]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/common/t4_hw.c
cxgbe(4): Use automatic cidx updates with ofld and ctrl queues.
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / common / t4_hw.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_inet.h"
33
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41
42 #undef msleep
43 #define msleep(x) do { \
44         if (cold) \
45                 DELAY((x) * 1000); \
46         else \
47                 pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49
50 /**
51  *      t4_wait_op_done_val - wait until an operation is completed
52  *      @adapter: the adapter performing the operation
53  *      @reg: the register to check for completion
54  *      @mask: a single-bit field within @reg that indicates completion
55  *      @polarity: the value of the field when the operation is completed
56  *      @attempts: number of check iterations
57  *      @delay: delay in usecs between iterations
58  *      @valp: where to store the value of the register at completion time
59  *
60  *      Wait until an operation is completed by checking a bit in a register
61  *      up to @attempts times.  If @valp is not NULL the value of the register
62  *      at the time it indicated completion is stored there.  Returns 0 if the
63  *      operation completes and -EAGAIN otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66                                int polarity, int attempts, int delay, u32 *valp)
67 {
68         while (1) {
69                 u32 val = t4_read_reg(adapter, reg);
70
71                 if (!!(val & mask) == polarity) {
72                         if (valp)
73                                 *valp = val;
74                         return 0;
75                 }
76                 if (--attempts == 0)
77                         return -EAGAIN;
78                 if (delay)
79                         udelay(delay);
80         }
81 }
82
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84                                   int polarity, int attempts, int delay)
85 {
86         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87                                    delay, NULL);
88 }
89
90 /**
91  *      t4_set_reg_field - set a register field to a value
92  *      @adapter: the adapter to program
93  *      @addr: the register address
94  *      @mask: specifies the portion of the register to modify
95  *      @val: the new value for the register field
96  *
97  *      Sets a register field specified by the supplied mask to the
98  *      given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101                       u32 val)
102 {
103         u32 v = t4_read_reg(adapter, addr) & ~mask;
104
105         t4_write_reg(adapter, addr, v | val);
106         (void) t4_read_reg(adapter, addr);      /* flush */
107 }
108
109 /**
110  *      t4_read_indirect - read indirectly addressed registers
111  *      @adap: the adapter
112  *      @addr_reg: register holding the indirect address
113  *      @data_reg: register holding the value of the indirect register
114  *      @vals: where the read register values are stored
115  *      @nregs: how many indirect registers to read
116  *      @start_idx: index of first indirect register to read
117  *
118  *      Reads registers that are accessed indirectly through an address/data
119  *      register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122                              unsigned int data_reg, u32 *vals,
123                              unsigned int nregs, unsigned int start_idx)
124 {
125         while (nregs--) {
126                 t4_write_reg(adap, addr_reg, start_idx);
127                 *vals++ = t4_read_reg(adap, data_reg);
128                 start_idx++;
129         }
130 }
131
132 /**
133  *      t4_write_indirect - write indirectly addressed registers
134  *      @adap: the adapter
135  *      @addr_reg: register holding the indirect addresses
136  *      @data_reg: register holding the value for the indirect registers
137  *      @vals: values to write
138  *      @nregs: how many indirect registers to write
139  *      @start_idx: address of first indirect register to write
140  *
141  *      Writes a sequential block of registers that are accessed indirectly
142  *      through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145                        unsigned int data_reg, const u32 *vals,
146                        unsigned int nregs, unsigned int start_idx)
147 {
148         while (nregs--) {
149                 t4_write_reg(adap, addr_reg, start_idx++);
150                 t4_write_reg(adap, data_reg, *vals++);
151         }
152 }
153
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166         u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167         u32 val;
168
169         if (chip_id(adap) <= CHELSIO_T5)
170                 req |= F_ENABLE;
171         else
172                 req |= F_T6_ENABLE;
173
174         if (is_t4(adap))
175                 req |= F_LOCALCFG;
176
177         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178         val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179
180         /*
181          * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182          * Configuration Space read.  (None of the other fields matter when
183          * F_ENABLE is 0 so a simple register write is easier than a
184          * read-modify-write via t4_set_reg_field().)
185          */
186         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187
188         return val;
189 }
190
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201         static const char *const reason[] = {
202                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
203                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
204                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
205                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
206                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
208                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
209                 "Reserved",                     /* reserved */
210         };
211         u32 pcie_fw;
212
213         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214         if (pcie_fw & F_PCIE_FW_ERR)
215                 CH_ERR(adap, "Firmware reports adapter error: %s\n",
216                         reason[G_PCIE_FW_EVAL(pcie_fw)]);
217 }
218
219 /*
220  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
221  */
222 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
223                          u32 mbox_addr)
224 {
225         for ( ; nflit; nflit--, mbox_addr += 8)
226                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
227 }
228
229 /*
230  * Handle a FW assertion reported in a mailbox.
231  */
232 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
233 {
234         CH_ALERT(adap,
235                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
236                   asrt->u.assert.filename_0_7,
237                   be32_to_cpu(asrt->u.assert.line),
238                   be32_to_cpu(asrt->u.assert.x),
239                   be32_to_cpu(asrt->u.assert.y));
240 }
241
242 struct port_tx_state {
243         uint64_t rx_pause;
244         uint64_t tx_frames;
245 };
246
247 static void
248 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
249 {
250         uint32_t rx_pause_reg, tx_frames_reg;
251
252         if (is_t4(sc)) {
253                 tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
254                 rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
255         } else {
256                 tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
257                 rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
258         }
259
260         tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
261         tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
262 }
263
264 static void
265 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
266 {
267         int i;
268
269         for_each_port(sc, i)
270                 read_tx_state_one(sc, i, &tx_state[i]);
271 }
272
273 static void
274 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
275 {
276         uint32_t port_ctl_reg;
277         uint64_t tx_frames, rx_pause;
278         int i;
279
280         for_each_port(sc, i) {
281                 rx_pause = tx_state[i].rx_pause;
282                 tx_frames = tx_state[i].tx_frames;
283                 read_tx_state_one(sc, i, &tx_state[i]); /* update */
284
285                 if (is_t4(sc))
286                         port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
287                 else
288                         port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
289                 if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
290                     rx_pause != tx_state[i].rx_pause &&
291                     tx_frames == tx_state[i].tx_frames) {
292                         t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
293                         mdelay(1);
294                         t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
295                 }
296         }
297 }
298
299 #define X_CIM_PF_NOACCESS 0xeeeeeeee
300 /**
301  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
302  *      @adap: the adapter
303  *      @mbox: index of the mailbox to use
304  *      @cmd: the command to write
305  *      @size: command length in bytes
306  *      @rpl: where to optionally store the reply
307  *      @sleep_ok: if true we may sleep while awaiting command completion
308  *      @timeout: time to wait for command to finish before timing out
309  *              (negative implies @sleep_ok=false)
310  *
311  *      Sends the given command to FW through the selected mailbox and waits
312  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
313  *      store the FW's reply to the command.  The command and its optional
314  *      reply are of the same length.  Some FW commands like RESET and
315  *      INITIALIZE can take a considerable amount of time to execute.
316  *      @sleep_ok determines whether we may sleep while awaiting the response.
317  *      If sleeping is allowed we use progressive backoff otherwise we spin.
318  *      Note that passing in a negative @timeout is an alternate mechanism
319  *      for specifying @sleep_ok=false.  This is useful when a higher level
320  *      interface allows for specification of @timeout but not @sleep_ok ...
321  *
322  *      The return value is 0 on success or a negative errno on failure.  A
323  *      failure can happen either because we are not able to execute the
324  *      command or FW executes it but signals an error.  In the latter case
325  *      the return value is the error code indicated by FW (negated).
326  */
327 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
328                             int size, void *rpl, bool sleep_ok, int timeout)
329 {
330         /*
331          * We delay in small increments at first in an effort to maintain
332          * responsiveness for simple, fast executing commands but then back
333          * off to larger delays to a maximum retry delay.
334          */
335         static const int delay[] = {
336                 1, 1, 3, 5, 10, 10, 20, 50, 100
337         };
338         u32 v;
339         u64 res;
340         int i, ms, delay_idx, ret, next_tx_check;
341         const __be64 *p = cmd;
342         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
343         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
344         u32 ctl;
345         __be64 cmd_rpl[MBOX_LEN/8];
346         u32 pcie_fw;
347         struct port_tx_state tx_state[MAX_NPORTS];
348
349         if (adap->flags & CHK_MBOX_ACCESS)
350                 ASSERT_SYNCHRONIZED_OP(adap);
351
352         if ((size & 15) || size > MBOX_LEN)
353                 return -EINVAL;
354
355         if (adap->flags & IS_VF) {
356                 if (is_t6(adap))
357                         data_reg = FW_T6VF_MBDATA_BASE_ADDR;
358                 else
359                         data_reg = FW_T4VF_MBDATA_BASE_ADDR;
360                 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
361         }
362
363         /*
364          * If we have a negative timeout, that implies that we can't sleep.
365          */
366         if (timeout < 0) {
367                 sleep_ok = false;
368                 timeout = -timeout;
369         }
370
371         /*
372          * Attempt to gain access to the mailbox.
373          */
374         for (i = 0; i < 4; i++) {
375                 ctl = t4_read_reg(adap, ctl_reg);
376                 v = G_MBOWNER(ctl);
377                 if (v != X_MBOWNER_NONE)
378                         break;
379         }
380
381         /*
382          * If we were unable to gain access, dequeue ourselves from the
383          * mailbox atomic access list and report the error to our caller.
384          */
385         if (v != X_MBOWNER_PL) {
386                 t4_report_fw_error(adap);
387                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
388                 return ret;
389         }
390
391         /*
392          * If we gain ownership of the mailbox and there's a "valid" message
393          * in it, this is likely an asynchronous error message from the
394          * firmware.  So we'll report that and then proceed on with attempting
395          * to issue our own command ... which may well fail if the error
396          * presaged the firmware crashing ...
397          */
398         if (ctl & F_MBMSGVALID) {
399                 CH_ERR(adap, "found VALID command in mbox %u: %016llx %016llx "
400                        "%016llx %016llx %016llx %016llx %016llx %016llx\n",
401                        mbox, (unsigned long long)t4_read_reg64(adap, data_reg),
402                        (unsigned long long)t4_read_reg64(adap, data_reg + 8),
403                        (unsigned long long)t4_read_reg64(adap, data_reg + 16),
404                        (unsigned long long)t4_read_reg64(adap, data_reg + 24),
405                        (unsigned long long)t4_read_reg64(adap, data_reg + 32),
406                        (unsigned long long)t4_read_reg64(adap, data_reg + 40),
407                        (unsigned long long)t4_read_reg64(adap, data_reg + 48),
408                        (unsigned long long)t4_read_reg64(adap, data_reg + 56));
409         }
410
411         /*
412          * Copy in the new mailbox command and send it on its way ...
413          */
414         for (i = 0; i < size; i += 8, p++)
415                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
416
417         if (adap->flags & IS_VF) {
418                 /*
419                  * For the VFs, the Mailbox Data "registers" are
420                  * actually backed by T4's "MA" interface rather than
421                  * PL Registers (as is the case for the PFs).  Because
422                  * these are in different coherency domains, the write
423                  * to the VF's PL-register-backed Mailbox Control can
424                  * race in front of the writes to the MA-backed VF
425                  * Mailbox Data "registers".  So we need to do a
426                  * read-back on at least one byte of the VF Mailbox
427                  * Data registers before doing the write to the VF
428                  * Mailbox Control register.
429                  */
430                 t4_read_reg(adap, data_reg);
431         }
432
433         CH_DUMP_MBOX(adap, mbox, data_reg);
434
435         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
436         read_tx_state(adap, &tx_state[0]);      /* also flushes the write_reg */
437         next_tx_check = 1000;
438         delay_idx = 0;
439         ms = delay[0];
440
441         /*
442          * Loop waiting for the reply; bail out if we time out or the firmware
443          * reports an error.
444          */
445         pcie_fw = 0;
446         for (i = 0; i < timeout; i += ms) {
447                 if (!(adap->flags & IS_VF)) {
448                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
449                         if (pcie_fw & F_PCIE_FW_ERR)
450                                 break;
451                 }
452
453                 if (i >= next_tx_check) {
454                         check_tx_state(adap, &tx_state[0]);
455                         next_tx_check = i + 1000;
456                 }
457
458                 if (sleep_ok) {
459                         ms = delay[delay_idx];  /* last element may repeat */
460                         if (delay_idx < ARRAY_SIZE(delay) - 1)
461                                 delay_idx++;
462                         msleep(ms);
463                 } else {
464                         mdelay(ms);
465                 }
466
467                 v = t4_read_reg(adap, ctl_reg);
468                 if (v == X_CIM_PF_NOACCESS)
469                         continue;
470                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
471                         if (!(v & F_MBMSGVALID)) {
472                                 t4_write_reg(adap, ctl_reg,
473                                              V_MBOWNER(X_MBOWNER_NONE));
474                                 continue;
475                         }
476
477                         /*
478                          * Retrieve the command reply and release the mailbox.
479                          */
480                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
481                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
482
483                         CH_DUMP_MBOX(adap, mbox, data_reg);
484
485                         res = be64_to_cpu(cmd_rpl[0]);
486                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
487                                 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
488                                 res = V_FW_CMD_RETVAL(EIO);
489                         } else if (rpl)
490                                 memcpy(rpl, cmd_rpl, size);
491                         return -G_FW_CMD_RETVAL((int)res);
492                 }
493         }
494
495         /*
496          * We timed out waiting for a reply to our mailbox command.  Report
497          * the error and also check to see if the firmware reported any
498          * errors ...
499          */
500         ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
501         CH_ERR(adap, "command %#x in mailbox %d timed out\n",
502                *(const u8 *)cmd, mbox);
503
504         /* If DUMP_MBOX is set the mbox has already been dumped */
505         if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
506                 p = cmd;
507                 CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
508                     "%016llx %016llx %016llx %016llx\n",
509                     (unsigned long long)be64_to_cpu(p[0]),
510                     (unsigned long long)be64_to_cpu(p[1]),
511                     (unsigned long long)be64_to_cpu(p[2]),
512                     (unsigned long long)be64_to_cpu(p[3]),
513                     (unsigned long long)be64_to_cpu(p[4]),
514                     (unsigned long long)be64_to_cpu(p[5]),
515                     (unsigned long long)be64_to_cpu(p[6]),
516                     (unsigned long long)be64_to_cpu(p[7]));
517         }
518
519         t4_report_fw_error(adap);
520         t4_fatal_err(adap);
521         return ret;
522 }
523
524 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
525                     void *rpl, bool sleep_ok)
526 {
527                 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
528                                                sleep_ok, FW_CMD_MAX_TIMEOUT);
529
530 }
531
532 static int t4_edc_err_read(struct adapter *adap, int idx)
533 {
534         u32 edc_ecc_err_addr_reg;
535         u32 edc_bist_status_rdata_reg;
536
537         if (is_t4(adap)) {
538                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
539                 return 0;
540         }
541         if (idx != MEM_EDC0 && idx != MEM_EDC1) {
542                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
543                 return 0;
544         }
545
546         edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
547         edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
548
549         CH_WARN(adap,
550                 "edc%d err addr 0x%x: 0x%x.\n",
551                 idx, edc_ecc_err_addr_reg,
552                 t4_read_reg(adap, edc_ecc_err_addr_reg));
553         CH_WARN(adap,
554                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
555                 edc_bist_status_rdata_reg,
556                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
557                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
558                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
559                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
560                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
561                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
562                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
563                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
564                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
565
566         return 0;
567 }
568
569 /**
570  *      t4_mc_read - read from MC through backdoor accesses
571  *      @adap: the adapter
572  *      @idx: which MC to access
573  *      @addr: address of first byte requested
574  *      @data: 64 bytes of data containing the requested address
575  *      @ecc: where to store the corresponding 64-bit ECC word
576  *
577  *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
578  *      that covers the requested address @addr.  If @parity is not %NULL it
579  *      is assigned the 64-bit ECC word for the read data.
580  */
581 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
582 {
583         int i;
584         u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
585         u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
586
587         if (is_t4(adap)) {
588                 mc_bist_cmd_reg = A_MC_BIST_CMD;
589                 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
590                 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
591                 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
592                 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
593         } else {
594                 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
595                 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
596                 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
597                 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
598                                                   idx);
599                 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
600                                                   idx);
601         }
602
603         if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
604                 return -EBUSY;
605         t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
606         t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
607         t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
608         t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
609                      F_START_BIST | V_BIST_CMD_GAP(1));
610         i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
611         if (i)
612                 return i;
613
614 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
615
616         for (i = 15; i >= 0; i--)
617                 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
618         if (ecc)
619                 *ecc = t4_read_reg64(adap, MC_DATA(16));
620 #undef MC_DATA
621         return 0;
622 }
623
624 /**
625  *      t4_edc_read - read from EDC through backdoor accesses
626  *      @adap: the adapter
627  *      @idx: which EDC to access
628  *      @addr: address of first byte requested
629  *      @data: 64 bytes of data containing the requested address
630  *      @ecc: where to store the corresponding 64-bit ECC word
631  *
632  *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
633  *      that covers the requested address @addr.  If @parity is not %NULL it
634  *      is assigned the 64-bit ECC word for the read data.
635  */
636 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
637 {
638         int i;
639         u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
640         u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
641
642         if (is_t4(adap)) {
643                 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
644                 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
645                 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
646                 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
647                                                     idx);
648                 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
649                                                     idx);
650         } else {
651 /*
652  * These macro are missing in t4_regs.h file.
653  * Added temporarily for testing.
654  */
655 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
656 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
657                 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
658                 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
659                 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
660                 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
661                                                     idx);
662                 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
663                                                     idx);
664 #undef EDC_REG_T5
665 #undef EDC_STRIDE_T5
666         }
667
668         if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
669                 return -EBUSY;
670         t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
671         t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
672         t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
673         t4_write_reg(adap, edc_bist_cmd_reg,
674                      V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
675         i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
676         if (i)
677                 return i;
678
679 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
680
681         for (i = 15; i >= 0; i--)
682                 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
683         if (ecc)
684                 *ecc = t4_read_reg64(adap, EDC_DATA(16));
685 #undef EDC_DATA
686         return 0;
687 }
688
689 /**
690  *      t4_mem_read - read EDC 0, EDC 1 or MC into buffer
691  *      @adap: the adapter
692  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
693  *      @addr: address within indicated memory type
694  *      @len: amount of memory to read
695  *      @buf: host memory buffer
696  *
697  *      Reads an [almost] arbitrary memory region in the firmware: the
698  *      firmware memory address, length and host buffer must be aligned on
699  *      32-bit boudaries.  The memory is returned as a raw byte sequence from
700  *      the firmware's memory.  If this memory contains data structures which
701  *      contain multi-byte integers, it's the callers responsibility to
702  *      perform appropriate byte order conversions.
703  */
704 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
705                 __be32 *buf)
706 {
707         u32 pos, start, end, offset;
708         int ret;
709
710         /*
711          * Argument sanity checks ...
712          */
713         if ((addr & 0x3) || (len & 0x3))
714                 return -EINVAL;
715
716         /*
717          * The underlaying EDC/MC read routines read 64 bytes at a time so we
718          * need to round down the start and round up the end.  We'll start
719          * copying out of the first line at (addr - start) a word at a time.
720          */
721         start = rounddown2(addr, 64);
722         end = roundup2(addr + len, 64);
723         offset = (addr - start)/sizeof(__be32);
724
725         for (pos = start; pos < end; pos += 64, offset = 0) {
726                 __be32 data[16];
727
728                 /*
729                  * Read the chip's memory block and bail if there's an error.
730                  */
731                 if ((mtype == MEM_MC) || (mtype == MEM_MC1))
732                         ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
733                 else
734                         ret = t4_edc_read(adap, mtype, pos, data, NULL);
735                 if (ret)
736                         return ret;
737
738                 /*
739                  * Copy the data into the caller's memory buffer.
740                  */
741                 while (offset < 16 && len > 0) {
742                         *buf++ = data[offset++];
743                         len -= sizeof(__be32);
744                 }
745         }
746
747         return 0;
748 }
749
750 /*
751  * Return the specified PCI-E Configuration Space register from our Physical
752  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
753  * since we prefer to let the firmware own all of these registers, but if that
754  * fails we go for it directly ourselves.
755  */
756 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
757 {
758
759         /*
760          * If fw_attach != 0, construct and send the Firmware LDST Command to
761          * retrieve the specified PCI-E Configuration Space register.
762          */
763         if (drv_fw_attach != 0) {
764                 struct fw_ldst_cmd ldst_cmd;
765                 int ret;
766
767                 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
768                 ldst_cmd.op_to_addrspace =
769                         cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
770                                     F_FW_CMD_REQUEST |
771                                     F_FW_CMD_READ |
772                                     V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
773                 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
774                 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
775                 ldst_cmd.u.pcie.ctrl_to_fn =
776                         (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
777                 ldst_cmd.u.pcie.r = reg;
778
779                 /*
780                  * If the LDST Command succeeds, return the result, otherwise
781                  * fall through to reading it directly ourselves ...
782                  */
783                 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
784                                  &ldst_cmd);
785                 if (ret == 0)
786                         return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
787
788                 CH_WARN(adap, "Firmware failed to return "
789                         "Configuration Space register %d, err = %d\n",
790                         reg, -ret);
791         }
792
793         /*
794          * Read the desired Configuration Space register via the PCI-E
795          * Backdoor mechanism.
796          */
797         return t4_hw_pci_read_cfg4(adap, reg);
798 }
799
800 /**
801  *      t4_get_regs_len - return the size of the chips register set
802  *      @adapter: the adapter
803  *
804  *      Returns the size of the chip's BAR0 register space.
805  */
806 unsigned int t4_get_regs_len(struct adapter *adapter)
807 {
808         unsigned int chip_version = chip_id(adapter);
809
810         switch (chip_version) {
811         case CHELSIO_T4:
812                 if (adapter->flags & IS_VF)
813                         return FW_T4VF_REGMAP_SIZE;
814                 return T4_REGMAP_SIZE;
815
816         case CHELSIO_T5:
817         case CHELSIO_T6:
818                 if (adapter->flags & IS_VF)
819                         return FW_T4VF_REGMAP_SIZE;
820                 return T5_REGMAP_SIZE;
821         }
822
823         CH_ERR(adapter,
824                 "Unsupported chip version %d\n", chip_version);
825         return 0;
826 }
827
828 /**
829  *      t4_get_regs - read chip registers into provided buffer
830  *      @adap: the adapter
831  *      @buf: register buffer
832  *      @buf_size: size (in bytes) of register buffer
833  *
834  *      If the provided register buffer isn't large enough for the chip's
835  *      full register range, the register dump will be truncated to the
836  *      register buffer's size.
837  */
838 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
839 {
840         static const unsigned int t4_reg_ranges[] = {
841                 0x1008, 0x1108,
842                 0x1180, 0x1184,
843                 0x1190, 0x1194,
844                 0x11a0, 0x11a4,
845                 0x11b0, 0x11b4,
846                 0x11fc, 0x123c,
847                 0x1300, 0x173c,
848                 0x1800, 0x18fc,
849                 0x3000, 0x30d8,
850                 0x30e0, 0x30e4,
851                 0x30ec, 0x5910,
852                 0x5920, 0x5924,
853                 0x5960, 0x5960,
854                 0x5968, 0x5968,
855                 0x5970, 0x5970,
856                 0x5978, 0x5978,
857                 0x5980, 0x5980,
858                 0x5988, 0x5988,
859                 0x5990, 0x5990,
860                 0x5998, 0x5998,
861                 0x59a0, 0x59d4,
862                 0x5a00, 0x5ae0,
863                 0x5ae8, 0x5ae8,
864                 0x5af0, 0x5af0,
865                 0x5af8, 0x5af8,
866                 0x6000, 0x6098,
867                 0x6100, 0x6150,
868                 0x6200, 0x6208,
869                 0x6240, 0x6248,
870                 0x6280, 0x62b0,
871                 0x62c0, 0x6338,
872                 0x6370, 0x638c,
873                 0x6400, 0x643c,
874                 0x6500, 0x6524,
875                 0x6a00, 0x6a04,
876                 0x6a14, 0x6a38,
877                 0x6a60, 0x6a70,
878                 0x6a78, 0x6a78,
879                 0x6b00, 0x6b0c,
880                 0x6b1c, 0x6b84,
881                 0x6bf0, 0x6bf8,
882                 0x6c00, 0x6c0c,
883                 0x6c1c, 0x6c84,
884                 0x6cf0, 0x6cf8,
885                 0x6d00, 0x6d0c,
886                 0x6d1c, 0x6d84,
887                 0x6df0, 0x6df8,
888                 0x6e00, 0x6e0c,
889                 0x6e1c, 0x6e84,
890                 0x6ef0, 0x6ef8,
891                 0x6f00, 0x6f0c,
892                 0x6f1c, 0x6f84,
893                 0x6ff0, 0x6ff8,
894                 0x7000, 0x700c,
895                 0x701c, 0x7084,
896                 0x70f0, 0x70f8,
897                 0x7100, 0x710c,
898                 0x711c, 0x7184,
899                 0x71f0, 0x71f8,
900                 0x7200, 0x720c,
901                 0x721c, 0x7284,
902                 0x72f0, 0x72f8,
903                 0x7300, 0x730c,
904                 0x731c, 0x7384,
905                 0x73f0, 0x73f8,
906                 0x7400, 0x7450,
907                 0x7500, 0x7530,
908                 0x7600, 0x760c,
909                 0x7614, 0x761c,
910                 0x7680, 0x76cc,
911                 0x7700, 0x7798,
912                 0x77c0, 0x77fc,
913                 0x7900, 0x79fc,
914                 0x7b00, 0x7b58,
915                 0x7b60, 0x7b84,
916                 0x7b8c, 0x7c38,
917                 0x7d00, 0x7d38,
918                 0x7d40, 0x7d80,
919                 0x7d8c, 0x7ddc,
920                 0x7de4, 0x7e04,
921                 0x7e10, 0x7e1c,
922                 0x7e24, 0x7e38,
923                 0x7e40, 0x7e44,
924                 0x7e4c, 0x7e78,
925                 0x7e80, 0x7ea4,
926                 0x7eac, 0x7edc,
927                 0x7ee8, 0x7efc,
928                 0x8dc0, 0x8e04,
929                 0x8e10, 0x8e1c,
930                 0x8e30, 0x8e78,
931                 0x8ea0, 0x8eb8,
932                 0x8ec0, 0x8f6c,
933                 0x8fc0, 0x9008,
934                 0x9010, 0x9058,
935                 0x9060, 0x9060,
936                 0x9068, 0x9074,
937                 0x90fc, 0x90fc,
938                 0x9400, 0x9408,
939                 0x9410, 0x9458,
940                 0x9600, 0x9600,
941                 0x9608, 0x9638,
942                 0x9640, 0x96bc,
943                 0x9800, 0x9808,
944                 0x9820, 0x983c,
945                 0x9850, 0x9864,
946                 0x9c00, 0x9c6c,
947                 0x9c80, 0x9cec,
948                 0x9d00, 0x9d6c,
949                 0x9d80, 0x9dec,
950                 0x9e00, 0x9e6c,
951                 0x9e80, 0x9eec,
952                 0x9f00, 0x9f6c,
953                 0x9f80, 0x9fec,
954                 0xd004, 0xd004,
955                 0xd010, 0xd03c,
956                 0xdfc0, 0xdfe0,
957                 0xe000, 0xea7c,
958                 0xf000, 0x11110,
959                 0x11118, 0x11190,
960                 0x19040, 0x1906c,
961                 0x19078, 0x19080,
962                 0x1908c, 0x190e4,
963                 0x190f0, 0x190f8,
964                 0x19100, 0x19110,
965                 0x19120, 0x19124,
966                 0x19150, 0x19194,
967                 0x1919c, 0x191b0,
968                 0x191d0, 0x191e8,
969                 0x19238, 0x1924c,
970                 0x193f8, 0x1943c,
971                 0x1944c, 0x19474,
972                 0x19490, 0x194e0,
973                 0x194f0, 0x194f8,
974                 0x19800, 0x19c08,
975                 0x19c10, 0x19c90,
976                 0x19ca0, 0x19ce4,
977                 0x19cf0, 0x19d40,
978                 0x19d50, 0x19d94,
979                 0x19da0, 0x19de8,
980                 0x19df0, 0x19e40,
981                 0x19e50, 0x19e90,
982                 0x19ea0, 0x19f4c,
983                 0x1a000, 0x1a004,
984                 0x1a010, 0x1a06c,
985                 0x1a0b0, 0x1a0e4,
986                 0x1a0ec, 0x1a0f4,
987                 0x1a100, 0x1a108,
988                 0x1a114, 0x1a120,
989                 0x1a128, 0x1a130,
990                 0x1a138, 0x1a138,
991                 0x1a190, 0x1a1c4,
992                 0x1a1fc, 0x1a1fc,
993                 0x1e040, 0x1e04c,
994                 0x1e284, 0x1e28c,
995                 0x1e2c0, 0x1e2c0,
996                 0x1e2e0, 0x1e2e0,
997                 0x1e300, 0x1e384,
998                 0x1e3c0, 0x1e3c8,
999                 0x1e440, 0x1e44c,
1000                 0x1e684, 0x1e68c,
1001                 0x1e6c0, 0x1e6c0,
1002                 0x1e6e0, 0x1e6e0,
1003                 0x1e700, 0x1e784,
1004                 0x1e7c0, 0x1e7c8,
1005                 0x1e840, 0x1e84c,
1006                 0x1ea84, 0x1ea8c,
1007                 0x1eac0, 0x1eac0,
1008                 0x1eae0, 0x1eae0,
1009                 0x1eb00, 0x1eb84,
1010                 0x1ebc0, 0x1ebc8,
1011                 0x1ec40, 0x1ec4c,
1012                 0x1ee84, 0x1ee8c,
1013                 0x1eec0, 0x1eec0,
1014                 0x1eee0, 0x1eee0,
1015                 0x1ef00, 0x1ef84,
1016                 0x1efc0, 0x1efc8,
1017                 0x1f040, 0x1f04c,
1018                 0x1f284, 0x1f28c,
1019                 0x1f2c0, 0x1f2c0,
1020                 0x1f2e0, 0x1f2e0,
1021                 0x1f300, 0x1f384,
1022                 0x1f3c0, 0x1f3c8,
1023                 0x1f440, 0x1f44c,
1024                 0x1f684, 0x1f68c,
1025                 0x1f6c0, 0x1f6c0,
1026                 0x1f6e0, 0x1f6e0,
1027                 0x1f700, 0x1f784,
1028                 0x1f7c0, 0x1f7c8,
1029                 0x1f840, 0x1f84c,
1030                 0x1fa84, 0x1fa8c,
1031                 0x1fac0, 0x1fac0,
1032                 0x1fae0, 0x1fae0,
1033                 0x1fb00, 0x1fb84,
1034                 0x1fbc0, 0x1fbc8,
1035                 0x1fc40, 0x1fc4c,
1036                 0x1fe84, 0x1fe8c,
1037                 0x1fec0, 0x1fec0,
1038                 0x1fee0, 0x1fee0,
1039                 0x1ff00, 0x1ff84,
1040                 0x1ffc0, 0x1ffc8,
1041                 0x20000, 0x2002c,
1042                 0x20100, 0x2013c,
1043                 0x20190, 0x201a0,
1044                 0x201a8, 0x201b8,
1045                 0x201c4, 0x201c8,
1046                 0x20200, 0x20318,
1047                 0x20400, 0x204b4,
1048                 0x204c0, 0x20528,
1049                 0x20540, 0x20614,
1050                 0x21000, 0x21040,
1051                 0x2104c, 0x21060,
1052                 0x210c0, 0x210ec,
1053                 0x21200, 0x21268,
1054                 0x21270, 0x21284,
1055                 0x212fc, 0x21388,
1056                 0x21400, 0x21404,
1057                 0x21500, 0x21500,
1058                 0x21510, 0x21518,
1059                 0x2152c, 0x21530,
1060                 0x2153c, 0x2153c,
1061                 0x21550, 0x21554,
1062                 0x21600, 0x21600,
1063                 0x21608, 0x2161c,
1064                 0x21624, 0x21628,
1065                 0x21630, 0x21634,
1066                 0x2163c, 0x2163c,
1067                 0x21700, 0x2171c,
1068                 0x21780, 0x2178c,
1069                 0x21800, 0x21818,
1070                 0x21820, 0x21828,
1071                 0x21830, 0x21848,
1072                 0x21850, 0x21854,
1073                 0x21860, 0x21868,
1074                 0x21870, 0x21870,
1075                 0x21878, 0x21898,
1076                 0x218a0, 0x218a8,
1077                 0x218b0, 0x218c8,
1078                 0x218d0, 0x218d4,
1079                 0x218e0, 0x218e8,
1080                 0x218f0, 0x218f0,
1081                 0x218f8, 0x21a18,
1082                 0x21a20, 0x21a28,
1083                 0x21a30, 0x21a48,
1084                 0x21a50, 0x21a54,
1085                 0x21a60, 0x21a68,
1086                 0x21a70, 0x21a70,
1087                 0x21a78, 0x21a98,
1088                 0x21aa0, 0x21aa8,
1089                 0x21ab0, 0x21ac8,
1090                 0x21ad0, 0x21ad4,
1091                 0x21ae0, 0x21ae8,
1092                 0x21af0, 0x21af0,
1093                 0x21af8, 0x21c18,
1094                 0x21c20, 0x21c20,
1095                 0x21c28, 0x21c30,
1096                 0x21c38, 0x21c38,
1097                 0x21c80, 0x21c98,
1098                 0x21ca0, 0x21ca8,
1099                 0x21cb0, 0x21cc8,
1100                 0x21cd0, 0x21cd4,
1101                 0x21ce0, 0x21ce8,
1102                 0x21cf0, 0x21cf0,
1103                 0x21cf8, 0x21d7c,
1104                 0x21e00, 0x21e04,
1105                 0x22000, 0x2202c,
1106                 0x22100, 0x2213c,
1107                 0x22190, 0x221a0,
1108                 0x221a8, 0x221b8,
1109                 0x221c4, 0x221c8,
1110                 0x22200, 0x22318,
1111                 0x22400, 0x224b4,
1112                 0x224c0, 0x22528,
1113                 0x22540, 0x22614,
1114                 0x23000, 0x23040,
1115                 0x2304c, 0x23060,
1116                 0x230c0, 0x230ec,
1117                 0x23200, 0x23268,
1118                 0x23270, 0x23284,
1119                 0x232fc, 0x23388,
1120                 0x23400, 0x23404,
1121                 0x23500, 0x23500,
1122                 0x23510, 0x23518,
1123                 0x2352c, 0x23530,
1124                 0x2353c, 0x2353c,
1125                 0x23550, 0x23554,
1126                 0x23600, 0x23600,
1127                 0x23608, 0x2361c,
1128                 0x23624, 0x23628,
1129                 0x23630, 0x23634,
1130                 0x2363c, 0x2363c,
1131                 0x23700, 0x2371c,
1132                 0x23780, 0x2378c,
1133                 0x23800, 0x23818,
1134                 0x23820, 0x23828,
1135                 0x23830, 0x23848,
1136                 0x23850, 0x23854,
1137                 0x23860, 0x23868,
1138                 0x23870, 0x23870,
1139                 0x23878, 0x23898,
1140                 0x238a0, 0x238a8,
1141                 0x238b0, 0x238c8,
1142                 0x238d0, 0x238d4,
1143                 0x238e0, 0x238e8,
1144                 0x238f0, 0x238f0,
1145                 0x238f8, 0x23a18,
1146                 0x23a20, 0x23a28,
1147                 0x23a30, 0x23a48,
1148                 0x23a50, 0x23a54,
1149                 0x23a60, 0x23a68,
1150                 0x23a70, 0x23a70,
1151                 0x23a78, 0x23a98,
1152                 0x23aa0, 0x23aa8,
1153                 0x23ab0, 0x23ac8,
1154                 0x23ad0, 0x23ad4,
1155                 0x23ae0, 0x23ae8,
1156                 0x23af0, 0x23af0,
1157                 0x23af8, 0x23c18,
1158                 0x23c20, 0x23c20,
1159                 0x23c28, 0x23c30,
1160                 0x23c38, 0x23c38,
1161                 0x23c80, 0x23c98,
1162                 0x23ca0, 0x23ca8,
1163                 0x23cb0, 0x23cc8,
1164                 0x23cd0, 0x23cd4,
1165                 0x23ce0, 0x23ce8,
1166                 0x23cf0, 0x23cf0,
1167                 0x23cf8, 0x23d7c,
1168                 0x23e00, 0x23e04,
1169                 0x24000, 0x2402c,
1170                 0x24100, 0x2413c,
1171                 0x24190, 0x241a0,
1172                 0x241a8, 0x241b8,
1173                 0x241c4, 0x241c8,
1174                 0x24200, 0x24318,
1175                 0x24400, 0x244b4,
1176                 0x244c0, 0x24528,
1177                 0x24540, 0x24614,
1178                 0x25000, 0x25040,
1179                 0x2504c, 0x25060,
1180                 0x250c0, 0x250ec,
1181                 0x25200, 0x25268,
1182                 0x25270, 0x25284,
1183                 0x252fc, 0x25388,
1184                 0x25400, 0x25404,
1185                 0x25500, 0x25500,
1186                 0x25510, 0x25518,
1187                 0x2552c, 0x25530,
1188                 0x2553c, 0x2553c,
1189                 0x25550, 0x25554,
1190                 0x25600, 0x25600,
1191                 0x25608, 0x2561c,
1192                 0x25624, 0x25628,
1193                 0x25630, 0x25634,
1194                 0x2563c, 0x2563c,
1195                 0x25700, 0x2571c,
1196                 0x25780, 0x2578c,
1197                 0x25800, 0x25818,
1198                 0x25820, 0x25828,
1199                 0x25830, 0x25848,
1200                 0x25850, 0x25854,
1201                 0x25860, 0x25868,
1202                 0x25870, 0x25870,
1203                 0x25878, 0x25898,
1204                 0x258a0, 0x258a8,
1205                 0x258b0, 0x258c8,
1206                 0x258d0, 0x258d4,
1207                 0x258e0, 0x258e8,
1208                 0x258f0, 0x258f0,
1209                 0x258f8, 0x25a18,
1210                 0x25a20, 0x25a28,
1211                 0x25a30, 0x25a48,
1212                 0x25a50, 0x25a54,
1213                 0x25a60, 0x25a68,
1214                 0x25a70, 0x25a70,
1215                 0x25a78, 0x25a98,
1216                 0x25aa0, 0x25aa8,
1217                 0x25ab0, 0x25ac8,
1218                 0x25ad0, 0x25ad4,
1219                 0x25ae0, 0x25ae8,
1220                 0x25af0, 0x25af0,
1221                 0x25af8, 0x25c18,
1222                 0x25c20, 0x25c20,
1223                 0x25c28, 0x25c30,
1224                 0x25c38, 0x25c38,
1225                 0x25c80, 0x25c98,
1226                 0x25ca0, 0x25ca8,
1227                 0x25cb0, 0x25cc8,
1228                 0x25cd0, 0x25cd4,
1229                 0x25ce0, 0x25ce8,
1230                 0x25cf0, 0x25cf0,
1231                 0x25cf8, 0x25d7c,
1232                 0x25e00, 0x25e04,
1233                 0x26000, 0x2602c,
1234                 0x26100, 0x2613c,
1235                 0x26190, 0x261a0,
1236                 0x261a8, 0x261b8,
1237                 0x261c4, 0x261c8,
1238                 0x26200, 0x26318,
1239                 0x26400, 0x264b4,
1240                 0x264c0, 0x26528,
1241                 0x26540, 0x26614,
1242                 0x27000, 0x27040,
1243                 0x2704c, 0x27060,
1244                 0x270c0, 0x270ec,
1245                 0x27200, 0x27268,
1246                 0x27270, 0x27284,
1247                 0x272fc, 0x27388,
1248                 0x27400, 0x27404,
1249                 0x27500, 0x27500,
1250                 0x27510, 0x27518,
1251                 0x2752c, 0x27530,
1252                 0x2753c, 0x2753c,
1253                 0x27550, 0x27554,
1254                 0x27600, 0x27600,
1255                 0x27608, 0x2761c,
1256                 0x27624, 0x27628,
1257                 0x27630, 0x27634,
1258                 0x2763c, 0x2763c,
1259                 0x27700, 0x2771c,
1260                 0x27780, 0x2778c,
1261                 0x27800, 0x27818,
1262                 0x27820, 0x27828,
1263                 0x27830, 0x27848,
1264                 0x27850, 0x27854,
1265                 0x27860, 0x27868,
1266                 0x27870, 0x27870,
1267                 0x27878, 0x27898,
1268                 0x278a0, 0x278a8,
1269                 0x278b0, 0x278c8,
1270                 0x278d0, 0x278d4,
1271                 0x278e0, 0x278e8,
1272                 0x278f0, 0x278f0,
1273                 0x278f8, 0x27a18,
1274                 0x27a20, 0x27a28,
1275                 0x27a30, 0x27a48,
1276                 0x27a50, 0x27a54,
1277                 0x27a60, 0x27a68,
1278                 0x27a70, 0x27a70,
1279                 0x27a78, 0x27a98,
1280                 0x27aa0, 0x27aa8,
1281                 0x27ab0, 0x27ac8,
1282                 0x27ad0, 0x27ad4,
1283                 0x27ae0, 0x27ae8,
1284                 0x27af0, 0x27af0,
1285                 0x27af8, 0x27c18,
1286                 0x27c20, 0x27c20,
1287                 0x27c28, 0x27c30,
1288                 0x27c38, 0x27c38,
1289                 0x27c80, 0x27c98,
1290                 0x27ca0, 0x27ca8,
1291                 0x27cb0, 0x27cc8,
1292                 0x27cd0, 0x27cd4,
1293                 0x27ce0, 0x27ce8,
1294                 0x27cf0, 0x27cf0,
1295                 0x27cf8, 0x27d7c,
1296                 0x27e00, 0x27e04,
1297         };
1298
1299         static const unsigned int t4vf_reg_ranges[] = {
1300                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1301                 VF_MPS_REG(A_MPS_VF_CTL),
1302                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1303                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1304                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1305                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1306                 FW_T4VF_MBDATA_BASE_ADDR,
1307                 FW_T4VF_MBDATA_BASE_ADDR +
1308                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1309         };
1310
1311         static const unsigned int t5_reg_ranges[] = {
1312                 0x1008, 0x10c0,
1313                 0x10cc, 0x10f8,
1314                 0x1100, 0x1100,
1315                 0x110c, 0x1148,
1316                 0x1180, 0x1184,
1317                 0x1190, 0x1194,
1318                 0x11a0, 0x11a4,
1319                 0x11b0, 0x11b4,
1320                 0x11fc, 0x123c,
1321                 0x1280, 0x173c,
1322                 0x1800, 0x18fc,
1323                 0x3000, 0x3028,
1324                 0x3060, 0x30b0,
1325                 0x30b8, 0x30d8,
1326                 0x30e0, 0x30fc,
1327                 0x3140, 0x357c,
1328                 0x35a8, 0x35cc,
1329                 0x35ec, 0x35ec,
1330                 0x3600, 0x5624,
1331                 0x56cc, 0x56ec,
1332                 0x56f4, 0x5720,
1333                 0x5728, 0x575c,
1334                 0x580c, 0x5814,
1335                 0x5890, 0x589c,
1336                 0x58a4, 0x58ac,
1337                 0x58b8, 0x58bc,
1338                 0x5940, 0x59c8,
1339                 0x59d0, 0x59dc,
1340                 0x59fc, 0x5a18,
1341                 0x5a60, 0x5a70,
1342                 0x5a80, 0x5a9c,
1343                 0x5b94, 0x5bfc,
1344                 0x6000, 0x6020,
1345                 0x6028, 0x6040,
1346                 0x6058, 0x609c,
1347                 0x60a8, 0x614c,
1348                 0x7700, 0x7798,
1349                 0x77c0, 0x78fc,
1350                 0x7b00, 0x7b58,
1351                 0x7b60, 0x7b84,
1352                 0x7b8c, 0x7c54,
1353                 0x7d00, 0x7d38,
1354                 0x7d40, 0x7d80,
1355                 0x7d8c, 0x7ddc,
1356                 0x7de4, 0x7e04,
1357                 0x7e10, 0x7e1c,
1358                 0x7e24, 0x7e38,
1359                 0x7e40, 0x7e44,
1360                 0x7e4c, 0x7e78,
1361                 0x7e80, 0x7edc,
1362                 0x7ee8, 0x7efc,
1363                 0x8dc0, 0x8de0,
1364                 0x8df8, 0x8e04,
1365                 0x8e10, 0x8e84,
1366                 0x8ea0, 0x8f84,
1367                 0x8fc0, 0x9058,
1368                 0x9060, 0x9060,
1369                 0x9068, 0x90f8,
1370                 0x9400, 0x9408,
1371                 0x9410, 0x9470,
1372                 0x9600, 0x9600,
1373                 0x9608, 0x9638,
1374                 0x9640, 0x96f4,
1375                 0x9800, 0x9808,
1376                 0x9820, 0x983c,
1377                 0x9850, 0x9864,
1378                 0x9c00, 0x9c6c,
1379                 0x9c80, 0x9cec,
1380                 0x9d00, 0x9d6c,
1381                 0x9d80, 0x9dec,
1382                 0x9e00, 0x9e6c,
1383                 0x9e80, 0x9eec,
1384                 0x9f00, 0x9f6c,
1385                 0x9f80, 0xa020,
1386                 0xd004, 0xd004,
1387                 0xd010, 0xd03c,
1388                 0xdfc0, 0xdfe0,
1389                 0xe000, 0x1106c,
1390                 0x11074, 0x11088,
1391                 0x1109c, 0x1117c,
1392                 0x11190, 0x11204,
1393                 0x19040, 0x1906c,
1394                 0x19078, 0x19080,
1395                 0x1908c, 0x190e8,
1396                 0x190f0, 0x190f8,
1397                 0x19100, 0x19110,
1398                 0x19120, 0x19124,
1399                 0x19150, 0x19194,
1400                 0x1919c, 0x191b0,
1401                 0x191d0, 0x191e8,
1402                 0x19238, 0x19290,
1403                 0x193f8, 0x19428,
1404                 0x19430, 0x19444,
1405                 0x1944c, 0x1946c,
1406                 0x19474, 0x19474,
1407                 0x19490, 0x194cc,
1408                 0x194f0, 0x194f8,
1409                 0x19c00, 0x19c08,
1410                 0x19c10, 0x19c60,
1411                 0x19c94, 0x19ce4,
1412                 0x19cf0, 0x19d40,
1413                 0x19d50, 0x19d94,
1414                 0x19da0, 0x19de8,
1415                 0x19df0, 0x19e10,
1416                 0x19e50, 0x19e90,
1417                 0x19ea0, 0x19f24,
1418                 0x19f34, 0x19f34,
1419                 0x19f40, 0x19f50,
1420                 0x19f90, 0x19fb4,
1421                 0x19fc4, 0x19fe4,
1422                 0x1a000, 0x1a004,
1423                 0x1a010, 0x1a06c,
1424                 0x1a0b0, 0x1a0e4,
1425                 0x1a0ec, 0x1a0f8,
1426                 0x1a100, 0x1a108,
1427                 0x1a114, 0x1a120,
1428                 0x1a128, 0x1a130,
1429                 0x1a138, 0x1a138,
1430                 0x1a190, 0x1a1c4,
1431                 0x1a1fc, 0x1a1fc,
1432                 0x1e008, 0x1e00c,
1433                 0x1e040, 0x1e044,
1434                 0x1e04c, 0x1e04c,
1435                 0x1e284, 0x1e290,
1436                 0x1e2c0, 0x1e2c0,
1437                 0x1e2e0, 0x1e2e0,
1438                 0x1e300, 0x1e384,
1439                 0x1e3c0, 0x1e3c8,
1440                 0x1e408, 0x1e40c,
1441                 0x1e440, 0x1e444,
1442                 0x1e44c, 0x1e44c,
1443                 0x1e684, 0x1e690,
1444                 0x1e6c0, 0x1e6c0,
1445                 0x1e6e0, 0x1e6e0,
1446                 0x1e700, 0x1e784,
1447                 0x1e7c0, 0x1e7c8,
1448                 0x1e808, 0x1e80c,
1449                 0x1e840, 0x1e844,
1450                 0x1e84c, 0x1e84c,
1451                 0x1ea84, 0x1ea90,
1452                 0x1eac0, 0x1eac0,
1453                 0x1eae0, 0x1eae0,
1454                 0x1eb00, 0x1eb84,
1455                 0x1ebc0, 0x1ebc8,
1456                 0x1ec08, 0x1ec0c,
1457                 0x1ec40, 0x1ec44,
1458                 0x1ec4c, 0x1ec4c,
1459                 0x1ee84, 0x1ee90,
1460                 0x1eec0, 0x1eec0,
1461                 0x1eee0, 0x1eee0,
1462                 0x1ef00, 0x1ef84,
1463                 0x1efc0, 0x1efc8,
1464                 0x1f008, 0x1f00c,
1465                 0x1f040, 0x1f044,
1466                 0x1f04c, 0x1f04c,
1467                 0x1f284, 0x1f290,
1468                 0x1f2c0, 0x1f2c0,
1469                 0x1f2e0, 0x1f2e0,
1470                 0x1f300, 0x1f384,
1471                 0x1f3c0, 0x1f3c8,
1472                 0x1f408, 0x1f40c,
1473                 0x1f440, 0x1f444,
1474                 0x1f44c, 0x1f44c,
1475                 0x1f684, 0x1f690,
1476                 0x1f6c0, 0x1f6c0,
1477                 0x1f6e0, 0x1f6e0,
1478                 0x1f700, 0x1f784,
1479                 0x1f7c0, 0x1f7c8,
1480                 0x1f808, 0x1f80c,
1481                 0x1f840, 0x1f844,
1482                 0x1f84c, 0x1f84c,
1483                 0x1fa84, 0x1fa90,
1484                 0x1fac0, 0x1fac0,
1485                 0x1fae0, 0x1fae0,
1486                 0x1fb00, 0x1fb84,
1487                 0x1fbc0, 0x1fbc8,
1488                 0x1fc08, 0x1fc0c,
1489                 0x1fc40, 0x1fc44,
1490                 0x1fc4c, 0x1fc4c,
1491                 0x1fe84, 0x1fe90,
1492                 0x1fec0, 0x1fec0,
1493                 0x1fee0, 0x1fee0,
1494                 0x1ff00, 0x1ff84,
1495                 0x1ffc0, 0x1ffc8,
1496                 0x30000, 0x30030,
1497                 0x30100, 0x30144,
1498                 0x30190, 0x301a0,
1499                 0x301a8, 0x301b8,
1500                 0x301c4, 0x301c8,
1501                 0x301d0, 0x301d0,
1502                 0x30200, 0x30318,
1503                 0x30400, 0x304b4,
1504                 0x304c0, 0x3052c,
1505                 0x30540, 0x3061c,
1506                 0x30800, 0x30828,
1507                 0x30834, 0x30834,
1508                 0x308c0, 0x30908,
1509                 0x30910, 0x309ac,
1510                 0x30a00, 0x30a14,
1511                 0x30a1c, 0x30a2c,
1512                 0x30a44, 0x30a50,
1513                 0x30a74, 0x30a74,
1514                 0x30a7c, 0x30afc,
1515                 0x30b08, 0x30c24,
1516                 0x30d00, 0x30d00,
1517                 0x30d08, 0x30d14,
1518                 0x30d1c, 0x30d20,
1519                 0x30d3c, 0x30d3c,
1520                 0x30d48, 0x30d50,
1521                 0x31200, 0x3120c,
1522                 0x31220, 0x31220,
1523                 0x31240, 0x31240,
1524                 0x31600, 0x3160c,
1525                 0x31a00, 0x31a1c,
1526                 0x31e00, 0x31e20,
1527                 0x31e38, 0x31e3c,
1528                 0x31e80, 0x31e80,
1529                 0x31e88, 0x31ea8,
1530                 0x31eb0, 0x31eb4,
1531                 0x31ec8, 0x31ed4,
1532                 0x31fb8, 0x32004,
1533                 0x32200, 0x32200,
1534                 0x32208, 0x32240,
1535                 0x32248, 0x32280,
1536                 0x32288, 0x322c0,
1537                 0x322c8, 0x322fc,
1538                 0x32600, 0x32630,
1539                 0x32a00, 0x32abc,
1540                 0x32b00, 0x32b10,
1541                 0x32b20, 0x32b30,
1542                 0x32b40, 0x32b50,
1543                 0x32b60, 0x32b70,
1544                 0x33000, 0x33028,
1545                 0x33030, 0x33048,
1546                 0x33060, 0x33068,
1547                 0x33070, 0x3309c,
1548                 0x330f0, 0x33128,
1549                 0x33130, 0x33148,
1550                 0x33160, 0x33168,
1551                 0x33170, 0x3319c,
1552                 0x331f0, 0x33238,
1553                 0x33240, 0x33240,
1554                 0x33248, 0x33250,
1555                 0x3325c, 0x33264,
1556                 0x33270, 0x332b8,
1557                 0x332c0, 0x332e4,
1558                 0x332f8, 0x33338,
1559                 0x33340, 0x33340,
1560                 0x33348, 0x33350,
1561                 0x3335c, 0x33364,
1562                 0x33370, 0x333b8,
1563                 0x333c0, 0x333e4,
1564                 0x333f8, 0x33428,
1565                 0x33430, 0x33448,
1566                 0x33460, 0x33468,
1567                 0x33470, 0x3349c,
1568                 0x334f0, 0x33528,
1569                 0x33530, 0x33548,
1570                 0x33560, 0x33568,
1571                 0x33570, 0x3359c,
1572                 0x335f0, 0x33638,
1573                 0x33640, 0x33640,
1574                 0x33648, 0x33650,
1575                 0x3365c, 0x33664,
1576                 0x33670, 0x336b8,
1577                 0x336c0, 0x336e4,
1578                 0x336f8, 0x33738,
1579                 0x33740, 0x33740,
1580                 0x33748, 0x33750,
1581                 0x3375c, 0x33764,
1582                 0x33770, 0x337b8,
1583                 0x337c0, 0x337e4,
1584                 0x337f8, 0x337fc,
1585                 0x33814, 0x33814,
1586                 0x3382c, 0x3382c,
1587                 0x33880, 0x3388c,
1588                 0x338e8, 0x338ec,
1589                 0x33900, 0x33928,
1590                 0x33930, 0x33948,
1591                 0x33960, 0x33968,
1592                 0x33970, 0x3399c,
1593                 0x339f0, 0x33a38,
1594                 0x33a40, 0x33a40,
1595                 0x33a48, 0x33a50,
1596                 0x33a5c, 0x33a64,
1597                 0x33a70, 0x33ab8,
1598                 0x33ac0, 0x33ae4,
1599                 0x33af8, 0x33b10,
1600                 0x33b28, 0x33b28,
1601                 0x33b3c, 0x33b50,
1602                 0x33bf0, 0x33c10,
1603                 0x33c28, 0x33c28,
1604                 0x33c3c, 0x33c50,
1605                 0x33cf0, 0x33cfc,
1606                 0x34000, 0x34030,
1607                 0x34100, 0x34144,
1608                 0x34190, 0x341a0,
1609                 0x341a8, 0x341b8,
1610                 0x341c4, 0x341c8,
1611                 0x341d0, 0x341d0,
1612                 0x34200, 0x34318,
1613                 0x34400, 0x344b4,
1614                 0x344c0, 0x3452c,
1615                 0x34540, 0x3461c,
1616                 0x34800, 0x34828,
1617                 0x34834, 0x34834,
1618                 0x348c0, 0x34908,
1619                 0x34910, 0x349ac,
1620                 0x34a00, 0x34a14,
1621                 0x34a1c, 0x34a2c,
1622                 0x34a44, 0x34a50,
1623                 0x34a74, 0x34a74,
1624                 0x34a7c, 0x34afc,
1625                 0x34b08, 0x34c24,
1626                 0x34d00, 0x34d00,
1627                 0x34d08, 0x34d14,
1628                 0x34d1c, 0x34d20,
1629                 0x34d3c, 0x34d3c,
1630                 0x34d48, 0x34d50,
1631                 0x35200, 0x3520c,
1632                 0x35220, 0x35220,
1633                 0x35240, 0x35240,
1634                 0x35600, 0x3560c,
1635                 0x35a00, 0x35a1c,
1636                 0x35e00, 0x35e20,
1637                 0x35e38, 0x35e3c,
1638                 0x35e80, 0x35e80,
1639                 0x35e88, 0x35ea8,
1640                 0x35eb0, 0x35eb4,
1641                 0x35ec8, 0x35ed4,
1642                 0x35fb8, 0x36004,
1643                 0x36200, 0x36200,
1644                 0x36208, 0x36240,
1645                 0x36248, 0x36280,
1646                 0x36288, 0x362c0,
1647                 0x362c8, 0x362fc,
1648                 0x36600, 0x36630,
1649                 0x36a00, 0x36abc,
1650                 0x36b00, 0x36b10,
1651                 0x36b20, 0x36b30,
1652                 0x36b40, 0x36b50,
1653                 0x36b60, 0x36b70,
1654                 0x37000, 0x37028,
1655                 0x37030, 0x37048,
1656                 0x37060, 0x37068,
1657                 0x37070, 0x3709c,
1658                 0x370f0, 0x37128,
1659                 0x37130, 0x37148,
1660                 0x37160, 0x37168,
1661                 0x37170, 0x3719c,
1662                 0x371f0, 0x37238,
1663                 0x37240, 0x37240,
1664                 0x37248, 0x37250,
1665                 0x3725c, 0x37264,
1666                 0x37270, 0x372b8,
1667                 0x372c0, 0x372e4,
1668                 0x372f8, 0x37338,
1669                 0x37340, 0x37340,
1670                 0x37348, 0x37350,
1671                 0x3735c, 0x37364,
1672                 0x37370, 0x373b8,
1673                 0x373c0, 0x373e4,
1674                 0x373f8, 0x37428,
1675                 0x37430, 0x37448,
1676                 0x37460, 0x37468,
1677                 0x37470, 0x3749c,
1678                 0x374f0, 0x37528,
1679                 0x37530, 0x37548,
1680                 0x37560, 0x37568,
1681                 0x37570, 0x3759c,
1682                 0x375f0, 0x37638,
1683                 0x37640, 0x37640,
1684                 0x37648, 0x37650,
1685                 0x3765c, 0x37664,
1686                 0x37670, 0x376b8,
1687                 0x376c0, 0x376e4,
1688                 0x376f8, 0x37738,
1689                 0x37740, 0x37740,
1690                 0x37748, 0x37750,
1691                 0x3775c, 0x37764,
1692                 0x37770, 0x377b8,
1693                 0x377c0, 0x377e4,
1694                 0x377f8, 0x377fc,
1695                 0x37814, 0x37814,
1696                 0x3782c, 0x3782c,
1697                 0x37880, 0x3788c,
1698                 0x378e8, 0x378ec,
1699                 0x37900, 0x37928,
1700                 0x37930, 0x37948,
1701                 0x37960, 0x37968,
1702                 0x37970, 0x3799c,
1703                 0x379f0, 0x37a38,
1704                 0x37a40, 0x37a40,
1705                 0x37a48, 0x37a50,
1706                 0x37a5c, 0x37a64,
1707                 0x37a70, 0x37ab8,
1708                 0x37ac0, 0x37ae4,
1709                 0x37af8, 0x37b10,
1710                 0x37b28, 0x37b28,
1711                 0x37b3c, 0x37b50,
1712                 0x37bf0, 0x37c10,
1713                 0x37c28, 0x37c28,
1714                 0x37c3c, 0x37c50,
1715                 0x37cf0, 0x37cfc,
1716                 0x38000, 0x38030,
1717                 0x38100, 0x38144,
1718                 0x38190, 0x381a0,
1719                 0x381a8, 0x381b8,
1720                 0x381c4, 0x381c8,
1721                 0x381d0, 0x381d0,
1722                 0x38200, 0x38318,
1723                 0x38400, 0x384b4,
1724                 0x384c0, 0x3852c,
1725                 0x38540, 0x3861c,
1726                 0x38800, 0x38828,
1727                 0x38834, 0x38834,
1728                 0x388c0, 0x38908,
1729                 0x38910, 0x389ac,
1730                 0x38a00, 0x38a14,
1731                 0x38a1c, 0x38a2c,
1732                 0x38a44, 0x38a50,
1733                 0x38a74, 0x38a74,
1734                 0x38a7c, 0x38afc,
1735                 0x38b08, 0x38c24,
1736                 0x38d00, 0x38d00,
1737                 0x38d08, 0x38d14,
1738                 0x38d1c, 0x38d20,
1739                 0x38d3c, 0x38d3c,
1740                 0x38d48, 0x38d50,
1741                 0x39200, 0x3920c,
1742                 0x39220, 0x39220,
1743                 0x39240, 0x39240,
1744                 0x39600, 0x3960c,
1745                 0x39a00, 0x39a1c,
1746                 0x39e00, 0x39e20,
1747                 0x39e38, 0x39e3c,
1748                 0x39e80, 0x39e80,
1749                 0x39e88, 0x39ea8,
1750                 0x39eb0, 0x39eb4,
1751                 0x39ec8, 0x39ed4,
1752                 0x39fb8, 0x3a004,
1753                 0x3a200, 0x3a200,
1754                 0x3a208, 0x3a240,
1755                 0x3a248, 0x3a280,
1756                 0x3a288, 0x3a2c0,
1757                 0x3a2c8, 0x3a2fc,
1758                 0x3a600, 0x3a630,
1759                 0x3aa00, 0x3aabc,
1760                 0x3ab00, 0x3ab10,
1761                 0x3ab20, 0x3ab30,
1762                 0x3ab40, 0x3ab50,
1763                 0x3ab60, 0x3ab70,
1764                 0x3b000, 0x3b028,
1765                 0x3b030, 0x3b048,
1766                 0x3b060, 0x3b068,
1767                 0x3b070, 0x3b09c,
1768                 0x3b0f0, 0x3b128,
1769                 0x3b130, 0x3b148,
1770                 0x3b160, 0x3b168,
1771                 0x3b170, 0x3b19c,
1772                 0x3b1f0, 0x3b238,
1773                 0x3b240, 0x3b240,
1774                 0x3b248, 0x3b250,
1775                 0x3b25c, 0x3b264,
1776                 0x3b270, 0x3b2b8,
1777                 0x3b2c0, 0x3b2e4,
1778                 0x3b2f8, 0x3b338,
1779                 0x3b340, 0x3b340,
1780                 0x3b348, 0x3b350,
1781                 0x3b35c, 0x3b364,
1782                 0x3b370, 0x3b3b8,
1783                 0x3b3c0, 0x3b3e4,
1784                 0x3b3f8, 0x3b428,
1785                 0x3b430, 0x3b448,
1786                 0x3b460, 0x3b468,
1787                 0x3b470, 0x3b49c,
1788                 0x3b4f0, 0x3b528,
1789                 0x3b530, 0x3b548,
1790                 0x3b560, 0x3b568,
1791                 0x3b570, 0x3b59c,
1792                 0x3b5f0, 0x3b638,
1793                 0x3b640, 0x3b640,
1794                 0x3b648, 0x3b650,
1795                 0x3b65c, 0x3b664,
1796                 0x3b670, 0x3b6b8,
1797                 0x3b6c0, 0x3b6e4,
1798                 0x3b6f8, 0x3b738,
1799                 0x3b740, 0x3b740,
1800                 0x3b748, 0x3b750,
1801                 0x3b75c, 0x3b764,
1802                 0x3b770, 0x3b7b8,
1803                 0x3b7c0, 0x3b7e4,
1804                 0x3b7f8, 0x3b7fc,
1805                 0x3b814, 0x3b814,
1806                 0x3b82c, 0x3b82c,
1807                 0x3b880, 0x3b88c,
1808                 0x3b8e8, 0x3b8ec,
1809                 0x3b900, 0x3b928,
1810                 0x3b930, 0x3b948,
1811                 0x3b960, 0x3b968,
1812                 0x3b970, 0x3b99c,
1813                 0x3b9f0, 0x3ba38,
1814                 0x3ba40, 0x3ba40,
1815                 0x3ba48, 0x3ba50,
1816                 0x3ba5c, 0x3ba64,
1817                 0x3ba70, 0x3bab8,
1818                 0x3bac0, 0x3bae4,
1819                 0x3baf8, 0x3bb10,
1820                 0x3bb28, 0x3bb28,
1821                 0x3bb3c, 0x3bb50,
1822                 0x3bbf0, 0x3bc10,
1823                 0x3bc28, 0x3bc28,
1824                 0x3bc3c, 0x3bc50,
1825                 0x3bcf0, 0x3bcfc,
1826                 0x3c000, 0x3c030,
1827                 0x3c100, 0x3c144,
1828                 0x3c190, 0x3c1a0,
1829                 0x3c1a8, 0x3c1b8,
1830                 0x3c1c4, 0x3c1c8,
1831                 0x3c1d0, 0x3c1d0,
1832                 0x3c200, 0x3c318,
1833                 0x3c400, 0x3c4b4,
1834                 0x3c4c0, 0x3c52c,
1835                 0x3c540, 0x3c61c,
1836                 0x3c800, 0x3c828,
1837                 0x3c834, 0x3c834,
1838                 0x3c8c0, 0x3c908,
1839                 0x3c910, 0x3c9ac,
1840                 0x3ca00, 0x3ca14,
1841                 0x3ca1c, 0x3ca2c,
1842                 0x3ca44, 0x3ca50,
1843                 0x3ca74, 0x3ca74,
1844                 0x3ca7c, 0x3cafc,
1845                 0x3cb08, 0x3cc24,
1846                 0x3cd00, 0x3cd00,
1847                 0x3cd08, 0x3cd14,
1848                 0x3cd1c, 0x3cd20,
1849                 0x3cd3c, 0x3cd3c,
1850                 0x3cd48, 0x3cd50,
1851                 0x3d200, 0x3d20c,
1852                 0x3d220, 0x3d220,
1853                 0x3d240, 0x3d240,
1854                 0x3d600, 0x3d60c,
1855                 0x3da00, 0x3da1c,
1856                 0x3de00, 0x3de20,
1857                 0x3de38, 0x3de3c,
1858                 0x3de80, 0x3de80,
1859                 0x3de88, 0x3dea8,
1860                 0x3deb0, 0x3deb4,
1861                 0x3dec8, 0x3ded4,
1862                 0x3dfb8, 0x3e004,
1863                 0x3e200, 0x3e200,
1864                 0x3e208, 0x3e240,
1865                 0x3e248, 0x3e280,
1866                 0x3e288, 0x3e2c0,
1867                 0x3e2c8, 0x3e2fc,
1868                 0x3e600, 0x3e630,
1869                 0x3ea00, 0x3eabc,
1870                 0x3eb00, 0x3eb10,
1871                 0x3eb20, 0x3eb30,
1872                 0x3eb40, 0x3eb50,
1873                 0x3eb60, 0x3eb70,
1874                 0x3f000, 0x3f028,
1875                 0x3f030, 0x3f048,
1876                 0x3f060, 0x3f068,
1877                 0x3f070, 0x3f09c,
1878                 0x3f0f0, 0x3f128,
1879                 0x3f130, 0x3f148,
1880                 0x3f160, 0x3f168,
1881                 0x3f170, 0x3f19c,
1882                 0x3f1f0, 0x3f238,
1883                 0x3f240, 0x3f240,
1884                 0x3f248, 0x3f250,
1885                 0x3f25c, 0x3f264,
1886                 0x3f270, 0x3f2b8,
1887                 0x3f2c0, 0x3f2e4,
1888                 0x3f2f8, 0x3f338,
1889                 0x3f340, 0x3f340,
1890                 0x3f348, 0x3f350,
1891                 0x3f35c, 0x3f364,
1892                 0x3f370, 0x3f3b8,
1893                 0x3f3c0, 0x3f3e4,
1894                 0x3f3f8, 0x3f428,
1895                 0x3f430, 0x3f448,
1896                 0x3f460, 0x3f468,
1897                 0x3f470, 0x3f49c,
1898                 0x3f4f0, 0x3f528,
1899                 0x3f530, 0x3f548,
1900                 0x3f560, 0x3f568,
1901                 0x3f570, 0x3f59c,
1902                 0x3f5f0, 0x3f638,
1903                 0x3f640, 0x3f640,
1904                 0x3f648, 0x3f650,
1905                 0x3f65c, 0x3f664,
1906                 0x3f670, 0x3f6b8,
1907                 0x3f6c0, 0x3f6e4,
1908                 0x3f6f8, 0x3f738,
1909                 0x3f740, 0x3f740,
1910                 0x3f748, 0x3f750,
1911                 0x3f75c, 0x3f764,
1912                 0x3f770, 0x3f7b8,
1913                 0x3f7c0, 0x3f7e4,
1914                 0x3f7f8, 0x3f7fc,
1915                 0x3f814, 0x3f814,
1916                 0x3f82c, 0x3f82c,
1917                 0x3f880, 0x3f88c,
1918                 0x3f8e8, 0x3f8ec,
1919                 0x3f900, 0x3f928,
1920                 0x3f930, 0x3f948,
1921                 0x3f960, 0x3f968,
1922                 0x3f970, 0x3f99c,
1923                 0x3f9f0, 0x3fa38,
1924                 0x3fa40, 0x3fa40,
1925                 0x3fa48, 0x3fa50,
1926                 0x3fa5c, 0x3fa64,
1927                 0x3fa70, 0x3fab8,
1928                 0x3fac0, 0x3fae4,
1929                 0x3faf8, 0x3fb10,
1930                 0x3fb28, 0x3fb28,
1931                 0x3fb3c, 0x3fb50,
1932                 0x3fbf0, 0x3fc10,
1933                 0x3fc28, 0x3fc28,
1934                 0x3fc3c, 0x3fc50,
1935                 0x3fcf0, 0x3fcfc,
1936                 0x40000, 0x4000c,
1937                 0x40040, 0x40050,
1938                 0x40060, 0x40068,
1939                 0x4007c, 0x4008c,
1940                 0x40094, 0x400b0,
1941                 0x400c0, 0x40144,
1942                 0x40180, 0x4018c,
1943                 0x40200, 0x40254,
1944                 0x40260, 0x40264,
1945                 0x40270, 0x40288,
1946                 0x40290, 0x40298,
1947                 0x402ac, 0x402c8,
1948                 0x402d0, 0x402e0,
1949                 0x402f0, 0x402f0,
1950                 0x40300, 0x4033c,
1951                 0x403f8, 0x403fc,
1952                 0x41304, 0x413c4,
1953                 0x41400, 0x4140c,
1954                 0x41414, 0x4141c,
1955                 0x41480, 0x414d0,
1956                 0x44000, 0x44054,
1957                 0x4405c, 0x44078,
1958                 0x440c0, 0x44174,
1959                 0x44180, 0x441ac,
1960                 0x441b4, 0x441b8,
1961                 0x441c0, 0x44254,
1962                 0x4425c, 0x44278,
1963                 0x442c0, 0x44374,
1964                 0x44380, 0x443ac,
1965                 0x443b4, 0x443b8,
1966                 0x443c0, 0x44454,
1967                 0x4445c, 0x44478,
1968                 0x444c0, 0x44574,
1969                 0x44580, 0x445ac,
1970                 0x445b4, 0x445b8,
1971                 0x445c0, 0x44654,
1972                 0x4465c, 0x44678,
1973                 0x446c0, 0x44774,
1974                 0x44780, 0x447ac,
1975                 0x447b4, 0x447b8,
1976                 0x447c0, 0x44854,
1977                 0x4485c, 0x44878,
1978                 0x448c0, 0x44974,
1979                 0x44980, 0x449ac,
1980                 0x449b4, 0x449b8,
1981                 0x449c0, 0x449fc,
1982                 0x45000, 0x45004,
1983                 0x45010, 0x45030,
1984                 0x45040, 0x45060,
1985                 0x45068, 0x45068,
1986                 0x45080, 0x45084,
1987                 0x450a0, 0x450b0,
1988                 0x45200, 0x45204,
1989                 0x45210, 0x45230,
1990                 0x45240, 0x45260,
1991                 0x45268, 0x45268,
1992                 0x45280, 0x45284,
1993                 0x452a0, 0x452b0,
1994                 0x460c0, 0x460e4,
1995                 0x47000, 0x4703c,
1996                 0x47044, 0x4708c,
1997                 0x47200, 0x47250,
1998                 0x47400, 0x47408,
1999                 0x47414, 0x47420,
2000                 0x47600, 0x47618,
2001                 0x47800, 0x47814,
2002                 0x48000, 0x4800c,
2003                 0x48040, 0x48050,
2004                 0x48060, 0x48068,
2005                 0x4807c, 0x4808c,
2006                 0x48094, 0x480b0,
2007                 0x480c0, 0x48144,
2008                 0x48180, 0x4818c,
2009                 0x48200, 0x48254,
2010                 0x48260, 0x48264,
2011                 0x48270, 0x48288,
2012                 0x48290, 0x48298,
2013                 0x482ac, 0x482c8,
2014                 0x482d0, 0x482e0,
2015                 0x482f0, 0x482f0,
2016                 0x48300, 0x4833c,
2017                 0x483f8, 0x483fc,
2018                 0x49304, 0x493c4,
2019                 0x49400, 0x4940c,
2020                 0x49414, 0x4941c,
2021                 0x49480, 0x494d0,
2022                 0x4c000, 0x4c054,
2023                 0x4c05c, 0x4c078,
2024                 0x4c0c0, 0x4c174,
2025                 0x4c180, 0x4c1ac,
2026                 0x4c1b4, 0x4c1b8,
2027                 0x4c1c0, 0x4c254,
2028                 0x4c25c, 0x4c278,
2029                 0x4c2c0, 0x4c374,
2030                 0x4c380, 0x4c3ac,
2031                 0x4c3b4, 0x4c3b8,
2032                 0x4c3c0, 0x4c454,
2033                 0x4c45c, 0x4c478,
2034                 0x4c4c0, 0x4c574,
2035                 0x4c580, 0x4c5ac,
2036                 0x4c5b4, 0x4c5b8,
2037                 0x4c5c0, 0x4c654,
2038                 0x4c65c, 0x4c678,
2039                 0x4c6c0, 0x4c774,
2040                 0x4c780, 0x4c7ac,
2041                 0x4c7b4, 0x4c7b8,
2042                 0x4c7c0, 0x4c854,
2043                 0x4c85c, 0x4c878,
2044                 0x4c8c0, 0x4c974,
2045                 0x4c980, 0x4c9ac,
2046                 0x4c9b4, 0x4c9b8,
2047                 0x4c9c0, 0x4c9fc,
2048                 0x4d000, 0x4d004,
2049                 0x4d010, 0x4d030,
2050                 0x4d040, 0x4d060,
2051                 0x4d068, 0x4d068,
2052                 0x4d080, 0x4d084,
2053                 0x4d0a0, 0x4d0b0,
2054                 0x4d200, 0x4d204,
2055                 0x4d210, 0x4d230,
2056                 0x4d240, 0x4d260,
2057                 0x4d268, 0x4d268,
2058                 0x4d280, 0x4d284,
2059                 0x4d2a0, 0x4d2b0,
2060                 0x4e0c0, 0x4e0e4,
2061                 0x4f000, 0x4f03c,
2062                 0x4f044, 0x4f08c,
2063                 0x4f200, 0x4f250,
2064                 0x4f400, 0x4f408,
2065                 0x4f414, 0x4f420,
2066                 0x4f600, 0x4f618,
2067                 0x4f800, 0x4f814,
2068                 0x50000, 0x50084,
2069                 0x50090, 0x500cc,
2070                 0x50400, 0x50400,
2071                 0x50800, 0x50884,
2072                 0x50890, 0x508cc,
2073                 0x50c00, 0x50c00,
2074                 0x51000, 0x5101c,
2075                 0x51300, 0x51308,
2076         };
2077
2078         static const unsigned int t5vf_reg_ranges[] = {
2079                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2080                 VF_MPS_REG(A_MPS_VF_CTL),
2081                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2082                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2083                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2084                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2085                 FW_T4VF_MBDATA_BASE_ADDR,
2086                 FW_T4VF_MBDATA_BASE_ADDR +
2087                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2088         };
2089
2090         static const unsigned int t6_reg_ranges[] = {
2091                 0x1008, 0x101c,
2092                 0x1024, 0x10a8,
2093                 0x10b4, 0x10f8,
2094                 0x1100, 0x1114,
2095                 0x111c, 0x112c,
2096                 0x1138, 0x113c,
2097                 0x1144, 0x114c,
2098                 0x1180, 0x1184,
2099                 0x1190, 0x1194,
2100                 0x11a0, 0x11a4,
2101                 0x11b0, 0x11b4,
2102                 0x11fc, 0x1274,
2103                 0x1280, 0x133c,
2104                 0x1800, 0x18fc,
2105                 0x3000, 0x302c,
2106                 0x3060, 0x30b0,
2107                 0x30b8, 0x30d8,
2108                 0x30e0, 0x30fc,
2109                 0x3140, 0x357c,
2110                 0x35a8, 0x35cc,
2111                 0x35ec, 0x35ec,
2112                 0x3600, 0x5624,
2113                 0x56cc, 0x56ec,
2114                 0x56f4, 0x5720,
2115                 0x5728, 0x575c,
2116                 0x580c, 0x5814,
2117                 0x5890, 0x589c,
2118                 0x58a4, 0x58ac,
2119                 0x58b8, 0x58bc,
2120                 0x5940, 0x595c,
2121                 0x5980, 0x598c,
2122                 0x59b0, 0x59c8,
2123                 0x59d0, 0x59dc,
2124                 0x59fc, 0x5a18,
2125                 0x5a60, 0x5a6c,
2126                 0x5a80, 0x5a8c,
2127                 0x5a94, 0x5a9c,
2128                 0x5b94, 0x5bfc,
2129                 0x5c10, 0x5e48,
2130                 0x5e50, 0x5e94,
2131                 0x5ea0, 0x5eb0,
2132                 0x5ec0, 0x5ec0,
2133                 0x5ec8, 0x5ed0,
2134                 0x5ee0, 0x5ee0,
2135                 0x5ef0, 0x5ef0,
2136                 0x5f00, 0x5f00,
2137                 0x6000, 0x6020,
2138                 0x6028, 0x6040,
2139                 0x6058, 0x609c,
2140                 0x60a8, 0x619c,
2141                 0x7700, 0x7798,
2142                 0x77c0, 0x7880,
2143                 0x78cc, 0x78fc,
2144                 0x7b00, 0x7b58,
2145                 0x7b60, 0x7b84,
2146                 0x7b8c, 0x7c54,
2147                 0x7d00, 0x7d38,
2148                 0x7d40, 0x7d84,
2149                 0x7d8c, 0x7ddc,
2150                 0x7de4, 0x7e04,
2151                 0x7e10, 0x7e1c,
2152                 0x7e24, 0x7e38,
2153                 0x7e40, 0x7e44,
2154                 0x7e4c, 0x7e78,
2155                 0x7e80, 0x7edc,
2156                 0x7ee8, 0x7efc,
2157                 0x8dc0, 0x8de4,
2158                 0x8df8, 0x8e04,
2159                 0x8e10, 0x8e84,
2160                 0x8ea0, 0x8f88,
2161                 0x8fb8, 0x9058,
2162                 0x9060, 0x9060,
2163                 0x9068, 0x90f8,
2164                 0x9100, 0x9124,
2165                 0x9400, 0x9470,
2166                 0x9600, 0x9600,
2167                 0x9608, 0x9638,
2168                 0x9640, 0x9704,
2169                 0x9710, 0x971c,
2170                 0x9800, 0x9808,
2171                 0x9820, 0x983c,
2172                 0x9850, 0x9864,
2173                 0x9c00, 0x9c6c,
2174                 0x9c80, 0x9cec,
2175                 0x9d00, 0x9d6c,
2176                 0x9d80, 0x9dec,
2177                 0x9e00, 0x9e6c,
2178                 0x9e80, 0x9eec,
2179                 0x9f00, 0x9f6c,
2180                 0x9f80, 0xa020,
2181                 0xd004, 0xd03c,
2182                 0xd100, 0xd118,
2183                 0xd200, 0xd214,
2184                 0xd220, 0xd234,
2185                 0xd240, 0xd254,
2186                 0xd260, 0xd274,
2187                 0xd280, 0xd294,
2188                 0xd2a0, 0xd2b4,
2189                 0xd2c0, 0xd2d4,
2190                 0xd2e0, 0xd2f4,
2191                 0xd300, 0xd31c,
2192                 0xdfc0, 0xdfe0,
2193                 0xe000, 0xf008,
2194                 0xf010, 0xf018,
2195                 0xf020, 0xf028,
2196                 0x11000, 0x11014,
2197                 0x11048, 0x1106c,
2198                 0x11074, 0x11088,
2199                 0x11098, 0x11120,
2200                 0x1112c, 0x1117c,
2201                 0x11190, 0x112e0,
2202                 0x11300, 0x1130c,
2203                 0x12000, 0x1206c,
2204                 0x19040, 0x1906c,
2205                 0x19078, 0x19080,
2206                 0x1908c, 0x190e8,
2207                 0x190f0, 0x190f8,
2208                 0x19100, 0x19110,
2209                 0x19120, 0x19124,
2210                 0x19150, 0x19194,
2211                 0x1919c, 0x191b0,
2212                 0x191d0, 0x191e8,
2213                 0x19238, 0x19290,
2214                 0x192a4, 0x192b0,
2215                 0x192bc, 0x192bc,
2216                 0x19348, 0x1934c,
2217                 0x193f8, 0x19418,
2218                 0x19420, 0x19428,
2219                 0x19430, 0x19444,
2220                 0x1944c, 0x1946c,
2221                 0x19474, 0x19474,
2222                 0x19490, 0x194cc,
2223                 0x194f0, 0x194f8,
2224                 0x19c00, 0x19c48,
2225                 0x19c50, 0x19c80,
2226                 0x19c94, 0x19c98,
2227                 0x19ca0, 0x19cbc,
2228                 0x19ce4, 0x19ce4,
2229                 0x19cf0, 0x19cf8,
2230                 0x19d00, 0x19d28,
2231                 0x19d50, 0x19d78,
2232                 0x19d94, 0x19d98,
2233                 0x19da0, 0x19dc8,
2234                 0x19df0, 0x19e10,
2235                 0x19e50, 0x19e6c,
2236                 0x19ea0, 0x19ebc,
2237                 0x19ec4, 0x19ef4,
2238                 0x19f04, 0x19f2c,
2239                 0x19f34, 0x19f34,
2240                 0x19f40, 0x19f50,
2241                 0x19f90, 0x19fac,
2242                 0x19fc4, 0x19fc8,
2243                 0x19fd0, 0x19fe4,
2244                 0x1a000, 0x1a004,
2245                 0x1a010, 0x1a06c,
2246                 0x1a0b0, 0x1a0e4,
2247                 0x1a0ec, 0x1a0f8,
2248                 0x1a100, 0x1a108,
2249                 0x1a114, 0x1a120,
2250                 0x1a128, 0x1a130,
2251                 0x1a138, 0x1a138,
2252                 0x1a190, 0x1a1c4,
2253                 0x1a1fc, 0x1a1fc,
2254                 0x1e008, 0x1e00c,
2255                 0x1e040, 0x1e044,
2256                 0x1e04c, 0x1e04c,
2257                 0x1e284, 0x1e290,
2258                 0x1e2c0, 0x1e2c0,
2259                 0x1e2e0, 0x1e2e0,
2260                 0x1e300, 0x1e384,
2261                 0x1e3c0, 0x1e3c8,
2262                 0x1e408, 0x1e40c,
2263                 0x1e440, 0x1e444,
2264                 0x1e44c, 0x1e44c,
2265                 0x1e684, 0x1e690,
2266                 0x1e6c0, 0x1e6c0,
2267                 0x1e6e0, 0x1e6e0,
2268                 0x1e700, 0x1e784,
2269                 0x1e7c0, 0x1e7c8,
2270                 0x1e808, 0x1e80c,
2271                 0x1e840, 0x1e844,
2272                 0x1e84c, 0x1e84c,
2273                 0x1ea84, 0x1ea90,
2274                 0x1eac0, 0x1eac0,
2275                 0x1eae0, 0x1eae0,
2276                 0x1eb00, 0x1eb84,
2277                 0x1ebc0, 0x1ebc8,
2278                 0x1ec08, 0x1ec0c,
2279                 0x1ec40, 0x1ec44,
2280                 0x1ec4c, 0x1ec4c,
2281                 0x1ee84, 0x1ee90,
2282                 0x1eec0, 0x1eec0,
2283                 0x1eee0, 0x1eee0,
2284                 0x1ef00, 0x1ef84,
2285                 0x1efc0, 0x1efc8,
2286                 0x1f008, 0x1f00c,
2287                 0x1f040, 0x1f044,
2288                 0x1f04c, 0x1f04c,
2289                 0x1f284, 0x1f290,
2290                 0x1f2c0, 0x1f2c0,
2291                 0x1f2e0, 0x1f2e0,
2292                 0x1f300, 0x1f384,
2293                 0x1f3c0, 0x1f3c8,
2294                 0x1f408, 0x1f40c,
2295                 0x1f440, 0x1f444,
2296                 0x1f44c, 0x1f44c,
2297                 0x1f684, 0x1f690,
2298                 0x1f6c0, 0x1f6c0,
2299                 0x1f6e0, 0x1f6e0,
2300                 0x1f700, 0x1f784,
2301                 0x1f7c0, 0x1f7c8,
2302                 0x1f808, 0x1f80c,
2303                 0x1f840, 0x1f844,
2304                 0x1f84c, 0x1f84c,
2305                 0x1fa84, 0x1fa90,
2306                 0x1fac0, 0x1fac0,
2307                 0x1fae0, 0x1fae0,
2308                 0x1fb00, 0x1fb84,
2309                 0x1fbc0, 0x1fbc8,
2310                 0x1fc08, 0x1fc0c,
2311                 0x1fc40, 0x1fc44,
2312                 0x1fc4c, 0x1fc4c,
2313                 0x1fe84, 0x1fe90,
2314                 0x1fec0, 0x1fec0,
2315                 0x1fee0, 0x1fee0,
2316                 0x1ff00, 0x1ff84,
2317                 0x1ffc0, 0x1ffc8,
2318                 0x30000, 0x30030,
2319                 0x30100, 0x30168,
2320                 0x30190, 0x301a0,
2321                 0x301a8, 0x301b8,
2322                 0x301c4, 0x301c8,
2323                 0x301d0, 0x301d0,
2324                 0x30200, 0x30320,
2325                 0x30400, 0x304b4,
2326                 0x304c0, 0x3052c,
2327                 0x30540, 0x3061c,
2328                 0x30800, 0x308a0,
2329                 0x308c0, 0x30908,
2330                 0x30910, 0x309b8,
2331                 0x30a00, 0x30a04,
2332                 0x30a0c, 0x30a14,
2333                 0x30a1c, 0x30a2c,
2334                 0x30a44, 0x30a50,
2335                 0x30a74, 0x30a74,
2336                 0x30a7c, 0x30afc,
2337                 0x30b08, 0x30c24,
2338                 0x30d00, 0x30d14,
2339                 0x30d1c, 0x30d3c,
2340                 0x30d44, 0x30d4c,
2341                 0x30d54, 0x30d74,
2342                 0x30d7c, 0x30d7c,
2343                 0x30de0, 0x30de0,
2344                 0x30e00, 0x30ed4,
2345                 0x30f00, 0x30fa4,
2346                 0x30fc0, 0x30fc4,
2347                 0x31000, 0x31004,
2348                 0x31080, 0x310fc,
2349                 0x31208, 0x31220,
2350                 0x3123c, 0x31254,
2351                 0x31300, 0x31300,
2352                 0x31308, 0x3131c,
2353                 0x31338, 0x3133c,
2354                 0x31380, 0x31380,
2355                 0x31388, 0x313a8,
2356                 0x313b4, 0x313b4,
2357                 0x31400, 0x31420,
2358                 0x31438, 0x3143c,
2359                 0x31480, 0x31480,
2360                 0x314a8, 0x314a8,
2361                 0x314b0, 0x314b4,
2362                 0x314c8, 0x314d4,
2363                 0x31a40, 0x31a4c,
2364                 0x31af0, 0x31b20,
2365                 0x31b38, 0x31b3c,
2366                 0x31b80, 0x31b80,
2367                 0x31ba8, 0x31ba8,
2368                 0x31bb0, 0x31bb4,
2369                 0x31bc8, 0x31bd4,
2370                 0x32140, 0x3218c,
2371                 0x321f0, 0x321f4,
2372                 0x32200, 0x32200,
2373                 0x32218, 0x32218,
2374                 0x32400, 0x32400,
2375                 0x32408, 0x3241c,
2376                 0x32618, 0x32620,
2377                 0x32664, 0x32664,
2378                 0x326a8, 0x326a8,
2379                 0x326ec, 0x326ec,
2380                 0x32a00, 0x32abc,
2381                 0x32b00, 0x32b18,
2382                 0x32b20, 0x32b38,
2383                 0x32b40, 0x32b58,
2384                 0x32b60, 0x32b78,
2385                 0x32c00, 0x32c00,
2386                 0x32c08, 0x32c3c,
2387                 0x33000, 0x3302c,
2388                 0x33034, 0x33050,
2389                 0x33058, 0x33058,
2390                 0x33060, 0x3308c,
2391                 0x3309c, 0x330ac,
2392                 0x330c0, 0x330c0,
2393                 0x330c8, 0x330d0,
2394                 0x330d8, 0x330e0,
2395                 0x330ec, 0x3312c,
2396                 0x33134, 0x33150,
2397                 0x33158, 0x33158,
2398                 0x33160, 0x3318c,
2399                 0x3319c, 0x331ac,
2400                 0x331c0, 0x331c0,
2401                 0x331c8, 0x331d0,
2402                 0x331d8, 0x331e0,
2403                 0x331ec, 0x33290,
2404                 0x33298, 0x332c4,
2405                 0x332e4, 0x33390,
2406                 0x33398, 0x333c4,
2407                 0x333e4, 0x3342c,
2408                 0x33434, 0x33450,
2409                 0x33458, 0x33458,
2410                 0x33460, 0x3348c,
2411                 0x3349c, 0x334ac,
2412                 0x334c0, 0x334c0,
2413                 0x334c8, 0x334d0,
2414                 0x334d8, 0x334e0,
2415                 0x334ec, 0x3352c,
2416                 0x33534, 0x33550,
2417                 0x33558, 0x33558,
2418                 0x33560, 0x3358c,
2419                 0x3359c, 0x335ac,
2420                 0x335c0, 0x335c0,
2421                 0x335c8, 0x335d0,
2422                 0x335d8, 0x335e0,
2423                 0x335ec, 0x33690,
2424                 0x33698, 0x336c4,
2425                 0x336e4, 0x33790,
2426                 0x33798, 0x337c4,
2427                 0x337e4, 0x337fc,
2428                 0x33814, 0x33814,
2429                 0x33854, 0x33868,
2430                 0x33880, 0x3388c,
2431                 0x338c0, 0x338d0,
2432                 0x338e8, 0x338ec,
2433                 0x33900, 0x3392c,
2434                 0x33934, 0x33950,
2435                 0x33958, 0x33958,
2436                 0x33960, 0x3398c,
2437                 0x3399c, 0x339ac,
2438                 0x339c0, 0x339c0,
2439                 0x339c8, 0x339d0,
2440                 0x339d8, 0x339e0,
2441                 0x339ec, 0x33a90,
2442                 0x33a98, 0x33ac4,
2443                 0x33ae4, 0x33b10,
2444                 0x33b24, 0x33b28,
2445                 0x33b38, 0x33b50,
2446                 0x33bf0, 0x33c10,
2447                 0x33c24, 0x33c28,
2448                 0x33c38, 0x33c50,
2449                 0x33cf0, 0x33cfc,
2450                 0x34000, 0x34030,
2451                 0x34100, 0x34168,
2452                 0x34190, 0x341a0,
2453                 0x341a8, 0x341b8,
2454                 0x341c4, 0x341c8,
2455                 0x341d0, 0x341d0,
2456                 0x34200, 0x34320,
2457                 0x34400, 0x344b4,
2458                 0x344c0, 0x3452c,
2459                 0x34540, 0x3461c,
2460                 0x34800, 0x348a0,
2461                 0x348c0, 0x34908,
2462                 0x34910, 0x349b8,
2463                 0x34a00, 0x34a04,
2464                 0x34a0c, 0x34a14,
2465                 0x34a1c, 0x34a2c,
2466                 0x34a44, 0x34a50,
2467                 0x34a74, 0x34a74,
2468                 0x34a7c, 0x34afc,
2469                 0x34b08, 0x34c24,
2470                 0x34d00, 0x34d14,
2471                 0x34d1c, 0x34d3c,
2472                 0x34d44, 0x34d4c,
2473                 0x34d54, 0x34d74,
2474                 0x34d7c, 0x34d7c,
2475                 0x34de0, 0x34de0,
2476                 0x34e00, 0x34ed4,
2477                 0x34f00, 0x34fa4,
2478                 0x34fc0, 0x34fc4,
2479                 0x35000, 0x35004,
2480                 0x35080, 0x350fc,
2481                 0x35208, 0x35220,
2482                 0x3523c, 0x35254,
2483                 0x35300, 0x35300,
2484                 0x35308, 0x3531c,
2485                 0x35338, 0x3533c,
2486                 0x35380, 0x35380,
2487                 0x35388, 0x353a8,
2488                 0x353b4, 0x353b4,
2489                 0x35400, 0x35420,
2490                 0x35438, 0x3543c,
2491                 0x35480, 0x35480,
2492                 0x354a8, 0x354a8,
2493                 0x354b0, 0x354b4,
2494                 0x354c8, 0x354d4,
2495                 0x35a40, 0x35a4c,
2496                 0x35af0, 0x35b20,
2497                 0x35b38, 0x35b3c,
2498                 0x35b80, 0x35b80,
2499                 0x35ba8, 0x35ba8,
2500                 0x35bb0, 0x35bb4,
2501                 0x35bc8, 0x35bd4,
2502                 0x36140, 0x3618c,
2503                 0x361f0, 0x361f4,
2504                 0x36200, 0x36200,
2505                 0x36218, 0x36218,
2506                 0x36400, 0x36400,
2507                 0x36408, 0x3641c,
2508                 0x36618, 0x36620,
2509                 0x36664, 0x36664,
2510                 0x366a8, 0x366a8,
2511                 0x366ec, 0x366ec,
2512                 0x36a00, 0x36abc,
2513                 0x36b00, 0x36b18,
2514                 0x36b20, 0x36b38,
2515                 0x36b40, 0x36b58,
2516                 0x36b60, 0x36b78,
2517                 0x36c00, 0x36c00,
2518                 0x36c08, 0x36c3c,
2519                 0x37000, 0x3702c,
2520                 0x37034, 0x37050,
2521                 0x37058, 0x37058,
2522                 0x37060, 0x3708c,
2523                 0x3709c, 0x370ac,
2524                 0x370c0, 0x370c0,
2525                 0x370c8, 0x370d0,
2526                 0x370d8, 0x370e0,
2527                 0x370ec, 0x3712c,
2528                 0x37134, 0x37150,
2529                 0x37158, 0x37158,
2530                 0x37160, 0x3718c,
2531                 0x3719c, 0x371ac,
2532                 0x371c0, 0x371c0,
2533                 0x371c8, 0x371d0,
2534                 0x371d8, 0x371e0,
2535                 0x371ec, 0x37290,
2536                 0x37298, 0x372c4,
2537                 0x372e4, 0x37390,
2538                 0x37398, 0x373c4,
2539                 0x373e4, 0x3742c,
2540                 0x37434, 0x37450,
2541                 0x37458, 0x37458,
2542                 0x37460, 0x3748c,
2543                 0x3749c, 0x374ac,
2544                 0x374c0, 0x374c0,
2545                 0x374c8, 0x374d0,
2546                 0x374d8, 0x374e0,
2547                 0x374ec, 0x3752c,
2548                 0x37534, 0x37550,
2549                 0x37558, 0x37558,
2550                 0x37560, 0x3758c,
2551                 0x3759c, 0x375ac,
2552                 0x375c0, 0x375c0,
2553                 0x375c8, 0x375d0,
2554                 0x375d8, 0x375e0,
2555                 0x375ec, 0x37690,
2556                 0x37698, 0x376c4,
2557                 0x376e4, 0x37790,
2558                 0x37798, 0x377c4,
2559                 0x377e4, 0x377fc,
2560                 0x37814, 0x37814,
2561                 0x37854, 0x37868,
2562                 0x37880, 0x3788c,
2563                 0x378c0, 0x378d0,
2564                 0x378e8, 0x378ec,
2565                 0x37900, 0x3792c,
2566                 0x37934, 0x37950,
2567                 0x37958, 0x37958,
2568                 0x37960, 0x3798c,
2569                 0x3799c, 0x379ac,
2570                 0x379c0, 0x379c0,
2571                 0x379c8, 0x379d0,
2572                 0x379d8, 0x379e0,
2573                 0x379ec, 0x37a90,
2574                 0x37a98, 0x37ac4,
2575                 0x37ae4, 0x37b10,
2576                 0x37b24, 0x37b28,
2577                 0x37b38, 0x37b50,
2578                 0x37bf0, 0x37c10,
2579                 0x37c24, 0x37c28,
2580                 0x37c38, 0x37c50,
2581                 0x37cf0, 0x37cfc,
2582                 0x40040, 0x40040,
2583                 0x40080, 0x40084,
2584                 0x40100, 0x40100,
2585                 0x40140, 0x401bc,
2586                 0x40200, 0x40214,
2587                 0x40228, 0x40228,
2588                 0x40240, 0x40258,
2589                 0x40280, 0x40280,
2590                 0x40304, 0x40304,
2591                 0x40330, 0x4033c,
2592                 0x41304, 0x413c8,
2593                 0x413d0, 0x413dc,
2594                 0x413f0, 0x413f0,
2595                 0x41400, 0x4140c,
2596                 0x41414, 0x4141c,
2597                 0x41480, 0x414d0,
2598                 0x44000, 0x4407c,
2599                 0x440c0, 0x441ac,
2600                 0x441b4, 0x4427c,
2601                 0x442c0, 0x443ac,
2602                 0x443b4, 0x4447c,
2603                 0x444c0, 0x445ac,
2604                 0x445b4, 0x4467c,
2605                 0x446c0, 0x447ac,
2606                 0x447b4, 0x4487c,
2607                 0x448c0, 0x449ac,
2608                 0x449b4, 0x44a7c,
2609                 0x44ac0, 0x44bac,
2610                 0x44bb4, 0x44c7c,
2611                 0x44cc0, 0x44dac,
2612                 0x44db4, 0x44e7c,
2613                 0x44ec0, 0x44fac,
2614                 0x44fb4, 0x4507c,
2615                 0x450c0, 0x451ac,
2616                 0x451b4, 0x451fc,
2617                 0x45800, 0x45804,
2618                 0x45810, 0x45830,
2619                 0x45840, 0x45860,
2620                 0x45868, 0x45868,
2621                 0x45880, 0x45884,
2622                 0x458a0, 0x458b0,
2623                 0x45a00, 0x45a04,
2624                 0x45a10, 0x45a30,
2625                 0x45a40, 0x45a60,
2626                 0x45a68, 0x45a68,
2627                 0x45a80, 0x45a84,
2628                 0x45aa0, 0x45ab0,
2629                 0x460c0, 0x460e4,
2630                 0x47000, 0x4703c,
2631                 0x47044, 0x4708c,
2632                 0x47200, 0x47250,
2633                 0x47400, 0x47408,
2634                 0x47414, 0x47420,
2635                 0x47600, 0x47618,
2636                 0x47800, 0x47814,
2637                 0x47820, 0x4782c,
2638                 0x50000, 0x50084,
2639                 0x50090, 0x500cc,
2640                 0x50300, 0x50384,
2641                 0x50400, 0x50400,
2642                 0x50800, 0x50884,
2643                 0x50890, 0x508cc,
2644                 0x50b00, 0x50b84,
2645                 0x50c00, 0x50c00,
2646                 0x51000, 0x51020,
2647                 0x51028, 0x510b0,
2648                 0x51300, 0x51324,
2649         };
2650
2651         static const unsigned int t6vf_reg_ranges[] = {
2652                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2653                 VF_MPS_REG(A_MPS_VF_CTL),
2654                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2655                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2656                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2657                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2658                 FW_T6VF_MBDATA_BASE_ADDR,
2659                 FW_T6VF_MBDATA_BASE_ADDR +
2660                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2661         };
2662
2663         u32 *buf_end = (u32 *)(buf + buf_size);
2664         const unsigned int *reg_ranges;
2665         int reg_ranges_size, range;
2666         unsigned int chip_version = chip_id(adap);
2667
2668         /*
2669          * Select the right set of register ranges to dump depending on the
2670          * adapter chip type.
2671          */
2672         switch (chip_version) {
2673         case CHELSIO_T4:
2674                 if (adap->flags & IS_VF) {
2675                         reg_ranges = t4vf_reg_ranges;
2676                         reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2677                 } else {
2678                         reg_ranges = t4_reg_ranges;
2679                         reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2680                 }
2681                 break;
2682
2683         case CHELSIO_T5:
2684                 if (adap->flags & IS_VF) {
2685                         reg_ranges = t5vf_reg_ranges;
2686                         reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2687                 } else {
2688                         reg_ranges = t5_reg_ranges;
2689                         reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2690                 }
2691                 break;
2692
2693         case CHELSIO_T6:
2694                 if (adap->flags & IS_VF) {
2695                         reg_ranges = t6vf_reg_ranges;
2696                         reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2697                 } else {
2698                         reg_ranges = t6_reg_ranges;
2699                         reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2700                 }
2701                 break;
2702
2703         default:
2704                 CH_ERR(adap,
2705                         "Unsupported chip version %d\n", chip_version);
2706                 return;
2707         }
2708
2709         /*
2710          * Clear the register buffer and insert the appropriate register
2711          * values selected by the above register ranges.
2712          */
2713         memset(buf, 0, buf_size);
2714         for (range = 0; range < reg_ranges_size; range += 2) {
2715                 unsigned int reg = reg_ranges[range];
2716                 unsigned int last_reg = reg_ranges[range + 1];
2717                 u32 *bufp = (u32 *)(buf + reg);
2718
2719                 /*
2720                  * Iterate across the register range filling in the register
2721                  * buffer but don't write past the end of the register buffer.
2722                  */
2723                 while (reg <= last_reg && bufp < buf_end) {
2724                         *bufp++ = t4_read_reg(adap, reg);
2725                         reg += sizeof(u32);
2726                 }
2727         }
2728 }
2729
2730 /*
2731  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2732  * header followed by one or more VPD-R sections, each with its own header.
2733  */
2734 struct t4_vpd_hdr {
2735         u8  id_tag;
2736         u8  id_len[2];
2737         u8  id_data[ID_LEN];
2738 };
2739
2740 struct t4_vpdr_hdr {
2741         u8  vpdr_tag;
2742         u8  vpdr_len[2];
2743 };
2744
2745 /*
2746  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2747  */
2748 #define EEPROM_DELAY            10              /* 10us per poll spin */
2749 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
2750
2751 #define EEPROM_STAT_ADDR        0x7bfc
2752 #define VPD_SIZE                0x800
2753 #define VPD_BASE                0x400
2754 #define VPD_BASE_OLD            0
2755 #define VPD_LEN                 1024
2756 #define VPD_INFO_FLD_HDR_SIZE   3
2757 #define CHELSIO_VPD_UNIQUE_ID   0x82
2758
2759 /*
2760  * Small utility function to wait till any outstanding VPD Access is complete.
2761  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2762  * VPD Access in flight.  This allows us to handle the problem of having a
2763  * previous VPD Access time out and prevent an attempt to inject a new VPD
2764  * Request before any in-flight VPD reguest has completed.
2765  */
2766 static int t4_seeprom_wait(struct adapter *adapter)
2767 {
2768         unsigned int base = adapter->params.pci.vpd_cap_addr;
2769         int max_poll;
2770
2771         /*
2772          * If no VPD Access is in flight, we can just return success right
2773          * away.
2774          */
2775         if (!adapter->vpd_busy)
2776                 return 0;
2777
2778         /*
2779          * Poll the VPD Capability Address/Flag register waiting for it
2780          * to indicate that the operation is complete.
2781          */
2782         max_poll = EEPROM_MAX_POLL;
2783         do {
2784                 u16 val;
2785
2786                 udelay(EEPROM_DELAY);
2787                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2788
2789                 /*
2790                  * If the operation is complete, mark the VPD as no longer
2791                  * busy and return success.
2792                  */
2793                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2794                         adapter->vpd_busy = 0;
2795                         return 0;
2796                 }
2797         } while (--max_poll);
2798
2799         /*
2800          * Failure!  Note that we leave the VPD Busy status set in order to
2801          * avoid pushing a new VPD Access request into the VPD Capability till
2802          * the current operation eventually succeeds.  It's a bug to issue a
2803          * new request when an existing request is in flight and will result
2804          * in corrupt hardware state.
2805          */
2806         return -ETIMEDOUT;
2807 }
2808
2809 /**
2810  *      t4_seeprom_read - read a serial EEPROM location
2811  *      @adapter: adapter to read
2812  *      @addr: EEPROM virtual address
2813  *      @data: where to store the read data
2814  *
2815  *      Read a 32-bit word from a location in serial EEPROM using the card's PCI
2816  *      VPD capability.  Note that this function must be called with a virtual
2817  *      address.
2818  */
2819 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2820 {
2821         unsigned int base = adapter->params.pci.vpd_cap_addr;
2822         int ret;
2823
2824         /*
2825          * VPD Accesses must alway be 4-byte aligned!
2826          */
2827         if (addr >= EEPROMVSIZE || (addr & 3))
2828                 return -EINVAL;
2829
2830         /*
2831          * Wait for any previous operation which may still be in flight to
2832          * complete.
2833          */
2834         ret = t4_seeprom_wait(adapter);
2835         if (ret) {
2836                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2837                 return ret;
2838         }
2839
2840         /*
2841          * Issue our new VPD Read request, mark the VPD as being busy and wait
2842          * for our request to complete.  If it doesn't complete, note the
2843          * error and return it to our caller.  Note that we do not reset the
2844          * VPD Busy status!
2845          */
2846         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2847         adapter->vpd_busy = 1;
2848         adapter->vpd_flag = PCI_VPD_ADDR_F;
2849         ret = t4_seeprom_wait(adapter);
2850         if (ret) {
2851                 CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2852                 return ret;
2853         }
2854
2855         /*
2856          * Grab the returned data, swizzle it into our endianness and
2857          * return success.
2858          */
2859         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2860         *data = le32_to_cpu(*data);
2861         return 0;
2862 }
2863
2864 /**
2865  *      t4_seeprom_write - write a serial EEPROM location
2866  *      @adapter: adapter to write
2867  *      @addr: virtual EEPROM address
2868  *      @data: value to write
2869  *
2870  *      Write a 32-bit word to a location in serial EEPROM using the card's PCI
2871  *      VPD capability.  Note that this function must be called with a virtual
2872  *      address.
2873  */
2874 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2875 {
2876         unsigned int base = adapter->params.pci.vpd_cap_addr;
2877         int ret;
2878         u32 stats_reg;
2879         int max_poll;
2880
2881         /*
2882          * VPD Accesses must alway be 4-byte aligned!
2883          */
2884         if (addr >= EEPROMVSIZE || (addr & 3))
2885                 return -EINVAL;
2886
2887         /*
2888          * Wait for any previous operation which may still be in flight to
2889          * complete.
2890          */
2891         ret = t4_seeprom_wait(adapter);
2892         if (ret) {
2893                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2894                 return ret;
2895         }
2896
2897         /*
2898          * Issue our new VPD Read request, mark the VPD as being busy and wait
2899          * for our request to complete.  If it doesn't complete, note the
2900          * error and return it to our caller.  Note that we do not reset the
2901          * VPD Busy status!
2902          */
2903         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2904                                  cpu_to_le32(data));
2905         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2906                                  (u16)addr | PCI_VPD_ADDR_F);
2907         adapter->vpd_busy = 1;
2908         adapter->vpd_flag = 0;
2909         ret = t4_seeprom_wait(adapter);
2910         if (ret) {
2911                 CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2912                 return ret;
2913         }
2914
2915         /*
2916          * Reset PCI_VPD_DATA register after a transaction and wait for our
2917          * request to complete. If it doesn't complete, return error.
2918          */
2919         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2920         max_poll = EEPROM_MAX_POLL;
2921         do {
2922                 udelay(EEPROM_DELAY);
2923                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2924         } while ((stats_reg & 0x1) && --max_poll);
2925         if (!max_poll)
2926                 return -ETIMEDOUT;
2927
2928         /* Return success! */
2929         return 0;
2930 }
2931
2932 /**
2933  *      t4_eeprom_ptov - translate a physical EEPROM address to virtual
2934  *      @phys_addr: the physical EEPROM address
2935  *      @fn: the PCI function number
2936  *      @sz: size of function-specific area
2937  *
2938  *      Translate a physical EEPROM address to virtual.  The first 1K is
2939  *      accessed through virtual addresses starting at 31K, the rest is
2940  *      accessed through virtual addresses starting at 0.
2941  *
2942  *      The mapping is as follows:
2943  *      [0..1K) -> [31K..32K)
2944  *      [1K..1K+A) -> [ES-A..ES)
2945  *      [1K+A..ES) -> [0..ES-A-1K)
2946  *
2947  *      where A = @fn * @sz, and ES = EEPROM size.
2948  */
2949 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2950 {
2951         fn *= sz;
2952         if (phys_addr < 1024)
2953                 return phys_addr + (31 << 10);
2954         if (phys_addr < 1024 + fn)
2955                 return EEPROMSIZE - fn + phys_addr - 1024;
2956         if (phys_addr < EEPROMSIZE)
2957                 return phys_addr - 1024 - fn;
2958         return -EINVAL;
2959 }
2960
2961 /**
2962  *      t4_seeprom_wp - enable/disable EEPROM write protection
2963  *      @adapter: the adapter
2964  *      @enable: whether to enable or disable write protection
2965  *
2966  *      Enables or disables write protection on the serial EEPROM.
2967  */
2968 int t4_seeprom_wp(struct adapter *adapter, int enable)
2969 {
2970         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2971 }
2972
2973 /**
2974  *      get_vpd_keyword_val - Locates an information field keyword in the VPD
2975  *      @vpd: Pointer to buffered vpd data structure
2976  *      @kw: The keyword to search for
2977  *      @region: VPD region to search (starting from 0)
2978  *
2979  *      Returns the value of the information field keyword or
2980  *      -ENOENT otherwise.
2981  */
2982 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2983 {
2984         int i, tag;
2985         unsigned int offset, len;
2986         const struct t4_vpdr_hdr *vpdr;
2987
2988         offset = sizeof(struct t4_vpd_hdr);
2989         vpdr = (const void *)(vpd + offset);
2990         tag = vpdr->vpdr_tag;
2991         len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2992         while (region--) {
2993                 offset += sizeof(struct t4_vpdr_hdr) + len;
2994                 vpdr = (const void *)(vpd + offset);
2995                 if (++tag != vpdr->vpdr_tag)
2996                         return -ENOENT;
2997                 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2998         }
2999         offset += sizeof(struct t4_vpdr_hdr);
3000
3001         if (offset + len > VPD_LEN) {
3002                 return -ENOENT;
3003         }
3004
3005         for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
3006                 if (memcmp(vpd + i , kw , 2) == 0){
3007                         i += VPD_INFO_FLD_HDR_SIZE;
3008                         return i;
3009                 }
3010
3011                 i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
3012         }
3013
3014         return -ENOENT;
3015 }
3016
3017
3018 /**
3019  *      get_vpd_params - read VPD parameters from VPD EEPROM
3020  *      @adapter: adapter to read
3021  *      @p: where to store the parameters
3022  *      @vpd: caller provided temporary space to read the VPD into
3023  *
3024  *      Reads card parameters stored in VPD EEPROM.
3025  */
3026 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3027     uint16_t device_id, u32 *buf)
3028 {
3029         int i, ret, addr;
3030         int ec, sn, pn, na, md;
3031         u8 csum;
3032         const u8 *vpd = (const u8 *)buf;
3033
3034         /*
3035          * Card information normally starts at VPD_BASE but early cards had
3036          * it at 0.
3037          */
3038         ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3039         if (ret)
3040                 return (ret);
3041
3042         /*
3043          * The VPD shall have a unique identifier specified by the PCI SIG.
3044          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3045          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3046          * is expected to automatically put this entry at the
3047          * beginning of the VPD.
3048          */
3049         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3050
3051         for (i = 0; i < VPD_LEN; i += 4) {
3052                 ret = t4_seeprom_read(adapter, addr + i, buf++);
3053                 if (ret)
3054                         return ret;
3055         }
3056
3057 #define FIND_VPD_KW(var,name) do { \
3058         var = get_vpd_keyword_val(vpd, name, 0); \
3059         if (var < 0) { \
3060                 CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3061                 return -EINVAL; \
3062         } \
3063 } while (0)
3064
3065         FIND_VPD_KW(i, "RV");
3066         for (csum = 0; i >= 0; i--)
3067                 csum += vpd[i];
3068
3069         if (csum) {
3070                 CH_ERR(adapter,
3071                         "corrupted VPD EEPROM, actual csum %u\n", csum);
3072                 return -EINVAL;
3073         }
3074
3075         FIND_VPD_KW(ec, "EC");
3076         FIND_VPD_KW(sn, "SN");
3077         FIND_VPD_KW(pn, "PN");
3078         FIND_VPD_KW(na, "NA");
3079 #undef FIND_VPD_KW
3080
3081         memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3082         strstrip(p->id);
3083         memcpy(p->ec, vpd + ec, EC_LEN);
3084         strstrip(p->ec);
3085         i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3086         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3087         strstrip(p->sn);
3088         i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3089         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3090         strstrip((char *)p->pn);
3091         i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3092         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3093         strstrip((char *)p->na);
3094
3095         if (device_id & 0x80)
3096                 return 0;       /* Custom card */
3097
3098         md = get_vpd_keyword_val(vpd, "VF", 1);
3099         if (md < 0) {
3100                 snprintf(p->md, sizeof(p->md), "unknown");
3101         } else {
3102                 i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3103                 memcpy(p->md, vpd + md, min(i, MD_LEN));
3104                 strstrip((char *)p->md);
3105         }
3106
3107         return 0;
3108 }
3109
3110 /* serial flash and firmware constants and flash config file constants */
3111 enum {
3112         SF_ATTEMPTS = 10,       /* max retries for SF operations */
3113
3114         /* flash command opcodes */
3115         SF_PROG_PAGE    = 2,    /* program 256B page */
3116         SF_WR_DISABLE   = 4,    /* disable writes */
3117         SF_RD_STATUS    = 5,    /* read status register */
3118         SF_WR_ENABLE    = 6,    /* enable writes */
3119         SF_RD_DATA_FAST = 0xb,  /* read flash */
3120         SF_RD_ID        = 0x9f, /* read ID */
3121         SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */
3122 };
3123
3124 /**
3125  *      sf1_read - read data from the serial flash
3126  *      @adapter: the adapter
3127  *      @byte_cnt: number of bytes to read
3128  *      @cont: whether another operation will be chained
3129  *      @lock: whether to lock SF for PL access only
3130  *      @valp: where to store the read data
3131  *
3132  *      Reads up to 4 bytes of data from the serial flash.  The location of
3133  *      the read needs to be specified prior to calling this by issuing the
3134  *      appropriate commands to the serial flash.
3135  */
3136 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3137                     int lock, u32 *valp)
3138 {
3139         int ret;
3140
3141         if (!byte_cnt || byte_cnt > 4)
3142                 return -EINVAL;
3143         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3144                 return -EBUSY;
3145         t4_write_reg(adapter, A_SF_OP,
3146                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3147         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3148         if (!ret)
3149                 *valp = t4_read_reg(adapter, A_SF_DATA);
3150         return ret;
3151 }
3152
3153 /**
3154  *      sf1_write - write data to the serial flash
3155  *      @adapter: the adapter
3156  *      @byte_cnt: number of bytes to write
3157  *      @cont: whether another operation will be chained
3158  *      @lock: whether to lock SF for PL access only
3159  *      @val: value to write
3160  *
3161  *      Writes up to 4 bytes of data to the serial flash.  The location of
3162  *      the write needs to be specified prior to calling this by issuing the
3163  *      appropriate commands to the serial flash.
3164  */
3165 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3166                      int lock, u32 val)
3167 {
3168         if (!byte_cnt || byte_cnt > 4)
3169                 return -EINVAL;
3170         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3171                 return -EBUSY;
3172         t4_write_reg(adapter, A_SF_DATA, val);
3173         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3174                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3175         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3176 }
3177
3178 /**
3179  *      flash_wait_op - wait for a flash operation to complete
3180  *      @adapter: the adapter
3181  *      @attempts: max number of polls of the status register
3182  *      @delay: delay between polls in ms
3183  *
3184  *      Wait for a flash operation to complete by polling the status register.
3185  */
3186 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3187 {
3188         int ret;
3189         u32 status;
3190
3191         while (1) {
3192                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3193                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3194                         return ret;
3195                 if (!(status & 1))
3196                         return 0;
3197                 if (--attempts == 0)
3198                         return -EAGAIN;
3199                 if (delay)
3200                         msleep(delay);
3201         }
3202 }
3203
3204 /**
3205  *      t4_read_flash - read words from serial flash
3206  *      @adapter: the adapter
3207  *      @addr: the start address for the read
3208  *      @nwords: how many 32-bit words to read
3209  *      @data: where to store the read data
3210  *      @byte_oriented: whether to store data as bytes or as words
3211  *
3212  *      Read the specified number of 32-bit words from the serial flash.
3213  *      If @byte_oriented is set the read data is stored as a byte array
3214  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3215  *      natural endianness.
3216  */
3217 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3218                   unsigned int nwords, u32 *data, int byte_oriented)
3219 {
3220         int ret;
3221
3222         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3223                 return -EINVAL;
3224
3225         addr = swab32(addr) | SF_RD_DATA_FAST;
3226
3227         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3228             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3229                 return ret;
3230
3231         for ( ; nwords; nwords--, data++) {
3232                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3233                 if (nwords == 1)
3234                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3235                 if (ret)
3236                         return ret;
3237                 if (byte_oriented)
3238                         *data = (__force __u32)(cpu_to_be32(*data));
3239         }
3240         return 0;
3241 }
3242
3243 /**
3244  *      t4_write_flash - write up to a page of data to the serial flash
3245  *      @adapter: the adapter
3246  *      @addr: the start address to write
3247  *      @n: length of data to write in bytes
3248  *      @data: the data to write
3249  *      @byte_oriented: whether to store data as bytes or as words
3250  *
3251  *      Writes up to a page of data (256 bytes) to the serial flash starting
3252  *      at the given address.  All the data must be written to the same page.
3253  *      If @byte_oriented is set the write data is stored as byte stream
3254  *      (i.e. matches what on disk), otherwise in big-endian.
3255  */
3256 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3257                           unsigned int n, const u8 *data, int byte_oriented)
3258 {
3259         int ret;
3260         u32 buf[SF_PAGE_SIZE / 4];
3261         unsigned int i, c, left, val, offset = addr & 0xff;
3262
3263         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3264                 return -EINVAL;
3265
3266         val = swab32(addr) | SF_PROG_PAGE;
3267
3268         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3269             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3270                 goto unlock;
3271
3272         for (left = n; left; left -= c) {
3273                 c = min(left, 4U);
3274                 for (val = 0, i = 0; i < c; ++i)
3275                         val = (val << 8) + *data++;
3276
3277                 if (!byte_oriented)
3278                         val = cpu_to_be32(val);
3279
3280                 ret = sf1_write(adapter, c, c != left, 1, val);
3281                 if (ret)
3282                         goto unlock;
3283         }
3284         ret = flash_wait_op(adapter, 8, 1);
3285         if (ret)
3286                 goto unlock;
3287
3288         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3289
3290         /* Read the page to verify the write succeeded */
3291         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3292                             byte_oriented);
3293         if (ret)
3294                 return ret;
3295
3296         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3297                 CH_ERR(adapter,
3298                         "failed to correctly write the flash page at %#x\n",
3299                         addr);
3300                 return -EIO;
3301         }
3302         return 0;
3303
3304 unlock:
3305         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3306         return ret;
3307 }
3308
3309 /**
3310  *      t4_get_fw_version - read the firmware version
3311  *      @adapter: the adapter
3312  *      @vers: where to place the version
3313  *
3314  *      Reads the FW version from flash.
3315  */
3316 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3317 {
3318         return t4_read_flash(adapter, FLASH_FW_START +
3319                              offsetof(struct fw_hdr, fw_ver), 1,
3320                              vers, 0);
3321 }
3322
3323 /**
3324  *      t4_get_bs_version - read the firmware bootstrap version
3325  *      @adapter: the adapter
3326  *      @vers: where to place the version
3327  *
3328  *      Reads the FW Bootstrap version from flash.
3329  */
3330 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3331 {
3332         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3333                              offsetof(struct fw_hdr, fw_ver), 1,
3334                              vers, 0);
3335 }
3336
3337 /**
3338  *      t4_get_tp_version - read the TP microcode version
3339  *      @adapter: the adapter
3340  *      @vers: where to place the version
3341  *
3342  *      Reads the TP microcode version from flash.
3343  */
3344 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3345 {
3346         return t4_read_flash(adapter, FLASH_FW_START +
3347                              offsetof(struct fw_hdr, tp_microcode_ver),
3348                              1, vers, 0);
3349 }
3350
3351 /**
3352  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3353  *      @adapter: the adapter
3354  *      @vers: where to place the version
3355  *
3356  *      Reads the Expansion ROM header from FLASH and returns the version
3357  *      number (if present) through the @vers return value pointer.  We return
3358  *      this in the Firmware Version Format since it's convenient.  Return
3359  *      0 on success, -ENOENT if no Expansion ROM is present.
3360  */
3361 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3362 {
3363         struct exprom_header {
3364                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3365                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3366         } *hdr;
3367         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3368                                            sizeof(u32))];
3369         int ret;
3370
3371         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3372                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3373                             0);
3374         if (ret)
3375                 return ret;
3376
3377         hdr = (struct exprom_header *)exprom_header_buf;
3378         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3379                 return -ENOENT;
3380
3381         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3382                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3383                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3384                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3385         return 0;
3386 }
3387
3388 /**
3389  *      t4_get_scfg_version - return the Serial Configuration version
3390  *      @adapter: the adapter
3391  *      @vers: where to place the version
3392  *
3393  *      Reads the Serial Configuration Version via the Firmware interface
3394  *      (thus this can only be called once we're ready to issue Firmware
3395  *      commands).  The format of the Serial Configuration version is
3396  *      adapter specific.  Returns 0 on success, an error on failure.
3397  *
3398  *      Note that early versions of the Firmware didn't include the ability
3399  *      to retrieve the Serial Configuration version, so we zero-out the
3400  *      return-value parameter in that case to avoid leaving it with
3401  *      garbage in it.
3402  *
3403  *      Also note that the Firmware will return its cached copy of the Serial
3404  *      Initialization Revision ID, not the actual Revision ID as written in
3405  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3406  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3407  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3408  *      been issued if the Host Driver will be performing a full adapter
3409  *      initialization.
3410  */
3411 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3412 {
3413         u32 scfgrev_param;
3414         int ret;
3415
3416         scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3417                          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3418         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3419                               1, &scfgrev_param, vers);
3420         if (ret)
3421                 *vers = 0;
3422         return ret;
3423 }
3424
3425 /**
3426  *      t4_get_vpd_version - return the VPD version
3427  *      @adapter: the adapter
3428  *      @vers: where to place the version
3429  *
3430  *      Reads the VPD via the Firmware interface (thus this can only be called
3431  *      once we're ready to issue Firmware commands).  The format of the
3432  *      VPD version is adapter specific.  Returns 0 on success, an error on
3433  *      failure.
3434  *
3435  *      Note that early versions of the Firmware didn't include the ability
3436  *      to retrieve the VPD version, so we zero-out the return-value parameter
3437  *      in that case to avoid leaving it with garbage in it.
3438  *
3439  *      Also note that the Firmware will return its cached copy of the VPD
3440  *      Revision ID, not the actual Revision ID as written in the Serial
3441  *      EEPROM.  This is only an issue if a new VPD has been written and the
3442  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3443  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3444  *      if the Host Driver will be performing a full adapter initialization.
3445  */
3446 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3447 {
3448         u32 vpdrev_param;
3449         int ret;
3450
3451         vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3452                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3453         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3454                               1, &vpdrev_param, vers);
3455         if (ret)
3456                 *vers = 0;
3457         return ret;
3458 }
3459
3460 /**
3461  *      t4_get_version_info - extract various chip/firmware version information
3462  *      @adapter: the adapter
3463  *
3464  *      Reads various chip/firmware version numbers and stores them into the
3465  *      adapter Adapter Parameters structure.  If any of the efforts fails
3466  *      the first failure will be returned, but all of the version numbers
3467  *      will be read.
3468  */
3469 int t4_get_version_info(struct adapter *adapter)
3470 {
3471         int ret = 0;
3472
3473         #define FIRST_RET(__getvinfo) \
3474         do { \
3475                 int __ret = __getvinfo; \
3476                 if (__ret && !ret) \
3477                         ret = __ret; \
3478         } while (0)
3479
3480         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3481         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3482         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3483         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3484         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3485         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3486
3487         #undef FIRST_RET
3488
3489         return ret;
3490 }
3491
3492 /**
3493  *      t4_flash_erase_sectors - erase a range of flash sectors
3494  *      @adapter: the adapter
3495  *      @start: the first sector to erase
3496  *      @end: the last sector to erase
3497  *
3498  *      Erases the sectors in the given inclusive range.
3499  */
3500 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3501 {
3502         int ret = 0;
3503
3504         if (end >= adapter->params.sf_nsec)
3505                 return -EINVAL;
3506
3507         while (start <= end) {
3508                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3509                     (ret = sf1_write(adapter, 4, 0, 1,
3510                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3511                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3512                         CH_ERR(adapter,
3513                                 "erase of flash sector %d failed, error %d\n",
3514                                 start, ret);
3515                         break;
3516                 }
3517                 start++;
3518         }
3519         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3520         return ret;
3521 }
3522
3523 /**
3524  *      t4_flash_cfg_addr - return the address of the flash configuration file
3525  *      @adapter: the adapter
3526  *
3527  *      Return the address within the flash where the Firmware Configuration
3528  *      File is stored, or an error if the device FLASH is too small to contain
3529  *      a Firmware Configuration File.
3530  */
3531 int t4_flash_cfg_addr(struct adapter *adapter)
3532 {
3533         /*
3534          * If the device FLASH isn't large enough to hold a Firmware
3535          * Configuration File, return an error.
3536          */
3537         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3538                 return -ENOSPC;
3539
3540         return FLASH_CFG_START;
3541 }
3542
3543 /*
3544  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3545  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3546  * and emit an error message for mismatched firmware to save our caller the
3547  * effort ...
3548  */
3549 static int t4_fw_matches_chip(struct adapter *adap,
3550                               const struct fw_hdr *hdr)
3551 {
3552         /*
3553          * The expression below will return FALSE for any unsupported adapter
3554          * which will keep us "honest" in the future ...
3555          */
3556         if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3557             (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3558             (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3559                 return 1;
3560
3561         CH_ERR(adap,
3562                 "FW image (%d) is not suitable for this adapter (%d)\n",
3563                 hdr->chip, chip_id(adap));
3564         return 0;
3565 }
3566
3567 /**
3568  *      t4_load_fw - download firmware
3569  *      @adap: the adapter
3570  *      @fw_data: the firmware image to write
3571  *      @size: image size
3572  *
3573  *      Write the supplied firmware image to the card's serial flash.
3574  */
3575 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3576 {
3577         u32 csum;
3578         int ret, addr;
3579         unsigned int i;
3580         u8 first_page[SF_PAGE_SIZE];
3581         const u32 *p = (const u32 *)fw_data;
3582         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3583         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3584         unsigned int fw_start_sec;
3585         unsigned int fw_start;
3586         unsigned int fw_size;
3587
3588         if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3589                 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3590                 fw_start = FLASH_FWBOOTSTRAP_START;
3591                 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3592         } else {
3593                 fw_start_sec = FLASH_FW_START_SEC;
3594                 fw_start = FLASH_FW_START;
3595                 fw_size = FLASH_FW_MAX_SIZE;
3596         }
3597
3598         if (!size) {
3599                 CH_ERR(adap, "FW image has no data\n");
3600                 return -EINVAL;
3601         }
3602         if (size & 511) {
3603                 CH_ERR(adap,
3604                         "FW image size not multiple of 512 bytes\n");
3605                 return -EINVAL;
3606         }
3607         if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3608                 CH_ERR(adap,
3609                         "FW image size differs from size in FW header\n");
3610                 return -EINVAL;
3611         }
3612         if (size > fw_size) {
3613                 CH_ERR(adap, "FW image too large, max is %u bytes\n",
3614                         fw_size);
3615                 return -EFBIG;
3616         }
3617         if (!t4_fw_matches_chip(adap, hdr))
3618                 return -EINVAL;
3619
3620         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3621                 csum += be32_to_cpu(p[i]);
3622
3623         if (csum != 0xffffffff) {
3624                 CH_ERR(adap,
3625                         "corrupted firmware image, checksum %#x\n", csum);
3626                 return -EINVAL;
3627         }
3628
3629         i = DIV_ROUND_UP(size, sf_sec_size);    /* # of sectors spanned */
3630         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3631         if (ret)
3632                 goto out;
3633
3634         /*
3635          * We write the correct version at the end so the driver can see a bad
3636          * version if the FW write fails.  Start by writing a copy of the
3637          * first page with a bad version.
3638          */
3639         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3640         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3641         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3642         if (ret)
3643                 goto out;
3644
3645         addr = fw_start;
3646         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3647                 addr += SF_PAGE_SIZE;
3648                 fw_data += SF_PAGE_SIZE;
3649                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3650                 if (ret)
3651                         goto out;
3652         }
3653
3654         ret = t4_write_flash(adap,
3655                              fw_start + offsetof(struct fw_hdr, fw_ver),
3656                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3657 out:
3658         if (ret)
3659                 CH_ERR(adap, "firmware download failed, error %d\n",
3660                         ret);
3661         return ret;
3662 }
3663
3664 /**
3665  *      t4_fwcache - firmware cache operation
3666  *      @adap: the adapter
3667  *      @op  : the operation (flush or flush and invalidate)
3668  */
3669 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3670 {
3671         struct fw_params_cmd c;
3672
3673         memset(&c, 0, sizeof(c));
3674         c.op_to_vfn =
3675             cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3676                             F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3677                                 V_FW_PARAMS_CMD_PFN(adap->pf) |
3678                                 V_FW_PARAMS_CMD_VFN(0));
3679         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3680         c.param[0].mnem =
3681             cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3682                             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3683         c.param[0].val = (__force __be32)op;
3684
3685         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3686 }
3687
3688 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3689                         unsigned int *pif_req_wrptr,
3690                         unsigned int *pif_rsp_wrptr)
3691 {
3692         int i, j;
3693         u32 cfg, val, req, rsp;
3694
3695         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3696         if (cfg & F_LADBGEN)
3697                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3698
3699         val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3700         req = G_POLADBGWRPTR(val);
3701         rsp = G_PILADBGWRPTR(val);
3702         if (pif_req_wrptr)
3703                 *pif_req_wrptr = req;
3704         if (pif_rsp_wrptr)
3705                 *pif_rsp_wrptr = rsp;
3706
3707         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3708                 for (j = 0; j < 6; j++) {
3709                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3710                                      V_PILADBGRDPTR(rsp));
3711                         *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3712                         *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3713                         req++;
3714                         rsp++;
3715                 }
3716                 req = (req + 2) & M_POLADBGRDPTR;
3717                 rsp = (rsp + 2) & M_PILADBGRDPTR;
3718         }
3719         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3720 }
3721
3722 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3723 {
3724         u32 cfg;
3725         int i, j, idx;
3726
3727         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3728         if (cfg & F_LADBGEN)
3729                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3730
3731         for (i = 0; i < CIM_MALA_SIZE; i++) {
3732                 for (j = 0; j < 5; j++) {
3733                         idx = 8 * i + j;
3734                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3735                                      V_PILADBGRDPTR(idx));
3736                         *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3737                         *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3738                 }
3739         }
3740         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3741 }
3742
3743 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3744 {
3745         unsigned int i, j;
3746
3747         for (i = 0; i < 8; i++) {
3748                 u32 *p = la_buf + i;
3749
3750                 t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3751                 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3752                 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3753                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3754                         *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3755         }
3756 }
3757
3758 /**
3759  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3760  *      @caps16: a 16-bit Port Capabilities value
3761  *
3762  *      Returns the equivalent 32-bit Port Capabilities value.
3763  */
3764 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3765 {
3766         uint32_t caps32 = 0;
3767
3768         #define CAP16_TO_CAP32(__cap) \
3769                 do { \
3770                         if (caps16 & FW_PORT_CAP_##__cap) \
3771                                 caps32 |= FW_PORT_CAP32_##__cap; \
3772                 } while (0)
3773
3774         CAP16_TO_CAP32(SPEED_100M);
3775         CAP16_TO_CAP32(SPEED_1G);
3776         CAP16_TO_CAP32(SPEED_25G);
3777         CAP16_TO_CAP32(SPEED_10G);
3778         CAP16_TO_CAP32(SPEED_40G);
3779         CAP16_TO_CAP32(SPEED_100G);
3780         CAP16_TO_CAP32(FC_RX);
3781         CAP16_TO_CAP32(FC_TX);
3782         CAP16_TO_CAP32(ANEG);
3783         CAP16_TO_CAP32(FORCE_PAUSE);
3784         CAP16_TO_CAP32(MDIAUTO);
3785         CAP16_TO_CAP32(MDISTRAIGHT);
3786         CAP16_TO_CAP32(FEC_RS);
3787         CAP16_TO_CAP32(FEC_BASER_RS);
3788         CAP16_TO_CAP32(802_3_PAUSE);
3789         CAP16_TO_CAP32(802_3_ASM_DIR);
3790
3791         #undef CAP16_TO_CAP32
3792
3793         return caps32;
3794 }
3795
3796 /**
3797  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3798  *      @caps32: a 32-bit Port Capabilities value
3799  *
3800  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
3801  *      not all 32-bit Port Capabilities can be represented in the 16-bit
3802  *      Port Capabilities and some fields/values may not make it.
3803  */
3804 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3805 {
3806         uint16_t caps16 = 0;
3807
3808         #define CAP32_TO_CAP16(__cap) \
3809                 do { \
3810                         if (caps32 & FW_PORT_CAP32_##__cap) \
3811                                 caps16 |= FW_PORT_CAP_##__cap; \
3812                 } while (0)
3813
3814         CAP32_TO_CAP16(SPEED_100M);
3815         CAP32_TO_CAP16(SPEED_1G);
3816         CAP32_TO_CAP16(SPEED_10G);
3817         CAP32_TO_CAP16(SPEED_25G);
3818         CAP32_TO_CAP16(SPEED_40G);
3819         CAP32_TO_CAP16(SPEED_100G);
3820         CAP32_TO_CAP16(FC_RX);
3821         CAP32_TO_CAP16(FC_TX);
3822         CAP32_TO_CAP16(802_3_PAUSE);
3823         CAP32_TO_CAP16(802_3_ASM_DIR);
3824         CAP32_TO_CAP16(ANEG);
3825         CAP32_TO_CAP16(FORCE_PAUSE);
3826         CAP32_TO_CAP16(MDIAUTO);
3827         CAP32_TO_CAP16(MDISTRAIGHT);
3828         CAP32_TO_CAP16(FEC_RS);
3829         CAP32_TO_CAP16(FEC_BASER_RS);
3830
3831         #undef CAP32_TO_CAP16
3832
3833         return caps16;
3834 }
3835
3836 static bool
3837 is_bt(struct port_info *pi)
3838 {
3839
3840         return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3841             pi->port_type == FW_PORT_TYPE_BT_XFI ||
3842             pi->port_type == FW_PORT_TYPE_BT_XAUI);
3843 }
3844
3845 /**
3846  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3847  *      @phy: the PHY to setup
3848  *      @mac: the MAC to setup
3849  *      @lc: the requested link configuration
3850  *
3851  *      Set up a port's MAC and PHY according to a desired link configuration.
3852  *      - If the PHY can auto-negotiate first decide what to advertise, then
3853  *        enable/disable auto-negotiation as desired, and reset.
3854  *      - If the PHY does not auto-negotiate just reset it.
3855  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3856  *        otherwise do it later based on the outcome of auto-negotiation.
3857  */
3858 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3859                   struct link_config *lc)
3860 {
3861         struct fw_port_cmd c;
3862         unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3863         unsigned int aneg, fc, fec, speed, rcap;
3864
3865         fc = 0;
3866         if (lc->requested_fc & PAUSE_RX)
3867                 fc |= FW_PORT_CAP32_FC_RX;
3868         if (lc->requested_fc & PAUSE_TX)
3869                 fc |= FW_PORT_CAP32_FC_TX;
3870         if (!(lc->requested_fc & PAUSE_AUTONEG))
3871                 fc |= FW_PORT_CAP32_FORCE_PAUSE;
3872
3873         fec = 0;
3874         if (lc->requested_fec == FEC_AUTO)
3875                 fec = lc->fec_hint;
3876         else {
3877                 if (lc->requested_fec & FEC_RS)
3878                         fec |= FW_PORT_CAP32_FEC_RS;
3879                 if (lc->requested_fec & FEC_BASER_RS)
3880                         fec |= FW_PORT_CAP32_FEC_BASER_RS;
3881         }
3882
3883         if (lc->requested_aneg == AUTONEG_DISABLE)
3884                 aneg = 0;
3885         else if (lc->requested_aneg == AUTONEG_ENABLE)
3886                 aneg = FW_PORT_CAP32_ANEG;
3887         else
3888                 aneg = lc->supported & FW_PORT_CAP32_ANEG;
3889
3890         if (aneg) {
3891                 speed = lc->supported & V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3892         } else if (lc->requested_speed != 0)
3893                 speed = speed_to_fwcap(lc->requested_speed);
3894         else
3895                 speed = fwcap_top_speed(lc->supported);
3896
3897         /* Force AN on for BT cards. */
3898         if (is_bt(adap->port[port]))
3899                 aneg = lc->supported & FW_PORT_CAP32_ANEG;
3900
3901         rcap = aneg | speed | fc | fec;
3902         if ((rcap | lc->supported) != lc->supported) {
3903 #ifdef INVARIANTS
3904                 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3905                     lc->supported);
3906 #endif
3907                 rcap &= lc->supported;
3908         }
3909         rcap |= mdi;
3910
3911         memset(&c, 0, sizeof(c));
3912         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3913                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3914                                      V_FW_PORT_CMD_PORTID(port));
3915         if (adap->params.port_caps32) {
3916                 c.action_to_len16 =
3917                     cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3918                         FW_LEN16(c));
3919                 c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3920         } else {
3921                 c.action_to_len16 =
3922                     cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3923                             FW_LEN16(c));
3924                 c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3925         }
3926
3927         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3928 }
3929
3930 /**
3931  *      t4_restart_aneg - restart autonegotiation
3932  *      @adap: the adapter
3933  *      @mbox: mbox to use for the FW command
3934  *      @port: the port id
3935  *
3936  *      Restarts autonegotiation for the selected port.
3937  */
3938 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3939 {
3940         struct fw_port_cmd c;
3941
3942         memset(&c, 0, sizeof(c));
3943         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3944                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3945                                      V_FW_PORT_CMD_PORTID(port));
3946         c.action_to_len16 =
3947                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3948                             FW_LEN16(c));
3949         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3950         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3951 }
3952
3953 typedef void (*int_handler_t)(struct adapter *adap);
3954
3955 struct intr_info {
3956         unsigned int mask;      /* bits to check in interrupt status */
3957         const char *msg;        /* message to print or NULL */
3958         short stat_idx;         /* stat counter to increment or -1 */
3959         unsigned short fatal;   /* whether the condition reported is fatal */
3960         int_handler_t int_handler;      /* platform-specific int handler */
3961 };
3962
3963 /**
3964  *      t4_handle_intr_status - table driven interrupt handler
3965  *      @adapter: the adapter that generated the interrupt
3966  *      @reg: the interrupt status register to process
3967  *      @acts: table of interrupt actions
3968  *
3969  *      A table driven interrupt handler that applies a set of masks to an
3970  *      interrupt status word and performs the corresponding actions if the
3971  *      interrupts described by the mask have occurred.  The actions include
3972  *      optionally emitting a warning or alert message.  The table is terminated
3973  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
3974  *      conditions.
3975  */
3976 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3977                                  const struct intr_info *acts)
3978 {
3979         int fatal = 0;
3980         unsigned int mask = 0;
3981         unsigned int status = t4_read_reg(adapter, reg);
3982
3983         for ( ; acts->mask; ++acts) {
3984                 if (!(status & acts->mask))
3985                         continue;
3986                 if (acts->fatal) {
3987                         fatal++;
3988                         CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3989                                   status & acts->mask);
3990                 } else if (acts->msg)
3991                         CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3992                                  status & acts->mask);
3993                 if (acts->int_handler)
3994                         acts->int_handler(adapter);
3995                 mask |= acts->mask;
3996         }
3997         status &= mask;
3998         if (status)     /* clear processed interrupts */
3999                 t4_write_reg(adapter, reg, status);
4000         return fatal;
4001 }
4002
4003 /*
4004  * Interrupt handler for the PCIE module.
4005  */
4006 static void pcie_intr_handler(struct adapter *adapter)
4007 {
4008         static const struct intr_info sysbus_intr_info[] = {
4009                 { F_RNPP, "RXNP array parity error", -1, 1 },
4010                 { F_RPCP, "RXPC array parity error", -1, 1 },
4011                 { F_RCIP, "RXCIF array parity error", -1, 1 },
4012                 { F_RCCP, "Rx completions control array parity error", -1, 1 },
4013                 { F_RFTP, "RXFT array parity error", -1, 1 },
4014                 { 0 }
4015         };
4016         static const struct intr_info pcie_port_intr_info[] = {
4017                 { F_TPCP, "TXPC array parity error", -1, 1 },
4018                 { F_TNPP, "TXNP array parity error", -1, 1 },
4019                 { F_TFTP, "TXFT array parity error", -1, 1 },
4020                 { F_TCAP, "TXCA array parity error", -1, 1 },
4021                 { F_TCIP, "TXCIF array parity error", -1, 1 },
4022                 { F_RCAP, "RXCA array parity error", -1, 1 },
4023                 { F_OTDD, "outbound request TLP discarded", -1, 1 },
4024                 { F_RDPE, "Rx data parity error", -1, 1 },
4025                 { F_TDUE, "Tx uncorrectable data error", -1, 1 },
4026                 { 0 }
4027         };
4028         static const struct intr_info pcie_intr_info[] = {
4029                 { F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
4030                 { F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
4031                 { F_MSIDATAPERR, "MSI data parity error", -1, 1 },
4032                 { F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
4033                 { F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
4034                 { F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
4035                 { F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
4036                 { F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
4037                 { F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
4038                 { F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
4039                 { F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
4040                 { F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
4041                 { F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
4042                 { F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
4043                 { F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
4044                 { F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
4045                 { F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
4046                 { F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
4047                 { F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
4048                 { F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
4049                 { F_FIDPERR, "PCI FID parity error", -1, 1 },
4050                 { F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
4051                 { F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
4052                 { F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
4053                 { F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
4054                 { F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
4055                 { F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
4056                 { F_PCIESINT, "PCI core secondary fault", -1, 1 },
4057                 { F_PCIEPINT, "PCI core primary fault", -1, 1 },
4058                 { F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
4059                   0 },
4060                 { 0 }
4061         };
4062
4063         static const struct intr_info t5_pcie_intr_info[] = {
4064                 { F_MSTGRPPERR, "Master Response Read Queue parity error",
4065                   -1, 1 },
4066                 { F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
4067                 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
4068                 { F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
4069                 { F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
4070                 { F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
4071                 { F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
4072                 { F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
4073                   -1, 1 },
4074                 { F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
4075                   -1, 1 },
4076                 { F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
4077                 { F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
4078                 { F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
4079                 { F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
4080                 { F_DREQWRPERR, "PCI DMA channel write request parity error",
4081                   -1, 1 },
4082                 { F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
4083                 { F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
4084                 { F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
4085                 { F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
4086                 { F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
4087                 { F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
4088                 { F_FIDPERR, "PCI FID parity error", -1, 1 },
4089                 { F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
4090                 { F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
4091                 { F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
4092                 { F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
4093                   -1, 1 },
4094                 { F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
4095                   -1, 1 },
4096                 { F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
4097                 { F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
4098                 { F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4099                 { F_READRSPERR, "Outbound read error", -1,
4100                   0 },
4101                 { 0 }
4102         };
4103
4104         int fat;
4105
4106         if (is_t4(adapter))
4107                 fat = t4_handle_intr_status(adapter,
4108                                 A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4109                                 sysbus_intr_info) +
4110                         t4_handle_intr_status(adapter,
4111                                         A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4112                                         pcie_port_intr_info) +
4113                         t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
4114                                               pcie_intr_info);
4115         else
4116                 fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
4117                                             t5_pcie_intr_info);
4118         if (fat)
4119                 t4_fatal_err(adapter);
4120 }
4121
4122 /*
4123  * TP interrupt handler.
4124  */
4125 static void tp_intr_handler(struct adapter *adapter)
4126 {
4127         static const struct intr_info tp_intr_info[] = {
4128                 { 0x3fffffff, "TP parity error", -1, 1 },
4129                 { F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
4130                 { 0 }
4131         };
4132
4133         if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
4134                 t4_fatal_err(adapter);
4135 }
4136
4137 /*
4138  * SGE interrupt handler.
4139  */
4140 static void sge_intr_handler(struct adapter *adapter)
4141 {
4142         u64 v;
4143         u32 err;
4144
4145         static const struct intr_info sge_intr_info[] = {
4146                 { F_ERR_CPL_EXCEED_IQE_SIZE,
4147                   "SGE received CPL exceeding IQE size", -1, 1 },
4148                 { F_ERR_INVALID_CIDX_INC,
4149                   "SGE GTS CIDX increment too large", -1, 0 },
4150                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
4151                 { F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
4152                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4153                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
4154                 { F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
4155                   0 },
4156                 { F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
4157                   0 },
4158                 { F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
4159                   0 },
4160                 { F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
4161                   0 },
4162                 { F_ERR_ING_CTXT_PRIO,
4163                   "SGE too many priority ingress contexts", -1, 0 },
4164                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
4165                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
4166                 { F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
4167                   F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
4168                   "SGE PCIe error for a DBP thread", -1, 0 },
4169                 { 0 }
4170         };
4171
4172         static const struct intr_info t4t5_sge_intr_info[] = {
4173                 { F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
4174                 { F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
4175                 { F_ERR_EGR_CTXT_PRIO,
4176                   "SGE too many priority egress contexts", -1, 0 },
4177                 { 0 }
4178         };
4179
4180         /*
4181         * For now, treat below interrupts as fatal so that we disable SGE and
4182         * get better debug */
4183         static const struct intr_info t6_sge_intr_info[] = {
4184                 { F_FATAL_WRE_LEN,
4185                   "SGE Actual WRE packet is less than advertized length",
4186                   -1, 1 },
4187                 { 0 }
4188         };
4189
4190         v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4191                 ((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4192         if (v) {
4193                 CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4194                                 (unsigned long long)v);
4195                 t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4196                 t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4197         }
4198
4199         v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4200         if (chip_id(adapter) <= CHELSIO_T5)
4201                 v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4202                                            t4t5_sge_intr_info);
4203         else
4204                 v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4205                                            t6_sge_intr_info);
4206
4207         err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4208         if (err & F_ERROR_QID_VALID) {
4209                 CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4210                 if (err & F_UNCAPTURED_ERROR)
4211                         CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4212                 t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4213                              F_UNCAPTURED_ERROR);
4214         }
4215
4216         if (v != 0)
4217                 t4_fatal_err(adapter);
4218 }
4219
4220 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4221                       F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4222 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4223                       F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4224
4225 /*
4226  * CIM interrupt handler.
4227  */
4228 static void cim_intr_handler(struct adapter *adapter)
4229 {
4230         static const struct intr_info cim_intr_info[] = {
4231                 { F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4232                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4233                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4234                 { F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4235                 { F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4236                 { F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4237                 { F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4238                 { F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4239                 { 0 }
4240         };
4241         static const struct intr_info cim_upintr_info[] = {
4242                 { F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4243                 { F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4244                 { F_ILLWRINT, "CIM illegal write", -1, 1 },
4245                 { F_ILLRDINT, "CIM illegal read", -1, 1 },
4246                 { F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4247                 { F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4248                 { F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4249                 { F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4250                 { F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4251                 { F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4252                 { F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4253                 { F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4254                 { F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4255                 { F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4256                 { F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4257                 { F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4258                 { F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4259                 { F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4260                 { F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4261                 { F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4262                 { F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4263                 { F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4264                 { F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4265                 { F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4266                 { F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4267                 { F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4268                 { F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4269                 { F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4270                 { 0 }
4271         };
4272         u32 val, fw_err;
4273         int fat;
4274
4275         fw_err = t4_read_reg(adapter, A_PCIE_FW);
4276         if (fw_err & F_PCIE_FW_ERR)
4277                 t4_report_fw_error(adapter);
4278
4279         /* When the Firmware detects an internal error which normally wouldn't
4280          * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4281          * to make sure the Host sees the Firmware Crash.  So if we have a
4282          * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4283          * interrupt.
4284          */
4285         val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4286         if (val & F_TIMER0INT)
4287                 if (!(fw_err & F_PCIE_FW_ERR) ||
4288                     (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4289                         t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4290                                      F_TIMER0INT);
4291
4292         fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4293                                     cim_intr_info) +
4294               t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4295                                     cim_upintr_info);
4296         if (fat)
4297                 t4_fatal_err(adapter);
4298 }
4299
4300 /*
4301  * ULP RX interrupt handler.
4302  */
4303 static void ulprx_intr_handler(struct adapter *adapter)
4304 {
4305         static const struct intr_info ulprx_intr_info[] = {
4306                 { F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4307                 { F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4308                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4309                 { 0 }
4310         };
4311
4312         if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4313                 t4_fatal_err(adapter);
4314 }
4315
4316 /*
4317  * ULP TX interrupt handler.
4318  */
4319 static void ulptx_intr_handler(struct adapter *adapter)
4320 {
4321         static const struct intr_info ulptx_intr_info[] = {
4322                 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4323                   0 },
4324                 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4325                   0 },
4326                 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4327                   0 },
4328                 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4329                   0 },
4330                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4331                 { 0 }
4332         };
4333
4334         if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4335                 t4_fatal_err(adapter);
4336 }
4337
4338 /*
4339  * PM TX interrupt handler.
4340  */
4341 static void pmtx_intr_handler(struct adapter *adapter)
4342 {
4343         static const struct intr_info pmtx_intr_info[] = {
4344                 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4345                 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4346                 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4347                 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4348                 { 0xffffff0, "PMTX framing error", -1, 1 },
4349                 { F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4350                 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4351                   1 },
4352                 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4353                 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4354                 { 0 }
4355         };
4356
4357         if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4358                 t4_fatal_err(adapter);
4359 }
4360
4361 /*
4362  * PM RX interrupt handler.
4363  */
4364 static void pmrx_intr_handler(struct adapter *adapter)
4365 {
4366         static const struct intr_info pmrx_intr_info[] = {
4367                 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4368                 { 0x3ffff0, "PMRX framing error", -1, 1 },
4369                 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4370                 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4371                   1 },
4372                 { F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4373                 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4374                 { 0 }
4375         };
4376
4377         if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4378                 t4_fatal_err(adapter);
4379 }
4380
4381 /*
4382  * CPL switch interrupt handler.
4383  */
4384 static void cplsw_intr_handler(struct adapter *adapter)
4385 {
4386         static const struct intr_info cplsw_intr_info[] = {
4387                 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4388                 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4389                 { F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4390                 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4391                 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4392                 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4393                 { 0 }
4394         };
4395
4396         if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4397                 t4_fatal_err(adapter);
4398 }
4399
4400 /*
4401  * LE interrupt handler.
4402  */
4403 static void le_intr_handler(struct adapter *adap)
4404 {
4405         unsigned int chip_ver = chip_id(adap);
4406         static const struct intr_info le_intr_info[] = {
4407                 { F_LIPMISS, "LE LIP miss", -1, 0 },
4408                 { F_LIP0, "LE 0 LIP error", -1, 0 },
4409                 { F_PARITYERR, "LE parity error", -1, 1 },
4410                 { F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4411                 { F_REQQPARERR, "LE request queue parity error", -1, 1 },
4412                 { 0 }
4413         };
4414
4415         static const struct intr_info t6_le_intr_info[] = {
4416                 { F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4417                 { F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4418                 { F_TCAMINTPERR, "LE parity error", -1, 1 },
4419                 { F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4420                 { F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4421                 { 0 }
4422         };
4423
4424         if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4425                                   (chip_ver <= CHELSIO_T5) ?
4426                                   le_intr_info : t6_le_intr_info))
4427                 t4_fatal_err(adap);
4428 }
4429
4430 /*
4431  * MPS interrupt handler.
4432  */
4433 static void mps_intr_handler(struct adapter *adapter)
4434 {
4435         static const struct intr_info mps_rx_intr_info[] = {
4436                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4437                 { 0 }
4438         };
4439         static const struct intr_info mps_tx_intr_info[] = {
4440                 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4441                 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4442                 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4443                   -1, 1 },
4444                 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4445                   -1, 1 },
4446                 { F_BUBBLE, "MPS Tx underflow", -1, 1 },
4447                 { F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4448                 { F_FRMERR, "MPS Tx framing error", -1, 1 },
4449                 { 0 }
4450         };
4451         static const struct intr_info mps_trc_intr_info[] = {
4452                 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4453                 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4454                   1 },
4455                 { F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4456                 { 0 }
4457         };
4458         static const struct intr_info mps_stat_sram_intr_info[] = {
4459                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4460                 { 0 }
4461         };
4462         static const struct intr_info mps_stat_tx_intr_info[] = {
4463                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4464                 { 0 }
4465         };
4466         static const struct intr_info mps_stat_rx_intr_info[] = {
4467                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4468                 { 0 }
4469         };
4470         static const struct intr_info mps_cls_intr_info[] = {
4471                 { F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4472                 { F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4473                 { F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4474                 { 0 }
4475         };
4476
4477         int fat;
4478
4479         fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4480                                     mps_rx_intr_info) +
4481               t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4482                                     mps_tx_intr_info) +
4483               t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4484                                     mps_trc_intr_info) +
4485               t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4486                                     mps_stat_sram_intr_info) +
4487               t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4488                                     mps_stat_tx_intr_info) +
4489               t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4490                                     mps_stat_rx_intr_info) +
4491               t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4492                                     mps_cls_intr_info);
4493
4494         t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4495         t4_read_reg(adapter, A_MPS_INT_CAUSE);  /* flush */
4496         if (fat)
4497                 t4_fatal_err(adapter);
4498 }
4499
4500 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4501                       F_ECC_UE_INT_CAUSE)
4502
4503 /*
4504  * EDC/MC interrupt handler.
4505  */
4506 static void mem_intr_handler(struct adapter *adapter, int idx)
4507 {
4508         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4509
4510         unsigned int addr, cnt_addr, v;
4511
4512         if (idx <= MEM_EDC1) {
4513                 addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4514                 cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4515         } else if (idx == MEM_MC) {
4516                 if (is_t4(adapter)) {
4517                         addr = A_MC_INT_CAUSE;
4518                         cnt_addr = A_MC_ECC_STATUS;
4519                 } else {
4520                         addr = A_MC_P_INT_CAUSE;
4521                         cnt_addr = A_MC_P_ECC_STATUS;
4522                 }
4523         } else {
4524                 addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4525                 cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4526         }
4527
4528         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4529         if (v & F_PERR_INT_CAUSE)
4530                 CH_ALERT(adapter, "%s FIFO parity error\n",
4531                           name[idx]);
4532         if (v & F_ECC_CE_INT_CAUSE) {
4533                 u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4534
4535                 if (idx <= MEM_EDC1)
4536                         t4_edc_err_read(adapter, idx);
4537
4538                 t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4539                 CH_WARN_RATELIMIT(adapter,
4540                                   "%u %s correctable ECC data error%s\n",
4541                                   cnt, name[idx], cnt > 1 ? "s" : "");
4542         }
4543         if (v & F_ECC_UE_INT_CAUSE)
4544                 CH_ALERT(adapter,
4545                          "%s uncorrectable ECC data error\n", name[idx]);
4546
4547         t4_write_reg(adapter, addr, v);
4548         if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4549                 t4_fatal_err(adapter);
4550 }
4551
4552 /*
4553  * MA interrupt handler.
4554  */
4555 static void ma_intr_handler(struct adapter *adapter)
4556 {
4557         u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4558
4559         if (status & F_MEM_PERR_INT_CAUSE) {
4560                 CH_ALERT(adapter,
4561                           "MA parity error, parity status %#x\n",
4562                           t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4563                 if (is_t5(adapter))
4564                         CH_ALERT(adapter,
4565                                   "MA parity error, parity status %#x\n",
4566                                   t4_read_reg(adapter,
4567                                               A_MA_PARITY_ERROR_STATUS2));
4568         }
4569         if (status & F_MEM_WRAP_INT_CAUSE) {
4570                 v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4571                 CH_ALERT(adapter, "MA address wrap-around error by "
4572                           "client %u to address %#x\n",
4573                           G_MEM_WRAP_CLIENT_NUM(v),
4574                           G_MEM_WRAP_ADDRESS(v) << 4);
4575         }
4576         t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4577         t4_fatal_err(adapter);
4578 }
4579
4580 /*
4581  * SMB interrupt handler.
4582  */
4583 static void smb_intr_handler(struct adapter *adap)
4584 {
4585         static const struct intr_info smb_intr_info[] = {
4586                 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4587                 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4588                 { F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4589                 { 0 }
4590         };
4591
4592         if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4593                 t4_fatal_err(adap);
4594 }
4595
4596 /*
4597  * NC-SI interrupt handler.
4598  */
4599 static void ncsi_intr_handler(struct adapter *adap)
4600 {
4601         static const struct intr_info ncsi_intr_info[] = {
4602                 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4603                 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4604                 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4605                 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4606                 { 0 }
4607         };
4608
4609         if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4610                 t4_fatal_err(adap);
4611 }
4612
4613 /*
4614  * XGMAC interrupt handler.
4615  */
4616 static void xgmac_intr_handler(struct adapter *adap, int port)
4617 {
4618         u32 v, int_cause_reg;
4619
4620         if (is_t4(adap))
4621                 int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4622         else
4623                 int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4624
4625         v = t4_read_reg(adap, int_cause_reg);
4626
4627         v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4628         if (!v)
4629                 return;
4630
4631         if (v & F_TXFIFO_PRTY_ERR)
4632                 CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4633                           port);
4634         if (v & F_RXFIFO_PRTY_ERR)
4635                 CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4636                           port);
4637         t4_write_reg(adap, int_cause_reg, v);
4638         t4_fatal_err(adap);
4639 }
4640
4641 /*
4642  * PL interrupt handler.
4643  */
4644 static void pl_intr_handler(struct adapter *adap)
4645 {
4646         static const struct intr_info pl_intr_info[] = {
4647                 { F_FATALPERR, "Fatal parity error", -1, 1 },
4648                 { F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4649                 { 0 }
4650         };
4651
4652         static const struct intr_info t5_pl_intr_info[] = {
4653                 { F_FATALPERR, "Fatal parity error", -1, 1 },
4654                 { 0 }
4655         };
4656
4657         if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4658                                   is_t4(adap) ?
4659                                   pl_intr_info : t5_pl_intr_info))
4660                 t4_fatal_err(adap);
4661 }
4662
4663 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4664
4665 /**
4666  *      t4_slow_intr_handler - control path interrupt handler
4667  *      @adapter: the adapter
4668  *
4669  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4670  *      The designation 'slow' is because it involves register reads, while
4671  *      data interrupts typically don't involve any MMIOs.
4672  */
4673 int t4_slow_intr_handler(struct adapter *adapter)
4674 {
4675         u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4676
4677         if (!(cause & GLBL_INTR_MASK))
4678                 return 0;
4679         if (cause & F_CIM)
4680                 cim_intr_handler(adapter);
4681         if (cause & F_MPS)
4682                 mps_intr_handler(adapter);
4683         if (cause & F_NCSI)
4684                 ncsi_intr_handler(adapter);
4685         if (cause & F_PL)
4686                 pl_intr_handler(adapter);
4687         if (cause & F_SMB)
4688                 smb_intr_handler(adapter);
4689         if (cause & F_MAC0)
4690                 xgmac_intr_handler(adapter, 0);
4691         if (cause & F_MAC1)
4692                 xgmac_intr_handler(adapter, 1);
4693         if (cause & F_MAC2)
4694                 xgmac_intr_handler(adapter, 2);
4695         if (cause & F_MAC3)
4696                 xgmac_intr_handler(adapter, 3);
4697         if (cause & F_PCIE)
4698                 pcie_intr_handler(adapter);
4699         if (cause & F_MC0)
4700                 mem_intr_handler(adapter, MEM_MC);
4701         if (is_t5(adapter) && (cause & F_MC1))
4702                 mem_intr_handler(adapter, MEM_MC1);
4703         if (cause & F_EDC0)
4704                 mem_intr_handler(adapter, MEM_EDC0);
4705         if (cause & F_EDC1)
4706                 mem_intr_handler(adapter, MEM_EDC1);
4707         if (cause & F_LE)
4708                 le_intr_handler(adapter);
4709         if (cause & F_TP)
4710                 tp_intr_handler(adapter);
4711         if (cause & F_MA)
4712                 ma_intr_handler(adapter);
4713         if (cause & F_PM_TX)
4714                 pmtx_intr_handler(adapter);
4715         if (cause & F_PM_RX)
4716                 pmrx_intr_handler(adapter);
4717         if (cause & F_ULP_RX)
4718                 ulprx_intr_handler(adapter);
4719         if (cause & F_CPL_SWITCH)
4720                 cplsw_intr_handler(adapter);
4721         if (cause & F_SGE)
4722                 sge_intr_handler(adapter);
4723         if (cause & F_ULP_TX)
4724                 ulptx_intr_handler(adapter);
4725
4726         /* Clear the interrupts just processed for which we are the master. */
4727         t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4728         (void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4729         return 1;
4730 }
4731
4732 /**
4733  *      t4_intr_enable - enable interrupts
4734  *      @adapter: the adapter whose interrupts should be enabled
4735  *
4736  *      Enable PF-specific interrupts for the calling function and the top-level
4737  *      interrupt concentrator for global interrupts.  Interrupts are already
4738  *      enabled at each module, here we just enable the roots of the interrupt
4739  *      hierarchies.
4740  *
4741  *      Note: this function should be called only when the driver manages
4742  *      non PF-specific interrupts from the various HW modules.  Only one PCI
4743  *      function at a time should be doing this.
4744  */
4745 void t4_intr_enable(struct adapter *adapter)
4746 {
4747         u32 val = 0;
4748         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4749         u32 pf = (chip_id(adapter) <= CHELSIO_T5
4750                   ? G_SOURCEPF(whoami)
4751                   : G_T6_SOURCEPF(whoami));
4752
4753         if (chip_id(adapter) <= CHELSIO_T5)
4754                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4755         else
4756                 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4757         t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4758                      F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4759                      F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4760                      F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4761                      F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4762                      F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4763                      F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4764         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4765         t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4766 }
4767
4768 /**
4769  *      t4_intr_disable - disable interrupts
4770  *      @adapter: the adapter whose interrupts should be disabled
4771  *
4772  *      Disable interrupts.  We only disable the top-level interrupt
4773  *      concentrators.  The caller must be a PCI function managing global
4774  *      interrupts.
4775  */
4776 void t4_intr_disable(struct adapter *adapter)
4777 {
4778         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4779         u32 pf = (chip_id(adapter) <= CHELSIO_T5
4780                   ? G_SOURCEPF(whoami)
4781                   : G_T6_SOURCEPF(whoami));
4782
4783         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4784         t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4785 }
4786
4787 /**
4788  *      t4_intr_clear - clear all interrupts
4789  *      @adapter: the adapter whose interrupts should be cleared
4790  *
4791  *      Clears all interrupts.  The caller must be a PCI function managing
4792  *      global interrupts.
4793  */
4794 void t4_intr_clear(struct adapter *adapter)
4795 {
4796         static const unsigned int cause_reg[] = {
4797                 A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4798                 A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4799                 A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4800                 A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4801                 A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4802                 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4803                 A_TP_INT_CAUSE,
4804                 A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4805                 A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4806                 A_MPS_RX_PERR_INT_CAUSE,
4807                 A_CPL_INTR_CAUSE,
4808                 MYPF_REG(A_PL_PF_INT_CAUSE),
4809                 A_PL_PL_INT_CAUSE,
4810                 A_LE_DB_INT_CAUSE,
4811         };
4812
4813         unsigned int i;
4814
4815         for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4816                 t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4817
4818         t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4819                                 A_MC_P_INT_CAUSE, 0xffffffff);
4820
4821         if (is_t4(adapter)) {
4822                 t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4823                                 0xffffffff);
4824                 t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4825                                 0xffffffff);
4826         } else
4827                 t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4828
4829         t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4830         (void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4831 }
4832
4833 /**
4834  *      hash_mac_addr - return the hash value of a MAC address
4835  *      @addr: the 48-bit Ethernet MAC address
4836  *
4837  *      Hashes a MAC address according to the hash function used by HW inexact
4838  *      (hash) address matching.
4839  */
4840 static int hash_mac_addr(const u8 *addr)
4841 {
4842         u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4843         u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4844         a ^= b;
4845         a ^= (a >> 12);
4846         a ^= (a >> 6);
4847         return a & 0x3f;
4848 }
4849
4850 /**
4851  *      t4_config_rss_range - configure a portion of the RSS mapping table
4852  *      @adapter: the adapter
4853  *      @mbox: mbox to use for the FW command
4854  *      @viid: virtual interface whose RSS subtable is to be written
4855  *      @start: start entry in the table to write
4856  *      @n: how many table entries to write
4857  *      @rspq: values for the "response queue" (Ingress Queue) lookup table
4858  *      @nrspq: number of values in @rspq
4859  *
4860  *      Programs the selected part of the VI's RSS mapping table with the
4861  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
4862  *      until the full table range is populated.
4863  *
4864  *      The caller must ensure the values in @rspq are in the range allowed for
4865  *      @viid.
4866  */
4867 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4868                         int start, int n, const u16 *rspq, unsigned int nrspq)
4869 {
4870         int ret;
4871         const u16 *rsp = rspq;
4872         const u16 *rsp_end = rspq + nrspq;
4873         struct fw_rss_ind_tbl_cmd cmd;
4874
4875         memset(&cmd, 0, sizeof(cmd));
4876         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4877                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4878                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
4879         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4880
4881         /*
4882          * Each firmware RSS command can accommodate up to 32 RSS Ingress
4883          * Queue Identifiers.  These Ingress Queue IDs are packed three to
4884          * a 32-bit word as 10-bit values with the upper remaining 2 bits
4885          * reserved.
4886          */
4887         while (n > 0) {
4888                 int nq = min(n, 32);
4889                 int nq_packed = 0;
4890                 __be32 *qp = &cmd.iq0_to_iq2;
4891
4892                 /*
4893                  * Set up the firmware RSS command header to send the next
4894                  * "nq" Ingress Queue IDs to the firmware.
4895                  */
4896                 cmd.niqid = cpu_to_be16(nq);
4897                 cmd.startidx = cpu_to_be16(start);
4898
4899                 /*
4900                  * "nq" more done for the start of the next loop.
4901                  */
4902                 start += nq;
4903                 n -= nq;
4904
4905                 /*
4906                  * While there are still Ingress Queue IDs to stuff into the
4907                  * current firmware RSS command, retrieve them from the
4908                  * Ingress Queue ID array and insert them into the command.
4909                  */
4910                 while (nq > 0) {
4911                         /*
4912                          * Grab up to the next 3 Ingress Queue IDs (wrapping
4913                          * around the Ingress Queue ID array if necessary) and
4914                          * insert them into the firmware RSS command at the
4915                          * current 3-tuple position within the commad.
4916                          */
4917                         u16 qbuf[3];
4918                         u16 *qbp = qbuf;
4919                         int nqbuf = min(3, nq);
4920
4921                         nq -= nqbuf;
4922                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
4923                         while (nqbuf && nq_packed < 32) {
4924                                 nqbuf--;
4925                                 nq_packed++;
4926                                 *qbp++ = *rsp++;
4927                                 if (rsp >= rsp_end)
4928                                         rsp = rspq;
4929                         }
4930                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4931                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4932                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4933                 }
4934
4935                 /*
4936                  * Send this portion of the RRS table update to the firmware;
4937                  * bail out on any errors.
4938                  */
4939                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4940                 if (ret)
4941                         return ret;
4942         }
4943         return 0;
4944 }
4945
4946 /**
4947  *      t4_config_glbl_rss - configure the global RSS mode
4948  *      @adapter: the adapter
4949  *      @mbox: mbox to use for the FW command
4950  *      @mode: global RSS mode
4951  *      @flags: mode-specific flags
4952  *
4953  *      Sets the global RSS mode.
4954  */
4955 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4956                        unsigned int flags)
4957 {
4958         struct fw_rss_glb_config_cmd c;
4959
4960         memset(&c, 0, sizeof(c));
4961         c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4962                                     F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4963         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4964         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4965                 c.u.manual.mode_pkd =
4966                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4967         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4968                 c.u.basicvirtual.mode_keymode =
4969                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4970                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4971         } else
4972                 return -EINVAL;
4973         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4974 }
4975
4976 /**
4977  *      t4_config_vi_rss - configure per VI RSS settings
4978  *      @adapter: the adapter
4979  *      @mbox: mbox to use for the FW command
4980  *      @viid: the VI id
4981  *      @flags: RSS flags
4982  *      @defq: id of the default RSS queue for the VI.
4983  *      @skeyidx: RSS secret key table index for non-global mode
4984  *      @skey: RSS vf_scramble key for VI.
4985  *
4986  *      Configures VI-specific RSS properties.
4987  */
4988 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4989                      unsigned int flags, unsigned int defq, unsigned int skeyidx,
4990                      unsigned int skey)
4991 {
4992         struct fw_rss_vi_config_cmd c;
4993
4994         memset(&c, 0, sizeof(c));
4995         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4996                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4997                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4998         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4999         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5000                                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5001         c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5002                                         V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5003         c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5004
5005         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5006 }
5007
5008 /* Read an RSS table row */
5009 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5010 {
5011         t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5012         return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5013                                    5, 0, val);
5014 }
5015
5016 /**
5017  *      t4_read_rss - read the contents of the RSS mapping table
5018  *      @adapter: the adapter
5019  *      @map: holds the contents of the RSS mapping table
5020  *
5021  *      Reads the contents of the RSS hash->queue mapping table.
5022  */
5023 int t4_read_rss(struct adapter *adapter, u16 *map)
5024 {
5025         u32 val;
5026         int i, ret;
5027
5028         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5029                 ret = rd_rss_row(adapter, i, &val);
5030                 if (ret)
5031                         return ret;
5032                 *map++ = G_LKPTBLQUEUE0(val);
5033                 *map++ = G_LKPTBLQUEUE1(val);
5034         }
5035         return 0;
5036 }
5037
5038 /**
5039  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5040  * @adap: the adapter
5041  * @cmd: TP fw ldst address space type
5042  * @vals: where the indirect register values are stored/written
5043  * @nregs: how many indirect registers to read/write
5044  * @start_idx: index of first indirect register to read/write
5045  * @rw: Read (1) or Write (0)
5046  * @sleep_ok: if true we may sleep while awaiting command completion
5047  *
5048  * Access TP indirect registers through LDST
5049  **/
5050 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5051                             unsigned int nregs, unsigned int start_index,
5052                             unsigned int rw, bool sleep_ok)
5053 {
5054         int ret = 0;
5055         unsigned int i;
5056         struct fw_ldst_cmd c;
5057
5058         for (i = 0; i < nregs; i++) {
5059                 memset(&c, 0, sizeof(c));
5060                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5061                                                 F_FW_CMD_REQUEST |
5062                                                 (rw ? F_FW_CMD_READ :
5063                                                       F_FW_CMD_WRITE) |
5064                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
5065                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5066
5067                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5068                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5069                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5070                                       sleep_ok);
5071                 if (ret)
5072                         return ret;
5073
5074                 if (rw)
5075                         vals[i] = be32_to_cpu(c.u.addrval.val);
5076         }
5077         return 0;
5078 }
5079
5080 /**
5081  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5082  * @adap: the adapter
5083  * @reg_addr: Address Register
5084  * @reg_data: Data register
5085  * @buff: where the indirect register values are stored/written
5086  * @nregs: how many indirect registers to read/write
5087  * @start_index: index of first indirect register to read/write
5088  * @rw: READ(1) or WRITE(0)
5089  * @sleep_ok: if true we may sleep while awaiting command completion
5090  *
5091  * Read/Write TP indirect registers through LDST if possible.
5092  * Else, use backdoor access
5093  **/
5094 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5095                               u32 *buff, u32 nregs, u32 start_index, int rw,
5096                               bool sleep_ok)
5097 {
5098         int rc = -EINVAL;
5099         int cmd;
5100
5101         switch (reg_addr) {
5102         case A_TP_PIO_ADDR:
5103                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5104                 break;
5105         case A_TP_TM_PIO_ADDR:
5106                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5107                 break;
5108         case A_TP_MIB_INDEX:
5109                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5110                 break;
5111         default:
5112                 goto indirect_access;
5113         }
5114
5115         if (t4_use_ldst(adap))
5116                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5117                                       sleep_ok);
5118
5119 indirect_access:
5120
5121         if (rc) {
5122                 if (rw)
5123                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5124                                          start_index);
5125                 else
5126                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5127                                           start_index);
5128         }
5129 }
5130
5131 /**
5132  * t4_tp_pio_read - Read TP PIO registers
5133  * @adap: the adapter
5134  * @buff: where the indirect register values are written
5135  * @nregs: how many indirect registers to read
5136  * @start_index: index of first indirect register to read
5137  * @sleep_ok: if true we may sleep while awaiting command completion
5138  *
5139  * Read TP PIO Registers
5140  **/
5141 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5142                     u32 start_index, bool sleep_ok)
5143 {
5144         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5145                           start_index, 1, sleep_ok);
5146 }
5147
5148 /**
5149  * t4_tp_pio_write - Write TP PIO registers
5150  * @adap: the adapter
5151  * @buff: where the indirect register values are stored
5152  * @nregs: how many indirect registers to write
5153  * @start_index: index of first indirect register to write
5154  * @sleep_ok: if true we may sleep while awaiting command completion
5155  *
5156  * Write TP PIO Registers
5157  **/
5158 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5159                      u32 start_index, bool sleep_ok)
5160 {
5161         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5162             __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5163 }
5164
5165 /**
5166  * t4_tp_tm_pio_read - Read TP TM PIO registers
5167  * @adap: the adapter
5168  * @buff: where the indirect register values are written
5169  * @nregs: how many indirect registers to read
5170  * @start_index: index of first indirect register to read
5171  * @sleep_ok: if true we may sleep while awaiting command completion
5172  *
5173  * Read TP TM PIO Registers
5174  **/
5175 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5176                        u32 start_index, bool sleep_ok)
5177 {
5178         t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5179                           nregs, start_index, 1, sleep_ok);
5180 }
5181
5182 /**
5183  * t4_tp_mib_read - Read TP MIB registers
5184  * @adap: the adapter
5185  * @buff: where the indirect register values are written
5186  * @nregs: how many indirect registers to read
5187  * @start_index: index of first indirect register to read
5188  * @sleep_ok: if true we may sleep while awaiting command completion
5189  *
5190  * Read TP MIB Registers
5191  **/
5192 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5193                     bool sleep_ok)
5194 {
5195         t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5196                           start_index, 1, sleep_ok);
5197 }
5198
5199 /**
5200  *      t4_read_rss_key - read the global RSS key
5201  *      @adap: the adapter
5202  *      @key: 10-entry array holding the 320-bit RSS key
5203  *      @sleep_ok: if true we may sleep while awaiting command completion
5204  *
5205  *      Reads the global 320-bit RSS key.
5206  */
5207 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5208 {
5209         t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5210 }
5211
5212 /**
5213  *      t4_write_rss_key - program one of the RSS keys
5214  *      @adap: the adapter
5215  *      @key: 10-entry array holding the 320-bit RSS key
5216  *      @idx: which RSS key to write
5217  *      @sleep_ok: if true we may sleep while awaiting command completion
5218  *
5219  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5220  *      0..15 the corresponding entry in the RSS key table is written,
5221  *      otherwise the global RSS key is written.
5222  */
5223 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5224                       bool sleep_ok)
5225 {
5226         u8 rss_key_addr_cnt = 16;
5227         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5228
5229         /*
5230          * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5231          * allows access to key addresses 16-63 by using KeyWrAddrX
5232          * as index[5:4](upper 2) into key table
5233          */
5234         if ((chip_id(adap) > CHELSIO_T5) &&
5235             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5236                 rss_key_addr_cnt = 32;
5237
5238         t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5239
5240         if (idx >= 0 && idx < rss_key_addr_cnt) {
5241                 if (rss_key_addr_cnt > 16)
5242                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5243                                      vrt | V_KEYWRADDRX(idx >> 4) |
5244                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
5245                 else
5246                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5247                                      vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5248         }
5249 }
5250
5251 /**
5252  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5253  *      @adapter: the adapter
5254  *      @index: the entry in the PF RSS table to read
5255  *      @valp: where to store the returned value
5256  *      @sleep_ok: if true we may sleep while awaiting command completion
5257  *
5258  *      Reads the PF RSS Configuration Table at the specified index and returns
5259  *      the value found there.
5260  */
5261 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5262                            u32 *valp, bool sleep_ok)
5263 {
5264         t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5265 }
5266
5267 /**
5268  *      t4_write_rss_pf_config - write PF RSS Configuration Table
5269  *      @adapter: the adapter
5270  *      @index: the entry in the VF RSS table to read
5271  *      @val: the value to store
5272  *      @sleep_ok: if true we may sleep while awaiting command completion
5273  *
5274  *      Writes the PF RSS Configuration Table at the specified index with the
5275  *      specified value.
5276  */
5277 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5278                             u32 val, bool sleep_ok)
5279 {
5280         t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5281                         sleep_ok);
5282 }
5283
5284 /**
5285  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5286  *      @adapter: the adapter
5287  *      @index: the entry in the VF RSS table to read
5288  *      @vfl: where to store the returned VFL
5289  *      @vfh: where to store the returned VFH
5290  *      @sleep_ok: if true we may sleep while awaiting command completion
5291  *
5292  *      Reads the VF RSS Configuration Table at the specified index and returns
5293  *      the (VFL, VFH) values found there.
5294  */
5295 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5296                            u32 *vfl, u32 *vfh, bool sleep_ok)
5297 {
5298         u32 vrt, mask, data;
5299
5300         if (chip_id(adapter) <= CHELSIO_T5) {
5301                 mask = V_VFWRADDR(M_VFWRADDR);
5302                 data = V_VFWRADDR(index);
5303         } else {
5304                  mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5305                  data = V_T6_VFWRADDR(index);
5306         }
5307         /*
5308          * Request that the index'th VF Table values be read into VFL/VFH.
5309          */
5310         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5311         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5312         vrt |= data | F_VFRDEN;
5313         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5314
5315         /*
5316          * Grab the VFL/VFH values ...
5317          */
5318         t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5319         t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5320 }
5321
5322 /**
5323  *      t4_write_rss_vf_config - write VF RSS Configuration Table
5324  *
5325  *      @adapter: the adapter
5326  *      @index: the entry in the VF RSS table to write
5327  *      @vfl: the VFL to store
5328  *      @vfh: the VFH to store
5329  *
5330  *      Writes the VF RSS Configuration Table at the specified index with the
5331  *      specified (VFL, VFH) values.
5332  */
5333 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5334                             u32 vfl, u32 vfh, bool sleep_ok)
5335 {
5336         u32 vrt, mask, data;
5337
5338         if (chip_id(adapter) <= CHELSIO_T5) {
5339                 mask = V_VFWRADDR(M_VFWRADDR);
5340                 data = V_VFWRADDR(index);
5341         } else {
5342                 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5343                 data = V_T6_VFWRADDR(index);
5344         }
5345
5346         /*
5347          * Load up VFL/VFH with the values to be written ...
5348          */
5349         t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5350         t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5351
5352         /*
5353          * Write the VFL/VFH into the VF Table at index'th location.
5354          */
5355         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5356         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5357         vrt |= data | F_VFRDEN;
5358         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5359 }
5360
5361 /**
5362  *      t4_read_rss_pf_map - read PF RSS Map
5363  *      @adapter: the adapter
5364  *      @sleep_ok: if true we may sleep while awaiting command completion
5365  *
5366  *      Reads the PF RSS Map register and returns its value.
5367  */
5368 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5369 {
5370         u32 pfmap;
5371
5372         t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5373
5374         return pfmap;
5375 }
5376
5377 /**
5378  *      t4_write_rss_pf_map - write PF RSS Map
5379  *      @adapter: the adapter
5380  *      @pfmap: PF RSS Map value
5381  *
5382  *      Writes the specified value to the PF RSS Map register.
5383  */
5384 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5385 {
5386         t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5387 }
5388
5389 /**
5390  *      t4_read_rss_pf_mask - read PF RSS Mask
5391  *      @adapter: the adapter
5392  *      @sleep_ok: if true we may sleep while awaiting command completion
5393  *
5394  *      Reads the PF RSS Mask register and returns its value.
5395  */
5396 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5397 {
5398         u32 pfmask;
5399
5400         t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5401
5402         return pfmask;
5403 }
5404
5405 /**
5406  *      t4_write_rss_pf_mask - write PF RSS Mask
5407  *      @adapter: the adapter
5408  *      @pfmask: PF RSS Mask value
5409  *
5410  *      Writes the specified value to the PF RSS Mask register.
5411  */
5412 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5413 {
5414         t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5415 }
5416
5417 /**
5418  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5419  *      @adap: the adapter
5420  *      @v4: holds the TCP/IP counter values
5421  *      @v6: holds the TCP/IPv6 counter values
5422  *      @sleep_ok: if true we may sleep while awaiting command completion
5423  *
5424  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5425  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5426  */
5427 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5428                          struct tp_tcp_stats *v6, bool sleep_ok)
5429 {
5430         u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5431
5432 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5433 #define STAT(x)     val[STAT_IDX(x)]
5434 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5435
5436         if (v4) {
5437                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5438                                A_TP_MIB_TCP_OUT_RST, sleep_ok);
5439                 v4->tcp_out_rsts = STAT(OUT_RST);
5440                 v4->tcp_in_segs  = STAT64(IN_SEG);
5441                 v4->tcp_out_segs = STAT64(OUT_SEG);
5442                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
5443         }
5444         if (v6) {
5445                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5446                                A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5447                 v6->tcp_out_rsts = STAT(OUT_RST);
5448                 v6->tcp_in_segs  = STAT64(IN_SEG);
5449                 v6->tcp_out_segs = STAT64(OUT_SEG);
5450                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
5451         }
5452 #undef STAT64
5453 #undef STAT
5454 #undef STAT_IDX
5455 }
5456
5457 /**
5458  *      t4_tp_get_err_stats - read TP's error MIB counters
5459  *      @adap: the adapter
5460  *      @st: holds the counter values
5461  *      @sleep_ok: if true we may sleep while awaiting command completion
5462  *
5463  *      Returns the values of TP's error counters.
5464  */
5465 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5466                          bool sleep_ok)
5467 {
5468         int nchan = adap->chip_params->nchan;
5469
5470         t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5471                        sleep_ok);
5472
5473         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5474                        sleep_ok);
5475
5476         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5477                        sleep_ok);
5478
5479         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5480                        A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5481
5482         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5483                        A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5484
5485         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5486                        sleep_ok);
5487
5488         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5489                        A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5490
5491         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5492                        A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5493
5494         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5495                        sleep_ok);
5496 }
5497
5498 /**
5499  *      t4_tp_get_proxy_stats - read TP's proxy MIB counters
5500  *      @adap: the adapter
5501  *      @st: holds the counter values
5502  *
5503  *      Returns the values of TP's proxy counters.
5504  */
5505 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5506     bool sleep_ok)
5507 {
5508         int nchan = adap->chip_params->nchan;
5509
5510         t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5511 }
5512
5513 /**
5514  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5515  *      @adap: the adapter
5516  *      @st: holds the counter values
5517  *      @sleep_ok: if true we may sleep while awaiting command completion
5518  *
5519  *      Returns the values of TP's CPL counters.
5520  */
5521 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5522                          bool sleep_ok)
5523 {
5524         int nchan = adap->chip_params->nchan;
5525
5526         t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5527
5528         t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5529 }
5530
5531 /**
5532  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5533  *      @adap: the adapter
5534  *      @st: holds the counter values
5535  *
5536  *      Returns the values of TP's RDMA counters.
5537  */
5538 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5539                           bool sleep_ok)
5540 {
5541         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5542                        sleep_ok);
5543 }
5544
5545 /**
5546  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5547  *      @adap: the adapter
5548  *      @idx: the port index
5549  *      @st: holds the counter values
5550  *      @sleep_ok: if true we may sleep while awaiting command completion
5551  *
5552  *      Returns the values of TP's FCoE counters for the selected port.
5553  */
5554 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5555                        struct tp_fcoe_stats *st, bool sleep_ok)
5556 {
5557         u32 val[2];
5558
5559         t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5560                        sleep_ok);
5561
5562         t4_tp_mib_read(adap, &st->frames_drop, 1,
5563                        A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5564
5565         t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5566                        sleep_ok);
5567
5568         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5569 }
5570
5571 /**
5572  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5573  *      @adap: the adapter
5574  *      @st: holds the counter values
5575  *      @sleep_ok: if true we may sleep while awaiting command completion
5576  *
5577  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5578  */
5579 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5580                       bool sleep_ok)
5581 {
5582         u32 val[4];
5583
5584         t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5585
5586         st->frames = val[0];
5587         st->drops = val[1];
5588         st->octets = ((u64)val[2] << 32) | val[3];
5589 }
5590
5591 /**
5592  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5593  *      @adap: the adapter
5594  *      @mtus: where to store the MTU values
5595  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5596  *
5597  *      Reads the HW path MTU table.
5598  */
5599 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5600 {
5601         u32 v;
5602         int i;
5603
5604         for (i = 0; i < NMTUS; ++i) {
5605                 t4_write_reg(adap, A_TP_MTU_TABLE,
5606                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
5607                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
5608                 mtus[i] = G_MTUVALUE(v);
5609                 if (mtu_log)
5610                         mtu_log[i] = G_MTUWIDTH(v);
5611         }
5612 }
5613
5614 /**
5615  *      t4_read_cong_tbl - reads the congestion control table
5616  *      @adap: the adapter
5617  *      @incr: where to store the alpha values
5618  *
5619  *      Reads the additive increments programmed into the HW congestion
5620  *      control table.
5621  */
5622 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5623 {
5624         unsigned int mtu, w;
5625
5626         for (mtu = 0; mtu < NMTUS; ++mtu)
5627                 for (w = 0; w < NCCTRL_WIN; ++w) {
5628                         t4_write_reg(adap, A_TP_CCTRL_TABLE,
5629                                      V_ROWINDEX(0xffff) | (mtu << 5) | w);
5630                         incr[mtu][w] = (u16)t4_read_reg(adap,
5631                                                 A_TP_CCTRL_TABLE) & 0x1fff;
5632                 }
5633 }
5634
5635 /**
5636  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5637  *      @adap: the adapter
5638  *      @addr: the indirect TP register address
5639  *      @mask: specifies the field within the register to modify
5640  *      @val: new value for the field
5641  *
5642  *      Sets a field of an indirect TP register to the given value.
5643  */
5644 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5645                             unsigned int mask, unsigned int val)
5646 {
5647         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5648         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5649         t4_write_reg(adap, A_TP_PIO_DATA, val);
5650 }
5651
5652 /**
5653  *      init_cong_ctrl - initialize congestion control parameters
5654  *      @a: the alpha values for congestion control
5655  *      @b: the beta values for congestion control
5656  *
5657  *      Initialize the congestion control parameters.
5658  */
5659 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5660 {
5661         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5662         a[9] = 2;
5663         a[10] = 3;
5664         a[11] = 4;
5665         a[12] = 5;
5666         a[13] = 6;
5667         a[14] = 7;
5668         a[15] = 8;
5669         a[16] = 9;
5670         a[17] = 10;
5671         a[18] = 14;
5672         a[19] = 17;
5673         a[20] = 21;
5674         a[21] = 25;
5675         a[22] = 30;
5676         a[23] = 35;
5677         a[24] = 45;
5678         a[25] = 60;
5679         a[26] = 80;
5680         a[27] = 100;
5681         a[28] = 200;
5682         a[29] = 300;
5683         a[30] = 400;
5684         a[31] = 500;
5685
5686         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5687         b[9] = b[10] = 1;
5688         b[11] = b[12] = 2;
5689         b[13] = b[14] = b[15] = b[16] = 3;
5690         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5691         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5692         b[28] = b[29] = 6;
5693         b[30] = b[31] = 7;
5694 }
5695
5696 /* The minimum additive increment value for the congestion control table */
5697 #define CC_MIN_INCR 2U
5698
5699 /**
5700  *      t4_load_mtus - write the MTU and congestion control HW tables
5701  *      @adap: the adapter
5702  *      @mtus: the values for the MTU table
5703  *      @alpha: the values for the congestion control alpha parameter
5704  *      @beta: the values for the congestion control beta parameter
5705  *
5706  *      Write the HW MTU table with the supplied MTUs and the high-speed
5707  *      congestion control table with the supplied alpha, beta, and MTUs.
5708  *      We write the two tables together because the additive increments
5709  *      depend on the MTUs.
5710  */
5711 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5712                   const unsigned short *alpha, const unsigned short *beta)
5713 {
5714         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5715                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5716                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5717                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5718         };
5719
5720         unsigned int i, w;
5721
5722         for (i = 0; i < NMTUS; ++i) {
5723                 unsigned int mtu = mtus[i];
5724                 unsigned int log2 = fls(mtu);
5725
5726                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5727                         log2--;
5728                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5729                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5730
5731                 for (w = 0; w < NCCTRL_WIN; ++w) {
5732                         unsigned int inc;
5733
5734                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5735                                   CC_MIN_INCR);
5736
5737                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5738                                      (w << 16) | (beta[w] << 13) | inc);
5739                 }
5740         }
5741 }
5742
5743 /**
5744  *      t4_set_pace_tbl - set the pace table
5745  *      @adap: the adapter
5746  *      @pace_vals: the pace values in microseconds
5747  *      @start: index of the first entry in the HW pace table to set
5748  *      @n: how many entries to set
5749  *
5750  *      Sets (a subset of the) HW pace table.
5751  */
5752 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5753                      unsigned int start, unsigned int n)
5754 {
5755         unsigned int vals[NTX_SCHED], i;
5756         unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5757
5758         if (n > NTX_SCHED)
5759             return -ERANGE;
5760
5761         /* convert values from us to dack ticks, rounding to closest value */
5762         for (i = 0; i < n; i++, pace_vals++) {
5763                 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5764                 if (vals[i] > 0x7ff)
5765                         return -ERANGE;
5766                 if (*pace_vals && vals[i] == 0)
5767                         return -ERANGE;
5768         }
5769         for (i = 0; i < n; i++, start++)
5770                 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5771         return 0;
5772 }
5773
5774 /**
5775  *      t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5776  *      @adap: the adapter
5777  *      @kbps: target rate in Kbps
5778  *      @sched: the scheduler index
5779  *
5780  *      Configure a Tx HW scheduler for the target rate.
5781  */
5782 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5783 {
5784         unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5785         unsigned int clk = adap->params.vpd.cclk * 1000;
5786         unsigned int selected_cpt = 0, selected_bpt = 0;
5787
5788         if (kbps > 0) {
5789                 kbps *= 125;     /* -> bytes */
5790                 for (cpt = 1; cpt <= 255; cpt++) {
5791                         tps = clk / cpt;
5792                         bpt = (kbps + tps / 2) / tps;
5793                         if (bpt > 0 && bpt <= 255) {
5794                                 v = bpt * tps;
5795                                 delta = v >= kbps ? v - kbps : kbps - v;
5796                                 if (delta < mindelta) {
5797                                         mindelta = delta;
5798                                         selected_cpt = cpt;
5799                                         selected_bpt = bpt;
5800                                 }
5801                         } else if (selected_cpt)
5802                                 break;
5803                 }
5804                 if (!selected_cpt)
5805                         return -EINVAL;
5806         }
5807         t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5808                      A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5809         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5810         if (sched & 1)
5811                 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5812         else
5813                 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5814         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5815         return 0;
5816 }
5817
5818 /**
5819  *      t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5820  *      @adap: the adapter
5821  *      @sched: the scheduler index
5822  *      @ipg: the interpacket delay in tenths of nanoseconds
5823  *
5824  *      Set the interpacket delay for a HW packet rate scheduler.
5825  */
5826 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5827 {
5828         unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5829
5830         /* convert ipg to nearest number of core clocks */
5831         ipg *= core_ticks_per_usec(adap);
5832         ipg = (ipg + 5000) / 10000;
5833         if (ipg > M_TXTIMERSEPQ0)
5834                 return -EINVAL;
5835
5836         t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5837         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5838         if (sched & 1)
5839                 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5840         else
5841                 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5842         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5843         t4_read_reg(adap, A_TP_TM_PIO_DATA);
5844         return 0;
5845 }
5846
5847 /*
5848  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5849  * clocks.  The formula is
5850  *
5851  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5852  *
5853  * which is equivalent to
5854  *
5855  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5856  */
5857 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5858 {
5859         u64 v = (u64)bytes256 * adap->params.vpd.cclk;
5860
5861         return v * 62 + v / 2;
5862 }
5863
5864 /**
5865  *      t4_get_chan_txrate - get the current per channel Tx rates
5866  *      @adap: the adapter
5867  *      @nic_rate: rates for NIC traffic
5868  *      @ofld_rate: rates for offloaded traffic
5869  *
5870  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5871  *      for each channel.
5872  */
5873 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5874 {
5875         u32 v;
5876
5877         v = t4_read_reg(adap, A_TP_TX_TRATE);
5878         nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5879         nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5880         if (adap->chip_params->nchan > 2) {
5881                 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5882                 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5883         }
5884
5885         v = t4_read_reg(adap, A_TP_TX_ORATE);
5886         ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5887         ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5888         if (adap->chip_params->nchan > 2) {
5889                 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5890                 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5891         }
5892 }
5893
5894 /**
5895  *      t4_set_trace_filter - configure one of the tracing filters
5896  *      @adap: the adapter
5897  *      @tp: the desired trace filter parameters
5898  *      @idx: which filter to configure
5899  *      @enable: whether to enable or disable the filter
5900  *
5901  *      Configures one of the tracing filters available in HW.  If @tp is %NULL
5902  *      it indicates that the filter is already written in the register and it
5903  *      just needs to be enabled or disabled.
5904  */
5905 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5906     int idx, int enable)
5907 {
5908         int i, ofst = idx * 4;
5909         u32 data_reg, mask_reg, cfg;
5910         u32 multitrc = F_TRCMULTIFILTER;
5911         u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5912
5913         if (idx < 0 || idx >= NTRACE)
5914                 return -EINVAL;
5915
5916         if (tp == NULL || !enable) {
5917                 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5918                     enable ? en : 0);
5919                 return 0;
5920         }
5921
5922         /*
5923          * TODO - After T4 data book is updated, specify the exact
5924          * section below.
5925          *
5926          * See T4 data book - MPS section for a complete description
5927          * of the below if..else handling of A_MPS_TRC_CFG register
5928          * value.
5929          */
5930         cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5931         if (cfg & F_TRCMULTIFILTER) {
5932                 /*
5933                  * If multiple tracers are enabled, then maximum
5934                  * capture size is 2.5KB (FIFO size of a single channel)
5935                  * minus 2 flits for CPL_TRACE_PKT header.
5936                  */
5937                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5938                         return -EINVAL;
5939         } else {
5940                 /*
5941                  * If multiple tracers are disabled, to avoid deadlocks
5942                  * maximum packet capture size of 9600 bytes is recommended.
5943                  * Also in this mode, only trace0 can be enabled and running.
5944                  */
5945                 multitrc = 0;
5946                 if (tp->snap_len > 9600 || idx)
5947                         return -EINVAL;
5948         }
5949
5950         if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5951             tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5952             tp->min_len > M_TFMINPKTSIZE)
5953                 return -EINVAL;
5954
5955         /* stop the tracer we'll be changing */
5956         t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5957
5958         idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5959         data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5960         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5961
5962         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5963                 t4_write_reg(adap, data_reg, tp->data[i]);
5964                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5965         }
5966         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5967                      V_TFCAPTUREMAX(tp->snap_len) |
5968                      V_TFMINPKTSIZE(tp->min_len));
5969         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5970                      V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5971                      (is_t4(adap) ?
5972                      V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5973                      V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5974
5975         return 0;
5976 }
5977
5978 /**
5979  *      t4_get_trace_filter - query one of the tracing filters
5980  *      @adap: the adapter
5981  *      @tp: the current trace filter parameters
5982  *      @idx: which trace filter to query
5983  *      @enabled: non-zero if the filter is enabled
5984  *
5985  *      Returns the current settings of one of the HW tracing filters.
5986  */
5987 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5988                          int *enabled)
5989 {
5990         u32 ctla, ctlb;
5991         int i, ofst = idx * 4;
5992         u32 data_reg, mask_reg;
5993
5994         ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5995         ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5996
5997         if (is_t4(adap)) {
5998                 *enabled = !!(ctla & F_TFEN);
5999                 tp->port =  G_TFPORT(ctla);
6000                 tp->invert = !!(ctla & F_TFINVERTMATCH);
6001         } else {
6002                 *enabled = !!(ctla & F_T5_TFEN);
6003                 tp->port = G_T5_TFPORT(ctla);
6004                 tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6005         }
6006         tp->snap_len = G_TFCAPTUREMAX(ctlb);
6007         tp->min_len = G_TFMINPKTSIZE(ctlb);
6008         tp->skip_ofst = G_TFOFFSET(ctla);
6009         tp->skip_len = G_TFLENGTH(ctla);
6010
6011         ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6012         data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6013         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6014
6015         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6016                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6017                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6018         }
6019 }
6020
6021 /**
6022  *      t4_pmtx_get_stats - returns the HW stats from PMTX
6023  *      @adap: the adapter
6024  *      @cnt: where to store the count statistics
6025  *      @cycles: where to store the cycle statistics
6026  *
6027  *      Returns performance statistics from PMTX.
6028  */
6029 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6030 {
6031         int i;
6032         u32 data[2];
6033
6034         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6035                 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6036                 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6037                 if (is_t4(adap))
6038                         cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6039                 else {
6040                         t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6041                                          A_PM_TX_DBG_DATA, data, 2,
6042                                          A_PM_TX_DBG_STAT_MSB);
6043                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6044                 }
6045         }
6046 }
6047
6048 /**
6049  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6050  *      @adap: the adapter
6051  *      @cnt: where to store the count statistics
6052  *      @cycles: where to store the cycle statistics
6053  *
6054  *      Returns performance statistics from PMRX.
6055  */
6056 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6057 {
6058         int i;
6059         u32 data[2];
6060
6061         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6062                 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6063                 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6064                 if (is_t4(adap)) {
6065                         cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6066                 } else {
6067                         t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6068                                          A_PM_RX_DBG_DATA, data, 2,
6069                                          A_PM_RX_DBG_STAT_MSB);
6070                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6071                 }
6072         }
6073 }
6074
6075 /**
6076  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6077  *      @adap: the adapter
6078  *      @idx: the port index
6079  *
6080  *      Returns a bitmap indicating which MPS buffer groups are associated
6081  *      with the given port.  Bit i is set if buffer group i is used by the
6082  *      port.
6083  */
6084 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6085 {
6086         u32 n;
6087
6088         if (adap->params.mps_bg_map)
6089                 return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6090
6091         n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6092         if (n == 0)
6093                 return idx == 0 ? 0xf : 0;
6094         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6095                 return idx < 2 ? (3 << (2 * idx)) : 0;
6096         return 1 << idx;
6097 }
6098
6099 /*
6100  * TP RX e-channels associated with the port.
6101  */
6102 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6103 {
6104         u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6105
6106         if (n == 0)
6107                 return idx == 0 ? 0xf : 0;
6108         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6109                 return idx < 2 ? (3 << (2 * idx)) : 0;
6110         return 1 << idx;
6111 }
6112
6113 /**
6114  *      t4_get_port_type_description - return Port Type string description
6115  *      @port_type: firmware Port Type enumeration
6116  */
6117 const char *t4_get_port_type_description(enum fw_port_type port_type)
6118 {
6119         static const char *const port_type_description[] = {
6120                 "Fiber_XFI",
6121                 "Fiber_XAUI",
6122                 "BT_SGMII",
6123                 "BT_XFI",
6124                 "BT_XAUI",
6125                 "KX4",
6126                 "CX4",
6127                 "KX",
6128                 "KR",
6129                 "SFP",
6130                 "BP_AP",
6131                 "BP4_AP",
6132                 "QSFP_10G",
6133                 "QSA",
6134                 "QSFP",
6135                 "BP40_BA",
6136                 "KR4_100G",
6137                 "CR4_QSFP",
6138                 "CR_QSFP",
6139                 "CR2_QSFP",
6140                 "SFP28",
6141                 "KR_SFP28",
6142         };
6143
6144         if (port_type < ARRAY_SIZE(port_type_description))
6145                 return port_type_description[port_type];
6146         return "UNKNOWN";
6147 }
6148
6149 /**
6150  *      t4_get_port_stats_offset - collect port stats relative to a previous
6151  *                                 snapshot
6152  *      @adap: The adapter
6153  *      @idx: The port
6154  *      @stats: Current stats to fill
6155  *      @offset: Previous stats snapshot
6156  */
6157 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6158                 struct port_stats *stats,
6159                 struct port_stats *offset)
6160 {
6161         u64 *s, *o;
6162         int i;
6163
6164         t4_get_port_stats(adap, idx, stats);
6165         for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6166                         i < (sizeof(struct port_stats)/sizeof(u64)) ;
6167                         i++, s++, o++)
6168                 *s -= *o;
6169 }
6170
6171 /**
6172  *      t4_get_port_stats - collect port statistics
6173  *      @adap: the adapter
6174  *      @idx: the port index
6175  *      @p: the stats structure to fill
6176  *
6177  *      Collect statistics related to the given port from HW.
6178  */
6179 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6180 {
6181         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6182         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6183
6184 #define GET_STAT(name) \
6185         t4_read_reg64(adap, \
6186         (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6187         T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6188 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6189
6190         p->tx_pause             = GET_STAT(TX_PORT_PAUSE);
6191         p->tx_octets            = GET_STAT(TX_PORT_BYTES);
6192         p->tx_frames            = GET_STAT(TX_PORT_FRAMES);
6193         p->tx_bcast_frames      = GET_STAT(TX_PORT_BCAST);
6194         p->tx_mcast_frames      = GET_STAT(TX_PORT_MCAST);
6195         p->tx_ucast_frames      = GET_STAT(TX_PORT_UCAST);
6196         p->tx_error_frames      = GET_STAT(TX_PORT_ERROR);
6197         p->tx_frames_64         = GET_STAT(TX_PORT_64B);
6198         p->tx_frames_65_127     = GET_STAT(TX_PORT_65B_127B);
6199         p->tx_frames_128_255    = GET_STAT(TX_PORT_128B_255B);
6200         p->tx_frames_256_511    = GET_STAT(TX_PORT_256B_511B);
6201         p->tx_frames_512_1023   = GET_STAT(TX_PORT_512B_1023B);
6202         p->tx_frames_1024_1518  = GET_STAT(TX_PORT_1024B_1518B);
6203         p->tx_frames_1519_max   = GET_STAT(TX_PORT_1519B_MAX);
6204         p->tx_drop              = GET_STAT(TX_PORT_DROP);
6205         p->tx_ppp0              = GET_STAT(TX_PORT_PPP0);
6206         p->tx_ppp1              = GET_STAT(TX_PORT_PPP1);
6207         p->tx_ppp2              = GET_STAT(TX_PORT_PPP2);
6208         p->tx_ppp3              = GET_STAT(TX_PORT_PPP3);
6209         p->tx_ppp4              = GET_STAT(TX_PORT_PPP4);
6210         p->tx_ppp5              = GET_STAT(TX_PORT_PPP5);
6211         p->tx_ppp6              = GET_STAT(TX_PORT_PPP6);
6212         p->tx_ppp7              = GET_STAT(TX_PORT_PPP7);
6213
6214         if (chip_id(adap) >= CHELSIO_T5) {
6215                 if (stat_ctl & F_COUNTPAUSESTATTX) {
6216                         p->tx_frames -= p->tx_pause;
6217                         p->tx_octets -= p->tx_pause * 64;
6218                 }
6219                 if (stat_ctl & F_COUNTPAUSEMCTX)
6220                         p->tx_mcast_frames -= p->tx_pause;
6221         }
6222
6223         p->rx_pause             = GET_STAT(RX_PORT_PAUSE);
6224         p->rx_octets            = GET_STAT(RX_PORT_BYTES);
6225         p->rx_frames            = GET_STAT(RX_PORT_FRAMES);
6226         p->rx_bcast_frames      = GET_STAT(RX_PORT_BCAST);
6227         p->rx_mcast_frames      = GET_STAT(RX_PORT_MCAST);
6228         p->rx_ucast_frames      = GET_STAT(RX_PORT_UCAST);
6229         p->rx_too_long          = GET_STAT(RX_PORT_MTU_ERROR);
6230         p->rx_jabber            = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6231         p->rx_fcs_err           = GET_STAT(RX_PORT_CRC_ERROR);
6232         p->rx_len_err           = GET_STAT(RX_PORT_LEN_ERROR);
6233         p->rx_symbol_err        = GET_STAT(RX_PORT_SYM_ERROR);
6234         p->rx_runt              = GET_STAT(RX_PORT_LESS_64B);
6235         p->rx_frames_64         = GET_STAT(RX_PORT_64B);
6236         p->rx_frames_65_127     = GET_STAT(RX_PORT_65B_127B);
6237         p->rx_frames_128_255    = GET_STAT(RX_PORT_128B_255B);
6238         p->rx_frames_256_511    = GET_STAT(RX_PORT_256B_511B);
6239         p->rx_frames_512_1023   = GET_STAT(RX_PORT_512B_1023B);
6240         p->rx_frames_1024_1518  = GET_STAT(RX_PORT_1024B_1518B);
6241         p->rx_frames_1519_max   = GET_STAT(RX_PORT_1519B_MAX);
6242         p->rx_ppp0              = GET_STAT(RX_PORT_PPP0);
6243         p->rx_ppp1              = GET_STAT(RX_PORT_PPP1);
6244         p->rx_ppp2              = GET_STAT(RX_PORT_PPP2);
6245         p->rx_ppp3              = GET_STAT(RX_PORT_PPP3);
6246         p->rx_ppp4              = GET_STAT(RX_PORT_PPP4);
6247         p->rx_ppp5              = GET_STAT(RX_PORT_PPP5);
6248         p->rx_ppp6              = GET_STAT(RX_PORT_PPP6);
6249         p->rx_ppp7              = GET_STAT(RX_PORT_PPP7);
6250
6251         if (chip_id(adap) >= CHELSIO_T5) {
6252                 if (stat_ctl & F_COUNTPAUSESTATRX) {
6253                         p->rx_frames -= p->rx_pause;
6254                         p->rx_octets -= p->rx_pause * 64;
6255                 }
6256                 if (stat_ctl & F_COUNTPAUSEMCRX)
6257                         p->rx_mcast_frames -= p->rx_pause;
6258         }
6259
6260         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6261         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6262         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6263         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6264         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6265         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6266         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6267         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6268
6269 #undef GET_STAT
6270 #undef GET_STAT_COM
6271 }
6272
6273 /**
6274  *      t4_get_lb_stats - collect loopback port statistics
6275  *      @adap: the adapter
6276  *      @idx: the loopback port index
6277  *      @p: the stats structure to fill
6278  *
6279  *      Return HW statistics for the given loopback port.
6280  */
6281 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6282 {
6283         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6284
6285 #define GET_STAT(name) \
6286         t4_read_reg64(adap, \
6287         (is_t4(adap) ? \
6288         PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6289         T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6290 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6291
6292         p->octets       = GET_STAT(BYTES);
6293         p->frames       = GET_STAT(FRAMES);
6294         p->bcast_frames = GET_STAT(BCAST);
6295         p->mcast_frames = GET_STAT(MCAST);
6296         p->ucast_frames = GET_STAT(UCAST);
6297         p->error_frames = GET_STAT(ERROR);
6298
6299         p->frames_64            = GET_STAT(64B);
6300         p->frames_65_127        = GET_STAT(65B_127B);
6301         p->frames_128_255       = GET_STAT(128B_255B);
6302         p->frames_256_511       = GET_STAT(256B_511B);
6303         p->frames_512_1023      = GET_STAT(512B_1023B);
6304         p->frames_1024_1518     = GET_STAT(1024B_1518B);
6305         p->frames_1519_max      = GET_STAT(1519B_MAX);
6306         p->drop                 = GET_STAT(DROP_FRAMES);
6307
6308         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6309         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6310         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6311         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6312         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6313         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6314         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6315         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6316
6317 #undef GET_STAT
6318 #undef GET_STAT_COM
6319 }
6320
6321 /**
6322  *      t4_wol_magic_enable - enable/disable magic packet WoL
6323  *      @adap: the adapter
6324  *      @port: the physical port index
6325  *      @addr: MAC address expected in magic packets, %NULL to disable
6326  *
6327  *      Enables/disables magic packet wake-on-LAN for the selected port.
6328  */
6329 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6330                          const u8 *addr)
6331 {
6332         u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6333
6334         if (is_t4(adap)) {
6335                 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6336                 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6337                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6338         } else {
6339                 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6340                 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6341                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6342         }
6343
6344         if (addr) {
6345                 t4_write_reg(adap, mag_id_reg_l,
6346                              (addr[2] << 24) | (addr[3] << 16) |
6347                              (addr[4] << 8) | addr[5]);
6348                 t4_write_reg(adap, mag_id_reg_h,
6349                              (addr[0] << 8) | addr[1]);
6350         }
6351         t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6352                          V_MAGICEN(addr != NULL));
6353 }
6354
6355 /**
6356  *      t4_wol_pat_enable - enable/disable pattern-based WoL
6357  *      @adap: the adapter
6358  *      @port: the physical port index
6359  *      @map: bitmap of which HW pattern filters to set
6360  *      @mask0: byte mask for bytes 0-63 of a packet
6361  *      @mask1: byte mask for bytes 64-127 of a packet
6362  *      @crc: Ethernet CRC for selected bytes
6363  *      @enable: enable/disable switch
6364  *
6365  *      Sets the pattern filters indicated in @map to mask out the bytes
6366  *      specified in @mask0/@mask1 in received packets and compare the CRC of
6367  *      the resulting packet against @crc.  If @enable is %true pattern-based
6368  *      WoL is enabled, otherwise disabled.
6369  */
6370 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6371                       u64 mask0, u64 mask1, unsigned int crc, bool enable)
6372 {
6373         int i;
6374         u32 port_cfg_reg;
6375
6376         if (is_t4(adap))
6377                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6378         else
6379                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6380
6381         if (!enable) {
6382                 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6383                 return 0;
6384         }
6385         if (map > 0xff)
6386                 return -EINVAL;
6387
6388 #define EPIO_REG(name) \
6389         (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6390         T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6391
6392         t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6393         t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6394         t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6395
6396         for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6397                 if (!(map & 1))
6398                         continue;
6399
6400                 /* write byte masks */
6401                 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6402                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6403                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6404                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6405                         return -ETIMEDOUT;
6406
6407                 /* write CRC */
6408                 t4_write_reg(adap, EPIO_REG(DATA0), crc);
6409                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6410                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6411                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6412                         return -ETIMEDOUT;
6413         }
6414 #undef EPIO_REG
6415
6416         t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6417         return 0;
6418 }
6419
6420 /*     t4_mk_filtdelwr - create a delete filter WR
6421  *     @ftid: the filter ID
6422  *     @wr: the filter work request to populate
6423  *     @qid: ingress queue to receive the delete notification
6424  *
6425  *     Creates a filter work request to delete the supplied filter.  If @qid is
6426  *     negative the delete notification is suppressed.
6427  */
6428 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6429 {
6430         memset(wr, 0, sizeof(*wr));
6431         wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6432         wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6433         wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6434                                     V_FW_FILTER_WR_NOREPLY(qid < 0));
6435         wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6436         if (qid >= 0)
6437                 wr->rx_chan_rx_rpl_iq =
6438                                 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6439 }
6440
6441 #define INIT_CMD(var, cmd, rd_wr) do { \
6442         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6443                                         F_FW_CMD_REQUEST | \
6444                                         F_FW_CMD_##rd_wr); \
6445         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6446 } while (0)
6447
6448 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6449                           u32 addr, u32 val)
6450 {
6451         u32 ldst_addrspace;
6452         struct fw_ldst_cmd c;
6453
6454         memset(&c, 0, sizeof(c));
6455         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6456         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6457                                         F_FW_CMD_REQUEST |
6458                                         F_FW_CMD_WRITE |
6459                                         ldst_addrspace);
6460         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6461         c.u.addrval.addr = cpu_to_be32(addr);
6462         c.u.addrval.val = cpu_to_be32(val);
6463
6464         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6465 }
6466
6467 /**
6468  *      t4_mdio_rd - read a PHY register through MDIO
6469  *      @adap: the adapter
6470  *      @mbox: mailbox to use for the FW command
6471  *      @phy_addr: the PHY address
6472  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6473  *      @reg: the register to read
6474  *      @valp: where to store the value
6475  *
6476  *      Issues a FW command through the given mailbox to read a PHY register.
6477  */
6478 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6479                unsigned int mmd, unsigned int reg, unsigned int *valp)
6480 {
6481         int ret;
6482         u32 ldst_addrspace;
6483         struct fw_ldst_cmd c;
6484
6485         memset(&c, 0, sizeof(c));
6486         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6487         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6488                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
6489                                         ldst_addrspace);
6490         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6491         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6492                                          V_FW_LDST_CMD_MMD(mmd));
6493         c.u.mdio.raddr = cpu_to_be16(reg);
6494
6495         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6496         if (ret == 0)
6497                 *valp = be16_to_cpu(c.u.mdio.rval);
6498         return ret;
6499 }
6500
6501 /**
6502  *      t4_mdio_wr - write a PHY register through MDIO
6503  *      @adap: the adapter
6504  *      @mbox: mailbox to use for the FW command
6505  *      @phy_addr: the PHY address
6506  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6507  *      @reg: the register to write
6508  *      @valp: value to write
6509  *
6510  *      Issues a FW command through the given mailbox to write a PHY register.
6511  */
6512 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6513                unsigned int mmd, unsigned int reg, unsigned int val)
6514 {
6515         u32 ldst_addrspace;
6516         struct fw_ldst_cmd c;
6517
6518         memset(&c, 0, sizeof(c));
6519         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6520         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6521                                         F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6522                                         ldst_addrspace);
6523         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6524         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6525                                          V_FW_LDST_CMD_MMD(mmd));
6526         c.u.mdio.raddr = cpu_to_be16(reg);
6527         c.u.mdio.rval = cpu_to_be16(val);
6528
6529         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6530 }
6531
6532 /**
6533  *
6534  *      t4_sge_decode_idma_state - decode the idma state
6535  *      @adap: the adapter
6536  *      @state: the state idma is stuck in
6537  */
6538 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6539 {
6540         static const char * const t4_decode[] = {
6541                 "IDMA_IDLE",
6542                 "IDMA_PUSH_MORE_CPL_FIFO",
6543                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6544                 "Not used",
6545                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6546                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6547                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6548                 "IDMA_SEND_FIFO_TO_IMSG",
6549                 "IDMA_FL_REQ_DATA_FL_PREP",
6550                 "IDMA_FL_REQ_DATA_FL",
6551                 "IDMA_FL_DROP",
6552                 "IDMA_FL_H_REQ_HEADER_FL",
6553                 "IDMA_FL_H_SEND_PCIEHDR",
6554                 "IDMA_FL_H_PUSH_CPL_FIFO",
6555                 "IDMA_FL_H_SEND_CPL",
6556                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6557                 "IDMA_FL_H_SEND_IP_HDR",
6558                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6559                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6560                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6561                 "IDMA_FL_D_SEND_PCIEHDR",
6562                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6563                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6564                 "IDMA_FL_SEND_PCIEHDR",
6565                 "IDMA_FL_PUSH_CPL_FIFO",
6566                 "IDMA_FL_SEND_CPL",
6567                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6568                 "IDMA_FL_SEND_PAYLOAD",
6569                 "IDMA_FL_REQ_NEXT_DATA_FL",
6570                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6571                 "IDMA_FL_SEND_PADDING",
6572                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6573                 "IDMA_FL_SEND_FIFO_TO_IMSG",
6574                 "IDMA_FL_REQ_DATAFL_DONE",
6575                 "IDMA_FL_REQ_HEADERFL_DONE",
6576         };
6577         static const char * const t5_decode[] = {
6578                 "IDMA_IDLE",
6579                 "IDMA_ALMOST_IDLE",
6580                 "IDMA_PUSH_MORE_CPL_FIFO",
6581                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6582                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6583                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6584                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6585                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6586                 "IDMA_SEND_FIFO_TO_IMSG",
6587                 "IDMA_FL_REQ_DATA_FL",
6588                 "IDMA_FL_DROP",
6589                 "IDMA_FL_DROP_SEND_INC",
6590                 "IDMA_FL_H_REQ_HEADER_FL",
6591                 "IDMA_FL_H_SEND_PCIEHDR",
6592                 "IDMA_FL_H_PUSH_CPL_FIFO",
6593                 "IDMA_FL_H_SEND_CPL",
6594                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6595                 "IDMA_FL_H_SEND_IP_HDR",
6596                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6597                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6598                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6599                 "IDMA_FL_D_SEND_PCIEHDR",
6600                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6601                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6602                 "IDMA_FL_SEND_PCIEHDR",
6603                 "IDMA_FL_PUSH_CPL_FIFO",
6604                 "IDMA_FL_SEND_CPL",
6605                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6606                 "IDMA_FL_SEND_PAYLOAD",
6607                 "IDMA_FL_REQ_NEXT_DATA_FL",
6608                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6609                 "IDMA_FL_SEND_PADDING",
6610                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6611         };
6612         static const char * const t6_decode[] = {
6613                 "IDMA_IDLE",
6614                 "IDMA_PUSH_MORE_CPL_FIFO",
6615                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6616                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6617                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6618                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6619                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6620                 "IDMA_FL_REQ_DATA_FL",
6621                 "IDMA_FL_DROP",
6622                 "IDMA_FL_DROP_SEND_INC",
6623                 "IDMA_FL_H_REQ_HEADER_FL",
6624                 "IDMA_FL_H_SEND_PCIEHDR",
6625                 "IDMA_FL_H_PUSH_CPL_FIFO",
6626                 "IDMA_FL_H_SEND_CPL",
6627                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6628                 "IDMA_FL_H_SEND_IP_HDR",
6629                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6630                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6631                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6632                 "IDMA_FL_D_SEND_PCIEHDR",
6633                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6634                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6635                 "IDMA_FL_SEND_PCIEHDR",
6636                 "IDMA_FL_PUSH_CPL_FIFO",
6637                 "IDMA_FL_SEND_CPL",
6638                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6639                 "IDMA_FL_SEND_PAYLOAD",
6640                 "IDMA_FL_REQ_NEXT_DATA_FL",
6641                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6642                 "IDMA_FL_SEND_PADDING",
6643                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6644         };
6645         static const u32 sge_regs[] = {
6646                 A_SGE_DEBUG_DATA_LOW_INDEX_2,
6647                 A_SGE_DEBUG_DATA_LOW_INDEX_3,
6648                 A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6649         };
6650         const char * const *sge_idma_decode;
6651         int sge_idma_decode_nstates;
6652         int i;
6653         unsigned int chip_version = chip_id(adapter);
6654
6655         /* Select the right set of decode strings to dump depending on the
6656          * adapter chip type.
6657          */
6658         switch (chip_version) {
6659         case CHELSIO_T4:
6660                 sge_idma_decode = (const char * const *)t4_decode;
6661                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6662                 break;
6663
6664         case CHELSIO_T5:
6665                 sge_idma_decode = (const char * const *)t5_decode;
6666                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6667                 break;
6668
6669         case CHELSIO_T6:
6670                 sge_idma_decode = (const char * const *)t6_decode;
6671                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6672                 break;
6673
6674         default:
6675                 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version);
6676                 return;
6677         }
6678
6679         if (state < sge_idma_decode_nstates)
6680                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6681         else
6682                 CH_WARN(adapter, "idma state %d unknown\n", state);
6683
6684         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6685                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6686                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6687 }
6688
6689 /**
6690  *      t4_sge_ctxt_flush - flush the SGE context cache
6691  *      @adap: the adapter
6692  *      @mbox: mailbox to use for the FW command
6693  *
6694  *      Issues a FW command through the given mailbox to flush the
6695  *      SGE context cache.
6696  */
6697 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6698 {
6699         int ret;
6700         u32 ldst_addrspace;
6701         struct fw_ldst_cmd c;
6702
6703         memset(&c, 0, sizeof(c));
6704         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6705         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6706                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
6707                                         ldst_addrspace);
6708         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6709         c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6710
6711         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6712         return ret;
6713 }
6714
6715 /**
6716  *      t4_fw_hello - establish communication with FW
6717  *      @adap: the adapter
6718  *      @mbox: mailbox to use for the FW command
6719  *      @evt_mbox: mailbox to receive async FW events
6720  *      @master: specifies the caller's willingness to be the device master
6721  *      @state: returns the current device state (if non-NULL)
6722  *
6723  *      Issues a command to establish communication with FW.  Returns either
6724  *      an error (negative integer) or the mailbox of the Master PF.
6725  */
6726 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6727                 enum dev_master master, enum dev_state *state)
6728 {
6729         int ret;
6730         struct fw_hello_cmd c;
6731         u32 v;
6732         unsigned int master_mbox;
6733         int retries = FW_CMD_HELLO_RETRIES;
6734
6735 retry:
6736         memset(&c, 0, sizeof(c));
6737         INIT_CMD(c, HELLO, WRITE);
6738         c.err_to_clearinit = cpu_to_be32(
6739                 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6740                 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6741                 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6742                                         mbox : M_FW_HELLO_CMD_MBMASTER) |
6743                 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6744                 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6745                 F_FW_HELLO_CMD_CLEARINIT);
6746
6747         /*
6748          * Issue the HELLO command to the firmware.  If it's not successful
6749          * but indicates that we got a "busy" or "timeout" condition, retry
6750          * the HELLO until we exhaust our retry limit.  If we do exceed our
6751          * retry limit, check to see if the firmware left us any error
6752          * information and report that if so ...
6753          */
6754         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6755         if (ret != FW_SUCCESS) {
6756                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6757                         goto retry;
6758                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6759                         t4_report_fw_error(adap);
6760                 return ret;
6761         }
6762
6763         v = be32_to_cpu(c.err_to_clearinit);
6764         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6765         if (state) {
6766                 if (v & F_FW_HELLO_CMD_ERR)
6767                         *state = DEV_STATE_ERR;
6768                 else if (v & F_FW_HELLO_CMD_INIT)
6769                         *state = DEV_STATE_INIT;
6770                 else
6771                         *state = DEV_STATE_UNINIT;
6772         }
6773
6774         /*
6775          * If we're not the Master PF then we need to wait around for the
6776          * Master PF Driver to finish setting up the adapter.
6777          *
6778          * Note that we also do this wait if we're a non-Master-capable PF and
6779          * there is no current Master PF; a Master PF may show up momentarily
6780          * and we wouldn't want to fail pointlessly.  (This can happen when an
6781          * OS loads lots of different drivers rapidly at the same time).  In
6782          * this case, the Master PF returned by the firmware will be
6783          * M_PCIE_FW_MASTER so the test below will work ...
6784          */
6785         if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6786             master_mbox != mbox) {
6787                 int waiting = FW_CMD_HELLO_TIMEOUT;
6788
6789                 /*
6790                  * Wait for the firmware to either indicate an error or
6791                  * initialized state.  If we see either of these we bail out
6792                  * and report the issue to the caller.  If we exhaust the
6793                  * "hello timeout" and we haven't exhausted our retries, try
6794                  * again.  Otherwise bail with a timeout error.
6795                  */
6796                 for (;;) {
6797                         u32 pcie_fw;
6798
6799                         msleep(50);
6800                         waiting -= 50;
6801
6802                         /*
6803                          * If neither Error nor Initialialized are indicated
6804                          * by the firmware keep waiting till we exhaust our
6805                          * timeout ... and then retry if we haven't exhausted
6806                          * our retries ...
6807                          */
6808                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6809                         if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6810                                 if (waiting <= 0) {
6811                                         if (retries-- > 0)
6812                                                 goto retry;
6813
6814                                         return -ETIMEDOUT;
6815                                 }
6816                                 continue;
6817                         }
6818
6819                         /*
6820                          * We either have an Error or Initialized condition
6821                          * report errors preferentially.
6822                          */
6823                         if (state) {
6824                                 if (pcie_fw & F_PCIE_FW_ERR)
6825                                         *state = DEV_STATE_ERR;
6826                                 else if (pcie_fw & F_PCIE_FW_INIT)
6827                                         *state = DEV_STATE_INIT;
6828                         }
6829
6830                         /*
6831                          * If we arrived before a Master PF was selected and
6832                          * there's not a valid Master PF, grab its identity
6833                          * for our caller.
6834                          */
6835                         if (master_mbox == M_PCIE_FW_MASTER &&
6836                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
6837                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6838                         break;
6839                 }
6840         }
6841
6842         return master_mbox;
6843 }
6844
6845 /**
6846  *      t4_fw_bye - end communication with FW
6847  *      @adap: the adapter
6848  *      @mbox: mailbox to use for the FW command
6849  *
6850  *      Issues a command to terminate communication with FW.
6851  */
6852 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6853 {
6854         struct fw_bye_cmd c;
6855
6856         memset(&c, 0, sizeof(c));
6857         INIT_CMD(c, BYE, WRITE);
6858         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6859 }
6860
6861 /**
6862  *      t4_fw_reset - issue a reset to FW
6863  *      @adap: the adapter
6864  *      @mbox: mailbox to use for the FW command
6865  *      @reset: specifies the type of reset to perform
6866  *
6867  *      Issues a reset command of the specified type to FW.
6868  */
6869 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6870 {
6871         struct fw_reset_cmd c;
6872
6873         memset(&c, 0, sizeof(c));
6874         INIT_CMD(c, RESET, WRITE);
6875         c.val = cpu_to_be32(reset);
6876         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6877 }
6878
6879 /**
6880  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6881  *      @adap: the adapter
6882  *      @mbox: mailbox to use for the FW RESET command (if desired)
6883  *      @force: force uP into RESET even if FW RESET command fails
6884  *
6885  *      Issues a RESET command to firmware (if desired) with a HALT indication
6886  *      and then puts the microprocessor into RESET state.  The RESET command
6887  *      will only be issued if a legitimate mailbox is provided (mbox <=
6888  *      M_PCIE_FW_MASTER).
6889  *
6890  *      This is generally used in order for the host to safely manipulate the
6891  *      adapter without fear of conflicting with whatever the firmware might
6892  *      be doing.  The only way out of this state is to RESTART the firmware
6893  *      ...
6894  */
6895 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6896 {
6897         int ret = 0;
6898
6899         /*
6900          * If a legitimate mailbox is provided, issue a RESET command
6901          * with a HALT indication.
6902          */
6903         if (mbox <= M_PCIE_FW_MASTER) {
6904                 struct fw_reset_cmd c;
6905
6906                 memset(&c, 0, sizeof(c));
6907                 INIT_CMD(c, RESET, WRITE);
6908                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6909                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6910                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6911         }
6912
6913         /*
6914          * Normally we won't complete the operation if the firmware RESET
6915          * command fails but if our caller insists we'll go ahead and put the
6916          * uP into RESET.  This can be useful if the firmware is hung or even
6917          * missing ...  We'll have to take the risk of putting the uP into
6918          * RESET without the cooperation of firmware in that case.
6919          *
6920          * We also force the firmware's HALT flag to be on in case we bypassed
6921          * the firmware RESET command above or we're dealing with old firmware
6922          * which doesn't have the HALT capability.  This will serve as a flag
6923          * for the incoming firmware to know that it's coming out of a HALT
6924          * rather than a RESET ... if it's new enough to understand that ...
6925          */
6926         if (ret == 0 || force) {
6927                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6928                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6929                                  F_PCIE_FW_HALT);
6930         }
6931
6932         /*
6933          * And we always return the result of the firmware RESET command
6934          * even when we force the uP into RESET ...
6935          */
6936         return ret;
6937 }
6938
6939 /**
6940  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
6941  *      @adap: the adapter
6942  *      @reset: if we want to do a RESET to restart things
6943  *
6944  *      Restart firmware previously halted by t4_fw_halt().  On successful
6945  *      return the previous PF Master remains as the new PF Master and there
6946  *      is no need to issue a new HELLO command, etc.
6947  *
6948  *      We do this in two ways:
6949  *
6950  *       1. If we're dealing with newer firmware we'll simply want to take
6951  *          the chip's microprocessor out of RESET.  This will cause the
6952  *          firmware to start up from its start vector.  And then we'll loop
6953  *          until the firmware indicates it's started again (PCIE_FW.HALT
6954  *          reset to 0) or we timeout.
6955  *
6956  *       2. If we're dealing with older firmware then we'll need to RESET
6957  *          the chip since older firmware won't recognize the PCIE_FW.HALT
6958  *          flag and automatically RESET itself on startup.
6959  */
6960 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6961 {
6962         if (reset) {
6963                 /*
6964                  * Since we're directing the RESET instead of the firmware
6965                  * doing it automatically, we need to clear the PCIE_FW.HALT
6966                  * bit.
6967                  */
6968                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6969
6970                 /*
6971                  * If we've been given a valid mailbox, first try to get the
6972                  * firmware to do the RESET.  If that works, great and we can
6973                  * return success.  Otherwise, if we haven't been given a
6974                  * valid mailbox or the RESET command failed, fall back to
6975                  * hitting the chip with a hammer.
6976                  */
6977                 if (mbox <= M_PCIE_FW_MASTER) {
6978                         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6979                         msleep(100);
6980                         if (t4_fw_reset(adap, mbox,
6981                                         F_PIORST | F_PIORSTMODE) == 0)
6982                                 return 0;
6983                 }
6984
6985                 t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6986                 msleep(2000);
6987         } else {
6988                 int ms;
6989
6990                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6991                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6992                         if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6993                                 return FW_SUCCESS;
6994                         msleep(100);
6995                         ms += 100;
6996                 }
6997                 return -ETIMEDOUT;
6998         }
6999         return 0;
7000 }
7001
7002 /**
7003  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7004  *      @adap: the adapter
7005  *      @mbox: mailbox to use for the FW RESET command (if desired)
7006  *      @fw_data: the firmware image to write
7007  *      @size: image size
7008  *      @force: force upgrade even if firmware doesn't cooperate
7009  *
7010  *      Perform all of the steps necessary for upgrading an adapter's
7011  *      firmware image.  Normally this requires the cooperation of the
7012  *      existing firmware in order to halt all existing activities
7013  *      but if an invalid mailbox token is passed in we skip that step
7014  *      (though we'll still put the adapter microprocessor into RESET in
7015  *      that case).
7016  *
7017  *      On successful return the new firmware will have been loaded and
7018  *      the adapter will have been fully RESET losing all previous setup
7019  *      state.  On unsuccessful return the adapter may be completely hosed ...
7020  *      positive errno indicates that the adapter is ~probably~ intact, a
7021  *      negative errno indicates that things are looking bad ...
7022  */
7023 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7024                   const u8 *fw_data, unsigned int size, int force)
7025 {
7026         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7027         unsigned int bootstrap =
7028             be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7029         int reset, ret;
7030
7031         if (!t4_fw_matches_chip(adap, fw_hdr))
7032                 return -EINVAL;
7033
7034         if (!bootstrap) {
7035                 ret = t4_fw_halt(adap, mbox, force);
7036                 if (ret < 0 && !force)
7037                         return ret;
7038         }
7039
7040         ret = t4_load_fw(adap, fw_data, size);
7041         if (ret < 0 || bootstrap)
7042                 return ret;
7043
7044         /*
7045          * Older versions of the firmware don't understand the new
7046          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7047          * restart.  So for newly loaded older firmware we'll have to do the
7048          * RESET for it so it starts up on a clean slate.  We can tell if
7049          * the newly loaded firmware will handle this right by checking
7050          * its header flags to see if it advertises the capability.
7051          */
7052         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7053         return t4_fw_restart(adap, mbox, reset);
7054 }
7055
7056 /*
7057  * Card doesn't have a firmware, install one.
7058  */
7059 int t4_fw_forceinstall(struct adapter *adap, const u8 *fw_data,
7060     unsigned int size)
7061 {
7062         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7063         unsigned int bootstrap =
7064             be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7065         int ret;
7066
7067         if (!t4_fw_matches_chip(adap, fw_hdr) || bootstrap)
7068                 return -EINVAL;
7069
7070         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7071         t4_write_reg(adap, A_PCIE_FW, 0);       /* Clobber internal state */
7072         ret = t4_load_fw(adap, fw_data, size);
7073         if (ret < 0)
7074                 return ret;
7075         t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
7076         msleep(1000);
7077
7078         return (0);
7079 }
7080
7081 /**
7082  *      t4_fw_initialize - ask FW to initialize the device
7083  *      @adap: the adapter
7084  *      @mbox: mailbox to use for the FW command
7085  *
7086  *      Issues a command to FW to partially initialize the device.  This
7087  *      performs initialization that generally doesn't depend on user input.
7088  */
7089 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7090 {
7091         struct fw_initialize_cmd c;
7092
7093         memset(&c, 0, sizeof(c));
7094         INIT_CMD(c, INITIALIZE, WRITE);
7095         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7096 }
7097
7098 /**
7099  *      t4_query_params_rw - query FW or device parameters
7100  *      @adap: the adapter
7101  *      @mbox: mailbox to use for the FW command
7102  *      @pf: the PF
7103  *      @vf: the VF
7104  *      @nparams: the number of parameters
7105  *      @params: the parameter names
7106  *      @val: the parameter values
7107  *      @rw: Write and read flag
7108  *
7109  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7110  *      queried at once.
7111  */
7112 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7113                        unsigned int vf, unsigned int nparams, const u32 *params,
7114                        u32 *val, int rw)
7115 {
7116         int i, ret;
7117         struct fw_params_cmd c;
7118         __be32 *p = &c.param[0].mnem;
7119
7120         if (nparams > 7)
7121                 return -EINVAL;
7122
7123         memset(&c, 0, sizeof(c));
7124         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7125                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
7126                                   V_FW_PARAMS_CMD_PFN(pf) |
7127                                   V_FW_PARAMS_CMD_VFN(vf));
7128         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7129
7130         for (i = 0; i < nparams; i++) {
7131                 *p++ = cpu_to_be32(*params++);
7132                 if (rw)
7133                         *p = cpu_to_be32(*(val + i));
7134                 p++;
7135         }
7136
7137         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7138         if (ret == 0)
7139                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7140                         *val++ = be32_to_cpu(*p);
7141         return ret;
7142 }
7143
7144 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7145                     unsigned int vf, unsigned int nparams, const u32 *params,
7146                     u32 *val)
7147 {
7148         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7149 }
7150
7151 /**
7152  *      t4_set_params_timeout - sets FW or device parameters
7153  *      @adap: the adapter
7154  *      @mbox: mailbox to use for the FW command
7155  *      @pf: the PF
7156  *      @vf: the VF
7157  *      @nparams: the number of parameters
7158  *      @params: the parameter names
7159  *      @val: the parameter values
7160  *      @timeout: the timeout time
7161  *
7162  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7163  *      specified at once.
7164  */
7165 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7166                           unsigned int pf, unsigned int vf,
7167                           unsigned int nparams, const u32 *params,
7168                           const u32 *val, int timeout)
7169 {
7170         struct fw_params_cmd c;
7171         __be32 *p = &c.param[0].mnem;
7172
7173         if (nparams > 7)
7174                 return -EINVAL;
7175
7176         memset(&c, 0, sizeof(c));
7177         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7178                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7179                                   V_FW_PARAMS_CMD_PFN(pf) |
7180                                   V_FW_PARAMS_CMD_VFN(vf));
7181         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7182
7183         while (nparams--) {
7184                 *p++ = cpu_to_be32(*params++);
7185                 *p++ = cpu_to_be32(*val++);
7186         }
7187
7188         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7189 }
7190
7191 /**
7192  *      t4_set_params - sets FW or device parameters
7193  *      @adap: the adapter
7194  *      @mbox: mailbox to use for the FW command
7195  *      @pf: the PF
7196  *      @vf: the VF
7197  *      @nparams: the number of parameters
7198  *      @params: the parameter names
7199  *      @val: the parameter values
7200  *
7201  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7202  *      specified at once.
7203  */
7204 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7205                   unsigned int vf, unsigned int nparams, const u32 *params,
7206                   const u32 *val)
7207 {
7208         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7209                                      FW_CMD_MAX_TIMEOUT);
7210 }
7211
7212 /**
7213  *      t4_cfg_pfvf - configure PF/VF resource limits
7214  *      @adap: the adapter
7215  *      @mbox: mailbox to use for the FW command
7216  *      @pf: the PF being configured
7217  *      @vf: the VF being configured
7218  *      @txq: the max number of egress queues
7219  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7220  *      @rxqi: the max number of interrupt-capable ingress queues
7221  *      @rxq: the max number of interruptless ingress queues
7222  *      @tc: the PCI traffic class
7223  *      @vi: the max number of virtual interfaces
7224  *      @cmask: the channel access rights mask for the PF/VF
7225  *      @pmask: the port access rights mask for the PF/VF
7226  *      @nexact: the maximum number of exact MPS filters
7227  *      @rcaps: read capabilities
7228  *      @wxcaps: write/execute capabilities
7229  *
7230  *      Configures resource limits and capabilities for a physical or virtual
7231  *      function.
7232  */
7233 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7234                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7235                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7236                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7237                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7238 {
7239         struct fw_pfvf_cmd c;
7240
7241         memset(&c, 0, sizeof(c));
7242         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7243                                   F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7244                                   V_FW_PFVF_CMD_VFN(vf));
7245         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7246         c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7247                                      V_FW_PFVF_CMD_NIQ(rxq));
7248         c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7249                                     V_FW_PFVF_CMD_PMASK(pmask) |
7250                                     V_FW_PFVF_CMD_NEQ(txq));
7251         c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7252                                       V_FW_PFVF_CMD_NVI(vi) |
7253                                       V_FW_PFVF_CMD_NEXACTF(nexact));
7254         c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7255                                      V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7256                                      V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7257         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7258 }
7259
7260 /**
7261  *      t4_alloc_vi_func - allocate a virtual interface
7262  *      @adap: the adapter
7263  *      @mbox: mailbox to use for the FW command
7264  *      @port: physical port associated with the VI
7265  *      @pf: the PF owning the VI
7266  *      @vf: the VF owning the VI
7267  *      @nmac: number of MAC addresses needed (1 to 5)
7268  *      @mac: the MAC addresses of the VI
7269  *      @rss_size: size of RSS table slice associated with this VI
7270  *      @portfunc: which Port Application Function MAC Address is desired
7271  *      @idstype: Intrusion Detection Type
7272  *
7273  *      Allocates a virtual interface for the given physical port.  If @mac is
7274  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7275  *      If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7276  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7277  *      stored consecutively so the space needed is @nmac * 6 bytes.
7278  *      Returns a negative error number or the non-negative VI id.
7279  */
7280 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7281                      unsigned int port, unsigned int pf, unsigned int vf,
7282                      unsigned int nmac, u8 *mac, u16 *rss_size,
7283                      unsigned int portfunc, unsigned int idstype)
7284 {
7285         int ret;
7286         struct fw_vi_cmd c;
7287
7288         memset(&c, 0, sizeof(c));
7289         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7290                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7291                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7292         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7293         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7294                                      V_FW_VI_CMD_FUNC(portfunc));
7295         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7296         c.nmac = nmac - 1;
7297         if(!rss_size)
7298                 c.norss_rsssize = F_FW_VI_CMD_NORSS;
7299
7300         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7301         if (ret)
7302                 return ret;
7303
7304         if (mac) {
7305                 memcpy(mac, c.mac, sizeof(c.mac));
7306                 switch (nmac) {
7307                 case 5:
7308                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7309                 case 4:
7310                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7311                 case 3:
7312                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7313                 case 2:
7314                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7315                 }
7316         }
7317         if (rss_size)
7318                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7319         return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7320 }
7321
7322 /**
7323  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7324  *      @adap: the adapter
7325  *      @mbox: mailbox to use for the FW command
7326  *      @port: physical port associated with the VI
7327  *      @pf: the PF owning the VI
7328  *      @vf: the VF owning the VI
7329  *      @nmac: number of MAC addresses needed (1 to 5)
7330  *      @mac: the MAC addresses of the VI
7331  *      @rss_size: size of RSS table slice associated with this VI
7332  *
7333  *      backwards compatible and convieniance routine to allocate a Virtual
7334  *      Interface with a Ethernet Port Application Function and Intrustion
7335  *      Detection System disabled.
7336  */
7337 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7338                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7339                 u16 *rss_size)
7340 {
7341         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7342                                 FW_VI_FUNC_ETH, 0);
7343 }
7344
7345 /**
7346  *      t4_free_vi - free a virtual interface
7347  *      @adap: the adapter
7348  *      @mbox: mailbox to use for the FW command
7349  *      @pf: the PF owning the VI
7350  *      @vf: the VF owning the VI
7351  *      @viid: virtual interface identifiler
7352  *
7353  *      Free a previously allocated virtual interface.
7354  */
7355 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7356                unsigned int vf, unsigned int viid)
7357 {
7358         struct fw_vi_cmd c;
7359
7360         memset(&c, 0, sizeof(c));
7361         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7362                                   F_FW_CMD_REQUEST |
7363                                   F_FW_CMD_EXEC |
7364                                   V_FW_VI_CMD_PFN(pf) |
7365                                   V_FW_VI_CMD_VFN(vf));
7366         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7367         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7368
7369         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7370 }
7371
7372 /**
7373  *      t4_set_rxmode - set Rx properties of a virtual interface
7374  *      @adap: the adapter
7375  *      @mbox: mailbox to use for the FW command
7376  *      @viid: the VI id
7377  *      @mtu: the new MTU or -1
7378  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7379  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7380  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7381  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7382  *      @sleep_ok: if true we may sleep while awaiting command completion
7383  *
7384  *      Sets Rx properties of a virtual interface.
7385  */
7386 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7387                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
7388                   bool sleep_ok)
7389 {
7390         struct fw_vi_rxmode_cmd c;
7391
7392         /* convert to FW values */
7393         if (mtu < 0)
7394                 mtu = M_FW_VI_RXMODE_CMD_MTU;
7395         if (promisc < 0)
7396                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7397         if (all_multi < 0)
7398                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7399         if (bcast < 0)
7400                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7401         if (vlanex < 0)
7402                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7403
7404         memset(&c, 0, sizeof(c));
7405         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7406                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7407                                    V_FW_VI_RXMODE_CMD_VIID(viid));
7408         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7409         c.mtu_to_vlanexen =
7410                 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7411                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7412                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7413                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7414                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7415         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7416 }
7417
7418 /**
7419  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7420  *      @adap: the adapter
7421  *      @mbox: mailbox to use for the FW command
7422  *      @viid: the VI id
7423  *      @free: if true any existing filters for this VI id are first removed
7424  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7425  *      @addr: the MAC address(es)
7426  *      @idx: where to store the index of each allocated filter
7427  *      @hash: pointer to hash address filter bitmap
7428  *      @sleep_ok: call is allowed to sleep
7429  *
7430  *      Allocates an exact-match filter for each of the supplied addresses and
7431  *      sets it to the corresponding address.  If @idx is not %NULL it should
7432  *      have at least @naddr entries, each of which will be set to the index of
7433  *      the filter allocated for the corresponding MAC address.  If a filter
7434  *      could not be allocated for an address its index is set to 0xffff.
7435  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7436  *      are hashed and update the hash filter bitmap pointed at by @hash.
7437  *
7438  *      Returns a negative error number or the number of filters allocated.
7439  */
7440 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7441                       unsigned int viid, bool free, unsigned int naddr,
7442                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7443 {
7444         int offset, ret = 0;
7445         struct fw_vi_mac_cmd c;
7446         unsigned int nfilters = 0;
7447         unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7448         unsigned int rem = naddr;
7449
7450         if (naddr > max_naddr)
7451                 return -EINVAL;
7452
7453         for (offset = 0; offset < naddr ; /**/) {
7454                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7455                                          ? rem
7456                                          : ARRAY_SIZE(c.u.exact));
7457                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7458                                                      u.exact[fw_naddr]), 16);
7459                 struct fw_vi_mac_exact *p;
7460                 int i;
7461
7462                 memset(&c, 0, sizeof(c));
7463                 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7464                                            F_FW_CMD_REQUEST |
7465                                            F_FW_CMD_WRITE |
7466                                            V_FW_CMD_EXEC(free) |
7467                                            V_FW_VI_MAC_CMD_VIID(viid));
7468                 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7469                                                   V_FW_CMD_LEN16(len16));
7470
7471                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7472                         p->valid_to_idx =
7473                                 cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7474                                             V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7475                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7476                 }
7477
7478                 /*
7479                  * It's okay if we run out of space in our MAC address arena.
7480                  * Some of the addresses we submit may get stored so we need
7481                  * to run through the reply to see what the results were ...
7482                  */
7483                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7484                 if (ret && ret != -FW_ENOMEM)
7485                         break;
7486
7487                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7488                         u16 index = G_FW_VI_MAC_CMD_IDX(
7489                                                 be16_to_cpu(p->valid_to_idx));
7490
7491                         if (idx)
7492                                 idx[offset+i] = (index >=  max_naddr
7493                                                  ? 0xffff
7494                                                  : index);
7495                         if (index < max_naddr)
7496                                 nfilters++;
7497                         else if (hash)
7498                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7499                 }
7500
7501                 free = false;
7502                 offset += fw_naddr;
7503                 rem -= fw_naddr;
7504         }
7505
7506         if (ret == 0 || ret == -FW_ENOMEM)
7507                 ret = nfilters;
7508         return ret;
7509 }
7510
7511 /**
7512  *      t4_change_mac - modifies the exact-match filter for a MAC address
7513  *      @adap: the adapter
7514  *      @mbox: mailbox to use for the FW command
7515  *      @viid: the VI id
7516  *      @idx: index of existing filter for old value of MAC address, or -1
7517  *      @addr: the new MAC address value
7518  *      @persist: whether a new MAC allocation should be persistent
7519  *      @add_smt: if true also add the address to the HW SMT
7520  *
7521  *      Modifies an exact-match filter and sets it to the new MAC address if
7522  *      @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7523  *      latter case the address is added persistently if @persist is %true.
7524  *
7525  *      Note that in general it is not possible to modify the value of a given
7526  *      filter so the generic way to modify an address filter is to free the one
7527  *      being used by the old address value and allocate a new filter for the
7528  *      new address value.
7529  *
7530  *      Returns a negative error number or the index of the filter with the new
7531  *      MAC value.  Note that this index may differ from @idx.
7532  */
7533 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7534                   int idx, const u8 *addr, bool persist, bool add_smt)
7535 {
7536         int ret, mode;
7537         struct fw_vi_mac_cmd c;
7538         struct fw_vi_mac_exact *p = c.u.exact;
7539         unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7540
7541         if (idx < 0)            /* new allocation */
7542                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7543         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7544
7545         memset(&c, 0, sizeof(c));
7546         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7547                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7548                                    V_FW_VI_MAC_CMD_VIID(viid));
7549         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7550         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7551                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7552                                       V_FW_VI_MAC_CMD_IDX(idx));
7553         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7554
7555         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7556         if (ret == 0) {
7557                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7558                 if (ret >= max_mac_addr)
7559                         ret = -ENOMEM;
7560         }
7561         return ret;
7562 }
7563
7564 /**
7565  *      t4_set_addr_hash - program the MAC inexact-match hash filter
7566  *      @adap: the adapter
7567  *      @mbox: mailbox to use for the FW command
7568  *      @viid: the VI id
7569  *      @ucast: whether the hash filter should also match unicast addresses
7570  *      @vec: the value to be written to the hash filter
7571  *      @sleep_ok: call is allowed to sleep
7572  *
7573  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
7574  */
7575 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7576                      bool ucast, u64 vec, bool sleep_ok)
7577 {
7578         struct fw_vi_mac_cmd c;
7579         u32 val;
7580
7581         memset(&c, 0, sizeof(c));
7582         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7583                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7584                                    V_FW_VI_ENABLE_CMD_VIID(viid));
7585         val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7586               V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7587         c.freemacs_to_len16 = cpu_to_be32(val);
7588         c.u.hash.hashvec = cpu_to_be64(vec);
7589         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7590 }
7591
7592 /**
7593  *      t4_enable_vi_params - enable/disable a virtual interface
7594  *      @adap: the adapter
7595  *      @mbox: mailbox to use for the FW command
7596  *      @viid: the VI id
7597  *      @rx_en: 1=enable Rx, 0=disable Rx
7598  *      @tx_en: 1=enable Tx, 0=disable Tx
7599  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7600  *
7601  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7602  *      only makes sense when enabling a Virtual Interface ...
7603  */
7604 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7605                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7606 {
7607         struct fw_vi_enable_cmd c;
7608
7609         memset(&c, 0, sizeof(c));
7610         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7611                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7612                                    V_FW_VI_ENABLE_CMD_VIID(viid));
7613         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7614                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7615                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7616                                      FW_LEN16(c));
7617         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7618 }
7619
7620 /**
7621  *      t4_enable_vi - enable/disable a virtual interface
7622  *      @adap: the adapter
7623  *      @mbox: mailbox to use for the FW command
7624  *      @viid: the VI id
7625  *      @rx_en: 1=enable Rx, 0=disable Rx
7626  *      @tx_en: 1=enable Tx, 0=disable Tx
7627  *
7628  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7629  *      only makes sense when enabling a Virtual Interface ...
7630  */
7631 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7632                  bool rx_en, bool tx_en)
7633 {
7634         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7635 }
7636
7637 /**
7638  *      t4_identify_port - identify a VI's port by blinking its LED
7639  *      @adap: the adapter
7640  *      @mbox: mailbox to use for the FW command
7641  *      @viid: the VI id
7642  *      @nblinks: how many times to blink LED at 2.5 Hz
7643  *
7644  *      Identifies a VI's port by blinking its LED.
7645  */
7646 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7647                      unsigned int nblinks)
7648 {
7649         struct fw_vi_enable_cmd c;
7650
7651         memset(&c, 0, sizeof(c));
7652         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7653                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7654                                    V_FW_VI_ENABLE_CMD_VIID(viid));
7655         c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7656         c.blinkdur = cpu_to_be16(nblinks);
7657         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7658 }
7659
7660 /**
7661  *      t4_iq_stop - stop an ingress queue and its FLs
7662  *      @adap: the adapter
7663  *      @mbox: mailbox to use for the FW command
7664  *      @pf: the PF owning the queues
7665  *      @vf: the VF owning the queues
7666  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7667  *      @iqid: ingress queue id
7668  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7669  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7670  *
7671  *      Stops an ingress queue and its associated FLs, if any.  This causes
7672  *      any current or future data/messages destined for these queues to be
7673  *      tossed.
7674  */
7675 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7676                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7677                unsigned int fl0id, unsigned int fl1id)
7678 {
7679         struct fw_iq_cmd c;
7680
7681         memset(&c, 0, sizeof(c));
7682         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7683                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7684                                   V_FW_IQ_CMD_VFN(vf));
7685         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7686         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7687         c.iqid = cpu_to_be16(iqid);
7688         c.fl0id = cpu_to_be16(fl0id);
7689         c.fl1id = cpu_to_be16(fl1id);
7690         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7691 }
7692
7693 /**
7694  *      t4_iq_free - free an ingress queue and its FLs
7695  *      @adap: the adapter
7696  *      @mbox: mailbox to use for the FW command
7697  *      @pf: the PF owning the queues
7698  *      @vf: the VF owning the queues
7699  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7700  *      @iqid: ingress queue id
7701  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7702  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7703  *
7704  *      Frees an ingress queue and its associated FLs, if any.
7705  */
7706 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7707                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7708                unsigned int fl0id, unsigned int fl1id)
7709 {
7710         struct fw_iq_cmd c;
7711
7712         memset(&c, 0, sizeof(c));
7713         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7714                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7715                                   V_FW_IQ_CMD_VFN(vf));
7716         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7717         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7718         c.iqid = cpu_to_be16(iqid);
7719         c.fl0id = cpu_to_be16(fl0id);
7720         c.fl1id = cpu_to_be16(fl1id);
7721         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7722 }
7723
7724 /**
7725  *      t4_eth_eq_free - free an Ethernet egress queue
7726  *      @adap: the adapter
7727  *      @mbox: mailbox to use for the FW command
7728  *      @pf: the PF owning the queue
7729  *      @vf: the VF owning the queue
7730  *      @eqid: egress queue id
7731  *
7732  *      Frees an Ethernet egress queue.
7733  */
7734 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7735                    unsigned int vf, unsigned int eqid)
7736 {
7737         struct fw_eq_eth_cmd c;
7738
7739         memset(&c, 0, sizeof(c));
7740         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7741                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7742                                   V_FW_EQ_ETH_CMD_PFN(pf) |
7743                                   V_FW_EQ_ETH_CMD_VFN(vf));
7744         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7745         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7746         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7747 }
7748
7749 /**
7750  *      t4_ctrl_eq_free - free a control egress queue
7751  *      @adap: the adapter
7752  *      @mbox: mailbox to use for the FW command
7753  *      @pf: the PF owning the queue
7754  *      @vf: the VF owning the queue
7755  *      @eqid: egress queue id
7756  *
7757  *      Frees a control egress queue.
7758  */
7759 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7760                     unsigned int vf, unsigned int eqid)
7761 {
7762         struct fw_eq_ctrl_cmd c;
7763
7764         memset(&c, 0, sizeof(c));
7765         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7766                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7767                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
7768                                   V_FW_EQ_CTRL_CMD_VFN(vf));
7769         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7770         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7771         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7772 }
7773
7774 /**
7775  *      t4_ofld_eq_free - free an offload egress queue
7776  *      @adap: the adapter
7777  *      @mbox: mailbox to use for the FW command
7778  *      @pf: the PF owning the queue
7779  *      @vf: the VF owning the queue
7780  *      @eqid: egress queue id
7781  *
7782  *      Frees a control egress queue.
7783  */
7784 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7785                     unsigned int vf, unsigned int eqid)
7786 {
7787         struct fw_eq_ofld_cmd c;
7788
7789         memset(&c, 0, sizeof(c));
7790         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7791                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7792                                   V_FW_EQ_OFLD_CMD_PFN(pf) |
7793                                   V_FW_EQ_OFLD_CMD_VFN(vf));
7794         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7795         c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7796         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7797 }
7798
7799 /**
7800  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
7801  *      @link_down_rc: Link Down Reason Code
7802  *
7803  *      Returns a string representation of the Link Down Reason Code.
7804  */
7805 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7806 {
7807         static const char *reason[] = {
7808                 "Link Down",
7809                 "Remote Fault",
7810                 "Auto-negotiation Failure",
7811                 "Reserved3",
7812                 "Insufficient Airflow",
7813                 "Unable To Determine Reason",
7814                 "No RX Signal Detected",
7815                 "Reserved7",
7816         };
7817
7818         if (link_down_rc >= ARRAY_SIZE(reason))
7819                 return "Bad Reason Code";
7820
7821         return reason[link_down_rc];
7822 }
7823
7824 /*
7825  * Return the highest speed set in the port capabilities, in Mb/s.
7826  */
7827 unsigned int fwcap_to_speed(uint32_t caps)
7828 {
7829         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
7830                 do { \
7831                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7832                                 return __speed; \
7833                 } while (0)
7834
7835         TEST_SPEED_RETURN(400G, 400000);
7836         TEST_SPEED_RETURN(200G, 200000);
7837         TEST_SPEED_RETURN(100G, 100000);
7838         TEST_SPEED_RETURN(50G,   50000);
7839         TEST_SPEED_RETURN(40G,   40000);
7840         TEST_SPEED_RETURN(25G,   25000);
7841         TEST_SPEED_RETURN(10G,   10000);
7842         TEST_SPEED_RETURN(1G,     1000);
7843         TEST_SPEED_RETURN(100M,    100);
7844
7845         #undef TEST_SPEED_RETURN
7846
7847         return 0;
7848 }
7849
7850 /*
7851  * Return the port capabilities bit for the given speed, which is in Mb/s.
7852  */
7853 uint32_t speed_to_fwcap(unsigned int speed)
7854 {
7855         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
7856                 do { \
7857                         if (speed == __speed) \
7858                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
7859                 } while (0)
7860
7861         TEST_SPEED_RETURN(400G, 400000);
7862         TEST_SPEED_RETURN(200G, 200000);
7863         TEST_SPEED_RETURN(100G, 100000);
7864         TEST_SPEED_RETURN(50G,   50000);
7865         TEST_SPEED_RETURN(40G,   40000);
7866         TEST_SPEED_RETURN(25G,   25000);
7867         TEST_SPEED_RETURN(10G,   10000);
7868         TEST_SPEED_RETURN(1G,     1000);
7869         TEST_SPEED_RETURN(100M,    100);
7870
7871         #undef TEST_SPEED_RETURN
7872
7873         return 0;
7874 }
7875
7876 /*
7877  * Return the port capabilities bit for the highest speed in the capabilities.
7878  */
7879 uint32_t fwcap_top_speed(uint32_t caps)
7880 {
7881         #define TEST_SPEED_RETURN(__caps_speed) \
7882                 do { \
7883                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7884                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
7885                 } while (0)
7886
7887         TEST_SPEED_RETURN(400G);
7888         TEST_SPEED_RETURN(200G);
7889         TEST_SPEED_RETURN(100G);
7890         TEST_SPEED_RETURN(50G);
7891         TEST_SPEED_RETURN(40G);
7892         TEST_SPEED_RETURN(25G);
7893         TEST_SPEED_RETURN(10G);
7894         TEST_SPEED_RETURN(1G);
7895         TEST_SPEED_RETURN(100M);
7896
7897         #undef TEST_SPEED_RETURN
7898
7899         return 0;
7900 }
7901
7902
7903 /**
7904  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
7905  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
7906  *
7907  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
7908  *      32-bit Port Capabilities value.
7909  */
7910 static uint32_t lstatus_to_fwcap(u32 lstatus)
7911 {
7912         uint32_t linkattr = 0;
7913
7914         /*
7915          * Unfortunately the format of the Link Status in the old
7916          * 16-bit Port Information message isn't the same as the
7917          * 16-bit Port Capabilities bitfield used everywhere else ...
7918          */
7919         if (lstatus & F_FW_PORT_CMD_RXPAUSE)
7920                 linkattr |= FW_PORT_CAP32_FC_RX;
7921         if (lstatus & F_FW_PORT_CMD_TXPAUSE)
7922                 linkattr |= FW_PORT_CAP32_FC_TX;
7923         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7924                 linkattr |= FW_PORT_CAP32_SPEED_100M;
7925         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7926                 linkattr |= FW_PORT_CAP32_SPEED_1G;
7927         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7928                 linkattr |= FW_PORT_CAP32_SPEED_10G;
7929         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7930                 linkattr |= FW_PORT_CAP32_SPEED_25G;
7931         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7932                 linkattr |= FW_PORT_CAP32_SPEED_40G;
7933         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7934                 linkattr |= FW_PORT_CAP32_SPEED_100G;
7935
7936         return linkattr;
7937 }
7938
7939 /*
7940  * Updates all fields owned by the common code in port_info and link_config
7941  * based on information provided by the firmware.  Does not touch any
7942  * requested_* field.
7943  */
7944 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
7945     enum fw_port_action action, bool *mod_changed, bool *link_changed)
7946 {
7947         struct link_config old_lc, *lc = &pi->link_cfg;
7948         unsigned char fc, fec;
7949         u32 stat, linkattr;
7950         int old_ptype, old_mtype;
7951
7952         old_ptype = pi->port_type;
7953         old_mtype = pi->mod_type;
7954         old_lc = *lc;
7955         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
7956                 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7957
7958                 pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7959                 pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7960                 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7961                     G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7962
7963                 lc->supported = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
7964                 lc->advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
7965                 lc->lp_advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
7966                 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7967                 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7968
7969                 linkattr = lstatus_to_fwcap(stat);
7970         } else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
7971                 stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
7972
7973                 pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
7974                 pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
7975                 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
7976                     G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
7977
7978                 lc->supported = be32_to_cpu(p->u.info32.pcaps32);
7979                 lc->advertising = be32_to_cpu(p->u.info32.acaps32);
7980                 lc->lp_advertising = be16_to_cpu(p->u.info32.lpacaps32);
7981                 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
7982                 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
7983
7984                 linkattr = be32_to_cpu(p->u.info32.linkattr32);
7985         } else {
7986                 CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
7987                 return;
7988         }
7989
7990         lc->speed = fwcap_to_speed(linkattr);
7991
7992         fc = 0;
7993         if (linkattr & FW_PORT_CAP32_FC_RX)
7994                 fc |= PAUSE_RX;
7995         if (linkattr & FW_PORT_CAP32_FC_TX)
7996                 fc |= PAUSE_TX;
7997         lc->fc = fc;
7998
7999         fec = FEC_NONE;
8000         if (linkattr & FW_PORT_CAP32_FEC_RS)
8001                 fec |= FEC_RS;
8002         if (linkattr & FW_PORT_CAP32_FEC_BASER_RS)
8003                 fec |= FEC_BASER_RS;
8004         lc->fec = fec;
8005
8006         if (mod_changed != NULL)
8007                 *mod_changed = false;
8008         if (link_changed != NULL)
8009                 *link_changed = false;
8010         if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8011             old_lc.supported != lc->supported) {
8012                 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
8013                         lc->fec_hint = lc->advertising &
8014                             V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
8015                 }
8016                 if (mod_changed != NULL)
8017                         *mod_changed = true;
8018         }
8019         if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8020             old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8021                 if (link_changed != NULL)
8022                         *link_changed = true;
8023         }
8024 }
8025
8026 /**
8027  *      t4_update_port_info - retrieve and update port information if changed
8028  *      @pi: the port_info
8029  *
8030  *      We issue a Get Port Information Command to the Firmware and, if
8031  *      successful, we check to see if anything is different from what we
8032  *      last recorded and update things accordingly.
8033  */
8034  int t4_update_port_info(struct port_info *pi)
8035  {
8036         struct adapter *sc = pi->adapter;
8037         struct fw_port_cmd cmd;
8038         enum fw_port_action action;
8039         int ret;
8040
8041         memset(&cmd, 0, sizeof(cmd));
8042         cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8043             F_FW_CMD_REQUEST | F_FW_CMD_READ |
8044             V_FW_PORT_CMD_PORTID(pi->tx_chan));
8045         action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8046             FW_PORT_ACTION_GET_PORT_INFO;
8047         cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8048             FW_LEN16(cmd));
8049         ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8050         if (ret)
8051                 return ret;
8052
8053         handle_port_info(pi, &cmd, action, NULL, NULL);
8054         return 0;
8055 }
8056
8057 /**
8058  *      t4_handle_fw_rpl - process a FW reply message
8059  *      @adap: the adapter
8060  *      @rpl: start of the FW message
8061  *
8062  *      Processes a FW message, such as link state change messages.
8063  */
8064 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8065 {
8066         u8 opcode = *(const u8 *)rpl;
8067         const struct fw_port_cmd *p = (const void *)rpl;
8068         enum fw_port_action action =
8069             G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8070         bool mod_changed, link_changed;
8071
8072         if (opcode == FW_PORT_CMD &&
8073             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8074             action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8075                 /* link/module state change message */
8076                 int i;
8077                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8078                 struct port_info *pi = NULL;
8079                 struct link_config *lc;
8080
8081                 for_each_port(adap, i) {
8082                         pi = adap2pinfo(adap, i);
8083                         if (pi->tx_chan == chan)
8084                                 break;
8085                 }
8086
8087                 lc = &pi->link_cfg;
8088                 PORT_LOCK(pi);
8089                 handle_port_info(pi, p, action, &mod_changed, &link_changed);
8090                 PORT_UNLOCK(pi);
8091                 if (mod_changed)
8092                         t4_os_portmod_changed(pi);
8093                 if (link_changed) {
8094                         PORT_LOCK(pi);
8095                         t4_os_link_changed(pi);
8096                         PORT_UNLOCK(pi);
8097                 }
8098         } else {
8099                 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
8100                 return -EINVAL;
8101         }
8102         return 0;
8103 }
8104
8105 /**
8106  *      get_pci_mode - determine a card's PCI mode
8107  *      @adapter: the adapter
8108  *      @p: where to store the PCI settings
8109  *
8110  *      Determines a card's PCI mode and associated parameters, such as speed
8111  *      and width.
8112  */
8113 static void get_pci_mode(struct adapter *adapter,
8114                                    struct pci_params *p)
8115 {
8116         u16 val;
8117         u32 pcie_cap;
8118
8119         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8120         if (pcie_cap) {
8121                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
8122                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8123                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8124         }
8125 }
8126
8127 struct flash_desc {
8128         u32 vendor_and_model_id;
8129         u32 size_mb;
8130 };
8131
8132 int t4_get_flash_params(struct adapter *adapter)
8133 {
8134         /*
8135          * Table for non-standard supported Flash parts.  Note, all Flash
8136          * parts must have 64KB sectors.
8137          */
8138         static struct flash_desc supported_flash[] = {
8139                 { 0x00150201, 4 << 20 },        /* Spansion 4MB S25FL032P */
8140         };
8141
8142         int ret;
8143         u32 flashid = 0;
8144         unsigned int part, manufacturer;
8145         unsigned int density, size = 0;
8146
8147
8148         /*
8149          * Issue a Read ID Command to the Flash part.  We decode supported
8150          * Flash parts and their sizes from this.  There's a newer Query
8151          * Command which can retrieve detailed geometry information but many
8152          * Flash parts don't support it.
8153          */
8154         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
8155         if (!ret)
8156                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
8157         t4_write_reg(adapter, A_SF_OP, 0);      /* unlock SF */
8158         if (ret < 0)
8159                 return ret;
8160
8161         /*
8162          * Check to see if it's one of our non-standard supported Flash parts.
8163          */
8164         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8165                 if (supported_flash[part].vendor_and_model_id == flashid) {
8166                         adapter->params.sf_size =
8167                                 supported_flash[part].size_mb;
8168                         adapter->params.sf_nsec =
8169                                 adapter->params.sf_size / SF_SEC_SIZE;
8170                         goto found;
8171                 }
8172
8173         /*
8174          * Decode Flash part size.  The code below looks repetative with
8175          * common encodings, but that's not guaranteed in the JEDEC
8176          * specification for the Read JADEC ID command.  The only thing that
8177          * we're guaranteed by the JADEC specification is where the
8178          * Manufacturer ID is in the returned result.  After that each
8179          * Manufacturer ~could~ encode things completely differently.
8180          * Note, all Flash parts must have 64KB sectors.
8181          */
8182         manufacturer = flashid & 0xff;
8183         switch (manufacturer) {
8184         case 0x20: /* Micron/Numonix */
8185                 /*
8186                  * This Density -> Size decoding table is taken from Micron
8187                  * Data Sheets.
8188                  */
8189                 density = (flashid >> 16) & 0xff;
8190                 switch (density) {
8191                 case 0x14: size = 1 << 20; break; /*   1MB */
8192                 case 0x15: size = 1 << 21; break; /*   2MB */
8193                 case 0x16: size = 1 << 22; break; /*   4MB */
8194                 case 0x17: size = 1 << 23; break; /*   8MB */
8195                 case 0x18: size = 1 << 24; break; /*  16MB */
8196                 case 0x19: size = 1 << 25; break; /*  32MB */
8197                 case 0x20: size = 1 << 26; break; /*  64MB */
8198                 case 0x21: size = 1 << 27; break; /* 128MB */
8199                 case 0x22: size = 1 << 28; break; /* 256MB */
8200                 }
8201                 break;
8202
8203         case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
8204                 /*
8205                  * This Density -> Size decoding table is taken from ISSI
8206                  * Data Sheets.
8207                  */
8208                 density = (flashid >> 16) & 0xff;
8209                 switch (density) {
8210                 case 0x16: size = 1 << 25; break; /*  32MB */
8211                 case 0x17: size = 1 << 26; break; /*  64MB */
8212                 }
8213                 break;
8214
8215         case 0xc2: /* Macronix */
8216                 /*
8217                  * This Density -> Size decoding table is taken from Macronix
8218                  * Data Sheets.
8219                  */
8220                 density = (flashid >> 16) & 0xff;
8221                 switch (density) {
8222                 case 0x17: size = 1 << 23; break; /*   8MB */
8223                 case 0x18: size = 1 << 24; break; /*  16MB */
8224                 }
8225                 break;
8226
8227         case 0xef: /* Winbond */
8228                 /*
8229                  * This Density -> Size decoding table is taken from Winbond
8230                  * Data Sheets.
8231                  */
8232                 density = (flashid >> 16) & 0xff;
8233                 switch (density) {
8234                 case 0x17: size = 1 << 23; break; /*   8MB */
8235                 case 0x18: size = 1 << 24; break; /*  16MB */
8236                 }
8237                 break;
8238         }
8239
8240         /* If we didn't recognize the FLASH part, that's no real issue: the
8241          * Hardware/Software contract says that Hardware will _*ALWAYS*_
8242          * use a FLASH part which is at least 4MB in size and has 64KB
8243          * sectors.  The unrecognized FLASH part is likely to be much larger
8244          * than 4MB, but that's all we really need.
8245          */
8246         if (size == 0) {
8247                 CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
8248                 size = 1 << 22;
8249         }
8250
8251         /*
8252          * Store decoded Flash size and fall through into vetting code.
8253          */
8254         adapter->params.sf_size = size;
8255         adapter->params.sf_nsec = size / SF_SEC_SIZE;
8256
8257  found:
8258         /*
8259          * We should ~probably~ reject adapters with FLASHes which are too
8260          * small but we have some legacy FPGAs with small FLASHes that we'd
8261          * still like to use.  So instead we emit a scary message ...
8262          */
8263         if (adapter->params.sf_size < FLASH_MIN_SIZE)
8264                 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8265                         flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
8266
8267         return 0;
8268 }
8269
8270 static void set_pcie_completion_timeout(struct adapter *adapter,
8271                                                   u8 range)
8272 {
8273         u16 val;
8274         u32 pcie_cap;
8275
8276         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8277         if (pcie_cap) {
8278                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
8279                 val &= 0xfff0;
8280                 val |= range ;
8281                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8282         }
8283 }
8284
8285 const struct chip_params *t4_get_chip_params(int chipid)
8286 {
8287         static const struct chip_params chip_params[] = {
8288                 {
8289                         /* T4 */
8290                         .nchan = NCHAN,
8291                         .pm_stats_cnt = PM_NSTATS,
8292                         .cng_ch_bits_log = 2,
8293                         .nsched_cls = 15,
8294                         .cim_num_obq = CIM_NUM_OBQ,
8295                         .mps_rplc_size = 128,
8296                         .vfcount = 128,
8297                         .sge_fl_db = F_DBPRIO,
8298                         .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8299                 },
8300                 {
8301                         /* T5 */
8302                         .nchan = NCHAN,
8303                         .pm_stats_cnt = PM_NSTATS,
8304                         .cng_ch_bits_log = 2,
8305                         .nsched_cls = 16,
8306                         .cim_num_obq = CIM_NUM_OBQ_T5,
8307                         .mps_rplc_size = 128,
8308                         .vfcount = 128,
8309                         .sge_fl_db = F_DBPRIO | F_DBTYPE,
8310                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8311                 },
8312                 {
8313                         /* T6 */
8314                         .nchan = T6_NCHAN,
8315                         .pm_stats_cnt = T6_PM_NSTATS,
8316                         .cng_ch_bits_log = 3,
8317                         .nsched_cls = 16,
8318                         .cim_num_obq = CIM_NUM_OBQ_T5,
8319                         .mps_rplc_size = 256,
8320                         .vfcount = 256,
8321                         .sge_fl_db = 0,
8322                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8323                 },
8324         };
8325
8326         chipid -= CHELSIO_T4;
8327         if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8328                 return NULL;
8329
8330         return &chip_params[chipid];
8331 }
8332
8333 /**
8334  *      t4_prep_adapter - prepare SW and HW for operation
8335  *      @adapter: the adapter
8336  *      @buf: temporary space of at least VPD_LEN size provided by the caller.
8337  *
8338  *      Initialize adapter SW state for the various HW modules, set initial
8339  *      values for some adapter tunables, take PHYs out of reset, and
8340  *      initialize the MDIO interface.
8341  */
8342 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8343 {
8344         int ret;
8345         uint16_t device_id;
8346         uint32_t pl_rev;
8347
8348         get_pci_mode(adapter, &adapter->params.pci);
8349
8350         pl_rev = t4_read_reg(adapter, A_PL_REV);
8351         adapter->params.chipid = G_CHIPID(pl_rev);
8352         adapter->params.rev = G_REV(pl_rev);
8353         if (adapter->params.chipid == 0) {
8354                 /* T4 did not have chipid in PL_REV (T5 onwards do) */
8355                 adapter->params.chipid = CHELSIO_T4;
8356
8357                 /* T4A1 chip is not supported */
8358                 if (adapter->params.rev == 1) {
8359                         CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8360                         return -EINVAL;
8361                 }
8362         }
8363
8364         adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8365         if (adapter->chip_params == NULL)
8366                 return -EINVAL;
8367
8368         adapter->params.pci.vpd_cap_addr =
8369             t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8370
8371         ret = t4_get_flash_params(adapter);
8372         if (ret < 0)
8373                 return ret;
8374
8375         /* Cards with real ASICs have the chipid in the PCIe device id */
8376         t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8377         if (device_id >> 12 == chip_id(adapter))
8378                 adapter->params.cim_la_size = CIMLA_SIZE;
8379         else {
8380                 /* FPGA */
8381                 adapter->params.fpga = 1;
8382                 adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8383         }
8384
8385         ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8386         if (ret < 0)
8387                 return ret;
8388
8389         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8390
8391         /*
8392          * Default port and clock for debugging in case we can't reach FW.
8393          */
8394         adapter->params.nports = 1;
8395         adapter->params.portvec = 1;
8396         adapter->params.vpd.cclk = 50000;
8397
8398         /* Set pci completion timeout value to 4 seconds. */
8399         set_pcie_completion_timeout(adapter, 0xd);
8400         return 0;
8401 }
8402
8403 /**
8404  *      t4_shutdown_adapter - shut down adapter, host & wire
8405  *      @adapter: the adapter
8406  *
8407  *      Perform an emergency shutdown of the adapter and stop it from
8408  *      continuing any further communication on the ports or DMA to the
8409  *      host.  This is typically used when the adapter and/or firmware
8410  *      have crashed and we want to prevent any further accidental
8411  *      communication with the rest of the world.  This will also force
8412  *      the port Link Status to go down -- if register writes work --
8413  *      which should help our peers figure out that we're down.
8414  */
8415 int t4_shutdown_adapter(struct adapter *adapter)
8416 {
8417         int port;
8418
8419         t4_intr_disable(adapter);
8420         t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8421         for_each_port(adapter, port) {
8422                 u32 a_port_cfg = is_t4(adapter) ?
8423                                  PORT_REG(port, A_XGMAC_PORT_CFG) :
8424                                  T5_PORT_REG(port, A_MAC_PORT_CFG);
8425
8426                 t4_write_reg(adapter, a_port_cfg,
8427                              t4_read_reg(adapter, a_port_cfg)
8428                              & ~V_SIGNAL_DET(1));
8429         }
8430         t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8431
8432         return 0;
8433 }
8434
8435 /**
8436  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8437  *      @adapter: the adapter
8438  *      @qid: the Queue ID
8439  *      @qtype: the Ingress or Egress type for @qid
8440  *      @user: true if this request is for a user mode queue
8441  *      @pbar2_qoffset: BAR2 Queue Offset
8442  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8443  *
8444  *      Returns the BAR2 SGE Queue Registers information associated with the
8445  *      indicated Absolute Queue ID.  These are passed back in return value
8446  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8447  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8448  *
8449  *      This may return an error which indicates that BAR2 SGE Queue
8450  *      registers aren't available.  If an error is not returned, then the
8451  *      following values are returned:
8452  *
8453  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8454  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8455  *
8456  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8457  *      require the "Inferred Queue ID" ability may be used.  E.g. the
8458  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8459  *      then these "Inferred Queue ID" register may not be used.
8460  */
8461 int t4_bar2_sge_qregs(struct adapter *adapter,
8462                       unsigned int qid,
8463                       enum t4_bar2_qtype qtype,
8464                       int user,
8465                       u64 *pbar2_qoffset,
8466                       unsigned int *pbar2_qid)
8467 {
8468         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8469         u64 bar2_page_offset, bar2_qoffset;
8470         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8471
8472         /* T4 doesn't support BAR2 SGE Queue registers for kernel
8473          * mode queues.
8474          */
8475         if (!user && is_t4(adapter))
8476                 return -EINVAL;
8477
8478         /* Get our SGE Page Size parameters.
8479          */
8480         page_shift = adapter->params.sge.page_shift;
8481         page_size = 1 << page_shift;
8482
8483         /* Get the right Queues per Page parameters for our Queue.
8484          */
8485         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8486                      ? adapter->params.sge.eq_s_qpp
8487                      : adapter->params.sge.iq_s_qpp);
8488         qpp_mask = (1 << qpp_shift) - 1;
8489
8490         /* Calculate the basics of the BAR2 SGE Queue register area:
8491          *  o The BAR2 page the Queue registers will be in.
8492          *  o The BAR2 Queue ID.
8493          *  o The BAR2 Queue ID Offset into the BAR2 page.
8494          */
8495         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8496         bar2_qid = qid & qpp_mask;
8497         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8498
8499         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
8500          * hardware will infer the Absolute Queue ID simply from the writes to
8501          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8502          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8503          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8504          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8505          * from the BAR2 Page and BAR2 Queue ID.
8506          *
8507          * One important censequence of this is that some BAR2 SGE registers
8508          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8509          * there.  But other registers synthesize the SGE Queue ID purely
8510          * from the writes to the registers -- the Write Combined Doorbell
8511          * Buffer is a good example.  These BAR2 SGE Registers are only
8512          * available for those BAR2 SGE Register areas where the SGE Absolute
8513          * Queue ID can be inferred from simple writes.
8514          */
8515         bar2_qoffset = bar2_page_offset;
8516         bar2_qinferred = (bar2_qid_offset < page_size);
8517         if (bar2_qinferred) {
8518                 bar2_qoffset += bar2_qid_offset;
8519                 bar2_qid = 0;
8520         }
8521
8522         *pbar2_qoffset = bar2_qoffset;
8523         *pbar2_qid = bar2_qid;
8524         return 0;
8525 }
8526
8527 /**
8528  *      t4_init_devlog_params - initialize adapter->params.devlog
8529  *      @adap: the adapter
8530  *      @fw_attach: whether we can talk to the firmware
8531  *
8532  *      Initialize various fields of the adapter's Firmware Device Log
8533  *      Parameters structure.
8534  */
8535 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8536 {
8537         struct devlog_params *dparams = &adap->params.devlog;
8538         u32 pf_dparams;
8539         unsigned int devlog_meminfo;
8540         struct fw_devlog_cmd devlog_cmd;
8541         int ret;
8542
8543         /* If we're dealing with newer firmware, the Device Log Paramerters
8544          * are stored in a designated register which allows us to access the
8545          * Device Log even if we can't talk to the firmware.
8546          */
8547         pf_dparams =
8548                 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8549         if (pf_dparams) {
8550                 unsigned int nentries, nentries128;
8551
8552                 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8553                 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8554
8555                 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8556                 nentries = (nentries128 + 1) * 128;
8557                 dparams->size = nentries * sizeof(struct fw_devlog_e);
8558
8559                 return 0;
8560         }
8561
8562         /*
8563          * For any failing returns ...
8564          */
8565         memset(dparams, 0, sizeof *dparams);
8566
8567         /*
8568          * If we can't talk to the firmware, there's really nothing we can do
8569          * at this point.
8570          */
8571         if (!fw_attach)
8572                 return -ENXIO;
8573
8574         /* Otherwise, ask the firmware for it's Device Log Parameters.
8575          */
8576         memset(&devlog_cmd, 0, sizeof devlog_cmd);
8577         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8578                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
8579         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8580         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8581                          &devlog_cmd);
8582         if (ret)
8583                 return ret;
8584
8585         devlog_meminfo =
8586                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8587         dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8588         dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8589         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8590
8591         return 0;
8592 }
8593
8594 /**
8595  *      t4_init_sge_params - initialize adap->params.sge
8596  *      @adapter: the adapter
8597  *
8598  *      Initialize various fields of the adapter's SGE Parameters structure.
8599  */
8600 int t4_init_sge_params(struct adapter *adapter)
8601 {
8602         u32 r;
8603         struct sge_params *sp = &adapter->params.sge;
8604         unsigned i, tscale = 1;
8605
8606         r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8607         sp->counter_val[0] = G_THRESHOLD_0(r);
8608         sp->counter_val[1] = G_THRESHOLD_1(r);
8609         sp->counter_val[2] = G_THRESHOLD_2(r);
8610         sp->counter_val[3] = G_THRESHOLD_3(r);
8611
8612         if (chip_id(adapter) >= CHELSIO_T6) {
8613                 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8614                 tscale = G_TSCALE(r);
8615                 if (tscale == 0)
8616                         tscale = 1;
8617                 else
8618                         tscale += 2;
8619         }
8620
8621         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8622         sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8623         sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8624         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8625         sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8626         sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8627         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8628         sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8629         sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8630
8631         r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8632         sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8633         if (is_t4(adapter))
8634                 sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8635         else if (is_t5(adapter))
8636                 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8637         else
8638                 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8639
8640         /* egress queues: log2 of # of doorbells per BAR2 page */
8641         r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8642         r >>= S_QUEUESPERPAGEPF0 +
8643             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8644         sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8645
8646         /* ingress queues: log2 of # of doorbells per BAR2 page */
8647         r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8648         r >>= S_QUEUESPERPAGEPF0 +
8649             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8650         sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8651
8652         r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8653         r >>= S_HOSTPAGESIZEPF0 +
8654             (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8655         sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8656
8657         r = t4_read_reg(adapter, A_SGE_CONTROL);
8658         sp->sge_control = r;
8659         sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8660         sp->fl_pktshift = G_PKTSHIFT(r);
8661         if (chip_id(adapter) <= CHELSIO_T5) {
8662                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8663                     X_INGPADBOUNDARY_SHIFT);
8664         } else {
8665                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8666                     X_T6_INGPADBOUNDARY_SHIFT);
8667         }
8668         if (is_t4(adapter))
8669                 sp->pack_boundary = sp->pad_boundary;
8670         else {
8671                 r = t4_read_reg(adapter, A_SGE_CONTROL2);
8672                 if (G_INGPACKBOUNDARY(r) == 0)
8673                         sp->pack_boundary = 16;
8674                 else
8675                         sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8676         }
8677         for (i = 0; i < SGE_FLBUF_SIZES; i++)
8678                 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8679                     A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8680
8681         return 0;
8682 }
8683
8684 /*
8685  * Read and cache the adapter's compressed filter mode and ingress config.
8686  */
8687 static void read_filter_mode_and_ingress_config(struct adapter *adap,
8688     bool sleep_ok)
8689 {
8690         uint32_t v;
8691         struct tp_params *tpp = &adap->params.tp;
8692
8693         t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8694             sleep_ok);
8695         t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8696             sleep_ok);
8697
8698         /*
8699          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8700          * shift positions of several elements of the Compressed Filter Tuple
8701          * for this adapter which we need frequently ...
8702          */
8703         tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8704         tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8705         tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8706         tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8707         tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8708         tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8709         tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8710         tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8711         tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8712         tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8713
8714         if (chip_id(adap) > CHELSIO_T4) {
8715                 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
8716                 adap->params.tp.hash_filter_mask = v;
8717                 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
8718                 adap->params.tp.hash_filter_mask |= (u64)v << 32;
8719         }
8720 }
8721
8722 /**
8723  *      t4_init_tp_params - initialize adap->params.tp
8724  *      @adap: the adapter
8725  *
8726  *      Initialize various fields of the adapter's TP Parameters structure.
8727  */
8728 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8729 {
8730         int chan;
8731         u32 v;
8732         struct tp_params *tpp = &adap->params.tp;
8733
8734         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8735         tpp->tre = G_TIMERRESOLUTION(v);
8736         tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8737
8738         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8739         for (chan = 0; chan < MAX_NCHAN; chan++)
8740                 tpp->tx_modq[chan] = chan;
8741
8742         read_filter_mode_and_ingress_config(adap, sleep_ok);
8743
8744         /*
8745          * Cache a mask of the bits that represent the error vector portion of
8746          * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8747          * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8748          */
8749         tpp->err_vec_mask = htobe16(0xffff);
8750         if (chip_id(adap) > CHELSIO_T5) {
8751                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8752                 if (v & F_CRXPKTENC) {
8753                         tpp->err_vec_mask =
8754                             htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8755                 }
8756         }
8757
8758         return 0;
8759 }
8760
8761 /**
8762  *      t4_filter_field_shift - calculate filter field shift
8763  *      @adap: the adapter
8764  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8765  *
8766  *      Return the shift position of a filter field within the Compressed
8767  *      Filter Tuple.  The filter field is specified via its selection bit
8768  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8769  */
8770 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8771 {
8772         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8773         unsigned int sel;
8774         int field_shift;
8775
8776         if ((filter_mode & filter_sel) == 0)
8777                 return -1;
8778
8779         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8780                 switch (filter_mode & sel) {
8781                 case F_FCOE:
8782                         field_shift += W_FT_FCOE;
8783                         break;
8784                 case F_PORT:
8785                         field_shift += W_FT_PORT;
8786                         break;
8787                 case F_VNIC_ID:
8788                         field_shift += W_FT_VNIC_ID;
8789                         break;
8790                 case F_VLAN:
8791                         field_shift += W_FT_VLAN;
8792                         break;
8793                 case F_TOS:
8794                         field_shift += W_FT_TOS;
8795                         break;
8796                 case F_PROTOCOL:
8797                         field_shift += W_FT_PROTOCOL;
8798                         break;
8799                 case F_ETHERTYPE:
8800                         field_shift += W_FT_ETHERTYPE;
8801                         break;
8802                 case F_MACMATCH:
8803                         field_shift += W_FT_MACMATCH;
8804                         break;
8805                 case F_MPSHITTYPE:
8806                         field_shift += W_FT_MPSHITTYPE;
8807                         break;
8808                 case F_FRAGMENTATION:
8809                         field_shift += W_FT_FRAGMENTATION;
8810                         break;
8811                 }
8812         }
8813         return field_shift;
8814 }
8815
8816 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8817 {
8818         u8 addr[6];
8819         int ret, i, j;
8820         u16 rss_size;
8821         struct port_info *p = adap2pinfo(adap, port_id);
8822         u32 param, val;
8823
8824         for (i = 0, j = -1; i <= p->port_id; i++) {
8825                 do {
8826                         j++;
8827                 } while ((adap->params.portvec & (1 << j)) == 0);
8828         }
8829
8830         p->tx_chan = j;
8831         p->mps_bg_map = t4_get_mps_bg_map(adap, j);
8832         p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
8833         p->lport = j;
8834
8835         if (!(adap->flags & IS_VF) ||
8836             adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8837                 t4_update_port_info(p);
8838         }
8839
8840         ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8841         if (ret < 0)
8842                 return ret;
8843
8844         p->vi[0].viid = ret;
8845         if (chip_id(adap) <= CHELSIO_T5)
8846                 p->vi[0].smt_idx = (ret & 0x7f) << 1;
8847         else
8848                 p->vi[0].smt_idx = (ret & 0x7f);
8849         p->vi[0].rss_size = rss_size;
8850         t4_os_set_hw_addr(p, addr);
8851
8852         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8853             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8854             V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8855         ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8856         if (ret)
8857                 p->vi[0].rss_base = 0xffff;
8858         else {
8859                 /* MPASS((val >> 16) == rss_size); */
8860                 p->vi[0].rss_base = val & 0xffff;
8861         }
8862
8863         return 0;
8864 }
8865
8866 /**
8867  *      t4_read_cimq_cfg - read CIM queue configuration
8868  *      @adap: the adapter
8869  *      @base: holds the queue base addresses in bytes
8870  *      @size: holds the queue sizes in bytes
8871  *      @thres: holds the queue full thresholds in bytes
8872  *
8873  *      Returns the current configuration of the CIM queues, starting with
8874  *      the IBQs, then the OBQs.
8875  */
8876 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8877 {
8878         unsigned int i, v;
8879         int cim_num_obq = adap->chip_params->cim_num_obq;
8880
8881         for (i = 0; i < CIM_NUM_IBQ; i++) {
8882                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8883                              V_QUENUMSELECT(i));
8884                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8885                 /* value is in 256-byte units */
8886                 *base++ = G_CIMQBASE(v) * 256;
8887                 *size++ = G_CIMQSIZE(v) * 256;
8888                 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8889         }
8890         for (i = 0; i < cim_num_obq; i++) {
8891                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8892                              V_QUENUMSELECT(i));
8893                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8894                 /* value is in 256-byte units */
8895                 *base++ = G_CIMQBASE(v) * 256;
8896                 *size++ = G_CIMQSIZE(v) * 256;
8897         }
8898 }
8899
8900 /**
8901  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
8902  *      @adap: the adapter
8903  *      @qid: the queue index
8904  *      @data: where to store the queue contents
8905  *      @n: capacity of @data in 32-bit words
8906  *
8907  *      Reads the contents of the selected CIM queue starting at address 0 up
8908  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8909  *      error and the number of 32-bit words actually read on success.
8910  */
8911 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8912 {
8913         int i, err, attempts;
8914         unsigned int addr;
8915         const unsigned int nwords = CIM_IBQ_SIZE * 4;
8916
8917         if (qid > 5 || (n & 3))
8918                 return -EINVAL;
8919
8920         addr = qid * nwords;
8921         if (n > nwords)
8922                 n = nwords;
8923
8924         /* It might take 3-10ms before the IBQ debug read access is allowed.
8925          * Wait for 1 Sec with a delay of 1 usec.
8926          */
8927         attempts = 1000000;
8928
8929         for (i = 0; i < n; i++, addr++) {
8930                 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8931                              F_IBQDBGEN);
8932                 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8933                                       attempts, 1);
8934                 if (err)
8935                         return err;
8936                 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8937         }
8938         t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8939         return i;
8940 }
8941
8942 /**
8943  *      t4_read_cim_obq - read the contents of a CIM outbound queue
8944  *      @adap: the adapter
8945  *      @qid: the queue index
8946  *      @data: where to store the queue contents
8947  *      @n: capacity of @data in 32-bit words
8948  *
8949  *      Reads the contents of the selected CIM queue starting at address 0 up
8950  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8951  *      error and the number of 32-bit words actually read on success.
8952  */
8953 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8954 {
8955         int i, err;
8956         unsigned int addr, v, nwords;
8957         int cim_num_obq = adap->chip_params->cim_num_obq;
8958
8959         if ((qid > (cim_num_obq - 1)) || (n & 3))
8960                 return -EINVAL;
8961
8962         t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8963                      V_QUENUMSELECT(qid));
8964         v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8965
8966         addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8967         nwords = G_CIMQSIZE(v) * 64;  /* same */
8968         if (n > nwords)
8969                 n = nwords;
8970
8971         for (i = 0; i < n; i++, addr++) {
8972                 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8973                              F_OBQDBGEN);
8974                 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8975                                       2, 1);
8976                 if (err)
8977                         return err;
8978                 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8979         }
8980         t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8981         return i;
8982 }
8983
8984 enum {
8985         CIM_QCTL_BASE     = 0,
8986         CIM_CTL_BASE      = 0x2000,
8987         CIM_PBT_ADDR_BASE = 0x2800,
8988         CIM_PBT_LRF_BASE  = 0x3000,
8989         CIM_PBT_DATA_BASE = 0x3800
8990 };
8991
8992 /**
8993  *      t4_cim_read - read a block from CIM internal address space
8994  *      @adap: the adapter
8995  *      @addr: the start address within the CIM address space
8996  *      @n: number of words to read
8997  *      @valp: where to store the result
8998  *
8999  *      Reads a block of 4-byte words from the CIM intenal address space.
9000  */
9001 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9002                 unsigned int *valp)
9003 {
9004         int ret = 0;
9005
9006         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9007                 return -EBUSY;
9008
9009         for ( ; !ret && n--; addr += 4) {
9010                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9011                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9012                                       0, 5, 2);
9013                 if (!ret)
9014                         *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9015         }
9016         return ret;
9017 }
9018
9019 /**
9020  *      t4_cim_write - write a block into CIM internal address space
9021  *      @adap: the adapter
9022  *      @addr: the start address within the CIM address space
9023  *      @n: number of words to write
9024  *      @valp: set of values to write
9025  *
9026  *      Writes a block of 4-byte words into the CIM intenal address space.
9027  */
9028 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9029                  const unsigned int *valp)
9030 {
9031         int ret = 0;
9032
9033         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9034                 return -EBUSY;
9035
9036         for ( ; !ret && n--; addr += 4) {
9037                 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9038                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9039                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9040                                       0, 5, 2);
9041         }
9042         return ret;
9043 }
9044
9045 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9046                          unsigned int val)
9047 {
9048         return t4_cim_write(adap, addr, 1, &val);
9049 }
9050
9051 /**
9052  *      t4_cim_ctl_read - read a block from CIM control region
9053  *      @adap: the adapter
9054  *      @addr: the start address within the CIM control region
9055  *      @n: number of words to read
9056  *      @valp: where to store the result
9057  *
9058  *      Reads a block of 4-byte words from the CIM control region.
9059  */
9060 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9061                     unsigned int *valp)
9062 {
9063         return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9064 }
9065
9066 /**
9067  *      t4_cim_read_la - read CIM LA capture buffer
9068  *      @adap: the adapter
9069  *      @la_buf: where to store the LA data
9070  *      @wrptr: the HW write pointer within the capture buffer
9071  *
9072  *      Reads the contents of the CIM LA buffer with the most recent entry at
9073  *      the end of the returned data and with the entry at @wrptr first.
9074  *      We try to leave the LA in the running state we find it in.
9075  */
9076 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9077 {
9078         int i, ret;
9079         unsigned int cfg, val, idx;
9080
9081         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9082         if (ret)
9083                 return ret;
9084
9085         if (cfg & F_UPDBGLAEN) {        /* LA is running, freeze it */
9086                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
9087                 if (ret)
9088                         return ret;
9089         }
9090
9091         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9092         if (ret)
9093                 goto restart;
9094
9095         idx = G_UPDBGLAWRPTR(val);
9096         if (wrptr)
9097                 *wrptr = idx;
9098
9099         for (i = 0; i < adap->params.cim_la_size; i++) {
9100                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9101                                     V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
9102                 if (ret)
9103                         break;
9104                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9105                 if (ret)
9106                         break;
9107                 if (val & F_UPDBGLARDEN) {
9108                         ret = -ETIMEDOUT;
9109                         break;
9110                 }
9111                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
9112                 if (ret)
9113                         break;
9114
9115                 /* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
9116                 idx = (idx + 1) & M_UPDBGLARDPTR;
9117                 /*
9118                  * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9119                  * identify the 32-bit portion of the full 312-bit data
9120                  */
9121                 if (is_t6(adap))
9122                         while ((idx & 0xf) > 9)
9123                                 idx = (idx + 1) % M_UPDBGLARDPTR;
9124         }
9125 restart:
9126         if (cfg & F_UPDBGLAEN) {
9127                 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9128                                       cfg & ~F_UPDBGLARDEN);
9129                 if (!ret)
9130                         ret = r;
9131         }
9132         return ret;
9133 }
9134
9135 /**
9136  *      t4_tp_read_la - read TP LA capture buffer
9137  *      @adap: the adapter
9138  *      @la_buf: where to store the LA data
9139  *      @wrptr: the HW write pointer within the capture buffer
9140  *
9141  *      Reads the contents of the TP LA buffer with the most recent entry at
9142  *      the end of the returned data and with the entry at @wrptr first.
9143  *      We leave the LA in the running state we find it in.
9144  */
9145 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9146 {
9147         bool last_incomplete;
9148         unsigned int i, cfg, val, idx;
9149
9150         cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
9151         if (cfg & F_DBGLAENABLE)                        /* freeze LA */
9152                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9153                              adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
9154
9155         val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
9156         idx = G_DBGLAWPTR(val);
9157         last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
9158         if (last_incomplete)
9159                 idx = (idx + 1) & M_DBGLARPTR;
9160         if (wrptr)
9161                 *wrptr = idx;
9162
9163         val &= 0xffff;
9164         val &= ~V_DBGLARPTR(M_DBGLARPTR);
9165         val |= adap->params.tp.la_mask;
9166
9167         for (i = 0; i < TPLA_SIZE; i++) {
9168                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
9169                 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
9170                 idx = (idx + 1) & M_DBGLARPTR;
9171         }
9172
9173         /* Wipe out last entry if it isn't valid */
9174         if (last_incomplete)
9175                 la_buf[TPLA_SIZE - 1] = ~0ULL;
9176
9177         if (cfg & F_DBGLAENABLE)                /* restore running state */
9178                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9179                              cfg | adap->params.tp.la_mask);
9180 }
9181
9182 /*
9183  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9184  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9185  * state for more than the Warning Threshold then we'll issue a warning about
9186  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9187  * appears to be hung every Warning Repeat second till the situation clears.
9188  * If the situation clears, we'll note that as well.
9189  */
9190 #define SGE_IDMA_WARN_THRESH 1
9191 #define SGE_IDMA_WARN_REPEAT 300
9192
9193 /**
9194  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9195  *      @adapter: the adapter
9196  *      @idma: the adapter IDMA Monitor state
9197  *
9198  *      Initialize the state of an SGE Ingress DMA Monitor.
9199  */
9200 void t4_idma_monitor_init(struct adapter *adapter,
9201                           struct sge_idma_monitor_state *idma)
9202 {
9203         /* Initialize the state variables for detecting an SGE Ingress DMA
9204          * hang.  The SGE has internal counters which count up on each clock
9205          * tick whenever the SGE finds its Ingress DMA State Engines in the
9206          * same state they were on the previous clock tick.  The clock used is
9207          * the Core Clock so we have a limit on the maximum "time" they can
9208          * record; typically a very small number of seconds.  For instance,
9209          * with a 600MHz Core Clock, we can only count up to a bit more than
9210          * 7s.  So we'll synthesize a larger counter in order to not run the
9211          * risk of having the "timers" overflow and give us the flexibility to
9212          * maintain a Hung SGE State Machine of our own which operates across
9213          * a longer time frame.
9214          */
9215         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9216         idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
9217 }
9218
9219 /**
9220  *      t4_idma_monitor - monitor SGE Ingress DMA state
9221  *      @adapter: the adapter
9222  *      @idma: the adapter IDMA Monitor state
9223  *      @hz: number of ticks/second
9224  *      @ticks: number of ticks since the last IDMA Monitor call
9225  */
9226 void t4_idma_monitor(struct adapter *adapter,
9227                      struct sge_idma_monitor_state *idma,
9228                      int hz, int ticks)
9229 {
9230         int i, idma_same_state_cnt[2];
9231
9232          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9233           * are counters inside the SGE which count up on each clock when the
9234           * SGE finds its Ingress DMA State Engines in the same states they
9235           * were in the previous clock.  The counters will peg out at
9236           * 0xffffffff without wrapping around so once they pass the 1s
9237           * threshold they'll stay above that till the IDMA state changes.
9238           */
9239         t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
9240         idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
9241         idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9242
9243         for (i = 0; i < 2; i++) {
9244                 u32 debug0, debug11;
9245
9246                 /* If the Ingress DMA Same State Counter ("timer") is less
9247                  * than 1s, then we can reset our synthesized Stall Timer and
9248                  * continue.  If we have previously emitted warnings about a
9249                  * potential stalled Ingress Queue, issue a note indicating
9250                  * that the Ingress Queue has resumed forward progress.
9251                  */
9252                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9253                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
9254                                 CH_WARN(adapter, "SGE idma%d, queue %u, "
9255                                         "resumed after %d seconds\n",
9256                                         i, idma->idma_qid[i],
9257                                         idma->idma_stalled[i]/hz);
9258                         idma->idma_stalled[i] = 0;
9259                         continue;
9260                 }
9261
9262                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9263                  * domain.  The first time we get here it'll be because we
9264                  * passed the 1s Threshold; each additional time it'll be
9265                  * because the RX Timer Callback is being fired on its regular
9266                  * schedule.
9267                  *
9268                  * If the stall is below our Potential Hung Ingress Queue
9269                  * Warning Threshold, continue.
9270                  */
9271                 if (idma->idma_stalled[i] == 0) {
9272                         idma->idma_stalled[i] = hz;
9273                         idma->idma_warn[i] = 0;
9274                 } else {
9275                         idma->idma_stalled[i] += ticks;
9276                         idma->idma_warn[i] -= ticks;
9277                 }
9278
9279                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
9280                         continue;
9281
9282                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9283                  */
9284                 if (idma->idma_warn[i] > 0)
9285                         continue;
9286                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9287
9288                 /* Read and save the SGE IDMA State and Queue ID information.
9289                  * We do this every time in case it changes across time ...
9290                  * can't be too careful ...
9291                  */
9292                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9293                 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9294                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9295
9296                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9297                 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9298                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9299
9300                 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9301                         " state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9302                         i, idma->idma_qid[i], idma->idma_state[i],
9303                         idma->idma_stalled[i]/hz,
9304                         debug0, debug11);
9305                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9306         }
9307 }
9308
9309 /**
9310  *      t4_read_pace_tbl - read the pace table
9311  *      @adap: the adapter
9312  *      @pace_vals: holds the returned values
9313  *
9314  *      Returns the values of TP's pace table in microseconds.
9315  */
9316 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9317 {
9318         unsigned int i, v;
9319
9320         for (i = 0; i < NTX_SCHED; i++) {
9321                 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9322                 v = t4_read_reg(adap, A_TP_PACE_TABLE);
9323                 pace_vals[i] = dack_ticks_to_usec(adap, v);
9324         }
9325 }
9326
9327 /**
9328  *      t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9329  *      @adap: the adapter
9330  *      @sched: the scheduler index
9331  *      @kbps: the byte rate in Kbps
9332  *      @ipg: the interpacket delay in tenths of nanoseconds
9333  *
9334  *      Return the current configuration of a HW Tx scheduler.
9335  */
9336 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9337                      unsigned int *ipg, bool sleep_ok)
9338 {
9339         unsigned int v, addr, bpt, cpt;
9340
9341         if (kbps) {
9342                 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9343                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9344                 if (sched & 1)
9345                         v >>= 16;
9346                 bpt = (v >> 8) & 0xff;
9347                 cpt = v & 0xff;
9348                 if (!cpt)
9349                         *kbps = 0;      /* scheduler disabled */
9350                 else {
9351                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9352                         *kbps = (v * bpt) / 125;
9353                 }
9354         }
9355         if (ipg) {
9356                 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9357                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9358                 if (sched & 1)
9359                         v >>= 16;
9360                 v &= 0xffff;
9361                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
9362         }
9363 }
9364
9365 /**
9366  *      t4_load_cfg - download config file
9367  *      @adap: the adapter
9368  *      @cfg_data: the cfg text file to write
9369  *      @size: text file size
9370  *
9371  *      Write the supplied config text file to the card's serial flash.
9372  */
9373 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9374 {
9375         int ret, i, n, cfg_addr;
9376         unsigned int addr;
9377         unsigned int flash_cfg_start_sec;
9378         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9379
9380         cfg_addr = t4_flash_cfg_addr(adap);
9381         if (cfg_addr < 0)
9382                 return cfg_addr;
9383
9384         addr = cfg_addr;
9385         flash_cfg_start_sec = addr / SF_SEC_SIZE;
9386
9387         if (size > FLASH_CFG_MAX_SIZE) {
9388                 CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9389                        FLASH_CFG_MAX_SIZE);
9390                 return -EFBIG;
9391         }
9392
9393         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
9394                          sf_sec_size);
9395         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9396                                      flash_cfg_start_sec + i - 1);
9397         /*
9398          * If size == 0 then we're simply erasing the FLASH sectors associated
9399          * with the on-adapter Firmware Configuration File.
9400          */
9401         if (ret || size == 0)
9402                 goto out;
9403
9404         /* this will write to the flash up to SF_PAGE_SIZE at a time */
9405         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9406                 if ( (size - i) <  SF_PAGE_SIZE)
9407                         n = size - i;
9408                 else
9409                         n = SF_PAGE_SIZE;
9410                 ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9411                 if (ret)
9412                         goto out;
9413
9414                 addr += SF_PAGE_SIZE;
9415                 cfg_data += SF_PAGE_SIZE;
9416         }
9417
9418 out:
9419         if (ret)
9420                 CH_ERR(adap, "config file %s failed %d\n",
9421                        (size == 0 ? "clear" : "download"), ret);
9422         return ret;
9423 }
9424
9425 /**
9426  *      t5_fw_init_extern_mem - initialize the external memory
9427  *      @adap: the adapter
9428  *
9429  *      Initializes the external memory on T5.
9430  */
9431 int t5_fw_init_extern_mem(struct adapter *adap)
9432 {
9433         u32 params[1], val[1];
9434         int ret;
9435
9436         if (!is_t5(adap))
9437                 return 0;
9438
9439         val[0] = 0xff; /* Initialize all MCs */
9440         params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9441                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9442         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9443                         FW_CMD_MAX_TIMEOUT);
9444
9445         return ret;
9446 }
9447
9448 /* BIOS boot headers */
9449 typedef struct pci_expansion_rom_header {
9450         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
9451         u8      reserved[22]; /* Reserved per processor Architecture data */
9452         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
9453 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9454
9455 /* Legacy PCI Expansion ROM Header */
9456 typedef struct legacy_pci_expansion_rom_header {
9457         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
9458         u8      size512; /* Current Image Size in units of 512 bytes */
9459         u8      initentry_point[4];
9460         u8      cksum; /* Checksum computed on the entire Image */
9461         u8      reserved[16]; /* Reserved */
9462         u8      pcir_offset[2]; /* Offset to PCI Data Struture */
9463 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9464
9465 /* EFI PCI Expansion ROM Header */
9466 typedef struct efi_pci_expansion_rom_header {
9467         u8      signature[2]; // ROM signature. The value 0xaa55
9468         u8      initialization_size[2]; /* Units 512. Includes this header */
9469         u8      efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9470         u8      efi_subsystem[2]; /* Subsystem value for EFI image header */
9471         u8      efi_machine_type[2]; /* Machine type from EFI image header */
9472         u8      compression_type[2]; /* Compression type. */
9473                 /*
9474                  * Compression type definition
9475                  * 0x0: uncompressed
9476                  * 0x1: Compressed
9477                  * 0x2-0xFFFF: Reserved
9478                  */
9479         u8      reserved[8]; /* Reserved */
9480         u8      efi_image_header_offset[2]; /* Offset to EFI Image */
9481         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
9482 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9483
9484 /* PCI Data Structure Format */
9485 typedef struct pcir_data_structure { /* PCI Data Structure */
9486         u8      signature[4]; /* Signature. The string "PCIR" */
9487         u8      vendor_id[2]; /* Vendor Identification */
9488         u8      device_id[2]; /* Device Identification */
9489         u8      vital_product[2]; /* Pointer to Vital Product Data */
9490         u8      length[2]; /* PCIR Data Structure Length */
9491         u8      revision; /* PCIR Data Structure Revision */
9492         u8      class_code[3]; /* Class Code */
9493         u8      image_length[2]; /* Image Length. Multiple of 512B */
9494         u8      code_revision[2]; /* Revision Level of Code/Data */
9495         u8      code_type; /* Code Type. */
9496                 /*
9497                  * PCI Expansion ROM Code Types
9498                  * 0x00: Intel IA-32, PC-AT compatible. Legacy
9499                  * 0x01: Open Firmware standard for PCI. FCODE
9500                  * 0x02: Hewlett-Packard PA RISC. HP reserved
9501                  * 0x03: EFI Image. EFI
9502                  * 0x04-0xFF: Reserved.
9503                  */
9504         u8      indicator; /* Indicator. Identifies the last image in the ROM */
9505         u8      reserved[2]; /* Reserved */
9506 } pcir_data_t; /* PCI__DATA_STRUCTURE */
9507
9508 /* BOOT constants */
9509 enum {
9510         BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9511         BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9512         BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9513         BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9514         BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9515         VENDOR_ID = 0x1425, /* Vendor ID */
9516         PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9517 };
9518
9519 /*
9520  *      modify_device_id - Modifies the device ID of the Boot BIOS image
9521  *      @adatper: the device ID to write.
9522  *      @boot_data: the boot image to modify.
9523  *
9524  *      Write the supplied device ID to the boot BIOS image.
9525  */
9526 static void modify_device_id(int device_id, u8 *boot_data)
9527 {
9528         legacy_pci_exp_rom_header_t *header;
9529         pcir_data_t *pcir_header;
9530         u32 cur_header = 0;
9531
9532         /*
9533          * Loop through all chained images and change the device ID's
9534          */
9535         while (1) {
9536                 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9537                 pcir_header = (pcir_data_t *) &boot_data[cur_header +
9538                               le16_to_cpu(*(u16*)header->pcir_offset)];
9539
9540                 /*
9541                  * Only modify the Device ID if code type is Legacy or HP.
9542                  * 0x00: Okay to modify
9543                  * 0x01: FCODE. Do not be modify
9544                  * 0x03: Okay to modify
9545                  * 0x04-0xFF: Do not modify
9546                  */
9547                 if (pcir_header->code_type == 0x00) {
9548                         u8 csum = 0;
9549                         int i;
9550
9551                         /*
9552                          * Modify Device ID to match current adatper
9553                          */
9554                         *(u16*) pcir_header->device_id = device_id;
9555
9556                         /*
9557                          * Set checksum temporarily to 0.
9558                          * We will recalculate it later.
9559                          */
9560                         header->cksum = 0x0;
9561
9562                         /*
9563                          * Calculate and update checksum
9564                          */
9565                         for (i = 0; i < (header->size512 * 512); i++)
9566                                 csum += (u8)boot_data[cur_header + i];
9567
9568                         /*
9569                          * Invert summed value to create the checksum
9570                          * Writing new checksum value directly to the boot data
9571                          */
9572                         boot_data[cur_header + 7] = -csum;
9573
9574                 } else if (pcir_header->code_type == 0x03) {
9575
9576                         /*
9577                          * Modify Device ID to match current adatper
9578                          */
9579                         *(u16*) pcir_header->device_id = device_id;
9580
9581                 }
9582
9583
9584                 /*
9585                  * Check indicator element to identify if this is the last
9586                  * image in the ROM.
9587                  */
9588                 if (pcir_header->indicator & 0x80)
9589                         break;
9590
9591                 /*
9592                  * Move header pointer up to the next image in the ROM.
9593                  */
9594                 cur_header += header->size512 * 512;
9595         }
9596 }
9597
9598 /*
9599  *      t4_load_boot - download boot flash
9600  *      @adapter: the adapter
9601  *      @boot_data: the boot image to write
9602  *      @boot_addr: offset in flash to write boot_data
9603  *      @size: image size
9604  *
9605  *      Write the supplied boot image to the card's serial flash.
9606  *      The boot image has the following sections: a 28-byte header and the
9607  *      boot image.
9608  */
9609 int t4_load_boot(struct adapter *adap, u8 *boot_data,
9610                  unsigned int boot_addr, unsigned int size)
9611 {
9612         pci_exp_rom_header_t *header;
9613         int pcir_offset ;
9614         pcir_data_t *pcir_header;
9615         int ret, addr;
9616         uint16_t device_id;
9617         unsigned int i;
9618         unsigned int boot_sector = (boot_addr * 1024 );
9619         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9620
9621         /*
9622          * Make sure the boot image does not encroach on the firmware region
9623          */
9624         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9625                 CH_ERR(adap, "boot image encroaching on firmware region\n");
9626                 return -EFBIG;
9627         }
9628
9629         /*
9630          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9631          * and Boot configuration data sections. These 3 boot sections span
9632          * sectors 0 to 7 in flash and live right before the FW image location.
9633          */
9634         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9635                         sf_sec_size);
9636         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9637                                      (boot_sector >> 16) + i - 1);
9638
9639         /*
9640          * If size == 0 then we're simply erasing the FLASH sectors associated
9641          * with the on-adapter option ROM file
9642          */
9643         if (ret || (size == 0))
9644                 goto out;
9645
9646         /* Get boot header */
9647         header = (pci_exp_rom_header_t *)boot_data;
9648         pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9649         /* PCIR Data Structure */
9650         pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9651
9652         /*
9653          * Perform some primitive sanity testing to avoid accidentally
9654          * writing garbage over the boot sectors.  We ought to check for
9655          * more but it's not worth it for now ...
9656          */
9657         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9658                 CH_ERR(adap, "boot image too small/large\n");
9659                 return -EFBIG;
9660         }
9661
9662 #ifndef CHELSIO_T4_DIAGS
9663         /*
9664          * Check BOOT ROM header signature
9665          */
9666         if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9667                 CH_ERR(adap, "Boot image missing signature\n");
9668                 return -EINVAL;
9669         }
9670
9671         /*
9672          * Check PCI header signature
9673          */
9674         if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9675                 CH_ERR(adap, "PCI header missing signature\n");
9676                 return -EINVAL;
9677         }
9678
9679         /*
9680          * Check Vendor ID matches Chelsio ID
9681          */
9682         if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9683                 CH_ERR(adap, "Vendor ID missing signature\n");
9684                 return -EINVAL;
9685         }
9686 #endif
9687
9688         /*
9689          * Retrieve adapter's device ID
9690          */
9691         t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9692         /* Want to deal with PF 0 so I strip off PF 4 indicator */
9693         device_id = device_id & 0xf0ff;
9694
9695         /*
9696          * Check PCIE Device ID
9697          */
9698         if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9699                 /*
9700                  * Change the device ID in the Boot BIOS image to match
9701                  * the Device ID of the current adapter.
9702                  */
9703                 modify_device_id(device_id, boot_data);
9704         }
9705
9706         /*
9707          * Skip over the first SF_PAGE_SIZE worth of data and write it after
9708          * we finish copying the rest of the boot image. This will ensure
9709          * that the BIOS boot header will only be written if the boot image
9710          * was written in full.
9711          */
9712         addr = boot_sector;
9713         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9714                 addr += SF_PAGE_SIZE;
9715                 boot_data += SF_PAGE_SIZE;
9716                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9717                 if (ret)
9718                         goto out;
9719         }
9720
9721         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9722                              (const u8 *)header, 0);
9723
9724 out:
9725         if (ret)
9726                 CH_ERR(adap, "boot image download failed, error %d\n", ret);
9727         return ret;
9728 }
9729
9730 /*
9731  *      t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9732  *      @adapter: the adapter
9733  *
9734  *      Return the address within the flash where the OptionROM Configuration
9735  *      is stored, or an error if the device FLASH is too small to contain
9736  *      a OptionROM Configuration.
9737  */
9738 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9739 {
9740         /*
9741          * If the device FLASH isn't large enough to hold a Firmware
9742          * Configuration File, return an error.
9743          */
9744         if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9745                 return -ENOSPC;
9746
9747         return FLASH_BOOTCFG_START;
9748 }
9749
9750 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9751 {
9752         int ret, i, n, cfg_addr;
9753         unsigned int addr;
9754         unsigned int flash_cfg_start_sec;
9755         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9756
9757         cfg_addr = t4_flash_bootcfg_addr(adap);
9758         if (cfg_addr < 0)
9759                 return cfg_addr;
9760
9761         addr = cfg_addr;
9762         flash_cfg_start_sec = addr / SF_SEC_SIZE;
9763
9764         if (size > FLASH_BOOTCFG_MAX_SIZE) {
9765                 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9766                         FLASH_BOOTCFG_MAX_SIZE);
9767                 return -EFBIG;
9768         }
9769
9770         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9771                          sf_sec_size);
9772         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9773                                         flash_cfg_start_sec + i - 1);
9774
9775         /*
9776          * If size == 0 then we're simply erasing the FLASH sectors associated
9777          * with the on-adapter OptionROM Configuration File.
9778          */
9779         if (ret || size == 0)
9780                 goto out;
9781
9782         /* this will write to the flash up to SF_PAGE_SIZE at a time */
9783         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9784                 if ( (size - i) <  SF_PAGE_SIZE)
9785                         n = size - i;
9786                 else
9787                         n = SF_PAGE_SIZE;
9788                 ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9789                 if (ret)
9790                         goto out;
9791
9792                 addr += SF_PAGE_SIZE;
9793                 cfg_data += SF_PAGE_SIZE;
9794         }
9795
9796 out:
9797         if (ret)
9798                 CH_ERR(adap, "boot config data %s failed %d\n",
9799                                 (size == 0 ? "clear" : "download"), ret);
9800         return ret;
9801 }
9802
9803 /**
9804  *      t4_set_filter_mode - configure the optional components of filter tuples
9805  *      @adap: the adapter
9806  *      @mode_map: a bitmap selcting which optional filter components to enable
9807  *      @sleep_ok: if true we may sleep while awaiting command completion
9808  *
9809  *      Sets the filter mode by selecting the optional components to enable
9810  *      in filter tuples.  Returns 0 on success and a negative error if the
9811  *      requested mode needs more bits than are available for optional
9812  *      components.
9813  */
9814 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9815                        bool sleep_ok)
9816 {
9817         static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9818
9819         int i, nbits = 0;
9820
9821         for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9822                 if (mode_map & (1 << i))
9823                         nbits += width[i];
9824         if (nbits > FILTER_OPT_LEN)
9825                 return -EINVAL;
9826         t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9827         read_filter_mode_and_ingress_config(adap, sleep_ok);
9828
9829         return 0;
9830 }
9831
9832 /**
9833  *      t4_clr_port_stats - clear port statistics
9834  *      @adap: the adapter
9835  *      @idx: the port index
9836  *
9837  *      Clear HW statistics for the given port.
9838  */
9839 void t4_clr_port_stats(struct adapter *adap, int idx)
9840 {
9841         unsigned int i;
9842         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
9843         u32 port_base_addr;
9844
9845         if (is_t4(adap))
9846                 port_base_addr = PORT_BASE(idx);
9847         else
9848                 port_base_addr = T5_PORT_BASE(idx);
9849
9850         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9851                         i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9852                 t4_write_reg(adap, port_base_addr + i, 0);
9853         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9854                         i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9855                 t4_write_reg(adap, port_base_addr + i, 0);
9856         for (i = 0; i < 4; i++)
9857                 if (bgmap & (1 << i)) {
9858                         t4_write_reg(adap,
9859                         A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9860                         t4_write_reg(adap,
9861                         A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9862                 }
9863 }
9864
9865 /**
9866  *      t4_i2c_rd - read I2C data from adapter
9867  *      @adap: the adapter
9868  *      @port: Port number if per-port device; <0 if not
9869  *      @devid: per-port device ID or absolute device ID
9870  *      @offset: byte offset into device I2C space
9871  *      @len: byte length of I2C space data
9872  *      @buf: buffer in which to return I2C data
9873  *
9874  *      Reads the I2C data from the indicated device and location.
9875  */
9876 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9877               int port, unsigned int devid,
9878               unsigned int offset, unsigned int len,
9879               u8 *buf)
9880 {
9881         u32 ldst_addrspace;
9882         struct fw_ldst_cmd ldst;
9883         int ret;
9884
9885         if (port >= 4 ||
9886             devid >= 256 ||
9887             offset >= 256 ||
9888             len > sizeof ldst.u.i2c.data)
9889                 return -EINVAL;
9890
9891         memset(&ldst, 0, sizeof ldst);
9892         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9893         ldst.op_to_addrspace =
9894                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9895                             F_FW_CMD_REQUEST |
9896                             F_FW_CMD_READ |
9897                             ldst_addrspace);
9898         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9899         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9900         ldst.u.i2c.did = devid;
9901         ldst.u.i2c.boffset = offset;
9902         ldst.u.i2c.blen = len;
9903         ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9904         if (!ret)
9905                 memcpy(buf, ldst.u.i2c.data, len);
9906         return ret;
9907 }
9908
9909 /**
9910  *      t4_i2c_wr - write I2C data to adapter
9911  *      @adap: the adapter
9912  *      @port: Port number if per-port device; <0 if not
9913  *      @devid: per-port device ID or absolute device ID
9914  *      @offset: byte offset into device I2C space
9915  *      @len: byte length of I2C space data
9916  *      @buf: buffer containing new I2C data
9917  *
9918  *      Write the I2C data to the indicated device and location.
9919  */
9920 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9921               int port, unsigned int devid,
9922               unsigned int offset, unsigned int len,
9923               u8 *buf)
9924 {
9925         u32 ldst_addrspace;
9926         struct fw_ldst_cmd ldst;
9927
9928         if (port >= 4 ||
9929             devid >= 256 ||
9930             offset >= 256 ||
9931             len > sizeof ldst.u.i2c.data)
9932                 return -EINVAL;
9933
9934         memset(&ldst, 0, sizeof ldst);
9935         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9936         ldst.op_to_addrspace =
9937                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9938                             F_FW_CMD_REQUEST |
9939                             F_FW_CMD_WRITE |
9940                             ldst_addrspace);
9941         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9942         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9943         ldst.u.i2c.did = devid;
9944         ldst.u.i2c.boffset = offset;
9945         ldst.u.i2c.blen = len;
9946         memcpy(ldst.u.i2c.data, buf, len);
9947         return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9948 }
9949
9950 /**
9951  *      t4_sge_ctxt_rd - read an SGE context through FW
9952  *      @adap: the adapter
9953  *      @mbox: mailbox to use for the FW command
9954  *      @cid: the context id
9955  *      @ctype: the context type
9956  *      @data: where to store the context data
9957  *
9958  *      Issues a FW command through the given mailbox to read an SGE context.
9959  */
9960 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9961                    enum ctxt_type ctype, u32 *data)
9962 {
9963         int ret;
9964         struct fw_ldst_cmd c;
9965
9966         if (ctype == CTXT_EGRESS)
9967                 ret = FW_LDST_ADDRSPC_SGE_EGRC;
9968         else if (ctype == CTXT_INGRESS)
9969                 ret = FW_LDST_ADDRSPC_SGE_INGC;
9970         else if (ctype == CTXT_FLM)
9971                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
9972         else
9973                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
9974
9975         memset(&c, 0, sizeof(c));
9976         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9977                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
9978                                         V_FW_LDST_CMD_ADDRSPACE(ret));
9979         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9980         c.u.idctxt.physid = cpu_to_be32(cid);
9981
9982         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9983         if (ret == 0) {
9984                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9985                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9986                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9987                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9988                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9989                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9990         }
9991         return ret;
9992 }
9993
9994 /**
9995  *      t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9996  *      @adap: the adapter
9997  *      @cid: the context id
9998  *      @ctype: the context type
9999  *      @data: where to store the context data
10000  *
10001  *      Reads an SGE context directly, bypassing FW.  This is only for
10002  *      debugging when FW is unavailable.
10003  */
10004 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10005                       u32 *data)
10006 {
10007         int i, ret;
10008
10009         t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
10010         ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
10011         if (!ret)
10012                 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
10013                         *data++ = t4_read_reg(adap, i);
10014         return ret;
10015 }
10016
10017 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
10018     int sleep_ok)
10019 {
10020         struct fw_sched_cmd cmd;
10021
10022         memset(&cmd, 0, sizeof(cmd));
10023         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10024                                       F_FW_CMD_REQUEST |
10025                                       F_FW_CMD_WRITE);
10026         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10027
10028         cmd.u.config.sc = FW_SCHED_SC_CONFIG;
10029         cmd.u.config.type = type;
10030         cmd.u.config.minmaxen = minmaxen;
10031
10032         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10033                                NULL, sleep_ok);
10034 }
10035
10036 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10037                     int rateunit, int ratemode, int channel, int cl,
10038                     int minrate, int maxrate, int weight, int pktsize,
10039                     int burstsize, int sleep_ok)
10040 {
10041         struct fw_sched_cmd cmd;
10042
10043         memset(&cmd, 0, sizeof(cmd));
10044         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10045                                       F_FW_CMD_REQUEST |
10046                                       F_FW_CMD_WRITE);
10047         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10048
10049         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10050         cmd.u.params.type = type;
10051         cmd.u.params.level = level;
10052         cmd.u.params.mode = mode;
10053         cmd.u.params.ch = channel;
10054         cmd.u.params.cl = cl;
10055         cmd.u.params.unit = rateunit;
10056         cmd.u.params.rate = ratemode;
10057         cmd.u.params.min = cpu_to_be32(minrate);
10058         cmd.u.params.max = cpu_to_be32(maxrate);
10059         cmd.u.params.weight = cpu_to_be16(weight);
10060         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10061         cmd.u.params.burstsize = cpu_to_be16(burstsize);
10062
10063         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10064                                NULL, sleep_ok);
10065 }
10066
10067 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
10068     unsigned int maxrate, int sleep_ok)
10069 {
10070         struct fw_sched_cmd cmd;
10071
10072         memset(&cmd, 0, sizeof(cmd));
10073         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10074                                       F_FW_CMD_REQUEST |
10075                                       F_FW_CMD_WRITE);
10076         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10077
10078         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10079         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10080         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
10081         cmd.u.params.ch = channel;
10082         cmd.u.params.rate = ratemode;           /* REL or ABS */
10083         cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
10084
10085         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10086                                NULL, sleep_ok);
10087 }
10088
10089 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
10090     int weight, int sleep_ok)
10091 {
10092         struct fw_sched_cmd cmd;
10093
10094         if (weight < 0 || weight > 100)
10095                 return -EINVAL;
10096
10097         memset(&cmd, 0, sizeof(cmd));
10098         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10099                                       F_FW_CMD_REQUEST |
10100                                       F_FW_CMD_WRITE);
10101         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10102
10103         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10104         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10105         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
10106         cmd.u.params.ch = channel;
10107         cmd.u.params.cl = cl;
10108         cmd.u.params.weight = cpu_to_be16(weight);
10109
10110         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10111                                NULL, sleep_ok);
10112 }
10113
10114 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
10115     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
10116 {
10117         struct fw_sched_cmd cmd;
10118
10119         memset(&cmd, 0, sizeof(cmd));
10120         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10121                                       F_FW_CMD_REQUEST |
10122                                       F_FW_CMD_WRITE);
10123         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10124
10125         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10126         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10127         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
10128         cmd.u.params.mode = mode;
10129         cmd.u.params.ch = channel;
10130         cmd.u.params.cl = cl;
10131         cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
10132         cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
10133         cmd.u.params.max = cpu_to_be32(maxrate);
10134         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10135
10136         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10137                                NULL, sleep_ok);
10138 }
10139
10140 /*
10141  *      t4_config_watchdog - configure (enable/disable) a watchdog timer
10142  *      @adapter: the adapter
10143  *      @mbox: mailbox to use for the FW command
10144  *      @pf: the PF owning the queue
10145  *      @vf: the VF owning the queue
10146  *      @timeout: watchdog timeout in ms
10147  *      @action: watchdog timer / action
10148  *
10149  *      There are separate watchdog timers for each possible watchdog
10150  *      action.  Configure one of the watchdog timers by setting a non-zero
10151  *      timeout.  Disable a watchdog timer by using a timeout of zero.
10152  */
10153 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
10154                        unsigned int pf, unsigned int vf,
10155                        unsigned int timeout, unsigned int action)
10156 {
10157         struct fw_watchdog_cmd wdog;
10158         unsigned int ticks;
10159
10160         /*
10161          * The watchdog command expects a timeout in units of 10ms so we need
10162          * to convert it here (via rounding) and force a minimum of one 10ms
10163          * "tick" if the timeout is non-zero but the conversion results in 0
10164          * ticks.
10165          */
10166         ticks = (timeout + 5)/10;
10167         if (timeout && !ticks)
10168                 ticks = 1;
10169
10170         memset(&wdog, 0, sizeof wdog);
10171         wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
10172                                      F_FW_CMD_REQUEST |
10173                                      F_FW_CMD_WRITE |
10174                                      V_FW_PARAMS_CMD_PFN(pf) |
10175                                      V_FW_PARAMS_CMD_VFN(vf));
10176         wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
10177         wdog.timeout = cpu_to_be32(ticks);
10178         wdog.action = cpu_to_be32(action);
10179
10180         return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
10181 }
10182
10183 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
10184 {
10185         struct fw_devlog_cmd devlog_cmd;
10186         int ret;
10187
10188         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10189         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10190                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
10191         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10192         ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10193                          sizeof(devlog_cmd), &devlog_cmd);
10194         if (ret)
10195                 return ret;
10196
10197         *level = devlog_cmd.level;
10198         return 0;
10199 }
10200
10201 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
10202 {
10203         struct fw_devlog_cmd devlog_cmd;
10204
10205         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10206         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10207                                              F_FW_CMD_REQUEST |
10208                                              F_FW_CMD_WRITE);
10209         devlog_cmd.level = level;
10210         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10211         return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10212                           sizeof(devlog_cmd), &devlog_cmd);
10213 }