8472         val[0] = 0xff; /* Initialize all MCs */
8473         params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8474                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
8475         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
8476                         FW_CMD_MAX_TIMEOUT);
8477
8478         return ret;
8479 }
8480
8481 /* BIOS boot headers */
8482 typedef struct pci_expansion_rom_header {
8483         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
8484         u8      reserved[22]; /* Reserved per processor Architecture data */
8485         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
8486 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
8487
8488 /* Legacy PCI Expansion ROM Header */
8489 typedef struct legacy_pci_expansion_rom_header {
8490         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
8491         u8      size512; /* Current Image Size in units of 512 bytes */
8492         u8      initentry_point[4];
8493         u8      cksum; /* Checksum computed on the entire Image */
8494         u8      reserved[16]; /* Reserved */
8495         u8      pcir_offset[2]; /* Offset to PCI Data Struture */
8496 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
8497
8498 /* EFI PCI Expansion ROM Header */
8499 typedef struct efi_pci_expansion_rom_header {
8500         u8      signature[2]; // ROM signature. The value 0xaa55
8501         u8      initialization_size[2]; /* Units 512. Includes this header */
8502         u8      efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
8503         u8      efi_subsystem[2]; /* Subsystem value for EFI image header */
8504         u8      efi_machine_type[2]; /* Machine type from EFI image header */
8505         u8      compression_type[2]; /* Compression type. */
8506                 /*
8507                  * Compression type definition
8508                  * 0x0: uncompressed
8509                  * 0x1: Compressed
8510                  * 0x2-0xFFFF: Reserved
8511                  */
8512         u8      reserved[8]; /* Reserved */
8513         u8      efi_image_header_offset[2]; /* Offset to EFI Image */
8514         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
8515 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
8516
8517 /* PCI Data Structure Format */
8518 typedef struct pcir_data_structure { /* PCI Data Structure */
8519         u8      signature[4]; /* Signature. The string "PCIR" */
8520         u8      vendor_id[2]; /* Vendor Identification */
8521         u8      device_id[2]; /* Device Identification */
8522         u8      vital_product[2]; /* Pointer to Vital Product Data */
8523         u8      length[2]; /* PCIR Data Structure Length */
8524         u8      revision; /* PCIR Data Structure Revision */
8525         u8      class_code[3]; /* Class Code */
8526         u8      image_length[2]; /* Image Length. Multiple of 512B */
8527         u8      code_revision[2]; /* Revision Level of Code/Data */
8528         u8      code_type; /* Code Type. */
8529                 /*
8530                  * PCI Expansion ROM Code Types
8531                  * 0x00: Intel IA-32, PC-AT compatible. Legacy
8532                  * 0x01: Open Firmware standard for PCI. FCODE
8533                  * 0x02: Hewlett-Packard PA RISC. HP reserved
8534                  * 0x03: EFI Image. EFI
8535                  * 0x04-0xFF: Reserved.
8536                  */
8537         u8      indicator; /* Indicator. Identifies the last image in the ROM */
8538         u8      reserved[2]; /* Reserved */
8539 } pcir_data_t; /* PCI__DATA_STRUCTURE */
8540
8541 /* BOOT constants */
8542 enum {
8543         BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
8544         BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
8545         BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
8546         BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
8547         BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
8548         VENDOR_ID = 0x1425, /* Vendor ID */
8549         PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
8550 };
8551
8552 /*
8553  *      modify_device_id - Modifies the device ID of the Boot BIOS image
8554  *      @adatper: the device ID to write.
8555  *      @boot_data: the boot image to modify.
8556  *
8557  *      Write the supplied device ID to the boot BIOS image.
8558  */
8559 static void modify_device_id(int device_id, u8 *boot_data)
8560 {
8561         legacy_pci_exp_rom_header_t *header;
8562         pcir_data_t *pcir_header;
8563         u32 cur_header = 0;
8564
8565         /*
8566          * Loop through all chained images and change the device ID's
8567          */
8568         while (1) {
8569                 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
8570                 pcir_header = (pcir_data_t *) &boot_data[cur_header +
8571                               le16_to_cpu(*(u16*)header->pcir_offset)];
8572
8573                 /*
8574                  * Only modify the Device ID if code type is Legacy or HP.
8575                  * 0x00: Okay to modify
8576                  * 0x01: FCODE. Do not be modify
8577                  * 0x03: Okay to modify
8578                  * 0x04-0xFF: Do not modify
8579                  */
8580                 if (pcir_header->code_type == 0x00) {
8581                         u8 csum = 0;
8582                         int i;
8583
8584                         /*
8585                          * Modify Device ID to match current adatper
8586                          */
8587                         *(u16*) pcir_header->device_id = device_id;
8588
8589                         /*
8590                          * Set checksum temporarily to 0.
8591                          * We will recalculate it later.
8592                          */
8593                         header->cksum = 0x0;
8594
8595                         /*
8596                          * Calculate and update checksum
8597                          */
8598                         for (i = 0; i < (header->size512 * 512); i++)
8599                                 csum += (u8)boot_data[cur_header + i];
8600
8601                         /*
8602                          * Invert summed value to create the checksum
8603                          * Writing new checksum value directly to the boot data
8604                          */
8605                         boot_data[cur_header + 7] = -csum;
8606
8607                 } else if (pcir_header->code_type == 0x03) {
8608
8609                         /*
8610                          * Modify Device ID to match current adatper
8611                          */
8612                         *(u16*) pcir_header->device_id = device_id;
8613
8614                 }
8615
8616
8617                 /*
8618                  * Check indicator element to identify if this is the last
8619                  * image in the ROM.
8620                  */
8621                 if (pcir_header->indicator & 0x80)
8622                         break;
8623
8624                 /*
8625                  * Move header pointer up to the next image in the ROM.
8626                  */
8627                 cur_header += header->size512 * 512;
8628         }
8629 }
8630
8631 /*
8632  *      t4_load_boot - download boot flash
8633  *      @adapter: the adapter
8634  *      @boot_data: the boot image to write
8635  *      @boot_addr: offset in flash to write boot_data
8636  *      @size: image size
8637  *
8638  *      Write the supplied boot image to the card's serial flash.
8639  *      The boot image has the following sections: a 28-byte header and the
8640  *      boot image.
8641  */
8642 int t4_load_boot(struct adapter *adap, u8 *boot_data,
8643                  unsigned int boot_addr, unsigned int size)
8644 {
8645         pci_exp_rom_header_t *header;
8646         int pcir_offset ;
8647         pcir_data_t *pcir_header;
8648         int ret, addr;
8649         uint16_t device_id;
8650         unsigned int i;
8651         unsigned int boot_sector = (boot_addr * 1024 );
8652         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8653
8654         /*
8655          * Make sure the boot image does not encroach on the firmware region
8656          */
8657         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
8658                 CH_ERR(adap, "boot image encroaching on firmware region\n");
8659                 return -EFBIG;
8660         }
8661
8662         /*
8663          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
8664          * and Boot configuration data sections. These 3 boot sections span
8665          * sectors 0 to 7 in flash and live right before the FW image location.
8666          */
8667         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
8668                         sf_sec_size);
8669         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
8670                                      (boot_sector >> 16) + i - 1);
8671
8672         /*
8673          * If size == 0 then we're simply erasing the FLASH sectors associated
8674          * with the on-adapter option ROM file
8675          */
8676         if (ret || (size == 0))
8677                 goto out;
8678
8679         /* Get boot header */
8680         header = (pci_exp_rom_header_t *)boot_data;
8681         pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
8682         /* PCIR Data Structure */
8683         pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
8684
8685         /*
8686          * Perform some primitive sanity testing to avoid accidentally
8687          * writing garbage over the boot sectors.  We ought to check for
8688          * more but it's not worth it for now ...
8689          */
8690         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
8691                 CH_ERR(adap, "boot image too small/large\n");
8692                 return -EFBIG;
8693         }
8694
8695 #ifndef CHELSIO_T4_DIAGS
8696         /*
8697          * Check BOOT ROM header signature
8698          */
8699         if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
8700                 CH_ERR(adap, "Boot image missing signature\n");
8701                 return -EINVAL;
8702         }
8703
8704         /*
8705          * Check PCI header signature
8706          */
8707         if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
8708                 CH_ERR(adap, "PCI header missing signature\n");
8709                 return -EINVAL;
8710         }
8711
8712         /*
8713          * Check Vendor ID matches Chelsio ID
8714          */
8715         if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
8716                 CH_ERR(adap, "Vendor ID missing signature\n");
8717                 return -EINVAL;
8718         }
8719 #endif
8720
8721         /*
8722          * Retrieve adapter's device ID
8723          */
8724         t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
8725         /* Want to deal with PF 0 so I strip off PF 4 indicator */
8726         device_id = device_id & 0xf0ff;
8727
8728         /*
8729          * Check PCIE Device ID
8730          */
8731         if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
8732                 /*
8733                  * Change the device ID in the Boot BIOS image to match
8734                  * the Device ID of the current adapter.
8735                  */
8736                 modify_device_id(device_id, boot_data);
8737         }
8738
8739         /*
8740          * Skip over the first SF_PAGE_SIZE worth of data and write it after
8741          * we finish copying the rest of the boot image. This will ensure
8742          * that the BIOS boot header will only be written if the boot image
8743          * was written in full.
8744          */
8745         addr = boot_sector;
8746         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
8747                 addr += SF_PAGE_SIZE;
8748                 boot_data += SF_PAGE_SIZE;
8749                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
8750                 if (ret)
8751                         goto out;
8752         }
8753
8754         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
8755                              (const u8 *)header, 0);
8756
8757 out:
8758         if (ret)
8759                 CH_ERR(adap, "boot image download failed, error %d\n", ret);
8760         return ret;
8761 }
8762
8763 /*
8764  *      t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
8765  *      @adapter: the adapter
8766  *
8767  *      Return the address within the flash where the OptionROM Configuration
8768  *      is stored, or an error if the device FLASH is too small to contain
8769  *      a OptionROM Configuration.
8770  */
8771 static int t4_flash_bootcfg_addr(struct adapter *adapter)
8772 {
8773         /*
8774          * If the device FLASH isn't large enough to hold a Firmware
8775          * Configuration File, return an error.
8776          */
8777         if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
8778                 return -ENOSPC;
8779
8780         return FLASH_BOOTCFG_START;
8781 }
8782
8783 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
8784 {
8785         int ret, i, n, cfg_addr;
8786         unsigned int addr;
8787         unsigned int flash_cfg_start_sec;
8788         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8789
8790         cfg_addr = t4_flash_bootcfg_addr(adap);
8791         if (cfg_addr < 0)
8792                 return cfg_addr;
8793
8794         addr = cfg_addr;
8795         flash_cfg_start_sec = addr / SF_SEC_SIZE;
8796
8797         if (size > FLASH_BOOTCFG_MAX_SIZE) {
8798                 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
8799                         FLASH_BOOTCFG_MAX_SIZE);
8800                 return -EFBIG;
8801         }
8802
8803         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
8804                          sf_sec_size);
8805         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8806                                         flash_cfg_start_sec + i - 1);
8807
8808         /*
8809          * If size == 0 then we're simply erasing the FLASH sectors associated
8810          * with the on-adapter OptionROM Configuration File.
8811          */
8812         if (ret || size == 0)
8813                 goto out;
8814
8815         /* this will write to the flash up to SF_PAGE_SIZE at a time */
8816         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8817                 if ( (size - i) <  SF_PAGE_SIZE)
8818                         n = size - i;
8819                 else
8820                         n = SF_PAGE_SIZE;
8821                 ret = t4_write_flash(adap, addr, n, cfg_data, 0);
8822                 if (ret)
8823                         goto out;
8824
8825                 addr += SF_PAGE_SIZE;
8826                 cfg_data += SF_PAGE_SIZE;
8827         }
8828
8829 out:
8830         if (ret)
8831                 CH_ERR(adap, "boot config data %s failed %d\n",
8832                                 (size == 0 ? "clear" : "download"), ret);
8833         return ret;
8834 }
8835
8836 /**
8837  *      t4_set_filter_mode - configure the optional components of filter tuples
8838  *      @adap: the adapter
8839  *      @mode_map: a bitmap selcting which optional filter components to enable
8840  *
8841  *      Sets the filter mode by selecting the optional components to enable
8842  *      in filter tuples.  Returns 0 on success and a negative error if the
8843  *      requested mode needs more bits than are available for optional
8844  *      components.
8845  */
8846 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
8847 {
8848         static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
8849
8850         int i, nbits = 0;
8851
8852         for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
8853                 if (mode_map & (1 << i))
8854                         nbits += width[i];
8855         if (nbits > FILTER_OPT_LEN)
8856                 return -EINVAL;
8857         if (t4_use_ldst(adap))
8858                 t4_fw_tp_pio_rw(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, 0);
8859         else
8860                 t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map,
8861                                   1, A_TP_VLAN_PRI_MAP);
8862         read_filter_mode_and_ingress_config(adap);
8863
8864         return 0;
8865 }
8866
8867 /**
8868  *      t4_clr_port_stats - clear port statistics
8869  *      @adap: the adapter
8870  *      @idx: the port index
8871  *
8872  *      Clear HW statistics for the given port.
8873  */
8874 void t4_clr_port_stats(struct adapter *adap, int idx)
8875 {
8876         unsigned int i;
8877         u32 bgmap = t4_get_mps_bg_map(adap, idx);
8878         u32 port_base_addr;
8879
8880         if (is_t4(adap))
8881                 port_base_addr = PORT_BASE(idx);
8882         else
8883                 port_base_addr = T5_PORT_BASE(idx);
8884
8885         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
8886                         i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
8887                 t4_write_reg(adap, port_base_addr + i, 0);
8888         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
8889                         i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
8890                 t4_write_reg(adap, port_base_addr + i, 0);
8891         for (i = 0; i < 4; i++)
8892                 if (bgmap & (1 << i)) {
8893                         t4_write_reg(adap,
8894                         A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
8895                         t4_write_reg(adap,
8896                         A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
8897                 }
8898 }
8899
8900 /**
8901  *      t4_i2c_rd - read I2C data from adapter
8902  *      @adap: the adapter
8903  *      @port: Port number if per-port device; <0 if not
8904  *      @devid: per-port device ID or absolute device ID
8905  *      @offset: byte offset into device I2C space
8906  *      @len: byte length of I2C space data
8907  *      @buf: buffer in which to return I2C data
8908  *
8909  *      Reads the I2C data from the indicated device and location.
8910  */
8911 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
8912               int port, unsigned int devid,
8913               unsigned int offset, unsigned int len,
8914               u8 *buf)
8915 {
8916         u32 ldst_addrspace;
8917         struct fw_ldst_cmd ldst;
8918         int ret;
8919
8920         if (port >= 4 ||
8921             devid >= 256 ||
8922             offset >= 256 ||
8923             len > sizeof ldst.u.i2c.data)
8924                 return -EINVAL;
8925
8926         memset(&ldst, 0, sizeof ldst);
8927         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
8928         ldst.op_to_addrspace =
8929                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
8930                             F_FW_CMD_REQUEST |
8931                             F_FW_CMD_READ |
8932                             ldst_addrspace);
8933         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
8934         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
8935         ldst.u.i2c.did = devid;
8936         ldst.u.i2c.boffset = offset;
8937         ldst.u.i2c.blen = len;
8938         ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
8939         if (!ret)
8940                 memcpy(buf, ldst.u.i2c.data, len);
8941         return ret;
8942 }
8943
8944 /**
8945  *      t4_i2c_wr - write I2C data to adapter
8946  *      @adap: the adapter
8947  *      @port: Port number if per-port device; <0 if not
8948  *      @devid: per-port device ID or absolute device ID
8949  *      @offset: byte offset into device I2C space
8950  *      @len: byte length of I2C space data
8951  *      @buf: buffer containing new I2C data
8952  *
8953  *      Write the I2C data to the indicated device and location.
8954  */
8955 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
8956               int port, unsigned int devid,
8957               unsigned int offset, unsigned int len,
8958               u8 *buf)
8959 {
8960         u32 ldst_addrspace;
8961         struct fw_ldst_cmd ldst;
8962
8963         if (port >= 4 ||
8964             devid >= 256 ||
8965             offset >= 256 ||
8966             len > sizeof ldst.u.i2c.data)
8967                 return -EINVAL;
8968
8969         memset(&ldst, 0, sizeof ldst);
8970         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
8971         ldst.op_to_addrspace =
8972                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
8973                             F_FW_CMD_REQUEST |
8974                             F_FW_CMD_WRITE |
8975                             ldst_addrspace);
8976         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
8977         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
8978         ldst.u.i2c.did = devid;
8979         ldst.u.i2c.boffset = offset;
8980         ldst.u.i2c.blen = len;
8981         memcpy(ldst.u.i2c.data, buf, len);
8982         return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
8983 }
8984
8985 /**
8986  *      t4_sge_ctxt_rd - read an SGE context through FW
8987  *      @adap: the adapter
8988  *      @mbox: mailbox to use for the FW command
8989  *      @cid: the context id
8990  *      @ctype: the context type
8991  *      @data: where to store the context data
8992  *
8993  *      Issues a FW command through the given mailbox to read an SGE context.
8994  */
8995 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
8996                    enum ctxt_type ctype, u32 *data)
8997 {
8998         int ret;
8999         struct fw_ldst_cmd c;
9000
9001         if (ctype == CTXT_EGRESS)
9002                 ret = FW_LDST_ADDRSPC_SGE_EGRC;
9003         else if (ctype == CTXT_INGRESS)
9004                 ret = FW_LDST_ADDRSPC_SGE_INGC;
9005         else if (ctype == CTXT_FLM)
9006                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
9007         else
9008                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
9009
9010         memset(&c, 0, sizeof(c));
9011         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9012                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
9013                                         V_FW_LDST_CMD_ADDRSPACE(ret));
9014         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9015         c.u.idctxt.physid = cpu_to_be32(cid);
9016
9017         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9018         if (ret == 0) {
9019                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9020                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9021                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9022                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9023                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9024                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9025         }
9026         return ret;
9027 }
9028
9029 /**
9030  *      t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9031  *      @adap: the adapter
9032  *      @cid: the context id
9033  *      @ctype: the context type
9034  *      @data: where to store the context data
9035  *
9036  *      Reads an SGE context directly, bypassing FW.  This is only for
9037  *      debugging when FW is unavailable.
9038  */
9039 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9040                       u32 *data)
9041 {
9042         int i, ret;
9043
9044         t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9045         ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9046         if (!ret)
9047                 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9048                         *data++ = t4_read_reg(adap, i);
9049         return ret;
9050 }
9051
9052 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9053                     int sleep_ok)
9054 {
9055         struct fw_sched_cmd cmd;
9056
9057         memset(&cmd, 0, sizeof(cmd));
9058         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9059                                       F_FW_CMD_REQUEST |
9060                                       F_FW_CMD_WRITE);
9061         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9062
9063         cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9064         cmd.u.config.type = type;
9065         cmd.u.config.minmaxen = minmaxen;
9066
9067         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9068                                NULL, sleep_ok);
9069 }
9070
9071 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9072                     int rateunit, int ratemode, int channel, int cl,
9073                     int minrate, int maxrate, int weight, int pktsize,
9074                     int sleep_ok)
9075 {
9076         struct fw_sched_cmd cmd;
9077
9078         memset(&cmd, 0, sizeof(cmd));
9079         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9080                                       F_FW_CMD_REQUEST |
9081                                       F_FW_CMD_WRITE);
9082         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9083
9084         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9085         cmd.u.params.type = type;
9086         cmd.u.params.level = level;
9087         cmd.u.params.mode = mode;
9088         cmd.u.params.ch = channel;
9089         cmd.u.params.cl = cl;
9090         cmd.u.params.unit = rateunit;
9091         cmd.u.params.rate = ratemode;
9092         cmd.u.params.min = cpu_to_be32(minrate);
9093         cmd.u.params.max = cpu_to_be32(maxrate);
9094         cmd.u.params.weight = cpu_to_be16(weight);
9095         cmd.u.params.pktsize = cpu_to_be16(pktsize);
9096
9097         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9098                                NULL, sleep_ok);
9099 }
9100
9101 /*
9102  *      t4_config_watchdog - configure (enable/disable) a watchdog timer
9103  *      @adapter: the adapter
9104  *      @mbox: mailbox to use for the FW command
9105  *      @pf: the PF owning the queue
9106  *      @vf: the VF owning the queue
9107  *      @timeout: watchdog timeout in ms
9108  *      @action: watchdog timer / action
9109  *
9110  *      There are separate watchdog timers for each possible watchdog
9111  *      action.  Configure one of the watchdog timers by setting a non-zero
9112  *      timeout.  Disable a watchdog timer by using a timeout of zero.
9113  */
9114 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9115                        unsigned int pf, unsigned int vf,
9116                        unsigned int timeout, unsigned int action)
9117 {
9118         struct fw_watchdog_cmd wdog;
9119         unsigned int ticks;
9120
9121         /*
9122          * The watchdog command expects a timeout in units of 10ms so we need
9123          * to convert it here (via rounding) and force a minimum of one 10ms
9124          * "tick" if the timeout is non-zero but the conversion results in 0
9125          * ticks.
9126          */
9127         ticks = (timeout + 5)/10;
9128         if (timeout && !ticks)
9129                 ticks = 1;
9130
9131         memset(&wdog, 0, sizeof wdog);
9132         wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9133                                      F_FW_CMD_REQUEST |
9134                                      F_FW_CMD_WRITE |
9135                                      V_FW_PARAMS_CMD_PFN(pf) |
9136                                      V_FW_PARAMS_CMD_VFN(vf));
9137         wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9138         wdog.timeout = cpu_to_be32(ticks);
9139         wdog.action = cpu_to_be32(action);
9140
9141         return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9142 }
9143
9144 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9145 {
9146         struct fw_devlog_cmd devlog_cmd;
9147         int ret;
9148
9149         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9150         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9151                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
9152         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9153         ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9154                          sizeof(devlog_cmd), &devlog_cmd);
9155         if (ret)
9156                 return ret;
9157
9158         *level = devlog_cmd.level;
9159         return 0;
9160 }
9161
9162 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9163 {
9164         struct fw_devlog_cmd devlog_cmd;
9165
9166         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9167         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9168                                              F_FW_CMD_REQUEST |
9169                                              F_FW_CMD_WRITE);
9170         devlog_cmd.level = level;
9171         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9172         return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9173                           sizeof(devlog_cmd), &devlog_cmd);
9174 }