]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/common/t4_hw.c
Import tzdata 2020a
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / common / t4_hw.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_inet.h"
33
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41
42 #undef msleep
43 #define msleep(x) do { \
44         if (cold) \
45                 DELAY((x) * 1000); \
46         else \
47                 pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49
50 /**
51  *      t4_wait_op_done_val - wait until an operation is completed
52  *      @adapter: the adapter performing the operation
53  *      @reg: the register to check for completion
54  *      @mask: a single-bit field within @reg that indicates completion
55  *      @polarity: the value of the field when the operation is completed
56  *      @attempts: number of check iterations
57  *      @delay: delay in usecs between iterations
58  *      @valp: where to store the value of the register at completion time
59  *
60  *      Wait until an operation is completed by checking a bit in a register
61  *      up to @attempts times.  If @valp is not NULL the value of the register
62  *      at the time it indicated completion is stored there.  Returns 0 if the
63  *      operation completes and -EAGAIN otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66                                int polarity, int attempts, int delay, u32 *valp)
67 {
68         while (1) {
69                 u32 val = t4_read_reg(adapter, reg);
70
71                 if (!!(val & mask) == polarity) {
72                         if (valp)
73                                 *valp = val;
74                         return 0;
75                 }
76                 if (--attempts == 0)
77                         return -EAGAIN;
78                 if (delay)
79                         udelay(delay);
80         }
81 }
82
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84                                   int polarity, int attempts, int delay)
85 {
86         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87                                    delay, NULL);
88 }
89
90 /**
91  *      t4_set_reg_field - set a register field to a value
92  *      @adapter: the adapter to program
93  *      @addr: the register address
94  *      @mask: specifies the portion of the register to modify
95  *      @val: the new value for the register field
96  *
97  *      Sets a register field specified by the supplied mask to the
98  *      given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101                       u32 val)
102 {
103         u32 v = t4_read_reg(adapter, addr) & ~mask;
104
105         t4_write_reg(adapter, addr, v | val);
106         (void) t4_read_reg(adapter, addr);      /* flush */
107 }
108
109 /**
110  *      t4_read_indirect - read indirectly addressed registers
111  *      @adap: the adapter
112  *      @addr_reg: register holding the indirect address
113  *      @data_reg: register holding the value of the indirect register
114  *      @vals: where the read register values are stored
115  *      @nregs: how many indirect registers to read
116  *      @start_idx: index of first indirect register to read
117  *
118  *      Reads registers that are accessed indirectly through an address/data
119  *      register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122                              unsigned int data_reg, u32 *vals,
123                              unsigned int nregs, unsigned int start_idx)
124 {
125         while (nregs--) {
126                 t4_write_reg(adap, addr_reg, start_idx);
127                 *vals++ = t4_read_reg(adap, data_reg);
128                 start_idx++;
129         }
130 }
131
132 /**
133  *      t4_write_indirect - write indirectly addressed registers
134  *      @adap: the adapter
135  *      @addr_reg: register holding the indirect addresses
136  *      @data_reg: register holding the value for the indirect registers
137  *      @vals: values to write
138  *      @nregs: how many indirect registers to write
139  *      @start_idx: address of first indirect register to write
140  *
141  *      Writes a sequential block of registers that are accessed indirectly
142  *      through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145                        unsigned int data_reg, const u32 *vals,
146                        unsigned int nregs, unsigned int start_idx)
147 {
148         while (nregs--) {
149                 t4_write_reg(adap, addr_reg, start_idx++);
150                 t4_write_reg(adap, data_reg, *vals++);
151         }
152 }
153
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166         u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167         u32 val;
168
169         if (chip_id(adap) <= CHELSIO_T5)
170                 req |= F_ENABLE;
171         else
172                 req |= F_T6_ENABLE;
173
174         if (is_t4(adap))
175                 req |= F_LOCALCFG;
176
177         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178         val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179
180         /*
181          * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182          * Configuration Space read.  (None of the other fields matter when
183          * F_ENABLE is 0 so a simple register write is easier than a
184          * read-modify-write via t4_set_reg_field().)
185          */
186         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187
188         return val;
189 }
190
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201         static const char *const reason[] = {
202                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
203                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
204                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
205                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
206                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
208                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
209                 "Reserved",                     /* reserved */
210         };
211         u32 pcie_fw;
212
213         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214         if (pcie_fw & F_PCIE_FW_ERR) {
215                 adap->flags &= ~FW_OK;
216                 CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217                     reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218                 if (pcie_fw != 0xffffffff)
219                         t4_os_dump_devlog(adap);
220         }
221 }
222
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227                          u32 mbox_addr)
228 {
229         for ( ; nflit; nflit--, mbox_addr += 8)
230                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238         CH_ALERT(adap,
239                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240                   asrt->u.assert.filename_0_7,
241                   be32_to_cpu(asrt->u.assert.line),
242                   be32_to_cpu(asrt->u.assert.x),
243                   be32_to_cpu(asrt->u.assert.y));
244 }
245
246 struct port_tx_state {
247         uint64_t rx_pause;
248         uint64_t tx_frames;
249 };
250
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254         uint32_t rx_pause_reg, tx_frames_reg;
255
256         if (is_t4(sc)) {
257                 tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258                 rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259         } else {
260                 tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261                 rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262         }
263
264         tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265         tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271         int i;
272
273         for_each_port(sc, i)
274                 read_tx_state_one(sc, i, &tx_state[i]);
275 }
276
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280         uint32_t port_ctl_reg;
281         uint64_t tx_frames, rx_pause;
282         int i;
283
284         for_each_port(sc, i) {
285                 rx_pause = tx_state[i].rx_pause;
286                 tx_frames = tx_state[i].tx_frames;
287                 read_tx_state_one(sc, i, &tx_state[i]); /* update */
288
289                 if (is_t4(sc))
290                         port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291                 else
292                         port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293                 if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294                     rx_pause != tx_state[i].rx_pause &&
295                     tx_frames == tx_state[i].tx_frames) {
296                         t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297                         mdelay(1);
298                         t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299                 }
300         }
301 }
302
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *      @adap: the adapter
307  *      @mbox: index of the mailbox to use
308  *      @cmd: the command to write
309  *      @size: command length in bytes
310  *      @rpl: where to optionally store the reply
311  *      @sleep_ok: if true we may sleep while awaiting command completion
312  *      @timeout: time to wait for command to finish before timing out
313  *              (negative implies @sleep_ok=false)
314  *
315  *      Sends the given command to FW through the selected mailbox and waits
316  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *      store the FW's reply to the command.  The command and its optional
318  *      reply are of the same length.  Some FW commands like RESET and
319  *      INITIALIZE can take a considerable amount of time to execute.
320  *      @sleep_ok determines whether we may sleep while awaiting the response.
321  *      If sleeping is allowed we use progressive backoff otherwise we spin.
322  *      Note that passing in a negative @timeout is an alternate mechanism
323  *      for specifying @sleep_ok=false.  This is useful when a higher level
324  *      interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *      The return value is 0 on success or a negative errno on failure.  A
327  *      failure can happen either because we are not able to execute the
328  *      command or FW executes it but signals an error.  In the latter case
329  *      the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332                             int size, void *rpl, bool sleep_ok, int timeout)
333 {
334         /*
335          * We delay in small increments at first in an effort to maintain
336          * responsiveness for simple, fast executing commands but then back
337          * off to larger delays to a maximum retry delay.
338          */
339         static const int delay[] = {
340                 1, 1, 3, 5, 10, 10, 20, 50, 100
341         };
342         u32 v;
343         u64 res;
344         int i, ms, delay_idx, ret, next_tx_check;
345         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347         u32 ctl;
348         __be64 cmd_rpl[MBOX_LEN/8];
349         u32 pcie_fw;
350         struct port_tx_state tx_state[MAX_NPORTS];
351
352         if (adap->flags & CHK_MBOX_ACCESS)
353                 ASSERT_SYNCHRONIZED_OP(adap);
354
355         if (size <= 0 || (size & 15) || size > MBOX_LEN)
356                 return -EINVAL;
357
358         if (adap->flags & IS_VF) {
359                 if (is_t6(adap))
360                         data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361                 else
362                         data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363                 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364         }
365
366         /*
367          * If we have a negative timeout, that implies that we can't sleep.
368          */
369         if (timeout < 0) {
370                 sleep_ok = false;
371                 timeout = -timeout;
372         }
373
374         /*
375          * Attempt to gain access to the mailbox.
376          */
377         for (i = 0; i < 4; i++) {
378                 ctl = t4_read_reg(adap, ctl_reg);
379                 v = G_MBOWNER(ctl);
380                 if (v != X_MBOWNER_NONE)
381                         break;
382         }
383
384         /*
385          * If we were unable to gain access, report the error to our caller.
386          */
387         if (v != X_MBOWNER_PL) {
388                 t4_report_fw_error(adap);
389                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390                 return ret;
391         }
392
393         /*
394          * If we gain ownership of the mailbox and there's a "valid" message
395          * in it, this is likely an asynchronous error message from the
396          * firmware.  So we'll report that and then proceed on with attempting
397          * to issue our own command ... which may well fail if the error
398          * presaged the firmware crashing ...
399          */
400         if (ctl & F_MBMSGVALID) {
401                 CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402         }
403
404         /*
405          * Copy in the new mailbox command and send it on its way ...
406          */
407         memset(cmd_rpl, 0, sizeof(cmd_rpl));
408         memcpy(cmd_rpl, cmd, size);
409         CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410         for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411                 t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412
413         if (adap->flags & IS_VF) {
414                 /*
415                  * For the VFs, the Mailbox Data "registers" are
416                  * actually backed by T4's "MA" interface rather than
417                  * PL Registers (as is the case for the PFs).  Because
418                  * these are in different coherency domains, the write
419                  * to the VF's PL-register-backed Mailbox Control can
420                  * race in front of the writes to the MA-backed VF
421                  * Mailbox Data "registers".  So we need to do a
422                  * read-back on at least one byte of the VF Mailbox
423                  * Data registers before doing the write to the VF
424                  * Mailbox Control register.
425                  */
426                 t4_read_reg(adap, data_reg);
427         }
428
429         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430         read_tx_state(adap, &tx_state[0]);      /* also flushes the write_reg */
431         next_tx_check = 1000;
432         delay_idx = 0;
433         ms = delay[0];
434
435         /*
436          * Loop waiting for the reply; bail out if we time out or the firmware
437          * reports an error.
438          */
439         pcie_fw = 0;
440         for (i = 0; i < timeout; i += ms) {
441                 if (!(adap->flags & IS_VF)) {
442                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443                         if (pcie_fw & F_PCIE_FW_ERR)
444                                 break;
445                 }
446
447                 if (i >= next_tx_check) {
448                         check_tx_state(adap, &tx_state[0]);
449                         next_tx_check = i + 1000;
450                 }
451
452                 if (sleep_ok) {
453                         ms = delay[delay_idx];  /* last element may repeat */
454                         if (delay_idx < ARRAY_SIZE(delay) - 1)
455                                 delay_idx++;
456                         msleep(ms);
457                 } else {
458                         mdelay(ms);
459                 }
460
461                 v = t4_read_reg(adap, ctl_reg);
462                 if (v == X_CIM_PF_NOACCESS)
463                         continue;
464                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
465                         if (!(v & F_MBMSGVALID)) {
466                                 t4_write_reg(adap, ctl_reg,
467                                              V_MBOWNER(X_MBOWNER_NONE));
468                                 continue;
469                         }
470
471                         /*
472                          * Retrieve the command reply and release the mailbox.
473                          */
474                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475                         CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477
478                         res = be64_to_cpu(cmd_rpl[0]);
479                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480                                 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481                                 res = V_FW_CMD_RETVAL(EIO);
482                         } else if (rpl)
483                                 memcpy(rpl, cmd_rpl, size);
484                         return -G_FW_CMD_RETVAL((int)res);
485                 }
486         }
487
488         /*
489          * We timed out waiting for a reply to our mailbox command.  Report
490          * the error and also check to see if the firmware reported any
491          * errors ...
492          */
493         CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494             *(const u8 *)cmd, mbox, pcie_fw);
495         CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496         CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497
498         if (pcie_fw & F_PCIE_FW_ERR) {
499                 ret = -ENXIO;
500                 t4_report_fw_error(adap);
501         } else {
502                 ret = -ETIMEDOUT;
503                 t4_os_dump_devlog(adap);
504         }
505
506         t4_fatal_err(adap, true);
507         return ret;
508 }
509
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511                     void *rpl, bool sleep_ok)
512 {
513                 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514                                                sleep_ok, FW_CMD_MAX_TIMEOUT);
515
516 }
517
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520         u32 edc_ecc_err_addr_reg;
521         u32 edc_bist_status_rdata_reg;
522
523         if (is_t4(adap)) {
524                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525                 return 0;
526         }
527         if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529                 return 0;
530         }
531
532         edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533         edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534
535         CH_WARN(adap,
536                 "edc%d err addr 0x%x: 0x%x.\n",
537                 idx, edc_ecc_err_addr_reg,
538                 t4_read_reg(adap, edc_ecc_err_addr_reg));
539         CH_WARN(adap,
540                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541                 edc_bist_status_rdata_reg,
542                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551
552         return 0;
553 }
554
555 /**
556  *      t4_mc_read - read from MC through backdoor accesses
557  *      @adap: the adapter
558  *      @idx: which MC to access
559  *      @addr: address of first byte requested
560  *      @data: 64 bytes of data containing the requested address
561  *      @ecc: where to store the corresponding 64-bit ECC word
562  *
563  *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *      that covers the requested address @addr.  If @parity is not %NULL it
565  *      is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569         int i;
570         u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571         u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572
573         if (is_t4(adap)) {
574                 mc_bist_cmd_reg = A_MC_BIST_CMD;
575                 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576                 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577                 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578                 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579         } else {
580                 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581                 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582                 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583                 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584                                                   idx);
585                 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586                                                   idx);
587         }
588
589         if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590                 return -EBUSY;
591         t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592         t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593         t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594         t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595                      F_START_BIST | V_BIST_CMD_GAP(1));
596         i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597         if (i)
598                 return i;
599
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601
602         for (i = 15; i >= 0; i--)
603                 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604         if (ecc)
605                 *ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607         return 0;
608 }
609
610 /**
611  *      t4_edc_read - read from EDC through backdoor accesses
612  *      @adap: the adapter
613  *      @idx: which EDC to access
614  *      @addr: address of first byte requested
615  *      @data: 64 bytes of data containing the requested address
616  *      @ecc: where to store the corresponding 64-bit ECC word
617  *
618  *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *      that covers the requested address @addr.  If @parity is not %NULL it
620  *      is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624         int i;
625         u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626         u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627
628         if (is_t4(adap)) {
629                 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630                 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631                 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632                 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633                                                     idx);
634                 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635                                                     idx);
636         } else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643                 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644                 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645                 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646                 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647                                                     idx);
648                 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649                                                     idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652         }
653
654         if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655                 return -EBUSY;
656         t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657         t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658         t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659         t4_write_reg(adap, edc_bist_cmd_reg,
660                      V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661         i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662         if (i)
663                 return i;
664
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666
667         for (i = 15; i >= 0; i--)
668                 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669         if (ecc)
670                 *ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672         return 0;
673 }
674
675 /**
676  *      t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *      @adap: the adapter
678  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *      @addr: address within indicated memory type
680  *      @len: amount of memory to read
681  *      @buf: host memory buffer
682  *
683  *      Reads an [almost] arbitrary memory region in the firmware: the
684  *      firmware memory address, length and host buffer must be aligned on
685  *      32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *      the firmware's memory.  If this memory contains data structures which
687  *      contain multi-byte integers, it's the callers responsibility to
688  *      perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691                 __be32 *buf)
692 {
693         u32 pos, start, end, offset;
694         int ret;
695
696         /*
697          * Argument sanity checks ...
698          */
699         if ((addr & 0x3) || (len & 0x3))
700                 return -EINVAL;
701
702         /*
703          * The underlaying EDC/MC read routines read 64 bytes at a time so we
704          * need to round down the start and round up the end.  We'll start
705          * copying out of the first line at (addr - start) a word at a time.
706          */
707         start = rounddown2(addr, 64);
708         end = roundup2(addr + len, 64);
709         offset = (addr - start)/sizeof(__be32);
710
711         for (pos = start; pos < end; pos += 64, offset = 0) {
712                 __be32 data[16];
713
714                 /*
715                  * Read the chip's memory block and bail if there's an error.
716                  */
717                 if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718                         ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719                 else
720                         ret = t4_edc_read(adap, mtype, pos, data, NULL);
721                 if (ret)
722                         return ret;
723
724                 /*
725                  * Copy the data into the caller's memory buffer.
726                  */
727                 while (offset < 16 && len > 0) {
728                         *buf++ = data[offset++];
729                         len -= sizeof(__be32);
730                 }
731         }
732
733         return 0;
734 }
735
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744
745         /*
746          * If fw_attach != 0, construct and send the Firmware LDST Command to
747          * retrieve the specified PCI-E Configuration Space register.
748          */
749         if (drv_fw_attach != 0) {
750                 struct fw_ldst_cmd ldst_cmd;
751                 int ret;
752
753                 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754                 ldst_cmd.op_to_addrspace =
755                         cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756                                     F_FW_CMD_REQUEST |
757                                     F_FW_CMD_READ |
758                                     V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759                 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760                 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761                 ldst_cmd.u.pcie.ctrl_to_fn =
762                         (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763                 ldst_cmd.u.pcie.r = reg;
764
765                 /*
766                  * If the LDST Command succeeds, return the result, otherwise
767                  * fall through to reading it directly ourselves ...
768                  */
769                 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770                                  &ldst_cmd);
771                 if (ret == 0)
772                         return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773
774                 CH_WARN(adap, "Firmware failed to return "
775                         "Configuration Space register %d, err = %d\n",
776                         reg, -ret);
777         }
778
779         /*
780          * Read the desired Configuration Space register via the PCI-E
781          * Backdoor mechanism.
782          */
783         return t4_hw_pci_read_cfg4(adap, reg);
784 }
785
786 /**
787  *      t4_get_regs_len - return the size of the chips register set
788  *      @adapter: the adapter
789  *
790  *      Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794         unsigned int chip_version = chip_id(adapter);
795
796         switch (chip_version) {
797         case CHELSIO_T4:
798                 if (adapter->flags & IS_VF)
799                         return FW_T4VF_REGMAP_SIZE;
800                 return T4_REGMAP_SIZE;
801
802         case CHELSIO_T5:
803         case CHELSIO_T6:
804                 if (adapter->flags & IS_VF)
805                         return FW_T4VF_REGMAP_SIZE;
806                 return T5_REGMAP_SIZE;
807         }
808
809         CH_ERR(adapter,
810                 "Unsupported chip version %d\n", chip_version);
811         return 0;
812 }
813
814 /**
815  *      t4_get_regs - read chip registers into provided buffer
816  *      @adap: the adapter
817  *      @buf: register buffer
818  *      @buf_size: size (in bytes) of register buffer
819  *
820  *      If the provided register buffer isn't large enough for the chip's
821  *      full register range, the register dump will be truncated to the
822  *      register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826         static const unsigned int t4_reg_ranges[] = {
827                 0x1008, 0x1108,
828                 0x1180, 0x1184,
829                 0x1190, 0x1194,
830                 0x11a0, 0x11a4,
831                 0x11b0, 0x11b4,
832                 0x11fc, 0x123c,
833                 0x1300, 0x173c,
834                 0x1800, 0x18fc,
835                 0x3000, 0x30d8,
836                 0x30e0, 0x30e4,
837                 0x30ec, 0x5910,
838                 0x5920, 0x5924,
839                 0x5960, 0x5960,
840                 0x5968, 0x5968,
841                 0x5970, 0x5970,
842                 0x5978, 0x5978,
843                 0x5980, 0x5980,
844                 0x5988, 0x5988,
845                 0x5990, 0x5990,
846                 0x5998, 0x5998,
847                 0x59a0, 0x59d4,
848                 0x5a00, 0x5ae0,
849                 0x5ae8, 0x5ae8,
850                 0x5af0, 0x5af0,
851                 0x5af8, 0x5af8,
852                 0x6000, 0x6098,
853                 0x6100, 0x6150,
854                 0x6200, 0x6208,
855                 0x6240, 0x6248,
856                 0x6280, 0x62b0,
857                 0x62c0, 0x6338,
858                 0x6370, 0x638c,
859                 0x6400, 0x643c,
860                 0x6500, 0x6524,
861                 0x6a00, 0x6a04,
862                 0x6a14, 0x6a38,
863                 0x6a60, 0x6a70,
864                 0x6a78, 0x6a78,
865                 0x6b00, 0x6b0c,
866                 0x6b1c, 0x6b84,
867                 0x6bf0, 0x6bf8,
868                 0x6c00, 0x6c0c,
869                 0x6c1c, 0x6c84,
870                 0x6cf0, 0x6cf8,
871                 0x6d00, 0x6d0c,
872                 0x6d1c, 0x6d84,
873                 0x6df0, 0x6df8,
874                 0x6e00, 0x6e0c,
875                 0x6e1c, 0x6e84,
876                 0x6ef0, 0x6ef8,
877                 0x6f00, 0x6f0c,
878                 0x6f1c, 0x6f84,
879                 0x6ff0, 0x6ff8,
880                 0x7000, 0x700c,
881                 0x701c, 0x7084,
882                 0x70f0, 0x70f8,
883                 0x7100, 0x710c,
884                 0x711c, 0x7184,
885                 0x71f0, 0x71f8,
886                 0x7200, 0x720c,
887                 0x721c, 0x7284,
888                 0x72f0, 0x72f8,
889                 0x7300, 0x730c,
890                 0x731c, 0x7384,
891                 0x73f0, 0x73f8,
892                 0x7400, 0x7450,
893                 0x7500, 0x7530,
894                 0x7600, 0x760c,
895                 0x7614, 0x761c,
896                 0x7680, 0x76cc,
897                 0x7700, 0x7798,
898                 0x77c0, 0x77fc,
899                 0x7900, 0x79fc,
900                 0x7b00, 0x7b58,
901                 0x7b60, 0x7b84,
902                 0x7b8c, 0x7c38,
903                 0x7d00, 0x7d38,
904                 0x7d40, 0x7d80,
905                 0x7d8c, 0x7ddc,
906                 0x7de4, 0x7e04,
907                 0x7e10, 0x7e1c,
908                 0x7e24, 0x7e38,
909                 0x7e40, 0x7e44,
910                 0x7e4c, 0x7e78,
911                 0x7e80, 0x7ea4,
912                 0x7eac, 0x7edc,
913                 0x7ee8, 0x7efc,
914                 0x8dc0, 0x8e04,
915                 0x8e10, 0x8e1c,
916                 0x8e30, 0x8e78,
917                 0x8ea0, 0x8eb8,
918                 0x8ec0, 0x8f6c,
919                 0x8fc0, 0x9008,
920                 0x9010, 0x9058,
921                 0x9060, 0x9060,
922                 0x9068, 0x9074,
923                 0x90fc, 0x90fc,
924                 0x9400, 0x9408,
925                 0x9410, 0x9458,
926                 0x9600, 0x9600,
927                 0x9608, 0x9638,
928                 0x9640, 0x96bc,
929                 0x9800, 0x9808,
930                 0x9820, 0x983c,
931                 0x9850, 0x9864,
932                 0x9c00, 0x9c6c,
933                 0x9c80, 0x9cec,
934                 0x9d00, 0x9d6c,
935                 0x9d80, 0x9dec,
936                 0x9e00, 0x9e6c,
937                 0x9e80, 0x9eec,
938                 0x9f00, 0x9f6c,
939                 0x9f80, 0x9fec,
940                 0xd004, 0xd004,
941                 0xd010, 0xd03c,
942                 0xdfc0, 0xdfe0,
943                 0xe000, 0xea7c,
944                 0xf000, 0x11110,
945                 0x11118, 0x11190,
946                 0x19040, 0x1906c,
947                 0x19078, 0x19080,
948                 0x1908c, 0x190e4,
949                 0x190f0, 0x190f8,
950                 0x19100, 0x19110,
951                 0x19120, 0x19124,
952                 0x19150, 0x19194,
953                 0x1919c, 0x191b0,
954                 0x191d0, 0x191e8,
955                 0x19238, 0x1924c,
956                 0x193f8, 0x1943c,
957                 0x1944c, 0x19474,
958                 0x19490, 0x194e0,
959                 0x194f0, 0x194f8,
960                 0x19800, 0x19c08,
961                 0x19c10, 0x19c90,
962                 0x19ca0, 0x19ce4,
963                 0x19cf0, 0x19d40,
964                 0x19d50, 0x19d94,
965                 0x19da0, 0x19de8,
966                 0x19df0, 0x19e40,
967                 0x19e50, 0x19e90,
968                 0x19ea0, 0x19f4c,
969                 0x1a000, 0x1a004,
970                 0x1a010, 0x1a06c,
971                 0x1a0b0, 0x1a0e4,
972                 0x1a0ec, 0x1a0f4,
973                 0x1a100, 0x1a108,
974                 0x1a114, 0x1a120,
975                 0x1a128, 0x1a130,
976                 0x1a138, 0x1a138,
977                 0x1a190, 0x1a1c4,
978                 0x1a1fc, 0x1a1fc,
979                 0x1e040, 0x1e04c,
980                 0x1e284, 0x1e28c,
981                 0x1e2c0, 0x1e2c0,
982                 0x1e2e0, 0x1e2e0,
983                 0x1e300, 0x1e384,
984                 0x1e3c0, 0x1e3c8,
985                 0x1e440, 0x1e44c,
986                 0x1e684, 0x1e68c,
987                 0x1e6c0, 0x1e6c0,
988                 0x1e6e0, 0x1e6e0,
989                 0x1e700, 0x1e784,
990                 0x1e7c0, 0x1e7c8,
991                 0x1e840, 0x1e84c,
992                 0x1ea84, 0x1ea8c,
993                 0x1eac0, 0x1eac0,
994                 0x1eae0, 0x1eae0,
995                 0x1eb00, 0x1eb84,
996                 0x1ebc0, 0x1ebc8,
997                 0x1ec40, 0x1ec4c,
998                 0x1ee84, 0x1ee8c,
999                 0x1eec0, 0x1eec0,
1000                 0x1eee0, 0x1eee0,
1001                 0x1ef00, 0x1ef84,
1002                 0x1efc0, 0x1efc8,
1003                 0x1f040, 0x1f04c,
1004                 0x1f284, 0x1f28c,
1005                 0x1f2c0, 0x1f2c0,
1006                 0x1f2e0, 0x1f2e0,
1007                 0x1f300, 0x1f384,
1008                 0x1f3c0, 0x1f3c8,
1009                 0x1f440, 0x1f44c,
1010                 0x1f684, 0x1f68c,
1011                 0x1f6c0, 0x1f6c0,
1012                 0x1f6e0, 0x1f6e0,
1013                 0x1f700, 0x1f784,
1014                 0x1f7c0, 0x1f7c8,
1015                 0x1f840, 0x1f84c,
1016                 0x1fa84, 0x1fa8c,
1017                 0x1fac0, 0x1fac0,
1018                 0x1fae0, 0x1fae0,
1019                 0x1fb00, 0x1fb84,
1020                 0x1fbc0, 0x1fbc8,
1021                 0x1fc40, 0x1fc4c,
1022                 0x1fe84, 0x1fe8c,
1023                 0x1fec0, 0x1fec0,
1024                 0x1fee0, 0x1fee0,
1025                 0x1ff00, 0x1ff84,
1026                 0x1ffc0, 0x1ffc8,
1027                 0x20000, 0x2002c,
1028                 0x20100, 0x2013c,
1029                 0x20190, 0x201a0,
1030                 0x201a8, 0x201b8,
1031                 0x201c4, 0x201c8,
1032                 0x20200, 0x20318,
1033                 0x20400, 0x204b4,
1034                 0x204c0, 0x20528,
1035                 0x20540, 0x20614,
1036                 0x21000, 0x21040,
1037                 0x2104c, 0x21060,
1038                 0x210c0, 0x210ec,
1039                 0x21200, 0x21268,
1040                 0x21270, 0x21284,
1041                 0x212fc, 0x21388,
1042                 0x21400, 0x21404,
1043                 0x21500, 0x21500,
1044                 0x21510, 0x21518,
1045                 0x2152c, 0x21530,
1046                 0x2153c, 0x2153c,
1047                 0x21550, 0x21554,
1048                 0x21600, 0x21600,
1049                 0x21608, 0x2161c,
1050                 0x21624, 0x21628,
1051                 0x21630, 0x21634,
1052                 0x2163c, 0x2163c,
1053                 0x21700, 0x2171c,
1054                 0x21780, 0x2178c,
1055                 0x21800, 0x21818,
1056                 0x21820, 0x21828,
1057                 0x21830, 0x21848,
1058                 0x21850, 0x21854,
1059                 0x21860, 0x21868,
1060                 0x21870, 0x21870,
1061                 0x21878, 0x21898,
1062                 0x218a0, 0x218a8,
1063                 0x218b0, 0x218c8,
1064                 0x218d0, 0x218d4,
1065                 0x218e0, 0x218e8,
1066                 0x218f0, 0x218f0,
1067                 0x218f8, 0x21a18,
1068                 0x21a20, 0x21a28,
1069                 0x21a30, 0x21a48,
1070                 0x21a50, 0x21a54,
1071                 0x21a60, 0x21a68,
1072                 0x21a70, 0x21a70,
1073                 0x21a78, 0x21a98,
1074                 0x21aa0, 0x21aa8,
1075                 0x21ab0, 0x21ac8,
1076                 0x21ad0, 0x21ad4,
1077                 0x21ae0, 0x21ae8,
1078                 0x21af0, 0x21af0,
1079                 0x21af8, 0x21c18,
1080                 0x21c20, 0x21c20,
1081                 0x21c28, 0x21c30,
1082                 0x21c38, 0x21c38,
1083                 0x21c80, 0x21c98,
1084                 0x21ca0, 0x21ca8,
1085                 0x21cb0, 0x21cc8,
1086                 0x21cd0, 0x21cd4,
1087                 0x21ce0, 0x21ce8,
1088                 0x21cf0, 0x21cf0,
1089                 0x21cf8, 0x21d7c,
1090                 0x21e00, 0x21e04,
1091                 0x22000, 0x2202c,
1092                 0x22100, 0x2213c,
1093                 0x22190, 0x221a0,
1094                 0x221a8, 0x221b8,
1095                 0x221c4, 0x221c8,
1096                 0x22200, 0x22318,
1097                 0x22400, 0x224b4,
1098                 0x224c0, 0x22528,
1099                 0x22540, 0x22614,
1100                 0x23000, 0x23040,
1101                 0x2304c, 0x23060,
1102                 0x230c0, 0x230ec,
1103                 0x23200, 0x23268,
1104                 0x23270, 0x23284,
1105                 0x232fc, 0x23388,
1106                 0x23400, 0x23404,
1107                 0x23500, 0x23500,
1108                 0x23510, 0x23518,
1109                 0x2352c, 0x23530,
1110                 0x2353c, 0x2353c,
1111                 0x23550, 0x23554,
1112                 0x23600, 0x23600,
1113                 0x23608, 0x2361c,
1114                 0x23624, 0x23628,
1115                 0x23630, 0x23634,
1116                 0x2363c, 0x2363c,
1117                 0x23700, 0x2371c,
1118                 0x23780, 0x2378c,
1119                 0x23800, 0x23818,
1120                 0x23820, 0x23828,
1121                 0x23830, 0x23848,
1122                 0x23850, 0x23854,
1123                 0x23860, 0x23868,
1124                 0x23870, 0x23870,
1125                 0x23878, 0x23898,
1126                 0x238a0, 0x238a8,
1127                 0x238b0, 0x238c8,
1128                 0x238d0, 0x238d4,
1129                 0x238e0, 0x238e8,
1130                 0x238f0, 0x238f0,
1131                 0x238f8, 0x23a18,
1132                 0x23a20, 0x23a28,
1133                 0x23a30, 0x23a48,
1134                 0x23a50, 0x23a54,
1135                 0x23a60, 0x23a68,
1136                 0x23a70, 0x23a70,
1137                 0x23a78, 0x23a98,
1138                 0x23aa0, 0x23aa8,
1139                 0x23ab0, 0x23ac8,
1140                 0x23ad0, 0x23ad4,
1141                 0x23ae0, 0x23ae8,
1142                 0x23af0, 0x23af0,
1143                 0x23af8, 0x23c18,
1144                 0x23c20, 0x23c20,
1145                 0x23c28, 0x23c30,
1146                 0x23c38, 0x23c38,
1147                 0x23c80, 0x23c98,
1148                 0x23ca0, 0x23ca8,
1149                 0x23cb0, 0x23cc8,
1150                 0x23cd0, 0x23cd4,
1151                 0x23ce0, 0x23ce8,
1152                 0x23cf0, 0x23cf0,
1153                 0x23cf8, 0x23d7c,
1154                 0x23e00, 0x23e04,
1155                 0x24000, 0x2402c,
1156                 0x24100, 0x2413c,
1157                 0x24190, 0x241a0,
1158                 0x241a8, 0x241b8,
1159                 0x241c4, 0x241c8,
1160                 0x24200, 0x24318,
1161                 0x24400, 0x244b4,
1162                 0x244c0, 0x24528,
1163                 0x24540, 0x24614,
1164                 0x25000, 0x25040,
1165                 0x2504c, 0x25060,
1166                 0x250c0, 0x250ec,
1167                 0x25200, 0x25268,
1168                 0x25270, 0x25284,
1169                 0x252fc, 0x25388,
1170                 0x25400, 0x25404,
1171                 0x25500, 0x25500,
1172                 0x25510, 0x25518,
1173                 0x2552c, 0x25530,
1174                 0x2553c, 0x2553c,
1175                 0x25550, 0x25554,
1176                 0x25600, 0x25600,
1177                 0x25608, 0x2561c,
1178                 0x25624, 0x25628,
1179                 0x25630, 0x25634,
1180                 0x2563c, 0x2563c,
1181                 0x25700, 0x2571c,
1182                 0x25780, 0x2578c,
1183                 0x25800, 0x25818,
1184                 0x25820, 0x25828,
1185                 0x25830, 0x25848,
1186                 0x25850, 0x25854,
1187                 0x25860, 0x25868,
1188                 0x25870, 0x25870,
1189                 0x25878, 0x25898,
1190                 0x258a0, 0x258a8,
1191                 0x258b0, 0x258c8,
1192                 0x258d0, 0x258d4,
1193                 0x258e0, 0x258e8,
1194                 0x258f0, 0x258f0,
1195                 0x258f8, 0x25a18,
1196                 0x25a20, 0x25a28,
1197                 0x25a30, 0x25a48,
1198                 0x25a50, 0x25a54,
1199                 0x25a60, 0x25a68,
1200                 0x25a70, 0x25a70,
1201                 0x25a78, 0x25a98,
1202                 0x25aa0, 0x25aa8,
1203                 0x25ab0, 0x25ac8,
1204                 0x25ad0, 0x25ad4,
1205                 0x25ae0, 0x25ae8,
1206                 0x25af0, 0x25af0,
1207                 0x25af8, 0x25c18,
1208                 0x25c20, 0x25c20,
1209                 0x25c28, 0x25c30,
1210                 0x25c38, 0x25c38,
1211                 0x25c80, 0x25c98,
1212                 0x25ca0, 0x25ca8,
1213                 0x25cb0, 0x25cc8,
1214                 0x25cd0, 0x25cd4,
1215                 0x25ce0, 0x25ce8,
1216                 0x25cf0, 0x25cf0,
1217                 0x25cf8, 0x25d7c,
1218                 0x25e00, 0x25e04,
1219                 0x26000, 0x2602c,
1220                 0x26100, 0x2613c,
1221                 0x26190, 0x261a0,
1222                 0x261a8, 0x261b8,
1223                 0x261c4, 0x261c8,
1224                 0x26200, 0x26318,
1225                 0x26400, 0x264b4,
1226                 0x264c0, 0x26528,
1227                 0x26540, 0x26614,
1228                 0x27000, 0x27040,
1229                 0x2704c, 0x27060,
1230                 0x270c0, 0x270ec,
1231                 0x27200, 0x27268,
1232                 0x27270, 0x27284,
1233                 0x272fc, 0x27388,
1234                 0x27400, 0x27404,
1235                 0x27500, 0x27500,
1236                 0x27510, 0x27518,
1237                 0x2752c, 0x27530,
1238                 0x2753c, 0x2753c,
1239                 0x27550, 0x27554,
1240                 0x27600, 0x27600,
1241                 0x27608, 0x2761c,
1242                 0x27624, 0x27628,
1243                 0x27630, 0x27634,
1244                 0x2763c, 0x2763c,
1245                 0x27700, 0x2771c,
1246                 0x27780, 0x2778c,
1247                 0x27800, 0x27818,
1248                 0x27820, 0x27828,
1249                 0x27830, 0x27848,
1250                 0x27850, 0x27854,
1251                 0x27860, 0x27868,
1252                 0x27870, 0x27870,
1253                 0x27878, 0x27898,
1254                 0x278a0, 0x278a8,
1255                 0x278b0, 0x278c8,
1256                 0x278d0, 0x278d4,
1257                 0x278e0, 0x278e8,
1258                 0x278f0, 0x278f0,
1259                 0x278f8, 0x27a18,
1260                 0x27a20, 0x27a28,
1261                 0x27a30, 0x27a48,
1262                 0x27a50, 0x27a54,
1263                 0x27a60, 0x27a68,
1264                 0x27a70, 0x27a70,
1265                 0x27a78, 0x27a98,
1266                 0x27aa0, 0x27aa8,
1267                 0x27ab0, 0x27ac8,
1268                 0x27ad0, 0x27ad4,
1269                 0x27ae0, 0x27ae8,
1270                 0x27af0, 0x27af0,
1271                 0x27af8, 0x27c18,
1272                 0x27c20, 0x27c20,
1273                 0x27c28, 0x27c30,
1274                 0x27c38, 0x27c38,
1275                 0x27c80, 0x27c98,
1276                 0x27ca0, 0x27ca8,
1277                 0x27cb0, 0x27cc8,
1278                 0x27cd0, 0x27cd4,
1279                 0x27ce0, 0x27ce8,
1280                 0x27cf0, 0x27cf0,
1281                 0x27cf8, 0x27d7c,
1282                 0x27e00, 0x27e04,
1283         };
1284
1285         static const unsigned int t4vf_reg_ranges[] = {
1286                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287                 VF_MPS_REG(A_MPS_VF_CTL),
1288                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292                 FW_T4VF_MBDATA_BASE_ADDR,
1293                 FW_T4VF_MBDATA_BASE_ADDR +
1294                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295         };
1296
1297         static const unsigned int t5_reg_ranges[] = {
1298                 0x1008, 0x10c0,
1299                 0x10cc, 0x10f8,
1300                 0x1100, 0x1100,
1301                 0x110c, 0x1148,
1302                 0x1180, 0x1184,
1303                 0x1190, 0x1194,
1304                 0x11a0, 0x11a4,
1305                 0x11b0, 0x11b4,
1306                 0x11fc, 0x123c,
1307                 0x1280, 0x173c,
1308                 0x1800, 0x18fc,
1309                 0x3000, 0x3028,
1310                 0x3060, 0x30b0,
1311                 0x30b8, 0x30d8,
1312                 0x30e0, 0x30fc,
1313                 0x3140, 0x357c,
1314                 0x35a8, 0x35cc,
1315                 0x35ec, 0x35ec,
1316                 0x3600, 0x5624,
1317                 0x56cc, 0x56ec,
1318                 0x56f4, 0x5720,
1319                 0x5728, 0x575c,
1320                 0x580c, 0x5814,
1321                 0x5890, 0x589c,
1322                 0x58a4, 0x58ac,
1323                 0x58b8, 0x58bc,
1324                 0x5940, 0x59c8,
1325                 0x59d0, 0x59dc,
1326                 0x59fc, 0x5a18,
1327                 0x5a60, 0x5a70,
1328                 0x5a80, 0x5a9c,
1329                 0x5b94, 0x5bfc,
1330                 0x6000, 0x6020,
1331                 0x6028, 0x6040,
1332                 0x6058, 0x609c,
1333                 0x60a8, 0x614c,
1334                 0x7700, 0x7798,
1335                 0x77c0, 0x78fc,
1336                 0x7b00, 0x7b58,
1337                 0x7b60, 0x7b84,
1338                 0x7b8c, 0x7c54,
1339                 0x7d00, 0x7d38,
1340                 0x7d40, 0x7d80,
1341                 0x7d8c, 0x7ddc,
1342                 0x7de4, 0x7e04,
1343                 0x7e10, 0x7e1c,
1344                 0x7e24, 0x7e38,
1345                 0x7e40, 0x7e44,
1346                 0x7e4c, 0x7e78,
1347                 0x7e80, 0x7edc,
1348                 0x7ee8, 0x7efc,
1349                 0x8dc0, 0x8de0,
1350                 0x8df8, 0x8e04,
1351                 0x8e10, 0x8e84,
1352                 0x8ea0, 0x8f84,
1353                 0x8fc0, 0x9058,
1354                 0x9060, 0x9060,
1355                 0x9068, 0x90f8,
1356                 0x9400, 0x9408,
1357                 0x9410, 0x9470,
1358                 0x9600, 0x9600,
1359                 0x9608, 0x9638,
1360                 0x9640, 0x96f4,
1361                 0x9800, 0x9808,
1362                 0x9820, 0x983c,
1363                 0x9850, 0x9864,
1364                 0x9c00, 0x9c6c,
1365                 0x9c80, 0x9cec,
1366                 0x9d00, 0x9d6c,
1367                 0x9d80, 0x9dec,
1368                 0x9e00, 0x9e6c,
1369                 0x9e80, 0x9eec,
1370                 0x9f00, 0x9f6c,
1371                 0x9f80, 0xa020,
1372                 0xd004, 0xd004,
1373                 0xd010, 0xd03c,
1374                 0xdfc0, 0xdfe0,
1375                 0xe000, 0x1106c,
1376                 0x11074, 0x11088,
1377                 0x1109c, 0x1117c,
1378                 0x11190, 0x11204,
1379                 0x19040, 0x1906c,
1380                 0x19078, 0x19080,
1381                 0x1908c, 0x190e8,
1382                 0x190f0, 0x190f8,
1383                 0x19100, 0x19110,
1384                 0x19120, 0x19124,
1385                 0x19150, 0x19194,
1386                 0x1919c, 0x191b0,
1387                 0x191d0, 0x191e8,
1388                 0x19238, 0x19290,
1389                 0x193f8, 0x19428,
1390                 0x19430, 0x19444,
1391                 0x1944c, 0x1946c,
1392                 0x19474, 0x19474,
1393                 0x19490, 0x194cc,
1394                 0x194f0, 0x194f8,
1395                 0x19c00, 0x19c08,
1396                 0x19c10, 0x19c60,
1397                 0x19c94, 0x19ce4,
1398                 0x19cf0, 0x19d40,
1399                 0x19d50, 0x19d94,
1400                 0x19da0, 0x19de8,
1401                 0x19df0, 0x19e10,
1402                 0x19e50, 0x19e90,
1403                 0x19ea0, 0x19f24,
1404                 0x19f34, 0x19f34,
1405                 0x19f40, 0x19f50,
1406                 0x19f90, 0x19fb4,
1407                 0x19fc4, 0x19fe4,
1408                 0x1a000, 0x1a004,
1409                 0x1a010, 0x1a06c,
1410                 0x1a0b0, 0x1a0e4,
1411                 0x1a0ec, 0x1a0f8,
1412                 0x1a100, 0x1a108,
1413                 0x1a114, 0x1a120,
1414                 0x1a128, 0x1a130,
1415                 0x1a138, 0x1a138,
1416                 0x1a190, 0x1a1c4,
1417                 0x1a1fc, 0x1a1fc,
1418                 0x1e008, 0x1e00c,
1419                 0x1e040, 0x1e044,
1420                 0x1e04c, 0x1e04c,
1421                 0x1e284, 0x1e290,
1422                 0x1e2c0, 0x1e2c0,
1423                 0x1e2e0, 0x1e2e0,
1424                 0x1e300, 0x1e384,
1425                 0x1e3c0, 0x1e3c8,
1426                 0x1e408, 0x1e40c,
1427                 0x1e440, 0x1e444,
1428                 0x1e44c, 0x1e44c,
1429                 0x1e684, 0x1e690,
1430                 0x1e6c0, 0x1e6c0,
1431                 0x1e6e0, 0x1e6e0,
1432                 0x1e700, 0x1e784,
1433                 0x1e7c0, 0x1e7c8,
1434                 0x1e808, 0x1e80c,
1435                 0x1e840, 0x1e844,
1436                 0x1e84c, 0x1e84c,
1437                 0x1ea84, 0x1ea90,
1438                 0x1eac0, 0x1eac0,
1439                 0x1eae0, 0x1eae0,
1440                 0x1eb00, 0x1eb84,
1441                 0x1ebc0, 0x1ebc8,
1442                 0x1ec08, 0x1ec0c,
1443                 0x1ec40, 0x1ec44,
1444                 0x1ec4c, 0x1ec4c,
1445                 0x1ee84, 0x1ee90,
1446                 0x1eec0, 0x1eec0,
1447                 0x1eee0, 0x1eee0,
1448                 0x1ef00, 0x1ef84,
1449                 0x1efc0, 0x1efc8,
1450                 0x1f008, 0x1f00c,
1451                 0x1f040, 0x1f044,
1452                 0x1f04c, 0x1f04c,
1453                 0x1f284, 0x1f290,
1454                 0x1f2c0, 0x1f2c0,
1455                 0x1f2e0, 0x1f2e0,
1456                 0x1f300, 0x1f384,
1457                 0x1f3c0, 0x1f3c8,
1458                 0x1f408, 0x1f40c,
1459                 0x1f440, 0x1f444,
1460                 0x1f44c, 0x1f44c,
1461                 0x1f684, 0x1f690,
1462                 0x1f6c0, 0x1f6c0,
1463                 0x1f6e0, 0x1f6e0,
1464                 0x1f700, 0x1f784,
1465                 0x1f7c0, 0x1f7c8,
1466                 0x1f808, 0x1f80c,
1467                 0x1f840, 0x1f844,
1468                 0x1f84c, 0x1f84c,
1469                 0x1fa84, 0x1fa90,
1470                 0x1fac0, 0x1fac0,
1471                 0x1fae0, 0x1fae0,
1472                 0x1fb00, 0x1fb84,
1473                 0x1fbc0, 0x1fbc8,
1474                 0x1fc08, 0x1fc0c,
1475                 0x1fc40, 0x1fc44,
1476                 0x1fc4c, 0x1fc4c,
1477                 0x1fe84, 0x1fe90,
1478                 0x1fec0, 0x1fec0,
1479                 0x1fee0, 0x1fee0,
1480                 0x1ff00, 0x1ff84,
1481                 0x1ffc0, 0x1ffc8,
1482                 0x30000, 0x30030,
1483                 0x30100, 0x30144,
1484                 0x30190, 0x301a0,
1485                 0x301a8, 0x301b8,
1486                 0x301c4, 0x301c8,
1487                 0x301d0, 0x301d0,
1488                 0x30200, 0x30318,
1489                 0x30400, 0x304b4,
1490                 0x304c0, 0x3052c,
1491                 0x30540, 0x3061c,
1492                 0x30800, 0x30828,
1493                 0x30834, 0x30834,
1494                 0x308c0, 0x30908,
1495                 0x30910, 0x309ac,
1496                 0x30a00, 0x30a14,
1497                 0x30a1c, 0x30a2c,
1498                 0x30a44, 0x30a50,
1499                 0x30a74, 0x30a74,
1500                 0x30a7c, 0x30afc,
1501                 0x30b08, 0x30c24,
1502                 0x30d00, 0x30d00,
1503                 0x30d08, 0x30d14,
1504                 0x30d1c, 0x30d20,
1505                 0x30d3c, 0x30d3c,
1506                 0x30d48, 0x30d50,
1507                 0x31200, 0x3120c,
1508                 0x31220, 0x31220,
1509                 0x31240, 0x31240,
1510                 0x31600, 0x3160c,
1511                 0x31a00, 0x31a1c,
1512                 0x31e00, 0x31e20,
1513                 0x31e38, 0x31e3c,
1514                 0x31e80, 0x31e80,
1515                 0x31e88, 0x31ea8,
1516                 0x31eb0, 0x31eb4,
1517                 0x31ec8, 0x31ed4,
1518                 0x31fb8, 0x32004,
1519                 0x32200, 0x32200,
1520                 0x32208, 0x32240,
1521                 0x32248, 0x32280,
1522                 0x32288, 0x322c0,
1523                 0x322c8, 0x322fc,
1524                 0x32600, 0x32630,
1525                 0x32a00, 0x32abc,
1526                 0x32b00, 0x32b10,
1527                 0x32b20, 0x32b30,
1528                 0x32b40, 0x32b50,
1529                 0x32b60, 0x32b70,
1530                 0x33000, 0x33028,
1531                 0x33030, 0x33048,
1532                 0x33060, 0x33068,
1533                 0x33070, 0x3309c,
1534                 0x330f0, 0x33128,
1535                 0x33130, 0x33148,
1536                 0x33160, 0x33168,
1537                 0x33170, 0x3319c,
1538                 0x331f0, 0x33238,
1539                 0x33240, 0x33240,
1540                 0x33248, 0x33250,
1541                 0x3325c, 0x33264,
1542                 0x33270, 0x332b8,
1543                 0x332c0, 0x332e4,
1544                 0x332f8, 0x33338,
1545                 0x33340, 0x33340,
1546                 0x33348, 0x33350,
1547                 0x3335c, 0x33364,
1548                 0x33370, 0x333b8,
1549                 0x333c0, 0x333e4,
1550                 0x333f8, 0x33428,
1551                 0x33430, 0x33448,
1552                 0x33460, 0x33468,
1553                 0x33470, 0x3349c,
1554                 0x334f0, 0x33528,
1555                 0x33530, 0x33548,
1556                 0x33560, 0x33568,
1557                 0x33570, 0x3359c,
1558                 0x335f0, 0x33638,
1559                 0x33640, 0x33640,
1560                 0x33648, 0x33650,
1561                 0x3365c, 0x33664,
1562                 0x33670, 0x336b8,
1563                 0x336c0, 0x336e4,
1564                 0x336f8, 0x33738,
1565                 0x33740, 0x33740,
1566                 0x33748, 0x33750,
1567                 0x3375c, 0x33764,
1568                 0x33770, 0x337b8,
1569                 0x337c0, 0x337e4,
1570                 0x337f8, 0x337fc,
1571                 0x33814, 0x33814,
1572                 0x3382c, 0x3382c,
1573                 0x33880, 0x3388c,
1574                 0x338e8, 0x338ec,
1575                 0x33900, 0x33928,
1576                 0x33930, 0x33948,
1577                 0x33960, 0x33968,
1578                 0x33970, 0x3399c,
1579                 0x339f0, 0x33a38,
1580                 0x33a40, 0x33a40,
1581                 0x33a48, 0x33a50,
1582                 0x33a5c, 0x33a64,
1583                 0x33a70, 0x33ab8,
1584                 0x33ac0, 0x33ae4,
1585                 0x33af8, 0x33b10,
1586                 0x33b28, 0x33b28,
1587                 0x33b3c, 0x33b50,
1588                 0x33bf0, 0x33c10,
1589                 0x33c28, 0x33c28,
1590                 0x33c3c, 0x33c50,
1591                 0x33cf0, 0x33cfc,
1592                 0x34000, 0x34030,
1593                 0x34100, 0x34144,
1594                 0x34190, 0x341a0,
1595                 0x341a8, 0x341b8,
1596                 0x341c4, 0x341c8,
1597                 0x341d0, 0x341d0,
1598                 0x34200, 0x34318,
1599                 0x34400, 0x344b4,
1600                 0x344c0, 0x3452c,
1601                 0x34540, 0x3461c,
1602                 0x34800, 0x34828,
1603                 0x34834, 0x34834,
1604                 0x348c0, 0x34908,
1605                 0x34910, 0x349ac,
1606                 0x34a00, 0x34a14,
1607                 0x34a1c, 0x34a2c,
1608                 0x34a44, 0x34a50,
1609                 0x34a74, 0x34a74,
1610                 0x34a7c, 0x34afc,
1611                 0x34b08, 0x34c24,
1612                 0x34d00, 0x34d00,
1613                 0x34d08, 0x34d14,
1614                 0x34d1c, 0x34d20,
1615                 0x34d3c, 0x34d3c,
1616                 0x34d48, 0x34d50,
1617                 0x35200, 0x3520c,
1618                 0x35220, 0x35220,
1619                 0x35240, 0x35240,
1620                 0x35600, 0x3560c,
1621                 0x35a00, 0x35a1c,
1622                 0x35e00, 0x35e20,
1623                 0x35e38, 0x35e3c,
1624                 0x35e80, 0x35e80,
1625                 0x35e88, 0x35ea8,
1626                 0x35eb0, 0x35eb4,
1627                 0x35ec8, 0x35ed4,
1628                 0x35fb8, 0x36004,
1629                 0x36200, 0x36200,
1630                 0x36208, 0x36240,
1631                 0x36248, 0x36280,
1632                 0x36288, 0x362c0,
1633                 0x362c8, 0x362fc,
1634                 0x36600, 0x36630,
1635                 0x36a00, 0x36abc,
1636                 0x36b00, 0x36b10,
1637                 0x36b20, 0x36b30,
1638                 0x36b40, 0x36b50,
1639                 0x36b60, 0x36b70,
1640                 0x37000, 0x37028,
1641                 0x37030, 0x37048,
1642                 0x37060, 0x37068,
1643                 0x37070, 0x3709c,
1644                 0x370f0, 0x37128,
1645                 0x37130, 0x37148,
1646                 0x37160, 0x37168,
1647                 0x37170, 0x3719c,
1648                 0x371f0, 0x37238,
1649                 0x37240, 0x37240,
1650                 0x37248, 0x37250,
1651                 0x3725c, 0x37264,
1652                 0x37270, 0x372b8,
1653                 0x372c0, 0x372e4,
1654                 0x372f8, 0x37338,
1655                 0x37340, 0x37340,
1656                 0x37348, 0x37350,
1657                 0x3735c, 0x37364,
1658                 0x37370, 0x373b8,
1659                 0x373c0, 0x373e4,
1660                 0x373f8, 0x37428,
1661                 0x37430, 0x37448,
1662                 0x37460, 0x37468,
1663                 0x37470, 0x3749c,
1664                 0x374f0, 0x37528,
1665                 0x37530, 0x37548,
1666                 0x37560, 0x37568,
1667                 0x37570, 0x3759c,
1668                 0x375f0, 0x37638,
1669                 0x37640, 0x37640,
1670                 0x37648, 0x37650,
1671                 0x3765c, 0x37664,
1672                 0x37670, 0x376b8,
1673                 0x376c0, 0x376e4,
1674                 0x376f8, 0x37738,
1675                 0x37740, 0x37740,
1676                 0x37748, 0x37750,
1677                 0x3775c, 0x37764,
1678                 0x37770, 0x377b8,
1679                 0x377c0, 0x377e4,
1680                 0x377f8, 0x377fc,
1681                 0x37814, 0x37814,
1682                 0x3782c, 0x3782c,
1683                 0x37880, 0x3788c,
1684                 0x378e8, 0x378ec,
1685                 0x37900, 0x37928,
1686                 0x37930, 0x37948,
1687                 0x37960, 0x37968,
1688                 0x37970, 0x3799c,
1689                 0x379f0, 0x37a38,
1690                 0x37a40, 0x37a40,
1691                 0x37a48, 0x37a50,
1692                 0x37a5c, 0x37a64,
1693                 0x37a70, 0x37ab8,
1694                 0x37ac0, 0x37ae4,
1695                 0x37af8, 0x37b10,
1696                 0x37b28, 0x37b28,
1697                 0x37b3c, 0x37b50,
1698                 0x37bf0, 0x37c10,
1699                 0x37c28, 0x37c28,
1700                 0x37c3c, 0x37c50,
1701                 0x37cf0, 0x37cfc,
1702                 0x38000, 0x38030,
1703                 0x38100, 0x38144,
1704                 0x38190, 0x381a0,
1705                 0x381a8, 0x381b8,
1706                 0x381c4, 0x381c8,
1707                 0x381d0, 0x381d0,
1708                 0x38200, 0x38318,
1709                 0x38400, 0x384b4,
1710                 0x384c0, 0x3852c,
1711                 0x38540, 0x3861c,
1712                 0x38800, 0x38828,
1713                 0x38834, 0x38834,
1714                 0x388c0, 0x38908,
1715                 0x38910, 0x389ac,
1716                 0x38a00, 0x38a14,
1717                 0x38a1c, 0x38a2c,
1718                 0x38a44, 0x38a50,
1719                 0x38a74, 0x38a74,
1720                 0x38a7c, 0x38afc,
1721                 0x38b08, 0x38c24,
1722                 0x38d00, 0x38d00,
1723                 0x38d08, 0x38d14,
1724                 0x38d1c, 0x38d20,
1725                 0x38d3c, 0x38d3c,
1726                 0x38d48, 0x38d50,
1727                 0x39200, 0x3920c,
1728                 0x39220, 0x39220,
1729                 0x39240, 0x39240,
1730                 0x39600, 0x3960c,
1731                 0x39a00, 0x39a1c,
1732                 0x39e00, 0x39e20,
1733                 0x39e38, 0x39e3c,
1734                 0x39e80, 0x39e80,
1735                 0x39e88, 0x39ea8,
1736                 0x39eb0, 0x39eb4,
1737                 0x39ec8, 0x39ed4,
1738                 0x39fb8, 0x3a004,
1739                 0x3a200, 0x3a200,
1740                 0x3a208, 0x3a240,
1741                 0x3a248, 0x3a280,
1742                 0x3a288, 0x3a2c0,
1743                 0x3a2c8, 0x3a2fc,
1744                 0x3a600, 0x3a630,
1745                 0x3aa00, 0x3aabc,
1746                 0x3ab00, 0x3ab10,
1747                 0x3ab20, 0x3ab30,
1748                 0x3ab40, 0x3ab50,
1749                 0x3ab60, 0x3ab70,
1750                 0x3b000, 0x3b028,
1751                 0x3b030, 0x3b048,
1752                 0x3b060, 0x3b068,
1753                 0x3b070, 0x3b09c,
1754                 0x3b0f0, 0x3b128,
1755                 0x3b130, 0x3b148,
1756                 0x3b160, 0x3b168,
1757                 0x3b170, 0x3b19c,
1758                 0x3b1f0, 0x3b238,
1759                 0x3b240, 0x3b240,
1760                 0x3b248, 0x3b250,
1761                 0x3b25c, 0x3b264,
1762                 0x3b270, 0x3b2b8,
1763                 0x3b2c0, 0x3b2e4,
1764                 0x3b2f8, 0x3b338,
1765                 0x3b340, 0x3b340,
1766                 0x3b348, 0x3b350,
1767                 0x3b35c, 0x3b364,
1768                 0x3b370, 0x3b3b8,
1769                 0x3b3c0, 0x3b3e4,
1770                 0x3b3f8, 0x3b428,
1771                 0x3b430, 0x3b448,
1772                 0x3b460, 0x3b468,
1773                 0x3b470, 0x3b49c,
1774                 0x3b4f0, 0x3b528,
1775                 0x3b530, 0x3b548,
1776                 0x3b560, 0x3b568,
1777                 0x3b570, 0x3b59c,
1778                 0x3b5f0, 0x3b638,
1779                 0x3b640, 0x3b640,
1780                 0x3b648, 0x3b650,
1781                 0x3b65c, 0x3b664,
1782                 0x3b670, 0x3b6b8,
1783                 0x3b6c0, 0x3b6e4,
1784                 0x3b6f8, 0x3b738,
1785                 0x3b740, 0x3b740,
1786                 0x3b748, 0x3b750,
1787                 0x3b75c, 0x3b764,
1788                 0x3b770, 0x3b7b8,
1789                 0x3b7c0, 0x3b7e4,
1790                 0x3b7f8, 0x3b7fc,
1791                 0x3b814, 0x3b814,
1792                 0x3b82c, 0x3b82c,
1793                 0x3b880, 0x3b88c,
1794                 0x3b8e8, 0x3b8ec,
1795                 0x3b900, 0x3b928,
1796                 0x3b930, 0x3b948,
1797                 0x3b960, 0x3b968,
1798                 0x3b970, 0x3b99c,
1799                 0x3b9f0, 0x3ba38,
1800                 0x3ba40, 0x3ba40,
1801                 0x3ba48, 0x3ba50,
1802                 0x3ba5c, 0x3ba64,
1803                 0x3ba70, 0x3bab8,
1804                 0x3bac0, 0x3bae4,
1805                 0x3baf8, 0x3bb10,
1806                 0x3bb28, 0x3bb28,
1807                 0x3bb3c, 0x3bb50,
1808                 0x3bbf0, 0x3bc10,
1809                 0x3bc28, 0x3bc28,
1810                 0x3bc3c, 0x3bc50,
1811                 0x3bcf0, 0x3bcfc,
1812                 0x3c000, 0x3c030,
1813                 0x3c100, 0x3c144,
1814                 0x3c190, 0x3c1a0,
1815                 0x3c1a8, 0x3c1b8,
1816                 0x3c1c4, 0x3c1c8,
1817                 0x3c1d0, 0x3c1d0,
1818                 0x3c200, 0x3c318,
1819                 0x3c400, 0x3c4b4,
1820                 0x3c4c0, 0x3c52c,
1821                 0x3c540, 0x3c61c,
1822                 0x3c800, 0x3c828,
1823                 0x3c834, 0x3c834,
1824                 0x3c8c0, 0x3c908,
1825                 0x3c910, 0x3c9ac,
1826                 0x3ca00, 0x3ca14,
1827                 0x3ca1c, 0x3ca2c,
1828                 0x3ca44, 0x3ca50,
1829                 0x3ca74, 0x3ca74,
1830                 0x3ca7c, 0x3cafc,
1831                 0x3cb08, 0x3cc24,
1832                 0x3cd00, 0x3cd00,
1833                 0x3cd08, 0x3cd14,
1834                 0x3cd1c, 0x3cd20,
1835                 0x3cd3c, 0x3cd3c,
1836                 0x3cd48, 0x3cd50,
1837                 0x3d200, 0x3d20c,
1838                 0x3d220, 0x3d220,
1839                 0x3d240, 0x3d240,
1840                 0x3d600, 0x3d60c,
1841                 0x3da00, 0x3da1c,
1842                 0x3de00, 0x3de20,
1843                 0x3de38, 0x3de3c,
1844                 0x3de80, 0x3de80,
1845                 0x3de88, 0x3dea8,
1846                 0x3deb0, 0x3deb4,
1847                 0x3dec8, 0x3ded4,
1848                 0x3dfb8, 0x3e004,
1849                 0x3e200, 0x3e200,
1850                 0x3e208, 0x3e240,
1851                 0x3e248, 0x3e280,
1852                 0x3e288, 0x3e2c0,
1853                 0x3e2c8, 0x3e2fc,
1854                 0x3e600, 0x3e630,
1855                 0x3ea00, 0x3eabc,
1856                 0x3eb00, 0x3eb10,
1857                 0x3eb20, 0x3eb30,
1858                 0x3eb40, 0x3eb50,
1859                 0x3eb60, 0x3eb70,
1860                 0x3f000, 0x3f028,
1861                 0x3f030, 0x3f048,
1862                 0x3f060, 0x3f068,
1863                 0x3f070, 0x3f09c,
1864                 0x3f0f0, 0x3f128,
1865                 0x3f130, 0x3f148,
1866                 0x3f160, 0x3f168,
1867                 0x3f170, 0x3f19c,
1868                 0x3f1f0, 0x3f238,
1869                 0x3f240, 0x3f240,
1870                 0x3f248, 0x3f250,
1871                 0x3f25c, 0x3f264,
1872                 0x3f270, 0x3f2b8,
1873                 0x3f2c0, 0x3f2e4,
1874                 0x3f2f8, 0x3f338,
1875                 0x3f340, 0x3f340,
1876                 0x3f348, 0x3f350,
1877                 0x3f35c, 0x3f364,
1878                 0x3f370, 0x3f3b8,
1879                 0x3f3c0, 0x3f3e4,
1880                 0x3f3f8, 0x3f428,
1881                 0x3f430, 0x3f448,
1882                 0x3f460, 0x3f468,
1883                 0x3f470, 0x3f49c,
1884                 0x3f4f0, 0x3f528,
1885                 0x3f530, 0x3f548,
1886                 0x3f560, 0x3f568,
1887                 0x3f570, 0x3f59c,
1888                 0x3f5f0, 0x3f638,
1889                 0x3f640, 0x3f640,
1890                 0x3f648, 0x3f650,
1891                 0x3f65c, 0x3f664,
1892                 0x3f670, 0x3f6b8,
1893                 0x3f6c0, 0x3f6e4,
1894                 0x3f6f8, 0x3f738,
1895                 0x3f740, 0x3f740,
1896                 0x3f748, 0x3f750,
1897                 0x3f75c, 0x3f764,
1898                 0x3f770, 0x3f7b8,
1899                 0x3f7c0, 0x3f7e4,
1900                 0x3f7f8, 0x3f7fc,
1901                 0x3f814, 0x3f814,
1902                 0x3f82c, 0x3f82c,
1903                 0x3f880, 0x3f88c,
1904                 0x3f8e8, 0x3f8ec,
1905                 0x3f900, 0x3f928,
1906                 0x3f930, 0x3f948,
1907                 0x3f960, 0x3f968,
1908                 0x3f970, 0x3f99c,
1909                 0x3f9f0, 0x3fa38,
1910                 0x3fa40, 0x3fa40,
1911                 0x3fa48, 0x3fa50,
1912                 0x3fa5c, 0x3fa64,
1913                 0x3fa70, 0x3fab8,
1914                 0x3fac0, 0x3fae4,
1915                 0x3faf8, 0x3fb10,
1916                 0x3fb28, 0x3fb28,
1917                 0x3fb3c, 0x3fb50,
1918                 0x3fbf0, 0x3fc10,
1919                 0x3fc28, 0x3fc28,
1920                 0x3fc3c, 0x3fc50,
1921                 0x3fcf0, 0x3fcfc,
1922                 0x40000, 0x4000c,
1923                 0x40040, 0x40050,
1924                 0x40060, 0x40068,
1925                 0x4007c, 0x4008c,
1926                 0x40094, 0x400b0,
1927                 0x400c0, 0x40144,
1928                 0x40180, 0x4018c,
1929                 0x40200, 0x40254,
1930                 0x40260, 0x40264,
1931                 0x40270, 0x40288,
1932                 0x40290, 0x40298,
1933                 0x402ac, 0x402c8,
1934                 0x402d0, 0x402e0,
1935                 0x402f0, 0x402f0,
1936                 0x40300, 0x4033c,
1937                 0x403f8, 0x403fc,
1938                 0x41304, 0x413c4,
1939                 0x41400, 0x4140c,
1940                 0x41414, 0x4141c,
1941                 0x41480, 0x414d0,
1942                 0x44000, 0x44054,
1943                 0x4405c, 0x44078,
1944                 0x440c0, 0x44174,
1945                 0x44180, 0x441ac,
1946                 0x441b4, 0x441b8,
1947                 0x441c0, 0x44254,
1948                 0x4425c, 0x44278,
1949                 0x442c0, 0x44374,
1950                 0x44380, 0x443ac,
1951                 0x443b4, 0x443b8,
1952                 0x443c0, 0x44454,
1953                 0x4445c, 0x44478,
1954                 0x444c0, 0x44574,
1955                 0x44580, 0x445ac,
1956                 0x445b4, 0x445b8,
1957                 0x445c0, 0x44654,
1958                 0x4465c, 0x44678,
1959                 0x446c0, 0x44774,
1960                 0x44780, 0x447ac,
1961                 0x447b4, 0x447b8,
1962                 0x447c0, 0x44854,
1963                 0x4485c, 0x44878,
1964                 0x448c0, 0x44974,
1965                 0x44980, 0x449ac,
1966                 0x449b4, 0x449b8,
1967                 0x449c0, 0x449fc,
1968                 0x45000, 0x45004,
1969                 0x45010, 0x45030,
1970                 0x45040, 0x45060,
1971                 0x45068, 0x45068,
1972                 0x45080, 0x45084,
1973                 0x450a0, 0x450b0,
1974                 0x45200, 0x45204,
1975                 0x45210, 0x45230,
1976                 0x45240, 0x45260,
1977                 0x45268, 0x45268,
1978                 0x45280, 0x45284,
1979                 0x452a0, 0x452b0,
1980                 0x460c0, 0x460e4,
1981                 0x47000, 0x4703c,
1982                 0x47044, 0x4708c,
1983                 0x47200, 0x47250,
1984                 0x47400, 0x47408,
1985                 0x47414, 0x47420,
1986                 0x47600, 0x47618,
1987                 0x47800, 0x47814,
1988                 0x48000, 0x4800c,
1989                 0x48040, 0x48050,
1990                 0x48060, 0x48068,
1991                 0x4807c, 0x4808c,
1992                 0x48094, 0x480b0,
1993                 0x480c0, 0x48144,
1994                 0x48180, 0x4818c,
1995                 0x48200, 0x48254,
1996                 0x48260, 0x48264,
1997                 0x48270, 0x48288,
1998                 0x48290, 0x48298,
1999                 0x482ac, 0x482c8,
2000                 0x482d0, 0x482e0,
2001                 0x482f0, 0x482f0,
2002                 0x48300, 0x4833c,
2003                 0x483f8, 0x483fc,
2004                 0x49304, 0x493c4,
2005                 0x49400, 0x4940c,
2006                 0x49414, 0x4941c,
2007                 0x49480, 0x494d0,
2008                 0x4c000, 0x4c054,
2009                 0x4c05c, 0x4c078,
2010                 0x4c0c0, 0x4c174,
2011                 0x4c180, 0x4c1ac,
2012                 0x4c1b4, 0x4c1b8,
2013                 0x4c1c0, 0x4c254,
2014                 0x4c25c, 0x4c278,
2015                 0x4c2c0, 0x4c374,
2016                 0x4c380, 0x4c3ac,
2017                 0x4c3b4, 0x4c3b8,
2018                 0x4c3c0, 0x4c454,
2019                 0x4c45c, 0x4c478,
2020                 0x4c4c0, 0x4c574,
2021                 0x4c580, 0x4c5ac,
2022                 0x4c5b4, 0x4c5b8,
2023                 0x4c5c0, 0x4c654,
2024                 0x4c65c, 0x4c678,
2025                 0x4c6c0, 0x4c774,
2026                 0x4c780, 0x4c7ac,
2027                 0x4c7b4, 0x4c7b8,
2028                 0x4c7c0, 0x4c854,
2029                 0x4c85c, 0x4c878,
2030                 0x4c8c0, 0x4c974,
2031                 0x4c980, 0x4c9ac,
2032                 0x4c9b4, 0x4c9b8,
2033                 0x4c9c0, 0x4c9fc,
2034                 0x4d000, 0x4d004,
2035                 0x4d010, 0x4d030,
2036                 0x4d040, 0x4d060,
2037                 0x4d068, 0x4d068,
2038                 0x4d080, 0x4d084,
2039                 0x4d0a0, 0x4d0b0,
2040                 0x4d200, 0x4d204,
2041                 0x4d210, 0x4d230,
2042                 0x4d240, 0x4d260,
2043                 0x4d268, 0x4d268,
2044                 0x4d280, 0x4d284,
2045                 0x4d2a0, 0x4d2b0,
2046                 0x4e0c0, 0x4e0e4,
2047                 0x4f000, 0x4f03c,
2048                 0x4f044, 0x4f08c,
2049                 0x4f200, 0x4f250,
2050                 0x4f400, 0x4f408,
2051                 0x4f414, 0x4f420,
2052                 0x4f600, 0x4f618,
2053                 0x4f800, 0x4f814,
2054                 0x50000, 0x50084,
2055                 0x50090, 0x500cc,
2056                 0x50400, 0x50400,
2057                 0x50800, 0x50884,
2058                 0x50890, 0x508cc,
2059                 0x50c00, 0x50c00,
2060                 0x51000, 0x5101c,
2061                 0x51300, 0x51308,
2062         };
2063
2064         static const unsigned int t5vf_reg_ranges[] = {
2065                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2066                 VF_MPS_REG(A_MPS_VF_CTL),
2067                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2068                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2069                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2070                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2071                 FW_T4VF_MBDATA_BASE_ADDR,
2072                 FW_T4VF_MBDATA_BASE_ADDR +
2073                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2074         };
2075
2076         static const unsigned int t6_reg_ranges[] = {
2077                 0x1008, 0x101c,
2078                 0x1024, 0x10a8,
2079                 0x10b4, 0x10f8,
2080                 0x1100, 0x1114,
2081                 0x111c, 0x112c,
2082                 0x1138, 0x113c,
2083                 0x1144, 0x114c,
2084                 0x1180, 0x1184,
2085                 0x1190, 0x1194,
2086                 0x11a0, 0x11a4,
2087                 0x11b0, 0x11b4,
2088                 0x11fc, 0x1274,
2089                 0x1280, 0x133c,
2090                 0x1800, 0x18fc,
2091                 0x3000, 0x302c,
2092                 0x3060, 0x30b0,
2093                 0x30b8, 0x30d8,
2094                 0x30e0, 0x30fc,
2095                 0x3140, 0x357c,
2096                 0x35a8, 0x35cc,
2097                 0x35ec, 0x35ec,
2098                 0x3600, 0x5624,
2099                 0x56cc, 0x56ec,
2100                 0x56f4, 0x5720,
2101                 0x5728, 0x575c,
2102                 0x580c, 0x5814,
2103                 0x5890, 0x589c,
2104                 0x58a4, 0x58ac,
2105                 0x58b8, 0x58bc,
2106                 0x5940, 0x595c,
2107                 0x5980, 0x598c,
2108                 0x59b0, 0x59c8,
2109                 0x59d0, 0x59dc,
2110                 0x59fc, 0x5a18,
2111                 0x5a60, 0x5a6c,
2112                 0x5a80, 0x5a8c,
2113                 0x5a94, 0x5a9c,
2114                 0x5b94, 0x5bfc,
2115                 0x5c10, 0x5e48,
2116                 0x5e50, 0x5e94,
2117                 0x5ea0, 0x5eb0,
2118                 0x5ec0, 0x5ec0,
2119                 0x5ec8, 0x5ed0,
2120                 0x5ee0, 0x5ee0,
2121                 0x5ef0, 0x5ef0,
2122                 0x5f00, 0x5f00,
2123                 0x6000, 0x6020,
2124                 0x6028, 0x6040,
2125                 0x6058, 0x609c,
2126                 0x60a8, 0x619c,
2127                 0x7700, 0x7798,
2128                 0x77c0, 0x7880,
2129                 0x78cc, 0x78fc,
2130                 0x7b00, 0x7b58,
2131                 0x7b60, 0x7b84,
2132                 0x7b8c, 0x7c54,
2133                 0x7d00, 0x7d38,
2134                 0x7d40, 0x7d84,
2135                 0x7d8c, 0x7ddc,
2136                 0x7de4, 0x7e04,
2137                 0x7e10, 0x7e1c,
2138                 0x7e24, 0x7e38,
2139                 0x7e40, 0x7e44,
2140                 0x7e4c, 0x7e78,
2141                 0x7e80, 0x7edc,
2142                 0x7ee8, 0x7efc,
2143                 0x8dc0, 0x8de4,
2144                 0x8df8, 0x8e04,
2145                 0x8e10, 0x8e84,
2146                 0x8ea0, 0x8f88,
2147                 0x8fb8, 0x9058,
2148                 0x9060, 0x9060,
2149                 0x9068, 0x90f8,
2150                 0x9100, 0x9124,
2151                 0x9400, 0x9470,
2152                 0x9600, 0x9600,
2153                 0x9608, 0x9638,
2154                 0x9640, 0x9704,
2155                 0x9710, 0x971c,
2156                 0x9800, 0x9808,
2157                 0x9820, 0x983c,
2158                 0x9850, 0x9864,
2159                 0x9c00, 0x9c6c,
2160                 0x9c80, 0x9cec,
2161                 0x9d00, 0x9d6c,
2162                 0x9d80, 0x9dec,
2163                 0x9e00, 0x9e6c,
2164                 0x9e80, 0x9eec,
2165                 0x9f00, 0x9f6c,
2166                 0x9f80, 0xa020,
2167                 0xd004, 0xd03c,
2168                 0xd100, 0xd118,
2169                 0xd200, 0xd214,
2170                 0xd220, 0xd234,
2171                 0xd240, 0xd254,
2172                 0xd260, 0xd274,
2173                 0xd280, 0xd294,
2174                 0xd2a0, 0xd2b4,
2175                 0xd2c0, 0xd2d4,
2176                 0xd2e0, 0xd2f4,
2177                 0xd300, 0xd31c,
2178                 0xdfc0, 0xdfe0,
2179                 0xe000, 0xf008,
2180                 0xf010, 0xf018,
2181                 0xf020, 0xf028,
2182                 0x11000, 0x11014,
2183                 0x11048, 0x1106c,
2184                 0x11074, 0x11088,
2185                 0x11098, 0x11120,
2186                 0x1112c, 0x1117c,
2187                 0x11190, 0x112e0,
2188                 0x11300, 0x1130c,
2189                 0x12000, 0x1206c,
2190                 0x19040, 0x1906c,
2191                 0x19078, 0x19080,
2192                 0x1908c, 0x190e8,
2193                 0x190f0, 0x190f8,
2194                 0x19100, 0x19110,
2195                 0x19120, 0x19124,
2196                 0x19150, 0x19194,
2197                 0x1919c, 0x191b0,
2198                 0x191d0, 0x191e8,
2199                 0x19238, 0x19290,
2200                 0x192a4, 0x192b0,
2201                 0x192bc, 0x192bc,
2202                 0x19348, 0x1934c,
2203                 0x193f8, 0x19418,
2204                 0x19420, 0x19428,
2205                 0x19430, 0x19444,
2206                 0x1944c, 0x1946c,
2207                 0x19474, 0x19474,
2208                 0x19490, 0x194cc,
2209                 0x194f0, 0x194f8,
2210                 0x19c00, 0x19c48,
2211                 0x19c50, 0x19c80,
2212                 0x19c94, 0x19c98,
2213                 0x19ca0, 0x19cbc,
2214                 0x19ce4, 0x19ce4,
2215                 0x19cf0, 0x19cf8,
2216                 0x19d00, 0x19d28,
2217                 0x19d50, 0x19d78,
2218                 0x19d94, 0x19d98,
2219                 0x19da0, 0x19dc8,
2220                 0x19df0, 0x19e10,
2221                 0x19e50, 0x19e6c,
2222                 0x19ea0, 0x19ebc,
2223                 0x19ec4, 0x19ef4,
2224                 0x19f04, 0x19f2c,
2225                 0x19f34, 0x19f34,
2226                 0x19f40, 0x19f50,
2227                 0x19f90, 0x19fac,
2228                 0x19fc4, 0x19fc8,
2229                 0x19fd0, 0x19fe4,
2230                 0x1a000, 0x1a004,
2231                 0x1a010, 0x1a06c,
2232                 0x1a0b0, 0x1a0e4,
2233                 0x1a0ec, 0x1a0f8,
2234                 0x1a100, 0x1a108,
2235                 0x1a114, 0x1a120,
2236                 0x1a128, 0x1a130,
2237                 0x1a138, 0x1a138,
2238                 0x1a190, 0x1a1c4,
2239                 0x1a1fc, 0x1a1fc,
2240                 0x1e008, 0x1e00c,
2241                 0x1e040, 0x1e044,
2242                 0x1e04c, 0x1e04c,
2243                 0x1e284, 0x1e290,
2244                 0x1e2c0, 0x1e2c0,
2245                 0x1e2e0, 0x1e2e0,
2246                 0x1e300, 0x1e384,
2247                 0x1e3c0, 0x1e3c8,
2248                 0x1e408, 0x1e40c,
2249                 0x1e440, 0x1e444,
2250                 0x1e44c, 0x1e44c,
2251                 0x1e684, 0x1e690,
2252                 0x1e6c0, 0x1e6c0,
2253                 0x1e6e0, 0x1e6e0,
2254                 0x1e700, 0x1e784,
2255                 0x1e7c0, 0x1e7c8,
2256                 0x1e808, 0x1e80c,
2257                 0x1e840, 0x1e844,
2258                 0x1e84c, 0x1e84c,
2259                 0x1ea84, 0x1ea90,
2260                 0x1eac0, 0x1eac0,
2261                 0x1eae0, 0x1eae0,
2262                 0x1eb00, 0x1eb84,
2263                 0x1ebc0, 0x1ebc8,
2264                 0x1ec08, 0x1ec0c,
2265                 0x1ec40, 0x1ec44,
2266                 0x1ec4c, 0x1ec4c,
2267                 0x1ee84, 0x1ee90,
2268                 0x1eec0, 0x1eec0,
2269                 0x1eee0, 0x1eee0,
2270                 0x1ef00, 0x1ef84,
2271                 0x1efc0, 0x1efc8,
2272                 0x1f008, 0x1f00c,
2273                 0x1f040, 0x1f044,
2274                 0x1f04c, 0x1f04c,
2275                 0x1f284, 0x1f290,
2276                 0x1f2c0, 0x1f2c0,
2277                 0x1f2e0, 0x1f2e0,
2278                 0x1f300, 0x1f384,
2279                 0x1f3c0, 0x1f3c8,
2280                 0x1f408, 0x1f40c,
2281                 0x1f440, 0x1f444,
2282                 0x1f44c, 0x1f44c,
2283                 0x1f684, 0x1f690,
2284                 0x1f6c0, 0x1f6c0,
2285                 0x1f6e0, 0x1f6e0,
2286                 0x1f700, 0x1f784,
2287                 0x1f7c0, 0x1f7c8,
2288                 0x1f808, 0x1f80c,
2289                 0x1f840, 0x1f844,
2290                 0x1f84c, 0x1f84c,
2291                 0x1fa84, 0x1fa90,
2292                 0x1fac0, 0x1fac0,
2293                 0x1fae0, 0x1fae0,
2294                 0x1fb00, 0x1fb84,
2295                 0x1fbc0, 0x1fbc8,
2296                 0x1fc08, 0x1fc0c,
2297                 0x1fc40, 0x1fc44,
2298                 0x1fc4c, 0x1fc4c,
2299                 0x1fe84, 0x1fe90,
2300                 0x1fec0, 0x1fec0,
2301                 0x1fee0, 0x1fee0,
2302                 0x1ff00, 0x1ff84,
2303                 0x1ffc0, 0x1ffc8,
2304                 0x30000, 0x30030,
2305                 0x30100, 0x30168,
2306                 0x30190, 0x301a0,
2307                 0x301a8, 0x301b8,
2308                 0x301c4, 0x301c8,
2309                 0x301d0, 0x301d0,
2310                 0x30200, 0x30320,
2311                 0x30400, 0x304b4,
2312                 0x304c0, 0x3052c,
2313                 0x30540, 0x3061c,
2314                 0x30800, 0x308a0,
2315                 0x308c0, 0x30908,
2316                 0x30910, 0x309b8,
2317                 0x30a00, 0x30a04,
2318                 0x30a0c, 0x30a14,
2319                 0x30a1c, 0x30a2c,
2320                 0x30a44, 0x30a50,
2321                 0x30a74, 0x30a74,
2322                 0x30a7c, 0x30afc,
2323                 0x30b08, 0x30c24,
2324                 0x30d00, 0x30d14,
2325                 0x30d1c, 0x30d3c,
2326                 0x30d44, 0x30d4c,
2327                 0x30d54, 0x30d74,
2328                 0x30d7c, 0x30d7c,
2329                 0x30de0, 0x30de0,
2330                 0x30e00, 0x30ed4,
2331                 0x30f00, 0x30fa4,
2332                 0x30fc0, 0x30fc4,
2333                 0x31000, 0x31004,
2334                 0x31080, 0x310fc,
2335                 0x31208, 0x31220,
2336                 0x3123c, 0x31254,
2337                 0x31300, 0x31300,
2338                 0x31308, 0x3131c,
2339                 0x31338, 0x3133c,
2340                 0x31380, 0x31380,
2341                 0x31388, 0x313a8,
2342                 0x313b4, 0x313b4,
2343                 0x31400, 0x31420,
2344                 0x31438, 0x3143c,
2345                 0x31480, 0x31480,
2346                 0x314a8, 0x314a8,
2347                 0x314b0, 0x314b4,
2348                 0x314c8, 0x314d4,
2349                 0x31a40, 0x31a4c,
2350                 0x31af0, 0x31b20,
2351                 0x31b38, 0x31b3c,
2352                 0x31b80, 0x31b80,
2353                 0x31ba8, 0x31ba8,
2354                 0x31bb0, 0x31bb4,
2355                 0x31bc8, 0x31bd4,
2356                 0x32140, 0x3218c,
2357                 0x321f0, 0x321f4,
2358                 0x32200, 0x32200,
2359                 0x32218, 0x32218,
2360                 0x32400, 0x32400,
2361                 0x32408, 0x3241c,
2362                 0x32618, 0x32620,
2363                 0x32664, 0x32664,
2364                 0x326a8, 0x326a8,
2365                 0x326ec, 0x326ec,
2366                 0x32a00, 0x32abc,
2367                 0x32b00, 0x32b18,
2368                 0x32b20, 0x32b38,
2369                 0x32b40, 0x32b58,
2370                 0x32b60, 0x32b78,
2371                 0x32c00, 0x32c00,
2372                 0x32c08, 0x32c3c,
2373                 0x33000, 0x3302c,
2374                 0x33034, 0x33050,
2375                 0x33058, 0x33058,
2376                 0x33060, 0x3308c,
2377                 0x3309c, 0x330ac,
2378                 0x330c0, 0x330c0,
2379                 0x330c8, 0x330d0,
2380                 0x330d8, 0x330e0,
2381                 0x330ec, 0x3312c,
2382                 0x33134, 0x33150,
2383                 0x33158, 0x33158,
2384                 0x33160, 0x3318c,
2385                 0x3319c, 0x331ac,
2386                 0x331c0, 0x331c0,
2387                 0x331c8, 0x331d0,
2388                 0x331d8, 0x331e0,
2389                 0x331ec, 0x33290,
2390                 0x33298, 0x332c4,
2391                 0x332e4, 0x33390,
2392                 0x33398, 0x333c4,
2393                 0x333e4, 0x3342c,
2394                 0x33434, 0x33450,
2395                 0x33458, 0x33458,
2396                 0x33460, 0x3348c,
2397                 0x3349c, 0x334ac,
2398                 0x334c0, 0x334c0,
2399                 0x334c8, 0x334d0,
2400                 0x334d8, 0x334e0,
2401                 0x334ec, 0x3352c,
2402                 0x33534, 0x33550,
2403                 0x33558, 0x33558,
2404                 0x33560, 0x3358c,
2405                 0x3359c, 0x335ac,
2406                 0x335c0, 0x335c0,
2407                 0x335c8, 0x335d0,
2408                 0x335d8, 0x335e0,
2409                 0x335ec, 0x33690,
2410                 0x33698, 0x336c4,
2411                 0x336e4, 0x33790,
2412                 0x33798, 0x337c4,
2413                 0x337e4, 0x337fc,
2414                 0x33814, 0x33814,
2415                 0x33854, 0x33868,
2416                 0x33880, 0x3388c,
2417                 0x338c0, 0x338d0,
2418                 0x338e8, 0x338ec,
2419                 0x33900, 0x3392c,
2420                 0x33934, 0x33950,
2421                 0x33958, 0x33958,
2422                 0x33960, 0x3398c,
2423                 0x3399c, 0x339ac,
2424                 0x339c0, 0x339c0,
2425                 0x339c8, 0x339d0,
2426                 0x339d8, 0x339e0,
2427                 0x339ec, 0x33a90,
2428                 0x33a98, 0x33ac4,
2429                 0x33ae4, 0x33b10,
2430                 0x33b24, 0x33b28,
2431                 0x33b38, 0x33b50,
2432                 0x33bf0, 0x33c10,
2433                 0x33c24, 0x33c28,
2434                 0x33c38, 0x33c50,
2435                 0x33cf0, 0x33cfc,
2436                 0x34000, 0x34030,
2437                 0x34100, 0x34168,
2438                 0x34190, 0x341a0,
2439                 0x341a8, 0x341b8,
2440                 0x341c4, 0x341c8,
2441                 0x341d0, 0x341d0,
2442                 0x34200, 0x34320,
2443                 0x34400, 0x344b4,
2444                 0x344c0, 0x3452c,
2445                 0x34540, 0x3461c,
2446                 0x34800, 0x348a0,
2447                 0x348c0, 0x34908,
2448                 0x34910, 0x349b8,
2449                 0x34a00, 0x34a04,
2450                 0x34a0c, 0x34a14,
2451                 0x34a1c, 0x34a2c,
2452                 0x34a44, 0x34a50,
2453                 0x34a74, 0x34a74,
2454                 0x34a7c, 0x34afc,
2455                 0x34b08, 0x34c24,
2456                 0x34d00, 0x34d14,
2457                 0x34d1c, 0x34d3c,
2458                 0x34d44, 0x34d4c,
2459                 0x34d54, 0x34d74,
2460                 0x34d7c, 0x34d7c,
2461                 0x34de0, 0x34de0,
2462                 0x34e00, 0x34ed4,
2463                 0x34f00, 0x34fa4,
2464                 0x34fc0, 0x34fc4,
2465                 0x35000, 0x35004,
2466                 0x35080, 0x350fc,
2467                 0x35208, 0x35220,
2468                 0x3523c, 0x35254,
2469                 0x35300, 0x35300,
2470                 0x35308, 0x3531c,
2471                 0x35338, 0x3533c,
2472                 0x35380, 0x35380,
2473                 0x35388, 0x353a8,
2474                 0x353b4, 0x353b4,
2475                 0x35400, 0x35420,
2476                 0x35438, 0x3543c,
2477                 0x35480, 0x35480,
2478                 0x354a8, 0x354a8,
2479                 0x354b0, 0x354b4,
2480                 0x354c8, 0x354d4,
2481                 0x35a40, 0x35a4c,
2482                 0x35af0, 0x35b20,
2483                 0x35b38, 0x35b3c,
2484                 0x35b80, 0x35b80,
2485                 0x35ba8, 0x35ba8,
2486                 0x35bb0, 0x35bb4,
2487                 0x35bc8, 0x35bd4,
2488                 0x36140, 0x3618c,
2489                 0x361f0, 0x361f4,
2490                 0x36200, 0x36200,
2491                 0x36218, 0x36218,
2492                 0x36400, 0x36400,
2493                 0x36408, 0x3641c,
2494                 0x36618, 0x36620,
2495                 0x36664, 0x36664,
2496                 0x366a8, 0x366a8,
2497                 0x366ec, 0x366ec,
2498                 0x36a00, 0x36abc,
2499                 0x36b00, 0x36b18,
2500                 0x36b20, 0x36b38,
2501                 0x36b40, 0x36b58,
2502                 0x36b60, 0x36b78,
2503                 0x36c00, 0x36c00,
2504                 0x36c08, 0x36c3c,
2505                 0x37000, 0x3702c,
2506                 0x37034, 0x37050,
2507                 0x37058, 0x37058,
2508                 0x37060, 0x3708c,
2509                 0x3709c, 0x370ac,
2510                 0x370c0, 0x370c0,
2511                 0x370c8, 0x370d0,
2512                 0x370d8, 0x370e0,
2513                 0x370ec, 0x3712c,
2514                 0x37134, 0x37150,
2515                 0x37158, 0x37158,
2516                 0x37160, 0x3718c,
2517                 0x3719c, 0x371ac,
2518                 0x371c0, 0x371c0,
2519                 0x371c8, 0x371d0,
2520                 0x371d8, 0x371e0,
2521                 0x371ec, 0x37290,
2522                 0x37298, 0x372c4,
2523                 0x372e4, 0x37390,
2524                 0x37398, 0x373c4,
2525                 0x373e4, 0x3742c,
2526                 0x37434, 0x37450,
2527                 0x37458, 0x37458,
2528                 0x37460, 0x3748c,
2529                 0x3749c, 0x374ac,
2530                 0x374c0, 0x374c0,
2531                 0x374c8, 0x374d0,
2532                 0x374d8, 0x374e0,
2533                 0x374ec, 0x3752c,
2534                 0x37534, 0x37550,
2535                 0x37558, 0x37558,
2536                 0x37560, 0x3758c,
2537                 0x3759c, 0x375ac,
2538                 0x375c0, 0x375c0,
2539                 0x375c8, 0x375d0,
2540                 0x375d8, 0x375e0,
2541                 0x375ec, 0x37690,
2542                 0x37698, 0x376c4,
2543                 0x376e4, 0x37790,
2544                 0x37798, 0x377c4,
2545                 0x377e4, 0x377fc,
2546                 0x37814, 0x37814,
2547                 0x37854, 0x37868,
2548                 0x37880, 0x3788c,
2549                 0x378c0, 0x378d0,
2550                 0x378e8, 0x378ec,
2551                 0x37900, 0x3792c,
2552                 0x37934, 0x37950,
2553                 0x37958, 0x37958,
2554                 0x37960, 0x3798c,
2555                 0x3799c, 0x379ac,
2556                 0x379c0, 0x379c0,
2557                 0x379c8, 0x379d0,
2558                 0x379d8, 0x379e0,
2559                 0x379ec, 0x37a90,
2560                 0x37a98, 0x37ac4,
2561                 0x37ae4, 0x37b10,
2562                 0x37b24, 0x37b28,
2563                 0x37b38, 0x37b50,
2564                 0x37bf0, 0x37c10,
2565                 0x37c24, 0x37c28,
2566                 0x37c38, 0x37c50,
2567                 0x37cf0, 0x37cfc,
2568                 0x40040, 0x40040,
2569                 0x40080, 0x40084,
2570                 0x40100, 0x40100,
2571                 0x40140, 0x401bc,
2572                 0x40200, 0x40214,
2573                 0x40228, 0x40228,
2574                 0x40240, 0x40258,
2575                 0x40280, 0x40280,
2576                 0x40304, 0x40304,
2577                 0x40330, 0x4033c,
2578                 0x41304, 0x413c8,
2579                 0x413d0, 0x413dc,
2580                 0x413f0, 0x413f0,
2581                 0x41400, 0x4140c,
2582                 0x41414, 0x4141c,
2583                 0x41480, 0x414d0,
2584                 0x44000, 0x4407c,
2585                 0x440c0, 0x441ac,
2586                 0x441b4, 0x4427c,
2587                 0x442c0, 0x443ac,
2588                 0x443b4, 0x4447c,
2589                 0x444c0, 0x445ac,
2590                 0x445b4, 0x4467c,
2591                 0x446c0, 0x447ac,
2592                 0x447b4, 0x4487c,
2593                 0x448c0, 0x449ac,
2594                 0x449b4, 0x44a7c,
2595                 0x44ac0, 0x44bac,
2596                 0x44bb4, 0x44c7c,
2597                 0x44cc0, 0x44dac,
2598                 0x44db4, 0x44e7c,
2599                 0x44ec0, 0x44fac,
2600                 0x44fb4, 0x4507c,
2601                 0x450c0, 0x451ac,
2602                 0x451b4, 0x451fc,
2603                 0x45800, 0x45804,
2604                 0x45810, 0x45830,
2605                 0x45840, 0x45860,
2606                 0x45868, 0x45868,
2607                 0x45880, 0x45884,
2608                 0x458a0, 0x458b0,
2609                 0x45a00, 0x45a04,
2610                 0x45a10, 0x45a30,
2611                 0x45a40, 0x45a60,
2612                 0x45a68, 0x45a68,
2613                 0x45a80, 0x45a84,
2614                 0x45aa0, 0x45ab0,
2615                 0x460c0, 0x460e4,
2616                 0x47000, 0x4703c,
2617                 0x47044, 0x4708c,
2618                 0x47200, 0x47250,
2619                 0x47400, 0x47408,
2620                 0x47414, 0x47420,
2621                 0x47600, 0x47618,
2622                 0x47800, 0x47814,
2623                 0x47820, 0x4782c,
2624                 0x50000, 0x50084,
2625                 0x50090, 0x500cc,
2626                 0x50300, 0x50384,
2627                 0x50400, 0x50400,
2628                 0x50800, 0x50884,
2629                 0x50890, 0x508cc,
2630                 0x50b00, 0x50b84,
2631                 0x50c00, 0x50c00,
2632                 0x51000, 0x51020,
2633                 0x51028, 0x510b0,
2634                 0x51300, 0x51324,
2635         };
2636
2637         static const unsigned int t6vf_reg_ranges[] = {
2638                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2639                 VF_MPS_REG(A_MPS_VF_CTL),
2640                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2641                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2642                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2643                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2644                 FW_T6VF_MBDATA_BASE_ADDR,
2645                 FW_T6VF_MBDATA_BASE_ADDR +
2646                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2647         };
2648
2649         u32 *buf_end = (u32 *)(buf + buf_size);
2650         const unsigned int *reg_ranges;
2651         int reg_ranges_size, range;
2652         unsigned int chip_version = chip_id(adap);
2653
2654         /*
2655          * Select the right set of register ranges to dump depending on the
2656          * adapter chip type.
2657          */
2658         switch (chip_version) {
2659         case CHELSIO_T4:
2660                 if (adap->flags & IS_VF) {
2661                         reg_ranges = t4vf_reg_ranges;
2662                         reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2663                 } else {
2664                         reg_ranges = t4_reg_ranges;
2665                         reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2666                 }
2667                 break;
2668
2669         case CHELSIO_T5:
2670                 if (adap->flags & IS_VF) {
2671                         reg_ranges = t5vf_reg_ranges;
2672                         reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2673                 } else {
2674                         reg_ranges = t5_reg_ranges;
2675                         reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2676                 }
2677                 break;
2678
2679         case CHELSIO_T6:
2680                 if (adap->flags & IS_VF) {
2681                         reg_ranges = t6vf_reg_ranges;
2682                         reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2683                 } else {
2684                         reg_ranges = t6_reg_ranges;
2685                         reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2686                 }
2687                 break;
2688
2689         default:
2690                 CH_ERR(adap,
2691                         "Unsupported chip version %d\n", chip_version);
2692                 return;
2693         }
2694
2695         /*
2696          * Clear the register buffer and insert the appropriate register
2697          * values selected by the above register ranges.
2698          */
2699         memset(buf, 0, buf_size);
2700         for (range = 0; range < reg_ranges_size; range += 2) {
2701                 unsigned int reg = reg_ranges[range];
2702                 unsigned int last_reg = reg_ranges[range + 1];
2703                 u32 *bufp = (u32 *)(buf + reg);
2704
2705                 /*
2706                  * Iterate across the register range filling in the register
2707                  * buffer but don't write past the end of the register buffer.
2708                  */
2709                 while (reg <= last_reg && bufp < buf_end) {
2710                         *bufp++ = t4_read_reg(adap, reg);
2711                         reg += sizeof(u32);
2712                 }
2713         }
2714 }
2715
2716 /*
2717  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2718  * header followed by one or more VPD-R sections, each with its own header.
2719  */
2720 struct t4_vpd_hdr {
2721         u8  id_tag;
2722         u8  id_len[2];
2723         u8  id_data[ID_LEN];
2724 };
2725
2726 struct t4_vpdr_hdr {
2727         u8  vpdr_tag;
2728         u8  vpdr_len[2];
2729 };
2730
2731 /*
2732  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2733  */
2734 #define EEPROM_DELAY            10              /* 10us per poll spin */
2735 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
2736
2737 #define EEPROM_STAT_ADDR        0x7bfc
2738 #define VPD_SIZE                0x800
2739 #define VPD_BASE                0x400
2740 #define VPD_BASE_OLD            0
2741 #define VPD_LEN                 1024
2742 #define VPD_INFO_FLD_HDR_SIZE   3
2743 #define CHELSIO_VPD_UNIQUE_ID   0x82
2744
2745 /*
2746  * Small utility function to wait till any outstanding VPD Access is complete.
2747  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2748  * VPD Access in flight.  This allows us to handle the problem of having a
2749  * previous VPD Access time out and prevent an attempt to inject a new VPD
2750  * Request before any in-flight VPD reguest has completed.
2751  */
2752 static int t4_seeprom_wait(struct adapter *adapter)
2753 {
2754         unsigned int base = adapter->params.pci.vpd_cap_addr;
2755         int max_poll;
2756
2757         /*
2758          * If no VPD Access is in flight, we can just return success right
2759          * away.
2760          */
2761         if (!adapter->vpd_busy)
2762                 return 0;
2763
2764         /*
2765          * Poll the VPD Capability Address/Flag register waiting for it
2766          * to indicate that the operation is complete.
2767          */
2768         max_poll = EEPROM_MAX_POLL;
2769         do {
2770                 u16 val;
2771
2772                 udelay(EEPROM_DELAY);
2773                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2774
2775                 /*
2776                  * If the operation is complete, mark the VPD as no longer
2777                  * busy and return success.
2778                  */
2779                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2780                         adapter->vpd_busy = 0;
2781                         return 0;
2782                 }
2783         } while (--max_poll);
2784
2785         /*
2786          * Failure!  Note that we leave the VPD Busy status set in order to
2787          * avoid pushing a new VPD Access request into the VPD Capability till
2788          * the current operation eventually succeeds.  It's a bug to issue a
2789          * new request when an existing request is in flight and will result
2790          * in corrupt hardware state.
2791          */
2792         return -ETIMEDOUT;
2793 }
2794
2795 /**
2796  *      t4_seeprom_read - read a serial EEPROM location
2797  *      @adapter: adapter to read
2798  *      @addr: EEPROM virtual address
2799  *      @data: where to store the read data
2800  *
2801  *      Read a 32-bit word from a location in serial EEPROM using the card's PCI
2802  *      VPD capability.  Note that this function must be called with a virtual
2803  *      address.
2804  */
2805 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2806 {
2807         unsigned int base = adapter->params.pci.vpd_cap_addr;
2808         int ret;
2809
2810         /*
2811          * VPD Accesses must alway be 4-byte aligned!
2812          */
2813         if (addr >= EEPROMVSIZE || (addr & 3))
2814                 return -EINVAL;
2815
2816         /*
2817          * Wait for any previous operation which may still be in flight to
2818          * complete.
2819          */
2820         ret = t4_seeprom_wait(adapter);
2821         if (ret) {
2822                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2823                 return ret;
2824         }
2825
2826         /*
2827          * Issue our new VPD Read request, mark the VPD as being busy and wait
2828          * for our request to complete.  If it doesn't complete, note the
2829          * error and return it to our caller.  Note that we do not reset the
2830          * VPD Busy status!
2831          */
2832         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2833         adapter->vpd_busy = 1;
2834         adapter->vpd_flag = PCI_VPD_ADDR_F;
2835         ret = t4_seeprom_wait(adapter);
2836         if (ret) {
2837                 CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2838                 return ret;
2839         }
2840
2841         /*
2842          * Grab the returned data, swizzle it into our endianness and
2843          * return success.
2844          */
2845         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2846         *data = le32_to_cpu(*data);
2847         return 0;
2848 }
2849
2850 /**
2851  *      t4_seeprom_write - write a serial EEPROM location
2852  *      @adapter: adapter to write
2853  *      @addr: virtual EEPROM address
2854  *      @data: value to write
2855  *
2856  *      Write a 32-bit word to a location in serial EEPROM using the card's PCI
2857  *      VPD capability.  Note that this function must be called with a virtual
2858  *      address.
2859  */
2860 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2861 {
2862         unsigned int base = adapter->params.pci.vpd_cap_addr;
2863         int ret;
2864         u32 stats_reg;
2865         int max_poll;
2866
2867         /*
2868          * VPD Accesses must alway be 4-byte aligned!
2869          */
2870         if (addr >= EEPROMVSIZE || (addr & 3))
2871                 return -EINVAL;
2872
2873         /*
2874          * Wait for any previous operation which may still be in flight to
2875          * complete.
2876          */
2877         ret = t4_seeprom_wait(adapter);
2878         if (ret) {
2879                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2880                 return ret;
2881         }
2882
2883         /*
2884          * Issue our new VPD Read request, mark the VPD as being busy and wait
2885          * for our request to complete.  If it doesn't complete, note the
2886          * error and return it to our caller.  Note that we do not reset the
2887          * VPD Busy status!
2888          */
2889         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2890                                  cpu_to_le32(data));
2891         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2892                                  (u16)addr | PCI_VPD_ADDR_F);
2893         adapter->vpd_busy = 1;
2894         adapter->vpd_flag = 0;
2895         ret = t4_seeprom_wait(adapter);
2896         if (ret) {
2897                 CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2898                 return ret;
2899         }
2900
2901         /*
2902          * Reset PCI_VPD_DATA register after a transaction and wait for our
2903          * request to complete. If it doesn't complete, return error.
2904          */
2905         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2906         max_poll = EEPROM_MAX_POLL;
2907         do {
2908                 udelay(EEPROM_DELAY);
2909                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2910         } while ((stats_reg & 0x1) && --max_poll);
2911         if (!max_poll)
2912                 return -ETIMEDOUT;
2913
2914         /* Return success! */
2915         return 0;
2916 }
2917
2918 /**
2919  *      t4_eeprom_ptov - translate a physical EEPROM address to virtual
2920  *      @phys_addr: the physical EEPROM address
2921  *      @fn: the PCI function number
2922  *      @sz: size of function-specific area
2923  *
2924  *      Translate a physical EEPROM address to virtual.  The first 1K is
2925  *      accessed through virtual addresses starting at 31K, the rest is
2926  *      accessed through virtual addresses starting at 0.
2927  *
2928  *      The mapping is as follows:
2929  *      [0..1K) -> [31K..32K)
2930  *      [1K..1K+A) -> [ES-A..ES)
2931  *      [1K+A..ES) -> [0..ES-A-1K)
2932  *
2933  *      where A = @fn * @sz, and ES = EEPROM size.
2934  */
2935 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2936 {
2937         fn *= sz;
2938         if (phys_addr < 1024)
2939                 return phys_addr + (31 << 10);
2940         if (phys_addr < 1024 + fn)
2941                 return EEPROMSIZE - fn + phys_addr - 1024;
2942         if (phys_addr < EEPROMSIZE)
2943                 return phys_addr - 1024 - fn;
2944         return -EINVAL;
2945 }
2946
2947 /**
2948  *      t4_seeprom_wp - enable/disable EEPROM write protection
2949  *      @adapter: the adapter
2950  *      @enable: whether to enable or disable write protection
2951  *
2952  *      Enables or disables write protection on the serial EEPROM.
2953  */
2954 int t4_seeprom_wp(struct adapter *adapter, int enable)
2955 {
2956         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2957 }
2958
2959 /**
2960  *      get_vpd_keyword_val - Locates an information field keyword in the VPD
2961  *      @vpd: Pointer to buffered vpd data structure
2962  *      @kw: The keyword to search for
2963  *      @region: VPD region to search (starting from 0)
2964  *
2965  *      Returns the value of the information field keyword or
2966  *      -ENOENT otherwise.
2967  */
2968 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2969 {
2970         int i, tag;
2971         unsigned int offset, len;
2972         const struct t4_vpdr_hdr *vpdr;
2973
2974         offset = sizeof(struct t4_vpd_hdr);
2975         vpdr = (const void *)(vpd + offset);
2976         tag = vpdr->vpdr_tag;
2977         len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2978         while (region--) {
2979                 offset += sizeof(struct t4_vpdr_hdr) + len;
2980                 vpdr = (const void *)(vpd + offset);
2981                 if (++tag != vpdr->vpdr_tag)
2982                         return -ENOENT;
2983                 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2984         }
2985         offset += sizeof(struct t4_vpdr_hdr);
2986
2987         if (offset + len > VPD_LEN) {
2988                 return -ENOENT;
2989         }
2990
2991         for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2992                 if (memcmp(vpd + i , kw , 2) == 0){
2993                         i += VPD_INFO_FLD_HDR_SIZE;
2994                         return i;
2995                 }
2996
2997                 i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2998         }
2999
3000         return -ENOENT;
3001 }
3002
3003
3004 /**
3005  *      get_vpd_params - read VPD parameters from VPD EEPROM
3006  *      @adapter: adapter to read
3007  *      @p: where to store the parameters
3008  *      @vpd: caller provided temporary space to read the VPD into
3009  *
3010  *      Reads card parameters stored in VPD EEPROM.
3011  */
3012 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3013     uint16_t device_id, u32 *buf)
3014 {
3015         int i, ret, addr;
3016         int ec, sn, pn, na, md;
3017         u8 csum;
3018         const u8 *vpd = (const u8 *)buf;
3019
3020         /*
3021          * Card information normally starts at VPD_BASE but early cards had
3022          * it at 0.
3023          */
3024         ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3025         if (ret)
3026                 return (ret);
3027
3028         /*
3029          * The VPD shall have a unique identifier specified by the PCI SIG.
3030          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3031          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3032          * is expected to automatically put this entry at the
3033          * beginning of the VPD.
3034          */
3035         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3036
3037         for (i = 0; i < VPD_LEN; i += 4) {
3038                 ret = t4_seeprom_read(adapter, addr + i, buf++);
3039                 if (ret)
3040                         return ret;
3041         }
3042
3043 #define FIND_VPD_KW(var,name) do { \
3044         var = get_vpd_keyword_val(vpd, name, 0); \
3045         if (var < 0) { \
3046                 CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3047                 return -EINVAL; \
3048         } \
3049 } while (0)
3050
3051         FIND_VPD_KW(i, "RV");
3052         for (csum = 0; i >= 0; i--)
3053                 csum += vpd[i];
3054
3055         if (csum) {
3056                 CH_ERR(adapter,
3057                         "corrupted VPD EEPROM, actual csum %u\n", csum);
3058                 return -EINVAL;
3059         }
3060
3061         FIND_VPD_KW(ec, "EC");
3062         FIND_VPD_KW(sn, "SN");
3063         FIND_VPD_KW(pn, "PN");
3064         FIND_VPD_KW(na, "NA");
3065 #undef FIND_VPD_KW
3066
3067         memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3068         strstrip(p->id);
3069         memcpy(p->ec, vpd + ec, EC_LEN);
3070         strstrip(p->ec);
3071         i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3072         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3073         strstrip(p->sn);
3074         i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3075         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3076         strstrip((char *)p->pn);
3077         i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3078         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3079         strstrip((char *)p->na);
3080
3081         if (device_id & 0x80)
3082                 return 0;       /* Custom card */
3083
3084         md = get_vpd_keyword_val(vpd, "VF", 1);
3085         if (md < 0) {
3086                 snprintf(p->md, sizeof(p->md), "unknown");
3087         } else {
3088                 i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3089                 memcpy(p->md, vpd + md, min(i, MD_LEN));
3090                 strstrip((char *)p->md);
3091         }
3092
3093         return 0;
3094 }
3095
3096 /* serial flash and firmware constants and flash config file constants */
3097 enum {
3098         SF_ATTEMPTS = 10,       /* max retries for SF operations */
3099
3100         /* flash command opcodes */
3101         SF_PROG_PAGE    = 2,    /* program 256B page */
3102         SF_WR_DISABLE   = 4,    /* disable writes */
3103         SF_RD_STATUS    = 5,    /* read status register */
3104         SF_WR_ENABLE    = 6,    /* enable writes */
3105         SF_RD_DATA_FAST = 0xb,  /* read flash */
3106         SF_RD_ID        = 0x9f, /* read ID */
3107         SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */
3108 };
3109
3110 /**
3111  *      sf1_read - read data from the serial flash
3112  *      @adapter: the adapter
3113  *      @byte_cnt: number of bytes to read
3114  *      @cont: whether another operation will be chained
3115  *      @lock: whether to lock SF for PL access only
3116  *      @valp: where to store the read data
3117  *
3118  *      Reads up to 4 bytes of data from the serial flash.  The location of
3119  *      the read needs to be specified prior to calling this by issuing the
3120  *      appropriate commands to the serial flash.
3121  */
3122 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3123                     int lock, u32 *valp)
3124 {
3125         int ret;
3126
3127         if (!byte_cnt || byte_cnt > 4)
3128                 return -EINVAL;
3129         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3130                 return -EBUSY;
3131         t4_write_reg(adapter, A_SF_OP,
3132                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3133         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3134         if (!ret)
3135                 *valp = t4_read_reg(adapter, A_SF_DATA);
3136         return ret;
3137 }
3138
3139 /**
3140  *      sf1_write - write data to the serial flash
3141  *      @adapter: the adapter
3142  *      @byte_cnt: number of bytes to write
3143  *      @cont: whether another operation will be chained
3144  *      @lock: whether to lock SF for PL access only
3145  *      @val: value to write
3146  *
3147  *      Writes up to 4 bytes of data to the serial flash.  The location of
3148  *      the write needs to be specified prior to calling this by issuing the
3149  *      appropriate commands to the serial flash.
3150  */
3151 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3152                      int lock, u32 val)
3153 {
3154         if (!byte_cnt || byte_cnt > 4)
3155                 return -EINVAL;
3156         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3157                 return -EBUSY;
3158         t4_write_reg(adapter, A_SF_DATA, val);
3159         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3160                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3161         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3162 }
3163
3164 /**
3165  *      flash_wait_op - wait for a flash operation to complete
3166  *      @adapter: the adapter
3167  *      @attempts: max number of polls of the status register
3168  *      @delay: delay between polls in ms
3169  *
3170  *      Wait for a flash operation to complete by polling the status register.
3171  */
3172 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3173 {
3174         int ret;
3175         u32 status;
3176
3177         while (1) {
3178                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3179                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3180                         return ret;
3181                 if (!(status & 1))
3182                         return 0;
3183                 if (--attempts == 0)
3184                         return -EAGAIN;
3185                 if (delay)
3186                         msleep(delay);
3187         }
3188 }
3189
3190 /**
3191  *      t4_read_flash - read words from serial flash
3192  *      @adapter: the adapter
3193  *      @addr: the start address for the read
3194  *      @nwords: how many 32-bit words to read
3195  *      @data: where to store the read data
3196  *      @byte_oriented: whether to store data as bytes or as words
3197  *
3198  *      Read the specified number of 32-bit words from the serial flash.
3199  *      If @byte_oriented is set the read data is stored as a byte array
3200  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3201  *      natural endianness.
3202  */
3203 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3204                   unsigned int nwords, u32 *data, int byte_oriented)
3205 {
3206         int ret;
3207
3208         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3209                 return -EINVAL;
3210
3211         addr = swab32(addr) | SF_RD_DATA_FAST;
3212
3213         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3214             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3215                 return ret;
3216
3217         for ( ; nwords; nwords--, data++) {
3218                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3219                 if (nwords == 1)
3220                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3221                 if (ret)
3222                         return ret;
3223                 if (byte_oriented)
3224                         *data = (__force __u32)(cpu_to_be32(*data));
3225         }
3226         return 0;
3227 }
3228
3229 /**
3230  *      t4_write_flash - write up to a page of data to the serial flash
3231  *      @adapter: the adapter
3232  *      @addr: the start address to write
3233  *      @n: length of data to write in bytes
3234  *      @data: the data to write
3235  *      @byte_oriented: whether to store data as bytes or as words
3236  *
3237  *      Writes up to a page of data (256 bytes) to the serial flash starting
3238  *      at the given address.  All the data must be written to the same page.
3239  *      If @byte_oriented is set the write data is stored as byte stream
3240  *      (i.e. matches what on disk), otherwise in big-endian.
3241  */
3242 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3243                           unsigned int n, const u8 *data, int byte_oriented)
3244 {
3245         int ret;
3246         u32 buf[SF_PAGE_SIZE / 4];
3247         unsigned int i, c, left, val, offset = addr & 0xff;
3248
3249         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3250                 return -EINVAL;
3251
3252         val = swab32(addr) | SF_PROG_PAGE;
3253
3254         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3255             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3256                 goto unlock;
3257
3258         for (left = n; left; left -= c) {
3259                 c = min(left, 4U);
3260                 for (val = 0, i = 0; i < c; ++i)
3261                         val = (val << 8) + *data++;
3262
3263                 if (!byte_oriented)
3264                         val = cpu_to_be32(val);
3265
3266                 ret = sf1_write(adapter, c, c != left, 1, val);
3267                 if (ret)
3268                         goto unlock;
3269         }
3270         ret = flash_wait_op(adapter, 8, 1);
3271         if (ret)
3272                 goto unlock;
3273
3274         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3275
3276         /* Read the page to verify the write succeeded */
3277         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3278                             byte_oriented);
3279         if (ret)
3280                 return ret;
3281
3282         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3283                 CH_ERR(adapter,
3284                         "failed to correctly write the flash page at %#x\n",
3285                         addr);
3286                 return -EIO;
3287         }
3288         return 0;
3289
3290 unlock:
3291         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3292         return ret;
3293 }
3294
3295 /**
3296  *      t4_get_fw_version - read the firmware version
3297  *      @adapter: the adapter
3298  *      @vers: where to place the version
3299  *
3300  *      Reads the FW version from flash.
3301  */
3302 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3303 {
3304         return t4_read_flash(adapter, FLASH_FW_START +
3305                              offsetof(struct fw_hdr, fw_ver), 1,
3306                              vers, 0);
3307 }
3308
3309 /**
3310  *      t4_get_fw_hdr - read the firmware header
3311  *      @adapter: the adapter
3312  *      @hdr: where to place the version
3313  *
3314  *      Reads the FW header from flash into caller provided buffer.
3315  */
3316 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3317 {
3318         return t4_read_flash(adapter, FLASH_FW_START,
3319             sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3320 }
3321
3322 /**
3323  *      t4_get_bs_version - read the firmware bootstrap version
3324  *      @adapter: the adapter
3325  *      @vers: where to place the version
3326  *
3327  *      Reads the FW Bootstrap version from flash.
3328  */
3329 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3330 {
3331         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3332                              offsetof(struct fw_hdr, fw_ver), 1,
3333                              vers, 0);
3334 }
3335
3336 /**
3337  *      t4_get_tp_version - read the TP microcode version
3338  *      @adapter: the adapter
3339  *      @vers: where to place the version
3340  *
3341  *      Reads the TP microcode version from flash.
3342  */
3343 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3344 {
3345         return t4_read_flash(adapter, FLASH_FW_START +
3346                              offsetof(struct fw_hdr, tp_microcode_ver),
3347                              1, vers, 0);
3348 }
3349
3350 /**
3351  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3352  *      @adapter: the adapter
3353  *      @vers: where to place the version
3354  *
3355  *      Reads the Expansion ROM header from FLASH and returns the version
3356  *      number (if present) through the @vers return value pointer.  We return
3357  *      this in the Firmware Version Format since it's convenient.  Return
3358  *      0 on success, -ENOENT if no Expansion ROM is present.
3359  */
3360 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3361 {
3362         struct exprom_header {
3363                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3364                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3365         } *hdr;
3366         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3367                                            sizeof(u32))];
3368         int ret;
3369
3370         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3371                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3372                             0);
3373         if (ret)
3374                 return ret;
3375
3376         hdr = (struct exprom_header *)exprom_header_buf;
3377         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3378                 return -ENOENT;
3379
3380         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3381                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3382                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3383                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3384         return 0;
3385 }
3386
3387 /**
3388  *      t4_get_scfg_version - return the Serial Configuration version
3389  *      @adapter: the adapter
3390  *      @vers: where to place the version
3391  *
3392  *      Reads the Serial Configuration Version via the Firmware interface
3393  *      (thus this can only be called once we're ready to issue Firmware
3394  *      commands).  The format of the Serial Configuration version is
3395  *      adapter specific.  Returns 0 on success, an error on failure.
3396  *
3397  *      Note that early versions of the Firmware didn't include the ability
3398  *      to retrieve the Serial Configuration version, so we zero-out the
3399  *      return-value parameter in that case to avoid leaving it with
3400  *      garbage in it.
3401  *
3402  *      Also note that the Firmware will return its cached copy of the Serial
3403  *      Initialization Revision ID, not the actual Revision ID as written in
3404  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3405  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3406  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3407  *      been issued if the Host Driver will be performing a full adapter
3408  *      initialization.
3409  */
3410 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3411 {
3412         u32 scfgrev_param;
3413         int ret;
3414
3415         scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3416                          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3417         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3418                               1, &scfgrev_param, vers);
3419         if (ret)
3420                 *vers = 0;
3421         return ret;
3422 }
3423
3424 /**
3425  *      t4_get_vpd_version - return the VPD version
3426  *      @adapter: the adapter
3427  *      @vers: where to place the version
3428  *
3429  *      Reads the VPD via the Firmware interface (thus this can only be called
3430  *      once we're ready to issue Firmware commands).  The format of the
3431  *      VPD version is adapter specific.  Returns 0 on success, an error on
3432  *      failure.
3433  *
3434  *      Note that early versions of the Firmware didn't include the ability
3435  *      to retrieve the VPD version, so we zero-out the return-value parameter
3436  *      in that case to avoid leaving it with garbage in it.
3437  *
3438  *      Also note that the Firmware will return its cached copy of the VPD
3439  *      Revision ID, not the actual Revision ID as written in the Serial
3440  *      EEPROM.  This is only an issue if a new VPD has been written and the
3441  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3442  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3443  *      if the Host Driver will be performing a full adapter initialization.
3444  */
3445 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3446 {
3447         u32 vpdrev_param;
3448         int ret;
3449
3450         vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3451                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3452         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3453                               1, &vpdrev_param, vers);
3454         if (ret)
3455                 *vers = 0;
3456         return ret;
3457 }
3458
3459 /**
3460  *      t4_get_version_info - extract various chip/firmware version information
3461  *      @adapter: the adapter
3462  *
3463  *      Reads various chip/firmware version numbers and stores them into the
3464  *      adapter Adapter Parameters structure.  If any of the efforts fails
3465  *      the first failure will be returned, but all of the version numbers
3466  *      will be read.
3467  */
3468 int t4_get_version_info(struct adapter *adapter)
3469 {
3470         int ret = 0;
3471
3472         #define FIRST_RET(__getvinfo) \
3473         do { \
3474                 int __ret = __getvinfo; \
3475                 if (__ret && !ret) \
3476                         ret = __ret; \
3477         } while (0)
3478
3479         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3480         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3481         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3482         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3483         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3484         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3485
3486         #undef FIRST_RET
3487
3488         return ret;
3489 }
3490
3491 /**
3492  *      t4_flash_erase_sectors - erase a range of flash sectors
3493  *      @adapter: the adapter
3494  *      @start: the first sector to erase
3495  *      @end: the last sector to erase
3496  *
3497  *      Erases the sectors in the given inclusive range.
3498  */
3499 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3500 {
3501         int ret = 0;
3502
3503         if (end >= adapter->params.sf_nsec)
3504                 return -EINVAL;
3505
3506         while (start <= end) {
3507                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3508                     (ret = sf1_write(adapter, 4, 0, 1,
3509                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3510                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3511                         CH_ERR(adapter,
3512                                 "erase of flash sector %d failed, error %d\n",
3513                                 start, ret);
3514                         break;
3515                 }
3516                 start++;
3517         }
3518         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3519         return ret;
3520 }
3521
3522 /**
3523  *      t4_flash_cfg_addr - return the address of the flash configuration file
3524  *      @adapter: the adapter
3525  *
3526  *      Return the address within the flash where the Firmware Configuration
3527  *      File is stored, or an error if the device FLASH is too small to contain
3528  *      a Firmware Configuration File.
3529  */
3530 int t4_flash_cfg_addr(struct adapter *adapter)
3531 {
3532         /*
3533          * If the device FLASH isn't large enough to hold a Firmware
3534          * Configuration File, return an error.
3535          */
3536         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3537                 return -ENOSPC;
3538
3539         return FLASH_CFG_START;
3540 }
3541
3542 /*
3543  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3544  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3545  * and emit an error message for mismatched firmware to save our caller the
3546  * effort ...
3547  */
3548 static int t4_fw_matches_chip(struct adapter *adap,
3549                               const struct fw_hdr *hdr)
3550 {
3551         /*
3552          * The expression below will return FALSE for any unsupported adapter
3553          * which will keep us "honest" in the future ...
3554          */
3555         if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3556             (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3557             (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3558                 return 1;
3559
3560         CH_ERR(adap,
3561                 "FW image (%d) is not suitable for this adapter (%d)\n",
3562                 hdr->chip, chip_id(adap));
3563         return 0;
3564 }
3565
3566 /**
3567  *      t4_load_fw - download firmware
3568  *      @adap: the adapter
3569  *      @fw_data: the firmware image to write
3570  *      @size: image size
3571  *
3572  *      Write the supplied firmware image to the card's serial flash.
3573  */
3574 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3575 {
3576         u32 csum;
3577         int ret, addr;
3578         unsigned int i;
3579         u8 first_page[SF_PAGE_SIZE];
3580         const u32 *p = (const u32 *)fw_data;
3581         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3582         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3583         unsigned int fw_start_sec;
3584         unsigned int fw_start;
3585         unsigned int fw_size;
3586
3587         if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3588                 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3589                 fw_start = FLASH_FWBOOTSTRAP_START;
3590                 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3591         } else {
3592                 fw_start_sec = FLASH_FW_START_SEC;
3593                 fw_start = FLASH_FW_START;
3594                 fw_size = FLASH_FW_MAX_SIZE;
3595         }
3596
3597         if (!size) {
3598                 CH_ERR(adap, "FW image has no data\n");
3599                 return -EINVAL;
3600         }
3601         if (size & 511) {
3602                 CH_ERR(adap,
3603                         "FW image size not multiple of 512 bytes\n");
3604                 return -EINVAL;
3605         }
3606         if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3607                 CH_ERR(adap,
3608                         "FW image size differs from size in FW header\n");
3609                 return -EINVAL;
3610         }
3611         if (size > fw_size) {
3612                 CH_ERR(adap, "FW image too large, max is %u bytes\n",
3613                         fw_size);
3614                 return -EFBIG;
3615         }
3616         if (!t4_fw_matches_chip(adap, hdr))
3617                 return -EINVAL;
3618
3619         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3620                 csum += be32_to_cpu(p[i]);
3621
3622         if (csum != 0xffffffff) {
3623                 CH_ERR(adap,
3624                         "corrupted firmware image, checksum %#x\n", csum);
3625                 return -EINVAL;
3626         }
3627
3628         i = DIV_ROUND_UP(size, sf_sec_size);    /* # of sectors spanned */
3629         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3630         if (ret)
3631                 goto out;
3632
3633         /*
3634          * We write the correct version at the end so the driver can see a bad
3635          * version if the FW write fails.  Start by writing a copy of the
3636          * first page with a bad version.
3637          */
3638         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3639         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3640         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3641         if (ret)
3642                 goto out;
3643
3644         addr = fw_start;
3645         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3646                 addr += SF_PAGE_SIZE;
3647                 fw_data += SF_PAGE_SIZE;
3648                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3649                 if (ret)
3650                         goto out;
3651         }
3652
3653         ret = t4_write_flash(adap,
3654                              fw_start + offsetof(struct fw_hdr, fw_ver),
3655                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3656 out:
3657         if (ret)
3658                 CH_ERR(adap, "firmware download failed, error %d\n",
3659                         ret);
3660         return ret;
3661 }
3662
3663 /**
3664  *      t4_fwcache - firmware cache operation
3665  *      @adap: the adapter
3666  *      @op  : the operation (flush or flush and invalidate)
3667  */
3668 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3669 {
3670         struct fw_params_cmd c;
3671
3672         memset(&c, 0, sizeof(c));
3673         c.op_to_vfn =
3674             cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3675                             F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3676                                 V_FW_PARAMS_CMD_PFN(adap->pf) |
3677                                 V_FW_PARAMS_CMD_VFN(0));
3678         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3679         c.param[0].mnem =
3680             cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3681                             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3682         c.param[0].val = (__force __be32)op;
3683
3684         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3685 }
3686
3687 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3688                         unsigned int *pif_req_wrptr,
3689                         unsigned int *pif_rsp_wrptr)
3690 {
3691         int i, j;
3692         u32 cfg, val, req, rsp;
3693
3694         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3695         if (cfg & F_LADBGEN)
3696                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3697
3698         val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3699         req = G_POLADBGWRPTR(val);
3700         rsp = G_PILADBGWRPTR(val);
3701         if (pif_req_wrptr)
3702                 *pif_req_wrptr = req;
3703         if (pif_rsp_wrptr)
3704                 *pif_rsp_wrptr = rsp;
3705
3706         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3707                 for (j = 0; j < 6; j++) {
3708                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3709                                      V_PILADBGRDPTR(rsp));
3710                         *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3711                         *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3712                         req++;
3713                         rsp++;
3714                 }
3715                 req = (req + 2) & M_POLADBGRDPTR;
3716                 rsp = (rsp + 2) & M_PILADBGRDPTR;
3717         }
3718         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3719 }
3720
3721 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3722 {
3723         u32 cfg;
3724         int i, j, idx;
3725
3726         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3727         if (cfg & F_LADBGEN)
3728                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3729
3730         for (i = 0; i < CIM_MALA_SIZE; i++) {
3731                 for (j = 0; j < 5; j++) {
3732                         idx = 8 * i + j;
3733                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3734                                      V_PILADBGRDPTR(idx));
3735                         *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3736                         *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3737                 }
3738         }
3739         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3740 }
3741
3742 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3743 {
3744         unsigned int i, j;
3745
3746         for (i = 0; i < 8; i++) {
3747                 u32 *p = la_buf + i;
3748
3749                 t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3750                 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3751                 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3752                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3753                         *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3754         }
3755 }
3756
3757 /**
3758  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3759  *      @caps16: a 16-bit Port Capabilities value
3760  *
3761  *      Returns the equivalent 32-bit Port Capabilities value.
3762  */
3763 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3764 {
3765         uint32_t caps32 = 0;
3766
3767         #define CAP16_TO_CAP32(__cap) \
3768                 do { \
3769                         if (caps16 & FW_PORT_CAP_##__cap) \
3770                                 caps32 |= FW_PORT_CAP32_##__cap; \
3771                 } while (0)
3772
3773         CAP16_TO_CAP32(SPEED_100M);
3774         CAP16_TO_CAP32(SPEED_1G);
3775         CAP16_TO_CAP32(SPEED_25G);
3776         CAP16_TO_CAP32(SPEED_10G);
3777         CAP16_TO_CAP32(SPEED_40G);
3778         CAP16_TO_CAP32(SPEED_100G);
3779         CAP16_TO_CAP32(FC_RX);
3780         CAP16_TO_CAP32(FC_TX);
3781         CAP16_TO_CAP32(ANEG);
3782         CAP16_TO_CAP32(FORCE_PAUSE);
3783         CAP16_TO_CAP32(MDIAUTO);
3784         CAP16_TO_CAP32(MDISTRAIGHT);
3785         CAP16_TO_CAP32(FEC_RS);
3786         CAP16_TO_CAP32(FEC_BASER_RS);
3787         CAP16_TO_CAP32(802_3_PAUSE);
3788         CAP16_TO_CAP32(802_3_ASM_DIR);
3789
3790         #undef CAP16_TO_CAP32
3791
3792         return caps32;
3793 }
3794
3795 /**
3796  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3797  *      @caps32: a 32-bit Port Capabilities value
3798  *
3799  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
3800  *      not all 32-bit Port Capabilities can be represented in the 16-bit
3801  *      Port Capabilities and some fields/values may not make it.
3802  */
3803 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3804 {
3805         uint16_t caps16 = 0;
3806
3807         #define CAP32_TO_CAP16(__cap) \
3808                 do { \
3809                         if (caps32 & FW_PORT_CAP32_##__cap) \
3810                                 caps16 |= FW_PORT_CAP_##__cap; \
3811                 } while (0)
3812
3813         CAP32_TO_CAP16(SPEED_100M);
3814         CAP32_TO_CAP16(SPEED_1G);
3815         CAP32_TO_CAP16(SPEED_10G);
3816         CAP32_TO_CAP16(SPEED_25G);
3817         CAP32_TO_CAP16(SPEED_40G);
3818         CAP32_TO_CAP16(SPEED_100G);
3819         CAP32_TO_CAP16(FC_RX);
3820         CAP32_TO_CAP16(FC_TX);
3821         CAP32_TO_CAP16(802_3_PAUSE);
3822         CAP32_TO_CAP16(802_3_ASM_DIR);
3823         CAP32_TO_CAP16(ANEG);
3824         CAP32_TO_CAP16(FORCE_PAUSE);
3825         CAP32_TO_CAP16(MDIAUTO);
3826         CAP32_TO_CAP16(MDISTRAIGHT);
3827         CAP32_TO_CAP16(FEC_RS);
3828         CAP32_TO_CAP16(FEC_BASER_RS);
3829
3830         #undef CAP32_TO_CAP16
3831
3832         return caps16;
3833 }
3834
3835 static bool
3836 is_bt(struct port_info *pi)
3837 {
3838
3839         return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3840             pi->port_type == FW_PORT_TYPE_BT_XFI ||
3841             pi->port_type == FW_PORT_TYPE_BT_XAUI);
3842 }
3843
3844 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3845 {
3846         int8_t fec = 0;
3847
3848         if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3849                 return (unset_means_none ? FEC_NONE : 0);
3850
3851         if (caps & FW_PORT_CAP32_FEC_RS)
3852                 fec |= FEC_RS;
3853         if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3854                 fec |= FEC_BASER_RS;
3855         if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3856                 fec |= FEC_NONE;
3857
3858         return (fec);
3859 }
3860
3861 /*
3862  * Note that 0 is not translated to NO_FEC.
3863  */
3864 static uint32_t fec_to_fwcap(int8_t fec)
3865 {
3866         uint32_t caps = 0;
3867
3868         /* Only real FECs allowed. */
3869         MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3870
3871         if (fec & FEC_RS)
3872                 caps |= FW_PORT_CAP32_FEC_RS;
3873         if (fec & FEC_BASER_RS)
3874                 caps |= FW_PORT_CAP32_FEC_BASER_RS;
3875         if (fec & FEC_NONE)
3876                 caps |= FW_PORT_CAP32_FEC_NO_FEC;
3877
3878         return (caps);
3879 }
3880
3881 /**
3882  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3883  *      @phy: the PHY to setup
3884  *      @mac: the MAC to setup
3885  *      @lc: the requested link configuration
3886  *
3887  *      Set up a port's MAC and PHY according to a desired link configuration.
3888  *      - If the PHY can auto-negotiate first decide what to advertise, then
3889  *        enable/disable auto-negotiation as desired, and reset.
3890  *      - If the PHY does not auto-negotiate just reset it.
3891  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3892  *        otherwise do it later based on the outcome of auto-negotiation.
3893  */
3894 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3895                   struct link_config *lc)
3896 {
3897         struct fw_port_cmd c;
3898         unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3899         unsigned int aneg, fc, fec, speed, rcap;
3900
3901         fc = 0;
3902         if (lc->requested_fc & PAUSE_RX)
3903                 fc |= FW_PORT_CAP32_FC_RX;
3904         if (lc->requested_fc & PAUSE_TX)
3905                 fc |= FW_PORT_CAP32_FC_TX;
3906         if (!(lc->requested_fc & PAUSE_AUTONEG))
3907                 fc |= FW_PORT_CAP32_FORCE_PAUSE;
3908
3909         if (lc->requested_aneg == AUTONEG_DISABLE)
3910                 aneg = 0;
3911         else if (lc->requested_aneg == AUTONEG_ENABLE)
3912                 aneg = FW_PORT_CAP32_ANEG;
3913         else
3914                 aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3915
3916         if (aneg) {
3917                 speed = lc->pcaps &
3918                     V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3919         } else if (lc->requested_speed != 0)
3920                 speed = speed_to_fwcap(lc->requested_speed);
3921         else
3922                 speed = fwcap_top_speed(lc->pcaps);
3923
3924         fec = 0;
3925         if (fec_supported(lc->pcaps)) {
3926                 if (lc->requested_fec == FEC_AUTO) {
3927                         if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) {
3928                                 if (speed & FW_PORT_CAP32_SPEED_100G) {
3929                                         fec |= FW_PORT_CAP32_FEC_RS;
3930                                         fec |= FW_PORT_CAP32_FEC_NO_FEC;
3931                                 } else {
3932                                         fec |= FW_PORT_CAP32_FEC_RS;
3933                                         fec |= FW_PORT_CAP32_FEC_BASER_RS;
3934                                         fec |= FW_PORT_CAP32_FEC_NO_FEC;
3935                                 }
3936                         } else {
3937                                 /* Set only 1b with old firmwares. */
3938                                 fec |= fec_to_fwcap(lc->fec_hint);
3939                         }
3940                 } else {
3941                         fec |= fec_to_fwcap(lc->requested_fec &
3942                             M_FW_PORT_CAP32_FEC);
3943                         if (lc->requested_fec & FEC_MODULE)
3944                                 fec |= fec_to_fwcap(lc->fec_hint);
3945                 }
3946
3947                 if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
3948                         fec |= FW_PORT_CAP32_FORCE_FEC;
3949                 else if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3950                         fec = 0;
3951         }
3952
3953         /* Force AN on for BT cards. */
3954         if (is_bt(adap->port[adap->chan_map[port]]))
3955                 aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3956
3957         rcap = aneg | speed | fc | fec;
3958         if ((rcap | lc->pcaps) != lc->pcaps) {
3959 #ifdef INVARIANTS
3960                 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3961                     lc->pcaps, rcap & (rcap ^ lc->pcaps));
3962 #endif
3963                 rcap &= lc->pcaps;
3964         }
3965         rcap |= mdi;
3966
3967         memset(&c, 0, sizeof(c));
3968         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3969                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3970                                      V_FW_PORT_CMD_PORTID(port));
3971         if (adap->params.port_caps32) {
3972                 c.action_to_len16 =
3973                     cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3974                         FW_LEN16(c));
3975                 c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3976         } else {
3977                 c.action_to_len16 =
3978                     cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3979                             FW_LEN16(c));
3980                 c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3981         }
3982
3983         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3984 }
3985
3986 /**
3987  *      t4_restart_aneg - restart autonegotiation
3988  *      @adap: the adapter
3989  *      @mbox: mbox to use for the FW command
3990  *      @port: the port id
3991  *
3992  *      Restarts autonegotiation for the selected port.
3993  */
3994 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3995 {
3996         struct fw_port_cmd c;
3997
3998         memset(&c, 0, sizeof(c));
3999         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4000                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4001                                      V_FW_PORT_CMD_PORTID(port));
4002         c.action_to_len16 =
4003                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4004                             FW_LEN16(c));
4005         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4006         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4007 }
4008
4009 struct intr_details {
4010         u32 mask;
4011         const char *msg;
4012 };
4013
4014 struct intr_action {
4015         u32 mask;
4016         int arg;
4017         bool (*action)(struct adapter *, int, bool);
4018 };
4019
4020 #define NONFATAL_IF_DISABLED 1
4021 struct intr_info {
4022         const char *name;       /* name of the INT_CAUSE register */
4023         int cause_reg;          /* INT_CAUSE register */
4024         int enable_reg;         /* INT_ENABLE register */
4025         u32 fatal;              /* bits that are fatal */
4026         int flags;              /* hints */
4027         const struct intr_details *details;
4028         const struct intr_action *actions;
4029 };
4030
4031 static inline char
4032 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4033 {
4034
4035         if (cause & fatal)
4036                 return ('!');
4037         if (cause & enable)
4038                 return ('*');
4039         return ('-');
4040 }
4041
4042 static void
4043 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4044 {
4045         u32 enable, fatal, leftover;
4046         const struct intr_details *details;
4047         char alert;
4048
4049         enable = t4_read_reg(adap, ii->enable_reg);
4050         if (ii->flags & NONFATAL_IF_DISABLED)
4051                 fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4052         else
4053                 fatal = ii->fatal;
4054         alert = intr_alert_char(cause, enable, fatal);
4055         CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4056             alert, ii->name, ii->cause_reg, cause, enable, fatal);
4057
4058         leftover = cause;
4059         for (details = ii->details; details && details->mask != 0; details++) {
4060                 u32 msgbits = details->mask & cause;
4061                 if (msgbits == 0)
4062                         continue;
4063                 alert = intr_alert_char(msgbits, enable, ii->fatal);
4064                 CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4065                     details->msg);
4066                 leftover &= ~msgbits;
4067         }
4068         if (leftover != 0 && leftover != cause)
4069                 CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4070 }
4071
4072 /*
4073  * Returns true for fatal error.
4074  */
4075 static bool
4076 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4077     u32 additional_cause, bool verbose)
4078 {
4079         u32 cause, fatal;
4080         bool rc;
4081         const struct intr_action *action;
4082
4083         /*
4084          * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4085          * bit special and we need to completely ignore the bits that are not in
4086          * PL_INT_ENABLE.
4087          */
4088         cause = t4_read_reg(adap, ii->cause_reg);
4089         if (ii->cause_reg == A_PL_INT_CAUSE)
4090                 cause &= t4_read_reg(adap, ii->enable_reg);
4091         if (verbose || cause != 0)
4092                 t4_show_intr_info(adap, ii, cause);
4093         fatal = cause & ii->fatal;
4094         if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4095                 fatal &= t4_read_reg(adap, ii->enable_reg);
4096         cause |= additional_cause;
4097         if (cause == 0)
4098                 return (false);
4099
4100         rc = fatal != 0;
4101         for (action = ii->actions; action && action->mask != 0; action++) {
4102                 if (!(action->mask & cause))
4103                         continue;
4104                 rc |= (action->action)(adap, action->arg, verbose);
4105         }
4106
4107         /* clear */
4108         t4_write_reg(adap, ii->cause_reg, cause);
4109         (void)t4_read_reg(adap, ii->cause_reg);
4110
4111         return (rc);
4112 }
4113
4114 /*
4115  * Interrupt handler for the PCIE module.
4116  */
4117 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4118 {
4119         static const struct intr_details sysbus_intr_details[] = {
4120                 { F_RNPP, "RXNP array parity error" },
4121                 { F_RPCP, "RXPC array parity error" },
4122                 { F_RCIP, "RXCIF array parity error" },
4123                 { F_RCCP, "Rx completions control array parity error" },
4124                 { F_RFTP, "RXFT array parity error" },
4125                 { 0 }
4126         };
4127         static const struct intr_info sysbus_intr_info = {
4128                 .name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4129                 .cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4130                 .enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4131                 .fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4132                 .flags = 0,
4133                 .details = sysbus_intr_details,
4134                 .actions = NULL,
4135         };
4136         static const struct intr_details pcie_port_intr_details[] = {
4137                 { F_TPCP, "TXPC array parity error" },
4138                 { F_TNPP, "TXNP array parity error" },
4139                 { F_TFTP, "TXFT array parity error" },
4140                 { F_TCAP, "TXCA array parity error" },
4141                 { F_TCIP, "TXCIF array parity error" },
4142                 { F_RCAP, "RXCA array parity error" },
4143                 { F_OTDD, "outbound request TLP discarded" },
4144                 { F_RDPE, "Rx data parity error" },
4145                 { F_TDUE, "Tx uncorrectable data error" },
4146                 { 0 }
4147         };
4148         static const struct intr_info pcie_port_intr_info = {
4149                 .name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4150                 .cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4151                 .enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4152                 .fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4153                     F_OTDD | F_RDPE | F_TDUE,
4154                 .flags = 0,
4155                 .details = pcie_port_intr_details,
4156                 .actions = NULL,
4157         };
4158         static const struct intr_details pcie_intr_details[] = {
4159                 { F_MSIADDRLPERR, "MSI AddrL parity error" },
4160                 { F_MSIADDRHPERR, "MSI AddrH parity error" },
4161                 { F_MSIDATAPERR, "MSI data parity error" },
4162                 { F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4163                 { F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4164                 { F_MSIXDATAPERR, "MSI-X data parity error" },
4165                 { F_MSIXDIPERR, "MSI-X DI parity error" },
4166                 { F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4167                 { F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4168                 { F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4169                 { F_CCNTPERR, "PCIe CMD channel count parity error" },
4170                 { F_CREQPERR, "PCIe CMD channel request parity error" },
4171                 { F_CRSPPERR, "PCIe CMD channel response parity error" },
4172                 { F_DCNTPERR, "PCIe DMA channel count parity error" },
4173                 { F_DREQPERR, "PCIe DMA channel request parity error" },
4174                 { F_DRSPPERR, "PCIe DMA channel response parity error" },
4175                 { F_HCNTPERR, "PCIe HMA channel count parity error" },
4176                 { F_HREQPERR, "PCIe HMA channel request parity error" },
4177                 { F_HRSPPERR, "PCIe HMA channel response parity error" },
4178                 { F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4179                 { F_FIDPERR, "PCIe FID parity error" },
4180                 { F_INTXCLRPERR, "PCIe INTx clear parity error" },
4181                 { F_MATAGPERR, "PCIe MA tag parity error" },
4182                 { F_PIOTAGPERR, "PCIe PIO tag parity error" },
4183                 { F_RXCPLPERR, "PCIe Rx completion parity error" },
4184                 { F_RXWRPERR, "PCIe Rx write parity error" },
4185                 { F_RPLPERR, "PCIe replay buffer parity error" },
4186                 { F_PCIESINT, "PCIe core secondary fault" },
4187                 { F_PCIEPINT, "PCIe core primary fault" },
4188                 { F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4189                 { 0 }
4190         };
4191         static const struct intr_details t5_pcie_intr_details[] = {
4192                 { F_IPGRPPERR, "Parity errors observed by IP" },
4193                 { F_NONFATALERR, "PCIe non-fatal error" },
4194                 { F_READRSPERR, "Outbound read error" },
4195                 { F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4196                 { F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4197                 { F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4198                 { F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4199                 { F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4200                 { F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4201                 { F_MAGRPPERR, "MA group FIFO parity error" },
4202                 { F_VFIDPERR, "VFID SRAM parity error" },
4203                 { F_FIDPERR, "FID SRAM parity error" },
4204                 { F_CFGSNPPERR, "config snoop FIFO parity error" },
4205                 { F_HRSPPERR, "HMA channel response data SRAM parity error" },
4206                 { F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4207                 { F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4208                 { F_DRSPPERR, "DMA channel response data SRAM parity error" },
4209                 { F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4210                 { F_CRSPPERR, "CMD channel response data SRAM parity error" },
4211                 { F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4212                 { F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4213                 { F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4214                 { F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4215                 { F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4216                 { F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4217                 { F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4218                 { F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4219                 { F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4220                 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4221                 { F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4222                 { F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4223                 { 0 }
4224         };
4225         struct intr_info pcie_intr_info = {
4226                 .name = "PCIE_INT_CAUSE",
4227                 .cause_reg = A_PCIE_INT_CAUSE,
4228                 .enable_reg = A_PCIE_INT_ENABLE,
4229                 .fatal = 0xffffffff,
4230                 .flags = NONFATAL_IF_DISABLED,
4231                 .details = NULL,
4232                 .actions = NULL,
4233         };
4234         bool fatal = false;
4235
4236         if (is_t4(adap)) {
4237                 fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4238                 fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4239
4240                 pcie_intr_info.details = pcie_intr_details;
4241         } else {
4242                 pcie_intr_info.details = t5_pcie_intr_details;
4243         }
4244         fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4245
4246         return (fatal);
4247 }
4248
4249 /*
4250  * TP interrupt handler.
4251  */
4252 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4253 {
4254         static const struct intr_details tp_intr_details[] = {
4255                 { 0x3fffffff, "TP parity error" },
4256                 { F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4257                 { 0 }
4258         };
4259         static const struct intr_info tp_intr_info = {
4260                 .name = "TP_INT_CAUSE",
4261                 .cause_reg = A_TP_INT_CAUSE,
4262                 .enable_reg = A_TP_INT_ENABLE,
4263                 .fatal = 0x7fffffff,
4264                 .flags = NONFATAL_IF_DISABLED,
4265                 .details = tp_intr_details,
4266                 .actions = NULL,
4267         };
4268
4269         return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4270 }
4271
4272 /*
4273  * SGE interrupt handler.
4274  */
4275 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4276 {
4277         static const struct intr_info sge_int1_info = {
4278                 .name = "SGE_INT_CAUSE1",
4279                 .cause_reg = A_SGE_INT_CAUSE1,
4280                 .enable_reg = A_SGE_INT_ENABLE1,
4281                 .fatal = 0xffffffff,
4282                 .flags = NONFATAL_IF_DISABLED,
4283                 .details = NULL,
4284                 .actions = NULL,
4285         };
4286         static const struct intr_info sge_int2_info = {
4287                 .name = "SGE_INT_CAUSE2",
4288                 .cause_reg = A_SGE_INT_CAUSE2,
4289                 .enable_reg = A_SGE_INT_ENABLE2,
4290                 .fatal = 0xffffffff,
4291                 .flags = NONFATAL_IF_DISABLED,
4292                 .details = NULL,
4293                 .actions = NULL,
4294         };
4295         static const struct intr_details sge_int3_details[] = {
4296                 { F_ERR_FLM_DBP,
4297                         "DBP pointer delivery for invalid context or QID" },
4298                 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4299                         "Invalid QID or header request by IDMA" },
4300                 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4301                 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4302                 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4303                 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4304                 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4305                 { F_ERR_TIMER_ABOVE_MAX_QID,
4306                         "SGE GTS with timer 0-5 for IQID > 1023" },
4307                 { F_ERR_CPL_EXCEED_IQE_SIZE,
4308                         "SGE received CPL exceeding IQE size" },
4309                 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4310                 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4311                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4312                 { F_ERR_DROPPED_DB, "SGE DB dropped" },
4313                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4314                   "SGE IQID > 1023 received CPL for FL" },
4315                 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4316                         F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4317                 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4318                 { F_ERR_ING_CTXT_PRIO,
4319                         "Ingress context manager priority user error" },
4320                 { F_ERR_EGR_CTXT_PRIO,
4321                         "Egress context manager priority user error" },
4322                 { F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4323                 { F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4324                 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4325                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4326                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4327                 { 0x0000000f, "SGE context access for invalid queue" },
4328                 { 0 }
4329         };
4330         static const struct intr_details t6_sge_int3_details[] = {
4331                 { F_ERR_FLM_DBP,
4332                         "DBP pointer delivery for invalid context or QID" },
4333                 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4334                         "Invalid QID or header request by IDMA" },
4335                 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4336                 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4337                 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4338                 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4339                 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4340                 { F_ERR_TIMER_ABOVE_MAX_QID,
4341                         "SGE GTS with timer 0-5 for IQID > 1023" },
4342                 { F_ERR_CPL_EXCEED_IQE_SIZE,
4343                         "SGE received CPL exceeding IQE size" },
4344                 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4345                 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4346                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4347                 { F_ERR_DROPPED_DB, "SGE DB dropped" },
4348                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4349                         "SGE IQID > 1023 received CPL for FL" },
4350                 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4351                         F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4352                 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4353                 { F_ERR_ING_CTXT_PRIO,
4354                         "Ingress context manager priority user error" },
4355                 { F_ERR_EGR_CTXT_PRIO,
4356                         "Egress context manager priority user error" },
4357                 { F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4358                 { F_FATAL_WRE_LEN,
4359                         "SGE WRE packet less than advertized length" },
4360                 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4361                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4362                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4363                 { 0x0000000f, "SGE context access for invalid queue" },
4364                 { 0 }
4365         };
4366         struct intr_info sge_int3_info = {
4367                 .name = "SGE_INT_CAUSE3",
4368                 .cause_reg = A_SGE_INT_CAUSE3,
4369                 .enable_reg = A_SGE_INT_ENABLE3,
4370                 .fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4371                 .flags = 0,
4372                 .details = NULL,
4373                 .actions = NULL,
4374         };
4375         static const struct intr_info sge_int4_info = {
4376                 .name = "SGE_INT_CAUSE4",
4377                 .cause_reg = A_SGE_INT_CAUSE4,
4378                 .enable_reg = A_SGE_INT_ENABLE4,
4379                 .fatal = 0,
4380                 .flags = 0,
4381                 .details = NULL,
4382                 .actions = NULL,
4383         };
4384         static const struct intr_info sge_int5_info = {
4385                 .name = "SGE_INT_CAUSE5",
4386                 .cause_reg = A_SGE_INT_CAUSE5,
4387                 .enable_reg = A_SGE_INT_ENABLE5,
4388                 .fatal = 0xffffffff,
4389                 .flags = NONFATAL_IF_DISABLED,
4390                 .details = NULL,
4391                 .actions = NULL,
4392         };
4393         static const struct intr_info sge_int6_info = {
4394                 .name = "SGE_INT_CAUSE6",
4395                 .cause_reg = A_SGE_INT_CAUSE6,
4396                 .enable_reg = A_SGE_INT_ENABLE6,
4397                 .fatal = 0,
4398                 .flags = 0,
4399                 .details = NULL,
4400                 .actions = NULL,
4401         };
4402
4403         bool fatal;
4404         u32 v;
4405
4406         if (chip_id(adap) <= CHELSIO_T5) {
4407                 sge_int3_info.details = sge_int3_details;
4408         } else {
4409                 sge_int3_info.details = t6_sge_int3_details;
4410         }
4411
4412         fatal = false;
4413         fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4414         fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4415         fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4416         fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4417         if (chip_id(adap) >= CHELSIO_T5)
4418                 fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4419         if (chip_id(adap) >= CHELSIO_T6)
4420                 fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4421
4422         v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4423         if (v & F_ERROR_QID_VALID) {
4424                 CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4425                 if (v & F_UNCAPTURED_ERROR)
4426                         CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4427                 t4_write_reg(adap, A_SGE_ERROR_STATS,
4428                     F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4429         }
4430
4431         return (fatal);
4432 }
4433
4434 /*
4435  * CIM interrupt handler.
4436  */
4437 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4438 {
4439         static const struct intr_action cim_host_intr_actions[] = {
4440                 { F_TIMER0INT, 0, t4_os_dump_cimla },
4441                 { 0 },
4442         };
4443         static const struct intr_details cim_host_intr_details[] = {
4444                 /* T6+ */
4445                 { F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4446
4447                 /* T5+ */
4448                 { F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4449                 { F_PLCIM_MSTRSPDATAPARERR,
4450                         "PL2CIM master response data parity error" },
4451                 { F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4452                 { F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4453                 { F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4454                 { F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4455                 { F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4456                 { F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4457
4458                 /* T4+ */
4459                 { F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4460                 { F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4461                 { F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4462                 { F_MBUPPARERR, "CIM mailbox uP parity error" },
4463                 { F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4464                 { F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4465                 { F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4466                 { F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4467                 { F_IBQSGEHIPARERR | F_IBQPCIEPARERR,   /* same bit */
4468                         "CIM IBQ PCIe/SGE_HI parity error" },
4469                 { F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4470                 { F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4471                 { F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4472                 { F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4473                 { F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4474                 { F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4475                 { F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4476                 { F_TIMER1INT, "CIM TIMER0 interrupt" },
4477                 { F_TIMER0INT, "CIM TIMER0 interrupt" },
4478                 { F_PREFDROPINT, "CIM control register prefetch drop" },
4479                 { 0}
4480         };
4481         static const struct intr_info cim_host_intr_info = {
4482                 .name = "CIM_HOST_INT_CAUSE",
4483                 .cause_reg = A_CIM_HOST_INT_CAUSE,
4484                 .enable_reg = A_CIM_HOST_INT_ENABLE,
4485                 .fatal = 0x007fffe6,
4486                 .flags = NONFATAL_IF_DISABLED,
4487                 .details = cim_host_intr_details,
4488                 .actions = cim_host_intr_actions,
4489         };
4490         static const struct intr_details cim_host_upacc_intr_details[] = {
4491                 { F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4492                 { F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4493                 { F_TIMEOUTINT, "CIM PIF timeout" },
4494                 { F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4495                 { F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4496                 { F_BLKWRPLINT, "CIM block write to PL space" },
4497                 { F_BLKRDPLINT, "CIM block read from PL space" },
4498                 { F_SGLWRPLINT,
4499                         "CIM single write to PL space with illegal BEs" },
4500                 { F_SGLRDPLINT,
4501                         "CIM single read from PL space with illegal BEs" },
4502                 { F_BLKWRCTLINT, "CIM block write to CTL space" },
4503                 { F_BLKRDCTLINT, "CIM block read from CTL space" },
4504                 { F_SGLWRCTLINT,
4505                         "CIM single write to CTL space with illegal BEs" },
4506                 { F_SGLRDCTLINT,
4507                         "CIM single read from CTL space with illegal BEs" },
4508                 { F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4509                 { F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4510                 { F_SGLWREEPROMINT,
4511                         "CIM single write to EEPROM space with illegal BEs" },
4512                 { F_SGLRDEEPROMINT,
4513                         "CIM single read from EEPROM space with illegal BEs" },
4514                 { F_BLKWRFLASHINT, "CIM block write to flash space" },
4515                 { F_BLKRDFLASHINT, "CIM block read from flash space" },
4516                 { F_SGLWRFLASHINT, "CIM single write to flash space" },
4517                 { F_SGLRDFLASHINT,
4518                         "CIM single read from flash space with illegal BEs" },
4519                 { F_BLKWRBOOTINT, "CIM block write to boot space" },
4520                 { F_BLKRDBOOTINT, "CIM block read from boot space" },
4521                 { F_SGLWRBOOTINT, "CIM single write to boot space" },
4522                 { F_SGLRDBOOTINT,
4523                         "CIM single read from boot space with illegal BEs" },
4524                 { F_ILLWRBEINT, "CIM illegal write BEs" },
4525                 { F_ILLRDBEINT, "CIM illegal read BEs" },
4526                 { F_ILLRDINT, "CIM illegal read" },
4527                 { F_ILLWRINT, "CIM illegal write" },
4528                 { F_ILLTRANSINT, "CIM illegal transaction" },
4529                 { F_RSVDSPACEINT, "CIM reserved space access" },
4530                 {0}
4531         };
4532         static const struct intr_info cim_host_upacc_intr_info = {
4533                 .name = "CIM_HOST_UPACC_INT_CAUSE",
4534                 .cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4535                 .enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4536                 .fatal = 0x3fffeeff,
4537                 .flags = NONFATAL_IF_DISABLED,
4538                 .details = cim_host_upacc_intr_details,
4539                 .actions = NULL,
4540         };
4541         static const struct intr_info cim_pf_host_intr_info = {
4542                 .name = "CIM_PF_HOST_INT_CAUSE",
4543                 .cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4544                 .enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4545                 .fatal = 0,
4546                 .flags = 0,
4547                 .details = NULL,
4548                 .actions = NULL,
4549         };
4550         u32 val, fw_err;
4551         bool fatal;
4552
4553         fw_err = t4_read_reg(adap, A_PCIE_FW);
4554         if (fw_err & F_PCIE_FW_ERR)
4555                 t4_report_fw_error(adap);
4556
4557         /*
4558          * When the Firmware detects an internal error which normally wouldn't
4559          * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4560          * to make sure the Host sees the Firmware Crash.  So if we have a
4561          * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4562          * interrupt.
4563          */
4564         val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4565         if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4566             G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4567                 t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4568         }
4569
4570         fatal = false;
4571         fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4572         fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4573         fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4574
4575         return (fatal);
4576 }
4577
4578 /*
4579  * ULP RX interrupt handler.
4580  */
4581 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4582 {
4583         static const struct intr_details ulprx_intr_details[] = {
4584                 /* T5+ */
4585                 { F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4586                 { F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4587
4588                 /* T4+ */
4589                 { F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4590                 { F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4591                 { 0x007fffff, "ULPRX parity error" },
4592                 { 0 }
4593         };
4594         static const struct intr_info ulprx_intr_info = {
4595                 .name = "ULP_RX_INT_CAUSE",
4596                 .cause_reg = A_ULP_RX_INT_CAUSE,
4597                 .enable_reg = A_ULP_RX_INT_ENABLE,
4598                 .fatal = 0x07ffffff,
4599                 .flags = NONFATAL_IF_DISABLED,
4600                 .details = ulprx_intr_details,
4601                 .actions = NULL,
4602         };
4603         static const struct intr_info ulprx_intr2_info = {
4604                 .name = "ULP_RX_INT_CAUSE_2",
4605                 .cause_reg = A_ULP_RX_INT_CAUSE_2,
4606                 .enable_reg = A_ULP_RX_INT_ENABLE_2,
4607                 .fatal = 0,
4608                 .flags = 0,
4609                 .details = NULL,
4610                 .actions = NULL,
4611         };
4612         bool fatal = false;
4613
4614         fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4615         fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4616
4617         return (fatal);
4618 }
4619
4620 /*
4621  * ULP TX interrupt handler.
4622  */
4623 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4624 {
4625         static const struct intr_details ulptx_intr_details[] = {
4626                 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4627                 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4628                 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4629                 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4630                 { 0x0fffffff, "ULPTX parity error" },
4631                 { 0 }
4632         };
4633         static const struct intr_info ulptx_intr_info = {
4634                 .name = "ULP_TX_INT_CAUSE",
4635                 .cause_reg = A_ULP_TX_INT_CAUSE,
4636                 .enable_reg = A_ULP_TX_INT_ENABLE,
4637                 .fatal = 0x0fffffff,
4638                 .flags = NONFATAL_IF_DISABLED,
4639                 .details = ulptx_intr_details,
4640                 .actions = NULL,
4641         };
4642         static const struct intr_info ulptx_intr2_info = {
4643                 .name = "ULP_TX_INT_CAUSE_2",
4644                 .cause_reg = A_ULP_TX_INT_CAUSE_2,
4645                 .enable_reg = A_ULP_TX_INT_ENABLE_2,
4646                 .fatal = 0xf0,
4647                 .flags = NONFATAL_IF_DISABLED,
4648                 .details = NULL,
4649                 .actions = NULL,
4650         };
4651         bool fatal = false;
4652
4653         fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4654         fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4655
4656         return (fatal);
4657 }
4658
4659 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4660 {
4661         int i;
4662         u32 data[17];
4663
4664         t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4665             ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4666         for (i = 0; i < ARRAY_SIZE(data); i++) {
4667                 CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4668                     A_PM_TX_DBG_STAT0 + i, data[i]);
4669         }
4670
4671         return (false);
4672 }
4673
4674 /*
4675  * PM TX interrupt handler.
4676  */
4677 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4678 {
4679         static const struct intr_action pmtx_intr_actions[] = {
4680                 { 0xffffffff, 0, pmtx_dump_dbg_stats },
4681                 { 0 },
4682         };
4683         static const struct intr_details pmtx_intr_details[] = {
4684                 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4685                 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4686                 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4687                 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4688                 { 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4689                 { 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4690                 { 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4691                 { 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4692                 { 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4693                 { 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4694                 { F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4695                 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4696                 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4697                 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4698                 { 0 }
4699         };
4700         static const struct intr_info pmtx_intr_info = {
4701                 .name = "PM_TX_INT_CAUSE",
4702                 .cause_reg = A_PM_TX_INT_CAUSE,
4703                 .enable_reg = A_PM_TX_INT_ENABLE,
4704                 .fatal = 0xffffffff,
4705                 .flags = 0,
4706                 .details = pmtx_intr_details,
4707                 .actions = pmtx_intr_actions,
4708         };
4709
4710         return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4711 }
4712
4713 /*
4714  * PM RX interrupt handler.
4715  */
4716 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4717 {
4718         static const struct intr_details pmrx_intr_details[] = {
4719                 /* T6+ */
4720                 { 0x18000000, "PMRX ospi overflow" },
4721                 { F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4722                 { F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4723                 { F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4724                 { F_SDC_ERR, "PMRX SDC error" },
4725
4726                 /* T4+ */
4727                 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4728                 { 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4729                 { 0x0003c000, "PMRX iespi Rx framing error" },
4730                 { 0x00003c00, "PMRX iespi Tx framing error" },
4731                 { 0x00000300, "PMRX ocspi Rx framing error" },
4732                 { 0x000000c0, "PMRX ocspi Tx framing error" },
4733                 { 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4734                 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4735                 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4736                 { F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4737                 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4738                 { 0 }
4739         };
4740         static const struct intr_info pmrx_intr_info = {
4741                 .name = "PM_RX_INT_CAUSE",
4742                 .cause_reg = A_PM_RX_INT_CAUSE,
4743                 .enable_reg = A_PM_RX_INT_ENABLE,
4744                 .fatal = 0x1fffffff,
4745                 .flags = NONFATAL_IF_DISABLED,
4746                 .details = pmrx_intr_details,
4747                 .actions = NULL,
4748         };
4749
4750         return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4751 }
4752
4753 /*
4754  * CPL switch interrupt handler.
4755  */
4756 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4757 {
4758         static const struct intr_details cplsw_intr_details[] = {
4759                 /* T5+ */
4760                 { F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4761                 { F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4762
4763                 /* T4+ */
4764                 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4765                 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4766                 { F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4767                 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4768                 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4769                 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4770                 { 0 }
4771         };
4772         static const struct intr_info cplsw_intr_info = {
4773                 .name = "CPL_INTR_CAUSE",
4774                 .cause_reg = A_CPL_INTR_CAUSE,
4775                 .enable_reg = A_CPL_INTR_ENABLE,
4776                 .fatal = 0xff,
4777                 .flags = NONFATAL_IF_DISABLED,
4778                 .details = cplsw_intr_details,
4779                 .actions = NULL,
4780         };
4781
4782         return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4783 }
4784
4785 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4786 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4787 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4788     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4789     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4790     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4791 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4792     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4793     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4794
4795 /*
4796  * LE interrupt handler.
4797  */
4798 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4799 {
4800         static const struct intr_details le_intr_details[] = {
4801                 { F_REQQPARERR, "LE request queue parity error" },
4802                 { F_UNKNOWNCMD, "LE unknown command" },
4803                 { F_ACTRGNFULL, "LE active region full" },
4804                 { F_PARITYERR, "LE parity error" },
4805                 { F_LIPMISS, "LE LIP miss" },
4806                 { F_LIP0, "LE 0 LIP error" },
4807                 { 0 }
4808         };
4809         static const struct intr_details t6_le_intr_details[] = {
4810                 { F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4811                 { F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4812                 { F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4813                 { F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4814                 { F_TOTCNTERR, "LE total active < TCAM count" },
4815                 { F_CMDPRSRINTERR, "LE internal error in parser" },
4816                 { F_CMDTIDERR, "Incorrect tid in LE command" },
4817                 { F_T6_ACTRGNFULL, "LE active region full" },
4818                 { F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4819                 { F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4820                 { F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4821                 { F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4822                 { F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4823                 { F_TCAMACCFAIL, "LE TCAM access failure" },
4824                 { F_T6_UNKNOWNCMD, "LE unknown command" },
4825                 { F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4826                 { F_T6_LIPMISS, "LE CLIP lookup miss" },
4827                 { T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4828                 { 0 }
4829         };
4830         struct intr_info le_intr_info = {
4831                 .name = "LE_DB_INT_CAUSE",
4832                 .cause_reg = A_LE_DB_INT_CAUSE,
4833                 .enable_reg = A_LE_DB_INT_ENABLE,
4834                 .fatal = 0,
4835                 .flags = NONFATAL_IF_DISABLED,
4836                 .details = NULL,
4837                 .actions = NULL,
4838         };
4839
4840         if (chip_id(adap) <= CHELSIO_T5) {
4841                 le_intr_info.details = le_intr_details;
4842                 le_intr_info.fatal = T5_LE_FATAL_MASK;
4843         } else {
4844                 le_intr_info.details = t6_le_intr_details;
4845                 le_intr_info.fatal = T6_LE_FATAL_MASK;
4846         }
4847
4848         return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4849 }
4850
4851 /*
4852  * MPS interrupt handler.
4853  */
4854 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4855 {
4856         static const struct intr_details mps_rx_perr_intr_details[] = {
4857                 { 0xffffffff, "MPS Rx parity error" },
4858                 { 0 }
4859         };
4860         static const struct intr_info mps_rx_perr_intr_info = {
4861                 .name = "MPS_RX_PERR_INT_CAUSE",
4862                 .cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4863                 .enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4864                 .fatal = 0xffffffff,
4865                 .flags = NONFATAL_IF_DISABLED,
4866                 .details = mps_rx_perr_intr_details,
4867                 .actions = NULL,
4868         };
4869         static const struct intr_details mps_tx_intr_details[] = {
4870                 { F_PORTERR, "MPS Tx destination port is disabled" },
4871                 { F_FRMERR, "MPS Tx framing error" },
4872                 { F_SECNTERR, "MPS Tx SOP/EOP error" },
4873                 { F_BUBBLE, "MPS Tx underflow" },
4874                 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4875                 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4876                 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4877                 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4878                 { 0 }
4879         };
4880         static const struct intr_info mps_tx_intr_info = {
4881                 .name = "MPS_TX_INT_CAUSE",
4882                 .cause_reg = A_MPS_TX_INT_CAUSE,
4883                 .enable_reg = A_MPS_TX_INT_ENABLE,
4884                 .fatal = 0x1ffff,
4885                 .flags = NONFATAL_IF_DISABLED,
4886                 .details = mps_tx_intr_details,
4887                 .actions = NULL,
4888         };
4889         static const struct intr_details mps_trc_intr_details[] = {
4890                 { F_MISCPERR, "MPS TRC misc parity error" },
4891                 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4892                 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4893                 { 0 }
4894         };
4895         static const struct intr_info mps_trc_intr_info = {
4896                 .name = "MPS_TRC_INT_CAUSE",
4897                 .cause_reg = A_MPS_TRC_INT_CAUSE,
4898                 .enable_reg = A_MPS_TRC_INT_ENABLE,
4899                 .fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4900                 .flags = 0,
4901                 .details = mps_trc_intr_details,
4902                 .actions = NULL,
4903         };
4904         static const struct intr_details mps_stat_sram_intr_details[] = {
4905                 { 0xffffffff, "MPS statistics SRAM parity error" },
4906                 { 0 }
4907         };
4908         static const struct intr_info mps_stat_sram_intr_info = {
4909                 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4910                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4911                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4912                 .fatal = 0x1fffffff,
4913                 .flags = NONFATAL_IF_DISABLED,
4914                 .details = mps_stat_sram_intr_details,
4915                 .actions = NULL,
4916         };
4917         static const struct intr_details mps_stat_tx_intr_details[] = {
4918                 { 0xffffff, "MPS statistics Tx FIFO parity error" },
4919                 { 0 }
4920         };
4921         static const struct intr_info mps_stat_tx_intr_info = {
4922                 .name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4923                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4924                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4925                 .fatal =  0xffffff,
4926                 .flags = NONFATAL_IF_DISABLED,
4927                 .details = mps_stat_tx_intr_details,
4928                 .actions = NULL,
4929         };
4930         static const struct intr_details mps_stat_rx_intr_details[] = {
4931                 { 0xffffff, "MPS statistics Rx FIFO parity error" },
4932                 { 0 }
4933         };
4934         static const struct intr_info mps_stat_rx_intr_info = {
4935                 .name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4936                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4937                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4938                 .fatal =  0xffffff,
4939                 .flags = 0,
4940                 .details = mps_stat_rx_intr_details,
4941                 .actions = NULL,
4942         };
4943         static const struct intr_details mps_cls_intr_details[] = {
4944                 { F_HASHSRAM, "MPS hash SRAM parity error" },
4945                 { F_MATCHTCAM, "MPS match TCAM parity error" },
4946                 { F_MATCHSRAM, "MPS match SRAM parity error" },
4947                 { 0 }
4948         };
4949         static const struct intr_info mps_cls_intr_info = {
4950                 .name = "MPS_CLS_INT_CAUSE",
4951                 .cause_reg = A_MPS_CLS_INT_CAUSE,
4952                 .enable_reg = A_MPS_CLS_INT_ENABLE,
4953                 .fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4954                 .flags = 0,
4955                 .details = mps_cls_intr_details,
4956                 .actions = NULL,
4957         };
4958         static const struct intr_details mps_stat_sram1_intr_details[] = {
4959                 { 0xff, "MPS statistics SRAM1 parity error" },
4960                 { 0 }
4961         };
4962         static const struct intr_info mps_stat_sram1_intr_info = {
4963                 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4964                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4965                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4966                 .fatal = 0xff,
4967                 .flags = 0,
4968                 .details = mps_stat_sram1_intr_details,
4969                 .actions = NULL,
4970         };
4971
4972         bool fatal;
4973
4974         fatal = false;
4975         fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4976         fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4977         fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4978         fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4979         fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4980         fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4981         fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4982         if (chip_id(adap) > CHELSIO_T4) {
4983                 fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4984                     verbose);
4985         }
4986
4987         t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4988         t4_read_reg(adap, A_MPS_INT_CAUSE);     /* flush */
4989
4990         return (fatal);
4991
4992 }
4993
4994 /*
4995  * EDC/MC interrupt handler.
4996  */
4997 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4998 {
4999         static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
5000         unsigned int count_reg, v;
5001         static const struct intr_details mem_intr_details[] = {
5002                 { F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
5003                 { F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
5004                 { F_PERR_INT_CAUSE, "FIFO parity error" },
5005                 { 0 }
5006         };
5007         struct intr_info ii = {
5008                 .fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5009                 .details = mem_intr_details,
5010                 .flags = 0,
5011                 .actions = NULL,
5012         };
5013         bool fatal;
5014
5015         switch (idx) {
5016         case MEM_EDC0:
5017                 ii.name = "EDC0_INT_CAUSE";
5018                 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5019                 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5020                 count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5021                 break;
5022         case MEM_EDC1:
5023                 ii.name = "EDC1_INT_CAUSE";
5024                 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5025                 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5026                 count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5027                 break;
5028         case MEM_MC0:
5029                 ii.name = "MC0_INT_CAUSE";
5030                 if (is_t4(adap)) {
5031                         ii.cause_reg = A_MC_INT_CAUSE;
5032                         ii.enable_reg = A_MC_INT_ENABLE;
5033                         count_reg = A_MC_ECC_STATUS;
5034                 } else {
5035                         ii.cause_reg = A_MC_P_INT_CAUSE;
5036                         ii.enable_reg = A_MC_P_INT_ENABLE;
5037                         count_reg = A_MC_P_ECC_STATUS;
5038                 }
5039                 break;
5040         case MEM_MC1:
5041                 ii.name = "MC1_INT_CAUSE";
5042                 ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5043                 ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5044                 count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5045                 break;
5046         }
5047
5048         fatal = t4_handle_intr(adap, &ii, 0, verbose);
5049
5050         v = t4_read_reg(adap, count_reg);
5051         if (v != 0) {
5052                 if (G_ECC_UECNT(v) != 0) {
5053                         CH_ALERT(adap,
5054                             "%s: %u uncorrectable ECC data error(s)\n",
5055                             name[idx], G_ECC_UECNT(v));
5056                 }
5057                 if (G_ECC_CECNT(v) != 0) {
5058                         if (idx <= MEM_EDC1)
5059                                 t4_edc_err_read(adap, idx);
5060                         CH_WARN_RATELIMIT(adap,
5061                             "%s: %u correctable ECC data error(s)\n",
5062                             name[idx], G_ECC_CECNT(v));
5063                 }
5064                 t4_write_reg(adap, count_reg, 0xffffffff);
5065         }
5066
5067         return (fatal);
5068 }
5069
5070 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5071 {
5072         u32 v;
5073
5074         v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5075         CH_ALERT(adap,
5076             "MA address wrap-around error by client %u to address %#x\n",
5077             G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5078         t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5079
5080         return (false);
5081 }
5082
5083
5084 /*
5085  * MA interrupt handler.
5086  */
5087 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5088 {
5089         static const struct intr_action ma_intr_actions[] = {
5090                 { F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5091                 { 0 },
5092         };
5093         static const struct intr_info ma_intr_info = {
5094                 .name = "MA_INT_CAUSE",
5095                 .cause_reg = A_MA_INT_CAUSE,
5096                 .enable_reg = A_MA_INT_ENABLE,
5097                 .fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5098                 .flags = NONFATAL_IF_DISABLED,
5099                 .details = NULL,
5100                 .actions = ma_intr_actions,
5101         };
5102         static const struct intr_info ma_perr_status1 = {
5103                 .name = "MA_PARITY_ERROR_STATUS1",
5104                 .cause_reg = A_MA_PARITY_ERROR_STATUS1,
5105                 .enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5106                 .fatal = 0xffffffff,
5107                 .flags = 0,
5108                 .details = NULL,
5109                 .actions = NULL,
5110         };
5111         static const struct intr_info ma_perr_status2 = {
5112                 .name = "MA_PARITY_ERROR_STATUS2",
5113                 .cause_reg = A_MA_PARITY_ERROR_STATUS2,
5114                 .enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5115                 .fatal = 0xffffffff,
5116                 .flags = 0,
5117                 .details = NULL,
5118                 .actions = NULL,
5119         };
5120         bool fatal;
5121
5122         fatal = false;
5123         fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5124         fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5125         if (chip_id(adap) > CHELSIO_T4)
5126                 fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5127
5128         return (fatal);
5129 }
5130
5131 /*
5132  * SMB interrupt handler.
5133  */
5134 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5135 {
5136         static const struct intr_details smb_intr_details[] = {
5137                 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5138                 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5139                 { F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5140                 { 0 }
5141         };
5142         static const struct intr_info smb_intr_info = {
5143                 .name = "SMB_INT_CAUSE",
5144                 .cause_reg = A_SMB_INT_CAUSE,
5145                 .enable_reg = A_SMB_INT_ENABLE,
5146                 .fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5147                 .flags = 0,
5148                 .details = smb_intr_details,
5149                 .actions = NULL,
5150         };
5151
5152         return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5153 }
5154
5155 /*
5156  * NC-SI interrupt handler.
5157  */
5158 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5159 {
5160         static const struct intr_details ncsi_intr_details[] = {
5161                 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5162                 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5163                 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5164                 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5165                 { 0 }
5166         };
5167         static const struct intr_info ncsi_intr_info = {
5168                 .name = "NCSI_INT_CAUSE",
5169                 .cause_reg = A_NCSI_INT_CAUSE,
5170                 .enable_reg = A_NCSI_INT_ENABLE,
5171                 .fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5172                     F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5173                 .flags = 0,
5174                 .details = ncsi_intr_details,
5175                 .actions = NULL,
5176         };
5177
5178         return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5179 }
5180
5181 /*
5182  * MAC interrupt handler.
5183  */
5184 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5185 {
5186         static const struct intr_details mac_intr_details[] = {
5187                 { F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5188                 { F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5189                 { 0 }
5190         };
5191         char name[32];
5192         struct intr_info ii;
5193         bool fatal = false;
5194
5195         if (is_t4(adap)) {
5196                 snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5197                 ii.name = &name[0];
5198                 ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5199                 ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5200                 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5201                 ii.flags = 0;
5202                 ii.details = mac_intr_details;
5203                 ii.actions = NULL;
5204         } else {
5205                 snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5206                 ii.name = &name[0];
5207                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5208                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5209                 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5210                 ii.flags = 0;
5211                 ii.details = mac_intr_details;
5212                 ii.actions = NULL;
5213         }
5214         fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5215
5216         if (chip_id(adap) >= CHELSIO_T5) {
5217                 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5218                 ii.name = &name[0];
5219                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5220                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5221                 ii.fatal = 0;
5222                 ii.flags = 0;
5223                 ii.details = NULL;
5224                 ii.actions = NULL;
5225                 fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5226         }
5227
5228         if (chip_id(adap) >= CHELSIO_T6) {
5229                 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5230                 ii.name = &name[0];
5231                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5232                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5233                 ii.fatal = 0;
5234                 ii.flags = 0;
5235                 ii.details = NULL;
5236                 ii.actions = NULL;
5237                 fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5238         }
5239
5240         return (fatal);
5241 }
5242
5243 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5244 {
5245         static const struct intr_details plpl_intr_details[] = {
5246                 { F_FATALPERR, "Fatal parity error" },
5247                 { F_PERRVFID, "VFID_MAP parity error" },
5248                 { 0 }
5249         };
5250         static const struct intr_info plpl_intr_info = {
5251                 .name = "PL_PL_INT_CAUSE",
5252                 .cause_reg = A_PL_PL_INT_CAUSE,
5253                 .enable_reg = A_PL_PL_INT_ENABLE,
5254                 .fatal = F_FATALPERR | F_PERRVFID,
5255                 .flags = NONFATAL_IF_DISABLED,
5256                 .details = plpl_intr_details,
5257                 .actions = NULL,
5258         };
5259
5260         return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5261 }
5262
5263 /**
5264  *      t4_slow_intr_handler - control path interrupt handler
5265  *      @adap: the adapter
5266  *      @verbose: increased verbosity, for debug
5267  *
5268  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
5269  *      The designation 'slow' is because it involves register reads, while
5270  *      data interrupts typically don't involve any MMIOs.
5271  */
5272 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5273 {
5274         static const struct intr_details pl_intr_details[] = {
5275                 { F_MC1, "MC1" },
5276                 { F_UART, "UART" },
5277                 { F_ULP_TX, "ULP TX" },
5278                 { F_SGE, "SGE" },
5279                 { F_HMA, "HMA" },
5280                 { F_CPL_SWITCH, "CPL Switch" },
5281                 { F_ULP_RX, "ULP RX" },
5282                 { F_PM_RX, "PM RX" },
5283                 { F_PM_TX, "PM TX" },
5284                 { F_MA, "MA" },
5285                 { F_TP, "TP" },
5286                 { F_LE, "LE" },
5287                 { F_EDC1, "EDC1" },
5288                 { F_EDC0, "EDC0" },
5289                 { F_MC, "MC0" },
5290                 { F_PCIE, "PCIE" },
5291                 { F_PMU, "PMU" },
5292                 { F_MAC3, "MAC3" },
5293                 { F_MAC2, "MAC2" },
5294                 { F_MAC1, "MAC1" },
5295                 { F_MAC0, "MAC0" },
5296                 { F_SMB, "SMB" },
5297                 { F_SF, "SF" },
5298                 { F_PL, "PL" },
5299                 { F_NCSI, "NC-SI" },
5300                 { F_MPS, "MPS" },
5301                 { F_MI, "MI" },
5302                 { F_DBG, "DBG" },
5303                 { F_I2CM, "I2CM" },
5304                 { F_CIM, "CIM" },
5305                 { 0 }
5306         };
5307         static const struct intr_info pl_perr_cause = {
5308                 .name = "PL_PERR_CAUSE",
5309                 .cause_reg = A_PL_PERR_CAUSE,
5310                 .enable_reg = A_PL_PERR_ENABLE,
5311                 .fatal = 0xffffffff,
5312                 .flags = 0,
5313                 .details = pl_intr_details,
5314                 .actions = NULL,
5315         };
5316         static const struct intr_action pl_intr_action[] = {
5317                 { F_MC1, MEM_MC1, mem_intr_handler },
5318                 { F_ULP_TX, -1, ulptx_intr_handler },
5319                 { F_SGE, -1, sge_intr_handler },
5320                 { F_CPL_SWITCH, -1, cplsw_intr_handler },
5321                 { F_ULP_RX, -1, ulprx_intr_handler },
5322                 { F_PM_RX, -1, pmrx_intr_handler},
5323                 { F_PM_TX, -1, pmtx_intr_handler},
5324                 { F_MA, -1, ma_intr_handler },
5325                 { F_TP, -1, tp_intr_handler },
5326                 { F_LE, -1, le_intr_handler },
5327                 { F_EDC1, MEM_EDC1, mem_intr_handler },
5328                 { F_EDC0, MEM_EDC0, mem_intr_handler },
5329                 { F_MC0, MEM_MC0, mem_intr_handler },
5330                 { F_PCIE, -1, pcie_intr_handler },
5331                 { F_MAC3, 3, mac_intr_handler},
5332                 { F_MAC2, 2, mac_intr_handler},
5333                 { F_MAC1, 1, mac_intr_handler},
5334                 { F_MAC0, 0, mac_intr_handler},
5335                 { F_SMB, -1, smb_intr_handler},
5336                 { F_PL, -1, plpl_intr_handler },
5337                 { F_NCSI, -1, ncsi_intr_handler},
5338                 { F_MPS, -1, mps_intr_handler },
5339                 { F_CIM, -1, cim_intr_handler },
5340                 { 0 }
5341         };
5342         static const struct intr_info pl_intr_info = {
5343                 .name = "PL_INT_CAUSE",
5344                 .cause_reg = A_PL_INT_CAUSE,
5345                 .enable_reg = A_PL_INT_ENABLE,
5346                 .fatal = 0,
5347                 .flags = 0,
5348                 .details = pl_intr_details,
5349                 .actions = pl_intr_action,
5350         };
5351         bool fatal;
5352         u32 perr;
5353
5354         perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5355         if (verbose || perr != 0) {
5356                 t4_show_intr_info(adap, &pl_perr_cause, perr);
5357                 if (perr != 0)
5358                         t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5359                 if (verbose)
5360                         perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5361         }
5362         fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5363         if (fatal)
5364                 t4_fatal_err(adap, false);
5365
5366         return (0);
5367 }
5368
5369 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5370
5371 /**
5372  *      t4_intr_enable - enable interrupts
5373  *      @adapter: the adapter whose interrupts should be enabled
5374  *
5375  *      Enable PF-specific interrupts for the calling function and the top-level
5376  *      interrupt concentrator for global interrupts.  Interrupts are already
5377  *      enabled at each module, here we just enable the roots of the interrupt
5378  *      hierarchies.
5379  *
5380  *      Note: this function should be called only when the driver manages
5381  *      non PF-specific interrupts from the various HW modules.  Only one PCI
5382  *      function at a time should be doing this.
5383  */
5384 void t4_intr_enable(struct adapter *adap)
5385 {
5386         u32 val = 0;
5387
5388         if (chip_id(adap) <= CHELSIO_T5)
5389                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5390         else
5391                 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5392         val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5393             F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5394             F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5395             F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5396             F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5397             F_EGRESS_SIZE_ERR;
5398         t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5399         t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5400         t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5401         t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5402 }
5403
5404 /**
5405  *      t4_intr_disable - disable interrupts
5406  *      @adap: the adapter whose interrupts should be disabled
5407  *
5408  *      Disable interrupts.  We only disable the top-level interrupt
5409  *      concentrators.  The caller must be a PCI function managing global
5410  *      interrupts.
5411  */
5412 void t4_intr_disable(struct adapter *adap)
5413 {
5414
5415         t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5416         t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5417 }
5418
5419 /**
5420  *      t4_intr_clear - clear all interrupts
5421  *      @adap: the adapter whose interrupts should be cleared
5422  *
5423  *      Clears all interrupts.  The caller must be a PCI function managing
5424  *      global interrupts.
5425  */
5426 void t4_intr_clear(struct adapter *adap)
5427 {
5428         static const u32 cause_reg[] = {
5429                 A_CIM_HOST_INT_CAUSE,
5430                 A_CIM_HOST_UPACC_INT_CAUSE,
5431                 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5432                 A_CPL_INTR_CAUSE,
5433                 EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5434                 A_LE_DB_INT_CAUSE,
5435                 A_MA_INT_WRAP_STATUS,
5436                 A_MA_PARITY_ERROR_STATUS1,
5437                 A_MA_INT_CAUSE,
5438                 A_MPS_CLS_INT_CAUSE,
5439                 A_MPS_RX_PERR_INT_CAUSE,
5440                 A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5441                 A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5442                 A_MPS_TRC_INT_CAUSE,
5443                 A_MPS_TX_INT_CAUSE,
5444                 A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5445                 A_NCSI_INT_CAUSE,
5446                 A_PCIE_INT_CAUSE,
5447                 A_PCIE_NONFAT_ERR,
5448                 A_PL_PL_INT_CAUSE,
5449                 A_PM_RX_INT_CAUSE,
5450                 A_PM_TX_INT_CAUSE,
5451                 A_SGE_INT_CAUSE1,
5452                 A_SGE_INT_CAUSE2,
5453                 A_SGE_INT_CAUSE3,
5454                 A_SGE_INT_CAUSE4,
5455                 A_SMB_INT_CAUSE,
5456                 A_TP_INT_CAUSE,
5457                 A_ULP_RX_INT_CAUSE,
5458                 A_ULP_RX_INT_CAUSE_2,
5459                 A_ULP_TX_INT_CAUSE,
5460                 A_ULP_TX_INT_CAUSE_2,
5461
5462                 MYPF_REG(A_PL_PF_INT_CAUSE),
5463         };
5464         int i;
5465         const int nchan = adap->chip_params->nchan;
5466
5467         for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5468                 t4_write_reg(adap, cause_reg[i], 0xffffffff);
5469
5470         if (is_t4(adap)) {
5471                 t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5472                     0xffffffff);
5473                 t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5474                     0xffffffff);
5475                 t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5476                 for (i = 0; i < nchan; i++) {
5477                         t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5478                             0xffffffff);
5479                 }
5480         }
5481         if (chip_id(adap) >= CHELSIO_T5) {
5482                 t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5483                 t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5484                 t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5485                 t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5486                 if (is_t5(adap)) {
5487                         t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5488                             0xffffffff);
5489                 }
5490                 for (i = 0; i < nchan; i++) {
5491                         t4_write_reg(adap, T5_PORT_REG(i,
5492                             A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5493                         if (chip_id(adap) > CHELSIO_T5) {
5494                                 t4_write_reg(adap, T5_PORT_REG(i,
5495                                     A_MAC_PORT_PERR_INT_CAUSE_100G),
5496                                     0xffffffff);
5497                         }
5498                         t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5499                             0xffffffff);
5500                 }
5501         }
5502         if (chip_id(adap) >= CHELSIO_T6) {
5503                 t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5504         }
5505
5506         t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5507         t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5508         t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5509         (void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5510 }
5511
5512 /**
5513  *      hash_mac_addr - return the hash value of a MAC address
5514  *      @addr: the 48-bit Ethernet MAC address
5515  *
5516  *      Hashes a MAC address according to the hash function used by HW inexact
5517  *      (hash) address matching.
5518  */
5519 static int hash_mac_addr(const u8 *addr)
5520 {
5521         u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5522         u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5523         a ^= b;
5524         a ^= (a >> 12);
5525         a ^= (a >> 6);
5526         return a & 0x3f;
5527 }
5528
5529 /**
5530  *      t4_config_rss_range - configure a portion of the RSS mapping table
5531  *      @adapter: the adapter
5532  *      @mbox: mbox to use for the FW command
5533  *      @viid: virtual interface whose RSS subtable is to be written
5534  *      @start: start entry in the table to write
5535  *      @n: how many table entries to write
5536  *      @rspq: values for the "response queue" (Ingress Queue) lookup table
5537  *      @nrspq: number of values in @rspq
5538  *
5539  *      Programs the selected part of the VI's RSS mapping table with the
5540  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5541  *      until the full table range is populated.
5542  *
5543  *      The caller must ensure the values in @rspq are in the range allowed for
5544  *      @viid.
5545  */
5546 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5547                         int start, int n, const u16 *rspq, unsigned int nrspq)
5548 {
5549         int ret;
5550         const u16 *rsp = rspq;
5551         const u16 *rsp_end = rspq + nrspq;
5552         struct fw_rss_ind_tbl_cmd cmd;
5553
5554         memset(&cmd, 0, sizeof(cmd));
5555         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5556                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5557                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
5558         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5559
5560         /*
5561          * Each firmware RSS command can accommodate up to 32 RSS Ingress
5562          * Queue Identifiers.  These Ingress Queue IDs are packed three to
5563          * a 32-bit word as 10-bit values with the upper remaining 2 bits
5564          * reserved.
5565          */
5566         while (n > 0) {
5567                 int nq = min(n, 32);
5568                 int nq_packed = 0;
5569                 __be32 *qp = &cmd.iq0_to_iq2;
5570
5571                 /*
5572                  * Set up the firmware RSS command header to send the next
5573                  * "nq" Ingress Queue IDs to the firmware.
5574                  */
5575                 cmd.niqid = cpu_to_be16(nq);
5576                 cmd.startidx = cpu_to_be16(start);
5577
5578                 /*
5579                  * "nq" more done for the start of the next loop.
5580                  */
5581                 start += nq;
5582                 n -= nq;
5583
5584                 /*
5585                  * While there are still Ingress Queue IDs to stuff into the
5586                  * current firmware RSS command, retrieve them from the
5587                  * Ingress Queue ID array and insert them into the command.
5588                  */
5589                 while (nq > 0) {
5590                         /*
5591                          * Grab up to the next 3 Ingress Queue IDs (wrapping
5592                          * around the Ingress Queue ID array if necessary) and
5593                          * insert them into the firmware RSS command at the
5594                          * current 3-tuple position within the commad.
5595                          */
5596                         u16 qbuf[3];
5597                         u16 *qbp = qbuf;
5598                         int nqbuf = min(3, nq);
5599
5600                         nq -= nqbuf;
5601                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
5602                         while (nqbuf && nq_packed < 32) {
5603                                 nqbuf--;
5604                                 nq_packed++;
5605                                 *qbp++ = *rsp++;
5606                                 if (rsp >= rsp_end)
5607                                         rsp = rspq;
5608                         }
5609                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5610                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5611                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5612                 }
5613
5614                 /*
5615                  * Send this portion of the RRS table update to the firmware;
5616                  * bail out on any errors.
5617                  */
5618                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5619                 if (ret)
5620                         return ret;
5621         }
5622         return 0;
5623 }
5624
5625 /**
5626  *      t4_config_glbl_rss - configure the global RSS mode
5627  *      @adapter: the adapter
5628  *      @mbox: mbox to use for the FW command
5629  *      @mode: global RSS mode
5630  *      @flags: mode-specific flags
5631  *
5632  *      Sets the global RSS mode.
5633  */
5634 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5635                        unsigned int flags)
5636 {
5637         struct fw_rss_glb_config_cmd c;
5638
5639         memset(&c, 0, sizeof(c));
5640         c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5641                                     F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5642         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5643         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5644                 c.u.manual.mode_pkd =
5645                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5646         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5647                 c.u.basicvirtual.mode_keymode =
5648                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5649                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5650         } else
5651                 return -EINVAL;
5652         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5653 }
5654
5655 /**
5656  *      t4_config_vi_rss - configure per VI RSS settings
5657  *      @adapter: the adapter
5658  *      @mbox: mbox to use for the FW command
5659  *      @viid: the VI id
5660  *      @flags: RSS flags
5661  *      @defq: id of the default RSS queue for the VI.
5662  *      @skeyidx: RSS secret key table index for non-global mode
5663  *      @skey: RSS vf_scramble key for VI.
5664  *
5665  *      Configures VI-specific RSS properties.
5666  */
5667 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5668                      unsigned int flags, unsigned int defq, unsigned int skeyidx,
5669                      unsigned int skey)
5670 {
5671         struct fw_rss_vi_config_cmd c;
5672
5673         memset(&c, 0, sizeof(c));
5674         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5675                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5676                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5677         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5678         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5679                                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5680         c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5681                                         V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5682         c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5683
5684         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5685 }
5686
5687 /* Read an RSS table row */
5688 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5689 {
5690         t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5691         return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5692                                    5, 0, val);
5693 }
5694
5695 /**
5696  *      t4_read_rss - read the contents of the RSS mapping table
5697  *      @adapter: the adapter
5698  *      @map: holds the contents of the RSS mapping table
5699  *
5700  *      Reads the contents of the RSS hash->queue mapping table.
5701  */
5702 int t4_read_rss(struct adapter *adapter, u16 *map)
5703 {
5704         u32 val;
5705         int i, ret;
5706
5707         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5708                 ret = rd_rss_row(adapter, i, &val);
5709                 if (ret)
5710                         return ret;
5711                 *map++ = G_LKPTBLQUEUE0(val);
5712                 *map++ = G_LKPTBLQUEUE1(val);
5713         }
5714         return 0;
5715 }
5716
5717 /**
5718  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5719  * @adap: the adapter
5720  * @cmd: TP fw ldst address space type
5721  * @vals: where the indirect register values are stored/written
5722  * @nregs: how many indirect registers to read/write
5723  * @start_idx: index of first indirect register to read/write
5724  * @rw: Read (1) or Write (0)
5725  * @sleep_ok: if true we may sleep while awaiting command completion
5726  *
5727  * Access TP indirect registers through LDST
5728  **/
5729 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5730                             unsigned int nregs, unsigned int start_index,
5731                             unsigned int rw, bool sleep_ok)
5732 {
5733         int ret = 0;
5734         unsigned int i;
5735         struct fw_ldst_cmd c;
5736
5737         for (i = 0; i < nregs; i++) {
5738                 memset(&c, 0, sizeof(c));
5739                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5740                                                 F_FW_CMD_REQUEST |
5741                                                 (rw ? F_FW_CMD_READ :
5742                                                       F_FW_CMD_WRITE) |
5743                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
5744                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5745
5746                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5747                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5748                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5749                                       sleep_ok);
5750                 if (ret)
5751                         return ret;
5752
5753                 if (rw)
5754                         vals[i] = be32_to_cpu(c.u.addrval.val);
5755         }
5756         return 0;
5757 }
5758
5759 /**
5760  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5761  * @adap: the adapter
5762  * @reg_addr: Address Register
5763  * @reg_data: Data register
5764  * @buff: where the indirect register values are stored/written
5765  * @nregs: how many indirect registers to read/write
5766  * @start_index: index of first indirect register to read/write
5767  * @rw: READ(1) or WRITE(0)
5768  * @sleep_ok: if true we may sleep while awaiting command completion
5769  *
5770  * Read/Write TP indirect registers through LDST if possible.
5771  * Else, use backdoor access
5772  **/
5773 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5774                               u32 *buff, u32 nregs, u32 start_index, int rw,
5775                               bool sleep_ok)
5776 {
5777         int rc = -EINVAL;
5778         int cmd;
5779
5780         switch (reg_addr) {
5781         case A_TP_PIO_ADDR:
5782                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5783                 break;
5784         case A_TP_TM_PIO_ADDR:
5785                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5786                 break;
5787         case A_TP_MIB_INDEX:
5788                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5789                 break;
5790         default:
5791                 goto indirect_access;
5792         }
5793
5794         if (t4_use_ldst(adap))
5795                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5796                                       sleep_ok);
5797
5798 indirect_access:
5799
5800         if (rc) {
5801                 if (rw)
5802                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5803                                          start_index);
5804                 else
5805                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5806                                           start_index);
5807         }
5808 }
5809
5810 /**
5811  * t4_tp_pio_read - Read TP PIO registers
5812  * @adap: the adapter
5813  * @buff: where the indirect register values are written
5814  * @nregs: how many indirect registers to read
5815  * @start_index: index of first indirect register to read
5816  * @sleep_ok: if true we may sleep while awaiting command completion
5817  *
5818  * Read TP PIO Registers
5819  **/
5820 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5821                     u32 start_index, bool sleep_ok)
5822 {
5823         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5824                           start_index, 1, sleep_ok);
5825 }
5826
5827 /**
5828  * t4_tp_pio_write - Write TP PIO registers
5829  * @adap: the adapter
5830  * @buff: where the indirect register values are stored
5831  * @nregs: how many indirect registers to write
5832  * @start_index: index of first indirect register to write
5833  * @sleep_ok: if true we may sleep while awaiting command completion
5834  *
5835  * Write TP PIO Registers
5836  **/
5837 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5838                      u32 start_index, bool sleep_ok)
5839 {
5840         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5841             __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5842 }
5843
5844 /**
5845  * t4_tp_tm_pio_read - Read TP TM PIO registers
5846  * @adap: the adapter
5847  * @buff: where the indirect register values are written
5848  * @nregs: how many indirect registers to read
5849  * @start_index: index of first indirect register to read
5850  * @sleep_ok: if true we may sleep while awaiting command completion
5851  *
5852  * Read TP TM PIO Registers
5853  **/
5854 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5855                        u32 start_index, bool sleep_ok)
5856 {
5857         t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5858                           nregs, start_index, 1, sleep_ok);
5859 }
5860
5861 /**
5862  * t4_tp_mib_read - Read TP MIB registers
5863  * @adap: the adapter
5864  * @buff: where the indirect register values are written
5865  * @nregs: how many indirect registers to read
5866  * @start_index: index of first indirect register to read
5867  * @sleep_ok: if true we may sleep while awaiting command completion
5868  *
5869  * Read TP MIB Registers
5870  **/
5871 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5872                     bool sleep_ok)
5873 {
5874         t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5875                           start_index, 1, sleep_ok);
5876 }
5877
5878 /**
5879  *      t4_read_rss_key - read the global RSS key
5880  *      @adap: the adapter
5881  *      @key: 10-entry array holding the 320-bit RSS key
5882  *      @sleep_ok: if true we may sleep while awaiting command completion
5883  *
5884  *      Reads the global 320-bit RSS key.
5885  */
5886 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5887 {
5888         t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5889 }
5890
5891 /**
5892  *      t4_write_rss_key - program one of the RSS keys
5893  *      @adap: the adapter
5894  *      @key: 10-entry array holding the 320-bit RSS key
5895  *      @idx: which RSS key to write
5896  *      @sleep_ok: if true we may sleep while awaiting command completion
5897  *
5898  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5899  *      0..15 the corresponding entry in the RSS key table is written,
5900  *      otherwise the global RSS key is written.
5901  */
5902 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5903                       bool sleep_ok)
5904 {
5905         u8 rss_key_addr_cnt = 16;
5906         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5907
5908         /*
5909          * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5910          * allows access to key addresses 16-63 by using KeyWrAddrX
5911          * as index[5:4](upper 2) into key table
5912          */
5913         if ((chip_id(adap) > CHELSIO_T5) &&
5914             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5915                 rss_key_addr_cnt = 32;
5916
5917         t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5918
5919         if (idx >= 0 && idx < rss_key_addr_cnt) {
5920                 if (rss_key_addr_cnt > 16)
5921                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5922                                      vrt | V_KEYWRADDRX(idx >> 4) |
5923                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
5924                 else
5925                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5926                                      vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5927         }
5928 }
5929
5930 /**
5931  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5932  *      @adapter: the adapter
5933  *      @index: the entry in the PF RSS table to read
5934  *      @valp: where to store the returned value
5935  *      @sleep_ok: if true we may sleep while awaiting command completion
5936  *
5937  *      Reads the PF RSS Configuration Table at the specified index and returns
5938  *      the value found there.
5939  */
5940 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5941                            u32 *valp, bool sleep_ok)
5942 {
5943         t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5944 }
5945
5946 /**
5947  *      t4_write_rss_pf_config - write PF RSS Configuration Table
5948  *      @adapter: the adapter
5949  *      @index: the entry in the VF RSS table to read
5950  *      @val: the value to store
5951  *      @sleep_ok: if true we may sleep while awaiting command completion
5952  *
5953  *      Writes the PF RSS Configuration Table at the specified index with the
5954  *      specified value.
5955  */
5956 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5957                             u32 val, bool sleep_ok)
5958 {
5959         t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5960                         sleep_ok);
5961 }
5962
5963 /**
5964  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5965  *      @adapter: the adapter
5966  *      @index: the entry in the VF RSS table to read
5967  *      @vfl: where to store the returned VFL
5968  *      @vfh: where to store the returned VFH
5969  *      @sleep_ok: if true we may sleep while awaiting command completion
5970  *
5971  *      Reads the VF RSS Configuration Table at the specified index and returns
5972  *      the (VFL, VFH) values found there.
5973  */
5974 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5975                            u32 *vfl, u32 *vfh, bool sleep_ok)
5976 {
5977         u32 vrt, mask, data;
5978
5979         if (chip_id(adapter) <= CHELSIO_T5) {
5980                 mask = V_VFWRADDR(M_VFWRADDR);
5981                 data = V_VFWRADDR(index);
5982         } else {
5983                  mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5984                  data = V_T6_VFWRADDR(index);
5985         }
5986         /*
5987          * Request that the index'th VF Table values be read into VFL/VFH.
5988          */
5989         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5990         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5991         vrt |= data | F_VFRDEN;
5992         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5993
5994         /*
5995          * Grab the VFL/VFH values ...
5996          */
5997         t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5998         t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5999 }
6000
6001 /**
6002  *      t4_write_rss_vf_config - write VF RSS Configuration Table
6003  *
6004  *      @adapter: the adapter
6005  *      @index: the entry in the VF RSS table to write
6006  *      @vfl: the VFL to store
6007  *      @vfh: the VFH to store
6008  *
6009  *      Writes the VF RSS Configuration Table at the specified index with the
6010  *      specified (VFL, VFH) values.
6011  */
6012 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6013                             u32 vfl, u32 vfh, bool sleep_ok)
6014 {
6015         u32 vrt, mask, data;
6016
6017         if (chip_id(adapter) <= CHELSIO_T5) {
6018                 mask = V_VFWRADDR(M_VFWRADDR);
6019                 data = V_VFWRADDR(index);
6020         } else {
6021                 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6022                 data = V_T6_VFWRADDR(index);
6023         }
6024
6025         /*
6026          * Load up VFL/VFH with the values to be written ...
6027          */
6028         t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6029         t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6030
6031         /*
6032          * Write the VFL/VFH into the VF Table at index'th location.
6033          */
6034         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6035         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6036         vrt |= data | F_VFRDEN;
6037         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6038 }
6039
6040 /**
6041  *      t4_read_rss_pf_map - read PF RSS Map
6042  *      @adapter: the adapter
6043  *      @sleep_ok: if true we may sleep while awaiting command completion
6044  *
6045  *      Reads the PF RSS Map register and returns its value.
6046  */
6047 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6048 {
6049         u32 pfmap;
6050
6051         t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6052
6053         return pfmap;
6054 }
6055
6056 /**
6057  *      t4_write_rss_pf_map - write PF RSS Map
6058  *      @adapter: the adapter
6059  *      @pfmap: PF RSS Map value
6060  *
6061  *      Writes the specified value to the PF RSS Map register.
6062  */
6063 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6064 {
6065         t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6066 }
6067
6068 /**
6069  *      t4_read_rss_pf_mask - read PF RSS Mask
6070  *      @adapter: the adapter
6071  *      @sleep_ok: if true we may sleep while awaiting command completion
6072  *
6073  *      Reads the PF RSS Mask register and returns its value.
6074  */
6075 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6076 {
6077         u32 pfmask;
6078
6079         t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6080
6081         return pfmask;
6082 }
6083
6084 /**
6085  *      t4_write_rss_pf_mask - write PF RSS Mask
6086  *      @adapter: the adapter
6087  *      @pfmask: PF RSS Mask value
6088  *
6089  *      Writes the specified value to the PF RSS Mask register.
6090  */
6091 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6092 {
6093         t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6094 }
6095
6096 /**
6097  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
6098  *      @adap: the adapter
6099  *      @v4: holds the TCP/IP counter values
6100  *      @v6: holds the TCP/IPv6 counter values
6101  *      @sleep_ok: if true we may sleep while awaiting command completion
6102  *
6103  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6104  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6105  */
6106 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6107                          struct tp_tcp_stats *v6, bool sleep_ok)
6108 {
6109         u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6110
6111 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6112 #define STAT(x)     val[STAT_IDX(x)]
6113 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6114
6115         if (v4) {
6116                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6117                                A_TP_MIB_TCP_OUT_RST, sleep_ok);
6118                 v4->tcp_out_rsts = STAT(OUT_RST);
6119                 v4->tcp_in_segs  = STAT64(IN_SEG);
6120                 v4->tcp_out_segs = STAT64(OUT_SEG);
6121                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
6122         }
6123         if (v6) {
6124                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6125                                A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6126                 v6->tcp_out_rsts = STAT(OUT_RST);
6127                 v6->tcp_in_segs  = STAT64(IN_SEG);
6128                 v6->tcp_out_segs = STAT64(OUT_SEG);
6129                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
6130         }
6131 #undef STAT64
6132 #undef STAT
6133 #undef STAT_IDX
6134 }
6135
6136 /**
6137  *      t4_tp_get_err_stats - read TP's error MIB counters
6138  *      @adap: the adapter
6139  *      @st: holds the counter values
6140  *      @sleep_ok: if true we may sleep while awaiting command completion
6141  *
6142  *      Returns the values of TP's error counters.
6143  */
6144 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6145                          bool sleep_ok)
6146 {
6147         int nchan = adap->chip_params->nchan;
6148
6149         t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6150                        sleep_ok);
6151
6152         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6153                        sleep_ok);
6154
6155         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6156                        sleep_ok);
6157
6158         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6159                        A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6160
6161         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6162                        A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6163
6164         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6165                        sleep_ok);
6166
6167         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6168                        A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6169
6170         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6171                        A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6172
6173         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6174                        sleep_ok);
6175 }
6176
6177 /**
6178  *      t4_tp_get_proxy_stats - read TP's proxy MIB counters
6179  *      @adap: the adapter
6180  *      @st: holds the counter values
6181  *
6182  *      Returns the values of TP's proxy counters.
6183  */
6184 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6185     bool sleep_ok)
6186 {
6187         int nchan = adap->chip_params->nchan;
6188
6189         t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6190 }
6191
6192 /**
6193  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
6194  *      @adap: the adapter
6195  *      @st: holds the counter values
6196  *      @sleep_ok: if true we may sleep while awaiting command completion
6197  *
6198  *      Returns the values of TP's CPL counters.
6199  */
6200 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6201                          bool sleep_ok)
6202 {
6203         int nchan = adap->chip_params->nchan;
6204
6205         t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6206
6207         t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6208 }
6209
6210 /**
6211  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6212  *      @adap: the adapter
6213  *      @st: holds the counter values
6214  *
6215  *      Returns the values of TP's RDMA counters.
6216  */
6217 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6218                           bool sleep_ok)
6219 {
6220         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6221                        sleep_ok);
6222 }
6223
6224 /**
6225  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6226  *      @adap: the adapter
6227  *      @idx: the port index
6228  *      @st: holds the counter values
6229  *      @sleep_ok: if true we may sleep while awaiting command completion
6230  *
6231  *      Returns the values of TP's FCoE counters for the selected port.
6232  */
6233 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6234                        struct tp_fcoe_stats *st, bool sleep_ok)
6235 {
6236         u32 val[2];
6237
6238         t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6239                        sleep_ok);
6240
6241         t4_tp_mib_read(adap, &st->frames_drop, 1,
6242                        A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6243
6244         t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6245                        sleep_ok);
6246
6247         st->octets_ddp = ((u64)val[0] << 32) | val[1];
6248 }
6249
6250 /**
6251  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6252  *      @adap: the adapter
6253  *      @st: holds the counter values
6254  *      @sleep_ok: if true we may sleep while awaiting command completion
6255  *
6256  *      Returns the values of TP's counters for non-TCP directly-placed packets.
6257  */
6258 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6259                       bool sleep_ok)
6260 {
6261         u32 val[4];
6262
6263         t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6264
6265         st->frames = val[0];
6266         st->drops = val[1];
6267         st->octets = ((u64)val[2] << 32) | val[3];
6268 }
6269
6270 /**
6271  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
6272  *      @adap: the adapter
6273  *      @mtus: where to store the MTU values
6274  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
6275  *
6276  *      Reads the HW path MTU table.
6277  */
6278 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6279 {
6280         u32 v;
6281         int i;
6282
6283         for (i = 0; i < NMTUS; ++i) {
6284                 t4_write_reg(adap, A_TP_MTU_TABLE,
6285                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
6286                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
6287                 mtus[i] = G_MTUVALUE(v);
6288                 if (mtu_log)
6289                         mtu_log[i] = G_MTUWIDTH(v);
6290         }
6291 }
6292
6293 /**
6294  *      t4_read_cong_tbl - reads the congestion control table
6295  *      @adap: the adapter
6296  *      @incr: where to store the alpha values
6297  *
6298  *      Reads the additive increments programmed into the HW congestion
6299  *      control table.
6300  */
6301 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6302 {
6303         unsigned int mtu, w;
6304
6305         for (mtu = 0; mtu < NMTUS; ++mtu)
6306                 for (w = 0; w < NCCTRL_WIN; ++w) {
6307                         t4_write_reg(adap, A_TP_CCTRL_TABLE,
6308                                      V_ROWINDEX(0xffff) | (mtu << 5) | w);
6309                         incr[mtu][w] = (u16)t4_read_reg(adap,
6310                                                 A_TP_CCTRL_TABLE) & 0x1fff;
6311                 }
6312 }
6313
6314 /**
6315  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6316  *      @adap: the adapter
6317  *      @addr: the indirect TP register address
6318  *      @mask: specifies the field within the register to modify
6319  *      @val: new value for the field
6320  *
6321  *      Sets a field of an indirect TP register to the given value.
6322  */
6323 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6324                             unsigned int mask, unsigned int val)
6325 {
6326         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6327         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6328         t4_write_reg(adap, A_TP_PIO_DATA, val);
6329 }
6330
6331 /**
6332  *      init_cong_ctrl - initialize congestion control parameters
6333  *      @a: the alpha values for congestion control
6334  *      @b: the beta values for congestion control
6335  *
6336  *      Initialize the congestion control parameters.
6337  */
6338 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6339 {
6340         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6341         a[9] = 2;
6342         a[10] = 3;
6343         a[11] = 4;
6344         a[12] = 5;
6345         a[13] = 6;
6346         a[14] = 7;
6347         a[15] = 8;
6348         a[16] = 9;
6349         a[17] = 10;
6350         a[18] = 14;
6351         a[19] = 17;
6352         a[20] = 21;
6353         a[21] = 25;
6354         a[22] = 30;
6355         a[23] = 35;
6356         a[24] = 45;
6357         a[25] = 60;
6358         a[26] = 80;
6359         a[27] = 100;
6360         a[28] = 200;
6361         a[29] = 300;
6362         a[30] = 400;
6363         a[31] = 500;
6364
6365         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6366         b[9] = b[10] = 1;
6367         b[11] = b[12] = 2;
6368         b[13] = b[14] = b[15] = b[16] = 3;
6369         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6370         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6371         b[28] = b[29] = 6;
6372         b[30] = b[31] = 7;
6373 }
6374
6375 /* The minimum additive increment value for the congestion control table */
6376 #define CC_MIN_INCR 2U
6377
6378 /**
6379  *      t4_load_mtus - write the MTU and congestion control HW tables
6380  *      @adap: the adapter
6381  *      @mtus: the values for the MTU table
6382  *      @alpha: the values for the congestion control alpha parameter
6383  *      @beta: the values for the congestion control beta parameter
6384  *
6385  *      Write the HW MTU table with the supplied MTUs and the high-speed
6386  *      congestion control table with the supplied alpha, beta, and MTUs.
6387  *      We write the two tables together because the additive increments
6388  *      depend on the MTUs.
6389  */
6390 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6391                   const unsigned short *alpha, const unsigned short *beta)
6392 {
6393         static const unsigned int avg_pkts[NCCTRL_WIN] = {
6394                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6395                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6396                 28672, 40960, 57344, 81920, 114688, 163840, 229376
6397         };
6398
6399         unsigned int i, w;
6400
6401         for (i = 0; i < NMTUS; ++i) {
6402                 unsigned int mtu = mtus[i];
6403                 unsigned int log2 = fls(mtu);
6404
6405                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
6406                         log2--;
6407                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6408                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6409
6410                 for (w = 0; w < NCCTRL_WIN; ++w) {
6411                         unsigned int inc;
6412
6413                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6414                                   CC_MIN_INCR);
6415
6416                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6417                                      (w << 16) | (beta[w] << 13) | inc);
6418                 }
6419         }
6420 }
6421
6422 /**
6423  *      t4_set_pace_tbl - set the pace table
6424  *      @adap: the adapter
6425  *      @pace_vals: the pace values in microseconds
6426  *      @start: index of the first entry in the HW pace table to set
6427  *      @n: how many entries to set
6428  *
6429  *      Sets (a subset of the) HW pace table.
6430  */
6431 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6432                      unsigned int start, unsigned int n)
6433 {
6434         unsigned int vals[NTX_SCHED], i;
6435         unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6436
6437         if (n > NTX_SCHED)
6438             return -ERANGE;
6439
6440         /* convert values from us to dack ticks, rounding to closest value */
6441         for (i = 0; i < n; i++, pace_vals++) {
6442                 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6443                 if (vals[i] > 0x7ff)
6444                         return -ERANGE;
6445                 if (*pace_vals && vals[i] == 0)
6446                         return -ERANGE;
6447         }
6448         for (i = 0; i < n; i++, start++)
6449                 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6450         return 0;
6451 }
6452
6453 /**
6454  *      t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6455  *      @adap: the adapter
6456  *      @kbps: target rate in Kbps
6457  *      @sched: the scheduler index
6458  *
6459  *      Configure a Tx HW scheduler for the target rate.
6460  */
6461 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6462 {
6463         unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6464         unsigned int clk = adap->params.vpd.cclk * 1000;
6465         unsigned int selected_cpt = 0, selected_bpt = 0;
6466
6467         if (kbps > 0) {
6468                 kbps *= 125;     /* -> bytes */
6469                 for (cpt = 1; cpt <= 255; cpt++) {
6470                         tps = clk / cpt;
6471                         bpt = (kbps + tps / 2) / tps;
6472                         if (bpt > 0 && bpt <= 255) {
6473                                 v = bpt * tps;
6474                                 delta = v >= kbps ? v - kbps : kbps - v;
6475                                 if (delta < mindelta) {
6476                                         mindelta = delta;
6477                                         selected_cpt = cpt;
6478                                         selected_bpt = bpt;
6479                                 }
6480                         } else if (selected_cpt)
6481                                 break;
6482                 }
6483                 if (!selected_cpt)
6484                         return -EINVAL;
6485         }
6486         t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6487                      A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6488         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6489         if (sched & 1)
6490                 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6491         else
6492                 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6493         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6494         return 0;
6495 }
6496
6497 /**
6498  *      t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6499  *      @adap: the adapter
6500  *      @sched: the scheduler index
6501  *      @ipg: the interpacket delay in tenths of nanoseconds
6502  *
6503  *      Set the interpacket delay for a HW packet rate scheduler.
6504  */
6505 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6506 {
6507         unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6508
6509         /* convert ipg to nearest number of core clocks */
6510         ipg *= core_ticks_per_usec(adap);
6511         ipg = (ipg + 5000) / 10000;
6512         if (ipg > M_TXTIMERSEPQ0)
6513                 return -EINVAL;
6514
6515         t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6516         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6517         if (sched & 1)
6518                 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6519         else
6520                 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6521         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6522         t4_read_reg(adap, A_TP_TM_PIO_DATA);
6523         return 0;
6524 }
6525
6526 /*
6527  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6528  * clocks.  The formula is
6529  *
6530  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6531  *
6532  * which is equivalent to
6533  *
6534  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6535  */
6536 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6537 {
6538         u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6539
6540         return v * 62 + v / 2;
6541 }
6542
6543 /**
6544  *      t4_get_chan_txrate - get the current per channel Tx rates
6545  *      @adap: the adapter
6546  *      @nic_rate: rates for NIC traffic
6547  *      @ofld_rate: rates for offloaded traffic
6548  *
6549  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
6550  *      for each channel.
6551  */
6552 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6553 {
6554         u32 v;
6555
6556         v = t4_read_reg(adap, A_TP_TX_TRATE);
6557         nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6558         nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6559         if (adap->chip_params->nchan > 2) {
6560                 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6561                 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6562         }
6563
6564         v = t4_read_reg(adap, A_TP_TX_ORATE);
6565         ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6566         ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6567         if (adap->chip_params->nchan > 2) {
6568                 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6569                 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6570         }
6571 }
6572
6573 /**
6574  *      t4_set_trace_filter - configure one of the tracing filters
6575  *      @adap: the adapter
6576  *      @tp: the desired trace filter parameters
6577  *      @idx: which filter to configure
6578  *      @enable: whether to enable or disable the filter
6579  *
6580  *      Configures one of the tracing filters available in HW.  If @tp is %NULL
6581  *      it indicates that the filter is already written in the register and it
6582  *      just needs to be enabled or disabled.
6583  */
6584 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6585     int idx, int enable)
6586 {
6587         int i, ofst = idx * 4;
6588         u32 data_reg, mask_reg, cfg;
6589         u32 multitrc = F_TRCMULTIFILTER;
6590         u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6591
6592         if (idx < 0 || idx >= NTRACE)
6593                 return -EINVAL;
6594
6595         if (tp == NULL || !enable) {
6596                 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6597                     enable ? en : 0);
6598                 return 0;
6599         }
6600
6601         /*
6602          * TODO - After T4 data book is updated, specify the exact
6603          * section below.
6604          *
6605          * See T4 data book - MPS section for a complete description
6606          * of the below if..else handling of A_MPS_TRC_CFG register
6607          * value.
6608          */
6609         cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6610         if (cfg & F_TRCMULTIFILTER) {
6611                 /*
6612                  * If multiple tracers are enabled, then maximum
6613                  * capture size is 2.5KB (FIFO size of a single channel)
6614                  * minus 2 flits for CPL_TRACE_PKT header.
6615                  */
6616                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6617                         return -EINVAL;
6618         } else {
6619                 /*
6620                  * If multiple tracers are disabled, to avoid deadlocks
6621                  * maximum packet capture size of 9600 bytes is recommended.
6622                  * Also in this mode, only trace0 can be enabled and running.
6623                  */
6624                 multitrc = 0;
6625                 if (tp->snap_len > 9600 || idx)
6626                         return -EINVAL;
6627         }
6628
6629         if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6630             tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6631             tp->min_len > M_TFMINPKTSIZE)
6632                 return -EINVAL;
6633
6634         /* stop the tracer we'll be changing */
6635         t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6636
6637         idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6638         data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6639         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6640
6641         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6642                 t4_write_reg(adap, data_reg, tp->data[i]);
6643                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6644         }
6645         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6646                      V_TFCAPTUREMAX(tp->snap_len) |
6647                      V_TFMINPKTSIZE(tp->min_len));
6648         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6649                      V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6650                      (is_t4(adap) ?
6651                      V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6652                      V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6653
6654         return 0;
6655 }
6656
6657 /**
6658  *      t4_get_trace_filter - query one of the tracing filters
6659  *      @adap: the adapter
6660  *      @tp: the current trace filter parameters
6661  *      @idx: which trace filter to query
6662  *      @enabled: non-zero if the filter is enabled
6663  *
6664  *      Returns the current settings of one of the HW tracing filters.
6665  */
6666 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6667                          int *enabled)
6668 {
6669         u32 ctla, ctlb;
6670         int i, ofst = idx * 4;
6671         u32 data_reg, mask_reg;
6672
6673         ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6674         ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6675
6676         if (is_t4(adap)) {
6677                 *enabled = !!(ctla & F_TFEN);
6678                 tp->port =  G_TFPORT(ctla);
6679                 tp->invert = !!(ctla & F_TFINVERTMATCH);
6680         } else {
6681                 *enabled = !!(ctla & F_T5_TFEN);
6682                 tp->port = G_T5_TFPORT(ctla);
6683                 tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6684         }
6685         tp->snap_len = G_TFCAPTUREMAX(ctlb);
6686         tp->min_len = G_TFMINPKTSIZE(ctlb);
6687         tp->skip_ofst = G_TFOFFSET(ctla);
6688         tp->skip_len = G_TFLENGTH(ctla);
6689
6690         ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6691         data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6692         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6693
6694         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6695                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6696                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6697         }
6698 }
6699
6700 /**
6701  *      t4_pmtx_get_stats - returns the HW stats from PMTX
6702  *      @adap: the adapter
6703  *      @cnt: where to store the count statistics
6704  *      @cycles: where to store the cycle statistics
6705  *
6706  *      Returns performance statistics from PMTX.
6707  */
6708 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6709 {
6710         int i;
6711         u32 data[2];
6712
6713         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6714                 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6715                 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6716                 if (is_t4(adap))
6717                         cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6718                 else {
6719                         t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6720                                          A_PM_TX_DBG_DATA, data, 2,
6721                                          A_PM_TX_DBG_STAT_MSB);
6722                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6723                 }
6724         }
6725 }
6726
6727 /**
6728  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6729  *      @adap: the adapter
6730  *      @cnt: where to store the count statistics
6731  *      @cycles: where to store the cycle statistics
6732  *
6733  *      Returns performance statistics from PMRX.
6734  */
6735 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6736 {
6737         int i;
6738         u32 data[2];
6739
6740         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6741                 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6742                 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6743                 if (is_t4(adap)) {
6744                         cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6745                 } else {
6746                         t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6747                                          A_PM_RX_DBG_DATA, data, 2,
6748                                          A_PM_RX_DBG_STAT_MSB);
6749                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6750                 }
6751         }
6752 }
6753
6754 /**
6755  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6756  *      @adap: the adapter
6757  *      @idx: the port index
6758  *
6759  *      Returns a bitmap indicating which MPS buffer groups are associated
6760  *      with the given port.  Bit i is set if buffer group i is used by the
6761  *      port.
6762  */
6763 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6764 {
6765         u32 n;
6766
6767         if (adap->params.mps_bg_map)
6768                 return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6769
6770         n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6771         if (n == 0)
6772                 return idx == 0 ? 0xf : 0;
6773         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6774                 return idx < 2 ? (3 << (2 * idx)) : 0;
6775         return 1 << idx;
6776 }
6777
6778 /*
6779  * TP RX e-channels associated with the port.
6780  */
6781 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6782 {
6783         u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6784         const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6785
6786         if (n == 0)
6787                 return idx == 0 ? all_chan : 0;
6788         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6789                 return idx < 2 ? (3 << (2 * idx)) : 0;
6790         return 1 << idx;
6791 }
6792
6793 /**
6794  *      t4_get_port_type_description - return Port Type string description
6795  *      @port_type: firmware Port Type enumeration
6796  */
6797 const char *t4_get_port_type_description(enum fw_port_type port_type)
6798 {
6799         static const char *const port_type_description[] = {
6800                 "Fiber_XFI",
6801                 "Fiber_XAUI",
6802                 "BT_SGMII",
6803                 "BT_XFI",
6804                 "BT_XAUI",
6805                 "KX4",
6806                 "CX4",
6807                 "KX",
6808                 "KR",
6809                 "SFP",
6810                 "BP_AP",
6811                 "BP4_AP",
6812                 "QSFP_10G",
6813                 "QSA",
6814                 "QSFP",
6815                 "BP40_BA",
6816                 "KR4_100G",
6817                 "CR4_QSFP",
6818                 "CR_QSFP",
6819                 "CR2_QSFP",
6820                 "SFP28",
6821                 "KR_SFP28",
6822         };
6823
6824         if (port_type < ARRAY_SIZE(port_type_description))
6825                 return port_type_description[port_type];
6826         return "UNKNOWN";
6827 }
6828
6829 /**
6830  *      t4_get_port_stats_offset - collect port stats relative to a previous
6831  *                                 snapshot
6832  *      @adap: The adapter
6833  *      @idx: The port
6834  *      @stats: Current stats to fill
6835  *      @offset: Previous stats snapshot
6836  */
6837 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6838                 struct port_stats *stats,
6839                 struct port_stats *offset)
6840 {
6841         u64 *s, *o;
6842         int i;
6843
6844         t4_get_port_stats(adap, idx, stats);
6845         for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6846                         i < (sizeof(struct port_stats)/sizeof(u64)) ;
6847                         i++, s++, o++)
6848                 *s -= *o;
6849 }
6850
6851 /**
6852  *      t4_get_port_stats - collect port statistics
6853  *      @adap: the adapter
6854  *      @idx: the port index
6855  *      @p: the stats structure to fill
6856  *
6857  *      Collect statistics related to the given port from HW.
6858  */
6859 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6860 {
6861         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6862         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6863
6864 #define GET_STAT(name) \
6865         t4_read_reg64(adap, \
6866         (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6867         T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6868 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6869
6870         p->tx_pause             = GET_STAT(TX_PORT_PAUSE);
6871         p->tx_octets            = GET_STAT(TX_PORT_BYTES);
6872         p->tx_frames            = GET_STAT(TX_PORT_FRAMES);
6873         p->tx_bcast_frames      = GET_STAT(TX_PORT_BCAST);
6874         p->tx_mcast_frames      = GET_STAT(TX_PORT_MCAST);
6875         p->tx_ucast_frames      = GET_STAT(TX_PORT_UCAST);
6876         p->tx_error_frames      = GET_STAT(TX_PORT_ERROR);
6877         p->tx_frames_64         = GET_STAT(TX_PORT_64B);
6878         p->tx_frames_65_127     = GET_STAT(TX_PORT_65B_127B);
6879         p->tx_frames_128_255    = GET_STAT(TX_PORT_128B_255B);
6880         p->tx_frames_256_511    = GET_STAT(TX_PORT_256B_511B);
6881         p->tx_frames_512_1023   = GET_STAT(TX_PORT_512B_1023B);
6882         p->tx_frames_1024_1518  = GET_STAT(TX_PORT_1024B_1518B);
6883         p->tx_frames_1519_max   = GET_STAT(TX_PORT_1519B_MAX);
6884         p->tx_drop              = GET_STAT(TX_PORT_DROP);
6885         p->tx_ppp0              = GET_STAT(TX_PORT_PPP0);
6886         p->tx_ppp1              = GET_STAT(TX_PORT_PPP1);
6887         p->tx_ppp2              = GET_STAT(TX_PORT_PPP2);
6888         p->tx_ppp3              = GET_STAT(TX_PORT_PPP3);
6889         p->tx_ppp4              = GET_STAT(TX_PORT_PPP4);
6890         p->tx_ppp5              = GET_STAT(TX_PORT_PPP5);
6891         p->tx_ppp6              = GET_STAT(TX_PORT_PPP6);
6892         p->tx_ppp7              = GET_STAT(TX_PORT_PPP7);
6893
6894         if (chip_id(adap) >= CHELSIO_T5) {
6895                 if (stat_ctl & F_COUNTPAUSESTATTX) {
6896                         p->tx_frames -= p->tx_pause;
6897                         p->tx_octets -= p->tx_pause * 64;
6898                 }
6899                 if (stat_ctl & F_COUNTPAUSEMCTX)
6900                         p->tx_mcast_frames -= p->tx_pause;
6901         }
6902
6903         p->rx_pause             = GET_STAT(RX_PORT_PAUSE);
6904         p->rx_octets            = GET_STAT(RX_PORT_BYTES);
6905         p->rx_frames            = GET_STAT(RX_PORT_FRAMES);
6906         p->rx_bcast_frames      = GET_STAT(RX_PORT_BCAST);
6907         p->rx_mcast_frames      = GET_STAT(RX_PORT_MCAST);
6908         p->rx_ucast_frames      = GET_STAT(RX_PORT_UCAST);
6909         p->rx_too_long          = GET_STAT(RX_PORT_MTU_ERROR);
6910         p->rx_jabber            = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6911         p->rx_fcs_err           = GET_STAT(RX_PORT_CRC_ERROR);
6912         p->rx_len_err           = GET_STAT(RX_PORT_LEN_ERROR);
6913         p->rx_symbol_err        = GET_STAT(RX_PORT_SYM_ERROR);
6914         p->rx_runt              = GET_STAT(RX_PORT_LESS_64B);
6915         p->rx_frames_64         = GET_STAT(RX_PORT_64B);
6916         p->rx_frames_65_127     = GET_STAT(RX_PORT_65B_127B);
6917         p->rx_frames_128_255    = GET_STAT(RX_PORT_128B_255B);
6918         p->rx_frames_256_511    = GET_STAT(RX_PORT_256B_511B);
6919         p->rx_frames_512_1023   = GET_STAT(RX_PORT_512B_1023B);
6920         p->rx_frames_1024_1518  = GET_STAT(RX_PORT_1024B_1518B);
6921         p->rx_frames_1519_max   = GET_STAT(RX_PORT_1519B_MAX);
6922         p->rx_ppp0              = GET_STAT(RX_PORT_PPP0);
6923         p->rx_ppp1              = GET_STAT(RX_PORT_PPP1);
6924         p->rx_ppp2              = GET_STAT(RX_PORT_PPP2);
6925         p->rx_ppp3              = GET_STAT(RX_PORT_PPP3);
6926         p->rx_ppp4              = GET_STAT(RX_PORT_PPP4);
6927         p->rx_ppp5              = GET_STAT(RX_PORT_PPP5);
6928         p->rx_ppp6              = GET_STAT(RX_PORT_PPP6);
6929         p->rx_ppp7              = GET_STAT(RX_PORT_PPP7);
6930
6931         if (chip_id(adap) >= CHELSIO_T5) {
6932                 if (stat_ctl & F_COUNTPAUSESTATRX) {
6933                         p->rx_frames -= p->rx_pause;
6934                         p->rx_octets -= p->rx_pause * 64;
6935                 }
6936                 if (stat_ctl & F_COUNTPAUSEMCRX)
6937                         p->rx_mcast_frames -= p->rx_pause;
6938         }
6939
6940         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6941         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6942         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6943         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6944         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6945         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6946         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6947         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6948
6949 #undef GET_STAT
6950 #undef GET_STAT_COM
6951 }
6952
6953 /**
6954  *      t4_get_lb_stats - collect loopback port statistics
6955  *      @adap: the adapter
6956  *      @idx: the loopback port index
6957  *      @p: the stats structure to fill
6958  *
6959  *      Return HW statistics for the given loopback port.
6960  */
6961 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6962 {
6963         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6964
6965 #define GET_STAT(name) \
6966         t4_read_reg64(adap, \
6967         (is_t4(adap) ? \
6968         PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6969         T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6970 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6971
6972         p->octets       = GET_STAT(BYTES);
6973         p->frames       = GET_STAT(FRAMES);
6974         p->bcast_frames = GET_STAT(BCAST);
6975         p->mcast_frames = GET_STAT(MCAST);
6976         p->ucast_frames = GET_STAT(UCAST);
6977         p->error_frames = GET_STAT(ERROR);
6978
6979         p->frames_64            = GET_STAT(64B);
6980         p->frames_65_127        = GET_STAT(65B_127B);
6981         p->frames_128_255       = GET_STAT(128B_255B);
6982         p->frames_256_511       = GET_STAT(256B_511B);
6983         p->frames_512_1023      = GET_STAT(512B_1023B);
6984         p->frames_1024_1518     = GET_STAT(1024B_1518B);
6985         p->frames_1519_max      = GET_STAT(1519B_MAX);
6986         p->drop                 = GET_STAT(DROP_FRAMES);
6987
6988         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6989         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6990         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6991         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6992         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6993         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6994         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6995         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6996
6997 #undef GET_STAT
6998 #undef GET_STAT_COM
6999 }
7000
7001 /**
7002  *      t4_wol_magic_enable - enable/disable magic packet WoL
7003  *      @adap: the adapter
7004  *      @port: the physical port index
7005  *      @addr: MAC address expected in magic packets, %NULL to disable
7006  *
7007  *      Enables/disables magic packet wake-on-LAN for the selected port.
7008  */
7009 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7010                          const u8 *addr)
7011 {
7012         u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7013
7014         if (is_t4(adap)) {
7015                 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7016                 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7017                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7018         } else {
7019                 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7020                 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7021                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7022         }
7023
7024         if (addr) {
7025                 t4_write_reg(adap, mag_id_reg_l,
7026                              (addr[2] << 24) | (addr[3] << 16) |
7027                              (addr[4] << 8) | addr[5]);
7028                 t4_write_reg(adap, mag_id_reg_h,
7029                              (addr[0] << 8) | addr[1]);
7030         }
7031         t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7032                          V_MAGICEN(addr != NULL));
7033 }
7034
7035 /**
7036  *      t4_wol_pat_enable - enable/disable pattern-based WoL
7037  *      @adap: the adapter
7038  *      @port: the physical port index
7039  *      @map: bitmap of which HW pattern filters to set
7040  *      @mask0: byte mask for bytes 0-63 of a packet
7041  *      @mask1: byte mask for bytes 64-127 of a packet
7042  *      @crc: Ethernet CRC for selected bytes
7043  *      @enable: enable/disable switch
7044  *
7045  *      Sets the pattern filters indicated in @map to mask out the bytes
7046  *      specified in @mask0/@mask1 in received packets and compare the CRC of
7047  *      the resulting packet against @crc.  If @enable is %true pattern-based
7048  *      WoL is enabled, otherwise disabled.
7049  */
7050 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7051                       u64 mask0, u64 mask1, unsigned int crc, bool enable)
7052 {
7053         int i;
7054         u32 port_cfg_reg;
7055
7056         if (is_t4(adap))
7057                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7058         else
7059                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7060
7061         if (!enable) {
7062                 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7063                 return 0;
7064         }
7065         if (map > 0xff)
7066                 return -EINVAL;
7067
7068 #define EPIO_REG(name) \
7069         (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7070         T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7071
7072         t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7073         t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7074         t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7075
7076         for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7077                 if (!(map & 1))
7078                         continue;
7079
7080                 /* write byte masks */
7081                 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7082                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7083                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7084                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7085                         return -ETIMEDOUT;
7086
7087                 /* write CRC */
7088                 t4_write_reg(adap, EPIO_REG(DATA0), crc);
7089                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7090                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7091                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7092                         return -ETIMEDOUT;
7093         }
7094 #undef EPIO_REG
7095
7096         t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7097         return 0;
7098 }
7099
7100 /*     t4_mk_filtdelwr - create a delete filter WR
7101  *     @ftid: the filter ID
7102  *     @wr: the filter work request to populate
7103  *     @qid: ingress queue to receive the delete notification
7104  *
7105  *     Creates a filter work request to delete the supplied filter.  If @qid is
7106  *     negative the delete notification is suppressed.
7107  */
7108 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7109 {
7110         memset(wr, 0, sizeof(*wr));
7111         wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7112         wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7113         wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7114                                     V_FW_FILTER_WR_NOREPLY(qid < 0));
7115         wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7116         if (qid >= 0)
7117                 wr->rx_chan_rx_rpl_iq =
7118                                 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7119 }
7120
7121 #define INIT_CMD(var, cmd, rd_wr) do { \
7122         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7123                                         F_FW_CMD_REQUEST | \
7124                                         F_FW_CMD_##rd_wr); \
7125         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7126 } while (0)
7127
7128 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7129                           u32 addr, u32 val)
7130 {
7131         u32 ldst_addrspace;
7132         struct fw_ldst_cmd c;
7133
7134         memset(&c, 0, sizeof(c));
7135         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7136         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7137                                         F_FW_CMD_REQUEST |
7138                                         F_FW_CMD_WRITE |
7139                                         ldst_addrspace);
7140         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7141         c.u.addrval.addr = cpu_to_be32(addr);
7142         c.u.addrval.val = cpu_to_be32(val);
7143
7144         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7145 }
7146
7147 /**
7148  *      t4_mdio_rd - read a PHY register through MDIO
7149  *      @adap: the adapter
7150  *      @mbox: mailbox to use for the FW command
7151  *      @phy_addr: the PHY address
7152  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
7153  *      @reg: the register to read
7154  *      @valp: where to store the value
7155  *
7156  *      Issues a FW command through the given mailbox to read a PHY register.
7157  */
7158 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7159                unsigned int mmd, unsigned int reg, unsigned int *valp)
7160 {
7161         int ret;
7162         u32 ldst_addrspace;
7163         struct fw_ldst_cmd c;
7164
7165         memset(&c, 0, sizeof(c));
7166         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7167         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7168                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
7169                                         ldst_addrspace);
7170         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7171         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7172                                          V_FW_LDST_CMD_MMD(mmd));
7173         c.u.mdio.raddr = cpu_to_be16(reg);
7174
7175         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7176         if (ret == 0)
7177                 *valp = be16_to_cpu(c.u.mdio.rval);
7178         return ret;
7179 }
7180
7181 /**
7182  *      t4_mdio_wr - write a PHY register through MDIO
7183  *      @adap: the adapter
7184  *      @mbox: mailbox to use for the FW command
7185  *      @phy_addr: the PHY address
7186  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
7187  *      @reg: the register to write
7188  *      @valp: value to write
7189  *
7190  *      Issues a FW command through the given mailbox to write a PHY register.
7191  */
7192 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7193                unsigned int mmd, unsigned int reg, unsigned int val)
7194 {
7195         u32 ldst_addrspace;
7196         struct fw_ldst_cmd c;
7197
7198         memset(&c, 0, sizeof(c));
7199         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7200         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7201                                         F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7202                                         ldst_addrspace);
7203         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7204         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7205                                          V_FW_LDST_CMD_MMD(mmd));
7206         c.u.mdio.raddr = cpu_to_be16(reg);
7207         c.u.mdio.rval = cpu_to_be16(val);
7208
7209         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7210 }
7211
7212 /**
7213  *
7214  *      t4_sge_decode_idma_state - decode the idma state
7215  *      @adap: the adapter
7216  *      @state: the state idma is stuck in
7217  */
7218 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7219 {
7220         static const char * const t4_decode[] = {
7221                 "IDMA_IDLE",
7222                 "IDMA_PUSH_MORE_CPL_FIFO",
7223                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7224                 "Not used",
7225                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7226                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7227                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7228                 "IDMA_SEND_FIFO_TO_IMSG",
7229                 "IDMA_FL_REQ_DATA_FL_PREP",
7230                 "IDMA_FL_REQ_DATA_FL",
7231                 "IDMA_FL_DROP",
7232                 "IDMA_FL_H_REQ_HEADER_FL",
7233                 "IDMA_FL_H_SEND_PCIEHDR",
7234                 "IDMA_FL_H_PUSH_CPL_FIFO",
7235                 "IDMA_FL_H_SEND_CPL",
7236                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7237                 "IDMA_FL_H_SEND_IP_HDR",
7238                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7239                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7240                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7241                 "IDMA_FL_D_SEND_PCIEHDR",
7242                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7243                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7244                 "IDMA_FL_SEND_PCIEHDR",
7245                 "IDMA_FL_PUSH_CPL_FIFO",
7246                 "IDMA_FL_SEND_CPL",
7247                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7248                 "IDMA_FL_SEND_PAYLOAD",
7249                 "IDMA_FL_REQ_NEXT_DATA_FL",
7250                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7251                 "IDMA_FL_SEND_PADDING",
7252                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7253                 "IDMA_FL_SEND_FIFO_TO_IMSG",
7254                 "IDMA_FL_REQ_DATAFL_DONE",
7255                 "IDMA_FL_REQ_HEADERFL_DONE",
7256         };
7257         static const char * const t5_decode[] = {
7258                 "IDMA_IDLE",
7259                 "IDMA_ALMOST_IDLE",
7260                 "IDMA_PUSH_MORE_CPL_FIFO",
7261                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7262                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7263                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7264                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7265                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7266                 "IDMA_SEND_FIFO_TO_IMSG",
7267                 "IDMA_FL_REQ_DATA_FL",
7268                 "IDMA_FL_DROP",
7269                 "IDMA_FL_DROP_SEND_INC",
7270                 "IDMA_FL_H_REQ_HEADER_FL",
7271                 "IDMA_FL_H_SEND_PCIEHDR",
7272                 "IDMA_FL_H_PUSH_CPL_FIFO",
7273                 "IDMA_FL_H_SEND_CPL",
7274                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7275                 "IDMA_FL_H_SEND_IP_HDR",
7276                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7277                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7278                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7279                 "IDMA_FL_D_SEND_PCIEHDR",
7280                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7281                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7282                 "IDMA_FL_SEND_PCIEHDR",
7283                 "IDMA_FL_PUSH_CPL_FIFO",
7284                 "IDMA_FL_SEND_CPL",
7285                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7286                 "IDMA_FL_SEND_PAYLOAD",
7287                 "IDMA_FL_REQ_NEXT_DATA_FL",
7288                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7289                 "IDMA_FL_SEND_PADDING",
7290                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7291         };
7292         static const char * const t6_decode[] = {
7293                 "IDMA_IDLE",
7294                 "IDMA_PUSH_MORE_CPL_FIFO",
7295                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7296                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7297                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7298                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7299                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7300                 "IDMA_FL_REQ_DATA_FL",
7301                 "IDMA_FL_DROP",
7302                 "IDMA_FL_DROP_SEND_INC",
7303                 "IDMA_FL_H_REQ_HEADER_FL",
7304                 "IDMA_FL_H_SEND_PCIEHDR",
7305                 "IDMA_FL_H_PUSH_CPL_FIFO",
7306                 "IDMA_FL_H_SEND_CPL",
7307                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7308                 "IDMA_FL_H_SEND_IP_HDR",
7309                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7310                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7311                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7312                 "IDMA_FL_D_SEND_PCIEHDR",
7313                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7314                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7315                 "IDMA_FL_SEND_PCIEHDR",
7316                 "IDMA_FL_PUSH_CPL_FIFO",
7317                 "IDMA_FL_SEND_CPL",
7318                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7319                 "IDMA_FL_SEND_PAYLOAD",
7320                 "IDMA_FL_REQ_NEXT_DATA_FL",
7321                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7322                 "IDMA_FL_SEND_PADDING",
7323                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7324         };
7325         static const u32 sge_regs[] = {
7326                 A_SGE_DEBUG_DATA_LOW_INDEX_2,
7327                 A_SGE_DEBUG_DATA_LOW_INDEX_3,
7328                 A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7329         };
7330         const char * const *sge_idma_decode;
7331         int sge_idma_decode_nstates;
7332         int i;
7333         unsigned int chip_version = chip_id(adapter);
7334
7335         /* Select the right set of decode strings to dump depending on the
7336          * adapter chip type.
7337          */
7338         switch (chip_version) {
7339         case CHELSIO_T4:
7340                 sge_idma_decode = (const char * const *)t4_decode;
7341                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7342                 break;
7343
7344         case CHELSIO_T5:
7345                 sge_idma_decode = (const char * const *)t5_decode;
7346                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7347                 break;
7348
7349         case CHELSIO_T6:
7350                 sge_idma_decode = (const char * const *)t6_decode;
7351                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7352                 break;
7353
7354         default:
7355                 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version);
7356                 return;
7357         }
7358
7359         if (state < sge_idma_decode_nstates)
7360                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7361         else
7362                 CH_WARN(adapter, "idma state %d unknown\n", state);
7363
7364         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7365                 CH_WARN(adapter, "SGE register %#x value %#x\n",
7366                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7367 }
7368
7369 /**
7370  *      t4_sge_ctxt_flush - flush the SGE context cache
7371  *      @adap: the adapter
7372  *      @mbox: mailbox to use for the FW command
7373  *
7374  *      Issues a FW command through the given mailbox to flush the
7375  *      SGE context cache.
7376  */
7377 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
7378 {
7379         int ret;
7380         u32 ldst_addrspace;
7381         struct fw_ldst_cmd c;
7382
7383         memset(&c, 0, sizeof(c));
7384         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
7385         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7386                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
7387                                         ldst_addrspace);
7388         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7389         c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7390
7391         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7392         return ret;
7393 }
7394
7395 /**
7396  *      t4_fw_hello - establish communication with FW
7397  *      @adap: the adapter
7398  *      @mbox: mailbox to use for the FW command
7399  *      @evt_mbox: mailbox to receive async FW events
7400  *      @master: specifies the caller's willingness to be the device master
7401  *      @state: returns the current device state (if non-NULL)
7402  *
7403  *      Issues a command to establish communication with FW.  Returns either
7404  *      an error (negative integer) or the mailbox of the Master PF.
7405  */
7406 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7407                 enum dev_master master, enum dev_state *state)
7408 {
7409         int ret;
7410         struct fw_hello_cmd c;
7411         u32 v;
7412         unsigned int master_mbox;
7413         int retries = FW_CMD_HELLO_RETRIES;
7414
7415 retry:
7416         memset(&c, 0, sizeof(c));
7417         INIT_CMD(c, HELLO, WRITE);
7418         c.err_to_clearinit = cpu_to_be32(
7419                 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7420                 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7421                 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7422                                         mbox : M_FW_HELLO_CMD_MBMASTER) |
7423                 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7424                 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7425                 F_FW_HELLO_CMD_CLEARINIT);
7426
7427         /*
7428          * Issue the HELLO command to the firmware.  If it's not successful
7429          * but indicates that we got a "busy" or "timeout" condition, retry
7430          * the HELLO until we exhaust our retry limit.  If we do exceed our
7431          * retry limit, check to see if the firmware left us any error
7432          * information and report that if so ...
7433          */
7434         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7435         if (ret != FW_SUCCESS) {
7436                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7437                         goto retry;
7438                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7439                         t4_report_fw_error(adap);
7440                 return ret;
7441         }
7442
7443         v = be32_to_cpu(c.err_to_clearinit);
7444         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7445         if (state) {
7446                 if (v & F_FW_HELLO_CMD_ERR)
7447                         *state = DEV_STATE_ERR;
7448                 else if (v & F_FW_HELLO_CMD_INIT)
7449                         *state = DEV_STATE_INIT;
7450                 else
7451                         *state = DEV_STATE_UNINIT;
7452         }
7453
7454         /*
7455          * If we're not the Master PF then we need to wait around for the
7456          * Master PF Driver to finish setting up the adapter.
7457          *
7458          * Note that we also do this wait if we're a non-Master-capable PF and
7459          * there is no current Master PF; a Master PF may show up momentarily
7460          * and we wouldn't want to fail pointlessly.  (This can happen when an
7461          * OS loads lots of different drivers rapidly at the same time).  In
7462          * this case, the Master PF returned by the firmware will be
7463          * M_PCIE_FW_MASTER so the test below will work ...
7464          */
7465         if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7466             master_mbox != mbox) {
7467                 int waiting = FW_CMD_HELLO_TIMEOUT;
7468
7469                 /*
7470                  * Wait for the firmware to either indicate an error or
7471                  * initialized state.  If we see either of these we bail out
7472                  * and report the issue to the caller.  If we exhaust the
7473                  * "hello timeout" and we haven't exhausted our retries, try
7474                  * again.  Otherwise bail with a timeout error.
7475                  */
7476                 for (;;) {
7477                         u32 pcie_fw;
7478
7479                         msleep(50);
7480                         waiting -= 50;
7481
7482                         /*
7483                          * If neither Error nor Initialialized are indicated
7484                          * by the firmware keep waiting till we exhaust our
7485                          * timeout ... and then retry if we haven't exhausted
7486                          * our retries ...
7487                          */
7488                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7489                         if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7490                                 if (waiting <= 0) {
7491                                         if (retries-- > 0)
7492                                                 goto retry;
7493
7494                                         return -ETIMEDOUT;
7495                                 }
7496                                 continue;
7497                         }
7498
7499                         /*
7500                          * We either have an Error or Initialized condition
7501                          * report errors preferentially.
7502                          */
7503                         if (state) {
7504                                 if (pcie_fw & F_PCIE_FW_ERR)
7505                                         *state = DEV_STATE_ERR;
7506                                 else if (pcie_fw & F_PCIE_FW_INIT)
7507                                         *state = DEV_STATE_INIT;
7508                         }
7509
7510                         /*
7511                          * If we arrived before a Master PF was selected and
7512                          * there's not a valid Master PF, grab its identity
7513                          * for our caller.
7514                          */
7515                         if (master_mbox == M_PCIE_FW_MASTER &&
7516                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
7517                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7518                         break;
7519                 }
7520         }
7521
7522         return master_mbox;
7523 }
7524
7525 /**
7526  *      t4_fw_bye - end communication with FW
7527  *      @adap: the adapter
7528  *      @mbox: mailbox to use for the FW command
7529  *
7530  *      Issues a command to terminate communication with FW.
7531  */
7532 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7533 {
7534         struct fw_bye_cmd c;
7535
7536         memset(&c, 0, sizeof(c));
7537         INIT_CMD(c, BYE, WRITE);
7538         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7539 }
7540
7541 /**
7542  *      t4_fw_reset - issue a reset to FW
7543  *      @adap: the adapter
7544  *      @mbox: mailbox to use for the FW command
7545  *      @reset: specifies the type of reset to perform
7546  *
7547  *      Issues a reset command of the specified type to FW.
7548  */
7549 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7550 {
7551         struct fw_reset_cmd c;
7552
7553         memset(&c, 0, sizeof(c));
7554         INIT_CMD(c, RESET, WRITE);
7555         c.val = cpu_to_be32(reset);
7556         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7557 }
7558
7559 /**
7560  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7561  *      @adap: the adapter
7562  *      @mbox: mailbox to use for the FW RESET command (if desired)
7563  *      @force: force uP into RESET even if FW RESET command fails
7564  *
7565  *      Issues a RESET command to firmware (if desired) with a HALT indication
7566  *      and then puts the microprocessor into RESET state.  The RESET command
7567  *      will only be issued if a legitimate mailbox is provided (mbox <=
7568  *      M_PCIE_FW_MASTER).
7569  *
7570  *      This is generally used in order for the host to safely manipulate the
7571  *      adapter without fear of conflicting with whatever the firmware might
7572  *      be doing.  The only way out of this state is to RESTART the firmware
7573  *      ...
7574  */
7575 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7576 {
7577         int ret = 0;
7578
7579         /*
7580          * If a legitimate mailbox is provided, issue a RESET command
7581          * with a HALT indication.
7582          */
7583         if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7584                 struct fw_reset_cmd c;
7585
7586                 memset(&c, 0, sizeof(c));
7587                 INIT_CMD(c, RESET, WRITE);
7588                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7589                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7590                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7591         }
7592
7593         /*
7594          * Normally we won't complete the operation if the firmware RESET
7595          * command fails but if our caller insists we'll go ahead and put the
7596          * uP into RESET.  This can be useful if the firmware is hung or even
7597          * missing ...  We'll have to take the risk of putting the uP into
7598          * RESET without the cooperation of firmware in that case.
7599          *
7600          * We also force the firmware's HALT flag to be on in case we bypassed
7601          * the firmware RESET command above or we're dealing with old firmware
7602          * which doesn't have the HALT capability.  This will serve as a flag
7603          * for the incoming firmware to know that it's coming out of a HALT
7604          * rather than a RESET ... if it's new enough to understand that ...
7605          */
7606         if (ret == 0 || force) {
7607                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7608                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7609                                  F_PCIE_FW_HALT);
7610         }
7611
7612         /*
7613          * And we always return the result of the firmware RESET command
7614          * even when we force the uP into RESET ...
7615          */
7616         return ret;
7617 }
7618
7619 /**
7620  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7621  *      @adap: the adapter
7622  *
7623  *      Restart firmware previously halted by t4_fw_halt().  On successful
7624  *      return the previous PF Master remains as the new PF Master and there
7625  *      is no need to issue a new HELLO command, etc.
7626  */
7627 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7628 {
7629         int ms;
7630
7631         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7632         for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7633                 if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7634                         return FW_SUCCESS;
7635                 msleep(100);
7636                 ms += 100;
7637         }
7638
7639         return -ETIMEDOUT;
7640 }
7641
7642 /**
7643  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7644  *      @adap: the adapter
7645  *      @mbox: mailbox to use for the FW RESET command (if desired)
7646  *      @fw_data: the firmware image to write
7647  *      @size: image size
7648  *      @force: force upgrade even if firmware doesn't cooperate
7649  *
7650  *      Perform all of the steps necessary for upgrading an adapter's
7651  *      firmware image.  Normally this requires the cooperation of the
7652  *      existing firmware in order to halt all existing activities
7653  *      but if an invalid mailbox token is passed in we skip that step
7654  *      (though we'll still put the adapter microprocessor into RESET in
7655  *      that case).
7656  *
7657  *      On successful return the new firmware will have been loaded and
7658  *      the adapter will have been fully RESET losing all previous setup
7659  *      state.  On unsuccessful return the adapter may be completely hosed ...
7660  *      positive errno indicates that the adapter is ~probably~ intact, a
7661  *      negative errno indicates that things are looking bad ...
7662  */
7663 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7664                   const u8 *fw_data, unsigned int size, int force)
7665 {
7666         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7667         unsigned int bootstrap =
7668             be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7669         int ret;
7670
7671         if (!t4_fw_matches_chip(adap, fw_hdr))
7672                 return -EINVAL;
7673
7674         if (!bootstrap) {
7675                 ret = t4_fw_halt(adap, mbox, force);
7676                 if (ret < 0 && !force)
7677                         return ret;
7678         }
7679
7680         ret = t4_load_fw(adap, fw_data, size);
7681         if (ret < 0 || bootstrap)
7682                 return ret;
7683
7684         return t4_fw_restart(adap, mbox);
7685 }
7686
7687 /**
7688  *      t4_fw_initialize - ask FW to initialize the device
7689  *      @adap: the adapter
7690  *      @mbox: mailbox to use for the FW command
7691  *
7692  *      Issues a command to FW to partially initialize the device.  This
7693  *      performs initialization that generally doesn't depend on user input.
7694  */
7695 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7696 {
7697         struct fw_initialize_cmd c;
7698
7699         memset(&c, 0, sizeof(c));
7700         INIT_CMD(c, INITIALIZE, WRITE);
7701         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7702 }
7703
7704 /**
7705  *      t4_query_params_rw - query FW or device parameters
7706  *      @adap: the adapter
7707  *      @mbox: mailbox to use for the FW command
7708  *      @pf: the PF
7709  *      @vf: the VF
7710  *      @nparams: the number of parameters
7711  *      @params: the parameter names
7712  *      @val: the parameter values
7713  *      @rw: Write and read flag
7714  *
7715  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7716  *      queried at once.
7717  */
7718 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7719                        unsigned int vf, unsigned int nparams, const u32 *params,
7720                        u32 *val, int rw)
7721 {
7722         int i, ret;
7723         struct fw_params_cmd c;
7724         __be32 *p = &c.param[0].mnem;
7725
7726         if (nparams > 7)
7727                 return -EINVAL;
7728
7729         memset(&c, 0, sizeof(c));
7730         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7731                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
7732                                   V_FW_PARAMS_CMD_PFN(pf) |
7733                                   V_FW_PARAMS_CMD_VFN(vf));
7734         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7735
7736         for (i = 0; i < nparams; i++) {
7737                 *p++ = cpu_to_be32(*params++);
7738                 if (rw)
7739                         *p = cpu_to_be32(*(val + i));
7740                 p++;
7741         }
7742
7743         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7744         if (ret == 0)
7745                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7746                         *val++ = be32_to_cpu(*p);
7747         return ret;
7748 }
7749
7750 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7751                     unsigned int vf, unsigned int nparams, const u32 *params,
7752                     u32 *val)
7753 {
7754         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7755 }
7756
7757 /**
7758  *      t4_set_params_timeout - sets FW or device parameters
7759  *      @adap: the adapter
7760  *      @mbox: mailbox to use for the FW command
7761  *      @pf: the PF
7762  *      @vf: the VF
7763  *      @nparams: the number of parameters
7764  *      @params: the parameter names
7765  *      @val: the parameter values
7766  *      @timeout: the timeout time
7767  *
7768  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7769  *      specified at once.
7770  */
7771 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7772                           unsigned int pf, unsigned int vf,
7773                           unsigned int nparams, const u32 *params,
7774                           const u32 *val, int timeout)
7775 {
7776         struct fw_params_cmd c;
7777         __be32 *p = &c.param[0].mnem;
7778
7779         if (nparams > 7)
7780                 return -EINVAL;
7781
7782         memset(&c, 0, sizeof(c));
7783         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7784                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7785                                   V_FW_PARAMS_CMD_PFN(pf) |
7786                                   V_FW_PARAMS_CMD_VFN(vf));
7787         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7788
7789         while (nparams--) {
7790                 *p++ = cpu_to_be32(*params++);
7791                 *p++ = cpu_to_be32(*val++);
7792         }
7793
7794         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7795 }
7796
7797 /**
7798  *      t4_set_params - sets FW or device parameters
7799  *      @adap: the adapter
7800  *      @mbox: mailbox to use for the FW command
7801  *      @pf: the PF
7802  *      @vf: the VF
7803  *      @nparams: the number of parameters
7804  *      @params: the parameter names
7805  *      @val: the parameter values
7806  *
7807  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7808  *      specified at once.
7809  */
7810 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7811                   unsigned int vf, unsigned int nparams, const u32 *params,
7812                   const u32 *val)
7813 {
7814         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7815                                      FW_CMD_MAX_TIMEOUT);
7816 }
7817
7818 /**
7819  *      t4_cfg_pfvf - configure PF/VF resource limits
7820  *      @adap: the adapter
7821  *      @mbox: mailbox to use for the FW command
7822  *      @pf: the PF being configured
7823  *      @vf: the VF being configured
7824  *      @txq: the max number of egress queues
7825  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7826  *      @rxqi: the max number of interrupt-capable ingress queues
7827  *      @rxq: the max number of interruptless ingress queues
7828  *      @tc: the PCI traffic class
7829  *      @vi: the max number of virtual interfaces
7830  *      @cmask: the channel access rights mask for the PF/VF
7831  *      @pmask: the port access rights mask for the PF/VF
7832  *      @nexact: the maximum number of exact MPS filters
7833  *      @rcaps: read capabilities
7834  *      @wxcaps: write/execute capabilities
7835  *
7836  *      Configures resource limits and capabilities for a physical or virtual
7837  *      function.
7838  */
7839 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7840                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7841                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7842                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7843                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7844 {
7845         struct fw_pfvf_cmd c;
7846
7847         memset(&c, 0, sizeof(c));
7848         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7849                                   F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7850                                   V_FW_PFVF_CMD_VFN(vf));
7851         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7852         c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7853                                      V_FW_PFVF_CMD_NIQ(rxq));
7854         c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7855                                     V_FW_PFVF_CMD_PMASK(pmask) |
7856                                     V_FW_PFVF_CMD_NEQ(txq));
7857         c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7858                                       V_FW_PFVF_CMD_NVI(vi) |
7859                                       V_FW_PFVF_CMD_NEXACTF(nexact));
7860         c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7861                                      V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7862                                      V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7863         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7864 }
7865
7866 /**
7867  *      t4_alloc_vi_func - allocate a virtual interface
7868  *      @adap: the adapter
7869  *      @mbox: mailbox to use for the FW command
7870  *      @port: physical port associated with the VI
7871  *      @pf: the PF owning the VI
7872  *      @vf: the VF owning the VI
7873  *      @nmac: number of MAC addresses needed (1 to 5)
7874  *      @mac: the MAC addresses of the VI
7875  *      @rss_size: size of RSS table slice associated with this VI
7876  *      @portfunc: which Port Application Function MAC Address is desired
7877  *      @idstype: Intrusion Detection Type
7878  *
7879  *      Allocates a virtual interface for the given physical port.  If @mac is
7880  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7881  *      If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7882  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7883  *      stored consecutively so the space needed is @nmac * 6 bytes.
7884  *      Returns a negative error number or the non-negative VI id.
7885  */
7886 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7887                      unsigned int port, unsigned int pf, unsigned int vf,
7888                      unsigned int nmac, u8 *mac, u16 *rss_size,
7889                      uint8_t *vfvld, uint16_t *vin,
7890                      unsigned int portfunc, unsigned int idstype)
7891 {
7892         int ret;
7893         struct fw_vi_cmd c;
7894
7895         memset(&c, 0, sizeof(c));
7896         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7897                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7898                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7899         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7900         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7901                                      V_FW_VI_CMD_FUNC(portfunc));
7902         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7903         c.nmac = nmac - 1;
7904         if(!rss_size)
7905                 c.norss_rsssize = F_FW_VI_CMD_NORSS;
7906
7907         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7908         if (ret)
7909                 return ret;
7910         ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7911
7912         if (mac) {
7913                 memcpy(mac, c.mac, sizeof(c.mac));
7914                 switch (nmac) {
7915                 case 5:
7916                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7917                 case 4:
7918                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7919                 case 3:
7920                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7921                 case 2:
7922                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7923                 }
7924         }
7925         if (rss_size)
7926                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7927         if (vfvld) {
7928                 *vfvld = adap->params.viid_smt_extn_support ?
7929                     G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
7930                     G_FW_VIID_VIVLD(ret);
7931         }
7932         if (vin) {
7933                 *vin = adap->params.viid_smt_extn_support ?
7934                     G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
7935                     G_FW_VIID_VIN(ret);
7936         }
7937
7938         return ret;
7939 }
7940
7941 /**
7942  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7943  *      @adap: the adapter
7944  *      @mbox: mailbox to use for the FW command
7945  *      @port: physical port associated with the VI
7946  *      @pf: the PF owning the VI
7947  *      @vf: the VF owning the VI
7948  *      @nmac: number of MAC addresses needed (1 to 5)
7949  *      @mac: the MAC addresses of the VI
7950  *      @rss_size: size of RSS table slice associated with this VI
7951  *
7952  *      backwards compatible and convieniance routine to allocate a Virtual
7953  *      Interface with a Ethernet Port Application Function and Intrustion
7954  *      Detection System disabled.
7955  */
7956 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7957                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7958                 u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
7959 {
7960         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7961                                 vfvld, vin, FW_VI_FUNC_ETH, 0);
7962 }
7963
7964 /**
7965  *      t4_free_vi - free a virtual interface
7966  *      @adap: the adapter
7967  *      @mbox: mailbox to use for the FW command
7968  *      @pf: the PF owning the VI
7969  *      @vf: the VF owning the VI
7970  *      @viid: virtual interface identifiler
7971  *
7972  *      Free a previously allocated virtual interface.
7973  */
7974 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7975                unsigned int vf, unsigned int viid)
7976 {
7977         struct fw_vi_cmd c;
7978
7979         memset(&c, 0, sizeof(c));
7980         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7981                                   F_FW_CMD_REQUEST |
7982                                   F_FW_CMD_EXEC |
7983                                   V_FW_VI_CMD_PFN(pf) |
7984                                   V_FW_VI_CMD_VFN(vf));
7985         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7986         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7987
7988         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7989 }
7990
7991 /**
7992  *      t4_set_rxmode - set Rx properties of a virtual interface
7993  *      @adap: the adapter
7994  *      @mbox: mailbox to use for the FW command
7995  *      @viid: the VI id
7996  *      @mtu: the new MTU or -1
7997  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7998  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7999  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8000  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8001  *      @sleep_ok: if true we may sleep while awaiting command completion
8002  *
8003  *      Sets Rx properties of a virtual interface.
8004  */
8005 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8006                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
8007                   bool sleep_ok)
8008 {
8009         struct fw_vi_rxmode_cmd c;
8010
8011         /* convert to FW values */
8012         if (mtu < 0)
8013                 mtu = M_FW_VI_RXMODE_CMD_MTU;
8014         if (promisc < 0)
8015                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8016         if (all_multi < 0)
8017                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8018         if (bcast < 0)
8019                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8020         if (vlanex < 0)
8021                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8022
8023         memset(&c, 0, sizeof(c));
8024         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8025                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8026                                    V_FW_VI_RXMODE_CMD_VIID(viid));
8027         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8028         c.mtu_to_vlanexen =
8029                 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8030                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8031                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8032                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8033                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8034         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8035 }
8036
8037 /**
8038  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8039  *      @adap: the adapter
8040  *      @mbox: mailbox to use for the FW command
8041  *      @viid: the VI id
8042  *      @free: if true any existing filters for this VI id are first removed
8043  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
8044  *      @addr: the MAC address(es)
8045  *      @idx: where to store the index of each allocated filter
8046  *      @hash: pointer to hash address filter bitmap
8047  *      @sleep_ok: call is allowed to sleep
8048  *
8049  *      Allocates an exact-match filter for each of the supplied addresses and
8050  *      sets it to the corresponding address.  If @idx is not %NULL it should
8051  *      have at least @naddr entries, each of which will be set to the index of
8052  *      the filter allocated for the corresponding MAC address.  If a filter
8053  *      could not be allocated for an address its index is set to 0xffff.
8054  *      If @hash is not %NULL addresses that fail to allocate an exact filter
8055  *      are hashed and update the hash filter bitmap pointed at by @hash.
8056  *
8057  *      Returns a negative error number or the number of filters allocated.
8058  */
8059 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8060                       unsigned int viid, bool free, unsigned int naddr,
8061                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8062 {
8063         int offset, ret = 0;
8064         struct fw_vi_mac_cmd c;
8065         unsigned int nfilters = 0;
8066         unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8067         unsigned int rem = naddr;
8068
8069         if (naddr > max_naddr)
8070                 return -EINVAL;
8071
8072         for (offset = 0; offset < naddr ; /**/) {
8073                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8074                                          ? rem
8075                                          : ARRAY_SIZE(c.u.exact));
8076                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8077                                                      u.exact[fw_naddr]), 16);
8078                 struct fw_vi_mac_exact *p;
8079                 int i;
8080
8081                 memset(&c, 0, sizeof(c));
8082                 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8083                                            F_FW_CMD_REQUEST |
8084                                            F_FW_CMD_WRITE |
8085                                            V_FW_CMD_EXEC(free) |
8086                                            V_FW_VI_MAC_CMD_VIID(viid));
8087                 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8088                                                   V_FW_CMD_LEN16(len16));
8089
8090                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8091                         p->valid_to_idx =
8092                                 cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8093                                             V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8094                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8095                 }
8096
8097                 /*
8098                  * It's okay if we run out of space in our MAC address arena.
8099                  * Some of the addresses we submit may get stored so we need
8100                  * to run through the reply to see what the results were ...
8101                  */
8102                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8103                 if (ret && ret != -FW_ENOMEM)
8104                         break;
8105
8106                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8107                         u16 index = G_FW_VI_MAC_CMD_IDX(
8108                                                 be16_to_cpu(p->valid_to_idx));
8109
8110                         if (idx)
8111                                 idx[offset+i] = (index >=  max_naddr
8112                                                  ? 0xffff
8113                                                  : index);
8114                         if (index < max_naddr)
8115                                 nfilters++;
8116                         else if (hash)
8117                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8118                 }
8119
8120                 free = false;
8121                 offset += fw_naddr;
8122                 rem -= fw_naddr;
8123         }
8124
8125         if (ret == 0 || ret == -FW_ENOMEM)
8126                 ret = nfilters;
8127         return ret;
8128 }
8129
8130 /**
8131  *      t4_change_mac - modifies the exact-match filter for a MAC address
8132  *      @adap: the adapter
8133  *      @mbox: mailbox to use for the FW command
8134  *      @viid: the VI id
8135  *      @idx: index of existing filter for old value of MAC address, or -1
8136  *      @addr: the new MAC address value
8137  *      @persist: whether a new MAC allocation should be persistent
8138  *      @smt_idx: add MAC to SMT and return its index, or NULL
8139  *
8140  *      Modifies an exact-match filter and sets it to the new MAC address if
8141  *      @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8142  *      latter case the address is added persistently if @persist is %true.
8143  *
8144  *      Note that in general it is not possible to modify the value of a given
8145  *      filter so the generic way to modify an address filter is to free the one
8146  *      being used by the old address value and allocate a new filter for the
8147  *      new address value.
8148  *
8149  *      Returns a negative error number or the index of the filter with the new
8150  *      MAC value.  Note that this index may differ from @idx.
8151  */
8152 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8153                   int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8154 {
8155         int ret, mode;
8156         struct fw_vi_mac_cmd c;
8157         struct fw_vi_mac_exact *p = c.u.exact;
8158         unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8159
8160         if (idx < 0)            /* new allocation */
8161                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8162         mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8163
8164         memset(&c, 0, sizeof(c));
8165         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8166                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8167                                    V_FW_VI_MAC_CMD_VIID(viid));
8168         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8169         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8170                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8171                                       V_FW_VI_MAC_CMD_IDX(idx));
8172         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8173
8174         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8175         if (ret == 0) {
8176                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8177                 if (ret >= max_mac_addr)
8178                         ret = -ENOMEM;
8179                 if (smt_idx) {
8180                         if (adap->params.viid_smt_extn_support)
8181                                 *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8182                         else {
8183                                 if (chip_id(adap) <= CHELSIO_T5)
8184                                         *smt_idx = (viid & M_FW_VIID_VIN) << 1;
8185                                 else
8186                                         *smt_idx = viid & M_FW_VIID_VIN;
8187                         }
8188                 }
8189         }
8190         return ret;
8191 }
8192
8193 /**
8194  *      t4_set_addr_hash - program the MAC inexact-match hash filter
8195  *      @adap: the adapter
8196  *      @mbox: mailbox to use for the FW command
8197  *      @viid: the VI id
8198  *      @ucast: whether the hash filter should also match unicast addresses
8199  *      @vec: the value to be written to the hash filter
8200  *      @sleep_ok: call is allowed to sleep
8201  *
8202  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8203  */
8204 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8205                      bool ucast, u64 vec, bool sleep_ok)
8206 {
8207         struct fw_vi_mac_cmd c;
8208         u32 val;
8209
8210         memset(&c, 0, sizeof(c));
8211         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8212                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8213                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8214         val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8215               V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8216         c.freemacs_to_len16 = cpu_to_be32(val);
8217         c.u.hash.hashvec = cpu_to_be64(vec);
8218         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8219 }
8220
8221 /**
8222  *      t4_enable_vi_params - enable/disable a virtual interface
8223  *      @adap: the adapter
8224  *      @mbox: mailbox to use for the FW command
8225  *      @viid: the VI id
8226  *      @rx_en: 1=enable Rx, 0=disable Rx
8227  *      @tx_en: 1=enable Tx, 0=disable Tx
8228  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8229  *
8230  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8231  *      only makes sense when enabling a Virtual Interface ...
8232  */
8233 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8234                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8235 {
8236         struct fw_vi_enable_cmd c;
8237
8238         memset(&c, 0, sizeof(c));
8239         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8240                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8241                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8242         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8243                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8244                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8245                                      FW_LEN16(c));
8246         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8247 }
8248
8249 /**
8250  *      t4_enable_vi - enable/disable a virtual interface
8251  *      @adap: the adapter
8252  *      @mbox: mailbox to use for the FW command
8253  *      @viid: the VI id
8254  *      @rx_en: 1=enable Rx, 0=disable Rx
8255  *      @tx_en: 1=enable Tx, 0=disable Tx
8256  *
8257  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8258  *      only makes sense when enabling a Virtual Interface ...
8259  */
8260 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8261                  bool rx_en, bool tx_en)
8262 {
8263         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8264 }
8265
8266 /**
8267  *      t4_identify_port - identify a VI's port by blinking its LED
8268  *      @adap: the adapter
8269  *      @mbox: mailbox to use for the FW command
8270  *      @viid: the VI id
8271  *      @nblinks: how many times to blink LED at 2.5 Hz
8272  *
8273  *      Identifies a VI's port by blinking its LED.
8274  */
8275 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8276                      unsigned int nblinks)
8277 {
8278         struct fw_vi_enable_cmd c;
8279
8280         memset(&c, 0, sizeof(c));
8281         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8282                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8283                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8284         c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8285         c.blinkdur = cpu_to_be16(nblinks);
8286         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8287 }
8288
8289 /**
8290  *      t4_iq_stop - stop an ingress queue and its FLs
8291  *      @adap: the adapter
8292  *      @mbox: mailbox to use for the FW command
8293  *      @pf: the PF owning the queues
8294  *      @vf: the VF owning the queues
8295  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8296  *      @iqid: ingress queue id
8297  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8298  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8299  *
8300  *      Stops an ingress queue and its associated FLs, if any.  This causes
8301  *      any current or future data/messages destined for these queues to be
8302  *      tossed.
8303  */
8304 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8305                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8306                unsigned int fl0id, unsigned int fl1id)
8307 {
8308         struct fw_iq_cmd c;
8309
8310         memset(&c, 0, sizeof(c));
8311         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8312                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8313                                   V_FW_IQ_CMD_VFN(vf));
8314         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8315         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8316         c.iqid = cpu_to_be16(iqid);
8317         c.fl0id = cpu_to_be16(fl0id);
8318         c.fl1id = cpu_to_be16(fl1id);
8319         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8320 }
8321
8322 /**
8323  *      t4_iq_free - free an ingress queue and its FLs
8324  *      @adap: the adapter
8325  *      @mbox: mailbox to use for the FW command
8326  *      @pf: the PF owning the queues
8327  *      @vf: the VF owning the queues
8328  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8329  *      @iqid: ingress queue id
8330  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8331  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8332  *
8333  *      Frees an ingress queue and its associated FLs, if any.
8334  */
8335 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8336                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8337                unsigned int fl0id, unsigned int fl1id)
8338 {
8339         struct fw_iq_cmd c;
8340
8341         memset(&c, 0, sizeof(c));
8342         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8343                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8344                                   V_FW_IQ_CMD_VFN(vf));
8345         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8346         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8347         c.iqid = cpu_to_be16(iqid);
8348         c.fl0id = cpu_to_be16(fl0id);
8349         c.fl1id = cpu_to_be16(fl1id);
8350         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8351 }
8352
8353 /**
8354  *      t4_eth_eq_free - free an Ethernet egress queue
8355  *      @adap: the adapter
8356  *      @mbox: mailbox to use for the FW command
8357  *      @pf: the PF owning the queue
8358  *      @vf: the VF owning the queue
8359  *      @eqid: egress queue id
8360  *
8361  *      Frees an Ethernet egress queue.
8362  */
8363 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8364                    unsigned int vf, unsigned int eqid)
8365 {
8366         struct fw_eq_eth_cmd c;
8367
8368         memset(&c, 0, sizeof(c));
8369         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8370                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8371                                   V_FW_EQ_ETH_CMD_PFN(pf) |
8372                                   V_FW_EQ_ETH_CMD_VFN(vf));
8373         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8374         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8375         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8376 }
8377
8378 /**
8379  *      t4_ctrl_eq_free - free a control egress queue
8380  *      @adap: the adapter
8381  *      @mbox: mailbox to use for the FW command
8382  *      @pf: the PF owning the queue
8383  *      @vf: the VF owning the queue
8384  *      @eqid: egress queue id
8385  *
8386  *      Frees a control egress queue.
8387  */
8388 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8389                     unsigned int vf, unsigned int eqid)
8390 {
8391         struct fw_eq_ctrl_cmd c;
8392
8393         memset(&c, 0, sizeof(c));
8394         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8395                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8396                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
8397                                   V_FW_EQ_CTRL_CMD_VFN(vf));
8398         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8399         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8400         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8401 }
8402
8403 /**
8404  *      t4_ofld_eq_free - free an offload egress queue
8405  *      @adap: the adapter
8406  *      @mbox: mailbox to use for the FW command
8407  *      @pf: the PF owning the queue
8408  *      @vf: the VF owning the queue
8409  *      @eqid: egress queue id
8410  *
8411  *      Frees a control egress queue.
8412  */
8413 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8414                     unsigned int vf, unsigned int eqid)
8415 {
8416         struct fw_eq_ofld_cmd c;
8417
8418         memset(&c, 0, sizeof(c));
8419         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8420                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8421                                   V_FW_EQ_OFLD_CMD_PFN(pf) |
8422                                   V_FW_EQ_OFLD_CMD_VFN(vf));
8423         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8424         c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8425         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8426 }
8427
8428 /**
8429  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8430  *      @link_down_rc: Link Down Reason Code
8431  *
8432  *      Returns a string representation of the Link Down Reason Code.
8433  */
8434 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8435 {
8436         static const char *reason[] = {
8437                 "Link Down",
8438                 "Remote Fault",
8439                 "Auto-negotiation Failure",
8440                 "Reserved3",
8441                 "Insufficient Airflow",
8442                 "Unable To Determine Reason",
8443                 "No RX Signal Detected",
8444                 "Reserved7",
8445         };
8446
8447         if (link_down_rc >= ARRAY_SIZE(reason))
8448                 return "Bad Reason Code";
8449
8450         return reason[link_down_rc];
8451 }
8452
8453 /*
8454  * Return the highest speed set in the port capabilities, in Mb/s.
8455  */
8456 unsigned int fwcap_to_speed(uint32_t caps)
8457 {
8458         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8459                 do { \
8460                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8461                                 return __speed; \
8462                 } while (0)
8463
8464         TEST_SPEED_RETURN(400G, 400000);
8465         TEST_SPEED_RETURN(200G, 200000);
8466         TEST_SPEED_RETURN(100G, 100000);
8467         TEST_SPEED_RETURN(50G,   50000);
8468         TEST_SPEED_RETURN(40G,   40000);
8469         TEST_SPEED_RETURN(25G,   25000);
8470         TEST_SPEED_RETURN(10G,   10000);
8471         TEST_SPEED_RETURN(1G,     1000);
8472         TEST_SPEED_RETURN(100M,    100);
8473
8474         #undef TEST_SPEED_RETURN
8475
8476         return 0;
8477 }
8478
8479 /*
8480  * Return the port capabilities bit for the given speed, which is in Mb/s.
8481  */
8482 uint32_t speed_to_fwcap(unsigned int speed)
8483 {
8484         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8485                 do { \
8486                         if (speed == __speed) \
8487                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8488                 } while (0)
8489
8490         TEST_SPEED_RETURN(400G, 400000);
8491         TEST_SPEED_RETURN(200G, 200000);
8492         TEST_SPEED_RETURN(100G, 100000);
8493         TEST_SPEED_RETURN(50G,   50000);
8494         TEST_SPEED_RETURN(40G,   40000);
8495         TEST_SPEED_RETURN(25G,   25000);
8496         TEST_SPEED_RETURN(10G,   10000);
8497         TEST_SPEED_RETURN(1G,     1000);
8498         TEST_SPEED_RETURN(100M,    100);
8499
8500         #undef TEST_SPEED_RETURN
8501
8502         return 0;
8503 }
8504
8505 /*
8506  * Return the port capabilities bit for the highest speed in the capabilities.
8507  */
8508 uint32_t fwcap_top_speed(uint32_t caps)
8509 {
8510         #define TEST_SPEED_RETURN(__caps_speed) \
8511                 do { \
8512                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8513                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8514                 } while (0)
8515
8516         TEST_SPEED_RETURN(400G);
8517         TEST_SPEED_RETURN(200G);
8518         TEST_SPEED_RETURN(100G);
8519         TEST_SPEED_RETURN(50G);
8520         TEST_SPEED_RETURN(40G);
8521         TEST_SPEED_RETURN(25G);
8522         TEST_SPEED_RETURN(10G);
8523         TEST_SPEED_RETURN(1G);
8524         TEST_SPEED_RETURN(100M);
8525
8526         #undef TEST_SPEED_RETURN
8527
8528         return 0;
8529 }
8530
8531 /**
8532  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8533  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8534  *
8535  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8536  *      32-bit Port Capabilities value.
8537  */
8538 static uint32_t lstatus_to_fwcap(u32 lstatus)
8539 {
8540         uint32_t linkattr = 0;
8541
8542         /*
8543          * Unfortunately the format of the Link Status in the old
8544          * 16-bit Port Information message isn't the same as the
8545          * 16-bit Port Capabilities bitfield used everywhere else ...
8546          */
8547         if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8548                 linkattr |= FW_PORT_CAP32_FC_RX;
8549         if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8550                 linkattr |= FW_PORT_CAP32_FC_TX;
8551         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8552                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8553         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8554                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8555         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8556                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8557         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8558                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8559         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8560                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8561         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8562                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8563
8564         return linkattr;
8565 }
8566
8567 /*
8568  * Updates all fields owned by the common code in port_info and link_config
8569  * based on information provided by the firmware.  Does not touch any
8570  * requested_* field.
8571  */
8572 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8573     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8574 {
8575         struct link_config old_lc, *lc = &pi->link_cfg;
8576         unsigned char fc;
8577         u32 stat, linkattr;
8578         int old_ptype, old_mtype;
8579
8580         old_ptype = pi->port_type;
8581         old_mtype = pi->mod_type;
8582         old_lc = *lc;
8583         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8584                 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8585
8586                 pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8587                 pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8588                 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8589                     G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8590
8591                 lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8592                 lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8593                 lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8594                 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8595                 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8596
8597                 linkattr = lstatus_to_fwcap(stat);
8598         } else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8599                 stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8600
8601                 pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8602                 pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8603                 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8604                     G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8605
8606                 lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8607                 lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8608                 lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8609                 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8610                 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8611
8612                 linkattr = be32_to_cpu(p->u.info32.linkattr32);
8613         } else {
8614                 CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8615                 return;
8616         }
8617
8618         lc->speed = fwcap_to_speed(linkattr);
8619         lc->fec = fwcap_to_fec(linkattr, true);
8620
8621         fc = 0;
8622         if (linkattr & FW_PORT_CAP32_FC_RX)
8623                 fc |= PAUSE_RX;
8624         if (linkattr & FW_PORT_CAP32_FC_TX)
8625                 fc |= PAUSE_TX;
8626         lc->fc = fc;
8627
8628         if (mod_changed != NULL)
8629                 *mod_changed = false;
8630         if (link_changed != NULL)
8631                 *link_changed = false;
8632         if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8633             old_lc.pcaps != lc->pcaps) {
8634                 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
8635                         lc->fec_hint = fwcap_to_fec(lc->acaps, true);
8636                 if (mod_changed != NULL)
8637                         *mod_changed = true;
8638         }
8639         if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8640             old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8641                 if (link_changed != NULL)
8642                         *link_changed = true;
8643         }
8644 }
8645
8646 /**
8647  *      t4_update_port_info - retrieve and update port information if changed
8648  *      @pi: the port_info
8649  *
8650  *      We issue a Get Port Information Command to the Firmware and, if
8651  *      successful, we check to see if anything is different from what we
8652  *      last recorded and update things accordingly.
8653  */
8654  int t4_update_port_info(struct port_info *pi)
8655  {
8656         struct adapter *sc = pi->adapter;
8657         struct fw_port_cmd cmd;
8658         enum fw_port_action action;
8659         int ret;
8660
8661         memset(&cmd, 0, sizeof(cmd));
8662         cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8663             F_FW_CMD_REQUEST | F_FW_CMD_READ |
8664             V_FW_PORT_CMD_PORTID(pi->tx_chan));
8665         action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8666             FW_PORT_ACTION_GET_PORT_INFO;
8667         cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8668             FW_LEN16(cmd));
8669         ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8670         if (ret)
8671                 return ret;
8672
8673         handle_port_info(pi, &cmd, action, NULL, NULL);
8674         return 0;
8675 }
8676
8677 /**
8678  *      t4_handle_fw_rpl - process a FW reply message
8679  *      @adap: the adapter
8680  *      @rpl: start of the FW message
8681  *
8682  *      Processes a FW message, such as link state change messages.
8683  */
8684 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8685 {
8686         u8 opcode = *(const u8 *)rpl;
8687         const struct fw_port_cmd *p = (const void *)rpl;
8688         enum fw_port_action action =
8689             G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8690         bool mod_changed, link_changed;
8691
8692         if (opcode == FW_PORT_CMD &&
8693             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8694             action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8695                 /* link/module state change message */
8696                 int i;
8697                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8698                 struct port_info *pi = NULL;
8699                 struct link_config *lc;
8700
8701                 for_each_port(adap, i) {
8702                         pi = adap2pinfo(adap, i);
8703                         if (pi->tx_chan == chan)
8704                                 break;
8705                 }
8706
8707                 lc = &pi->link_cfg;
8708                 PORT_LOCK(pi);
8709                 handle_port_info(pi, p, action, &mod_changed, &link_changed);
8710                 PORT_UNLOCK(pi);
8711                 if (mod_changed)
8712                         t4_os_portmod_changed(pi);
8713                 if (link_changed) {
8714                         PORT_LOCK(pi);
8715                         t4_os_link_changed(pi);
8716                         PORT_UNLOCK(pi);
8717                 }
8718         } else {
8719                 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
8720                 return -EINVAL;
8721         }
8722         return 0;
8723 }
8724
8725 /**
8726  *      get_pci_mode - determine a card's PCI mode
8727  *      @adapter: the adapter
8728  *      @p: where to store the PCI settings
8729  *
8730  *      Determines a card's PCI mode and associated parameters, such as speed
8731  *      and width.
8732  */
8733 static void get_pci_mode(struct adapter *adapter,
8734                                    struct pci_params *p)
8735 {
8736         u16 val;
8737         u32 pcie_cap;
8738
8739         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8740         if (pcie_cap) {
8741                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
8742                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8743                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8744         }
8745 }
8746
8747 struct flash_desc {
8748         u32 vendor_and_model_id;
8749         u32 size_mb;
8750 };
8751
8752 int t4_get_flash_params(struct adapter *adapter)
8753 {
8754         /*
8755          * Table for non-standard supported Flash parts.  Note, all Flash
8756          * parts must have 64KB sectors.
8757          */
8758         static struct flash_desc supported_flash[] = {
8759                 { 0x00150201, 4 << 20 },        /* Spansion 4MB S25FL032P */
8760         };
8761
8762         int ret;
8763         u32 flashid = 0;
8764         unsigned int part, manufacturer;
8765         unsigned int density, size = 0;
8766
8767
8768         /*
8769          * Issue a Read ID Command to the Flash part.  We decode supported
8770          * Flash parts and their sizes from this.  There's a newer Query
8771          * Command which can retrieve detailed geometry information but many
8772          * Flash parts don't support it.
8773          */
8774         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
8775         if (!ret)
8776                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
8777         t4_write_reg(adapter, A_SF_OP, 0);      /* unlock SF */
8778         if (ret < 0)
8779                 return ret;
8780
8781         /*
8782          * Check to see if it's one of our non-standard supported Flash parts.
8783          */
8784         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8785                 if (supported_flash[part].vendor_and_model_id == flashid) {
8786                         adapter->params.sf_size =
8787                                 supported_flash[part].size_mb;
8788                         adapter->params.sf_nsec =
8789                                 adapter->params.sf_size / SF_SEC_SIZE;
8790                         goto found;
8791                 }
8792
8793         /*
8794          * Decode Flash part size.  The code below looks repetative with
8795          * common encodings, but that's not guaranteed in the JEDEC
8796          * specification for the Read JADEC ID command.  The only thing that
8797          * we're guaranteed by the JADEC specification is where the
8798          * Manufacturer ID is in the returned result.  After that each
8799          * Manufacturer ~could~ encode things completely differently.
8800          * Note, all Flash parts must have 64KB sectors.
8801          */
8802         manufacturer = flashid & 0xff;
8803         switch (manufacturer) {
8804         case 0x20: /* Micron/Numonix */
8805                 /*
8806                  * This Density -> Size decoding table is taken from Micron
8807                  * Data Sheets.
8808                  */
8809                 density = (flashid >> 16) & 0xff;
8810                 switch (density) {
8811                 case 0x14: size = 1 << 20; break; /*   1MB */
8812                 case 0x15: size = 1 << 21; break; /*   2MB */
8813                 case 0x16: size = 1 << 22; break; /*   4MB */
8814                 case 0x17: size = 1 << 23; break; /*   8MB */
8815                 case 0x18: size = 1 << 24; break; /*  16MB */
8816                 case 0x19: size = 1 << 25; break; /*  32MB */
8817                 case 0x20: size = 1 << 26; break; /*  64MB */
8818                 case 0x21: size = 1 << 27; break; /* 128MB */
8819                 case 0x22: size = 1 << 28; break; /* 256MB */
8820                 }
8821                 break;
8822
8823         case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
8824                 /*
8825                  * This Density -> Size decoding table is taken from ISSI
8826                  * Data Sheets.
8827                  */
8828                 density = (flashid >> 16) & 0xff;
8829                 switch (density) {
8830                 case 0x16: size = 1 << 25; break; /*  32MB */
8831                 case 0x17: size = 1 << 26; break; /*  64MB */
8832                 }
8833                 break;
8834
8835         case 0xc2: /* Macronix */
8836                 /*
8837                  * This Density -> Size decoding table is taken from Macronix
8838                  * Data Sheets.
8839                  */
8840                 density = (flashid >> 16) & 0xff;
8841                 switch (density) {
8842                 case 0x17: size = 1 << 23; break; /*   8MB */
8843                 case 0x18: size = 1 << 24; break; /*  16MB */
8844                 }
8845                 break;
8846
8847         case 0xef: /* Winbond */
8848                 /*
8849                  * This Density -> Size decoding table is taken from Winbond
8850                  * Data Sheets.
8851                  */
8852                 density = (flashid >> 16) & 0xff;
8853                 switch (density) {
8854                 case 0x17: size = 1 << 23; break; /*   8MB */
8855                 case 0x18: size = 1 << 24; break; /*  16MB */
8856                 }
8857                 break;
8858         }
8859
8860         /* If we didn't recognize the FLASH part, that's no real issue: the
8861          * Hardware/Software contract says that Hardware will _*ALWAYS*_
8862          * use a FLASH part which is at least 4MB in size and has 64KB
8863          * sectors.  The unrecognized FLASH part is likely to be much larger
8864          * than 4MB, but that's all we really need.
8865          */
8866         if (size == 0) {
8867                 CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
8868                 size = 1 << 22;
8869         }
8870
8871         /*
8872          * Store decoded Flash size and fall through into vetting code.
8873          */
8874         adapter->params.sf_size = size;
8875         adapter->params.sf_nsec = size / SF_SEC_SIZE;
8876
8877  found:
8878         /*
8879          * We should ~probably~ reject adapters with FLASHes which are too
8880          * small but we have some legacy FPGAs with small FLASHes that we'd
8881          * still like to use.  So instead we emit a scary message ...
8882          */
8883         if (adapter->params.sf_size < FLASH_MIN_SIZE)
8884                 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8885                         flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
8886
8887         return 0;
8888 }
8889
8890 static void set_pcie_completion_timeout(struct adapter *adapter,
8891                                                   u8 range)
8892 {
8893         u16 val;
8894         u32 pcie_cap;
8895
8896         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8897         if (pcie_cap) {
8898                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
8899                 val &= 0xfff0;
8900                 val |= range ;
8901                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8902         }
8903 }
8904
8905 const struct chip_params *t4_get_chip_params(int chipid)
8906 {
8907         static const struct chip_params chip_params[] = {
8908                 {
8909                         /* T4 */
8910                         .nchan = NCHAN,
8911                         .pm_stats_cnt = PM_NSTATS,
8912                         .cng_ch_bits_log = 2,
8913                         .nsched_cls = 15,
8914                         .cim_num_obq = CIM_NUM_OBQ,
8915                         .mps_rplc_size = 128,
8916                         .vfcount = 128,
8917                         .sge_fl_db = F_DBPRIO,
8918                         .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8919                 },
8920                 {
8921                         /* T5 */
8922                         .nchan = NCHAN,
8923                         .pm_stats_cnt = PM_NSTATS,
8924                         .cng_ch_bits_log = 2,
8925                         .nsched_cls = 16,
8926                         .cim_num_obq = CIM_NUM_OBQ_T5,
8927                         .mps_rplc_size = 128,
8928                         .vfcount = 128,
8929                         .sge_fl_db = F_DBPRIO | F_DBTYPE,
8930                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8931                 },
8932                 {
8933                         /* T6 */
8934                         .nchan = T6_NCHAN,
8935                         .pm_stats_cnt = T6_PM_NSTATS,
8936                         .cng_ch_bits_log = 3,
8937                         .nsched_cls = 16,
8938                         .cim_num_obq = CIM_NUM_OBQ_T5,
8939                         .mps_rplc_size = 256,
8940                         .vfcount = 256,
8941                         .sge_fl_db = 0,
8942                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8943                 },
8944         };
8945
8946         chipid -= CHELSIO_T4;
8947         if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8948                 return NULL;
8949
8950         return &chip_params[chipid];
8951 }
8952
8953 /**
8954  *      t4_prep_adapter - prepare SW and HW for operation
8955  *      @adapter: the adapter
8956  *      @buf: temporary space of at least VPD_LEN size provided by the caller.
8957  *
8958  *      Initialize adapter SW state for the various HW modules, set initial
8959  *      values for some adapter tunables, take PHYs out of reset, and
8960  *      initialize the MDIO interface.
8961  */
8962 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8963 {
8964         int ret;
8965         uint16_t device_id;
8966         uint32_t pl_rev;
8967
8968         get_pci_mode(adapter, &adapter->params.pci);
8969
8970         pl_rev = t4_read_reg(adapter, A_PL_REV);
8971         adapter->params.chipid = G_CHIPID(pl_rev);
8972         adapter->params.rev = G_REV(pl_rev);
8973         if (adapter->params.chipid == 0) {
8974                 /* T4 did not have chipid in PL_REV (T5 onwards do) */
8975                 adapter->params.chipid = CHELSIO_T4;
8976
8977                 /* T4A1 chip is not supported */
8978                 if (adapter->params.rev == 1) {
8979                         CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8980                         return -EINVAL;
8981                 }
8982         }
8983
8984         adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8985         if (adapter->chip_params == NULL)
8986                 return -EINVAL;
8987
8988         adapter->params.pci.vpd_cap_addr =
8989             t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8990
8991         ret = t4_get_flash_params(adapter);
8992         if (ret < 0)
8993                 return ret;
8994
8995         /* Cards with real ASICs have the chipid in the PCIe device id */
8996         t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8997         if (device_id >> 12 == chip_id(adapter))
8998                 adapter->params.cim_la_size = CIMLA_SIZE;
8999         else {
9000                 /* FPGA */
9001                 adapter->params.fpga = 1;
9002                 adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9003         }
9004
9005         ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9006         if (ret < 0)
9007                 return ret;
9008
9009         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9010
9011         /*
9012          * Default port and clock for debugging in case we can't reach FW.
9013          */
9014         adapter->params.nports = 1;
9015         adapter->params.portvec = 1;
9016         adapter->params.vpd.cclk = 50000;
9017
9018         /* Set pci completion timeout value to 4 seconds. */
9019         set_pcie_completion_timeout(adapter, 0xd);
9020         return 0;
9021 }
9022
9023 /**
9024  *      t4_shutdown_adapter - shut down adapter, host & wire
9025  *      @adapter: the adapter
9026  *
9027  *      Perform an emergency shutdown of the adapter and stop it from
9028  *      continuing any further communication on the ports or DMA to the
9029  *      host.  This is typically used when the adapter and/or firmware
9030  *      have crashed and we want to prevent any further accidental
9031  *      communication with the rest of the world.  This will also force
9032  *      the port Link Status to go down -- if register writes work --
9033  *      which should help our peers figure out that we're down.
9034  */
9035 int t4_shutdown_adapter(struct adapter *adapter)
9036 {
9037         int port;
9038
9039         t4_intr_disable(adapter);
9040         t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
9041         for_each_port(adapter, port) {
9042                 u32 a_port_cfg = is_t4(adapter) ?
9043                                  PORT_REG(port, A_XGMAC_PORT_CFG) :
9044                                  T5_PORT_REG(port, A_MAC_PORT_CFG);
9045
9046                 t4_write_reg(adapter, a_port_cfg,
9047                              t4_read_reg(adapter, a_port_cfg)
9048                              & ~V_SIGNAL_DET(1));
9049         }
9050         t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9051
9052         return 0;
9053 }
9054
9055 /**
9056  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9057  *      @adapter: the adapter
9058  *      @qid: the Queue ID
9059  *      @qtype: the Ingress or Egress type for @qid
9060  *      @user: true if this request is for a user mode queue
9061  *      @pbar2_qoffset: BAR2 Queue Offset
9062  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9063  *
9064  *      Returns the BAR2 SGE Queue Registers information associated with the
9065  *      indicated Absolute Queue ID.  These are passed back in return value
9066  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9067  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9068  *
9069  *      This may return an error which indicates that BAR2 SGE Queue
9070  *      registers aren't available.  If an error is not returned, then the
9071  *      following values are returned:
9072  *
9073  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9074  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9075  *
9076  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9077  *      require the "Inferred Queue ID" ability may be used.  E.g. the
9078  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9079  *      then these "Inferred Queue ID" register may not be used.
9080  */
9081 int t4_bar2_sge_qregs(struct adapter *adapter,
9082                       unsigned int qid,
9083                       enum t4_bar2_qtype qtype,
9084                       int user,
9085                       u64 *pbar2_qoffset,
9086                       unsigned int *pbar2_qid)
9087 {
9088         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9089         u64 bar2_page_offset, bar2_qoffset;
9090         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9091
9092         /* T4 doesn't support BAR2 SGE Queue registers for kernel
9093          * mode queues.
9094          */
9095         if (!user && is_t4(adapter))
9096                 return -EINVAL;
9097
9098         /* Get our SGE Page Size parameters.
9099          */
9100         page_shift = adapter->params.sge.page_shift;
9101         page_size = 1 << page_shift;
9102
9103         /* Get the right Queues per Page parameters for our Queue.
9104          */
9105         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9106                      ? adapter->params.sge.eq_s_qpp
9107                      : adapter->params.sge.iq_s_qpp);
9108         qpp_mask = (1 << qpp_shift) - 1;
9109
9110         /* Calculate the basics of the BAR2 SGE Queue register area:
9111          *  o The BAR2 page the Queue registers will be in.
9112          *  o The BAR2 Queue ID.
9113          *  o The BAR2 Queue ID Offset into the BAR2 page.
9114          */
9115         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9116         bar2_qid = qid & qpp_mask;
9117         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9118
9119         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9120          * hardware will infer the Absolute Queue ID simply from the writes to
9121          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9122          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9123          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9124          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9125          * from the BAR2 Page and BAR2 Queue ID.
9126          *
9127          * One important censequence of this is that some BAR2 SGE registers
9128          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9129          * there.  But other registers synthesize the SGE Queue ID purely
9130          * from the writes to the registers -- the Write Combined Doorbell
9131          * Buffer is a good example.  These BAR2 SGE Registers are only
9132          * available for those BAR2 SGE Register areas where the SGE Absolute
9133          * Queue ID can be inferred from simple writes.
9134          */
9135         bar2_qoffset = bar2_page_offset;
9136         bar2_qinferred = (bar2_qid_offset < page_size);
9137         if (bar2_qinferred) {
9138                 bar2_qoffset += bar2_qid_offset;
9139                 bar2_qid = 0;
9140         }
9141
9142         *pbar2_qoffset = bar2_qoffset;
9143         *pbar2_qid = bar2_qid;
9144         return 0;
9145 }
9146
9147 /**
9148  *      t4_init_devlog_params - initialize adapter->params.devlog
9149  *      @adap: the adapter
9150  *      @fw_attach: whether we can talk to the firmware
9151  *
9152  *      Initialize various fields of the adapter's Firmware Device Log
9153  *      Parameters structure.
9154  */
9155 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9156 {
9157         struct devlog_params *dparams = &adap->params.devlog;
9158         u32 pf_dparams;
9159         unsigned int devlog_meminfo;
9160         struct fw_devlog_cmd devlog_cmd;
9161         int ret;
9162
9163         /* If we're dealing with newer firmware, the Device Log Paramerters
9164          * are stored in a designated register which allows us to access the
9165          * Device Log even if we can't talk to the firmware.
9166          */
9167         pf_dparams =
9168                 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9169         if (pf_dparams) {
9170                 unsigned int nentries, nentries128;
9171
9172                 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9173                 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9174
9175                 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9176                 nentries = (nentries128 + 1) * 128;
9177                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9178
9179                 return 0;
9180         }
9181
9182         /*
9183          * For any failing returns ...
9184          */
9185         memset(dparams, 0, sizeof *dparams);
9186
9187         /*
9188          * If we can't talk to the firmware, there's really nothing we can do
9189          * at this point.
9190          */
9191         if (!fw_attach)
9192                 return -ENXIO;
9193
9194         /* Otherwise, ask the firmware for it's Device Log Parameters.
9195          */
9196         memset(&devlog_cmd, 0, sizeof devlog_cmd);
9197         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9198                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
9199         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9200         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9201                          &devlog_cmd);
9202         if (ret)
9203                 return ret;
9204
9205         devlog_meminfo =
9206                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9207         dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9208         dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9209         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9210
9211         return 0;
9212 }
9213
9214 /**
9215  *      t4_init_sge_params - initialize adap->params.sge
9216  *      @adapter: the adapter
9217  *
9218  *      Initialize various fields of the adapter's SGE Parameters structure.
9219  */
9220 int t4_init_sge_params(struct adapter *adapter)
9221 {
9222         u32 r;
9223         struct sge_params *sp = &adapter->params.sge;
9224         unsigned i, tscale = 1;
9225
9226         r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9227         sp->counter_val[0] = G_THRESHOLD_0(r);
9228         sp->counter_val[1] = G_THRESHOLD_1(r);
9229         sp->counter_val[2] = G_THRESHOLD_2(r);
9230         sp->counter_val[3] = G_THRESHOLD_3(r);
9231
9232         if (chip_id(adapter) >= CHELSIO_T6) {
9233                 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9234                 tscale = G_TSCALE(r);
9235                 if (tscale == 0)
9236                         tscale = 1;
9237                 else
9238                         tscale += 2;
9239         }
9240
9241         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9242         sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9243         sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9244         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9245         sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9246         sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9247         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9248         sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9249         sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9250
9251         r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9252         sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9253         if (is_t4(adapter))
9254                 sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9255         else if (is_t5(adapter))
9256                 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9257         else
9258                 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9259
9260         /* egress queues: log2 of # of doorbells per BAR2 page */
9261         r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9262         r >>= S_QUEUESPERPAGEPF0 +
9263             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9264         sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9265
9266         /* ingress queues: log2 of # of doorbells per BAR2 page */
9267         r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9268         r >>= S_QUEUESPERPAGEPF0 +
9269             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9270         sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9271
9272         r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9273         r >>= S_HOSTPAGESIZEPF0 +
9274             (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9275         sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9276
9277         r = t4_read_reg(adapter, A_SGE_CONTROL);
9278         sp->sge_control = r;
9279         sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9280         sp->fl_pktshift = G_PKTSHIFT(r);
9281         if (chip_id(adapter) <= CHELSIO_T5) {
9282                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9283                     X_INGPADBOUNDARY_SHIFT);
9284         } else {
9285                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9286                     X_T6_INGPADBOUNDARY_SHIFT);
9287         }
9288         if (is_t4(adapter))
9289                 sp->pack_boundary = sp->pad_boundary;
9290         else {
9291                 r = t4_read_reg(adapter, A_SGE_CONTROL2);
9292                 if (G_INGPACKBOUNDARY(r) == 0)
9293                         sp->pack_boundary = 16;
9294                 else
9295                         sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9296         }
9297         for (i = 0; i < SGE_FLBUF_SIZES; i++)
9298                 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9299                     A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9300
9301         return 0;
9302 }
9303
9304 /*
9305  * Read and cache the adapter's compressed filter mode and ingress config.
9306  */
9307 static void read_filter_mode_and_ingress_config(struct adapter *adap,
9308     bool sleep_ok)
9309 {
9310         uint32_t v;
9311         struct tp_params *tpp = &adap->params.tp;
9312
9313         t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
9314             sleep_ok);
9315         t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
9316             sleep_ok);
9317
9318         /*
9319          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9320          * shift positions of several elements of the Compressed Filter Tuple
9321          * for this adapter which we need frequently ...
9322          */
9323         tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9324         tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9325         tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9326         tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9327         tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9328         tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9329         tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9330         tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9331         tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9332         tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9333
9334         if (chip_id(adap) > CHELSIO_T4) {
9335                 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9336                 adap->params.tp.hash_filter_mask = v;
9337                 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9338                 adap->params.tp.hash_filter_mask |= (u64)v << 32;
9339         }
9340 }
9341
9342 /**
9343  *      t4_init_tp_params - initialize adap->params.tp
9344  *      @adap: the adapter
9345  *
9346  *      Initialize various fields of the adapter's TP Parameters structure.
9347  */
9348 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9349 {
9350         int chan;
9351         u32 v;
9352         struct tp_params *tpp = &adap->params.tp;
9353
9354         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9355         tpp->tre = G_TIMERRESOLUTION(v);
9356         tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9357
9358         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9359         for (chan = 0; chan < MAX_NCHAN; chan++)
9360                 tpp->tx_modq[chan] = chan;
9361
9362         read_filter_mode_and_ingress_config(adap, sleep_ok);
9363
9364         /*
9365          * Cache a mask of the bits that represent the error vector portion of
9366          * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
9367          * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
9368          */
9369         tpp->err_vec_mask = htobe16(0xffff);
9370         if (chip_id(adap) > CHELSIO_T5) {
9371                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9372                 if (v & F_CRXPKTENC) {
9373                         tpp->err_vec_mask =
9374                             htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
9375                 }
9376         }
9377
9378         return 0;
9379 }
9380
9381 /**
9382  *      t4_filter_field_shift - calculate filter field shift
9383  *      @adap: the adapter
9384  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9385  *
9386  *      Return the shift position of a filter field within the Compressed
9387  *      Filter Tuple.  The filter field is specified via its selection bit
9388  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9389  */
9390 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9391 {
9392         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9393         unsigned int sel;
9394         int field_shift;
9395
9396         if ((filter_mode & filter_sel) == 0)
9397                 return -1;
9398
9399         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9400                 switch (filter_mode & sel) {
9401                 case F_FCOE:
9402                         field_shift += W_FT_FCOE;
9403                         break;
9404                 case F_PORT:
9405                         field_shift += W_FT_PORT;
9406                         break;
9407                 case F_VNIC_ID:
9408                         field_shift += W_FT_VNIC_ID;
9409                         break;
9410                 case F_VLAN:
9411                         field_shift += W_FT_VLAN;
9412                         break;
9413                 case F_TOS:
9414                         field_shift += W_FT_TOS;
9415                         break;
9416                 case F_PROTOCOL:
9417                         field_shift += W_FT_PROTOCOL;
9418                         break;
9419                 case F_ETHERTYPE:
9420                         field_shift += W_FT_ETHERTYPE;
9421                         break;
9422                 case F_MACMATCH:
9423                         field_shift += W_FT_MACMATCH;
9424                         break;
9425                 case F_MPSHITTYPE:
9426                         field_shift += W_FT_MPSHITTYPE;
9427                         break;
9428                 case F_FRAGMENTATION:
9429                         field_shift += W_FT_FRAGMENTATION;
9430                         break;
9431                 }
9432         }
9433         return field_shift;
9434 }
9435
9436 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9437 {
9438         u8 addr[6];
9439         int ret, i, j;
9440         struct port_info *p = adap2pinfo(adap, port_id);
9441         u32 param, val;
9442         struct vi_info *vi = &p->vi[0];
9443
9444         for (i = 0, j = -1; i <= p->port_id; i++) {
9445                 do {
9446                         j++;
9447                 } while ((adap->params.portvec & (1 << j)) == 0);
9448         }
9449
9450         p->tx_chan = j;
9451         p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9452         p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9453         p->lport = j;
9454
9455         if (!(adap->flags & IS_VF) ||
9456             adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9457                 t4_update_port_info(p);
9458         }
9459
9460         ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9461             &vi->vfvld, &vi->vin);
9462         if (ret < 0)
9463                 return ret;
9464
9465         vi->viid = ret;
9466         t4_os_set_hw_addr(p, addr);
9467
9468         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9469             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9470             V_FW_PARAMS_PARAM_YZ(vi->viid);
9471         ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9472         if (ret)
9473                 vi->rss_base = 0xffff;
9474         else {
9475                 /* MPASS((val >> 16) == rss_size); */
9476                 vi->rss_base = val & 0xffff;
9477         }
9478
9479         return 0;
9480 }
9481
9482 /**
9483  *      t4_read_cimq_cfg - read CIM queue configuration
9484  *      @adap: the adapter
9485  *      @base: holds the queue base addresses in bytes
9486  *      @size: holds the queue sizes in bytes
9487  *      @thres: holds the queue full thresholds in bytes
9488  *
9489  *      Returns the current configuration of the CIM queues, starting with
9490  *      the IBQs, then the OBQs.
9491  */
9492 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9493 {
9494         unsigned int i, v;
9495         int cim_num_obq = adap->chip_params->cim_num_obq;
9496
9497         for (i = 0; i < CIM_NUM_IBQ; i++) {
9498                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9499                              V_QUENUMSELECT(i));
9500                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9501                 /* value is in 256-byte units */
9502                 *base++ = G_CIMQBASE(v) * 256;
9503                 *size++ = G_CIMQSIZE(v) * 256;
9504                 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9505         }
9506         for (i = 0; i < cim_num_obq; i++) {
9507                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9508                              V_QUENUMSELECT(i));
9509                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9510                 /* value is in 256-byte units */
9511                 *base++ = G_CIMQBASE(v) * 256;
9512                 *size++ = G_CIMQSIZE(v) * 256;
9513         }
9514 }
9515
9516 /**
9517  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9518  *      @adap: the adapter
9519  *      @qid: the queue index
9520  *      @data: where to store the queue contents
9521  *      @n: capacity of @data in 32-bit words
9522  *
9523  *      Reads the contents of the selected CIM queue starting at address 0 up
9524  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9525  *      error and the number of 32-bit words actually read on success.
9526  */
9527 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9528 {
9529         int i, err, attempts;
9530         unsigned int addr;
9531         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9532
9533         if (qid > 5 || (n & 3))
9534                 return -EINVAL;
9535
9536         addr = qid * nwords;
9537         if (n > nwords)
9538                 n = nwords;
9539
9540         /* It might take 3-10ms before the IBQ debug read access is allowed.
9541          * Wait for 1 Sec with a delay of 1 usec.
9542          */
9543         attempts = 1000000;
9544
9545         for (i = 0; i < n; i++, addr++) {
9546                 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9547                              F_IBQDBGEN);
9548                 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9549                                       attempts, 1);
9550                 if (err)
9551                         return err;
9552                 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9553         }
9554         t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9555         return i;
9556 }
9557
9558 /**
9559  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9560  *      @adap: the adapter
9561  *      @qid: the queue index
9562  *      @data: where to store the queue contents
9563  *      @n: capacity of @data in 32-bit words
9564  *
9565  *      Reads the contents of the selected CIM queue starting at address 0 up
9566  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9567  *      error and the number of 32-bit words actually read on success.
9568  */
9569 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9570 {
9571         int i, err;
9572         unsigned int addr, v, nwords;
9573         int cim_num_obq = adap->chip_params->cim_num_obq;
9574
9575         if ((qid > (cim_num_obq - 1)) || (n & 3))
9576                 return -EINVAL;
9577
9578         t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9579                      V_QUENUMSELECT(qid));
9580         v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9581
9582         addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9583         nwords = G_CIMQSIZE(v) * 64;  /* same */
9584         if (n > nwords)
9585                 n = nwords;
9586
9587         for (i = 0; i < n; i++, addr++) {
9588                 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9589                              F_OBQDBGEN);
9590                 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
9591                                       2, 1);
9592                 if (err)
9593                         return err;
9594                 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
9595         }
9596         t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
9597         return i;
9598 }
9599
9600 enum {
9601         CIM_QCTL_BASE     = 0,
9602         CIM_CTL_BASE      = 0x2000,
9603         CIM_PBT_ADDR_BASE = 0x2800,
9604         CIM_PBT_LRF_BASE  = 0x3000,
9605         CIM_PBT_DATA_BASE = 0x3800
9606 };
9607
9608 /**
9609  *      t4_cim_read - read a block from CIM internal address space
9610  *      @adap: the adapter
9611  *      @addr: the start address within the CIM address space
9612  *      @n: number of words to read
9613  *      @valp: where to store the result
9614  *
9615  *      Reads a block of 4-byte words from the CIM intenal address space.
9616  */
9617 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9618                 unsigned int *valp)
9619 {
9620         int ret = 0;
9621
9622         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9623                 return -EBUSY;
9624
9625         for ( ; !ret && n--; addr += 4) {
9626                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9627                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9628                                       0, 5, 2);
9629                 if (!ret)
9630                         *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9631         }
9632         return ret;
9633 }
9634
9635 /**
9636  *      t4_cim_write - write a block into CIM internal address space
9637  *      @adap: the adapter
9638  *      @addr: the start address within the CIM address space
9639  *      @n: number of words to write
9640  *      @valp: set of values to write
9641  *
9642  *      Writes a block of 4-byte words into the CIM intenal address space.
9643  */
9644 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9645                  const unsigned int *valp)
9646 {
9647         int ret = 0;
9648
9649         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9650                 return -EBUSY;
9651
9652         for ( ; !ret && n--; addr += 4) {
9653                 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9654                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9655                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9656                                       0, 5, 2);
9657         }
9658         return ret;
9659 }
9660
9661 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9662                          unsigned int val)
9663 {
9664         return t4_cim_write(adap, addr, 1, &val);
9665 }
9666
9667 /**
9668  *      t4_cim_ctl_read - read a block from CIM control region
9669  *      @adap: the adapter
9670  *      @addr: the start address within the CIM control region
9671  *      @n: number of words to read
9672  *      @valp: where to store the result
9673  *
9674  *      Reads a block of 4-byte words from the CIM control region.
9675  */
9676 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9677                     unsigned int *valp)
9678 {
9679         return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9680 }
9681
9682 /**
9683  *      t4_cim_read_la - read CIM LA capture buffer
9684  *      @adap: the adapter
9685  *      @la_buf: where to store the LA data
9686  *      @wrptr: the HW write pointer within the capture buffer
9687  *
9688  *      Reads the contents of the CIM LA buffer with the most recent entry at
9689  *      the end of the returned data and with the entry at @wrptr first.
9690  *      We try to leave the LA in the running state we find it in.
9691  */
9692 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9693 {
9694         int i, ret;
9695         unsigned int cfg, val, idx;
9696
9697         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9698         if (ret)
9699                 return ret;
9700
9701         if (cfg & F_UPDBGLAEN) {        /* LA is running, freeze it */
9702                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
9703                 if (ret)
9704                         return ret;
9705         }
9706
9707         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9708         if (ret)
9709                 goto restart;
9710
9711         idx = G_UPDBGLAWRPTR(val);
9712         if (wrptr)
9713                 *wrptr = idx;
9714
9715         for (i = 0; i < adap->params.cim_la_size; i++) {
9716                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9717                                     V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
9718                 if (ret)
9719                         break;
9720                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9721                 if (ret)
9722                         break;
9723                 if (val & F_UPDBGLARDEN) {
9724                         ret = -ETIMEDOUT;
9725                         break;
9726                 }
9727                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
9728                 if (ret)
9729                         break;
9730
9731                 /* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
9732                 idx = (idx + 1) & M_UPDBGLARDPTR;
9733                 /*
9734                  * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9735                  * identify the 32-bit portion of the full 312-bit data
9736                  */
9737                 if (is_t6(adap))
9738                         while ((idx & 0xf) > 9)
9739                                 idx = (idx + 1) % M_UPDBGLARDPTR;
9740         }
9741 restart:
9742         if (cfg & F_UPDBGLAEN) {
9743                 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9744                                       cfg & ~F_UPDBGLARDEN);
9745                 if (!ret)
9746                         ret = r;
9747         }
9748         return ret;
9749 }
9750
9751 /**
9752  *      t4_tp_read_la - read TP LA capture buffer
9753  *      @adap: the adapter
9754  *      @la_buf: where to store the LA data
9755  *      @wrptr: the HW write pointer within the capture buffer
9756  *
9757  *      Reads the contents of the TP LA buffer with the most recent entry at
9758  *      the end of the returned data and with the entry at @wrptr first.
9759  *      We leave the LA in the running state we find it in.
9760  */
9761 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9762 {
9763         bool last_incomplete;
9764         unsigned int i, cfg, val, idx;
9765
9766         cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
9767         if (cfg & F_DBGLAENABLE)                        /* freeze LA */
9768                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9769                              adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
9770
9771         val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
9772         idx = G_DBGLAWPTR(val);
9773         last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
9774         if (last_incomplete)
9775                 idx = (idx + 1) & M_DBGLARPTR;
9776         if (wrptr)
9777                 *wrptr = idx;
9778
9779         val &= 0xffff;
9780         val &= ~V_DBGLARPTR(M_DBGLARPTR);
9781         val |= adap->params.tp.la_mask;
9782
9783         for (i = 0; i < TPLA_SIZE; i++) {
9784                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
9785                 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
9786                 idx = (idx + 1) & M_DBGLARPTR;
9787         }
9788
9789         /* Wipe out last entry if it isn't valid */
9790         if (last_incomplete)
9791                 la_buf[TPLA_SIZE - 1] = ~0ULL;
9792
9793         if (cfg & F_DBGLAENABLE)                /* restore running state */
9794                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9795                              cfg | adap->params.tp.la_mask);
9796 }
9797
9798 /*
9799  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9800  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9801  * state for more than the Warning Threshold then we'll issue a warning about
9802  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9803  * appears to be hung every Warning Repeat second till the situation clears.
9804  * If the situation clears, we'll note that as well.
9805  */
9806 #define SGE_IDMA_WARN_THRESH 1
9807 #define SGE_IDMA_WARN_REPEAT 300
9808
9809 /**
9810  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9811  *      @adapter: the adapter
9812  *      @idma: the adapter IDMA Monitor state
9813  *
9814  *      Initialize the state of an SGE Ingress DMA Monitor.
9815  */
9816 void t4_idma_monitor_init(struct adapter *adapter,
9817                           struct sge_idma_monitor_state *idma)
9818 {
9819         /* Initialize the state variables for detecting an SGE Ingress DMA
9820          * hang.  The SGE has internal counters which count up on each clock
9821          * tick whenever the SGE finds its Ingress DMA State Engines in the
9822          * same state they were on the previous clock tick.  The clock used is
9823          * the Core Clock so we have a limit on the maximum "time" they can
9824          * record; typically a very small number of seconds.  For instance,
9825          * with a 600MHz Core Clock, we can only count up to a bit more than
9826          * 7s.  So we'll synthesize a larger counter in order to not run the
9827          * risk of having the "timers" overflow and give us the flexibility to
9828          * maintain a Hung SGE State Machine of our own which operates across
9829          * a longer time frame.
9830          */
9831         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9832         idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
9833 }
9834
9835 /**
9836  *      t4_idma_monitor - monitor SGE Ingress DMA state
9837  *      @adapter: the adapter
9838  *      @idma: the adapter IDMA Monitor state
9839  *      @hz: number of ticks/second
9840  *      @ticks: number of ticks since the last IDMA Monitor call
9841  */
9842 void t4_idma_monitor(struct adapter *adapter,
9843                      struct sge_idma_monitor_state *idma,
9844                      int hz, int ticks)
9845 {
9846         int i, idma_same_state_cnt[2];
9847
9848          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9849           * are counters inside the SGE which count up on each clock when the
9850           * SGE finds its Ingress DMA State Engines in the same states they
9851           * were in the previous clock.  The counters will peg out at
9852           * 0xffffffff without wrapping around so once they pass the 1s
9853           * threshold they'll stay above that till the IDMA state changes.
9854           */
9855         t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
9856         idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
9857         idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9858
9859         for (i = 0; i < 2; i++) {
9860                 u32 debug0, debug11;
9861
9862                 /* If the Ingress DMA Same State Counter ("timer") is less
9863                  * than 1s, then we can reset our synthesized Stall Timer and
9864                  * continue.  If we have previously emitted warnings about a
9865                  * potential stalled Ingress Queue, issue a note indicating
9866                  * that the Ingress Queue has resumed forward progress.
9867                  */
9868                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9869                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
9870                                 CH_WARN(adapter, "SGE idma%d, queue %u, "
9871                                         "resumed after %d seconds\n",
9872                                         i, idma->idma_qid[i],
9873                                         idma->idma_stalled[i]/hz);
9874                         idma->idma_stalled[i] = 0;
9875                         continue;
9876                 }
9877
9878                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9879                  * domain.  The first time we get here it'll be because we
9880                  * passed the 1s Threshold; each additional time it'll be
9881                  * because the RX Timer Callback is being fired on its regular
9882                  * schedule.
9883                  *
9884                  * If the stall is below our Potential Hung Ingress Queue
9885                  * Warning Threshold, continue.
9886                  */
9887                 if (idma->idma_stalled[i] == 0) {
9888                         idma->idma_stalled[i] = hz;
9889                         idma->idma_warn[i] = 0;
9890                 } else {
9891                         idma->idma_stalled[i] += ticks;
9892                         idma->idma_warn[i] -= ticks;
9893                 }
9894
9895                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
9896                         continue;
9897
9898                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9899                  */
9900                 if (idma->idma_warn[i] > 0)
9901                         continue;
9902                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9903
9904                 /* Read and save the SGE IDMA State and Queue ID information.
9905                  * We do this every time in case it changes across time ...
9906                  * can't be too careful ...
9907                  */
9908                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9909                 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9910                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9911
9912                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9913                 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9914                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9915
9916                 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9917                         " state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9918                         i, idma->idma_qid[i], idma->idma_state[i],
9919                         idma->idma_stalled[i]/hz,
9920                         debug0, debug11);
9921                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9922         }
9923 }
9924
9925 /**
9926  *      t4_read_pace_tbl - read the pace table
9927  *      @adap: the adapter
9928  *      @pace_vals: holds the returned values
9929  *
9930  *      Returns the values of TP's pace table in microseconds.
9931  */
9932 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9933 {
9934         unsigned int i, v;
9935
9936         for (i = 0; i < NTX_SCHED; i++) {
9937                 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9938                 v = t4_read_reg(adap, A_TP_PACE_TABLE);
9939                 pace_vals[i] = dack_ticks_to_usec(adap, v);
9940         }
9941 }
9942
9943 /**
9944  *      t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9945  *      @adap: the adapter
9946  *      @sched: the scheduler index
9947  *      @kbps: the byte rate in Kbps
9948  *      @ipg: the interpacket delay in tenths of nanoseconds
9949  *
9950  *      Return the current configuration of a HW Tx scheduler.
9951  */
9952 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9953                      unsigned int *ipg, bool sleep_ok)
9954 {
9955         unsigned int v, addr, bpt, cpt;
9956
9957         if (kbps) {
9958                 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9959                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9960                 if (sched & 1)
9961                         v >>= 16;
9962                 bpt = (v >> 8) & 0xff;
9963                 cpt = v & 0xff;
9964                 if (!cpt)
9965                         *kbps = 0;      /* scheduler disabled */
9966                 else {
9967                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9968                         *kbps = (v * bpt) / 125;
9969                 }
9970         }
9971         if (ipg) {
9972                 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9973                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9974                 if (sched & 1)
9975                         v >>= 16;
9976                 v &= 0xffff;
9977                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
9978         }
9979 }
9980
9981 /**
9982  *      t4_load_cfg - download config file
9983  *      @adap: the adapter
9984  *      @cfg_data: the cfg text file to write
9985  *      @size: text file size
9986  *
9987  *      Write the supplied config text file to the card's serial flash.
9988  */
9989 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9990 {
9991         int ret, i, n, cfg_addr;
9992         unsigned int addr;
9993         unsigned int flash_cfg_start_sec;
9994         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9995
9996         cfg_addr = t4_flash_cfg_addr(adap);
9997         if (cfg_addr < 0)
9998                 return cfg_addr;
9999
10000         addr = cfg_addr;
10001         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10002
10003         if (size > FLASH_CFG_MAX_SIZE) {
10004                 CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10005                        FLASH_CFG_MAX_SIZE);
10006                 return -EFBIG;
10007         }
10008
10009         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
10010                          sf_sec_size);
10011         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10012                                      flash_cfg_start_sec + i - 1);
10013         /*
10014          * If size == 0 then we're simply erasing the FLASH sectors associated
10015          * with the on-adapter Firmware Configuration File.
10016          */
10017         if (ret || size == 0)
10018                 goto out;
10019
10020         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10021         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10022                 if ( (size - i) <  SF_PAGE_SIZE)
10023                         n = size - i;
10024                 else
10025                         n = SF_PAGE_SIZE;
10026                 ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10027                 if (ret)
10028                         goto out;
10029
10030                 addr += SF_PAGE_SIZE;
10031                 cfg_data += SF_PAGE_SIZE;
10032         }
10033
10034 out:
10035         if (ret)
10036                 CH_ERR(adap, "config file %s failed %d\n",
10037                        (size == 0 ? "clear" : "download"), ret);
10038         return ret;
10039 }
10040
10041 /**
10042  *      t5_fw_init_extern_mem - initialize the external memory
10043  *      @adap: the adapter
10044  *
10045  *      Initializes the external memory on T5.
10046  */
10047 int t5_fw_init_extern_mem(struct adapter *adap)
10048 {
10049         u32 params[1], val[1];
10050         int ret;
10051
10052         if (!is_t5(adap))
10053                 return 0;
10054
10055         val[0] = 0xff; /* Initialize all MCs */
10056         params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10057                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10058         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10059                         FW_CMD_MAX_TIMEOUT);
10060
10061         return ret;
10062 }
10063
10064 /* BIOS boot headers */
10065 typedef struct pci_expansion_rom_header {
10066         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
10067         u8      reserved[22]; /* Reserved per processor Architecture data */
10068         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
10069 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10070
10071 /* Legacy PCI Expansion ROM Header */
10072 typedef struct legacy_pci_expansion_rom_header {
10073         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
10074         u8      size512; /* Current Image Size in units of 512 bytes */
10075         u8      initentry_point[4];
10076         u8      cksum; /* Checksum computed on the entire Image */
10077         u8      reserved[16]; /* Reserved */
10078         u8      pcir_offset[2]; /* Offset to PCI Data Struture */
10079 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10080
10081 /* EFI PCI Expansion ROM Header */
10082 typedef struct efi_pci_expansion_rom_header {
10083         u8      signature[2]; // ROM signature. The value 0xaa55
10084         u8      initialization_size[2]; /* Units 512. Includes this header */
10085         u8      efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10086         u8      efi_subsystem[2]; /* Subsystem value for EFI image header */
10087         u8      efi_machine_type[2]; /* Machine type from EFI image header */
10088         u8      compression_type[2]; /* Compression type. */
10089                 /*
10090                  * Compression type definition
10091                  * 0x0: uncompressed
10092                  * 0x1: Compressed
10093                  * 0x2-0xFFFF: Reserved
10094                  */
10095         u8      reserved[8]; /* Reserved */
10096         u8      efi_image_header_offset[2]; /* Offset to EFI Image */
10097         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
10098 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10099
10100 /* PCI Data Structure Format */
10101 typedef struct pcir_data_structure { /* PCI Data Structure */
10102         u8      signature[4]; /* Signature. The string "PCIR" */
10103         u8      vendor_id[2]; /* Vendor Identification */
10104         u8      device_id[2]; /* Device Identification */
10105         u8      vital_product[2]; /* Pointer to Vital Product Data */
10106         u8      length[2]; /* PCIR Data Structure Length */
10107         u8      revision; /* PCIR Data Structure Revision */
10108         u8      class_code[3]; /* Class Code */
10109         u8      image_length[2]; /* Image Length. Multiple of 512B */
10110         u8      code_revision[2]; /* Revision Level of Code/Data */
10111         u8      code_type; /* Code Type. */
10112                 /*
10113                  * PCI Expansion ROM Code Types
10114                  * 0x00: Intel IA-32, PC-AT compatible. Legacy
10115                  * 0x01: Open Firmware standard for PCI. FCODE
10116                  * 0x02: Hewlett-Packard PA RISC. HP reserved
10117                  * 0x03: EFI Image. EFI
10118                  * 0x04-0xFF: Reserved.
10119                  */
10120         u8      indicator; /* Indicator. Identifies the last image in the ROM */
10121         u8      reserved[2]; /* Reserved */
10122 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10123
10124 /* BOOT constants */
10125 enum {
10126         BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10127         BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10128         BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10129         BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10130         BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10131         VENDOR_ID = 0x1425, /* Vendor ID */
10132         PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10133 };
10134
10135 /*
10136  *      modify_device_id - Modifies the device ID of the Boot BIOS image
10137  *      @adatper: the device ID to write.
10138  *      @boot_data: the boot image to modify.
10139  *
10140  *      Write the supplied device ID to the boot BIOS image.
10141  */
10142 static void modify_device_id(int device_id, u8 *boot_data)
10143 {
10144         legacy_pci_exp_rom_header_t *header;
10145         pcir_data_t *pcir_header;
10146         u32 cur_header = 0;
10147
10148         /*
10149          * Loop through all chained images and change the device ID's
10150          */
10151         while (1) {
10152                 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10153                 pcir_header = (pcir_data_t *) &boot_data[cur_header +
10154                               le16_to_cpu(*(u16*)header->pcir_offset)];
10155
10156                 /*
10157                  * Only modify the Device ID if code type is Legacy or HP.
10158                  * 0x00: Okay to modify
10159                  * 0x01: FCODE. Do not be modify
10160                  * 0x03: Okay to modify
10161                  * 0x04-0xFF: Do not modify
10162                  */
10163                 if (pcir_header->code_type == 0x00) {
10164                         u8 csum = 0;
10165                         int i;
10166
10167                         /*
10168                          * Modify Device ID to match current adatper
10169                          */
10170                         *(u16*) pcir_header->device_id = device_id;
10171
10172                         /*
10173                          * Set checksum temporarily to 0.
10174                          * We will recalculate it later.
10175                          */
10176                         header->cksum = 0x0;
10177
10178                         /*
10179                          * Calculate and update checksum
10180                          */
10181                         for (i = 0; i < (header->size512 * 512); i++)
10182                                 csum += (u8)boot_data[cur_header + i];
10183
10184                         /*
10185                          * Invert summed value to create the checksum
10186                          * Writing new checksum value directly to the boot data
10187                          */
10188                         boot_data[cur_header + 7] = -csum;
10189
10190                 } else if (pcir_header->code_type == 0x03) {
10191
10192                         /*
10193                          * Modify Device ID to match current adatper
10194                          */
10195                         *(u16*) pcir_header->device_id = device_id;
10196
10197                 }
10198
10199
10200                 /*
10201                  * Check indicator element to identify if this is the last
10202                  * image in the ROM.
10203                  */
10204                 if (pcir_header->indicator & 0x80)
10205                         break;
10206
10207                 /*
10208                  * Move header pointer up to the next image in the ROM.
10209                  */
10210                 cur_header += header->size512 * 512;
10211         }
10212 }
10213
10214 /*
10215  *      t4_load_boot - download boot flash
10216  *      @adapter: the adapter
10217  *      @boot_data: the boot image to write
10218  *      @boot_addr: offset in flash to write boot_data
10219  *      @size: image size
10220  *
10221  *      Write the supplied boot image to the card's serial flash.
10222  *      The boot image has the following sections: a 28-byte header and the
10223  *      boot image.
10224  */
10225 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10226                  unsigned int boot_addr, unsigned int size)
10227 {
10228         pci_exp_rom_header_t *header;
10229         int pcir_offset ;
10230         pcir_data_t *pcir_header;
10231         int ret, addr;
10232         uint16_t device_id;
10233         unsigned int i;
10234         unsigned int boot_sector = (boot_addr * 1024 );
10235         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10236
10237         /*
10238          * Make sure the boot image does not encroach on the firmware region
10239          */
10240         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10241                 CH_ERR(adap, "boot image encroaching on firmware region\n");
10242                 return -EFBIG;
10243         }
10244
10245         /*
10246          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10247          * and Boot configuration data sections. These 3 boot sections span
10248          * sectors 0 to 7 in flash and live right before the FW image location.
10249          */
10250         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10251                         sf_sec_size);
10252         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10253                                      (boot_sector >> 16) + i - 1);
10254
10255         /*
10256          * If size == 0 then we're simply erasing the FLASH sectors associated
10257          * with the on-adapter option ROM file
10258          */
10259         if (ret || (size == 0))
10260                 goto out;
10261
10262         /* Get boot header */
10263         header = (pci_exp_rom_header_t *)boot_data;
10264         pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10265         /* PCIR Data Structure */
10266         pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10267
10268         /*
10269          * Perform some primitive sanity testing to avoid accidentally
10270          * writing garbage over the boot sectors.  We ought to check for
10271          * more but it's not worth it for now ...
10272          */
10273         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10274                 CH_ERR(adap, "boot image too small/large\n");
10275                 return -EFBIG;
10276         }
10277
10278 #ifndef CHELSIO_T4_DIAGS
10279         /*
10280          * Check BOOT ROM header signature
10281          */
10282         if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10283                 CH_ERR(adap, "Boot image missing signature\n");
10284                 return -EINVAL;
10285         }
10286
10287         /*
10288          * Check PCI header signature
10289          */
10290         if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10291                 CH_ERR(adap, "PCI header missing signature\n");
10292                 return -EINVAL;
10293         }
10294
10295         /*
10296          * Check Vendor ID matches Chelsio ID
10297          */
10298         if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10299                 CH_ERR(adap, "Vendor ID missing signature\n");
10300                 return -EINVAL;
10301         }
10302 #endif
10303
10304         /*
10305          * Retrieve adapter's device ID
10306          */
10307         t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10308         /* Want to deal with PF 0 so I strip off PF 4 indicator */
10309         device_id = device_id & 0xf0ff;
10310
10311         /*
10312          * Check PCIE Device ID
10313          */
10314         if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10315                 /*
10316                  * Change the device ID in the Boot BIOS image to match
10317                  * the Device ID of the current adapter.
10318                  */
10319                 modify_device_id(device_id, boot_data);
10320         }
10321
10322         /*
10323          * Skip over the first SF_PAGE_SIZE worth of data and write it after
10324          * we finish copying the rest of the boot image. This will ensure
10325          * that the BIOS boot header will only be written if the boot image
10326          * was written in full.
10327          */
10328         addr = boot_sector;
10329         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10330                 addr += SF_PAGE_SIZE;
10331                 boot_data += SF_PAGE_SIZE;
10332                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10333                 if (ret)
10334                         goto out;
10335         }
10336
10337         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10338                              (const u8 *)header, 0);
10339
10340 out:
10341         if (ret)
10342                 CH_ERR(adap, "boot image download failed, error %d\n", ret);
10343         return ret;
10344 }
10345
10346 /*
10347  *      t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10348  *      @adapter: the adapter
10349  *
10350  *      Return the address within the flash where the OptionROM Configuration
10351  *      is stored, or an error if the device FLASH is too small to contain
10352  *      a OptionROM Configuration.
10353  */
10354 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10355 {
10356         /*
10357          * If the device FLASH isn't large enough to hold a Firmware
10358          * Configuration File, return an error.
10359          */
10360         if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10361                 return -ENOSPC;
10362
10363         return FLASH_BOOTCFG_START;
10364 }
10365
10366 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10367 {
10368         int ret, i, n, cfg_addr;
10369         unsigned int addr;
10370         unsigned int flash_cfg_start_sec;
10371         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10372
10373         cfg_addr = t4_flash_bootcfg_addr(adap);
10374         if (cfg_addr < 0)
10375                 return cfg_addr;
10376
10377         addr = cfg_addr;
10378         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10379
10380         if (size > FLASH_BOOTCFG_MAX_SIZE) {
10381                 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10382                         FLASH_BOOTCFG_MAX_SIZE);
10383                 return -EFBIG;
10384         }
10385
10386         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10387                          sf_sec_size);
10388         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10389                                         flash_cfg_start_sec + i - 1);
10390
10391         /*
10392          * If size == 0 then we're simply erasing the FLASH sectors associated
10393          * with the on-adapter OptionROM Configuration File.
10394          */
10395         if (ret || size == 0)
10396                 goto out;
10397
10398         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10399         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10400                 if ( (size - i) <  SF_PAGE_SIZE)
10401                         n = size - i;
10402                 else
10403                         n = SF_PAGE_SIZE;
10404                 ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10405                 if (ret)
10406                         goto out;
10407
10408                 addr += SF_PAGE_SIZE;
10409                 cfg_data += SF_PAGE_SIZE;
10410         }
10411
10412 out:
10413         if (ret)
10414                 CH_ERR(adap, "boot config data %s failed %d\n",
10415                                 (size == 0 ? "clear" : "download"), ret);
10416         return ret;
10417 }
10418
10419 /**
10420  *      t4_set_filter_mode - configure the optional components of filter tuples
10421  *      @adap: the adapter
10422  *      @mode_map: a bitmap selcting which optional filter components to enable
10423  *      @sleep_ok: if true we may sleep while awaiting command completion
10424  *
10425  *      Sets the filter mode by selecting the optional components to enable
10426  *      in filter tuples.  Returns 0 on success and a negative error if the
10427  *      requested mode needs more bits than are available for optional
10428  *      components.
10429  */
10430 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
10431                        bool sleep_ok)
10432 {
10433         static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
10434
10435         int i, nbits = 0;
10436
10437         for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
10438                 if (mode_map & (1 << i))
10439                         nbits += width[i];
10440         if (nbits > FILTER_OPT_LEN)
10441                 return -EINVAL;
10442         t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
10443         read_filter_mode_and_ingress_config(adap, sleep_ok);
10444
10445         return 0;
10446 }
10447
10448 /**
10449  *      t4_clr_port_stats - clear port statistics
10450  *      @adap: the adapter
10451  *      @idx: the port index
10452  *
10453  *      Clear HW statistics for the given port.
10454  */
10455 void t4_clr_port_stats(struct adapter *adap, int idx)
10456 {
10457         unsigned int i;
10458         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10459         u32 port_base_addr;
10460
10461         if (is_t4(adap))
10462                 port_base_addr = PORT_BASE(idx);
10463         else
10464                 port_base_addr = T5_PORT_BASE(idx);
10465
10466         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10467                         i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10468                 t4_write_reg(adap, port_base_addr + i, 0);
10469         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10470                         i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10471                 t4_write_reg(adap, port_base_addr + i, 0);
10472         for (i = 0; i < 4; i++)
10473                 if (bgmap & (1 << i)) {
10474                         t4_write_reg(adap,
10475                         A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10476                         t4_write_reg(adap,
10477                         A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10478                 }
10479 }
10480
10481 /**
10482  *      t4_i2c_rd - read I2C data from adapter
10483  *      @adap: the adapter
10484  *      @port: Port number if per-port device; <0 if not
10485  *      @devid: per-port device ID or absolute device ID
10486  *      @offset: byte offset into device I2C space
10487  *      @len: byte length of I2C space data
10488  *      @buf: buffer in which to return I2C data
10489  *
10490  *      Reads the I2C data from the indicated device and location.
10491  */
10492 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
10493               int port, unsigned int devid,
10494               unsigned int offset, unsigned int len,
10495               u8 *buf)
10496 {
10497         u32 ldst_addrspace;
10498         struct fw_ldst_cmd ldst;
10499         int ret;
10500
10501         if (port >= 4 ||
10502             devid >= 256 ||
10503             offset >= 256 ||
10504             len > sizeof ldst.u.i2c.data)
10505                 return -EINVAL;
10506
10507         memset(&ldst, 0, sizeof ldst);
10508         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10509         ldst.op_to_addrspace =
10510                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10511                             F_FW_CMD_REQUEST |
10512                             F_FW_CMD_READ |
10513                             ldst_addrspace);
10514         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10515         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10516         ldst.u.i2c.did = devid;
10517         ldst.u.i2c.boffset = offset;
10518         ldst.u.i2c.blen = len;
10519         ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10520         if (!ret)
10521                 memcpy(buf, ldst.u.i2c.data, len);
10522         return ret;
10523 }
10524
10525 /**
10526  *      t4_i2c_wr - write I2C data to adapter
10527  *      @adap: the adapter
10528  *      @port: Port number if per-port device; <0 if not
10529  *      @devid: per-port device ID or absolute device ID
10530  *      @offset: byte offset into device I2C space
10531  *      @len: byte length of I2C space data
10532  *      @buf: buffer containing new I2C data
10533  *
10534  *      Write the I2C data to the indicated device and location.
10535  */
10536 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
10537               int port, unsigned int devid,
10538               unsigned int offset, unsigned int len,
10539               u8 *buf)
10540 {
10541         u32 ldst_addrspace;
10542         struct fw_ldst_cmd ldst;
10543
10544         if (port >= 4 ||
10545             devid >= 256 ||
10546             offset >= 256 ||
10547             len > sizeof ldst.u.i2c.data)
10548                 return -EINVAL;
10549
10550         memset(&ldst, 0, sizeof ldst);
10551         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10552         ldst.op_to_addrspace =
10553                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10554                             F_FW_CMD_REQUEST |
10555                             F_FW_CMD_WRITE |
10556                             ldst_addrspace);
10557         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10558         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10559         ldst.u.i2c.did = devid;
10560         ldst.u.i2c.boffset = offset;
10561         ldst.u.i2c.blen = len;
10562         memcpy(ldst.u.i2c.data, buf, len);
10563         return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10564 }
10565
10566 /**
10567  *      t4_sge_ctxt_rd - read an SGE context through FW
10568  *      @adap: the adapter
10569  *      @mbox: mailbox to use for the FW command
10570  *      @cid: the context id
10571  *      @ctype: the context type
10572  *      @data: where to store the context data
10573  *
10574  *      Issues a FW command through the given mailbox to read an SGE context.
10575  */
10576 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10577                    enum ctxt_type ctype, u32 *data)
10578 {
10579         int ret;
10580         struct fw_ldst_cmd c;
10581
10582         if (ctype == CTXT_EGRESS)
10583                 ret = FW_LDST_ADDRSPC_SGE_EGRC;
10584         else if (ctype == CTXT_INGRESS)
10585                 ret = FW_LDST_ADDRSPC_SGE_INGC;
10586         else if (ctype == CTXT_FLM)
10587                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10588         else
10589                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10590
10591         memset(&c, 0, sizeof(c));
10592         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10593                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
10594                                         V_FW_LDST_CMD_ADDRSPACE(ret));
10595         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10596         c.u.idctxt.physid = cpu_to_be32(cid);
10597
10598         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10599         if (ret == 0) {
10600                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10601                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10602                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10603                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10604                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10605                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10606         }
10607         return ret;
10608 }
10609
10610 /**
10611  *      t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10612  *      @adap: the adapter
10613  *      @cid: the context id
10614  *      @ctype: the context type
10615  *      @data: where to store the context data
10616  *
10617  *      Reads an SGE context directly, bypassing FW.  This is only for
10618  *      debugging when FW is unavailable.
10619  */
10620 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10621                       u32 *data)
10622 {
10623         int i, ret;
10624
10625         t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
10626         ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
10627         if (!ret)
10628                 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
10629                         *data++ = t4_read_reg(adap, i);
10630         return ret;
10631 }
10632
10633 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
10634     int sleep_ok)
10635 {
10636         struct fw_sched_cmd cmd;
10637
10638         memset(&cmd, 0, sizeof(cmd));
10639         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10640                                       F_FW_CMD_REQUEST |
10641                                       F_FW_CMD_WRITE);
10642         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10643
10644         cmd.u.config.sc = FW_SCHED_SC_CONFIG;
10645         cmd.u.config.type = type;
10646         cmd.u.config.minmaxen = minmaxen;
10647
10648         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10649                                NULL, sleep_ok);
10650 }
10651
10652 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10653                     int rateunit, int ratemode, int channel, int cl,
10654                     int minrate, int maxrate, int weight, int pktsize,
10655                     int burstsize, int sleep_ok)
10656 {
10657         struct fw_sched_cmd cmd;
10658
10659         memset(&cmd, 0, sizeof(cmd));
10660         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10661                                       F_FW_CMD_REQUEST |
10662                                       F_FW_CMD_WRITE);
10663         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10664
10665         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10666         cmd.u.params.type = type;
10667         cmd.u.params.level = level;
10668         cmd.u.params.mode = mode;
10669         cmd.u.params.ch = channel;
10670         cmd.u.params.cl = cl;
10671         cmd.u.params.unit = rateunit;
10672         cmd.u.params.rate = ratemode;
10673         cmd.u.params.min = cpu_to_be32(minrate);
10674         cmd.u.params.max = cpu_to_be32(maxrate);
10675         cmd.u.params.weight = cpu_to_be16(weight);
10676         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10677         cmd.u.params.burstsize = cpu_to_be16(burstsize);
10678
10679         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10680                                NULL, sleep_ok);
10681 }
10682
10683 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
10684     unsigned int maxrate, int sleep_ok)
10685 {
10686         struct fw_sched_cmd cmd;
10687
10688         memset(&cmd, 0, sizeof(cmd));
10689         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10690                                       F_FW_CMD_REQUEST |
10691                                       F_FW_CMD_WRITE);
10692         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10693
10694         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10695         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10696         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
10697         cmd.u.params.ch = channel;
10698         cmd.u.params.rate = ratemode;           /* REL or ABS */
10699         cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
10700
10701         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10702                                NULL, sleep_ok);
10703 }
10704
10705 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
10706     int weight, int sleep_ok)
10707 {
10708         struct fw_sched_cmd cmd;
10709
10710         if (weight < 0 || weight > 100)
10711                 return -EINVAL;
10712
10713         memset(&cmd, 0, sizeof(cmd));
10714         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10715                                       F_FW_CMD_REQUEST |
10716                                       F_FW_CMD_WRITE);
10717         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10718
10719         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10720         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10721         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
10722         cmd.u.params.ch = channel;
10723         cmd.u.params.cl = cl;
10724         cmd.u.params.weight = cpu_to_be16(weight);
10725
10726         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10727                                NULL, sleep_ok);
10728 }
10729
10730 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
10731     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
10732 {
10733         struct fw_sched_cmd cmd;
10734
10735         memset(&cmd, 0, sizeof(cmd));
10736         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10737                                       F_FW_CMD_REQUEST |
10738                                       F_FW_CMD_WRITE);
10739         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10740
10741         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10742         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10743         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
10744         cmd.u.params.mode = mode;
10745         cmd.u.params.ch = channel;
10746         cmd.u.params.cl = cl;
10747         cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
10748         cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
10749         cmd.u.params.max = cpu_to_be32(maxrate);
10750         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10751
10752         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10753                                NULL, sleep_ok);
10754 }
10755
10756 /*
10757  *      t4_config_watchdog - configure (enable/disable) a watchdog timer
10758  *      @adapter: the adapter
10759  *      @mbox: mailbox to use for the FW command
10760  *      @pf: the PF owning the queue
10761  *      @vf: the VF owning the queue
10762  *      @timeout: watchdog timeout in ms
10763  *      @action: watchdog timer / action
10764  *
10765  *      There are separate watchdog timers for each possible watchdog
10766  *      action.  Configure one of the watchdog timers by setting a non-zero
10767  *      timeout.  Disable a watchdog timer by using a timeout of zero.
10768  */
10769 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
10770                        unsigned int pf, unsigned int vf,
10771                        unsigned int timeout, unsigned int action)
10772 {
10773         struct fw_watchdog_cmd wdog;
10774         unsigned int ticks;
10775
10776         /*
10777          * The watchdog command expects a timeout in units of 10ms so we need
10778          * to convert it here (via rounding) and force a minimum of one 10ms
10779          * "tick" if the timeout is non-zero but the conversion results in 0
10780          * ticks.
10781          */
10782         ticks = (timeout + 5)/10;
10783         if (timeout && !ticks)
10784                 ticks = 1;
10785
10786         memset(&wdog, 0, sizeof wdog);
10787         wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
10788                                      F_FW_CMD_REQUEST |
10789                                      F_FW_CMD_WRITE |
10790                                      V_FW_PARAMS_CMD_PFN(pf) |
10791                                      V_FW_PARAMS_CMD_VFN(vf));
10792         wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
10793         wdog.timeout = cpu_to_be32(ticks);
10794         wdog.action = cpu_to_be32(action);
10795
10796         return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
10797 }
10798
10799 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
10800 {
10801         struct fw_devlog_cmd devlog_cmd;
10802         int ret;
10803
10804         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10805         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10806                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
10807         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10808         ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10809                          sizeof(devlog_cmd), &devlog_cmd);
10810         if (ret)
10811                 return ret;
10812
10813         *level = devlog_cmd.level;
10814         return 0;
10815 }
10816
10817 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
10818 {
10819         struct fw_devlog_cmd devlog_cmd;
10820
10821         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10822         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10823                                              F_FW_CMD_REQUEST |
10824                                              F_FW_CMD_WRITE);
10825         devlog_cmd.level = level;
10826         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10827         return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10828                           sizeof(devlog_cmd), &devlog_cmd);
10829 }