]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/common/t4_hw.c
Merge lldb trunk r366426, resolve conflicts, and update FREEBSD-Xlist.
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / common / t4_hw.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_inet.h"
33
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41
42 #undef msleep
43 #define msleep(x) do { \
44         if (cold) \
45                 DELAY((x) * 1000); \
46         else \
47                 pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49
50 /**
51  *      t4_wait_op_done_val - wait until an operation is completed
52  *      @adapter: the adapter performing the operation
53  *      @reg: the register to check for completion
54  *      @mask: a single-bit field within @reg that indicates completion
55  *      @polarity: the value of the field when the operation is completed
56  *      @attempts: number of check iterations
57  *      @delay: delay in usecs between iterations
58  *      @valp: where to store the value of the register at completion time
59  *
60  *      Wait until an operation is completed by checking a bit in a register
61  *      up to @attempts times.  If @valp is not NULL the value of the register
62  *      at the time it indicated completion is stored there.  Returns 0 if the
63  *      operation completes and -EAGAIN otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66                                int polarity, int attempts, int delay, u32 *valp)
67 {
68         while (1) {
69                 u32 val = t4_read_reg(adapter, reg);
70
71                 if (!!(val & mask) == polarity) {
72                         if (valp)
73                                 *valp = val;
74                         return 0;
75                 }
76                 if (--attempts == 0)
77                         return -EAGAIN;
78                 if (delay)
79                         udelay(delay);
80         }
81 }
82
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84                                   int polarity, int attempts, int delay)
85 {
86         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87                                    delay, NULL);
88 }
89
90 /**
91  *      t4_set_reg_field - set a register field to a value
92  *      @adapter: the adapter to program
93  *      @addr: the register address
94  *      @mask: specifies the portion of the register to modify
95  *      @val: the new value for the register field
96  *
97  *      Sets a register field specified by the supplied mask to the
98  *      given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101                       u32 val)
102 {
103         u32 v = t4_read_reg(adapter, addr) & ~mask;
104
105         t4_write_reg(adapter, addr, v | val);
106         (void) t4_read_reg(adapter, addr);      /* flush */
107 }
108
109 /**
110  *      t4_read_indirect - read indirectly addressed registers
111  *      @adap: the adapter
112  *      @addr_reg: register holding the indirect address
113  *      @data_reg: register holding the value of the indirect register
114  *      @vals: where the read register values are stored
115  *      @nregs: how many indirect registers to read
116  *      @start_idx: index of first indirect register to read
117  *
118  *      Reads registers that are accessed indirectly through an address/data
119  *      register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122                              unsigned int data_reg, u32 *vals,
123                              unsigned int nregs, unsigned int start_idx)
124 {
125         while (nregs--) {
126                 t4_write_reg(adap, addr_reg, start_idx);
127                 *vals++ = t4_read_reg(adap, data_reg);
128                 start_idx++;
129         }
130 }
131
132 /**
133  *      t4_write_indirect - write indirectly addressed registers
134  *      @adap: the adapter
135  *      @addr_reg: register holding the indirect addresses
136  *      @data_reg: register holding the value for the indirect registers
137  *      @vals: values to write
138  *      @nregs: how many indirect registers to write
139  *      @start_idx: address of first indirect register to write
140  *
141  *      Writes a sequential block of registers that are accessed indirectly
142  *      through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145                        unsigned int data_reg, const u32 *vals,
146                        unsigned int nregs, unsigned int start_idx)
147 {
148         while (nregs--) {
149                 t4_write_reg(adap, addr_reg, start_idx++);
150                 t4_write_reg(adap, data_reg, *vals++);
151         }
152 }
153
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166         u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167         u32 val;
168
169         if (chip_id(adap) <= CHELSIO_T5)
170                 req |= F_ENABLE;
171         else
172                 req |= F_T6_ENABLE;
173
174         if (is_t4(adap))
175                 req |= F_LOCALCFG;
176
177         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178         val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179
180         /*
181          * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182          * Configuration Space read.  (None of the other fields matter when
183          * F_ENABLE is 0 so a simple register write is easier than a
184          * read-modify-write via t4_set_reg_field().)
185          */
186         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187
188         return val;
189 }
190
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201         static const char *const reason[] = {
202                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
203                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
204                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
205                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
206                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
208                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
209                 "Reserved",                     /* reserved */
210         };
211         u32 pcie_fw;
212
213         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214         if (pcie_fw & F_PCIE_FW_ERR) {
215                 adap->flags &= ~FW_OK;
216                 CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217                     reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218                 if (pcie_fw != 0xffffffff)
219                         t4_os_dump_devlog(adap);
220         }
221 }
222
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227                          u32 mbox_addr)
228 {
229         for ( ; nflit; nflit--, mbox_addr += 8)
230                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238         CH_ALERT(adap,
239                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240                   asrt->u.assert.filename_0_7,
241                   be32_to_cpu(asrt->u.assert.line),
242                   be32_to_cpu(asrt->u.assert.x),
243                   be32_to_cpu(asrt->u.assert.y));
244 }
245
246 struct port_tx_state {
247         uint64_t rx_pause;
248         uint64_t tx_frames;
249 };
250
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254         uint32_t rx_pause_reg, tx_frames_reg;
255
256         if (is_t4(sc)) {
257                 tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258                 rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259         } else {
260                 tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261                 rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262         }
263
264         tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265         tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271         int i;
272
273         for_each_port(sc, i)
274                 read_tx_state_one(sc, i, &tx_state[i]);
275 }
276
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280         uint32_t port_ctl_reg;
281         uint64_t tx_frames, rx_pause;
282         int i;
283
284         for_each_port(sc, i) {
285                 rx_pause = tx_state[i].rx_pause;
286                 tx_frames = tx_state[i].tx_frames;
287                 read_tx_state_one(sc, i, &tx_state[i]); /* update */
288
289                 if (is_t4(sc))
290                         port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291                 else
292                         port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293                 if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294                     rx_pause != tx_state[i].rx_pause &&
295                     tx_frames == tx_state[i].tx_frames) {
296                         t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297                         mdelay(1);
298                         t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299                 }
300         }
301 }
302
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *      @adap: the adapter
307  *      @mbox: index of the mailbox to use
308  *      @cmd: the command to write
309  *      @size: command length in bytes
310  *      @rpl: where to optionally store the reply
311  *      @sleep_ok: if true we may sleep while awaiting command completion
312  *      @timeout: time to wait for command to finish before timing out
313  *              (negative implies @sleep_ok=false)
314  *
315  *      Sends the given command to FW through the selected mailbox and waits
316  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *      store the FW's reply to the command.  The command and its optional
318  *      reply are of the same length.  Some FW commands like RESET and
319  *      INITIALIZE can take a considerable amount of time to execute.
320  *      @sleep_ok determines whether we may sleep while awaiting the response.
321  *      If sleeping is allowed we use progressive backoff otherwise we spin.
322  *      Note that passing in a negative @timeout is an alternate mechanism
323  *      for specifying @sleep_ok=false.  This is useful when a higher level
324  *      interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *      The return value is 0 on success or a negative errno on failure.  A
327  *      failure can happen either because we are not able to execute the
328  *      command or FW executes it but signals an error.  In the latter case
329  *      the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332                             int size, void *rpl, bool sleep_ok, int timeout)
333 {
334         /*
335          * We delay in small increments at first in an effort to maintain
336          * responsiveness for simple, fast executing commands but then back
337          * off to larger delays to a maximum retry delay.
338          */
339         static const int delay[] = {
340                 1, 1, 3, 5, 10, 10, 20, 50, 100
341         };
342         u32 v;
343         u64 res;
344         int i, ms, delay_idx, ret, next_tx_check;
345         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347         u32 ctl;
348         __be64 cmd_rpl[MBOX_LEN/8];
349         u32 pcie_fw;
350         struct port_tx_state tx_state[MAX_NPORTS];
351
352         if (adap->flags & CHK_MBOX_ACCESS)
353                 ASSERT_SYNCHRONIZED_OP(adap);
354
355         if (size <= 0 || (size & 15) || size > MBOX_LEN)
356                 return -EINVAL;
357
358         if (adap->flags & IS_VF) {
359                 if (is_t6(adap))
360                         data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361                 else
362                         data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363                 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364         }
365
366         /*
367          * If we have a negative timeout, that implies that we can't sleep.
368          */
369         if (timeout < 0) {
370                 sleep_ok = false;
371                 timeout = -timeout;
372         }
373
374         /*
375          * Attempt to gain access to the mailbox.
376          */
377         for (i = 0; i < 4; i++) {
378                 ctl = t4_read_reg(adap, ctl_reg);
379                 v = G_MBOWNER(ctl);
380                 if (v != X_MBOWNER_NONE)
381                         break;
382         }
383
384         /*
385          * If we were unable to gain access, report the error to our caller.
386          */
387         if (v != X_MBOWNER_PL) {
388                 t4_report_fw_error(adap);
389                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390                 return ret;
391         }
392
393         /*
394          * If we gain ownership of the mailbox and there's a "valid" message
395          * in it, this is likely an asynchronous error message from the
396          * firmware.  So we'll report that and then proceed on with attempting
397          * to issue our own command ... which may well fail if the error
398          * presaged the firmware crashing ...
399          */
400         if (ctl & F_MBMSGVALID) {
401                 CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402         }
403
404         /*
405          * Copy in the new mailbox command and send it on its way ...
406          */
407         memset(cmd_rpl, 0, sizeof(cmd_rpl));
408         memcpy(cmd_rpl, cmd, size);
409         CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410         for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411                 t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412
413         if (adap->flags & IS_VF) {
414                 /*
415                  * For the VFs, the Mailbox Data "registers" are
416                  * actually backed by T4's "MA" interface rather than
417                  * PL Registers (as is the case for the PFs).  Because
418                  * these are in different coherency domains, the write
419                  * to the VF's PL-register-backed Mailbox Control can
420                  * race in front of the writes to the MA-backed VF
421                  * Mailbox Data "registers".  So we need to do a
422                  * read-back on at least one byte of the VF Mailbox
423                  * Data registers before doing the write to the VF
424                  * Mailbox Control register.
425                  */
426                 t4_read_reg(adap, data_reg);
427         }
428
429         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430         read_tx_state(adap, &tx_state[0]);      /* also flushes the write_reg */
431         next_tx_check = 1000;
432         delay_idx = 0;
433         ms = delay[0];
434
435         /*
436          * Loop waiting for the reply; bail out if we time out or the firmware
437          * reports an error.
438          */
439         pcie_fw = 0;
440         for (i = 0; i < timeout; i += ms) {
441                 if (!(adap->flags & IS_VF)) {
442                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443                         if (pcie_fw & F_PCIE_FW_ERR)
444                                 break;
445                 }
446
447                 if (i >= next_tx_check) {
448                         check_tx_state(adap, &tx_state[0]);
449                         next_tx_check = i + 1000;
450                 }
451
452                 if (sleep_ok) {
453                         ms = delay[delay_idx];  /* last element may repeat */
454                         if (delay_idx < ARRAY_SIZE(delay) - 1)
455                                 delay_idx++;
456                         msleep(ms);
457                 } else {
458                         mdelay(ms);
459                 }
460
461                 v = t4_read_reg(adap, ctl_reg);
462                 if (v == X_CIM_PF_NOACCESS)
463                         continue;
464                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
465                         if (!(v & F_MBMSGVALID)) {
466                                 t4_write_reg(adap, ctl_reg,
467                                              V_MBOWNER(X_MBOWNER_NONE));
468                                 continue;
469                         }
470
471                         /*
472                          * Retrieve the command reply and release the mailbox.
473                          */
474                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475                         CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477
478                         res = be64_to_cpu(cmd_rpl[0]);
479                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480                                 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481                                 res = V_FW_CMD_RETVAL(EIO);
482                         } else if (rpl)
483                                 memcpy(rpl, cmd_rpl, size);
484                         return -G_FW_CMD_RETVAL((int)res);
485                 }
486         }
487
488         /*
489          * We timed out waiting for a reply to our mailbox command.  Report
490          * the error and also check to see if the firmware reported any
491          * errors ...
492          */
493         CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494             *(const u8 *)cmd, mbox, pcie_fw);
495         CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496         CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497
498         if (pcie_fw & F_PCIE_FW_ERR) {
499                 ret = -ENXIO;
500                 t4_report_fw_error(adap);
501         } else {
502                 ret = -ETIMEDOUT;
503                 t4_os_dump_devlog(adap);
504         }
505
506         t4_fatal_err(adap, true);
507         return ret;
508 }
509
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511                     void *rpl, bool sleep_ok)
512 {
513                 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514                                                sleep_ok, FW_CMD_MAX_TIMEOUT);
515
516 }
517
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520         u32 edc_ecc_err_addr_reg;
521         u32 edc_bist_status_rdata_reg;
522
523         if (is_t4(adap)) {
524                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525                 return 0;
526         }
527         if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529                 return 0;
530         }
531
532         edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533         edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534
535         CH_WARN(adap,
536                 "edc%d err addr 0x%x: 0x%x.\n",
537                 idx, edc_ecc_err_addr_reg,
538                 t4_read_reg(adap, edc_ecc_err_addr_reg));
539         CH_WARN(adap,
540                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541                 edc_bist_status_rdata_reg,
542                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551
552         return 0;
553 }
554
555 /**
556  *      t4_mc_read - read from MC through backdoor accesses
557  *      @adap: the adapter
558  *      @idx: which MC to access
559  *      @addr: address of first byte requested
560  *      @data: 64 bytes of data containing the requested address
561  *      @ecc: where to store the corresponding 64-bit ECC word
562  *
563  *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *      that covers the requested address @addr.  If @parity is not %NULL it
565  *      is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569         int i;
570         u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571         u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572
573         if (is_t4(adap)) {
574                 mc_bist_cmd_reg = A_MC_BIST_CMD;
575                 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576                 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577                 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578                 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579         } else {
580                 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581                 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582                 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583                 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584                                                   idx);
585                 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586                                                   idx);
587         }
588
589         if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590                 return -EBUSY;
591         t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592         t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593         t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594         t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595                      F_START_BIST | V_BIST_CMD_GAP(1));
596         i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597         if (i)
598                 return i;
599
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601
602         for (i = 15; i >= 0; i--)
603                 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604         if (ecc)
605                 *ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607         return 0;
608 }
609
610 /**
611  *      t4_edc_read - read from EDC through backdoor accesses
612  *      @adap: the adapter
613  *      @idx: which EDC to access
614  *      @addr: address of first byte requested
615  *      @data: 64 bytes of data containing the requested address
616  *      @ecc: where to store the corresponding 64-bit ECC word
617  *
618  *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *      that covers the requested address @addr.  If @parity is not %NULL it
620  *      is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624         int i;
625         u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626         u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627
628         if (is_t4(adap)) {
629                 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630                 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631                 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632                 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633                                                     idx);
634                 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635                                                     idx);
636         } else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643                 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644                 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645                 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646                 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647                                                     idx);
648                 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649                                                     idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652         }
653
654         if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655                 return -EBUSY;
656         t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657         t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658         t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659         t4_write_reg(adap, edc_bist_cmd_reg,
660                      V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661         i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662         if (i)
663                 return i;
664
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666
667         for (i = 15; i >= 0; i--)
668                 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669         if (ecc)
670                 *ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672         return 0;
673 }
674
675 /**
676  *      t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *      @adap: the adapter
678  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *      @addr: address within indicated memory type
680  *      @len: amount of memory to read
681  *      @buf: host memory buffer
682  *
683  *      Reads an [almost] arbitrary memory region in the firmware: the
684  *      firmware memory address, length and host buffer must be aligned on
685  *      32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *      the firmware's memory.  If this memory contains data structures which
687  *      contain multi-byte integers, it's the callers responsibility to
688  *      perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691                 __be32 *buf)
692 {
693         u32 pos, start, end, offset;
694         int ret;
695
696         /*
697          * Argument sanity checks ...
698          */
699         if ((addr & 0x3) || (len & 0x3))
700                 return -EINVAL;
701
702         /*
703          * The underlaying EDC/MC read routines read 64 bytes at a time so we
704          * need to round down the start and round up the end.  We'll start
705          * copying out of the first line at (addr - start) a word at a time.
706          */
707         start = rounddown2(addr, 64);
708         end = roundup2(addr + len, 64);
709         offset = (addr - start)/sizeof(__be32);
710
711         for (pos = start; pos < end; pos += 64, offset = 0) {
712                 __be32 data[16];
713
714                 /*
715                  * Read the chip's memory block and bail if there's an error.
716                  */
717                 if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718                         ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719                 else
720                         ret = t4_edc_read(adap, mtype, pos, data, NULL);
721                 if (ret)
722                         return ret;
723
724                 /*
725                  * Copy the data into the caller's memory buffer.
726                  */
727                 while (offset < 16 && len > 0) {
728                         *buf++ = data[offset++];
729                         len -= sizeof(__be32);
730                 }
731         }
732
733         return 0;
734 }
735
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744
745         /*
746          * If fw_attach != 0, construct and send the Firmware LDST Command to
747          * retrieve the specified PCI-E Configuration Space register.
748          */
749         if (drv_fw_attach != 0) {
750                 struct fw_ldst_cmd ldst_cmd;
751                 int ret;
752
753                 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754                 ldst_cmd.op_to_addrspace =
755                         cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756                                     F_FW_CMD_REQUEST |
757                                     F_FW_CMD_READ |
758                                     V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759                 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760                 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761                 ldst_cmd.u.pcie.ctrl_to_fn =
762                         (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763                 ldst_cmd.u.pcie.r = reg;
764
765                 /*
766                  * If the LDST Command succeeds, return the result, otherwise
767                  * fall through to reading it directly ourselves ...
768                  */
769                 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770                                  &ldst_cmd);
771                 if (ret == 0)
772                         return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773
774                 CH_WARN(adap, "Firmware failed to return "
775                         "Configuration Space register %d, err = %d\n",
776                         reg, -ret);
777         }
778
779         /*
780          * Read the desired Configuration Space register via the PCI-E
781          * Backdoor mechanism.
782          */
783         return t4_hw_pci_read_cfg4(adap, reg);
784 }
785
786 /**
787  *      t4_get_regs_len - return the size of the chips register set
788  *      @adapter: the adapter
789  *
790  *      Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794         unsigned int chip_version = chip_id(adapter);
795
796         switch (chip_version) {
797         case CHELSIO_T4:
798                 if (adapter->flags & IS_VF)
799                         return FW_T4VF_REGMAP_SIZE;
800                 return T4_REGMAP_SIZE;
801
802         case CHELSIO_T5:
803         case CHELSIO_T6:
804                 if (adapter->flags & IS_VF)
805                         return FW_T4VF_REGMAP_SIZE;
806                 return T5_REGMAP_SIZE;
807         }
808
809         CH_ERR(adapter,
810                 "Unsupported chip version %d\n", chip_version);
811         return 0;
812 }
813
814 /**
815  *      t4_get_regs - read chip registers into provided buffer
816  *      @adap: the adapter
817  *      @buf: register buffer
818  *      @buf_size: size (in bytes) of register buffer
819  *
820  *      If the provided register buffer isn't large enough for the chip's
821  *      full register range, the register dump will be truncated to the
822  *      register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826         static const unsigned int t4_reg_ranges[] = {
827                 0x1008, 0x1108,
828                 0x1180, 0x1184,
829                 0x1190, 0x1194,
830                 0x11a0, 0x11a4,
831                 0x11b0, 0x11b4,
832                 0x11fc, 0x123c,
833                 0x1300, 0x173c,
834                 0x1800, 0x18fc,
835                 0x3000, 0x30d8,
836                 0x30e0, 0x30e4,
837                 0x30ec, 0x5910,
838                 0x5920, 0x5924,
839                 0x5960, 0x5960,
840                 0x5968, 0x5968,
841                 0x5970, 0x5970,
842                 0x5978, 0x5978,
843                 0x5980, 0x5980,
844                 0x5988, 0x5988,
845                 0x5990, 0x5990,
846                 0x5998, 0x5998,
847                 0x59a0, 0x59d4,
848                 0x5a00, 0x5ae0,
849                 0x5ae8, 0x5ae8,
850                 0x5af0, 0x5af0,
851                 0x5af8, 0x5af8,
852                 0x6000, 0x6098,
853                 0x6100, 0x6150,
854                 0x6200, 0x6208,
855                 0x6240, 0x6248,
856                 0x6280, 0x62b0,
857                 0x62c0, 0x6338,
858                 0x6370, 0x638c,
859                 0x6400, 0x643c,
860                 0x6500, 0x6524,
861                 0x6a00, 0x6a04,
862                 0x6a14, 0x6a38,
863                 0x6a60, 0x6a70,
864                 0x6a78, 0x6a78,
865                 0x6b00, 0x6b0c,
866                 0x6b1c, 0x6b84,
867                 0x6bf0, 0x6bf8,
868                 0x6c00, 0x6c0c,
869                 0x6c1c, 0x6c84,
870                 0x6cf0, 0x6cf8,
871                 0x6d00, 0x6d0c,
872                 0x6d1c, 0x6d84,
873                 0x6df0, 0x6df8,
874                 0x6e00, 0x6e0c,
875                 0x6e1c, 0x6e84,
876                 0x6ef0, 0x6ef8,
877                 0x6f00, 0x6f0c,
878                 0x6f1c, 0x6f84,
879                 0x6ff0, 0x6ff8,
880                 0x7000, 0x700c,
881                 0x701c, 0x7084,
882                 0x70f0, 0x70f8,
883                 0x7100, 0x710c,
884                 0x711c, 0x7184,
885                 0x71f0, 0x71f8,
886                 0x7200, 0x720c,
887                 0x721c, 0x7284,
888                 0x72f0, 0x72f8,
889                 0x7300, 0x730c,
890                 0x731c, 0x7384,
891                 0x73f0, 0x73f8,
892                 0x7400, 0x7450,
893                 0x7500, 0x7530,
894                 0x7600, 0x760c,
895                 0x7614, 0x761c,
896                 0x7680, 0x76cc,
897                 0x7700, 0x7798,
898                 0x77c0, 0x77fc,
899                 0x7900, 0x79fc,
900                 0x7b00, 0x7b58,
901                 0x7b60, 0x7b84,
902                 0x7b8c, 0x7c38,
903                 0x7d00, 0x7d38,
904                 0x7d40, 0x7d80,
905                 0x7d8c, 0x7ddc,
906                 0x7de4, 0x7e04,
907                 0x7e10, 0x7e1c,
908                 0x7e24, 0x7e38,
909                 0x7e40, 0x7e44,
910                 0x7e4c, 0x7e78,
911                 0x7e80, 0x7ea4,
912                 0x7eac, 0x7edc,
913                 0x7ee8, 0x7efc,
914                 0x8dc0, 0x8e04,
915                 0x8e10, 0x8e1c,
916                 0x8e30, 0x8e78,
917                 0x8ea0, 0x8eb8,
918                 0x8ec0, 0x8f6c,
919                 0x8fc0, 0x9008,
920                 0x9010, 0x9058,
921                 0x9060, 0x9060,
922                 0x9068, 0x9074,
923                 0x90fc, 0x90fc,
924                 0x9400, 0x9408,
925                 0x9410, 0x9458,
926                 0x9600, 0x9600,
927                 0x9608, 0x9638,
928                 0x9640, 0x96bc,
929                 0x9800, 0x9808,
930                 0x9820, 0x983c,
931                 0x9850, 0x9864,
932                 0x9c00, 0x9c6c,
933                 0x9c80, 0x9cec,
934                 0x9d00, 0x9d6c,
935                 0x9d80, 0x9dec,
936                 0x9e00, 0x9e6c,
937                 0x9e80, 0x9eec,
938                 0x9f00, 0x9f6c,
939                 0x9f80, 0x9fec,
940                 0xd004, 0xd004,
941                 0xd010, 0xd03c,
942                 0xdfc0, 0xdfe0,
943                 0xe000, 0xea7c,
944                 0xf000, 0x11110,
945                 0x11118, 0x11190,
946                 0x19040, 0x1906c,
947                 0x19078, 0x19080,
948                 0x1908c, 0x190e4,
949                 0x190f0, 0x190f8,
950                 0x19100, 0x19110,
951                 0x19120, 0x19124,
952                 0x19150, 0x19194,
953                 0x1919c, 0x191b0,
954                 0x191d0, 0x191e8,
955                 0x19238, 0x1924c,
956                 0x193f8, 0x1943c,
957                 0x1944c, 0x19474,
958                 0x19490, 0x194e0,
959                 0x194f0, 0x194f8,
960                 0x19800, 0x19c08,
961                 0x19c10, 0x19c90,
962                 0x19ca0, 0x19ce4,
963                 0x19cf0, 0x19d40,
964                 0x19d50, 0x19d94,
965                 0x19da0, 0x19de8,
966                 0x19df0, 0x19e40,
967                 0x19e50, 0x19e90,
968                 0x19ea0, 0x19f4c,
969                 0x1a000, 0x1a004,
970                 0x1a010, 0x1a06c,
971                 0x1a0b0, 0x1a0e4,
972                 0x1a0ec, 0x1a0f4,
973                 0x1a100, 0x1a108,
974                 0x1a114, 0x1a120,
975                 0x1a128, 0x1a130,
976                 0x1a138, 0x1a138,
977                 0x1a190, 0x1a1c4,
978                 0x1a1fc, 0x1a1fc,
979                 0x1e040, 0x1e04c,
980                 0x1e284, 0x1e28c,
981                 0x1e2c0, 0x1e2c0,
982                 0x1e2e0, 0x1e2e0,
983                 0x1e300, 0x1e384,
984                 0x1e3c0, 0x1e3c8,
985                 0x1e440, 0x1e44c,
986                 0x1e684, 0x1e68c,
987                 0x1e6c0, 0x1e6c0,
988                 0x1e6e0, 0x1e6e0,
989                 0x1e700, 0x1e784,
990                 0x1e7c0, 0x1e7c8,
991                 0x1e840, 0x1e84c,
992                 0x1ea84, 0x1ea8c,
993                 0x1eac0, 0x1eac0,
994                 0x1eae0, 0x1eae0,
995                 0x1eb00, 0x1eb84,
996                 0x1ebc0, 0x1ebc8,
997                 0x1ec40, 0x1ec4c,
998                 0x1ee84, 0x1ee8c,
999                 0x1eec0, 0x1eec0,
1000                 0x1eee0, 0x1eee0,
1001                 0x1ef00, 0x1ef84,
1002                 0x1efc0, 0x1efc8,
1003                 0x1f040, 0x1f04c,
1004                 0x1f284, 0x1f28c,
1005                 0x1f2c0, 0x1f2c0,
1006                 0x1f2e0, 0x1f2e0,
1007                 0x1f300, 0x1f384,
1008                 0x1f3c0, 0x1f3c8,
1009                 0x1f440, 0x1f44c,
1010                 0x1f684, 0x1f68c,
1011                 0x1f6c0, 0x1f6c0,
1012                 0x1f6e0, 0x1f6e0,
1013                 0x1f700, 0x1f784,
1014                 0x1f7c0, 0x1f7c8,
1015                 0x1f840, 0x1f84c,
1016                 0x1fa84, 0x1fa8c,
1017                 0x1fac0, 0x1fac0,
1018                 0x1fae0, 0x1fae0,
1019                 0x1fb00, 0x1fb84,
1020                 0x1fbc0, 0x1fbc8,
1021                 0x1fc40, 0x1fc4c,
1022                 0x1fe84, 0x1fe8c,
1023                 0x1fec0, 0x1fec0,
1024                 0x1fee0, 0x1fee0,
1025                 0x1ff00, 0x1ff84,
1026                 0x1ffc0, 0x1ffc8,
1027                 0x20000, 0x2002c,
1028                 0x20100, 0x2013c,
1029                 0x20190, 0x201a0,
1030                 0x201a8, 0x201b8,
1031                 0x201c4, 0x201c8,
1032                 0x20200, 0x20318,
1033                 0x20400, 0x204b4,
1034                 0x204c0, 0x20528,
1035                 0x20540, 0x20614,
1036                 0x21000, 0x21040,
1037                 0x2104c, 0x21060,
1038                 0x210c0, 0x210ec,
1039                 0x21200, 0x21268,
1040                 0x21270, 0x21284,
1041                 0x212fc, 0x21388,
1042                 0x21400, 0x21404,
1043                 0x21500, 0x21500,
1044                 0x21510, 0x21518,
1045                 0x2152c, 0x21530,
1046                 0x2153c, 0x2153c,
1047                 0x21550, 0x21554,
1048                 0x21600, 0x21600,
1049                 0x21608, 0x2161c,
1050                 0x21624, 0x21628,
1051                 0x21630, 0x21634,
1052                 0x2163c, 0x2163c,
1053                 0x21700, 0x2171c,
1054                 0x21780, 0x2178c,
1055                 0x21800, 0x21818,
1056                 0x21820, 0x21828,
1057                 0x21830, 0x21848,
1058                 0x21850, 0x21854,
1059                 0x21860, 0x21868,
1060                 0x21870, 0x21870,
1061                 0x21878, 0x21898,
1062                 0x218a0, 0x218a8,
1063                 0x218b0, 0x218c8,
1064                 0x218d0, 0x218d4,
1065                 0x218e0, 0x218e8,
1066                 0x218f0, 0x218f0,
1067                 0x218f8, 0x21a18,
1068                 0x21a20, 0x21a28,
1069                 0x21a30, 0x21a48,
1070                 0x21a50, 0x21a54,
1071                 0x21a60, 0x21a68,
1072                 0x21a70, 0x21a70,
1073                 0x21a78, 0x21a98,
1074                 0x21aa0, 0x21aa8,
1075                 0x21ab0, 0x21ac8,
1076                 0x21ad0, 0x21ad4,
1077                 0x21ae0, 0x21ae8,
1078                 0x21af0, 0x21af0,
1079                 0x21af8, 0x21c18,
1080                 0x21c20, 0x21c20,
1081                 0x21c28, 0x21c30,
1082                 0x21c38, 0x21c38,
1083                 0x21c80, 0x21c98,
1084                 0x21ca0, 0x21ca8,
1085                 0x21cb0, 0x21cc8,
1086                 0x21cd0, 0x21cd4,
1087                 0x21ce0, 0x21ce8,
1088                 0x21cf0, 0x21cf0,
1089                 0x21cf8, 0x21d7c,
1090                 0x21e00, 0x21e04,
1091                 0x22000, 0x2202c,
1092                 0x22100, 0x2213c,
1093                 0x22190, 0x221a0,
1094                 0x221a8, 0x221b8,
1095                 0x221c4, 0x221c8,
1096                 0x22200, 0x22318,
1097                 0x22400, 0x224b4,
1098                 0x224c0, 0x22528,
1099                 0x22540, 0x22614,
1100                 0x23000, 0x23040,
1101                 0x2304c, 0x23060,
1102                 0x230c0, 0x230ec,
1103                 0x23200, 0x23268,
1104                 0x23270, 0x23284,
1105                 0x232fc, 0x23388,
1106                 0x23400, 0x23404,
1107                 0x23500, 0x23500,
1108                 0x23510, 0x23518,
1109                 0x2352c, 0x23530,
1110                 0x2353c, 0x2353c,
1111                 0x23550, 0x23554,
1112                 0x23600, 0x23600,
1113                 0x23608, 0x2361c,
1114                 0x23624, 0x23628,
1115                 0x23630, 0x23634,
1116                 0x2363c, 0x2363c,
1117                 0x23700, 0x2371c,
1118                 0x23780, 0x2378c,
1119                 0x23800, 0x23818,
1120                 0x23820, 0x23828,
1121                 0x23830, 0x23848,
1122                 0x23850, 0x23854,
1123                 0x23860, 0x23868,
1124                 0x23870, 0x23870,
1125                 0x23878, 0x23898,
1126                 0x238a0, 0x238a8,
1127                 0x238b0, 0x238c8,
1128                 0x238d0, 0x238d4,
1129                 0x238e0, 0x238e8,
1130                 0x238f0, 0x238f0,
1131                 0x238f8, 0x23a18,
1132                 0x23a20, 0x23a28,
1133                 0x23a30, 0x23a48,
1134                 0x23a50, 0x23a54,
1135                 0x23a60, 0x23a68,
1136                 0x23a70, 0x23a70,
1137                 0x23a78, 0x23a98,
1138                 0x23aa0, 0x23aa8,
1139                 0x23ab0, 0x23ac8,
1140                 0x23ad0, 0x23ad4,
1141                 0x23ae0, 0x23ae8,
1142                 0x23af0, 0x23af0,
1143                 0x23af8, 0x23c18,
1144                 0x23c20, 0x23c20,
1145                 0x23c28, 0x23c30,
1146                 0x23c38, 0x23c38,
1147                 0x23c80, 0x23c98,
1148                 0x23ca0, 0x23ca8,
1149                 0x23cb0, 0x23cc8,
1150                 0x23cd0, 0x23cd4,
1151                 0x23ce0, 0x23ce8,
1152                 0x23cf0, 0x23cf0,
1153                 0x23cf8, 0x23d7c,
1154                 0x23e00, 0x23e04,
1155                 0x24000, 0x2402c,
1156                 0x24100, 0x2413c,
1157                 0x24190, 0x241a0,
1158                 0x241a8, 0x241b8,
1159                 0x241c4, 0x241c8,
1160                 0x24200, 0x24318,
1161                 0x24400, 0x244b4,
1162                 0x244c0, 0x24528,
1163                 0x24540, 0x24614,
1164                 0x25000, 0x25040,
1165                 0x2504c, 0x25060,
1166                 0x250c0, 0x250ec,
1167                 0x25200, 0x25268,
1168                 0x25270, 0x25284,
1169                 0x252fc, 0x25388,
1170                 0x25400, 0x25404,
1171                 0x25500, 0x25500,
1172                 0x25510, 0x25518,
1173                 0x2552c, 0x25530,
1174                 0x2553c, 0x2553c,
1175                 0x25550, 0x25554,
1176                 0x25600, 0x25600,
1177                 0x25608, 0x2561c,
1178                 0x25624, 0x25628,
1179                 0x25630, 0x25634,
1180                 0x2563c, 0x2563c,
1181                 0x25700, 0x2571c,
1182                 0x25780, 0x2578c,
1183                 0x25800, 0x25818,
1184                 0x25820, 0x25828,
1185                 0x25830, 0x25848,
1186                 0x25850, 0x25854,
1187                 0x25860, 0x25868,
1188                 0x25870, 0x25870,
1189                 0x25878, 0x25898,
1190                 0x258a0, 0x258a8,
1191                 0x258b0, 0x258c8,
1192                 0x258d0, 0x258d4,
1193                 0x258e0, 0x258e8,
1194                 0x258f0, 0x258f0,
1195                 0x258f8, 0x25a18,
1196                 0x25a20, 0x25a28,
1197                 0x25a30, 0x25a48,
1198                 0x25a50, 0x25a54,
1199                 0x25a60, 0x25a68,
1200                 0x25a70, 0x25a70,
1201                 0x25a78, 0x25a98,
1202                 0x25aa0, 0x25aa8,
1203                 0x25ab0, 0x25ac8,
1204                 0x25ad0, 0x25ad4,
1205                 0x25ae0, 0x25ae8,
1206                 0x25af0, 0x25af0,
1207                 0x25af8, 0x25c18,
1208                 0x25c20, 0x25c20,
1209                 0x25c28, 0x25c30,
1210                 0x25c38, 0x25c38,
1211                 0x25c80, 0x25c98,
1212                 0x25ca0, 0x25ca8,
1213                 0x25cb0, 0x25cc8,
1214                 0x25cd0, 0x25cd4,
1215                 0x25ce0, 0x25ce8,
1216                 0x25cf0, 0x25cf0,
1217                 0x25cf8, 0x25d7c,
1218                 0x25e00, 0x25e04,
1219                 0x26000, 0x2602c,
1220                 0x26100, 0x2613c,
1221                 0x26190, 0x261a0,
1222                 0x261a8, 0x261b8,
1223                 0x261c4, 0x261c8,
1224                 0x26200, 0x26318,
1225                 0x26400, 0x264b4,
1226                 0x264c0, 0x26528,
1227                 0x26540, 0x26614,
1228                 0x27000, 0x27040,
1229                 0x2704c, 0x27060,
1230                 0x270c0, 0x270ec,
1231                 0x27200, 0x27268,
1232                 0x27270, 0x27284,
1233                 0x272fc, 0x27388,
1234                 0x27400, 0x27404,
1235                 0x27500, 0x27500,
1236                 0x27510, 0x27518,
1237                 0x2752c, 0x27530,
1238                 0x2753c, 0x2753c,
1239                 0x27550, 0x27554,
1240                 0x27600, 0x27600,
1241                 0x27608, 0x2761c,
1242                 0x27624, 0x27628,
1243                 0x27630, 0x27634,
1244                 0x2763c, 0x2763c,
1245                 0x27700, 0x2771c,
1246                 0x27780, 0x2778c,
1247                 0x27800, 0x27818,
1248                 0x27820, 0x27828,
1249                 0x27830, 0x27848,
1250                 0x27850, 0x27854,
1251                 0x27860, 0x27868,
1252                 0x27870, 0x27870,
1253                 0x27878, 0x27898,
1254                 0x278a0, 0x278a8,
1255                 0x278b0, 0x278c8,
1256                 0x278d0, 0x278d4,
1257                 0x278e0, 0x278e8,
1258                 0x278f0, 0x278f0,
1259                 0x278f8, 0x27a18,
1260                 0x27a20, 0x27a28,
1261                 0x27a30, 0x27a48,
1262                 0x27a50, 0x27a54,
1263                 0x27a60, 0x27a68,
1264                 0x27a70, 0x27a70,
1265                 0x27a78, 0x27a98,
1266                 0x27aa0, 0x27aa8,
1267                 0x27ab0, 0x27ac8,
1268                 0x27ad0, 0x27ad4,
1269                 0x27ae0, 0x27ae8,
1270                 0x27af0, 0x27af0,
1271                 0x27af8, 0x27c18,
1272                 0x27c20, 0x27c20,
1273                 0x27c28, 0x27c30,
1274                 0x27c38, 0x27c38,
1275                 0x27c80, 0x27c98,
1276                 0x27ca0, 0x27ca8,
1277                 0x27cb0, 0x27cc8,
1278                 0x27cd0, 0x27cd4,
1279                 0x27ce0, 0x27ce8,
1280                 0x27cf0, 0x27cf0,
1281                 0x27cf8, 0x27d7c,
1282                 0x27e00, 0x27e04,
1283         };
1284
1285         static const unsigned int t4vf_reg_ranges[] = {
1286                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287                 VF_MPS_REG(A_MPS_VF_CTL),
1288                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292                 FW_T4VF_MBDATA_BASE_ADDR,
1293                 FW_T4VF_MBDATA_BASE_ADDR +
1294                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295         };
1296
1297         static const unsigned int t5_reg_ranges[] = {
1298                 0x1008, 0x10c0,
1299                 0x10cc, 0x10f8,
1300                 0x1100, 0x1100,
1301                 0x110c, 0x1148,
1302                 0x1180, 0x1184,
1303                 0x1190, 0x1194,
1304                 0x11a0, 0x11a4,
1305                 0x11b0, 0x11b4,
1306                 0x11fc, 0x123c,
1307                 0x1280, 0x173c,
1308                 0x1800, 0x18fc,
1309                 0x3000, 0x3028,
1310                 0x3060, 0x30b0,
1311                 0x30b8, 0x30d8,
1312                 0x30e0, 0x30fc,
1313                 0x3140, 0x357c,
1314                 0x35a8, 0x35cc,
1315                 0x35ec, 0x35ec,
1316                 0x3600, 0x5624,
1317                 0x56cc, 0x56ec,
1318                 0x56f4, 0x5720,
1319                 0x5728, 0x575c,
1320                 0x580c, 0x5814,
1321                 0x5890, 0x589c,
1322                 0x58a4, 0x58ac,
1323                 0x58b8, 0x58bc,
1324                 0x5940, 0x59c8,
1325                 0x59d0, 0x59dc,
1326                 0x59fc, 0x5a18,
1327                 0x5a60, 0x5a70,
1328                 0x5a80, 0x5a9c,
1329                 0x5b94, 0x5bfc,
1330                 0x6000, 0x6020,
1331                 0x6028, 0x6040,
1332                 0x6058, 0x609c,
1333                 0x60a8, 0x614c,
1334                 0x7700, 0x7798,
1335                 0x77c0, 0x78fc,
1336                 0x7b00, 0x7b58,
1337                 0x7b60, 0x7b84,
1338                 0x7b8c, 0x7c54,
1339                 0x7d00, 0x7d38,
1340                 0x7d40, 0x7d80,
1341                 0x7d8c, 0x7ddc,
1342                 0x7de4, 0x7e04,
1343                 0x7e10, 0x7e1c,
1344                 0x7e24, 0x7e38,
1345                 0x7e40, 0x7e44,
1346                 0x7e4c, 0x7e78,
1347                 0x7e80, 0x7edc,
1348                 0x7ee8, 0x7efc,
1349                 0x8dc0, 0x8de0,
1350                 0x8df8, 0x8e04,
1351                 0x8e10, 0x8e84,
1352                 0x8ea0, 0x8f84,
1353                 0x8fc0, 0x9058,
1354                 0x9060, 0x9060,
1355                 0x9068, 0x90f8,
1356                 0x9400, 0x9408,
1357                 0x9410, 0x9470,
1358                 0x9600, 0x9600,
1359                 0x9608, 0x9638,
1360                 0x9640, 0x96f4,
1361                 0x9800, 0x9808,
1362                 0x9820, 0x983c,
1363                 0x9850, 0x9864,
1364                 0x9c00, 0x9c6c,
1365                 0x9c80, 0x9cec,
1366                 0x9d00, 0x9d6c,
1367                 0x9d80, 0x9dec,
1368                 0x9e00, 0x9e6c,
1369                 0x9e80, 0x9eec,
1370                 0x9f00, 0x9f6c,
1371                 0x9f80, 0xa020,
1372                 0xd004, 0xd004,
1373                 0xd010, 0xd03c,
1374                 0xdfc0, 0xdfe0,
1375                 0xe000, 0x1106c,
1376                 0x11074, 0x11088,
1377                 0x1109c, 0x1117c,
1378                 0x11190, 0x11204,
1379                 0x19040, 0x1906c,
1380                 0x19078, 0x19080,
1381                 0x1908c, 0x190e8,
1382                 0x190f0, 0x190f8,
1383                 0x19100, 0x19110,
1384                 0x19120, 0x19124,
1385                 0x19150, 0x19194,
1386                 0x1919c, 0x191b0,
1387                 0x191d0, 0x191e8,
1388                 0x19238, 0x19290,
1389                 0x193f8, 0x19428,
1390                 0x19430, 0x19444,
1391                 0x1944c, 0x1946c,
1392                 0x19474, 0x19474,
1393                 0x19490, 0x194cc,
1394                 0x194f0, 0x194f8,
1395                 0x19c00, 0x19c08,
1396                 0x19c10, 0x19c60,
1397                 0x19c94, 0x19ce4,
1398                 0x19cf0, 0x19d40,
1399                 0x19d50, 0x19d94,
1400                 0x19da0, 0x19de8,
1401                 0x19df0, 0x19e10,
1402                 0x19e50, 0x19e90,
1403                 0x19ea0, 0x19f24,
1404                 0x19f34, 0x19f34,
1405                 0x19f40, 0x19f50,
1406                 0x19f90, 0x19fb4,
1407                 0x19fc4, 0x19fe4,
1408                 0x1a000, 0x1a004,
1409                 0x1a010, 0x1a06c,
1410                 0x1a0b0, 0x1a0e4,
1411                 0x1a0ec, 0x1a0f8,
1412                 0x1a100, 0x1a108,
1413                 0x1a114, 0x1a120,
1414                 0x1a128, 0x1a130,
1415                 0x1a138, 0x1a138,
1416                 0x1a190, 0x1a1c4,
1417                 0x1a1fc, 0x1a1fc,
1418                 0x1e008, 0x1e00c,
1419                 0x1e040, 0x1e044,
1420                 0x1e04c, 0x1e04c,
1421                 0x1e284, 0x1e290,
1422                 0x1e2c0, 0x1e2c0,
1423                 0x1e2e0, 0x1e2e0,
1424                 0x1e300, 0x1e384,
1425                 0x1e3c0, 0x1e3c8,
1426                 0x1e408, 0x1e40c,
1427                 0x1e440, 0x1e444,
1428                 0x1e44c, 0x1e44c,
1429                 0x1e684, 0x1e690,
1430                 0x1e6c0, 0x1e6c0,
1431                 0x1e6e0, 0x1e6e0,
1432                 0x1e700, 0x1e784,
1433                 0x1e7c0, 0x1e7c8,
1434                 0x1e808, 0x1e80c,
1435                 0x1e840, 0x1e844,
1436                 0x1e84c, 0x1e84c,
1437                 0x1ea84, 0x1ea90,
1438                 0x1eac0, 0x1eac0,
1439                 0x1eae0, 0x1eae0,
1440                 0x1eb00, 0x1eb84,
1441                 0x1ebc0, 0x1ebc8,
1442                 0x1ec08, 0x1ec0c,
1443                 0x1ec40, 0x1ec44,
1444                 0x1ec4c, 0x1ec4c,
1445                 0x1ee84, 0x1ee90,
1446                 0x1eec0, 0x1eec0,
1447                 0x1eee0, 0x1eee0,
1448                 0x1ef00, 0x1ef84,
1449                 0x1efc0, 0x1efc8,
1450                 0x1f008, 0x1f00c,
1451                 0x1f040, 0x1f044,
1452                 0x1f04c, 0x1f04c,
1453                 0x1f284, 0x1f290,
1454                 0x1f2c0, 0x1f2c0,
1455                 0x1f2e0, 0x1f2e0,
1456                 0x1f300, 0x1f384,
1457                 0x1f3c0, 0x1f3c8,
1458                 0x1f408, 0x1f40c,
1459                 0x1f440, 0x1f444,
1460                 0x1f44c, 0x1f44c,
1461                 0x1f684, 0x1f690,
1462                 0x1f6c0, 0x1f6c0,
1463                 0x1f6e0, 0x1f6e0,
1464                 0x1f700, 0x1f784,
1465                 0x1f7c0, 0x1f7c8,
1466                 0x1f808, 0x1f80c,
1467                 0x1f840, 0x1f844,
1468                 0x1f84c, 0x1f84c,
1469                 0x1fa84, 0x1fa90,
1470                 0x1fac0, 0x1fac0,
1471                 0x1fae0, 0x1fae0,
1472                 0x1fb00, 0x1fb84,
1473                 0x1fbc0, 0x1fbc8,
1474                 0x1fc08, 0x1fc0c,
1475                 0x1fc40, 0x1fc44,
1476                 0x1fc4c, 0x1fc4c,
1477                 0x1fe84, 0x1fe90,
1478                 0x1fec0, 0x1fec0,
1479                 0x1fee0, 0x1fee0,
1480                 0x1ff00, 0x1ff84,
1481                 0x1ffc0, 0x1ffc8,
1482                 0x30000, 0x30030,
1483                 0x30100, 0x30144,
1484                 0x30190, 0x301a0,
1485                 0x301a8, 0x301b8,
1486                 0x301c4, 0x301c8,
1487                 0x301d0, 0x301d0,
1488                 0x30200, 0x30318,
1489                 0x30400, 0x304b4,
1490                 0x304c0, 0x3052c,
1491                 0x30540, 0x3061c,
1492                 0x30800, 0x30828,
1493                 0x30834, 0x30834,
1494                 0x308c0, 0x30908,
1495                 0x30910, 0x309ac,
1496                 0x30a00, 0x30a14,
1497                 0x30a1c, 0x30a2c,
1498                 0x30a44, 0x30a50,
1499                 0x30a74, 0x30a74,
1500                 0x30a7c, 0x30afc,
1501                 0x30b08, 0x30c24,
1502                 0x30d00, 0x30d00,
1503                 0x30d08, 0x30d14,
1504                 0x30d1c, 0x30d20,
1505                 0x30d3c, 0x30d3c,
1506                 0x30d48, 0x30d50,
1507                 0x31200, 0x3120c,
1508                 0x31220, 0x31220,
1509                 0x31240, 0x31240,
1510                 0x31600, 0x3160c,
1511                 0x31a00, 0x31a1c,
1512                 0x31e00, 0x31e20,
1513                 0x31e38, 0x31e3c,
1514                 0x31e80, 0x31e80,
1515                 0x31e88, 0x31ea8,
1516                 0x31eb0, 0x31eb4,
1517                 0x31ec8, 0x31ed4,
1518                 0x31fb8, 0x32004,
1519                 0x32200, 0x32200,
1520                 0x32208, 0x32240,
1521                 0x32248, 0x32280,
1522                 0x32288, 0x322c0,
1523                 0x322c8, 0x322fc,
1524                 0x32600, 0x32630,
1525                 0x32a00, 0x32abc,
1526                 0x32b00, 0x32b10,
1527                 0x32b20, 0x32b30,
1528                 0x32b40, 0x32b50,
1529                 0x32b60, 0x32b70,
1530                 0x33000, 0x33028,
1531                 0x33030, 0x33048,
1532                 0x33060, 0x33068,
1533                 0x33070, 0x3309c,
1534                 0x330f0, 0x33128,
1535                 0x33130, 0x33148,
1536                 0x33160, 0x33168,
1537                 0x33170, 0x3319c,
1538                 0x331f0, 0x33238,
1539                 0x33240, 0x33240,
1540                 0x33248, 0x33250,
1541                 0x3325c, 0x33264,
1542                 0x33270, 0x332b8,
1543                 0x332c0, 0x332e4,
1544                 0x332f8, 0x33338,
1545                 0x33340, 0x33340,
1546                 0x33348, 0x33350,
1547                 0x3335c, 0x33364,
1548                 0x33370, 0x333b8,
1549                 0x333c0, 0x333e4,
1550                 0x333f8, 0x33428,
1551                 0x33430, 0x33448,
1552                 0x33460, 0x33468,
1553                 0x33470, 0x3349c,
1554                 0x334f0, 0x33528,
1555                 0x33530, 0x33548,
1556                 0x33560, 0x33568,
1557                 0x33570, 0x3359c,
1558                 0x335f0, 0x33638,
1559                 0x33640, 0x33640,
1560                 0x33648, 0x33650,
1561                 0x3365c, 0x33664,
1562                 0x33670, 0x336b8,
1563                 0x336c0, 0x336e4,
1564                 0x336f8, 0x33738,
1565                 0x33740, 0x33740,
1566                 0x33748, 0x33750,
1567                 0x3375c, 0x33764,
1568                 0x33770, 0x337b8,
1569                 0x337c0, 0x337e4,
1570                 0x337f8, 0x337fc,
1571                 0x33814, 0x33814,
1572                 0x3382c, 0x3382c,
1573                 0x33880, 0x3388c,
1574                 0x338e8, 0x338ec,
1575                 0x33900, 0x33928,
1576                 0x33930, 0x33948,
1577                 0x33960, 0x33968,
1578                 0x33970, 0x3399c,
1579                 0x339f0, 0x33a38,
1580                 0x33a40, 0x33a40,
1581                 0x33a48, 0x33a50,
1582                 0x33a5c, 0x33a64,
1583                 0x33a70, 0x33ab8,
1584                 0x33ac0, 0x33ae4,
1585                 0x33af8, 0x33b10,
1586                 0x33b28, 0x33b28,
1587                 0x33b3c, 0x33b50,
1588                 0x33bf0, 0x33c10,
1589                 0x33c28, 0x33c28,
1590                 0x33c3c, 0x33c50,
1591                 0x33cf0, 0x33cfc,
1592                 0x34000, 0x34030,
1593                 0x34100, 0x34144,
1594                 0x34190, 0x341a0,
1595                 0x341a8, 0x341b8,
1596                 0x341c4, 0x341c8,
1597                 0x341d0, 0x341d0,
1598                 0x34200, 0x34318,
1599                 0x34400, 0x344b4,
1600                 0x344c0, 0x3452c,
1601                 0x34540, 0x3461c,
1602                 0x34800, 0x34828,
1603                 0x34834, 0x34834,
1604                 0x348c0, 0x34908,
1605                 0x34910, 0x349ac,
1606                 0x34a00, 0x34a14,
1607                 0x34a1c, 0x34a2c,
1608                 0x34a44, 0x34a50,
1609                 0x34a74, 0x34a74,
1610                 0x34a7c, 0x34afc,
1611                 0x34b08, 0x34c24,
1612                 0x34d00, 0x34d00,
1613                 0x34d08, 0x34d14,
1614                 0x34d1c, 0x34d20,
1615                 0x34d3c, 0x34d3c,
1616                 0x34d48, 0x34d50,
1617                 0x35200, 0x3520c,
1618                 0x35220, 0x35220,
1619                 0x35240, 0x35240,
1620                 0x35600, 0x3560c,
1621                 0x35a00, 0x35a1c,
1622                 0x35e00, 0x35e20,
1623                 0x35e38, 0x35e3c,
1624                 0x35e80, 0x35e80,
1625                 0x35e88, 0x35ea8,
1626                 0x35eb0, 0x35eb4,
1627                 0x35ec8, 0x35ed4,
1628                 0x35fb8, 0x36004,
1629                 0x36200, 0x36200,
1630                 0x36208, 0x36240,
1631                 0x36248, 0x36280,
1632                 0x36288, 0x362c0,
1633                 0x362c8, 0x362fc,
1634                 0x36600, 0x36630,
1635                 0x36a00, 0x36abc,
1636                 0x36b00, 0x36b10,
1637                 0x36b20, 0x36b30,
1638                 0x36b40, 0x36b50,
1639                 0x36b60, 0x36b70,
1640                 0x37000, 0x37028,
1641                 0x37030, 0x37048,
1642                 0x37060, 0x37068,
1643                 0x37070, 0x3709c,
1644                 0x370f0, 0x37128,
1645                 0x37130, 0x37148,
1646                 0x37160, 0x37168,
1647                 0x37170, 0x3719c,
1648                 0x371f0, 0x37238,
1649                 0x37240, 0x37240,
1650                 0x37248, 0x37250,
1651                 0x3725c, 0x37264,
1652                 0x37270, 0x372b8,
1653                 0x372c0, 0x372e4,
1654                 0x372f8, 0x37338,
1655                 0x37340, 0x37340,
1656                 0x37348, 0x37350,
1657                 0x3735c, 0x37364,
1658                 0x37370, 0x373b8,
1659                 0x373c0, 0x373e4,
1660                 0x373f8, 0x37428,
1661                 0x37430, 0x37448,
1662                 0x37460, 0x37468,
1663                 0x37470, 0x3749c,
1664                 0x374f0, 0x37528,
1665                 0x37530, 0x37548,
1666                 0x37560, 0x37568,
1667                 0x37570, 0x3759c,
1668                 0x375f0, 0x37638,
1669                 0x37640, 0x37640,
1670                 0x37648, 0x37650,
1671                 0x3765c, 0x37664,
1672                 0x37670, 0x376b8,
1673                 0x376c0, 0x376e4,
1674                 0x376f8, 0x37738,
1675                 0x37740, 0x37740,
1676                 0x37748, 0x37750,
1677                 0x3775c, 0x37764,
1678                 0x37770, 0x377b8,
1679                 0x377c0, 0x377e4,
1680                 0x377f8, 0x377fc,
1681                 0x37814, 0x37814,
1682                 0x3782c, 0x3782c,
1683                 0x37880, 0x3788c,
1684                 0x378e8, 0x378ec,
1685                 0x37900, 0x37928,
1686                 0x37930, 0x37948,
1687                 0x37960, 0x37968,
1688                 0x37970, 0x3799c,
1689                 0x379f0, 0x37a38,
1690                 0x37a40, 0x37a40,
1691                 0x37a48, 0x37a50,
1692                 0x37a5c, 0x37a64,
1693                 0x37a70, 0x37ab8,
1694                 0x37ac0, 0x37ae4,
1695                 0x37af8, 0x37b10,
1696                 0x37b28, 0x37b28,
1697                 0x37b3c, 0x37b50,
1698                 0x37bf0, 0x37c10,
1699                 0x37c28, 0x37c28,
1700                 0x37c3c, 0x37c50,
1701                 0x37cf0, 0x37cfc,
1702                 0x38000, 0x38030,
1703                 0x38100, 0x38144,
1704                 0x38190, 0x381a0,
1705                 0x381a8, 0x381b8,
1706                 0x381c4, 0x381c8,
1707                 0x381d0, 0x381d0,
1708                 0x38200, 0x38318,
1709                 0x38400, 0x384b4,
1710                 0x384c0, 0x3852c,
1711                 0x38540, 0x3861c,
1712                 0x38800, 0x38828,
1713                 0x38834, 0x38834,
1714                 0x388c0, 0x38908,
1715                 0x38910, 0x389ac,
1716                 0x38a00, 0x38a14,
1717                 0x38a1c, 0x38a2c,
1718                 0x38a44, 0x38a50,
1719                 0x38a74, 0x38a74,
1720                 0x38a7c, 0x38afc,
1721                 0x38b08, 0x38c24,
1722                 0x38d00, 0x38d00,
1723                 0x38d08, 0x38d14,
1724                 0x38d1c, 0x38d20,
1725                 0x38d3c, 0x38d3c,
1726                 0x38d48, 0x38d50,
1727                 0x39200, 0x3920c,
1728                 0x39220, 0x39220,
1729                 0x39240, 0x39240,
1730                 0x39600, 0x3960c,
1731                 0x39a00, 0x39a1c,
1732                 0x39e00, 0x39e20,
1733                 0x39e38, 0x39e3c,
1734                 0x39e80, 0x39e80,
1735                 0x39e88, 0x39ea8,
1736                 0x39eb0, 0x39eb4,
1737                 0x39ec8, 0x39ed4,
1738                 0x39fb8, 0x3a004,
1739                 0x3a200, 0x3a200,
1740                 0x3a208, 0x3a240,
1741                 0x3a248, 0x3a280,
1742                 0x3a288, 0x3a2c0,
1743                 0x3a2c8, 0x3a2fc,
1744                 0x3a600, 0x3a630,
1745                 0x3aa00, 0x3aabc,
1746                 0x3ab00, 0x3ab10,
1747                 0x3ab20, 0x3ab30,
1748                 0x3ab40, 0x3ab50,
1749                 0x3ab60, 0x3ab70,
1750                 0x3b000, 0x3b028,
1751                 0x3b030, 0x3b048,
1752                 0x3b060, 0x3b068,
1753                 0x3b070, 0x3b09c,
1754                 0x3b0f0, 0x3b128,
1755                 0x3b130, 0x3b148,
1756                 0x3b160, 0x3b168,
1757                 0x3b170, 0x3b19c,
1758                 0x3b1f0, 0x3b238,
1759                 0x3b240, 0x3b240,
1760                 0x3b248, 0x3b250,
1761                 0x3b25c, 0x3b264,
1762                 0x3b270, 0x3b2b8,
1763                 0x3b2c0, 0x3b2e4,
1764                 0x3b2f8, 0x3b338,
1765                 0x3b340, 0x3b340,
1766                 0x3b348, 0x3b350,
1767                 0x3b35c, 0x3b364,
1768                 0x3b370, 0x3b3b8,
1769                 0x3b3c0, 0x3b3e4,
1770                 0x3b3f8, 0x3b428,
1771                 0x3b430, 0x3b448,
1772                 0x3b460, 0x3b468,
1773                 0x3b470, 0x3b49c,
1774                 0x3b4f0, 0x3b528,
1775                 0x3b530, 0x3b548,
1776                 0x3b560, 0x3b568,
1777                 0x3b570, 0x3b59c,
1778                 0x3b5f0, 0x3b638,
1779                 0x3b640, 0x3b640,
1780                 0x3b648, 0x3b650,
1781                 0x3b65c, 0x3b664,
1782                 0x3b670, 0x3b6b8,
1783                 0x3b6c0, 0x3b6e4,
1784                 0x3b6f8, 0x3b738,
1785                 0x3b740, 0x3b740,
1786                 0x3b748, 0x3b750,
1787                 0x3b75c, 0x3b764,
1788                 0x3b770, 0x3b7b8,
1789                 0x3b7c0, 0x3b7e4,
1790                 0x3b7f8, 0x3b7fc,
1791                 0x3b814, 0x3b814,
1792                 0x3b82c, 0x3b82c,
1793                 0x3b880, 0x3b88c,
1794                 0x3b8e8, 0x3b8ec,
1795                 0x3b900, 0x3b928,
1796                 0x3b930, 0x3b948,
1797                 0x3b960, 0x3b968,
1798                 0x3b970, 0x3b99c,
1799                 0x3b9f0, 0x3ba38,
1800                 0x3ba40, 0x3ba40,
1801                 0x3ba48, 0x3ba50,
1802                 0x3ba5c, 0x3ba64,
1803                 0x3ba70, 0x3bab8,
1804                 0x3bac0, 0x3bae4,
1805                 0x3baf8, 0x3bb10,
1806                 0x3bb28, 0x3bb28,
1807                 0x3bb3c, 0x3bb50,
1808                 0x3bbf0, 0x3bc10,
1809                 0x3bc28, 0x3bc28,
1810                 0x3bc3c, 0x3bc50,
1811                 0x3bcf0, 0x3bcfc,
1812                 0x3c000, 0x3c030,
1813                 0x3c100, 0x3c144,
1814                 0x3c190, 0x3c1a0,
1815                 0x3c1a8, 0x3c1b8,
1816                 0x3c1c4, 0x3c1c8,
1817                 0x3c1d0, 0x3c1d0,
1818                 0x3c200, 0x3c318,
1819                 0x3c400, 0x3c4b4,
1820                 0x3c4c0, 0x3c52c,
1821                 0x3c540, 0x3c61c,
1822                 0x3c800, 0x3c828,
1823                 0x3c834, 0x3c834,
1824                 0x3c8c0, 0x3c908,
1825                 0x3c910, 0x3c9ac,
1826                 0x3ca00, 0x3ca14,
1827                 0x3ca1c, 0x3ca2c,
1828                 0x3ca44, 0x3ca50,
1829                 0x3ca74, 0x3ca74,
1830                 0x3ca7c, 0x3cafc,
1831                 0x3cb08, 0x3cc24,
1832                 0x3cd00, 0x3cd00,
1833                 0x3cd08, 0x3cd14,
1834                 0x3cd1c, 0x3cd20,
1835                 0x3cd3c, 0x3cd3c,
1836                 0x3cd48, 0x3cd50,
1837                 0x3d200, 0x3d20c,
1838                 0x3d220, 0x3d220,
1839                 0x3d240, 0x3d240,
1840                 0x3d600, 0x3d60c,
1841                 0x3da00, 0x3da1c,
1842                 0x3de00, 0x3de20,
1843                 0x3de38, 0x3de3c,
1844                 0x3de80, 0x3de80,
1845                 0x3de88, 0x3dea8,
1846                 0x3deb0, 0x3deb4,
1847                 0x3dec8, 0x3ded4,
1848                 0x3dfb8, 0x3e004,
1849                 0x3e200, 0x3e200,
1850                 0x3e208, 0x3e240,
1851                 0x3e248, 0x3e280,
1852                 0x3e288, 0x3e2c0,
1853                 0x3e2c8, 0x3e2fc,
1854                 0x3e600, 0x3e630,
1855                 0x3ea00, 0x3eabc,
1856                 0x3eb00, 0x3eb10,
1857                 0x3eb20, 0x3eb30,
1858                 0x3eb40, 0x3eb50,
1859                 0x3eb60, 0x3eb70,
1860                 0x3f000, 0x3f028,
1861                 0x3f030, 0x3f048,
1862                 0x3f060, 0x3f068,
1863                 0x3f070, 0x3f09c,
1864                 0x3f0f0, 0x3f128,
1865                 0x3f130, 0x3f148,
1866                 0x3f160, 0x3f168,
1867                 0x3f170, 0x3f19c,
1868                 0x3f1f0, 0x3f238,
1869                 0x3f240, 0x3f240,
1870                 0x3f248, 0x3f250,
1871                 0x3f25c, 0x3f264,
1872                 0x3f270, 0x3f2b8,
1873                 0x3f2c0, 0x3f2e4,
1874                 0x3f2f8, 0x3f338,
1875                 0x3f340, 0x3f340,
1876                 0x3f348, 0x3f350,
1877                 0x3f35c, 0x3f364,
1878                 0x3f370, 0x3f3b8,
1879                 0x3f3c0, 0x3f3e4,
1880                 0x3f3f8, 0x3f428,
1881                 0x3f430, 0x3f448,
1882                 0x3f460, 0x3f468,
1883                 0x3f470, 0x3f49c,
1884                 0x3f4f0, 0x3f528,
1885                 0x3f530, 0x3f548,
1886                 0x3f560, 0x3f568,
1887                 0x3f570, 0x3f59c,
1888                 0x3f5f0, 0x3f638,
1889                 0x3f640, 0x3f640,
1890                 0x3f648, 0x3f650,
1891                 0x3f65c, 0x3f664,
1892                 0x3f670, 0x3f6b8,
1893                 0x3f6c0, 0x3f6e4,
1894                 0x3f6f8, 0x3f738,
1895                 0x3f740, 0x3f740,
1896                 0x3f748, 0x3f750,
1897                 0x3f75c, 0x3f764,
1898                 0x3f770, 0x3f7b8,
1899                 0x3f7c0, 0x3f7e4,
1900                 0x3f7f8, 0x3f7fc,
1901                 0x3f814, 0x3f814,
1902                 0x3f82c, 0x3f82c,
1903                 0x3f880, 0x3f88c,
1904                 0x3f8e8, 0x3f8ec,
1905                 0x3f900, 0x3f928,
1906                 0x3f930, 0x3f948,
1907                 0x3f960, 0x3f968,
1908                 0x3f970, 0x3f99c,
1909                 0x3f9f0, 0x3fa38,
1910                 0x3fa40, 0x3fa40,
1911                 0x3fa48, 0x3fa50,
1912                 0x3fa5c, 0x3fa64,
1913                 0x3fa70, 0x3fab8,
1914                 0x3fac0, 0x3fae4,
1915                 0x3faf8, 0x3fb10,
1916                 0x3fb28, 0x3fb28,
1917                 0x3fb3c, 0x3fb50,
1918                 0x3fbf0, 0x3fc10,
1919                 0x3fc28, 0x3fc28,
1920                 0x3fc3c, 0x3fc50,
1921                 0x3fcf0, 0x3fcfc,
1922                 0x40000, 0x4000c,
1923                 0x40040, 0x40050,
1924                 0x40060, 0x40068,
1925                 0x4007c, 0x4008c,
1926                 0x40094, 0x400b0,
1927                 0x400c0, 0x40144,
1928                 0x40180, 0x4018c,
1929                 0x40200, 0x40254,
1930                 0x40260, 0x40264,
1931                 0x40270, 0x40288,
1932                 0x40290, 0x40298,
1933                 0x402ac, 0x402c8,
1934                 0x402d0, 0x402e0,
1935                 0x402f0, 0x402f0,
1936                 0x40300, 0x4033c,
1937                 0x403f8, 0x403fc,
1938                 0x41304, 0x413c4,
1939                 0x41400, 0x4140c,
1940                 0x41414, 0x4141c,
1941                 0x41480, 0x414d0,
1942                 0x44000, 0x44054,
1943                 0x4405c, 0x44078,
1944                 0x440c0, 0x44174,
1945                 0x44180, 0x441ac,
1946                 0x441b4, 0x441b8,
1947                 0x441c0, 0x44254,
1948                 0x4425c, 0x44278,
1949                 0x442c0, 0x44374,
1950                 0x44380, 0x443ac,
1951                 0x443b4, 0x443b8,
1952                 0x443c0, 0x44454,
1953                 0x4445c, 0x44478,
1954                 0x444c0, 0x44574,
1955                 0x44580, 0x445ac,
1956                 0x445b4, 0x445b8,
1957                 0x445c0, 0x44654,
1958                 0x4465c, 0x44678,
1959                 0x446c0, 0x44774,
1960                 0x44780, 0x447ac,
1961                 0x447b4, 0x447b8,
1962                 0x447c0, 0x44854,
1963                 0x4485c, 0x44878,
1964                 0x448c0, 0x44974,
1965                 0x44980, 0x449ac,
1966                 0x449b4, 0x449b8,
1967                 0x449c0, 0x449fc,
1968                 0x45000, 0x45004,
1969                 0x45010, 0x45030,
1970                 0x45040, 0x45060,
1971                 0x45068, 0x45068,
1972                 0x45080, 0x45084,
1973                 0x450a0, 0x450b0,
1974                 0x45200, 0x45204,
1975                 0x45210, 0x45230,
1976                 0x45240, 0x45260,
1977                 0x45268, 0x45268,
1978                 0x45280, 0x45284,
1979                 0x452a0, 0x452b0,
1980                 0x460c0, 0x460e4,
1981                 0x47000, 0x4703c,
1982                 0x47044, 0x4708c,
1983                 0x47200, 0x47250,
1984                 0x47400, 0x47408,
1985                 0x47414, 0x47420,
1986                 0x47600, 0x47618,
1987                 0x47800, 0x47814,
1988                 0x48000, 0x4800c,
1989                 0x48040, 0x48050,
1990                 0x48060, 0x48068,
1991                 0x4807c, 0x4808c,
1992                 0x48094, 0x480b0,
1993                 0x480c0, 0x48144,
1994                 0x48180, 0x4818c,
1995                 0x48200, 0x48254,
1996                 0x48260, 0x48264,
1997                 0x48270, 0x48288,
1998                 0x48290, 0x48298,
1999                 0x482ac, 0x482c8,
2000                 0x482d0, 0x482e0,
2001                 0x482f0, 0x482f0,
2002                 0x48300, 0x4833c,
2003                 0x483f8, 0x483fc,
2004                 0x49304, 0x493c4,
2005                 0x49400, 0x4940c,
2006                 0x49414, 0x4941c,
2007                 0x49480, 0x494d0,
2008                 0x4c000, 0x4c054,
2009                 0x4c05c, 0x4c078,
2010                 0x4c0c0, 0x4c174,
2011                 0x4c180, 0x4c1ac,
2012                 0x4c1b4, 0x4c1b8,
2013                 0x4c1c0, 0x4c254,
2014                 0x4c25c, 0x4c278,
2015                 0x4c2c0, 0x4c374,
2016                 0x4c380, 0x4c3ac,
2017                 0x4c3b4, 0x4c3b8,
2018                 0x4c3c0, 0x4c454,
2019                 0x4c45c, 0x4c478,
2020                 0x4c4c0, 0x4c574,
2021                 0x4c580, 0x4c5ac,
2022                 0x4c5b4, 0x4c5b8,
2023                 0x4c5c0, 0x4c654,
2024                 0x4c65c, 0x4c678,
2025                 0x4c6c0, 0x4c774,
2026                 0x4c780, 0x4c7ac,
2027                 0x4c7b4, 0x4c7b8,
2028                 0x4c7c0, 0x4c854,
2029                 0x4c85c, 0x4c878,
2030                 0x4c8c0, 0x4c974,
2031                 0x4c980, 0x4c9ac,
2032                 0x4c9b4, 0x4c9b8,
2033                 0x4c9c0, 0x4c9fc,
2034                 0x4d000, 0x4d004,
2035                 0x4d010, 0x4d030,
2036                 0x4d040, 0x4d060,
2037                 0x4d068, 0x4d068,
2038                 0x4d080, 0x4d084,
2039                 0x4d0a0, 0x4d0b0,
2040                 0x4d200, 0x4d204,
2041                 0x4d210, 0x4d230,
2042                 0x4d240, 0x4d260,
2043                 0x4d268, 0x4d268,
2044                 0x4d280, 0x4d284,
2045                 0x4d2a0, 0x4d2b0,
2046                 0x4e0c0, 0x4e0e4,
2047                 0x4f000, 0x4f03c,
2048                 0x4f044, 0x4f08c,
2049                 0x4f200, 0x4f250,
2050                 0x4f400, 0x4f408,
2051                 0x4f414, 0x4f420,
2052                 0x4f600, 0x4f618,
2053                 0x4f800, 0x4f814,
2054                 0x50000, 0x50084,
2055                 0x50090, 0x500cc,
2056                 0x50400, 0x50400,
2057                 0x50800, 0x50884,
2058                 0x50890, 0x508cc,
2059                 0x50c00, 0x50c00,
2060                 0x51000, 0x5101c,
2061                 0x51300, 0x51308,
2062         };
2063
2064         static const unsigned int t5vf_reg_ranges[] = {
2065                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2066                 VF_MPS_REG(A_MPS_VF_CTL),
2067                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2068                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2069                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2070                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2071                 FW_T4VF_MBDATA_BASE_ADDR,
2072                 FW_T4VF_MBDATA_BASE_ADDR +
2073                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2074         };
2075
2076         static const unsigned int t6_reg_ranges[] = {
2077                 0x1008, 0x101c,
2078                 0x1024, 0x10a8,
2079                 0x10b4, 0x10f8,
2080                 0x1100, 0x1114,
2081                 0x111c, 0x112c,
2082                 0x1138, 0x113c,
2083                 0x1144, 0x114c,
2084                 0x1180, 0x1184,
2085                 0x1190, 0x1194,
2086                 0x11a0, 0x11a4,
2087                 0x11b0, 0x11b4,
2088                 0x11fc, 0x1274,
2089                 0x1280, 0x133c,
2090                 0x1800, 0x18fc,
2091                 0x3000, 0x302c,
2092                 0x3060, 0x30b0,
2093                 0x30b8, 0x30d8,
2094                 0x30e0, 0x30fc,
2095                 0x3140, 0x357c,
2096                 0x35a8, 0x35cc,
2097                 0x35ec, 0x35ec,
2098                 0x3600, 0x5624,
2099                 0x56cc, 0x56ec,
2100                 0x56f4, 0x5720,
2101                 0x5728, 0x575c,
2102                 0x580c, 0x5814,
2103                 0x5890, 0x589c,
2104                 0x58a4, 0x58ac,
2105                 0x58b8, 0x58bc,
2106                 0x5940, 0x595c,
2107                 0x5980, 0x598c,
2108                 0x59b0, 0x59c8,
2109                 0x59d0, 0x59dc,
2110                 0x59fc, 0x5a18,
2111                 0x5a60, 0x5a6c,
2112                 0x5a80, 0x5a8c,
2113                 0x5a94, 0x5a9c,
2114                 0x5b94, 0x5bfc,
2115                 0x5c10, 0x5e48,
2116                 0x5e50, 0x5e94,
2117                 0x5ea0, 0x5eb0,
2118                 0x5ec0, 0x5ec0,
2119                 0x5ec8, 0x5ed0,
2120                 0x5ee0, 0x5ee0,
2121                 0x5ef0, 0x5ef0,
2122                 0x5f00, 0x5f00,
2123                 0x6000, 0x6020,
2124                 0x6028, 0x6040,
2125                 0x6058, 0x609c,
2126                 0x60a8, 0x619c,
2127                 0x7700, 0x7798,
2128                 0x77c0, 0x7880,
2129                 0x78cc, 0x78fc,
2130                 0x7b00, 0x7b58,
2131                 0x7b60, 0x7b84,
2132                 0x7b8c, 0x7c54,
2133                 0x7d00, 0x7d38,
2134                 0x7d40, 0x7d84,
2135                 0x7d8c, 0x7ddc,
2136                 0x7de4, 0x7e04,
2137                 0x7e10, 0x7e1c,
2138                 0x7e24, 0x7e38,
2139                 0x7e40, 0x7e44,
2140                 0x7e4c, 0x7e78,
2141                 0x7e80, 0x7edc,
2142                 0x7ee8, 0x7efc,
2143                 0x8dc0, 0x8de4,
2144                 0x8df8, 0x8e04,
2145                 0x8e10, 0x8e84,
2146                 0x8ea0, 0x8f88,
2147                 0x8fb8, 0x9058,
2148                 0x9060, 0x9060,
2149                 0x9068, 0x90f8,
2150                 0x9100, 0x9124,
2151                 0x9400, 0x9470,
2152                 0x9600, 0x9600,
2153                 0x9608, 0x9638,
2154                 0x9640, 0x9704,
2155                 0x9710, 0x971c,
2156                 0x9800, 0x9808,
2157                 0x9820, 0x983c,
2158                 0x9850, 0x9864,
2159                 0x9c00, 0x9c6c,
2160                 0x9c80, 0x9cec,
2161                 0x9d00, 0x9d6c,
2162                 0x9d80, 0x9dec,
2163                 0x9e00, 0x9e6c,
2164                 0x9e80, 0x9eec,
2165                 0x9f00, 0x9f6c,
2166                 0x9f80, 0xa020,
2167                 0xd004, 0xd03c,
2168                 0xd100, 0xd118,
2169                 0xd200, 0xd214,
2170                 0xd220, 0xd234,
2171                 0xd240, 0xd254,
2172                 0xd260, 0xd274,
2173                 0xd280, 0xd294,
2174                 0xd2a0, 0xd2b4,
2175                 0xd2c0, 0xd2d4,
2176                 0xd2e0, 0xd2f4,
2177                 0xd300, 0xd31c,
2178                 0xdfc0, 0xdfe0,
2179                 0xe000, 0xf008,
2180                 0xf010, 0xf018,
2181                 0xf020, 0xf028,
2182                 0x11000, 0x11014,
2183                 0x11048, 0x1106c,
2184                 0x11074, 0x11088,
2185                 0x11098, 0x11120,
2186                 0x1112c, 0x1117c,
2187                 0x11190, 0x112e0,
2188                 0x11300, 0x1130c,
2189                 0x12000, 0x1206c,
2190                 0x19040, 0x1906c,
2191                 0x19078, 0x19080,
2192                 0x1908c, 0x190e8,
2193                 0x190f0, 0x190f8,
2194                 0x19100, 0x19110,
2195                 0x19120, 0x19124,
2196                 0x19150, 0x19194,
2197                 0x1919c, 0x191b0,
2198                 0x191d0, 0x191e8,
2199                 0x19238, 0x19290,
2200                 0x192a4, 0x192b0,
2201                 0x192bc, 0x192bc,
2202                 0x19348, 0x1934c,
2203                 0x193f8, 0x19418,
2204                 0x19420, 0x19428,
2205                 0x19430, 0x19444,
2206                 0x1944c, 0x1946c,
2207                 0x19474, 0x19474,
2208                 0x19490, 0x194cc,
2209                 0x194f0, 0x194f8,
2210                 0x19c00, 0x19c48,
2211                 0x19c50, 0x19c80,
2212                 0x19c94, 0x19c98,
2213                 0x19ca0, 0x19cbc,
2214                 0x19ce4, 0x19ce4,
2215                 0x19cf0, 0x19cf8,
2216                 0x19d00, 0x19d28,
2217                 0x19d50, 0x19d78,
2218                 0x19d94, 0x19d98,
2219                 0x19da0, 0x19dc8,
2220                 0x19df0, 0x19e10,
2221                 0x19e50, 0x19e6c,
2222                 0x19ea0, 0x19ebc,
2223                 0x19ec4, 0x19ef4,
2224                 0x19f04, 0x19f2c,
2225                 0x19f34, 0x19f34,
2226                 0x19f40, 0x19f50,
2227                 0x19f90, 0x19fac,
2228                 0x19fc4, 0x19fc8,
2229                 0x19fd0, 0x19fe4,
2230                 0x1a000, 0x1a004,
2231                 0x1a010, 0x1a06c,
2232                 0x1a0b0, 0x1a0e4,
2233                 0x1a0ec, 0x1a0f8,
2234                 0x1a100, 0x1a108,
2235                 0x1a114, 0x1a120,
2236                 0x1a128, 0x1a130,
2237                 0x1a138, 0x1a138,
2238                 0x1a190, 0x1a1c4,
2239                 0x1a1fc, 0x1a1fc,
2240                 0x1e008, 0x1e00c,
2241                 0x1e040, 0x1e044,
2242                 0x1e04c, 0x1e04c,
2243                 0x1e284, 0x1e290,
2244                 0x1e2c0, 0x1e2c0,
2245                 0x1e2e0, 0x1e2e0,
2246                 0x1e300, 0x1e384,
2247                 0x1e3c0, 0x1e3c8,
2248                 0x1e408, 0x1e40c,
2249                 0x1e440, 0x1e444,
2250                 0x1e44c, 0x1e44c,
2251                 0x1e684, 0x1e690,
2252                 0x1e6c0, 0x1e6c0,
2253                 0x1e6e0, 0x1e6e0,
2254                 0x1e700, 0x1e784,
2255                 0x1e7c0, 0x1e7c8,
2256                 0x1e808, 0x1e80c,
2257                 0x1e840, 0x1e844,
2258                 0x1e84c, 0x1e84c,
2259                 0x1ea84, 0x1ea90,
2260                 0x1eac0, 0x1eac0,
2261                 0x1eae0, 0x1eae0,
2262                 0x1eb00, 0x1eb84,
2263                 0x1ebc0, 0x1ebc8,
2264                 0x1ec08, 0x1ec0c,
2265                 0x1ec40, 0x1ec44,
2266                 0x1ec4c, 0x1ec4c,
2267                 0x1ee84, 0x1ee90,
2268                 0x1eec0, 0x1eec0,
2269                 0x1eee0, 0x1eee0,
2270                 0x1ef00, 0x1ef84,
2271                 0x1efc0, 0x1efc8,
2272                 0x1f008, 0x1f00c,
2273                 0x1f040, 0x1f044,
2274                 0x1f04c, 0x1f04c,
2275                 0x1f284, 0x1f290,
2276                 0x1f2c0, 0x1f2c0,
2277                 0x1f2e0, 0x1f2e0,
2278                 0x1f300, 0x1f384,
2279                 0x1f3c0, 0x1f3c8,
2280                 0x1f408, 0x1f40c,
2281                 0x1f440, 0x1f444,
2282                 0x1f44c, 0x1f44c,
2283                 0x1f684, 0x1f690,
2284                 0x1f6c0, 0x1f6c0,
2285                 0x1f6e0, 0x1f6e0,
2286                 0x1f700, 0x1f784,
2287                 0x1f7c0, 0x1f7c8,
2288                 0x1f808, 0x1f80c,
2289                 0x1f840, 0x1f844,
2290                 0x1f84c, 0x1f84c,
2291                 0x1fa84, 0x1fa90,
2292                 0x1fac0, 0x1fac0,
2293                 0x1fae0, 0x1fae0,
2294                 0x1fb00, 0x1fb84,
2295                 0x1fbc0, 0x1fbc8,
2296                 0x1fc08, 0x1fc0c,
2297                 0x1fc40, 0x1fc44,
2298                 0x1fc4c, 0x1fc4c,
2299                 0x1fe84, 0x1fe90,
2300                 0x1fec0, 0x1fec0,
2301                 0x1fee0, 0x1fee0,
2302                 0x1ff00, 0x1ff84,
2303                 0x1ffc0, 0x1ffc8,
2304                 0x30000, 0x30030,
2305                 0x30100, 0x30168,
2306                 0x30190, 0x301a0,
2307                 0x301a8, 0x301b8,
2308                 0x301c4, 0x301c8,
2309                 0x301d0, 0x301d0,
2310                 0x30200, 0x30320,
2311                 0x30400, 0x304b4,
2312                 0x304c0, 0x3052c,
2313                 0x30540, 0x3061c,
2314                 0x30800, 0x308a0,
2315                 0x308c0, 0x30908,
2316                 0x30910, 0x309b8,
2317                 0x30a00, 0x30a04,
2318                 0x30a0c, 0x30a14,
2319                 0x30a1c, 0x30a2c,
2320                 0x30a44, 0x30a50,
2321                 0x30a74, 0x30a74,
2322                 0x30a7c, 0x30afc,
2323                 0x30b08, 0x30c24,
2324                 0x30d00, 0x30d14,
2325                 0x30d1c, 0x30d3c,
2326                 0x30d44, 0x30d4c,
2327                 0x30d54, 0x30d74,
2328                 0x30d7c, 0x30d7c,
2329                 0x30de0, 0x30de0,
2330                 0x30e00, 0x30ed4,
2331                 0x30f00, 0x30fa4,
2332                 0x30fc0, 0x30fc4,
2333                 0x31000, 0x31004,
2334                 0x31080, 0x310fc,
2335                 0x31208, 0x31220,
2336                 0x3123c, 0x31254,
2337                 0x31300, 0x31300,
2338                 0x31308, 0x3131c,
2339                 0x31338, 0x3133c,
2340                 0x31380, 0x31380,
2341                 0x31388, 0x313a8,
2342                 0x313b4, 0x313b4,
2343                 0x31400, 0x31420,
2344                 0x31438, 0x3143c,
2345                 0x31480, 0x31480,
2346                 0x314a8, 0x314a8,
2347                 0x314b0, 0x314b4,
2348                 0x314c8, 0x314d4,
2349                 0x31a40, 0x31a4c,
2350                 0x31af0, 0x31b20,
2351                 0x31b38, 0x31b3c,
2352                 0x31b80, 0x31b80,
2353                 0x31ba8, 0x31ba8,
2354                 0x31bb0, 0x31bb4,
2355                 0x31bc8, 0x31bd4,
2356                 0x32140, 0x3218c,
2357                 0x321f0, 0x321f4,
2358                 0x32200, 0x32200,
2359                 0x32218, 0x32218,
2360                 0x32400, 0x32400,
2361                 0x32408, 0x3241c,
2362                 0x32618, 0x32620,
2363                 0x32664, 0x32664,
2364                 0x326a8, 0x326a8,
2365                 0x326ec, 0x326ec,
2366                 0x32a00, 0x32abc,
2367                 0x32b00, 0x32b18,
2368                 0x32b20, 0x32b38,
2369                 0x32b40, 0x32b58,
2370                 0x32b60, 0x32b78,
2371                 0x32c00, 0x32c00,
2372                 0x32c08, 0x32c3c,
2373                 0x33000, 0x3302c,
2374                 0x33034, 0x33050,
2375                 0x33058, 0x33058,
2376                 0x33060, 0x3308c,
2377                 0x3309c, 0x330ac,
2378                 0x330c0, 0x330c0,
2379                 0x330c8, 0x330d0,
2380                 0x330d8, 0x330e0,
2381                 0x330ec, 0x3312c,
2382                 0x33134, 0x33150,
2383                 0x33158, 0x33158,
2384                 0x33160, 0x3318c,
2385                 0x3319c, 0x331ac,
2386                 0x331c0, 0x331c0,
2387                 0x331c8, 0x331d0,
2388                 0x331d8, 0x331e0,
2389                 0x331ec, 0x33290,
2390                 0x33298, 0x332c4,
2391                 0x332e4, 0x33390,
2392                 0x33398, 0x333c4,
2393                 0x333e4, 0x3342c,
2394                 0x33434, 0x33450,
2395                 0x33458, 0x33458,
2396                 0x33460, 0x3348c,
2397                 0x3349c, 0x334ac,
2398                 0x334c0, 0x334c0,
2399                 0x334c8, 0x334d0,
2400                 0x334d8, 0x334e0,
2401                 0x334ec, 0x3352c,
2402                 0x33534, 0x33550,
2403                 0x33558, 0x33558,
2404                 0x33560, 0x3358c,
2405                 0x3359c, 0x335ac,
2406                 0x335c0, 0x335c0,
2407                 0x335c8, 0x335d0,
2408                 0x335d8, 0x335e0,
2409                 0x335ec, 0x33690,
2410                 0x33698, 0x336c4,
2411                 0x336e4, 0x33790,
2412                 0x33798, 0x337c4,
2413                 0x337e4, 0x337fc,
2414                 0x33814, 0x33814,
2415                 0x33854, 0x33868,
2416                 0x33880, 0x3388c,
2417                 0x338c0, 0x338d0,
2418                 0x338e8, 0x338ec,
2419                 0x33900, 0x3392c,
2420                 0x33934, 0x33950,
2421                 0x33958, 0x33958,
2422                 0x33960, 0x3398c,
2423                 0x3399c, 0x339ac,
2424                 0x339c0, 0x339c0,
2425                 0x339c8, 0x339d0,
2426                 0x339d8, 0x339e0,
2427                 0x339ec, 0x33a90,
2428                 0x33a98, 0x33ac4,
2429                 0x33ae4, 0x33b10,
2430                 0x33b24, 0x33b28,
2431                 0x33b38, 0x33b50,
2432                 0x33bf0, 0x33c10,
2433                 0x33c24, 0x33c28,
2434                 0x33c38, 0x33c50,
2435                 0x33cf0, 0x33cfc,
2436                 0x34000, 0x34030,
2437                 0x34100, 0x34168,
2438                 0x34190, 0x341a0,
2439                 0x341a8, 0x341b8,
2440                 0x341c4, 0x341c8,
2441                 0x341d0, 0x341d0,
2442                 0x34200, 0x34320,
2443                 0x34400, 0x344b4,
2444                 0x344c0, 0x3452c,
2445                 0x34540, 0x3461c,
2446                 0x34800, 0x348a0,
2447                 0x348c0, 0x34908,
2448                 0x34910, 0x349b8,
2449                 0x34a00, 0x34a04,
2450                 0x34a0c, 0x34a14,
2451                 0x34a1c, 0x34a2c,
2452                 0x34a44, 0x34a50,
2453                 0x34a74, 0x34a74,
2454                 0x34a7c, 0x34afc,
2455                 0x34b08, 0x34c24,
2456                 0x34d00, 0x34d14,
2457                 0x34d1c, 0x34d3c,
2458                 0x34d44, 0x34d4c,
2459                 0x34d54, 0x34d74,
2460                 0x34d7c, 0x34d7c,
2461                 0x34de0, 0x34de0,
2462                 0x34e00, 0x34ed4,
2463                 0x34f00, 0x34fa4,
2464                 0x34fc0, 0x34fc4,
2465                 0x35000, 0x35004,
2466                 0x35080, 0x350fc,
2467                 0x35208, 0x35220,
2468                 0x3523c, 0x35254,
2469                 0x35300, 0x35300,
2470                 0x35308, 0x3531c,
2471                 0x35338, 0x3533c,
2472                 0x35380, 0x35380,
2473                 0x35388, 0x353a8,
2474                 0x353b4, 0x353b4,
2475                 0x35400, 0x35420,
2476                 0x35438, 0x3543c,
2477                 0x35480, 0x35480,
2478                 0x354a8, 0x354a8,
2479                 0x354b0, 0x354b4,
2480                 0x354c8, 0x354d4,
2481                 0x35a40, 0x35a4c,
2482                 0x35af0, 0x35b20,
2483                 0x35b38, 0x35b3c,
2484                 0x35b80, 0x35b80,
2485                 0x35ba8, 0x35ba8,
2486                 0x35bb0, 0x35bb4,
2487                 0x35bc8, 0x35bd4,
2488                 0x36140, 0x3618c,
2489                 0x361f0, 0x361f4,
2490                 0x36200, 0x36200,
2491                 0x36218, 0x36218,
2492                 0x36400, 0x36400,
2493                 0x36408, 0x3641c,
2494                 0x36618, 0x36620,
2495                 0x36664, 0x36664,
2496                 0x366a8, 0x366a8,
2497                 0x366ec, 0x366ec,
2498                 0x36a00, 0x36abc,
2499                 0x36b00, 0x36b18,
2500                 0x36b20, 0x36b38,
2501                 0x36b40, 0x36b58,
2502                 0x36b60, 0x36b78,
2503                 0x36c00, 0x36c00,
2504                 0x36c08, 0x36c3c,
2505                 0x37000, 0x3702c,
2506                 0x37034, 0x37050,
2507                 0x37058, 0x37058,
2508                 0x37060, 0x3708c,
2509                 0x3709c, 0x370ac,
2510                 0x370c0, 0x370c0,
2511                 0x370c8, 0x370d0,
2512                 0x370d8, 0x370e0,
2513                 0x370ec, 0x3712c,
2514                 0x37134, 0x37150,
2515                 0x37158, 0x37158,
2516                 0x37160, 0x3718c,
2517                 0x3719c, 0x371ac,
2518                 0x371c0, 0x371c0,
2519                 0x371c8, 0x371d0,
2520                 0x371d8, 0x371e0,
2521                 0x371ec, 0x37290,
2522                 0x37298, 0x372c4,
2523                 0x372e4, 0x37390,
2524                 0x37398, 0x373c4,
2525                 0x373e4, 0x3742c,
2526                 0x37434, 0x37450,
2527                 0x37458, 0x37458,
2528                 0x37460, 0x3748c,
2529                 0x3749c, 0x374ac,
2530                 0x374c0, 0x374c0,
2531                 0x374c8, 0x374d0,
2532                 0x374d8, 0x374e0,
2533                 0x374ec, 0x3752c,
2534                 0x37534, 0x37550,
2535                 0x37558, 0x37558,
2536                 0x37560, 0x3758c,
2537                 0x3759c, 0x375ac,
2538                 0x375c0, 0x375c0,
2539                 0x375c8, 0x375d0,
2540                 0x375d8, 0x375e0,
2541                 0x375ec, 0x37690,
2542                 0x37698, 0x376c4,
2543                 0x376e4, 0x37790,
2544                 0x37798, 0x377c4,
2545                 0x377e4, 0x377fc,
2546                 0x37814, 0x37814,
2547                 0x37854, 0x37868,
2548                 0x37880, 0x3788c,
2549                 0x378c0, 0x378d0,
2550                 0x378e8, 0x378ec,
2551                 0x37900, 0x3792c,
2552                 0x37934, 0x37950,
2553                 0x37958, 0x37958,
2554                 0x37960, 0x3798c,
2555                 0x3799c, 0x379ac,
2556                 0x379c0, 0x379c0,
2557                 0x379c8, 0x379d0,
2558                 0x379d8, 0x379e0,
2559                 0x379ec, 0x37a90,
2560                 0x37a98, 0x37ac4,
2561                 0x37ae4, 0x37b10,
2562                 0x37b24, 0x37b28,
2563                 0x37b38, 0x37b50,
2564                 0x37bf0, 0x37c10,
2565                 0x37c24, 0x37c28,
2566                 0x37c38, 0x37c50,
2567                 0x37cf0, 0x37cfc,
2568                 0x40040, 0x40040,
2569                 0x40080, 0x40084,
2570                 0x40100, 0x40100,
2571                 0x40140, 0x401bc,
2572                 0x40200, 0x40214,
2573                 0x40228, 0x40228,
2574                 0x40240, 0x40258,
2575                 0x40280, 0x40280,
2576                 0x40304, 0x40304,
2577                 0x40330, 0x4033c,
2578                 0x41304, 0x413c8,
2579                 0x413d0, 0x413dc,
2580                 0x413f0, 0x413f0,
2581                 0x41400, 0x4140c,
2582                 0x41414, 0x4141c,
2583                 0x41480, 0x414d0,
2584                 0x44000, 0x4407c,
2585                 0x440c0, 0x441ac,
2586                 0x441b4, 0x4427c,
2587                 0x442c0, 0x443ac,
2588                 0x443b4, 0x4447c,
2589                 0x444c0, 0x445ac,
2590                 0x445b4, 0x4467c,
2591                 0x446c0, 0x447ac,
2592                 0x447b4, 0x4487c,
2593                 0x448c0, 0x449ac,
2594                 0x449b4, 0x44a7c,
2595                 0x44ac0, 0x44bac,
2596                 0x44bb4, 0x44c7c,
2597                 0x44cc0, 0x44dac,
2598                 0x44db4, 0x44e7c,
2599                 0x44ec0, 0x44fac,
2600                 0x44fb4, 0x4507c,
2601                 0x450c0, 0x451ac,
2602                 0x451b4, 0x451fc,
2603                 0x45800, 0x45804,
2604                 0x45810, 0x45830,
2605                 0x45840, 0x45860,
2606                 0x45868, 0x45868,
2607                 0x45880, 0x45884,
2608                 0x458a0, 0x458b0,
2609                 0x45a00, 0x45a04,
2610                 0x45a10, 0x45a30,
2611                 0x45a40, 0x45a60,
2612                 0x45a68, 0x45a68,
2613                 0x45a80, 0x45a84,
2614                 0x45aa0, 0x45ab0,
2615                 0x460c0, 0x460e4,
2616                 0x47000, 0x4703c,
2617                 0x47044, 0x4708c,
2618                 0x47200, 0x47250,
2619                 0x47400, 0x47408,
2620                 0x47414, 0x47420,
2621                 0x47600, 0x47618,
2622                 0x47800, 0x47814,
2623                 0x47820, 0x4782c,
2624                 0x50000, 0x50084,
2625                 0x50090, 0x500cc,
2626                 0x50300, 0x50384,
2627                 0x50400, 0x50400,
2628                 0x50800, 0x50884,
2629                 0x50890, 0x508cc,
2630                 0x50b00, 0x50b84,
2631                 0x50c00, 0x50c00,
2632                 0x51000, 0x51020,
2633                 0x51028, 0x510b0,
2634                 0x51300, 0x51324,
2635         };
2636
2637         static const unsigned int t6vf_reg_ranges[] = {
2638                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2639                 VF_MPS_REG(A_MPS_VF_CTL),
2640                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2641                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2642                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2643                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2644                 FW_T6VF_MBDATA_BASE_ADDR,
2645                 FW_T6VF_MBDATA_BASE_ADDR +
2646                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2647         };
2648
2649         u32 *buf_end = (u32 *)(buf + buf_size);
2650         const unsigned int *reg_ranges;
2651         int reg_ranges_size, range;
2652         unsigned int chip_version = chip_id(adap);
2653
2654         /*
2655          * Select the right set of register ranges to dump depending on the
2656          * adapter chip type.
2657          */
2658         switch (chip_version) {
2659         case CHELSIO_T4:
2660                 if (adap->flags & IS_VF) {
2661                         reg_ranges = t4vf_reg_ranges;
2662                         reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2663                 } else {
2664                         reg_ranges = t4_reg_ranges;
2665                         reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2666                 }
2667                 break;
2668
2669         case CHELSIO_T5:
2670                 if (adap->flags & IS_VF) {
2671                         reg_ranges = t5vf_reg_ranges;
2672                         reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2673                 } else {
2674                         reg_ranges = t5_reg_ranges;
2675                         reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2676                 }
2677                 break;
2678
2679         case CHELSIO_T6:
2680                 if (adap->flags & IS_VF) {
2681                         reg_ranges = t6vf_reg_ranges;
2682                         reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2683                 } else {
2684                         reg_ranges = t6_reg_ranges;
2685                         reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2686                 }
2687                 break;
2688
2689         default:
2690                 CH_ERR(adap,
2691                         "Unsupported chip version %d\n", chip_version);
2692                 return;
2693         }
2694
2695         /*
2696          * Clear the register buffer and insert the appropriate register
2697          * values selected by the above register ranges.
2698          */
2699         memset(buf, 0, buf_size);
2700         for (range = 0; range < reg_ranges_size; range += 2) {
2701                 unsigned int reg = reg_ranges[range];
2702                 unsigned int last_reg = reg_ranges[range + 1];
2703                 u32 *bufp = (u32 *)(buf + reg);
2704
2705                 /*
2706                  * Iterate across the register range filling in the register
2707                  * buffer but don't write past the end of the register buffer.
2708                  */
2709                 while (reg <= last_reg && bufp < buf_end) {
2710                         *bufp++ = t4_read_reg(adap, reg);
2711                         reg += sizeof(u32);
2712                 }
2713         }
2714 }
2715
2716 /*
2717  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2718  * header followed by one or more VPD-R sections, each with its own header.
2719  */
2720 struct t4_vpd_hdr {
2721         u8  id_tag;
2722         u8  id_len[2];
2723         u8  id_data[ID_LEN];
2724 };
2725
2726 struct t4_vpdr_hdr {
2727         u8  vpdr_tag;
2728         u8  vpdr_len[2];
2729 };
2730
2731 /*
2732  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2733  */
2734 #define EEPROM_DELAY            10              /* 10us per poll spin */
2735 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
2736
2737 #define EEPROM_STAT_ADDR        0x7bfc
2738 #define VPD_SIZE                0x800
2739 #define VPD_BASE                0x400
2740 #define VPD_BASE_OLD            0
2741 #define VPD_LEN                 1024
2742 #define VPD_INFO_FLD_HDR_SIZE   3
2743 #define CHELSIO_VPD_UNIQUE_ID   0x82
2744
2745 /*
2746  * Small utility function to wait till any outstanding VPD Access is complete.
2747  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2748  * VPD Access in flight.  This allows us to handle the problem of having a
2749  * previous VPD Access time out and prevent an attempt to inject a new VPD
2750  * Request before any in-flight VPD reguest has completed.
2751  */
2752 static int t4_seeprom_wait(struct adapter *adapter)
2753 {
2754         unsigned int base = adapter->params.pci.vpd_cap_addr;
2755         int max_poll;
2756
2757         /*
2758          * If no VPD Access is in flight, we can just return success right
2759          * away.
2760          */
2761         if (!adapter->vpd_busy)
2762                 return 0;
2763
2764         /*
2765          * Poll the VPD Capability Address/Flag register waiting for it
2766          * to indicate that the operation is complete.
2767          */
2768         max_poll = EEPROM_MAX_POLL;
2769         do {
2770                 u16 val;
2771
2772                 udelay(EEPROM_DELAY);
2773                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2774
2775                 /*
2776                  * If the operation is complete, mark the VPD as no longer
2777                  * busy and return success.
2778                  */
2779                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2780                         adapter->vpd_busy = 0;
2781                         return 0;
2782                 }
2783         } while (--max_poll);
2784
2785         /*
2786          * Failure!  Note that we leave the VPD Busy status set in order to
2787          * avoid pushing a new VPD Access request into the VPD Capability till
2788          * the current operation eventually succeeds.  It's a bug to issue a
2789          * new request when an existing request is in flight and will result
2790          * in corrupt hardware state.
2791          */
2792         return -ETIMEDOUT;
2793 }
2794
2795 /**
2796  *      t4_seeprom_read - read a serial EEPROM location
2797  *      @adapter: adapter to read
2798  *      @addr: EEPROM virtual address
2799  *      @data: where to store the read data
2800  *
2801  *      Read a 32-bit word from a location in serial EEPROM using the card's PCI
2802  *      VPD capability.  Note that this function must be called with a virtual
2803  *      address.
2804  */
2805 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2806 {
2807         unsigned int base = adapter->params.pci.vpd_cap_addr;
2808         int ret;
2809
2810         /*
2811          * VPD Accesses must alway be 4-byte aligned!
2812          */
2813         if (addr >= EEPROMVSIZE || (addr & 3))
2814                 return -EINVAL;
2815
2816         /*
2817          * Wait for any previous operation which may still be in flight to
2818          * complete.
2819          */
2820         ret = t4_seeprom_wait(adapter);
2821         if (ret) {
2822                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2823                 return ret;
2824         }
2825
2826         /*
2827          * Issue our new VPD Read request, mark the VPD as being busy and wait
2828          * for our request to complete.  If it doesn't complete, note the
2829          * error and return it to our caller.  Note that we do not reset the
2830          * VPD Busy status!
2831          */
2832         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2833         adapter->vpd_busy = 1;
2834         adapter->vpd_flag = PCI_VPD_ADDR_F;
2835         ret = t4_seeprom_wait(adapter);
2836         if (ret) {
2837                 CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2838                 return ret;
2839         }
2840
2841         /*
2842          * Grab the returned data, swizzle it into our endianness and
2843          * return success.
2844          */
2845         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2846         *data = le32_to_cpu(*data);
2847         return 0;
2848 }
2849
2850 /**
2851  *      t4_seeprom_write - write a serial EEPROM location
2852  *      @adapter: adapter to write
2853  *      @addr: virtual EEPROM address
2854  *      @data: value to write
2855  *
2856  *      Write a 32-bit word to a location in serial EEPROM using the card's PCI
2857  *      VPD capability.  Note that this function must be called with a virtual
2858  *      address.
2859  */
2860 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2861 {
2862         unsigned int base = adapter->params.pci.vpd_cap_addr;
2863         int ret;
2864         u32 stats_reg;
2865         int max_poll;
2866
2867         /*
2868          * VPD Accesses must alway be 4-byte aligned!
2869          */
2870         if (addr >= EEPROMVSIZE || (addr & 3))
2871                 return -EINVAL;
2872
2873         /*
2874          * Wait for any previous operation which may still be in flight to
2875          * complete.
2876          */
2877         ret = t4_seeprom_wait(adapter);
2878         if (ret) {
2879                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2880                 return ret;
2881         }
2882
2883         /*
2884          * Issue our new VPD Read request, mark the VPD as being busy and wait
2885          * for our request to complete.  If it doesn't complete, note the
2886          * error and return it to our caller.  Note that we do not reset the
2887          * VPD Busy status!
2888          */
2889         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2890                                  cpu_to_le32(data));
2891         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2892                                  (u16)addr | PCI_VPD_ADDR_F);
2893         adapter->vpd_busy = 1;
2894         adapter->vpd_flag = 0;
2895         ret = t4_seeprom_wait(adapter);
2896         if (ret) {
2897                 CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2898                 return ret;
2899         }
2900
2901         /*
2902          * Reset PCI_VPD_DATA register after a transaction and wait for our
2903          * request to complete. If it doesn't complete, return error.
2904          */
2905         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2906         max_poll = EEPROM_MAX_POLL;
2907         do {
2908                 udelay(EEPROM_DELAY);
2909                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2910         } while ((stats_reg & 0x1) && --max_poll);
2911         if (!max_poll)
2912                 return -ETIMEDOUT;
2913
2914         /* Return success! */
2915         return 0;
2916 }
2917
2918 /**
2919  *      t4_eeprom_ptov - translate a physical EEPROM address to virtual
2920  *      @phys_addr: the physical EEPROM address
2921  *      @fn: the PCI function number
2922  *      @sz: size of function-specific area
2923  *
2924  *      Translate a physical EEPROM address to virtual.  The first 1K is
2925  *      accessed through virtual addresses starting at 31K, the rest is
2926  *      accessed through virtual addresses starting at 0.
2927  *
2928  *      The mapping is as follows:
2929  *      [0..1K) -> [31K..32K)
2930  *      [1K..1K+A) -> [ES-A..ES)
2931  *      [1K+A..ES) -> [0..ES-A-1K)
2932  *
2933  *      where A = @fn * @sz, and ES = EEPROM size.
2934  */
2935 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2936 {
2937         fn *= sz;
2938         if (phys_addr < 1024)
2939                 return phys_addr + (31 << 10);
2940         if (phys_addr < 1024 + fn)
2941                 return EEPROMSIZE - fn + phys_addr - 1024;
2942         if (phys_addr < EEPROMSIZE)
2943                 return phys_addr - 1024 - fn;
2944         return -EINVAL;
2945 }
2946
2947 /**
2948  *      t4_seeprom_wp - enable/disable EEPROM write protection
2949  *      @adapter: the adapter
2950  *      @enable: whether to enable or disable write protection
2951  *
2952  *      Enables or disables write protection on the serial EEPROM.
2953  */
2954 int t4_seeprom_wp(struct adapter *adapter, int enable)
2955 {
2956         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2957 }
2958
2959 /**
2960  *      get_vpd_keyword_val - Locates an information field keyword in the VPD
2961  *      @vpd: Pointer to buffered vpd data structure
2962  *      @kw: The keyword to search for
2963  *      @region: VPD region to search (starting from 0)
2964  *
2965  *      Returns the value of the information field keyword or
2966  *      -ENOENT otherwise.
2967  */
2968 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2969 {
2970         int i, tag;
2971         unsigned int offset, len;
2972         const struct t4_vpdr_hdr *vpdr;
2973
2974         offset = sizeof(struct t4_vpd_hdr);
2975         vpdr = (const void *)(vpd + offset);
2976         tag = vpdr->vpdr_tag;
2977         len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2978         while (region--) {
2979                 offset += sizeof(struct t4_vpdr_hdr) + len;
2980                 vpdr = (const void *)(vpd + offset);
2981                 if (++tag != vpdr->vpdr_tag)
2982                         return -ENOENT;
2983                 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2984         }
2985         offset += sizeof(struct t4_vpdr_hdr);
2986
2987         if (offset + len > VPD_LEN) {
2988                 return -ENOENT;
2989         }
2990
2991         for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2992                 if (memcmp(vpd + i , kw , 2) == 0){
2993                         i += VPD_INFO_FLD_HDR_SIZE;
2994                         return i;
2995                 }
2996
2997                 i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2998         }
2999
3000         return -ENOENT;
3001 }
3002
3003
3004 /**
3005  *      get_vpd_params - read VPD parameters from VPD EEPROM
3006  *      @adapter: adapter to read
3007  *      @p: where to store the parameters
3008  *      @vpd: caller provided temporary space to read the VPD into
3009  *
3010  *      Reads card parameters stored in VPD EEPROM.
3011  */
3012 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3013     uint16_t device_id, u32 *buf)
3014 {
3015         int i, ret, addr;
3016         int ec, sn, pn, na, md;
3017         u8 csum;
3018         const u8 *vpd = (const u8 *)buf;
3019
3020         /*
3021          * Card information normally starts at VPD_BASE but early cards had
3022          * it at 0.
3023          */
3024         ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3025         if (ret)
3026                 return (ret);
3027
3028         /*
3029          * The VPD shall have a unique identifier specified by the PCI SIG.
3030          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3031          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3032          * is expected to automatically put this entry at the
3033          * beginning of the VPD.
3034          */
3035         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3036
3037         for (i = 0; i < VPD_LEN; i += 4) {
3038                 ret = t4_seeprom_read(adapter, addr + i, buf++);
3039                 if (ret)
3040                         return ret;
3041         }
3042
3043 #define FIND_VPD_KW(var,name) do { \
3044         var = get_vpd_keyword_val(vpd, name, 0); \
3045         if (var < 0) { \
3046                 CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3047                 return -EINVAL; \
3048         } \
3049 } while (0)
3050
3051         FIND_VPD_KW(i, "RV");
3052         for (csum = 0; i >= 0; i--)
3053                 csum += vpd[i];
3054
3055         if (csum) {
3056                 CH_ERR(adapter,
3057                         "corrupted VPD EEPROM, actual csum %u\n", csum);
3058                 return -EINVAL;
3059         }
3060
3061         FIND_VPD_KW(ec, "EC");
3062         FIND_VPD_KW(sn, "SN");
3063         FIND_VPD_KW(pn, "PN");
3064         FIND_VPD_KW(na, "NA");
3065 #undef FIND_VPD_KW
3066
3067         memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3068         strstrip(p->id);
3069         memcpy(p->ec, vpd + ec, EC_LEN);
3070         strstrip(p->ec);
3071         i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3072         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3073         strstrip(p->sn);
3074         i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3075         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3076         strstrip((char *)p->pn);
3077         i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3078         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3079         strstrip((char *)p->na);
3080
3081         if (device_id & 0x80)
3082                 return 0;       /* Custom card */
3083
3084         md = get_vpd_keyword_val(vpd, "VF", 1);
3085         if (md < 0) {
3086                 snprintf(p->md, sizeof(p->md), "unknown");
3087         } else {
3088                 i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3089                 memcpy(p->md, vpd + md, min(i, MD_LEN));
3090                 strstrip((char *)p->md);
3091         }
3092
3093         return 0;
3094 }
3095
3096 /* serial flash and firmware constants and flash config file constants */
3097 enum {
3098         SF_ATTEMPTS = 10,       /* max retries for SF operations */
3099
3100         /* flash command opcodes */
3101         SF_PROG_PAGE    = 2,    /* program 256B page */
3102         SF_WR_DISABLE   = 4,    /* disable writes */
3103         SF_RD_STATUS    = 5,    /* read status register */
3104         SF_WR_ENABLE    = 6,    /* enable writes */
3105         SF_RD_DATA_FAST = 0xb,  /* read flash */
3106         SF_RD_ID        = 0x9f, /* read ID */
3107         SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */
3108 };
3109
3110 /**
3111  *      sf1_read - read data from the serial flash
3112  *      @adapter: the adapter
3113  *      @byte_cnt: number of bytes to read
3114  *      @cont: whether another operation will be chained
3115  *      @lock: whether to lock SF for PL access only
3116  *      @valp: where to store the read data
3117  *
3118  *      Reads up to 4 bytes of data from the serial flash.  The location of
3119  *      the read needs to be specified prior to calling this by issuing the
3120  *      appropriate commands to the serial flash.
3121  */
3122 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3123                     int lock, u32 *valp)
3124 {
3125         int ret;
3126
3127         if (!byte_cnt || byte_cnt > 4)
3128                 return -EINVAL;
3129         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3130                 return -EBUSY;
3131         t4_write_reg(adapter, A_SF_OP,
3132                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3133         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3134         if (!ret)
3135                 *valp = t4_read_reg(adapter, A_SF_DATA);
3136         return ret;
3137 }
3138
3139 /**
3140  *      sf1_write - write data to the serial flash
3141  *      @adapter: the adapter
3142  *      @byte_cnt: number of bytes to write
3143  *      @cont: whether another operation will be chained
3144  *      @lock: whether to lock SF for PL access only
3145  *      @val: value to write
3146  *
3147  *      Writes up to 4 bytes of data to the serial flash.  The location of
3148  *      the write needs to be specified prior to calling this by issuing the
3149  *      appropriate commands to the serial flash.
3150  */
3151 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3152                      int lock, u32 val)
3153 {
3154         if (!byte_cnt || byte_cnt > 4)
3155                 return -EINVAL;
3156         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3157                 return -EBUSY;
3158         t4_write_reg(adapter, A_SF_DATA, val);
3159         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3160                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3161         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3162 }
3163
3164 /**
3165  *      flash_wait_op - wait for a flash operation to complete
3166  *      @adapter: the adapter
3167  *      @attempts: max number of polls of the status register
3168  *      @delay: delay between polls in ms
3169  *
3170  *      Wait for a flash operation to complete by polling the status register.
3171  */
3172 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3173 {
3174         int ret;
3175         u32 status;
3176
3177         while (1) {
3178                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3179                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3180                         return ret;
3181                 if (!(status & 1))
3182                         return 0;
3183                 if (--attempts == 0)
3184                         return -EAGAIN;
3185                 if (delay)
3186                         msleep(delay);
3187         }
3188 }
3189
3190 /**
3191  *      t4_read_flash - read words from serial flash
3192  *      @adapter: the adapter
3193  *      @addr: the start address for the read
3194  *      @nwords: how many 32-bit words to read
3195  *      @data: where to store the read data
3196  *      @byte_oriented: whether to store data as bytes or as words
3197  *
3198  *      Read the specified number of 32-bit words from the serial flash.
3199  *      If @byte_oriented is set the read data is stored as a byte array
3200  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3201  *      natural endianness.
3202  */
3203 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3204                   unsigned int nwords, u32 *data, int byte_oriented)
3205 {
3206         int ret;
3207
3208         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3209                 return -EINVAL;
3210
3211         addr = swab32(addr) | SF_RD_DATA_FAST;
3212
3213         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3214             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3215                 return ret;
3216
3217         for ( ; nwords; nwords--, data++) {
3218                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3219                 if (nwords == 1)
3220                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3221                 if (ret)
3222                         return ret;
3223                 if (byte_oriented)
3224                         *data = (__force __u32)(cpu_to_be32(*data));
3225         }
3226         return 0;
3227 }
3228
3229 /**
3230  *      t4_write_flash - write up to a page of data to the serial flash
3231  *      @adapter: the adapter
3232  *      @addr: the start address to write
3233  *      @n: length of data to write in bytes
3234  *      @data: the data to write
3235  *      @byte_oriented: whether to store data as bytes or as words
3236  *
3237  *      Writes up to a page of data (256 bytes) to the serial flash starting
3238  *      at the given address.  All the data must be written to the same page.
3239  *      If @byte_oriented is set the write data is stored as byte stream
3240  *      (i.e. matches what on disk), otherwise in big-endian.
3241  */
3242 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3243                           unsigned int n, const u8 *data, int byte_oriented)
3244 {
3245         int ret;
3246         u32 buf[SF_PAGE_SIZE / 4];
3247         unsigned int i, c, left, val, offset = addr & 0xff;
3248
3249         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3250                 return -EINVAL;
3251
3252         val = swab32(addr) | SF_PROG_PAGE;
3253
3254         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3255             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3256                 goto unlock;
3257
3258         for (left = n; left; left -= c) {
3259                 c = min(left, 4U);
3260                 for (val = 0, i = 0; i < c; ++i)
3261                         val = (val << 8) + *data++;
3262
3263                 if (!byte_oriented)
3264                         val = cpu_to_be32(val);
3265
3266                 ret = sf1_write(adapter, c, c != left, 1, val);
3267                 if (ret)
3268                         goto unlock;
3269         }
3270         ret = flash_wait_op(adapter, 8, 1);
3271         if (ret)
3272                 goto unlock;
3273
3274         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3275
3276         /* Read the page to verify the write succeeded */
3277         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3278                             byte_oriented);
3279         if (ret)
3280                 return ret;
3281
3282         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3283                 CH_ERR(adapter,
3284                         "failed to correctly write the flash page at %#x\n",
3285                         addr);
3286                 return -EIO;
3287         }
3288         return 0;
3289
3290 unlock:
3291         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3292         return ret;
3293 }
3294
3295 /**
3296  *      t4_get_fw_version - read the firmware version
3297  *      @adapter: the adapter
3298  *      @vers: where to place the version
3299  *
3300  *      Reads the FW version from flash.
3301  */
3302 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3303 {
3304         return t4_read_flash(adapter, FLASH_FW_START +
3305                              offsetof(struct fw_hdr, fw_ver), 1,
3306                              vers, 0);
3307 }
3308
3309 /**
3310  *      t4_get_fw_hdr - read the firmware header
3311  *      @adapter: the adapter
3312  *      @hdr: where to place the version
3313  *
3314  *      Reads the FW header from flash into caller provided buffer.
3315  */
3316 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3317 {
3318         return t4_read_flash(adapter, FLASH_FW_START,
3319             sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3320 }
3321
3322 /**
3323  *      t4_get_bs_version - read the firmware bootstrap version
3324  *      @adapter: the adapter
3325  *      @vers: where to place the version
3326  *
3327  *      Reads the FW Bootstrap version from flash.
3328  */
3329 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3330 {
3331         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3332                              offsetof(struct fw_hdr, fw_ver), 1,
3333                              vers, 0);
3334 }
3335
3336 /**
3337  *      t4_get_tp_version - read the TP microcode version
3338  *      @adapter: the adapter
3339  *      @vers: where to place the version
3340  *
3341  *      Reads the TP microcode version from flash.
3342  */
3343 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3344 {
3345         return t4_read_flash(adapter, FLASH_FW_START +
3346                              offsetof(struct fw_hdr, tp_microcode_ver),
3347                              1, vers, 0);
3348 }
3349
3350 /**
3351  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3352  *      @adapter: the adapter
3353  *      @vers: where to place the version
3354  *
3355  *      Reads the Expansion ROM header from FLASH and returns the version
3356  *      number (if present) through the @vers return value pointer.  We return
3357  *      this in the Firmware Version Format since it's convenient.  Return
3358  *      0 on success, -ENOENT if no Expansion ROM is present.
3359  */
3360 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3361 {
3362         struct exprom_header {
3363                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3364                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3365         } *hdr;
3366         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3367                                            sizeof(u32))];
3368         int ret;
3369
3370         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3371                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3372                             0);
3373         if (ret)
3374                 return ret;
3375
3376         hdr = (struct exprom_header *)exprom_header_buf;
3377         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3378                 return -ENOENT;
3379
3380         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3381                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3382                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3383                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3384         return 0;
3385 }
3386
3387 /**
3388  *      t4_get_scfg_version - return the Serial Configuration version
3389  *      @adapter: the adapter
3390  *      @vers: where to place the version
3391  *
3392  *      Reads the Serial Configuration Version via the Firmware interface
3393  *      (thus this can only be called once we're ready to issue Firmware
3394  *      commands).  The format of the Serial Configuration version is
3395  *      adapter specific.  Returns 0 on success, an error on failure.
3396  *
3397  *      Note that early versions of the Firmware didn't include the ability
3398  *      to retrieve the Serial Configuration version, so we zero-out the
3399  *      return-value parameter in that case to avoid leaving it with
3400  *      garbage in it.
3401  *
3402  *      Also note that the Firmware will return its cached copy of the Serial
3403  *      Initialization Revision ID, not the actual Revision ID as written in
3404  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3405  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3406  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3407  *      been issued if the Host Driver will be performing a full adapter
3408  *      initialization.
3409  */
3410 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3411 {
3412         u32 scfgrev_param;
3413         int ret;
3414
3415         scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3416                          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3417         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3418                               1, &scfgrev_param, vers);
3419         if (ret)
3420                 *vers = 0;
3421         return ret;
3422 }
3423
3424 /**
3425  *      t4_get_vpd_version - return the VPD version
3426  *      @adapter: the adapter
3427  *      @vers: where to place the version
3428  *
3429  *      Reads the VPD via the Firmware interface (thus this can only be called
3430  *      once we're ready to issue Firmware commands).  The format of the
3431  *      VPD version is adapter specific.  Returns 0 on success, an error on
3432  *      failure.
3433  *
3434  *      Note that early versions of the Firmware didn't include the ability
3435  *      to retrieve the VPD version, so we zero-out the return-value parameter
3436  *      in that case to avoid leaving it with garbage in it.
3437  *
3438  *      Also note that the Firmware will return its cached copy of the VPD
3439  *      Revision ID, not the actual Revision ID as written in the Serial
3440  *      EEPROM.  This is only an issue if a new VPD has been written and the
3441  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3442  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3443  *      if the Host Driver will be performing a full adapter initialization.
3444  */
3445 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3446 {
3447         u32 vpdrev_param;
3448         int ret;
3449
3450         vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3451                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3452         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3453                               1, &vpdrev_param, vers);
3454         if (ret)
3455                 *vers = 0;
3456         return ret;
3457 }
3458
3459 /**
3460  *      t4_get_version_info - extract various chip/firmware version information
3461  *      @adapter: the adapter
3462  *
3463  *      Reads various chip/firmware version numbers and stores them into the
3464  *      adapter Adapter Parameters structure.  If any of the efforts fails
3465  *      the first failure will be returned, but all of the version numbers
3466  *      will be read.
3467  */
3468 int t4_get_version_info(struct adapter *adapter)
3469 {
3470         int ret = 0;
3471
3472         #define FIRST_RET(__getvinfo) \
3473         do { \
3474                 int __ret = __getvinfo; \
3475                 if (__ret && !ret) \
3476                         ret = __ret; \
3477         } while (0)
3478
3479         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3480         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3481         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3482         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3483         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3484         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3485
3486         #undef FIRST_RET
3487
3488         return ret;
3489 }
3490
3491 /**
3492  *      t4_flash_erase_sectors - erase a range of flash sectors
3493  *      @adapter: the adapter
3494  *      @start: the first sector to erase
3495  *      @end: the last sector to erase
3496  *
3497  *      Erases the sectors in the given inclusive range.
3498  */
3499 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3500 {
3501         int ret = 0;
3502
3503         if (end >= adapter->params.sf_nsec)
3504                 return -EINVAL;
3505
3506         while (start <= end) {
3507                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3508                     (ret = sf1_write(adapter, 4, 0, 1,
3509                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3510                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3511                         CH_ERR(adapter,
3512                                 "erase of flash sector %d failed, error %d\n",
3513                                 start, ret);
3514                         break;
3515                 }
3516                 start++;
3517         }
3518         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3519         return ret;
3520 }
3521
3522 /**
3523  *      t4_flash_cfg_addr - return the address of the flash configuration file
3524  *      @adapter: the adapter
3525  *
3526  *      Return the address within the flash where the Firmware Configuration
3527  *      File is stored, or an error if the device FLASH is too small to contain
3528  *      a Firmware Configuration File.
3529  */
3530 int t4_flash_cfg_addr(struct adapter *adapter)
3531 {
3532         /*
3533          * If the device FLASH isn't large enough to hold a Firmware
3534          * Configuration File, return an error.
3535          */
3536         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3537                 return -ENOSPC;
3538
3539         return FLASH_CFG_START;
3540 }
3541
3542 /*
3543  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3544  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3545  * and emit an error message for mismatched firmware to save our caller the
3546  * effort ...
3547  */
3548 static int t4_fw_matches_chip(struct adapter *adap,
3549                               const struct fw_hdr *hdr)
3550 {
3551         /*
3552          * The expression below will return FALSE for any unsupported adapter
3553          * which will keep us "honest" in the future ...
3554          */
3555         if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3556             (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3557             (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3558                 return 1;
3559
3560         CH_ERR(adap,
3561                 "FW image (%d) is not suitable for this adapter (%d)\n",
3562                 hdr->chip, chip_id(adap));
3563         return 0;
3564 }
3565
3566 /**
3567  *      t4_load_fw - download firmware
3568  *      @adap: the adapter
3569  *      @fw_data: the firmware image to write
3570  *      @size: image size
3571  *
3572  *      Write the supplied firmware image to the card's serial flash.
3573  */
3574 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3575 {
3576         u32 csum;
3577         int ret, addr;
3578         unsigned int i;
3579         u8 first_page[SF_PAGE_SIZE];
3580         const u32 *p = (const u32 *)fw_data;
3581         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3582         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3583         unsigned int fw_start_sec;
3584         unsigned int fw_start;
3585         unsigned int fw_size;
3586
3587         if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3588                 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3589                 fw_start = FLASH_FWBOOTSTRAP_START;
3590                 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3591         } else {
3592                 fw_start_sec = FLASH_FW_START_SEC;
3593                 fw_start = FLASH_FW_START;
3594                 fw_size = FLASH_FW_MAX_SIZE;
3595         }
3596
3597         if (!size) {
3598                 CH_ERR(adap, "FW image has no data\n");
3599                 return -EINVAL;
3600         }
3601         if (size & 511) {
3602                 CH_ERR(adap,
3603                         "FW image size not multiple of 512 bytes\n");
3604                 return -EINVAL;
3605         }
3606         if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3607                 CH_ERR(adap,
3608                         "FW image size differs from size in FW header\n");
3609                 return -EINVAL;
3610         }
3611         if (size > fw_size) {
3612                 CH_ERR(adap, "FW image too large, max is %u bytes\n",
3613                         fw_size);
3614                 return -EFBIG;
3615         }
3616         if (!t4_fw_matches_chip(adap, hdr))
3617                 return -EINVAL;
3618
3619         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3620                 csum += be32_to_cpu(p[i]);
3621
3622         if (csum != 0xffffffff) {
3623                 CH_ERR(adap,
3624                         "corrupted firmware image, checksum %#x\n", csum);
3625                 return -EINVAL;
3626         }
3627
3628         i = DIV_ROUND_UP(size, sf_sec_size);    /* # of sectors spanned */
3629         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3630         if (ret)
3631                 goto out;
3632
3633         /*
3634          * We write the correct version at the end so the driver can see a bad
3635          * version if the FW write fails.  Start by writing a copy of the
3636          * first page with a bad version.
3637          */
3638         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3639         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3640         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3641         if (ret)
3642                 goto out;
3643
3644         addr = fw_start;
3645         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3646                 addr += SF_PAGE_SIZE;
3647                 fw_data += SF_PAGE_SIZE;
3648                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3649                 if (ret)
3650                         goto out;
3651         }
3652
3653         ret = t4_write_flash(adap,
3654                              fw_start + offsetof(struct fw_hdr, fw_ver),
3655                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3656 out:
3657         if (ret)
3658                 CH_ERR(adap, "firmware download failed, error %d\n",
3659                         ret);
3660         return ret;
3661 }
3662
3663 /**
3664  *      t4_fwcache - firmware cache operation
3665  *      @adap: the adapter
3666  *      @op  : the operation (flush or flush and invalidate)
3667  */
3668 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3669 {
3670         struct fw_params_cmd c;
3671
3672         memset(&c, 0, sizeof(c));
3673         c.op_to_vfn =
3674             cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3675                             F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3676                                 V_FW_PARAMS_CMD_PFN(adap->pf) |
3677                                 V_FW_PARAMS_CMD_VFN(0));
3678         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3679         c.param[0].mnem =
3680             cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3681                             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3682         c.param[0].val = (__force __be32)op;
3683
3684         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3685 }
3686
3687 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3688                         unsigned int *pif_req_wrptr,
3689                         unsigned int *pif_rsp_wrptr)
3690 {
3691         int i, j;
3692         u32 cfg, val, req, rsp;
3693
3694         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3695         if (cfg & F_LADBGEN)
3696                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3697
3698         val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3699         req = G_POLADBGWRPTR(val);
3700         rsp = G_PILADBGWRPTR(val);
3701         if (pif_req_wrptr)
3702                 *pif_req_wrptr = req;
3703         if (pif_rsp_wrptr)
3704                 *pif_rsp_wrptr = rsp;
3705
3706         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3707                 for (j = 0; j < 6; j++) {
3708                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3709                                      V_PILADBGRDPTR(rsp));
3710                         *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3711                         *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3712                         req++;
3713                         rsp++;
3714                 }
3715                 req = (req + 2) & M_POLADBGRDPTR;
3716                 rsp = (rsp + 2) & M_PILADBGRDPTR;
3717         }
3718         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3719 }
3720
3721 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3722 {
3723         u32 cfg;
3724         int i, j, idx;
3725
3726         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3727         if (cfg & F_LADBGEN)
3728                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3729
3730         for (i = 0; i < CIM_MALA_SIZE; i++) {
3731                 for (j = 0; j < 5; j++) {
3732                         idx = 8 * i + j;
3733                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3734                                      V_PILADBGRDPTR(idx));
3735                         *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3736                         *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3737                 }
3738         }
3739         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3740 }
3741
3742 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3743 {
3744         unsigned int i, j;
3745
3746         for (i = 0; i < 8; i++) {
3747                 u32 *p = la_buf + i;
3748
3749                 t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3750                 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3751                 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3752                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3753                         *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3754         }
3755 }
3756
3757 /**
3758  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3759  *      @caps16: a 16-bit Port Capabilities value
3760  *
3761  *      Returns the equivalent 32-bit Port Capabilities value.
3762  */
3763 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3764 {
3765         uint32_t caps32 = 0;
3766
3767         #define CAP16_TO_CAP32(__cap) \
3768                 do { \
3769                         if (caps16 & FW_PORT_CAP_##__cap) \
3770                                 caps32 |= FW_PORT_CAP32_##__cap; \
3771                 } while (0)
3772
3773         CAP16_TO_CAP32(SPEED_100M);
3774         CAP16_TO_CAP32(SPEED_1G);
3775         CAP16_TO_CAP32(SPEED_25G);
3776         CAP16_TO_CAP32(SPEED_10G);
3777         CAP16_TO_CAP32(SPEED_40G);
3778         CAP16_TO_CAP32(SPEED_100G);
3779         CAP16_TO_CAP32(FC_RX);
3780         CAP16_TO_CAP32(FC_TX);
3781         CAP16_TO_CAP32(ANEG);
3782         CAP16_TO_CAP32(FORCE_PAUSE);
3783         CAP16_TO_CAP32(MDIAUTO);
3784         CAP16_TO_CAP32(MDISTRAIGHT);
3785         CAP16_TO_CAP32(FEC_RS);
3786         CAP16_TO_CAP32(FEC_BASER_RS);
3787         CAP16_TO_CAP32(802_3_PAUSE);
3788         CAP16_TO_CAP32(802_3_ASM_DIR);
3789
3790         #undef CAP16_TO_CAP32
3791
3792         return caps32;
3793 }
3794
3795 /**
3796  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3797  *      @caps32: a 32-bit Port Capabilities value
3798  *
3799  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
3800  *      not all 32-bit Port Capabilities can be represented in the 16-bit
3801  *      Port Capabilities and some fields/values may not make it.
3802  */
3803 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3804 {
3805         uint16_t caps16 = 0;
3806
3807         #define CAP32_TO_CAP16(__cap) \
3808                 do { \
3809                         if (caps32 & FW_PORT_CAP32_##__cap) \
3810                                 caps16 |= FW_PORT_CAP_##__cap; \
3811                 } while (0)
3812
3813         CAP32_TO_CAP16(SPEED_100M);
3814         CAP32_TO_CAP16(SPEED_1G);
3815         CAP32_TO_CAP16(SPEED_10G);
3816         CAP32_TO_CAP16(SPEED_25G);
3817         CAP32_TO_CAP16(SPEED_40G);
3818         CAP32_TO_CAP16(SPEED_100G);
3819         CAP32_TO_CAP16(FC_RX);
3820         CAP32_TO_CAP16(FC_TX);
3821         CAP32_TO_CAP16(802_3_PAUSE);
3822         CAP32_TO_CAP16(802_3_ASM_DIR);
3823         CAP32_TO_CAP16(ANEG);
3824         CAP32_TO_CAP16(FORCE_PAUSE);
3825         CAP32_TO_CAP16(MDIAUTO);
3826         CAP32_TO_CAP16(MDISTRAIGHT);
3827         CAP32_TO_CAP16(FEC_RS);
3828         CAP32_TO_CAP16(FEC_BASER_RS);
3829
3830         #undef CAP32_TO_CAP16
3831
3832         return caps16;
3833 }
3834
3835 static bool
3836 is_bt(struct port_info *pi)
3837 {
3838
3839         return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3840             pi->port_type == FW_PORT_TYPE_BT_XFI ||
3841             pi->port_type == FW_PORT_TYPE_BT_XAUI);
3842 }
3843
3844 /**
3845  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3846  *      @phy: the PHY to setup
3847  *      @mac: the MAC to setup
3848  *      @lc: the requested link configuration
3849  *
3850  *      Set up a port's MAC and PHY according to a desired link configuration.
3851  *      - If the PHY can auto-negotiate first decide what to advertise, then
3852  *        enable/disable auto-negotiation as desired, and reset.
3853  *      - If the PHY does not auto-negotiate just reset it.
3854  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3855  *        otherwise do it later based on the outcome of auto-negotiation.
3856  */
3857 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3858                   struct link_config *lc)
3859 {
3860         struct fw_port_cmd c;
3861         unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3862         unsigned int aneg, fc, fec, speed, rcap;
3863
3864         fc = 0;
3865         if (lc->requested_fc & PAUSE_RX)
3866                 fc |= FW_PORT_CAP32_FC_RX;
3867         if (lc->requested_fc & PAUSE_TX)
3868                 fc |= FW_PORT_CAP32_FC_TX;
3869         if (!(lc->requested_fc & PAUSE_AUTONEG))
3870                 fc |= FW_PORT_CAP32_FORCE_PAUSE;
3871
3872         fec = 0;
3873         if (lc->requested_fec == FEC_AUTO)
3874                 fec = lc->fec_hint;
3875         else {
3876                 if (lc->requested_fec & FEC_RS)
3877                         fec |= FW_PORT_CAP32_FEC_RS;
3878                 if (lc->requested_fec & FEC_BASER_RS)
3879                         fec |= FW_PORT_CAP32_FEC_BASER_RS;
3880         }
3881
3882         if (lc->requested_aneg == AUTONEG_DISABLE)
3883                 aneg = 0;
3884         else if (lc->requested_aneg == AUTONEG_ENABLE)
3885                 aneg = FW_PORT_CAP32_ANEG;
3886         else
3887                 aneg = lc->supported & FW_PORT_CAP32_ANEG;
3888
3889         if (aneg) {
3890                 speed = lc->supported & V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3891         } else if (lc->requested_speed != 0)
3892                 speed = speed_to_fwcap(lc->requested_speed);
3893         else
3894                 speed = fwcap_top_speed(lc->supported);
3895
3896         /* Force AN on for BT cards. */
3897         if (is_bt(adap->port[adap->chan_map[port]]))
3898                 aneg = lc->supported & FW_PORT_CAP32_ANEG;
3899
3900         rcap = aneg | speed | fc | fec;
3901         if ((rcap | lc->supported) != lc->supported) {
3902 #ifdef INVARIANTS
3903                 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3904                     lc->supported);
3905 #endif
3906                 rcap &= lc->supported;
3907         }
3908         rcap |= mdi;
3909
3910         memset(&c, 0, sizeof(c));
3911         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3912                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3913                                      V_FW_PORT_CMD_PORTID(port));
3914         if (adap->params.port_caps32) {
3915                 c.action_to_len16 =
3916                     cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3917                         FW_LEN16(c));
3918                 c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3919         } else {
3920                 c.action_to_len16 =
3921                     cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3922                             FW_LEN16(c));
3923                 c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3924         }
3925
3926         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3927 }
3928
3929 /**
3930  *      t4_restart_aneg - restart autonegotiation
3931  *      @adap: the adapter
3932  *      @mbox: mbox to use for the FW command
3933  *      @port: the port id
3934  *
3935  *      Restarts autonegotiation for the selected port.
3936  */
3937 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3938 {
3939         struct fw_port_cmd c;
3940
3941         memset(&c, 0, sizeof(c));
3942         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3943                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3944                                      V_FW_PORT_CMD_PORTID(port));
3945         c.action_to_len16 =
3946                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3947                             FW_LEN16(c));
3948         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3949         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3950 }
3951
3952 struct intr_details {
3953         u32 mask;
3954         const char *msg;
3955 };
3956
3957 struct intr_action {
3958         u32 mask;
3959         int arg;
3960         bool (*action)(struct adapter *, int, bool);
3961 };
3962
3963 #define NONFATAL_IF_DISABLED 1
3964 struct intr_info {
3965         const char *name;       /* name of the INT_CAUSE register */
3966         int cause_reg;          /* INT_CAUSE register */
3967         int enable_reg;         /* INT_ENABLE register */
3968         u32 fatal;              /* bits that are fatal */
3969         int flags;              /* hints */
3970         const struct intr_details *details;
3971         const struct intr_action *actions;
3972 };
3973
3974 static inline char
3975 intr_alert_char(u32 cause, u32 enable, u32 fatal)
3976 {
3977
3978         if (cause & fatal)
3979                 return ('!');
3980         if (cause & enable)
3981                 return ('*');
3982         return ('-');
3983 }
3984
3985 static void
3986 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
3987 {
3988         u32 enable, fatal, leftover;
3989         const struct intr_details *details;
3990         char alert;
3991
3992         enable = t4_read_reg(adap, ii->enable_reg);
3993         if (ii->flags & NONFATAL_IF_DISABLED)
3994                 fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
3995         else
3996                 fatal = ii->fatal;
3997         alert = intr_alert_char(cause, enable, fatal);
3998         CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
3999             alert, ii->name, ii->cause_reg, cause, enable, fatal);
4000
4001         leftover = cause;
4002         for (details = ii->details; details && details->mask != 0; details++) {
4003                 u32 msgbits = details->mask & cause;
4004                 if (msgbits == 0)
4005                         continue;
4006                 alert = intr_alert_char(msgbits, enable, ii->fatal);
4007                 CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4008                     details->msg);
4009                 leftover &= ~msgbits;
4010         }
4011         if (leftover != 0 && leftover != cause)
4012                 CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4013 }
4014
4015 /*
4016  * Returns true for fatal error.
4017  */
4018 static bool
4019 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4020     u32 additional_cause, bool verbose)
4021 {
4022         u32 cause, fatal;
4023         bool rc;
4024         const struct intr_action *action;
4025
4026         /*
4027          * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4028          * bit special and we need to completely ignore the bits that are not in
4029          * PL_INT_ENABLE.
4030          */
4031         cause = t4_read_reg(adap, ii->cause_reg);
4032         if (ii->cause_reg == A_PL_INT_CAUSE)
4033                 cause &= t4_read_reg(adap, ii->enable_reg);
4034         if (verbose || cause != 0)
4035                 t4_show_intr_info(adap, ii, cause);
4036         fatal = cause & ii->fatal;
4037         if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4038                 fatal &= t4_read_reg(adap, ii->enable_reg);
4039         cause |= additional_cause;
4040         if (cause == 0)
4041                 return (false);
4042
4043         rc = fatal != 0;
4044         for (action = ii->actions; action && action->mask != 0; action++) {
4045                 if (!(action->mask & cause))
4046                         continue;
4047                 rc |= (action->action)(adap, action->arg, verbose);
4048         }
4049
4050         /* clear */
4051         t4_write_reg(adap, ii->cause_reg, cause);
4052         (void)t4_read_reg(adap, ii->cause_reg);
4053
4054         return (rc);
4055 }
4056
4057 /*
4058  * Interrupt handler for the PCIE module.
4059  */
4060 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4061 {
4062         static const struct intr_details sysbus_intr_details[] = {
4063                 { F_RNPP, "RXNP array parity error" },
4064                 { F_RPCP, "RXPC array parity error" },
4065                 { F_RCIP, "RXCIF array parity error" },
4066                 { F_RCCP, "Rx completions control array parity error" },
4067                 { F_RFTP, "RXFT array parity error" },
4068                 { 0 }
4069         };
4070         static const struct intr_info sysbus_intr_info = {
4071                 .name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4072                 .cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4073                 .enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4074                 .fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4075                 .flags = 0,
4076                 .details = sysbus_intr_details,
4077                 .actions = NULL,
4078         };
4079         static const struct intr_details pcie_port_intr_details[] = {
4080                 { F_TPCP, "TXPC array parity error" },
4081                 { F_TNPP, "TXNP array parity error" },
4082                 { F_TFTP, "TXFT array parity error" },
4083                 { F_TCAP, "TXCA array parity error" },
4084                 { F_TCIP, "TXCIF array parity error" },
4085                 { F_RCAP, "RXCA array parity error" },
4086                 { F_OTDD, "outbound request TLP discarded" },
4087                 { F_RDPE, "Rx data parity error" },
4088                 { F_TDUE, "Tx uncorrectable data error" },
4089                 { 0 }
4090         };
4091         static const struct intr_info pcie_port_intr_info = {
4092                 .name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4093                 .cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4094                 .enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4095                 .fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4096                     F_OTDD | F_RDPE | F_TDUE,
4097                 .flags = 0,
4098                 .details = pcie_port_intr_details,
4099                 .actions = NULL,
4100         };
4101         static const struct intr_details pcie_intr_details[] = {
4102                 { F_MSIADDRLPERR, "MSI AddrL parity error" },
4103                 { F_MSIADDRHPERR, "MSI AddrH parity error" },
4104                 { F_MSIDATAPERR, "MSI data parity error" },
4105                 { F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4106                 { F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4107                 { F_MSIXDATAPERR, "MSI-X data parity error" },
4108                 { F_MSIXDIPERR, "MSI-X DI parity error" },
4109                 { F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4110                 { F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4111                 { F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4112                 { F_CCNTPERR, "PCIe CMD channel count parity error" },
4113                 { F_CREQPERR, "PCIe CMD channel request parity error" },
4114                 { F_CRSPPERR, "PCIe CMD channel response parity error" },
4115                 { F_DCNTPERR, "PCIe DMA channel count parity error" },
4116                 { F_DREQPERR, "PCIe DMA channel request parity error" },
4117                 { F_DRSPPERR, "PCIe DMA channel response parity error" },
4118                 { F_HCNTPERR, "PCIe HMA channel count parity error" },
4119                 { F_HREQPERR, "PCIe HMA channel request parity error" },
4120                 { F_HRSPPERR, "PCIe HMA channel response parity error" },
4121                 { F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4122                 { F_FIDPERR, "PCIe FID parity error" },
4123                 { F_INTXCLRPERR, "PCIe INTx clear parity error" },
4124                 { F_MATAGPERR, "PCIe MA tag parity error" },
4125                 { F_PIOTAGPERR, "PCIe PIO tag parity error" },
4126                 { F_RXCPLPERR, "PCIe Rx completion parity error" },
4127                 { F_RXWRPERR, "PCIe Rx write parity error" },
4128                 { F_RPLPERR, "PCIe replay buffer parity error" },
4129                 { F_PCIESINT, "PCIe core secondary fault" },
4130                 { F_PCIEPINT, "PCIe core primary fault" },
4131                 { F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4132                 { 0 }
4133         };
4134         static const struct intr_details t5_pcie_intr_details[] = {
4135                 { F_IPGRPPERR, "Parity errors observed by IP" },
4136                 { F_NONFATALERR, "PCIe non-fatal error" },
4137                 { F_READRSPERR, "Outbound read error" },
4138                 { F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4139                 { F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4140                 { F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4141                 { F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4142                 { F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4143                 { F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4144                 { F_MAGRPPERR, "MA group FIFO parity error" },
4145                 { F_VFIDPERR, "VFID SRAM parity error" },
4146                 { F_FIDPERR, "FID SRAM parity error" },
4147                 { F_CFGSNPPERR, "config snoop FIFO parity error" },
4148                 { F_HRSPPERR, "HMA channel response data SRAM parity error" },
4149                 { F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4150                 { F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4151                 { F_DRSPPERR, "DMA channel response data SRAM parity error" },
4152                 { F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4153                 { F_CRSPPERR, "CMD channel response data SRAM parity error" },
4154                 { F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4155                 { F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4156                 { F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4157                 { F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4158                 { F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4159                 { F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4160                 { F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4161                 { F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4162                 { F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4163                 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4164                 { F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4165                 { F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4166                 { 0 }
4167         };
4168         struct intr_info pcie_intr_info = {
4169                 .name = "PCIE_INT_CAUSE",
4170                 .cause_reg = A_PCIE_INT_CAUSE,
4171                 .enable_reg = A_PCIE_INT_ENABLE,
4172                 .fatal = 0xffffffff,
4173                 .flags = NONFATAL_IF_DISABLED,
4174                 .details = NULL,
4175                 .actions = NULL,
4176         };
4177         bool fatal = false;
4178
4179         if (is_t4(adap)) {
4180                 fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4181                 fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4182
4183                 pcie_intr_info.details = pcie_intr_details;
4184         } else {
4185                 pcie_intr_info.details = t5_pcie_intr_details;
4186         }
4187         fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4188
4189         return (fatal);
4190 }
4191
4192 /*
4193  * TP interrupt handler.
4194  */
4195 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4196 {
4197         static const struct intr_details tp_intr_details[] = {
4198                 { 0x3fffffff, "TP parity error" },
4199                 { F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4200                 { 0 }
4201         };
4202         static const struct intr_info tp_intr_info = {
4203                 .name = "TP_INT_CAUSE",
4204                 .cause_reg = A_TP_INT_CAUSE,
4205                 .enable_reg = A_TP_INT_ENABLE,
4206                 .fatal = 0x7fffffff,
4207                 .flags = NONFATAL_IF_DISABLED,
4208                 .details = tp_intr_details,
4209                 .actions = NULL,
4210         };
4211
4212         return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4213 }
4214
4215 /*
4216  * SGE interrupt handler.
4217  */
4218 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4219 {
4220         static const struct intr_info sge_int1_info = {
4221                 .name = "SGE_INT_CAUSE1",
4222                 .cause_reg = A_SGE_INT_CAUSE1,
4223                 .enable_reg = A_SGE_INT_ENABLE1,
4224                 .fatal = 0xffffffff,
4225                 .flags = NONFATAL_IF_DISABLED,
4226                 .details = NULL,
4227                 .actions = NULL,
4228         };
4229         static const struct intr_info sge_int2_info = {
4230                 .name = "SGE_INT_CAUSE2",
4231                 .cause_reg = A_SGE_INT_CAUSE2,
4232                 .enable_reg = A_SGE_INT_ENABLE2,
4233                 .fatal = 0xffffffff,
4234                 .flags = NONFATAL_IF_DISABLED,
4235                 .details = NULL,
4236                 .actions = NULL,
4237         };
4238         static const struct intr_details sge_int3_details[] = {
4239                 { F_ERR_FLM_DBP,
4240                         "DBP pointer delivery for invalid context or QID" },
4241                 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4242                         "Invalid QID or header request by IDMA" },
4243                 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4244                 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4245                 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4246                 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4247                 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4248                 { F_ERR_TIMER_ABOVE_MAX_QID,
4249                         "SGE GTS with timer 0-5 for IQID > 1023" },
4250                 { F_ERR_CPL_EXCEED_IQE_SIZE,
4251                         "SGE received CPL exceeding IQE size" },
4252                 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4253                 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4254                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4255                 { F_ERR_DROPPED_DB, "SGE DB dropped" },
4256                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4257                   "SGE IQID > 1023 received CPL for FL" },
4258                 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4259                         F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4260                 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4261                 { F_ERR_ING_CTXT_PRIO,
4262                         "Ingress context manager priority user error" },
4263                 { F_ERR_EGR_CTXT_PRIO,
4264                         "Egress context manager priority user error" },
4265                 { F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4266                 { F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4267                 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4268                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4269                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4270                 { 0x0000000f, "SGE context access for invalid queue" },
4271                 { 0 }
4272         };
4273         static const struct intr_details t6_sge_int3_details[] = {
4274                 { F_ERR_FLM_DBP,
4275                         "DBP pointer delivery for invalid context or QID" },
4276                 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4277                         "Invalid QID or header request by IDMA" },
4278                 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4279                 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4280                 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4281                 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4282                 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4283                 { F_ERR_TIMER_ABOVE_MAX_QID,
4284                         "SGE GTS with timer 0-5 for IQID > 1023" },
4285                 { F_ERR_CPL_EXCEED_IQE_SIZE,
4286                         "SGE received CPL exceeding IQE size" },
4287                 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4288                 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4289                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4290                 { F_ERR_DROPPED_DB, "SGE DB dropped" },
4291                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4292                         "SGE IQID > 1023 received CPL for FL" },
4293                 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4294                         F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4295                 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4296                 { F_ERR_ING_CTXT_PRIO,
4297                         "Ingress context manager priority user error" },
4298                 { F_ERR_EGR_CTXT_PRIO,
4299                         "Egress context manager priority user error" },
4300                 { F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4301                 { F_FATAL_WRE_LEN,
4302                         "SGE WRE packet less than advertized length" },
4303                 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4304                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4305                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4306                 { 0x0000000f, "SGE context access for invalid queue" },
4307                 { 0 }
4308         };
4309         struct intr_info sge_int3_info = {
4310                 .name = "SGE_INT_CAUSE3",
4311                 .cause_reg = A_SGE_INT_CAUSE3,
4312                 .enable_reg = A_SGE_INT_ENABLE3,
4313                 .fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4314                 .flags = 0,
4315                 .details = NULL,
4316                 .actions = NULL,
4317         };
4318         static const struct intr_info sge_int4_info = {
4319                 .name = "SGE_INT_CAUSE4",
4320                 .cause_reg = A_SGE_INT_CAUSE4,
4321                 .enable_reg = A_SGE_INT_ENABLE4,
4322                 .fatal = 0,
4323                 .flags = 0,
4324                 .details = NULL,
4325                 .actions = NULL,
4326         };
4327         static const struct intr_info sge_int5_info = {
4328                 .name = "SGE_INT_CAUSE5",
4329                 .cause_reg = A_SGE_INT_CAUSE5,
4330                 .enable_reg = A_SGE_INT_ENABLE5,
4331                 .fatal = 0xffffffff,
4332                 .flags = NONFATAL_IF_DISABLED,
4333                 .details = NULL,
4334                 .actions = NULL,
4335         };
4336         static const struct intr_info sge_int6_info = {
4337                 .name = "SGE_INT_CAUSE6",
4338                 .cause_reg = A_SGE_INT_CAUSE6,
4339                 .enable_reg = A_SGE_INT_ENABLE6,
4340                 .fatal = 0,
4341                 .flags = 0,
4342                 .details = NULL,
4343                 .actions = NULL,
4344         };
4345
4346         bool fatal;
4347         u32 v;
4348
4349         if (chip_id(adap) <= CHELSIO_T5) {
4350                 sge_int3_info.details = sge_int3_details;
4351         } else {
4352                 sge_int3_info.details = t6_sge_int3_details;
4353         }
4354
4355         fatal = false;
4356         fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4357         fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4358         fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4359         fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4360         if (chip_id(adap) >= CHELSIO_T5)
4361                 fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4362         if (chip_id(adap) >= CHELSIO_T6)
4363                 fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4364
4365         v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4366         if (v & F_ERROR_QID_VALID) {
4367                 CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4368                 if (v & F_UNCAPTURED_ERROR)
4369                         CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4370                 t4_write_reg(adap, A_SGE_ERROR_STATS,
4371                     F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4372         }
4373
4374         return (fatal);
4375 }
4376
4377 /*
4378  * CIM interrupt handler.
4379  */
4380 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4381 {
4382         static const struct intr_action cim_host_intr_actions[] = {
4383                 { F_TIMER0INT, 0, t4_os_dump_cimla },
4384                 { 0 },
4385         };
4386         static const struct intr_details cim_host_intr_details[] = {
4387                 /* T6+ */
4388                 { F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4389
4390                 /* T5+ */
4391                 { F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4392                 { F_PLCIM_MSTRSPDATAPARERR,
4393                         "PL2CIM master response data parity error" },
4394                 { F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4395                 { F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4396                 { F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4397                 { F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4398                 { F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4399                 { F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4400
4401                 /* T4+ */
4402                 { F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4403                 { F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4404                 { F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4405                 { F_MBUPPARERR, "CIM mailbox uP parity error" },
4406                 { F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4407                 { F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4408                 { F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4409                 { F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4410                 { F_IBQSGEHIPARERR | F_IBQPCIEPARERR,   /* same bit */
4411                         "CIM IBQ PCIe/SGE_HI parity error" },
4412                 { F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4413                 { F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4414                 { F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4415                 { F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4416                 { F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4417                 { F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4418                 { F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4419                 { F_TIMER1INT, "CIM TIMER0 interrupt" },
4420                 { F_TIMER0INT, "CIM TIMER0 interrupt" },
4421                 { F_PREFDROPINT, "CIM control register prefetch drop" },
4422                 { 0}
4423         };
4424         static const struct intr_info cim_host_intr_info = {
4425                 .name = "CIM_HOST_INT_CAUSE",
4426                 .cause_reg = A_CIM_HOST_INT_CAUSE,
4427                 .enable_reg = A_CIM_HOST_INT_ENABLE,
4428                 .fatal = 0x007fffe6,
4429                 .flags = NONFATAL_IF_DISABLED,
4430                 .details = cim_host_intr_details,
4431                 .actions = cim_host_intr_actions,
4432         };
4433         static const struct intr_details cim_host_upacc_intr_details[] = {
4434                 { F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4435                 { F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4436                 { F_TIMEOUTINT, "CIM PIF timeout" },
4437                 { F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4438                 { F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4439                 { F_BLKWRPLINT, "CIM block write to PL space" },
4440                 { F_BLKRDPLINT, "CIM block read from PL space" },
4441                 { F_SGLWRPLINT,
4442                         "CIM single write to PL space with illegal BEs" },
4443                 { F_SGLRDPLINT,
4444                         "CIM single read from PL space with illegal BEs" },
4445                 { F_BLKWRCTLINT, "CIM block write to CTL space" },
4446                 { F_BLKRDCTLINT, "CIM block read from CTL space" },
4447                 { F_SGLWRCTLINT,
4448                         "CIM single write to CTL space with illegal BEs" },
4449                 { F_SGLRDCTLINT,
4450                         "CIM single read from CTL space with illegal BEs" },
4451                 { F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4452                 { F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4453                 { F_SGLWREEPROMINT,
4454                         "CIM single write to EEPROM space with illegal BEs" },
4455                 { F_SGLRDEEPROMINT,
4456                         "CIM single read from EEPROM space with illegal BEs" },
4457                 { F_BLKWRFLASHINT, "CIM block write to flash space" },
4458                 { F_BLKRDFLASHINT, "CIM block read from flash space" },
4459                 { F_SGLWRFLASHINT, "CIM single write to flash space" },
4460                 { F_SGLRDFLASHINT,
4461                         "CIM single read from flash space with illegal BEs" },
4462                 { F_BLKWRBOOTINT, "CIM block write to boot space" },
4463                 { F_BLKRDBOOTINT, "CIM block read from boot space" },
4464                 { F_SGLWRBOOTINT, "CIM single write to boot space" },
4465                 { F_SGLRDBOOTINT,
4466                         "CIM single read from boot space with illegal BEs" },
4467                 { F_ILLWRBEINT, "CIM illegal write BEs" },
4468                 { F_ILLRDBEINT, "CIM illegal read BEs" },
4469                 { F_ILLRDINT, "CIM illegal read" },
4470                 { F_ILLWRINT, "CIM illegal write" },
4471                 { F_ILLTRANSINT, "CIM illegal transaction" },
4472                 { F_RSVDSPACEINT, "CIM reserved space access" },
4473                 {0}
4474         };
4475         static const struct intr_info cim_host_upacc_intr_info = {
4476                 .name = "CIM_HOST_UPACC_INT_CAUSE",
4477                 .cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4478                 .enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4479                 .fatal = 0x3fffeeff,
4480                 .flags = NONFATAL_IF_DISABLED,
4481                 .details = cim_host_upacc_intr_details,
4482                 .actions = NULL,
4483         };
4484         static const struct intr_info cim_pf_host_intr_info = {
4485                 .name = "CIM_PF_HOST_INT_CAUSE",
4486                 .cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4487                 .enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4488                 .fatal = 0,
4489                 .flags = 0,
4490                 .details = NULL,
4491                 .actions = NULL,
4492         };
4493         u32 val, fw_err;
4494         bool fatal;
4495
4496         fw_err = t4_read_reg(adap, A_PCIE_FW);
4497         if (fw_err & F_PCIE_FW_ERR)
4498                 t4_report_fw_error(adap);
4499
4500         /*
4501          * When the Firmware detects an internal error which normally wouldn't
4502          * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4503          * to make sure the Host sees the Firmware Crash.  So if we have a
4504          * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4505          * interrupt.
4506          */
4507         val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4508         if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4509             G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4510                 t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4511         }
4512
4513         fatal = false;
4514         fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4515         fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4516         fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4517
4518         return (fatal);
4519 }
4520
4521 /*
4522  * ULP RX interrupt handler.
4523  */
4524 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4525 {
4526         static const struct intr_details ulprx_intr_details[] = {
4527                 /* T5+ */
4528                 { F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4529                 { F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4530
4531                 /* T4+ */
4532                 { F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4533                 { F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4534                 { 0x007fffff, "ULPRX parity error" },
4535                 { 0 }
4536         };
4537         static const struct intr_info ulprx_intr_info = {
4538                 .name = "ULP_RX_INT_CAUSE",
4539                 .cause_reg = A_ULP_RX_INT_CAUSE,
4540                 .enable_reg = A_ULP_RX_INT_ENABLE,
4541                 .fatal = 0x07ffffff,
4542                 .flags = NONFATAL_IF_DISABLED,
4543                 .details = ulprx_intr_details,
4544                 .actions = NULL,
4545         };
4546         static const struct intr_info ulprx_intr2_info = {
4547                 .name = "ULP_RX_INT_CAUSE_2",
4548                 .cause_reg = A_ULP_RX_INT_CAUSE_2,
4549                 .enable_reg = A_ULP_RX_INT_ENABLE_2,
4550                 .fatal = 0,
4551                 .flags = 0,
4552                 .details = NULL,
4553                 .actions = NULL,
4554         };
4555         bool fatal = false;
4556
4557         fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4558         fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4559
4560         return (fatal);
4561 }
4562
4563 /*
4564  * ULP TX interrupt handler.
4565  */
4566 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4567 {
4568         static const struct intr_details ulptx_intr_details[] = {
4569                 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4570                 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4571                 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4572                 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4573                 { 0x0fffffff, "ULPTX parity error" },
4574                 { 0 }
4575         };
4576         static const struct intr_info ulptx_intr_info = {
4577                 .name = "ULP_TX_INT_CAUSE",
4578                 .cause_reg = A_ULP_TX_INT_CAUSE,
4579                 .enable_reg = A_ULP_TX_INT_ENABLE,
4580                 .fatal = 0x0fffffff,
4581                 .flags = NONFATAL_IF_DISABLED,
4582                 .details = ulptx_intr_details,
4583                 .actions = NULL,
4584         };
4585         static const struct intr_info ulptx_intr2_info = {
4586                 .name = "ULP_TX_INT_CAUSE_2",
4587                 .cause_reg = A_ULP_TX_INT_CAUSE_2,
4588                 .enable_reg = A_ULP_TX_INT_ENABLE_2,
4589                 .fatal = 0xf0,
4590                 .flags = NONFATAL_IF_DISABLED,
4591                 .details = NULL,
4592                 .actions = NULL,
4593         };
4594         bool fatal = false;
4595
4596         fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4597         fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4598
4599         return (fatal);
4600 }
4601
4602 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4603 {
4604         int i;
4605         u32 data[17];
4606
4607         t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4608             ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4609         for (i = 0; i < ARRAY_SIZE(data); i++) {
4610                 CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4611                     A_PM_TX_DBG_STAT0 + i, data[i]);
4612         }
4613
4614         return (false);
4615 }
4616
4617 /*
4618  * PM TX interrupt handler.
4619  */
4620 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4621 {
4622         static const struct intr_action pmtx_intr_actions[] = {
4623                 { 0xffffffff, 0, pmtx_dump_dbg_stats },
4624                 { 0 },
4625         };
4626         static const struct intr_details pmtx_intr_details[] = {
4627                 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4628                 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4629                 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4630                 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4631                 { 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4632                 { 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4633                 { 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4634                 { 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4635                 { 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4636                 { 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4637                 { F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4638                 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4639                 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4640                 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4641                 { 0 }
4642         };
4643         static const struct intr_info pmtx_intr_info = {
4644                 .name = "PM_TX_INT_CAUSE",
4645                 .cause_reg = A_PM_TX_INT_CAUSE,
4646                 .enable_reg = A_PM_TX_INT_ENABLE,
4647                 .fatal = 0xffffffff,
4648                 .flags = 0,
4649                 .details = pmtx_intr_details,
4650                 .actions = pmtx_intr_actions,
4651         };
4652
4653         return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4654 }
4655
4656 /*
4657  * PM RX interrupt handler.
4658  */
4659 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4660 {
4661         static const struct intr_details pmrx_intr_details[] = {
4662                 /* T6+ */
4663                 { 0x18000000, "PMRX ospi overflow" },
4664                 { F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4665                 { F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4666                 { F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4667                 { F_SDC_ERR, "PMRX SDC error" },
4668
4669                 /* T4+ */
4670                 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4671                 { 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4672                 { 0x0003c000, "PMRX iespi Rx framing error" },
4673                 { 0x00003c00, "PMRX iespi Tx framing error" },
4674                 { 0x00000300, "PMRX ocspi Rx framing error" },
4675                 { 0x000000c0, "PMRX ocspi Tx framing error" },
4676                 { 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4677                 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4678                 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4679                 { F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4680                 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4681                 { 0 }
4682         };
4683         static const struct intr_info pmrx_intr_info = {
4684                 .name = "PM_RX_INT_CAUSE",
4685                 .cause_reg = A_PM_RX_INT_CAUSE,
4686                 .enable_reg = A_PM_RX_INT_ENABLE,
4687                 .fatal = 0x1fffffff,
4688                 .flags = NONFATAL_IF_DISABLED,
4689                 .details = pmrx_intr_details,
4690                 .actions = NULL,
4691         };
4692
4693         return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4694 }
4695
4696 /*
4697  * CPL switch interrupt handler.
4698  */
4699 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4700 {
4701         static const struct intr_details cplsw_intr_details[] = {
4702                 /* T5+ */
4703                 { F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4704                 { F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4705
4706                 /* T4+ */
4707                 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4708                 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4709                 { F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4710                 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4711                 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4712                 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4713                 { 0 }
4714         };
4715         static const struct intr_info cplsw_intr_info = {
4716                 .name = "CPL_INTR_CAUSE",
4717                 .cause_reg = A_CPL_INTR_CAUSE,
4718                 .enable_reg = A_CPL_INTR_ENABLE,
4719                 .fatal = 0xff,
4720                 .flags = NONFATAL_IF_DISABLED,
4721                 .details = cplsw_intr_details,
4722                 .actions = NULL,
4723         };
4724
4725         return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4726 }
4727
4728 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4729 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4730 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4731     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4732     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4733     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4734 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4735     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4736     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4737
4738 /*
4739  * LE interrupt handler.
4740  */
4741 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4742 {
4743         static const struct intr_details le_intr_details[] = {
4744                 { F_REQQPARERR, "LE request queue parity error" },
4745                 { F_UNKNOWNCMD, "LE unknown command" },
4746                 { F_ACTRGNFULL, "LE active region full" },
4747                 { F_PARITYERR, "LE parity error" },
4748                 { F_LIPMISS, "LE LIP miss" },
4749                 { F_LIP0, "LE 0 LIP error" },
4750                 { 0 }
4751         };
4752         static const struct intr_details t6_le_intr_details[] = {
4753                 { F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4754                 { F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4755                 { F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4756                 { F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4757                 { F_TOTCNTERR, "LE total active < TCAM count" },
4758                 { F_CMDPRSRINTERR, "LE internal error in parser" },
4759                 { F_CMDTIDERR, "Incorrect tid in LE command" },
4760                 { F_T6_ACTRGNFULL, "LE active region full" },
4761                 { F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4762                 { F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4763                 { F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4764                 { F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4765                 { F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4766                 { F_TCAMACCFAIL, "LE TCAM access failure" },
4767                 { F_T6_UNKNOWNCMD, "LE unknown command" },
4768                 { F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4769                 { F_T6_LIPMISS, "LE CLIP lookup miss" },
4770                 { T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4771                 { 0 }
4772         };
4773         struct intr_info le_intr_info = {
4774                 .name = "LE_DB_INT_CAUSE",
4775                 .cause_reg = A_LE_DB_INT_CAUSE,
4776                 .enable_reg = A_LE_DB_INT_ENABLE,
4777                 .fatal = 0,
4778                 .flags = NONFATAL_IF_DISABLED,
4779                 .details = NULL,
4780                 .actions = NULL,
4781         };
4782
4783         if (chip_id(adap) <= CHELSIO_T5) {
4784                 le_intr_info.details = le_intr_details;
4785                 le_intr_info.fatal = T5_LE_FATAL_MASK;
4786         } else {
4787                 le_intr_info.details = t6_le_intr_details;
4788                 le_intr_info.fatal = T6_LE_FATAL_MASK;
4789         }
4790
4791         return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4792 }
4793
4794 /*
4795  * MPS interrupt handler.
4796  */
4797 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4798 {
4799         static const struct intr_details mps_rx_perr_intr_details[] = {
4800                 { 0xffffffff, "MPS Rx parity error" },
4801                 { 0 }
4802         };
4803         static const struct intr_info mps_rx_perr_intr_info = {
4804                 .name = "MPS_RX_PERR_INT_CAUSE",
4805                 .cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4806                 .enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4807                 .fatal = 0xffffffff,
4808                 .flags = NONFATAL_IF_DISABLED,
4809                 .details = mps_rx_perr_intr_details,
4810                 .actions = NULL,
4811         };
4812         static const struct intr_details mps_tx_intr_details[] = {
4813                 { F_PORTERR, "MPS Tx destination port is disabled" },
4814                 { F_FRMERR, "MPS Tx framing error" },
4815                 { F_SECNTERR, "MPS Tx SOP/EOP error" },
4816                 { F_BUBBLE, "MPS Tx underflow" },
4817                 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4818                 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4819                 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4820                 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4821                 { 0 }
4822         };
4823         static const struct intr_info mps_tx_intr_info = {
4824                 .name = "MPS_TX_INT_CAUSE",
4825                 .cause_reg = A_MPS_TX_INT_CAUSE,
4826                 .enable_reg = A_MPS_TX_INT_ENABLE,
4827                 .fatal = 0x1ffff,
4828                 .flags = NONFATAL_IF_DISABLED,
4829                 .details = mps_tx_intr_details,
4830                 .actions = NULL,
4831         };
4832         static const struct intr_details mps_trc_intr_details[] = {
4833                 { F_MISCPERR, "MPS TRC misc parity error" },
4834                 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4835                 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4836                 { 0 }
4837         };
4838         static const struct intr_info mps_trc_intr_info = {
4839                 .name = "MPS_TRC_INT_CAUSE",
4840                 .cause_reg = A_MPS_TRC_INT_CAUSE,
4841                 .enable_reg = A_MPS_TRC_INT_ENABLE,
4842                 .fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4843                 .flags = 0,
4844                 .details = mps_trc_intr_details,
4845                 .actions = NULL,
4846         };
4847         static const struct intr_details mps_stat_sram_intr_details[] = {
4848                 { 0xffffffff, "MPS statistics SRAM parity error" },
4849                 { 0 }
4850         };
4851         static const struct intr_info mps_stat_sram_intr_info = {
4852                 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4853                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4854                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4855                 .fatal = 0x1fffffff,
4856                 .flags = NONFATAL_IF_DISABLED,
4857                 .details = mps_stat_sram_intr_details,
4858                 .actions = NULL,
4859         };
4860         static const struct intr_details mps_stat_tx_intr_details[] = {
4861                 { 0xffffff, "MPS statistics Tx FIFO parity error" },
4862                 { 0 }
4863         };
4864         static const struct intr_info mps_stat_tx_intr_info = {
4865                 .name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4866                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4867                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4868                 .fatal =  0xffffff,
4869                 .flags = NONFATAL_IF_DISABLED,
4870                 .details = mps_stat_tx_intr_details,
4871                 .actions = NULL,
4872         };
4873         static const struct intr_details mps_stat_rx_intr_details[] = {
4874                 { 0xffffff, "MPS statistics Rx FIFO parity error" },
4875                 { 0 }
4876         };
4877         static const struct intr_info mps_stat_rx_intr_info = {
4878                 .name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4879                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4880                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4881                 .fatal =  0xffffff,
4882                 .flags = 0,
4883                 .details = mps_stat_rx_intr_details,
4884                 .actions = NULL,
4885         };
4886         static const struct intr_details mps_cls_intr_details[] = {
4887                 { F_HASHSRAM, "MPS hash SRAM parity error" },
4888                 { F_MATCHTCAM, "MPS match TCAM parity error" },
4889                 { F_MATCHSRAM, "MPS match SRAM parity error" },
4890                 { 0 }
4891         };
4892         static const struct intr_info mps_cls_intr_info = {
4893                 .name = "MPS_CLS_INT_CAUSE",
4894                 .cause_reg = A_MPS_CLS_INT_CAUSE,
4895                 .enable_reg = A_MPS_CLS_INT_ENABLE,
4896                 .fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4897                 .flags = 0,
4898                 .details = mps_cls_intr_details,
4899                 .actions = NULL,
4900         };
4901         static const struct intr_details mps_stat_sram1_intr_details[] = {
4902                 { 0xff, "MPS statistics SRAM1 parity error" },
4903                 { 0 }
4904         };
4905         static const struct intr_info mps_stat_sram1_intr_info = {
4906                 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4907                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4908                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4909                 .fatal = 0xff,
4910                 .flags = 0,
4911                 .details = mps_stat_sram1_intr_details,
4912                 .actions = NULL,
4913         };
4914
4915         bool fatal;
4916
4917         fatal = false;
4918         fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4919         fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4920         fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4921         fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4922         fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4923         fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4924         fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4925         if (chip_id(adap) > CHELSIO_T4) {
4926                 fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4927                     verbose);
4928         }
4929
4930         t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4931         t4_read_reg(adap, A_MPS_INT_CAUSE);     /* flush */
4932
4933         return (fatal);
4934
4935 }
4936
4937 /*
4938  * EDC/MC interrupt handler.
4939  */
4940 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4941 {
4942         static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
4943         unsigned int count_reg, v;
4944         static const struct intr_details mem_intr_details[] = {
4945                 { F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
4946                 { F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
4947                 { F_PERR_INT_CAUSE, "FIFO parity error" },
4948                 { 0 }
4949         };
4950         struct intr_info ii = {
4951                 .fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
4952                 .details = mem_intr_details,
4953                 .flags = 0,
4954                 .actions = NULL,
4955         };
4956         bool fatal;
4957
4958         switch (idx) {
4959         case MEM_EDC0:
4960                 ii.name = "EDC0_INT_CAUSE";
4961                 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
4962                 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
4963                 count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
4964                 break;
4965         case MEM_EDC1:
4966                 ii.name = "EDC1_INT_CAUSE";
4967                 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
4968                 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
4969                 count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
4970                 break;
4971         case MEM_MC0:
4972                 ii.name = "MC0_INT_CAUSE";
4973                 if (is_t4(adap)) {
4974                         ii.cause_reg = A_MC_INT_CAUSE;
4975                         ii.enable_reg = A_MC_INT_ENABLE;
4976                         count_reg = A_MC_ECC_STATUS;
4977                 } else {
4978                         ii.cause_reg = A_MC_P_INT_CAUSE;
4979                         ii.enable_reg = A_MC_P_INT_ENABLE;
4980                         count_reg = A_MC_P_ECC_STATUS;
4981                 }
4982                 break;
4983         case MEM_MC1:
4984                 ii.name = "MC1_INT_CAUSE";
4985                 ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
4986                 ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
4987                 count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
4988                 break;
4989         }
4990
4991         fatal = t4_handle_intr(adap, &ii, 0, verbose);
4992
4993         v = t4_read_reg(adap, count_reg);
4994         if (v != 0) {
4995                 if (G_ECC_UECNT(v) != 0) {
4996                         CH_ALERT(adap,
4997                             "%s: %u uncorrectable ECC data error(s)\n",
4998                             name[idx], G_ECC_UECNT(v));
4999                 }
5000                 if (G_ECC_CECNT(v) != 0) {
5001                         if (idx <= MEM_EDC1)
5002                                 t4_edc_err_read(adap, idx);
5003                         CH_WARN_RATELIMIT(adap,
5004                             "%s: %u correctable ECC data error(s)\n",
5005                             name[idx], G_ECC_CECNT(v));
5006                 }
5007                 t4_write_reg(adap, count_reg, 0xffffffff);
5008         }
5009
5010         return (fatal);
5011 }
5012
5013 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5014 {
5015         u32 v;
5016
5017         v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5018         CH_ALERT(adap,
5019             "MA address wrap-around error by client %u to address %#x\n",
5020             G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5021         t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5022
5023         return (false);
5024 }
5025
5026
5027 /*
5028  * MA interrupt handler.
5029  */
5030 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5031 {
5032         static const struct intr_action ma_intr_actions[] = {
5033                 { F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5034                 { 0 },
5035         };
5036         static const struct intr_info ma_intr_info = {
5037                 .name = "MA_INT_CAUSE",
5038                 .cause_reg = A_MA_INT_CAUSE,
5039                 .enable_reg = A_MA_INT_ENABLE,
5040                 .fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5041                 .flags = NONFATAL_IF_DISABLED,
5042                 .details = NULL,
5043                 .actions = ma_intr_actions,
5044         };
5045         static const struct intr_info ma_perr_status1 = {
5046                 .name = "MA_PARITY_ERROR_STATUS1",
5047                 .cause_reg = A_MA_PARITY_ERROR_STATUS1,
5048                 .enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5049                 .fatal = 0xffffffff,
5050                 .flags = 0,
5051                 .details = NULL,
5052                 .actions = NULL,
5053         };
5054         static const struct intr_info ma_perr_status2 = {
5055                 .name = "MA_PARITY_ERROR_STATUS2",
5056                 .cause_reg = A_MA_PARITY_ERROR_STATUS2,
5057                 .enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5058                 .fatal = 0xffffffff,
5059                 .flags = 0,
5060                 .details = NULL,
5061                 .actions = NULL,
5062         };
5063         bool fatal;
5064
5065         fatal = false;
5066         fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5067         fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5068         if (chip_id(adap) > CHELSIO_T4)
5069                 fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5070
5071         return (fatal);
5072 }
5073
5074 /*
5075  * SMB interrupt handler.
5076  */
5077 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5078 {
5079         static const struct intr_details smb_intr_details[] = {
5080                 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5081                 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5082                 { F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5083                 { 0 }
5084         };
5085         static const struct intr_info smb_intr_info = {
5086                 .name = "SMB_INT_CAUSE",
5087                 .cause_reg = A_SMB_INT_CAUSE,
5088                 .enable_reg = A_SMB_INT_ENABLE,
5089                 .fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5090                 .flags = 0,
5091                 .details = smb_intr_details,
5092                 .actions = NULL,
5093         };
5094
5095         return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5096 }
5097
5098 /*
5099  * NC-SI interrupt handler.
5100  */
5101 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5102 {
5103         static const struct intr_details ncsi_intr_details[] = {
5104                 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5105                 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5106                 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5107                 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5108                 { 0 }
5109         };
5110         static const struct intr_info ncsi_intr_info = {
5111                 .name = "NCSI_INT_CAUSE",
5112                 .cause_reg = A_NCSI_INT_CAUSE,
5113                 .enable_reg = A_NCSI_INT_ENABLE,
5114                 .fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5115                     F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5116                 .flags = 0,
5117                 .details = ncsi_intr_details,
5118                 .actions = NULL,
5119         };
5120
5121         return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5122 }
5123
5124 /*
5125  * MAC interrupt handler.
5126  */
5127 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5128 {
5129         static const struct intr_details mac_intr_details[] = {
5130                 { F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5131                 { F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5132                 { 0 }
5133         };
5134         char name[32];
5135         struct intr_info ii;
5136         bool fatal = false;
5137
5138         if (is_t4(adap)) {
5139                 snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5140                 ii.name = &name[0];
5141                 ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5142                 ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5143                 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5144                 ii.flags = 0;
5145                 ii.details = mac_intr_details;
5146                 ii.actions = NULL;
5147         } else {
5148                 snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5149                 ii.name = &name[0];
5150                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5151                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5152                 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5153                 ii.flags = 0;
5154                 ii.details = mac_intr_details;
5155                 ii.actions = NULL;
5156         }
5157         fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5158
5159         if (chip_id(adap) >= CHELSIO_T5) {
5160                 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5161                 ii.name = &name[0];
5162                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5163                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5164                 ii.fatal = 0;
5165                 ii.flags = 0;
5166                 ii.details = NULL;
5167                 ii.actions = NULL;
5168                 fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5169         }
5170
5171         if (chip_id(adap) >= CHELSIO_T6) {
5172                 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5173                 ii.name = &name[0];
5174                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5175                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5176                 ii.fatal = 0;
5177                 ii.flags = 0;
5178                 ii.details = NULL;
5179                 ii.actions = NULL;
5180                 fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5181         }
5182
5183         return (fatal);
5184 }
5185
5186 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5187 {
5188         static const struct intr_details plpl_intr_details[] = {
5189                 { F_FATALPERR, "Fatal parity error" },
5190                 { F_PERRVFID, "VFID_MAP parity error" },
5191                 { 0 }
5192         };
5193         static const struct intr_info plpl_intr_info = {
5194                 .name = "PL_PL_INT_CAUSE",
5195                 .cause_reg = A_PL_PL_INT_CAUSE,
5196                 .enable_reg = A_PL_PL_INT_ENABLE,
5197                 .fatal = F_FATALPERR | F_PERRVFID,
5198                 .flags = NONFATAL_IF_DISABLED,
5199                 .details = plpl_intr_details,
5200                 .actions = NULL,
5201         };
5202
5203         return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5204 }
5205
5206 /**
5207  *      t4_slow_intr_handler - control path interrupt handler
5208  *      @adap: the adapter
5209  *      @verbose: increased verbosity, for debug
5210  *
5211  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
5212  *      The designation 'slow' is because it involves register reads, while
5213  *      data interrupts typically don't involve any MMIOs.
5214  */
5215 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5216 {
5217         static const struct intr_details pl_intr_details[] = {
5218                 { F_MC1, "MC1" },
5219                 { F_UART, "UART" },
5220                 { F_ULP_TX, "ULP TX" },
5221                 { F_SGE, "SGE" },
5222                 { F_HMA, "HMA" },
5223                 { F_CPL_SWITCH, "CPL Switch" },
5224                 { F_ULP_RX, "ULP RX" },
5225                 { F_PM_RX, "PM RX" },
5226                 { F_PM_TX, "PM TX" },
5227                 { F_MA, "MA" },
5228                 { F_TP, "TP" },
5229                 { F_LE, "LE" },
5230                 { F_EDC1, "EDC1" },
5231                 { F_EDC0, "EDC0" },
5232                 { F_MC, "MC0" },
5233                 { F_PCIE, "PCIE" },
5234                 { F_PMU, "PMU" },
5235                 { F_MAC3, "MAC3" },
5236                 { F_MAC2, "MAC2" },
5237                 { F_MAC1, "MAC1" },
5238                 { F_MAC0, "MAC0" },
5239                 { F_SMB, "SMB" },
5240                 { F_SF, "SF" },
5241                 { F_PL, "PL" },
5242                 { F_NCSI, "NC-SI" },
5243                 { F_MPS, "MPS" },
5244                 { F_MI, "MI" },
5245                 { F_DBG, "DBG" },
5246                 { F_I2CM, "I2CM" },
5247                 { F_CIM, "CIM" },
5248                 { 0 }
5249         };
5250         static const struct intr_info pl_perr_cause = {
5251                 .name = "PL_PERR_CAUSE",
5252                 .cause_reg = A_PL_PERR_CAUSE,
5253                 .enable_reg = A_PL_PERR_ENABLE,
5254                 .fatal = 0xffffffff,
5255                 .flags = 0,
5256                 .details = pl_intr_details,
5257                 .actions = NULL,
5258         };
5259         static const struct intr_action pl_intr_action[] = {
5260                 { F_MC1, MEM_MC1, mem_intr_handler },
5261                 { F_ULP_TX, -1, ulptx_intr_handler },
5262                 { F_SGE, -1, sge_intr_handler },
5263                 { F_CPL_SWITCH, -1, cplsw_intr_handler },
5264                 { F_ULP_RX, -1, ulprx_intr_handler },
5265                 { F_PM_RX, -1, pmrx_intr_handler},
5266                 { F_PM_TX, -1, pmtx_intr_handler},
5267                 { F_MA, -1, ma_intr_handler },
5268                 { F_TP, -1, tp_intr_handler },
5269                 { F_LE, -1, le_intr_handler },
5270                 { F_EDC1, MEM_EDC1, mem_intr_handler },
5271                 { F_EDC0, MEM_EDC0, mem_intr_handler },
5272                 { F_MC0, MEM_MC0, mem_intr_handler },
5273                 { F_PCIE, -1, pcie_intr_handler },
5274                 { F_MAC3, 3, mac_intr_handler},
5275                 { F_MAC2, 2, mac_intr_handler},
5276                 { F_MAC1, 1, mac_intr_handler},
5277                 { F_MAC0, 0, mac_intr_handler},
5278                 { F_SMB, -1, smb_intr_handler},
5279                 { F_PL, -1, plpl_intr_handler },
5280                 { F_NCSI, -1, ncsi_intr_handler},
5281                 { F_MPS, -1, mps_intr_handler },
5282                 { F_CIM, -1, cim_intr_handler },
5283                 { 0 }
5284         };
5285         static const struct intr_info pl_intr_info = {
5286                 .name = "PL_INT_CAUSE",
5287                 .cause_reg = A_PL_INT_CAUSE,
5288                 .enable_reg = A_PL_INT_ENABLE,
5289                 .fatal = 0,
5290                 .flags = 0,
5291                 .details = pl_intr_details,
5292                 .actions = pl_intr_action,
5293         };
5294         bool fatal;
5295         u32 perr;
5296
5297         perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5298         if (verbose || perr != 0) {
5299                 t4_show_intr_info(adap, &pl_perr_cause, perr);
5300                 if (perr != 0)
5301                         t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5302                 if (verbose)
5303                         perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5304         }
5305         fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5306         if (fatal)
5307                 t4_fatal_err(adap, false);
5308
5309         return (0);
5310 }
5311
5312 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5313
5314 /**
5315  *      t4_intr_enable - enable interrupts
5316  *      @adapter: the adapter whose interrupts should be enabled
5317  *
5318  *      Enable PF-specific interrupts for the calling function and the top-level
5319  *      interrupt concentrator for global interrupts.  Interrupts are already
5320  *      enabled at each module, here we just enable the roots of the interrupt
5321  *      hierarchies.
5322  *
5323  *      Note: this function should be called only when the driver manages
5324  *      non PF-specific interrupts from the various HW modules.  Only one PCI
5325  *      function at a time should be doing this.
5326  */
5327 void t4_intr_enable(struct adapter *adap)
5328 {
5329         u32 val = 0;
5330
5331         if (chip_id(adap) <= CHELSIO_T5)
5332                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5333         else
5334                 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5335         val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5336             F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5337             F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5338             F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5339             F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5340             F_EGRESS_SIZE_ERR;
5341         t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5342         t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5343         t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5344         t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5345 }
5346
5347 /**
5348  *      t4_intr_disable - disable interrupts
5349  *      @adap: the adapter whose interrupts should be disabled
5350  *
5351  *      Disable interrupts.  We only disable the top-level interrupt
5352  *      concentrators.  The caller must be a PCI function managing global
5353  *      interrupts.
5354  */
5355 void t4_intr_disable(struct adapter *adap)
5356 {
5357
5358         t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5359         t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5360 }
5361
5362 /**
5363  *      t4_intr_clear - clear all interrupts
5364  *      @adap: the adapter whose interrupts should be cleared
5365  *
5366  *      Clears all interrupts.  The caller must be a PCI function managing
5367  *      global interrupts.
5368  */
5369 void t4_intr_clear(struct adapter *adap)
5370 {
5371         static const u32 cause_reg[] = {
5372                 A_CIM_HOST_INT_CAUSE,
5373                 A_CIM_HOST_UPACC_INT_CAUSE,
5374                 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5375                 A_CPL_INTR_CAUSE,
5376                 EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5377                 A_LE_DB_INT_CAUSE,
5378                 A_MA_INT_WRAP_STATUS,
5379                 A_MA_PARITY_ERROR_STATUS1,
5380                 A_MA_INT_CAUSE,
5381                 A_MPS_CLS_INT_CAUSE,
5382                 A_MPS_RX_PERR_INT_CAUSE,
5383                 A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5384                 A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5385                 A_MPS_TRC_INT_CAUSE,
5386                 A_MPS_TX_INT_CAUSE,
5387                 A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5388                 A_NCSI_INT_CAUSE,
5389                 A_PCIE_INT_CAUSE,
5390                 A_PCIE_NONFAT_ERR,
5391                 A_PL_PL_INT_CAUSE,
5392                 A_PM_RX_INT_CAUSE,
5393                 A_PM_TX_INT_CAUSE,
5394                 A_SGE_INT_CAUSE1,
5395                 A_SGE_INT_CAUSE2,
5396                 A_SGE_INT_CAUSE3,
5397                 A_SGE_INT_CAUSE4,
5398                 A_SMB_INT_CAUSE,
5399                 A_TP_INT_CAUSE,
5400                 A_ULP_RX_INT_CAUSE,
5401                 A_ULP_RX_INT_CAUSE_2,
5402                 A_ULP_TX_INT_CAUSE,
5403                 A_ULP_TX_INT_CAUSE_2,
5404
5405                 MYPF_REG(A_PL_PF_INT_CAUSE),
5406         };
5407         int i;
5408         const int nchan = adap->chip_params->nchan;
5409
5410         for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5411                 t4_write_reg(adap, cause_reg[i], 0xffffffff);
5412
5413         if (is_t4(adap)) {
5414                 t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5415                     0xffffffff);
5416                 t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5417                     0xffffffff);
5418                 t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5419                 for (i = 0; i < nchan; i++) {
5420                         t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5421                             0xffffffff);
5422                 }
5423         }
5424         if (chip_id(adap) >= CHELSIO_T5) {
5425                 t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5426                 t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5427                 t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5428                 t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5429                 if (is_t5(adap)) {
5430                         t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5431                             0xffffffff);
5432                 }
5433                 for (i = 0; i < nchan; i++) {
5434                         t4_write_reg(adap, T5_PORT_REG(i,
5435                             A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5436                         if (chip_id(adap) > CHELSIO_T5) {
5437                                 t4_write_reg(adap, T5_PORT_REG(i,
5438                                     A_MAC_PORT_PERR_INT_CAUSE_100G),
5439                                     0xffffffff);
5440                         }
5441                         t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5442                             0xffffffff);
5443                 }
5444         }
5445         if (chip_id(adap) >= CHELSIO_T6) {
5446                 t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5447         }
5448
5449         t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5450         t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5451         t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5452         (void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5453 }
5454
5455 /**
5456  *      hash_mac_addr - return the hash value of a MAC address
5457  *      @addr: the 48-bit Ethernet MAC address
5458  *
5459  *      Hashes a MAC address according to the hash function used by HW inexact
5460  *      (hash) address matching.
5461  */
5462 static int hash_mac_addr(const u8 *addr)
5463 {
5464         u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5465         u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5466         a ^= b;
5467         a ^= (a >> 12);
5468         a ^= (a >> 6);
5469         return a & 0x3f;
5470 }
5471
5472 /**
5473  *      t4_config_rss_range - configure a portion of the RSS mapping table
5474  *      @adapter: the adapter
5475  *      @mbox: mbox to use for the FW command
5476  *      @viid: virtual interface whose RSS subtable is to be written
5477  *      @start: start entry in the table to write
5478  *      @n: how many table entries to write
5479  *      @rspq: values for the "response queue" (Ingress Queue) lookup table
5480  *      @nrspq: number of values in @rspq
5481  *
5482  *      Programs the selected part of the VI's RSS mapping table with the
5483  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5484  *      until the full table range is populated.
5485  *
5486  *      The caller must ensure the values in @rspq are in the range allowed for
5487  *      @viid.
5488  */
5489 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5490                         int start, int n, const u16 *rspq, unsigned int nrspq)
5491 {
5492         int ret;
5493         const u16 *rsp = rspq;
5494         const u16 *rsp_end = rspq + nrspq;
5495         struct fw_rss_ind_tbl_cmd cmd;
5496
5497         memset(&cmd, 0, sizeof(cmd));
5498         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5499                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5500                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
5501         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5502
5503         /*
5504          * Each firmware RSS command can accommodate up to 32 RSS Ingress
5505          * Queue Identifiers.  These Ingress Queue IDs are packed three to
5506          * a 32-bit word as 10-bit values with the upper remaining 2 bits
5507          * reserved.
5508          */
5509         while (n > 0) {
5510                 int nq = min(n, 32);
5511                 int nq_packed = 0;
5512                 __be32 *qp = &cmd.iq0_to_iq2;
5513
5514                 /*
5515                  * Set up the firmware RSS command header to send the next
5516                  * "nq" Ingress Queue IDs to the firmware.
5517                  */
5518                 cmd.niqid = cpu_to_be16(nq);
5519                 cmd.startidx = cpu_to_be16(start);
5520
5521                 /*
5522                  * "nq" more done for the start of the next loop.
5523                  */
5524                 start += nq;
5525                 n -= nq;
5526
5527                 /*
5528                  * While there are still Ingress Queue IDs to stuff into the
5529                  * current firmware RSS command, retrieve them from the
5530                  * Ingress Queue ID array and insert them into the command.
5531                  */
5532                 while (nq > 0) {
5533                         /*
5534                          * Grab up to the next 3 Ingress Queue IDs (wrapping
5535                          * around the Ingress Queue ID array if necessary) and
5536                          * insert them into the firmware RSS command at the
5537                          * current 3-tuple position within the commad.
5538                          */
5539                         u16 qbuf[3];
5540                         u16 *qbp = qbuf;
5541                         int nqbuf = min(3, nq);
5542
5543                         nq -= nqbuf;
5544                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
5545                         while (nqbuf && nq_packed < 32) {
5546                                 nqbuf--;
5547                                 nq_packed++;
5548                                 *qbp++ = *rsp++;
5549                                 if (rsp >= rsp_end)
5550                                         rsp = rspq;
5551                         }
5552                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5553                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5554                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5555                 }
5556
5557                 /*
5558                  * Send this portion of the RRS table update to the firmware;
5559                  * bail out on any errors.
5560                  */
5561                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5562                 if (ret)
5563                         return ret;
5564         }
5565         return 0;
5566 }
5567
5568 /**
5569  *      t4_config_glbl_rss - configure the global RSS mode
5570  *      @adapter: the adapter
5571  *      @mbox: mbox to use for the FW command
5572  *      @mode: global RSS mode
5573  *      @flags: mode-specific flags
5574  *
5575  *      Sets the global RSS mode.
5576  */
5577 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5578                        unsigned int flags)
5579 {
5580         struct fw_rss_glb_config_cmd c;
5581
5582         memset(&c, 0, sizeof(c));
5583         c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5584                                     F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5585         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5586         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5587                 c.u.manual.mode_pkd =
5588                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5589         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5590                 c.u.basicvirtual.mode_keymode =
5591                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5592                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5593         } else
5594                 return -EINVAL;
5595         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5596 }
5597
5598 /**
5599  *      t4_config_vi_rss - configure per VI RSS settings
5600  *      @adapter: the adapter
5601  *      @mbox: mbox to use for the FW command
5602  *      @viid: the VI id
5603  *      @flags: RSS flags
5604  *      @defq: id of the default RSS queue for the VI.
5605  *      @skeyidx: RSS secret key table index for non-global mode
5606  *      @skey: RSS vf_scramble key for VI.
5607  *
5608  *      Configures VI-specific RSS properties.
5609  */
5610 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5611                      unsigned int flags, unsigned int defq, unsigned int skeyidx,
5612                      unsigned int skey)
5613 {
5614         struct fw_rss_vi_config_cmd c;
5615
5616         memset(&c, 0, sizeof(c));
5617         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5618                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5619                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5620         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5621         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5622                                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5623         c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5624                                         V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5625         c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5626
5627         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5628 }
5629
5630 /* Read an RSS table row */
5631 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5632 {
5633         t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5634         return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5635                                    5, 0, val);
5636 }
5637
5638 /**
5639  *      t4_read_rss - read the contents of the RSS mapping table
5640  *      @adapter: the adapter
5641  *      @map: holds the contents of the RSS mapping table
5642  *
5643  *      Reads the contents of the RSS hash->queue mapping table.
5644  */
5645 int t4_read_rss(struct adapter *adapter, u16 *map)
5646 {
5647         u32 val;
5648         int i, ret;
5649
5650         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5651                 ret = rd_rss_row(adapter, i, &val);
5652                 if (ret)
5653                         return ret;
5654                 *map++ = G_LKPTBLQUEUE0(val);
5655                 *map++ = G_LKPTBLQUEUE1(val);
5656         }
5657         return 0;
5658 }
5659
5660 /**
5661  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5662  * @adap: the adapter
5663  * @cmd: TP fw ldst address space type
5664  * @vals: where the indirect register values are stored/written
5665  * @nregs: how many indirect registers to read/write
5666  * @start_idx: index of first indirect register to read/write
5667  * @rw: Read (1) or Write (0)
5668  * @sleep_ok: if true we may sleep while awaiting command completion
5669  *
5670  * Access TP indirect registers through LDST
5671  **/
5672 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5673                             unsigned int nregs, unsigned int start_index,
5674                             unsigned int rw, bool sleep_ok)
5675 {
5676         int ret = 0;
5677         unsigned int i;
5678         struct fw_ldst_cmd c;
5679
5680         for (i = 0; i < nregs; i++) {
5681                 memset(&c, 0, sizeof(c));
5682                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5683                                                 F_FW_CMD_REQUEST |
5684                                                 (rw ? F_FW_CMD_READ :
5685                                                       F_FW_CMD_WRITE) |
5686                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
5687                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5688
5689                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5690                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5691                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5692                                       sleep_ok);
5693                 if (ret)
5694                         return ret;
5695
5696                 if (rw)
5697                         vals[i] = be32_to_cpu(c.u.addrval.val);
5698         }
5699         return 0;
5700 }
5701
5702 /**
5703  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5704  * @adap: the adapter
5705  * @reg_addr: Address Register
5706  * @reg_data: Data register
5707  * @buff: where the indirect register values are stored/written
5708  * @nregs: how many indirect registers to read/write
5709  * @start_index: index of first indirect register to read/write
5710  * @rw: READ(1) or WRITE(0)
5711  * @sleep_ok: if true we may sleep while awaiting command completion
5712  *
5713  * Read/Write TP indirect registers through LDST if possible.
5714  * Else, use backdoor access
5715  **/
5716 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5717                               u32 *buff, u32 nregs, u32 start_index, int rw,
5718                               bool sleep_ok)
5719 {
5720         int rc = -EINVAL;
5721         int cmd;
5722
5723         switch (reg_addr) {
5724         case A_TP_PIO_ADDR:
5725                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5726                 break;
5727         case A_TP_TM_PIO_ADDR:
5728                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5729                 break;
5730         case A_TP_MIB_INDEX:
5731                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5732                 break;
5733         default:
5734                 goto indirect_access;
5735         }
5736
5737         if (t4_use_ldst(adap))
5738                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5739                                       sleep_ok);
5740
5741 indirect_access:
5742
5743         if (rc) {
5744                 if (rw)
5745                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5746                                          start_index);
5747                 else
5748                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5749                                           start_index);
5750         }
5751 }
5752
5753 /**
5754  * t4_tp_pio_read - Read TP PIO registers
5755  * @adap: the adapter
5756  * @buff: where the indirect register values are written
5757  * @nregs: how many indirect registers to read
5758  * @start_index: index of first indirect register to read
5759  * @sleep_ok: if true we may sleep while awaiting command completion
5760  *
5761  * Read TP PIO Registers
5762  **/
5763 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5764                     u32 start_index, bool sleep_ok)
5765 {
5766         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5767                           start_index, 1, sleep_ok);
5768 }
5769
5770 /**
5771  * t4_tp_pio_write - Write TP PIO registers
5772  * @adap: the adapter
5773  * @buff: where the indirect register values are stored
5774  * @nregs: how many indirect registers to write
5775  * @start_index: index of first indirect register to write
5776  * @sleep_ok: if true we may sleep while awaiting command completion
5777  *
5778  * Write TP PIO Registers
5779  **/
5780 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5781                      u32 start_index, bool sleep_ok)
5782 {
5783         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5784             __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5785 }
5786
5787 /**
5788  * t4_tp_tm_pio_read - Read TP TM PIO registers
5789  * @adap: the adapter
5790  * @buff: where the indirect register values are written
5791  * @nregs: how many indirect registers to read
5792  * @start_index: index of first indirect register to read
5793  * @sleep_ok: if true we may sleep while awaiting command completion
5794  *
5795  * Read TP TM PIO Registers
5796  **/
5797 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5798                        u32 start_index, bool sleep_ok)
5799 {
5800         t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5801                           nregs, start_index, 1, sleep_ok);
5802 }
5803
5804 /**
5805  * t4_tp_mib_read - Read TP MIB registers
5806  * @adap: the adapter
5807  * @buff: where the indirect register values are written
5808  * @nregs: how many indirect registers to read
5809  * @start_index: index of first indirect register to read
5810  * @sleep_ok: if true we may sleep while awaiting command completion
5811  *
5812  * Read TP MIB Registers
5813  **/
5814 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5815                     bool sleep_ok)
5816 {
5817         t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5818                           start_index, 1, sleep_ok);
5819 }
5820
5821 /**
5822  *      t4_read_rss_key - read the global RSS key
5823  *      @adap: the adapter
5824  *      @key: 10-entry array holding the 320-bit RSS key
5825  *      @sleep_ok: if true we may sleep while awaiting command completion
5826  *
5827  *      Reads the global 320-bit RSS key.
5828  */
5829 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5830 {
5831         t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5832 }
5833
5834 /**
5835  *      t4_write_rss_key - program one of the RSS keys
5836  *      @adap: the adapter
5837  *      @key: 10-entry array holding the 320-bit RSS key
5838  *      @idx: which RSS key to write
5839  *      @sleep_ok: if true we may sleep while awaiting command completion
5840  *
5841  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5842  *      0..15 the corresponding entry in the RSS key table is written,
5843  *      otherwise the global RSS key is written.
5844  */
5845 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5846                       bool sleep_ok)
5847 {
5848         u8 rss_key_addr_cnt = 16;
5849         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5850
5851         /*
5852          * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5853          * allows access to key addresses 16-63 by using KeyWrAddrX
5854          * as index[5:4](upper 2) into key table
5855          */
5856         if ((chip_id(adap) > CHELSIO_T5) &&
5857             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5858                 rss_key_addr_cnt = 32;
5859
5860         t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5861
5862         if (idx >= 0 && idx < rss_key_addr_cnt) {
5863                 if (rss_key_addr_cnt > 16)
5864                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5865                                      vrt | V_KEYWRADDRX(idx >> 4) |
5866                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
5867                 else
5868                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5869                                      vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5870         }
5871 }
5872
5873 /**
5874  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5875  *      @adapter: the adapter
5876  *      @index: the entry in the PF RSS table to read
5877  *      @valp: where to store the returned value
5878  *      @sleep_ok: if true we may sleep while awaiting command completion
5879  *
5880  *      Reads the PF RSS Configuration Table at the specified index and returns
5881  *      the value found there.
5882  */
5883 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5884                            u32 *valp, bool sleep_ok)
5885 {
5886         t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5887 }
5888
5889 /**
5890  *      t4_write_rss_pf_config - write PF RSS Configuration Table
5891  *      @adapter: the adapter
5892  *      @index: the entry in the VF RSS table to read
5893  *      @val: the value to store
5894  *      @sleep_ok: if true we may sleep while awaiting command completion
5895  *
5896  *      Writes the PF RSS Configuration Table at the specified index with the
5897  *      specified value.
5898  */
5899 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5900                             u32 val, bool sleep_ok)
5901 {
5902         t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5903                         sleep_ok);
5904 }
5905
5906 /**
5907  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5908  *      @adapter: the adapter
5909  *      @index: the entry in the VF RSS table to read
5910  *      @vfl: where to store the returned VFL
5911  *      @vfh: where to store the returned VFH
5912  *      @sleep_ok: if true we may sleep while awaiting command completion
5913  *
5914  *      Reads the VF RSS Configuration Table at the specified index and returns
5915  *      the (VFL, VFH) values found there.
5916  */
5917 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5918                            u32 *vfl, u32 *vfh, bool sleep_ok)
5919 {
5920         u32 vrt, mask, data;
5921
5922         if (chip_id(adapter) <= CHELSIO_T5) {
5923                 mask = V_VFWRADDR(M_VFWRADDR);
5924                 data = V_VFWRADDR(index);
5925         } else {
5926                  mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5927                  data = V_T6_VFWRADDR(index);
5928         }
5929         /*
5930          * Request that the index'th VF Table values be read into VFL/VFH.
5931          */
5932         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5933         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5934         vrt |= data | F_VFRDEN;
5935         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5936
5937         /*
5938          * Grab the VFL/VFH values ...
5939          */
5940         t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5941         t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5942 }
5943
5944 /**
5945  *      t4_write_rss_vf_config - write VF RSS Configuration Table
5946  *
5947  *      @adapter: the adapter
5948  *      @index: the entry in the VF RSS table to write
5949  *      @vfl: the VFL to store
5950  *      @vfh: the VFH to store
5951  *
5952  *      Writes the VF RSS Configuration Table at the specified index with the
5953  *      specified (VFL, VFH) values.
5954  */
5955 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5956                             u32 vfl, u32 vfh, bool sleep_ok)
5957 {
5958         u32 vrt, mask, data;
5959
5960         if (chip_id(adapter) <= CHELSIO_T5) {
5961                 mask = V_VFWRADDR(M_VFWRADDR);
5962                 data = V_VFWRADDR(index);
5963         } else {
5964                 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5965                 data = V_T6_VFWRADDR(index);
5966         }
5967
5968         /*
5969          * Load up VFL/VFH with the values to be written ...
5970          */
5971         t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5972         t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5973
5974         /*
5975          * Write the VFL/VFH into the VF Table at index'th location.
5976          */
5977         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5978         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5979         vrt |= data | F_VFRDEN;
5980         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5981 }
5982
5983 /**
5984  *      t4_read_rss_pf_map - read PF RSS Map
5985  *      @adapter: the adapter
5986  *      @sleep_ok: if true we may sleep while awaiting command completion
5987  *
5988  *      Reads the PF RSS Map register and returns its value.
5989  */
5990 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5991 {
5992         u32 pfmap;
5993
5994         t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5995
5996         return pfmap;
5997 }
5998
5999 /**
6000  *      t4_write_rss_pf_map - write PF RSS Map
6001  *      @adapter: the adapter
6002  *      @pfmap: PF RSS Map value
6003  *
6004  *      Writes the specified value to the PF RSS Map register.
6005  */
6006 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6007 {
6008         t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6009 }
6010
6011 /**
6012  *      t4_read_rss_pf_mask - read PF RSS Mask
6013  *      @adapter: the adapter
6014  *      @sleep_ok: if true we may sleep while awaiting command completion
6015  *
6016  *      Reads the PF RSS Mask register and returns its value.
6017  */
6018 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6019 {
6020         u32 pfmask;
6021
6022         t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6023
6024         return pfmask;
6025 }
6026
6027 /**
6028  *      t4_write_rss_pf_mask - write PF RSS Mask
6029  *      @adapter: the adapter
6030  *      @pfmask: PF RSS Mask value
6031  *
6032  *      Writes the specified value to the PF RSS Mask register.
6033  */
6034 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6035 {
6036         t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6037 }
6038
6039 /**
6040  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
6041  *      @adap: the adapter
6042  *      @v4: holds the TCP/IP counter values
6043  *      @v6: holds the TCP/IPv6 counter values
6044  *      @sleep_ok: if true we may sleep while awaiting command completion
6045  *
6046  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6047  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6048  */
6049 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6050                          struct tp_tcp_stats *v6, bool sleep_ok)
6051 {
6052         u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6053
6054 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6055 #define STAT(x)     val[STAT_IDX(x)]
6056 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6057
6058         if (v4) {
6059                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6060                                A_TP_MIB_TCP_OUT_RST, sleep_ok);
6061                 v4->tcp_out_rsts = STAT(OUT_RST);
6062                 v4->tcp_in_segs  = STAT64(IN_SEG);
6063                 v4->tcp_out_segs = STAT64(OUT_SEG);
6064                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
6065         }
6066         if (v6) {
6067                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6068                                A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6069                 v6->tcp_out_rsts = STAT(OUT_RST);
6070                 v6->tcp_in_segs  = STAT64(IN_SEG);
6071                 v6->tcp_out_segs = STAT64(OUT_SEG);
6072                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
6073         }
6074 #undef STAT64
6075 #undef STAT
6076 #undef STAT_IDX
6077 }
6078
6079 /**
6080  *      t4_tp_get_err_stats - read TP's error MIB counters
6081  *      @adap: the adapter
6082  *      @st: holds the counter values
6083  *      @sleep_ok: if true we may sleep while awaiting command completion
6084  *
6085  *      Returns the values of TP's error counters.
6086  */
6087 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6088                          bool sleep_ok)
6089 {
6090         int nchan = adap->chip_params->nchan;
6091
6092         t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6093                        sleep_ok);
6094
6095         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6096                        sleep_ok);
6097
6098         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6099                        sleep_ok);
6100
6101         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6102                        A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6103
6104         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6105                        A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6106
6107         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6108                        sleep_ok);
6109
6110         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6111                        A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6112
6113         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6114                        A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6115
6116         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6117                        sleep_ok);
6118 }
6119
6120 /**
6121  *      t4_tp_get_proxy_stats - read TP's proxy MIB counters
6122  *      @adap: the adapter
6123  *      @st: holds the counter values
6124  *
6125  *      Returns the values of TP's proxy counters.
6126  */
6127 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6128     bool sleep_ok)
6129 {
6130         int nchan = adap->chip_params->nchan;
6131
6132         t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6133 }
6134
6135 /**
6136  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
6137  *      @adap: the adapter
6138  *      @st: holds the counter values
6139  *      @sleep_ok: if true we may sleep while awaiting command completion
6140  *
6141  *      Returns the values of TP's CPL counters.
6142  */
6143 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6144                          bool sleep_ok)
6145 {
6146         int nchan = adap->chip_params->nchan;
6147
6148         t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6149
6150         t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6151 }
6152
6153 /**
6154  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6155  *      @adap: the adapter
6156  *      @st: holds the counter values
6157  *
6158  *      Returns the values of TP's RDMA counters.
6159  */
6160 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6161                           bool sleep_ok)
6162 {
6163         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6164                        sleep_ok);
6165 }
6166
6167 /**
6168  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6169  *      @adap: the adapter
6170  *      @idx: the port index
6171  *      @st: holds the counter values
6172  *      @sleep_ok: if true we may sleep while awaiting command completion
6173  *
6174  *      Returns the values of TP's FCoE counters for the selected port.
6175  */
6176 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6177                        struct tp_fcoe_stats *st, bool sleep_ok)
6178 {
6179         u32 val[2];
6180
6181         t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6182                        sleep_ok);
6183
6184         t4_tp_mib_read(adap, &st->frames_drop, 1,
6185                        A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6186
6187         t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6188                        sleep_ok);
6189
6190         st->octets_ddp = ((u64)val[0] << 32) | val[1];
6191 }
6192
6193 /**
6194  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6195  *      @adap: the adapter
6196  *      @st: holds the counter values
6197  *      @sleep_ok: if true we may sleep while awaiting command completion
6198  *
6199  *      Returns the values of TP's counters for non-TCP directly-placed packets.
6200  */
6201 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6202                       bool sleep_ok)
6203 {
6204         u32 val[4];
6205
6206         t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6207
6208         st->frames = val[0];
6209         st->drops = val[1];
6210         st->octets = ((u64)val[2] << 32) | val[3];
6211 }
6212
6213 /**
6214  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
6215  *      @adap: the adapter
6216  *      @mtus: where to store the MTU values
6217  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
6218  *
6219  *      Reads the HW path MTU table.
6220  */
6221 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6222 {
6223         u32 v;
6224         int i;
6225
6226         for (i = 0; i < NMTUS; ++i) {
6227                 t4_write_reg(adap, A_TP_MTU_TABLE,
6228                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
6229                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
6230                 mtus[i] = G_MTUVALUE(v);
6231                 if (mtu_log)
6232                         mtu_log[i] = G_MTUWIDTH(v);
6233         }
6234 }
6235
6236 /**
6237  *      t4_read_cong_tbl - reads the congestion control table
6238  *      @adap: the adapter
6239  *      @incr: where to store the alpha values
6240  *
6241  *      Reads the additive increments programmed into the HW congestion
6242  *      control table.
6243  */
6244 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6245 {
6246         unsigned int mtu, w;
6247
6248         for (mtu = 0; mtu < NMTUS; ++mtu)
6249                 for (w = 0; w < NCCTRL_WIN; ++w) {
6250                         t4_write_reg(adap, A_TP_CCTRL_TABLE,
6251                                      V_ROWINDEX(0xffff) | (mtu << 5) | w);
6252                         incr[mtu][w] = (u16)t4_read_reg(adap,
6253                                                 A_TP_CCTRL_TABLE) & 0x1fff;
6254                 }
6255 }
6256
6257 /**
6258  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6259  *      @adap: the adapter
6260  *      @addr: the indirect TP register address
6261  *      @mask: specifies the field within the register to modify
6262  *      @val: new value for the field
6263  *
6264  *      Sets a field of an indirect TP register to the given value.
6265  */
6266 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6267                             unsigned int mask, unsigned int val)
6268 {
6269         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6270         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6271         t4_write_reg(adap, A_TP_PIO_DATA, val);
6272 }
6273
6274 /**
6275  *      init_cong_ctrl - initialize congestion control parameters
6276  *      @a: the alpha values for congestion control
6277  *      @b: the beta values for congestion control
6278  *
6279  *      Initialize the congestion control parameters.
6280  */
6281 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6282 {
6283         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6284         a[9] = 2;
6285         a[10] = 3;
6286         a[11] = 4;
6287         a[12] = 5;
6288         a[13] = 6;
6289         a[14] = 7;
6290         a[15] = 8;
6291         a[16] = 9;
6292         a[17] = 10;
6293         a[18] = 14;
6294         a[19] = 17;
6295         a[20] = 21;
6296         a[21] = 25;
6297         a[22] = 30;
6298         a[23] = 35;
6299         a[24] = 45;
6300         a[25] = 60;
6301         a[26] = 80;
6302         a[27] = 100;
6303         a[28] = 200;
6304         a[29] = 300;
6305         a[30] = 400;
6306         a[31] = 500;
6307
6308         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6309         b[9] = b[10] = 1;
6310         b[11] = b[12] = 2;
6311         b[13] = b[14] = b[15] = b[16] = 3;
6312         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6313         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6314         b[28] = b[29] = 6;
6315         b[30] = b[31] = 7;
6316 }
6317
6318 /* The minimum additive increment value for the congestion control table */
6319 #define CC_MIN_INCR 2U
6320
6321 /**
6322  *      t4_load_mtus - write the MTU and congestion control HW tables
6323  *      @adap: the adapter
6324  *      @mtus: the values for the MTU table
6325  *      @alpha: the values for the congestion control alpha parameter
6326  *      @beta: the values for the congestion control beta parameter
6327  *
6328  *      Write the HW MTU table with the supplied MTUs and the high-speed
6329  *      congestion control table with the supplied alpha, beta, and MTUs.
6330  *      We write the two tables together because the additive increments
6331  *      depend on the MTUs.
6332  */
6333 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6334                   const unsigned short *alpha, const unsigned short *beta)
6335 {
6336         static const unsigned int avg_pkts[NCCTRL_WIN] = {
6337                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6338                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6339                 28672, 40960, 57344, 81920, 114688, 163840, 229376
6340         };
6341
6342         unsigned int i, w;
6343
6344         for (i = 0; i < NMTUS; ++i) {
6345                 unsigned int mtu = mtus[i];
6346                 unsigned int log2 = fls(mtu);
6347
6348                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
6349                         log2--;
6350                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6351                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6352
6353                 for (w = 0; w < NCCTRL_WIN; ++w) {
6354                         unsigned int inc;
6355
6356                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6357                                   CC_MIN_INCR);
6358
6359                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6360                                      (w << 16) | (beta[w] << 13) | inc);
6361                 }
6362         }
6363 }
6364
6365 /**
6366  *      t4_set_pace_tbl - set the pace table
6367  *      @adap: the adapter
6368  *      @pace_vals: the pace values in microseconds
6369  *      @start: index of the first entry in the HW pace table to set
6370  *      @n: how many entries to set
6371  *
6372  *      Sets (a subset of the) HW pace table.
6373  */
6374 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6375                      unsigned int start, unsigned int n)
6376 {
6377         unsigned int vals[NTX_SCHED], i;
6378         unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6379
6380         if (n > NTX_SCHED)
6381             return -ERANGE;
6382
6383         /* convert values from us to dack ticks, rounding to closest value */
6384         for (i = 0; i < n; i++, pace_vals++) {
6385                 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6386                 if (vals[i] > 0x7ff)
6387                         return -ERANGE;
6388                 if (*pace_vals && vals[i] == 0)
6389                         return -ERANGE;
6390         }
6391         for (i = 0; i < n; i++, start++)
6392                 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6393         return 0;
6394 }
6395
6396 /**
6397  *      t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6398  *      @adap: the adapter
6399  *      @kbps: target rate in Kbps
6400  *      @sched: the scheduler index
6401  *
6402  *      Configure a Tx HW scheduler for the target rate.
6403  */
6404 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6405 {
6406         unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6407         unsigned int clk = adap->params.vpd.cclk * 1000;
6408         unsigned int selected_cpt = 0, selected_bpt = 0;
6409
6410         if (kbps > 0) {
6411                 kbps *= 125;     /* -> bytes */
6412                 for (cpt = 1; cpt <= 255; cpt++) {
6413                         tps = clk / cpt;
6414                         bpt = (kbps + tps / 2) / tps;
6415                         if (bpt > 0 && bpt <= 255) {
6416                                 v = bpt * tps;
6417                                 delta = v >= kbps ? v - kbps : kbps - v;
6418                                 if (delta < mindelta) {
6419                                         mindelta = delta;
6420                                         selected_cpt = cpt;
6421                                         selected_bpt = bpt;
6422                                 }
6423                         } else if (selected_cpt)
6424                                 break;
6425                 }
6426                 if (!selected_cpt)
6427                         return -EINVAL;
6428         }
6429         t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6430                      A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6431         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6432         if (sched & 1)
6433                 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6434         else
6435                 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6436         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6437         return 0;
6438 }
6439
6440 /**
6441  *      t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6442  *      @adap: the adapter
6443  *      @sched: the scheduler index
6444  *      @ipg: the interpacket delay in tenths of nanoseconds
6445  *
6446  *      Set the interpacket delay for a HW packet rate scheduler.
6447  */
6448 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6449 {
6450         unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6451
6452         /* convert ipg to nearest number of core clocks */
6453         ipg *= core_ticks_per_usec(adap);
6454         ipg = (ipg + 5000) / 10000;
6455         if (ipg > M_TXTIMERSEPQ0)
6456                 return -EINVAL;
6457
6458         t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6459         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6460         if (sched & 1)
6461                 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6462         else
6463                 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6464         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6465         t4_read_reg(adap, A_TP_TM_PIO_DATA);
6466         return 0;
6467 }
6468
6469 /*
6470  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6471  * clocks.  The formula is
6472  *
6473  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6474  *
6475  * which is equivalent to
6476  *
6477  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6478  */
6479 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6480 {
6481         u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6482
6483         return v * 62 + v / 2;
6484 }
6485
6486 /**
6487  *      t4_get_chan_txrate - get the current per channel Tx rates
6488  *      @adap: the adapter
6489  *      @nic_rate: rates for NIC traffic
6490  *      @ofld_rate: rates for offloaded traffic
6491  *
6492  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
6493  *      for each channel.
6494  */
6495 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6496 {
6497         u32 v;
6498
6499         v = t4_read_reg(adap, A_TP_TX_TRATE);
6500         nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6501         nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6502         if (adap->chip_params->nchan > 2) {
6503                 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6504                 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6505         }
6506
6507         v = t4_read_reg(adap, A_TP_TX_ORATE);
6508         ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6509         ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6510         if (adap->chip_params->nchan > 2) {
6511                 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6512                 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6513         }
6514 }
6515
6516 /**
6517  *      t4_set_trace_filter - configure one of the tracing filters
6518  *      @adap: the adapter
6519  *      @tp: the desired trace filter parameters
6520  *      @idx: which filter to configure
6521  *      @enable: whether to enable or disable the filter
6522  *
6523  *      Configures one of the tracing filters available in HW.  If @tp is %NULL
6524  *      it indicates that the filter is already written in the register and it
6525  *      just needs to be enabled or disabled.
6526  */
6527 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6528     int idx, int enable)
6529 {
6530         int i, ofst = idx * 4;
6531         u32 data_reg, mask_reg, cfg;
6532         u32 multitrc = F_TRCMULTIFILTER;
6533         u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6534
6535         if (idx < 0 || idx >= NTRACE)
6536                 return -EINVAL;
6537
6538         if (tp == NULL || !enable) {
6539                 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6540                     enable ? en : 0);
6541                 return 0;
6542         }
6543
6544         /*
6545          * TODO - After T4 data book is updated, specify the exact
6546          * section below.
6547          *
6548          * See T4 data book - MPS section for a complete description
6549          * of the below if..else handling of A_MPS_TRC_CFG register
6550          * value.
6551          */
6552         cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6553         if (cfg & F_TRCMULTIFILTER) {
6554                 /*
6555                  * If multiple tracers are enabled, then maximum
6556                  * capture size is 2.5KB (FIFO size of a single channel)
6557                  * minus 2 flits for CPL_TRACE_PKT header.
6558                  */
6559                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6560                         return -EINVAL;
6561         } else {
6562                 /*
6563                  * If multiple tracers are disabled, to avoid deadlocks
6564                  * maximum packet capture size of 9600 bytes is recommended.
6565                  * Also in this mode, only trace0 can be enabled and running.
6566                  */
6567                 multitrc = 0;
6568                 if (tp->snap_len > 9600 || idx)
6569                         return -EINVAL;
6570         }
6571
6572         if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6573             tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6574             tp->min_len > M_TFMINPKTSIZE)
6575                 return -EINVAL;
6576
6577         /* stop the tracer we'll be changing */
6578         t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6579
6580         idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6581         data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6582         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6583
6584         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6585                 t4_write_reg(adap, data_reg, tp->data[i]);
6586                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6587         }
6588         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6589                      V_TFCAPTUREMAX(tp->snap_len) |
6590                      V_TFMINPKTSIZE(tp->min_len));
6591         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6592                      V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6593                      (is_t4(adap) ?
6594                      V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6595                      V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6596
6597         return 0;
6598 }
6599
6600 /**
6601  *      t4_get_trace_filter - query one of the tracing filters
6602  *      @adap: the adapter
6603  *      @tp: the current trace filter parameters
6604  *      @idx: which trace filter to query
6605  *      @enabled: non-zero if the filter is enabled
6606  *
6607  *      Returns the current settings of one of the HW tracing filters.
6608  */
6609 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6610                          int *enabled)
6611 {
6612         u32 ctla, ctlb;
6613         int i, ofst = idx * 4;
6614         u32 data_reg, mask_reg;
6615
6616         ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6617         ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6618
6619         if (is_t4(adap)) {
6620                 *enabled = !!(ctla & F_TFEN);
6621                 tp->port =  G_TFPORT(ctla);
6622                 tp->invert = !!(ctla & F_TFINVERTMATCH);
6623         } else {
6624                 *enabled = !!(ctla & F_T5_TFEN);
6625                 tp->port = G_T5_TFPORT(ctla);
6626                 tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6627         }
6628         tp->snap_len = G_TFCAPTUREMAX(ctlb);
6629         tp->min_len = G_TFMINPKTSIZE(ctlb);
6630         tp->skip_ofst = G_TFOFFSET(ctla);
6631         tp->skip_len = G_TFLENGTH(ctla);
6632
6633         ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6634         data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6635         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6636
6637         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6638                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6639                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6640         }
6641 }
6642
6643 /**
6644  *      t4_pmtx_get_stats - returns the HW stats from PMTX
6645  *      @adap: the adapter
6646  *      @cnt: where to store the count statistics
6647  *      @cycles: where to store the cycle statistics
6648  *
6649  *      Returns performance statistics from PMTX.
6650  */
6651 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6652 {
6653         int i;
6654         u32 data[2];
6655
6656         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6657                 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6658                 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6659                 if (is_t4(adap))
6660                         cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6661                 else {
6662                         t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6663                                          A_PM_TX_DBG_DATA, data, 2,
6664                                          A_PM_TX_DBG_STAT_MSB);
6665                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6666                 }
6667         }
6668 }
6669
6670 /**
6671  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6672  *      @adap: the adapter
6673  *      @cnt: where to store the count statistics
6674  *      @cycles: where to store the cycle statistics
6675  *
6676  *      Returns performance statistics from PMRX.
6677  */
6678 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6679 {
6680         int i;
6681         u32 data[2];
6682
6683         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6684                 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6685                 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6686                 if (is_t4(adap)) {
6687                         cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6688                 } else {
6689                         t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6690                                          A_PM_RX_DBG_DATA, data, 2,
6691                                          A_PM_RX_DBG_STAT_MSB);
6692                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6693                 }
6694         }
6695 }
6696
6697 /**
6698  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6699  *      @adap: the adapter
6700  *      @idx: the port index
6701  *
6702  *      Returns a bitmap indicating which MPS buffer groups are associated
6703  *      with the given port.  Bit i is set if buffer group i is used by the
6704  *      port.
6705  */
6706 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6707 {
6708         u32 n;
6709
6710         if (adap->params.mps_bg_map)
6711                 return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6712
6713         n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6714         if (n == 0)
6715                 return idx == 0 ? 0xf : 0;
6716         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6717                 return idx < 2 ? (3 << (2 * idx)) : 0;
6718         return 1 << idx;
6719 }
6720
6721 /*
6722  * TP RX e-channels associated with the port.
6723  */
6724 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6725 {
6726         u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6727
6728         if (n == 0)
6729                 return idx == 0 ? 0xf : 0;
6730         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6731                 return idx < 2 ? (3 << (2 * idx)) : 0;
6732         return 1 << idx;
6733 }
6734
6735 /**
6736  *      t4_get_port_type_description - return Port Type string description
6737  *      @port_type: firmware Port Type enumeration
6738  */
6739 const char *t4_get_port_type_description(enum fw_port_type port_type)
6740 {
6741         static const char *const port_type_description[] = {
6742                 "Fiber_XFI",
6743                 "Fiber_XAUI",
6744                 "BT_SGMII",
6745                 "BT_XFI",
6746                 "BT_XAUI",
6747                 "KX4",
6748                 "CX4",
6749                 "KX",
6750                 "KR",
6751                 "SFP",
6752                 "BP_AP",
6753                 "BP4_AP",
6754                 "QSFP_10G",
6755                 "QSA",
6756                 "QSFP",
6757                 "BP40_BA",
6758                 "KR4_100G",
6759                 "CR4_QSFP",
6760                 "CR_QSFP",
6761                 "CR2_QSFP",
6762                 "SFP28",
6763                 "KR_SFP28",
6764         };
6765
6766         if (port_type < ARRAY_SIZE(port_type_description))
6767                 return port_type_description[port_type];
6768         return "UNKNOWN";
6769 }
6770
6771 /**
6772  *      t4_get_port_stats_offset - collect port stats relative to a previous
6773  *                                 snapshot
6774  *      @adap: The adapter
6775  *      @idx: The port
6776  *      @stats: Current stats to fill
6777  *      @offset: Previous stats snapshot
6778  */
6779 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6780                 struct port_stats *stats,
6781                 struct port_stats *offset)
6782 {
6783         u64 *s, *o;
6784         int i;
6785
6786         t4_get_port_stats(adap, idx, stats);
6787         for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6788                         i < (sizeof(struct port_stats)/sizeof(u64)) ;
6789                         i++, s++, o++)
6790                 *s -= *o;
6791 }
6792
6793 /**
6794  *      t4_get_port_stats - collect port statistics
6795  *      @adap: the adapter
6796  *      @idx: the port index
6797  *      @p: the stats structure to fill
6798  *
6799  *      Collect statistics related to the given port from HW.
6800  */
6801 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6802 {
6803         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6804         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6805
6806 #define GET_STAT(name) \
6807         t4_read_reg64(adap, \
6808         (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6809         T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6810 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6811
6812         p->tx_pause             = GET_STAT(TX_PORT_PAUSE);
6813         p->tx_octets            = GET_STAT(TX_PORT_BYTES);
6814         p->tx_frames            = GET_STAT(TX_PORT_FRAMES);
6815         p->tx_bcast_frames      = GET_STAT(TX_PORT_BCAST);
6816         p->tx_mcast_frames      = GET_STAT(TX_PORT_MCAST);
6817         p->tx_ucast_frames      = GET_STAT(TX_PORT_UCAST);
6818         p->tx_error_frames      = GET_STAT(TX_PORT_ERROR);
6819         p->tx_frames_64         = GET_STAT(TX_PORT_64B);
6820         p->tx_frames_65_127     = GET_STAT(TX_PORT_65B_127B);
6821         p->tx_frames_128_255    = GET_STAT(TX_PORT_128B_255B);
6822         p->tx_frames_256_511    = GET_STAT(TX_PORT_256B_511B);
6823         p->tx_frames_512_1023   = GET_STAT(TX_PORT_512B_1023B);
6824         p->tx_frames_1024_1518  = GET_STAT(TX_PORT_1024B_1518B);
6825         p->tx_frames_1519_max   = GET_STAT(TX_PORT_1519B_MAX);
6826         p->tx_drop              = GET_STAT(TX_PORT_DROP);
6827         p->tx_ppp0              = GET_STAT(TX_PORT_PPP0);
6828         p->tx_ppp1              = GET_STAT(TX_PORT_PPP1);
6829         p->tx_ppp2              = GET_STAT(TX_PORT_PPP2);
6830         p->tx_ppp3              = GET_STAT(TX_PORT_PPP3);
6831         p->tx_ppp4              = GET_STAT(TX_PORT_PPP4);
6832         p->tx_ppp5              = GET_STAT(TX_PORT_PPP5);
6833         p->tx_ppp6              = GET_STAT(TX_PORT_PPP6);
6834         p->tx_ppp7              = GET_STAT(TX_PORT_PPP7);
6835
6836         if (chip_id(adap) >= CHELSIO_T5) {
6837                 if (stat_ctl & F_COUNTPAUSESTATTX) {
6838                         p->tx_frames -= p->tx_pause;
6839                         p->tx_octets -= p->tx_pause * 64;
6840                 }
6841                 if (stat_ctl & F_COUNTPAUSEMCTX)
6842                         p->tx_mcast_frames -= p->tx_pause;
6843         }
6844
6845         p->rx_pause             = GET_STAT(RX_PORT_PAUSE);
6846         p->rx_octets            = GET_STAT(RX_PORT_BYTES);
6847         p->rx_frames            = GET_STAT(RX_PORT_FRAMES);
6848         p->rx_bcast_frames      = GET_STAT(RX_PORT_BCAST);
6849         p->rx_mcast_frames      = GET_STAT(RX_PORT_MCAST);
6850         p->rx_ucast_frames      = GET_STAT(RX_PORT_UCAST);
6851         p->rx_too_long          = GET_STAT(RX_PORT_MTU_ERROR);
6852         p->rx_jabber            = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6853         p->rx_fcs_err           = GET_STAT(RX_PORT_CRC_ERROR);
6854         p->rx_len_err           = GET_STAT(RX_PORT_LEN_ERROR);
6855         p->rx_symbol_err        = GET_STAT(RX_PORT_SYM_ERROR);
6856         p->rx_runt              = GET_STAT(RX_PORT_LESS_64B);
6857         p->rx_frames_64         = GET_STAT(RX_PORT_64B);
6858         p->rx_frames_65_127     = GET_STAT(RX_PORT_65B_127B);
6859         p->rx_frames_128_255    = GET_STAT(RX_PORT_128B_255B);
6860         p->rx_frames_256_511    = GET_STAT(RX_PORT_256B_511B);
6861         p->rx_frames_512_1023   = GET_STAT(RX_PORT_512B_1023B);
6862         p->rx_frames_1024_1518  = GET_STAT(RX_PORT_1024B_1518B);
6863         p->rx_frames_1519_max   = GET_STAT(RX_PORT_1519B_MAX);
6864         p->rx_ppp0              = GET_STAT(RX_PORT_PPP0);
6865         p->rx_ppp1              = GET_STAT(RX_PORT_PPP1);
6866         p->rx_ppp2              = GET_STAT(RX_PORT_PPP2);
6867         p->rx_ppp3              = GET_STAT(RX_PORT_PPP3);
6868         p->rx_ppp4              = GET_STAT(RX_PORT_PPP4);
6869         p->rx_ppp5              = GET_STAT(RX_PORT_PPP5);
6870         p->rx_ppp6              = GET_STAT(RX_PORT_PPP6);
6871         p->rx_ppp7              = GET_STAT(RX_PORT_PPP7);
6872
6873         if (chip_id(adap) >= CHELSIO_T5) {
6874                 if (stat_ctl & F_COUNTPAUSESTATRX) {
6875                         p->rx_frames -= p->rx_pause;
6876                         p->rx_octets -= p->rx_pause * 64;
6877                 }
6878                 if (stat_ctl & F_COUNTPAUSEMCRX)
6879                         p->rx_mcast_frames -= p->rx_pause;
6880         }
6881
6882         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6883         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6884         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6885         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6886         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6887         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6888         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6889         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6890
6891 #undef GET_STAT
6892 #undef GET_STAT_COM
6893 }
6894
6895 /**
6896  *      t4_get_lb_stats - collect loopback port statistics
6897  *      @adap: the adapter
6898  *      @idx: the loopback port index
6899  *      @p: the stats structure to fill
6900  *
6901  *      Return HW statistics for the given loopback port.
6902  */
6903 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6904 {
6905         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6906
6907 #define GET_STAT(name) \
6908         t4_read_reg64(adap, \
6909         (is_t4(adap) ? \
6910         PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6911         T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6912 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6913
6914         p->octets       = GET_STAT(BYTES);
6915         p->frames       = GET_STAT(FRAMES);
6916         p->bcast_frames = GET_STAT(BCAST);
6917         p->mcast_frames = GET_STAT(MCAST);
6918         p->ucast_frames = GET_STAT(UCAST);
6919         p->error_frames = GET_STAT(ERROR);
6920
6921         p->frames_64            = GET_STAT(64B);
6922         p->frames_65_127        = GET_STAT(65B_127B);
6923         p->frames_128_255       = GET_STAT(128B_255B);
6924         p->frames_256_511       = GET_STAT(256B_511B);
6925         p->frames_512_1023      = GET_STAT(512B_1023B);
6926         p->frames_1024_1518     = GET_STAT(1024B_1518B);
6927         p->frames_1519_max      = GET_STAT(1519B_MAX);
6928         p->drop                 = GET_STAT(DROP_FRAMES);
6929
6930         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6931         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6932         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6933         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6934         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6935         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6936         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6937         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6938
6939 #undef GET_STAT
6940 #undef GET_STAT_COM
6941 }
6942
6943 /**
6944  *      t4_wol_magic_enable - enable/disable magic packet WoL
6945  *      @adap: the adapter
6946  *      @port: the physical port index
6947  *      @addr: MAC address expected in magic packets, %NULL to disable
6948  *
6949  *      Enables/disables magic packet wake-on-LAN for the selected port.
6950  */
6951 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6952                          const u8 *addr)
6953 {
6954         u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6955
6956         if (is_t4(adap)) {
6957                 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6958                 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6959                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6960         } else {
6961                 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6962                 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6963                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6964         }
6965
6966         if (addr) {
6967                 t4_write_reg(adap, mag_id_reg_l,
6968                              (addr[2] << 24) | (addr[3] << 16) |
6969                              (addr[4] << 8) | addr[5]);
6970                 t4_write_reg(adap, mag_id_reg_h,
6971                              (addr[0] << 8) | addr[1]);
6972         }
6973         t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6974                          V_MAGICEN(addr != NULL));
6975 }
6976
6977 /**
6978  *      t4_wol_pat_enable - enable/disable pattern-based WoL
6979  *      @adap: the adapter
6980  *      @port: the physical port index
6981  *      @map: bitmap of which HW pattern filters to set
6982  *      @mask0: byte mask for bytes 0-63 of a packet
6983  *      @mask1: byte mask for bytes 64-127 of a packet
6984  *      @crc: Ethernet CRC for selected bytes
6985  *      @enable: enable/disable switch
6986  *
6987  *      Sets the pattern filters indicated in @map to mask out the bytes
6988  *      specified in @mask0/@mask1 in received packets and compare the CRC of
6989  *      the resulting packet against @crc.  If @enable is %true pattern-based
6990  *      WoL is enabled, otherwise disabled.
6991  */
6992 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6993                       u64 mask0, u64 mask1, unsigned int crc, bool enable)
6994 {
6995         int i;
6996         u32 port_cfg_reg;
6997
6998         if (is_t4(adap))
6999                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7000         else
7001                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7002
7003         if (!enable) {
7004                 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7005                 return 0;
7006         }
7007         if (map > 0xff)
7008                 return -EINVAL;
7009
7010 #define EPIO_REG(name) \
7011         (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7012         T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7013
7014         t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7015         t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7016         t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7017
7018         for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7019                 if (!(map & 1))
7020                         continue;
7021
7022                 /* write byte masks */
7023                 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7024                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7025                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7026                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7027                         return -ETIMEDOUT;
7028
7029                 /* write CRC */
7030                 t4_write_reg(adap, EPIO_REG(DATA0), crc);
7031                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7032                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7033                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7034                         return -ETIMEDOUT;
7035         }
7036 #undef EPIO_REG
7037
7038         t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7039         return 0;
7040 }
7041
7042 /*     t4_mk_filtdelwr - create a delete filter WR
7043  *     @ftid: the filter ID
7044  *     @wr: the filter work request to populate
7045  *     @qid: ingress queue to receive the delete notification
7046  *
7047  *     Creates a filter work request to delete the supplied filter.  If @qid is
7048  *     negative the delete notification is suppressed.
7049  */
7050 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7051 {
7052         memset(wr, 0, sizeof(*wr));
7053         wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7054         wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7055         wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7056                                     V_FW_FILTER_WR_NOREPLY(qid < 0));
7057         wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7058         if (qid >= 0)
7059                 wr->rx_chan_rx_rpl_iq =
7060                                 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7061 }
7062
7063 #define INIT_CMD(var, cmd, rd_wr) do { \
7064         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7065                                         F_FW_CMD_REQUEST | \
7066                                         F_FW_CMD_##rd_wr); \
7067         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7068 } while (0)
7069
7070 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7071                           u32 addr, u32 val)
7072 {
7073         u32 ldst_addrspace;
7074         struct fw_ldst_cmd c;
7075
7076         memset(&c, 0, sizeof(c));
7077         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7078         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7079                                         F_FW_CMD_REQUEST |
7080                                         F_FW_CMD_WRITE |
7081                                         ldst_addrspace);
7082         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7083         c.u.addrval.addr = cpu_to_be32(addr);
7084         c.u.addrval.val = cpu_to_be32(val);
7085
7086         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7087 }
7088
7089 /**
7090  *      t4_mdio_rd - read a PHY register through MDIO
7091  *      @adap: the adapter
7092  *      @mbox: mailbox to use for the FW command
7093  *      @phy_addr: the PHY address
7094  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
7095  *      @reg: the register to read
7096  *      @valp: where to store the value
7097  *
7098  *      Issues a FW command through the given mailbox to read a PHY register.
7099  */
7100 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7101                unsigned int mmd, unsigned int reg, unsigned int *valp)
7102 {
7103         int ret;
7104         u32 ldst_addrspace;
7105         struct fw_ldst_cmd c;
7106
7107         memset(&c, 0, sizeof(c));
7108         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7109         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7110                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
7111                                         ldst_addrspace);
7112         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7113         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7114                                          V_FW_LDST_CMD_MMD(mmd));
7115         c.u.mdio.raddr = cpu_to_be16(reg);
7116
7117         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7118         if (ret == 0)
7119                 *valp = be16_to_cpu(c.u.mdio.rval);
7120         return ret;
7121 }
7122
7123 /**
7124  *      t4_mdio_wr - write a PHY register through MDIO
7125  *      @adap: the adapter
7126  *      @mbox: mailbox to use for the FW command
7127  *      @phy_addr: the PHY address
7128  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
7129  *      @reg: the register to write
7130  *      @valp: value to write
7131  *
7132  *      Issues a FW command through the given mailbox to write a PHY register.
7133  */
7134 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7135                unsigned int mmd, unsigned int reg, unsigned int val)
7136 {
7137         u32 ldst_addrspace;
7138         struct fw_ldst_cmd c;
7139
7140         memset(&c, 0, sizeof(c));
7141         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7142         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7143                                         F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7144                                         ldst_addrspace);
7145         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7146         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7147                                          V_FW_LDST_CMD_MMD(mmd));
7148         c.u.mdio.raddr = cpu_to_be16(reg);
7149         c.u.mdio.rval = cpu_to_be16(val);
7150
7151         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7152 }
7153
7154 /**
7155  *
7156  *      t4_sge_decode_idma_state - decode the idma state
7157  *      @adap: the adapter
7158  *      @state: the state idma is stuck in
7159  */
7160 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7161 {
7162         static const char * const t4_decode[] = {
7163                 "IDMA_IDLE",
7164                 "IDMA_PUSH_MORE_CPL_FIFO",
7165                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7166                 "Not used",
7167                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7168                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7169                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7170                 "IDMA_SEND_FIFO_TO_IMSG",
7171                 "IDMA_FL_REQ_DATA_FL_PREP",
7172                 "IDMA_FL_REQ_DATA_FL",
7173                 "IDMA_FL_DROP",
7174                 "IDMA_FL_H_REQ_HEADER_FL",
7175                 "IDMA_FL_H_SEND_PCIEHDR",
7176                 "IDMA_FL_H_PUSH_CPL_FIFO",
7177                 "IDMA_FL_H_SEND_CPL",
7178                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7179                 "IDMA_FL_H_SEND_IP_HDR",
7180                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7181                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7182                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7183                 "IDMA_FL_D_SEND_PCIEHDR",
7184                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7185                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7186                 "IDMA_FL_SEND_PCIEHDR",
7187                 "IDMA_FL_PUSH_CPL_FIFO",
7188                 "IDMA_FL_SEND_CPL",
7189                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7190                 "IDMA_FL_SEND_PAYLOAD",
7191                 "IDMA_FL_REQ_NEXT_DATA_FL",
7192                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7193                 "IDMA_FL_SEND_PADDING",
7194                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7195                 "IDMA_FL_SEND_FIFO_TO_IMSG",
7196                 "IDMA_FL_REQ_DATAFL_DONE",
7197                 "IDMA_FL_REQ_HEADERFL_DONE",
7198         };
7199         static const char * const t5_decode[] = {
7200                 "IDMA_IDLE",
7201                 "IDMA_ALMOST_IDLE",
7202                 "IDMA_PUSH_MORE_CPL_FIFO",
7203                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7204                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7205                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7206                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7207                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7208                 "IDMA_SEND_FIFO_TO_IMSG",
7209                 "IDMA_FL_REQ_DATA_FL",
7210                 "IDMA_FL_DROP",
7211                 "IDMA_FL_DROP_SEND_INC",
7212                 "IDMA_FL_H_REQ_HEADER_FL",
7213                 "IDMA_FL_H_SEND_PCIEHDR",
7214                 "IDMA_FL_H_PUSH_CPL_FIFO",
7215                 "IDMA_FL_H_SEND_CPL",
7216                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7217                 "IDMA_FL_H_SEND_IP_HDR",
7218                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7219                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7220                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7221                 "IDMA_FL_D_SEND_PCIEHDR",
7222                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7223                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7224                 "IDMA_FL_SEND_PCIEHDR",
7225                 "IDMA_FL_PUSH_CPL_FIFO",
7226                 "IDMA_FL_SEND_CPL",
7227                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7228                 "IDMA_FL_SEND_PAYLOAD",
7229                 "IDMA_FL_REQ_NEXT_DATA_FL",
7230                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7231                 "IDMA_FL_SEND_PADDING",
7232                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7233         };
7234         static const char * const t6_decode[] = {
7235                 "IDMA_IDLE",
7236                 "IDMA_PUSH_MORE_CPL_FIFO",
7237                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7238                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7239                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7240                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7241                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7242                 "IDMA_FL_REQ_DATA_FL",
7243                 "IDMA_FL_DROP",
7244                 "IDMA_FL_DROP_SEND_INC",
7245                 "IDMA_FL_H_REQ_HEADER_FL",
7246                 "IDMA_FL_H_SEND_PCIEHDR",
7247                 "IDMA_FL_H_PUSH_CPL_FIFO",
7248                 "IDMA_FL_H_SEND_CPL",
7249                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7250                 "IDMA_FL_H_SEND_IP_HDR",
7251                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7252                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7253                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7254                 "IDMA_FL_D_SEND_PCIEHDR",
7255                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7256                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7257                 "IDMA_FL_SEND_PCIEHDR",
7258                 "IDMA_FL_PUSH_CPL_FIFO",
7259                 "IDMA_FL_SEND_CPL",
7260                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7261                 "IDMA_FL_SEND_PAYLOAD",
7262                 "IDMA_FL_REQ_NEXT_DATA_FL",
7263                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7264                 "IDMA_FL_SEND_PADDING",
7265                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7266         };
7267         static const u32 sge_regs[] = {
7268                 A_SGE_DEBUG_DATA_LOW_INDEX_2,
7269                 A_SGE_DEBUG_DATA_LOW_INDEX_3,
7270                 A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7271         };
7272         const char * const *sge_idma_decode;
7273         int sge_idma_decode_nstates;
7274         int i;
7275         unsigned int chip_version = chip_id(adapter);
7276
7277         /* Select the right set of decode strings to dump depending on the
7278          * adapter chip type.
7279          */
7280         switch (chip_version) {
7281         case CHELSIO_T4:
7282                 sge_idma_decode = (const char * const *)t4_decode;
7283                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7284                 break;
7285
7286         case CHELSIO_T5:
7287                 sge_idma_decode = (const char * const *)t5_decode;
7288                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7289                 break;
7290
7291         case CHELSIO_T6:
7292                 sge_idma_decode = (const char * const *)t6_decode;
7293                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7294                 break;
7295
7296         default:
7297                 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version);
7298                 return;
7299         }
7300
7301         if (state < sge_idma_decode_nstates)
7302                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7303         else
7304                 CH_WARN(adapter, "idma state %d unknown\n", state);
7305
7306         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7307                 CH_WARN(adapter, "SGE register %#x value %#x\n",
7308                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7309 }
7310
7311 /**
7312  *      t4_sge_ctxt_flush - flush the SGE context cache
7313  *      @adap: the adapter
7314  *      @mbox: mailbox to use for the FW command
7315  *
7316  *      Issues a FW command through the given mailbox to flush the
7317  *      SGE context cache.
7318  */
7319 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
7320 {
7321         int ret;
7322         u32 ldst_addrspace;
7323         struct fw_ldst_cmd c;
7324
7325         memset(&c, 0, sizeof(c));
7326         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
7327         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7328                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
7329                                         ldst_addrspace);
7330         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7331         c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7332
7333         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7334         return ret;
7335 }
7336
7337 /**
7338  *      t4_fw_hello - establish communication with FW
7339  *      @adap: the adapter
7340  *      @mbox: mailbox to use for the FW command
7341  *      @evt_mbox: mailbox to receive async FW events
7342  *      @master: specifies the caller's willingness to be the device master
7343  *      @state: returns the current device state (if non-NULL)
7344  *
7345  *      Issues a command to establish communication with FW.  Returns either
7346  *      an error (negative integer) or the mailbox of the Master PF.
7347  */
7348 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7349                 enum dev_master master, enum dev_state *state)
7350 {
7351         int ret;
7352         struct fw_hello_cmd c;
7353         u32 v;
7354         unsigned int master_mbox;
7355         int retries = FW_CMD_HELLO_RETRIES;
7356
7357 retry:
7358         memset(&c, 0, sizeof(c));
7359         INIT_CMD(c, HELLO, WRITE);
7360         c.err_to_clearinit = cpu_to_be32(
7361                 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7362                 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7363                 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7364                                         mbox : M_FW_HELLO_CMD_MBMASTER) |
7365                 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7366                 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7367                 F_FW_HELLO_CMD_CLEARINIT);
7368
7369         /*
7370          * Issue the HELLO command to the firmware.  If it's not successful
7371          * but indicates that we got a "busy" or "timeout" condition, retry
7372          * the HELLO until we exhaust our retry limit.  If we do exceed our
7373          * retry limit, check to see if the firmware left us any error
7374          * information and report that if so ...
7375          */
7376         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7377         if (ret != FW_SUCCESS) {
7378                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7379                         goto retry;
7380                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7381                         t4_report_fw_error(adap);
7382                 return ret;
7383         }
7384
7385         v = be32_to_cpu(c.err_to_clearinit);
7386         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7387         if (state) {
7388                 if (v & F_FW_HELLO_CMD_ERR)
7389                         *state = DEV_STATE_ERR;
7390                 else if (v & F_FW_HELLO_CMD_INIT)
7391                         *state = DEV_STATE_INIT;
7392                 else
7393                         *state = DEV_STATE_UNINIT;
7394         }
7395
7396         /*
7397          * If we're not the Master PF then we need to wait around for the
7398          * Master PF Driver to finish setting up the adapter.
7399          *
7400          * Note that we also do this wait if we're a non-Master-capable PF and
7401          * there is no current Master PF; a Master PF may show up momentarily
7402          * and we wouldn't want to fail pointlessly.  (This can happen when an
7403          * OS loads lots of different drivers rapidly at the same time).  In
7404          * this case, the Master PF returned by the firmware will be
7405          * M_PCIE_FW_MASTER so the test below will work ...
7406          */
7407         if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7408             master_mbox != mbox) {
7409                 int waiting = FW_CMD_HELLO_TIMEOUT;
7410
7411                 /*
7412                  * Wait for the firmware to either indicate an error or
7413                  * initialized state.  If we see either of these we bail out
7414                  * and report the issue to the caller.  If we exhaust the
7415                  * "hello timeout" and we haven't exhausted our retries, try
7416                  * again.  Otherwise bail with a timeout error.
7417                  */
7418                 for (;;) {
7419                         u32 pcie_fw;
7420
7421                         msleep(50);
7422                         waiting -= 50;
7423
7424                         /*
7425                          * If neither Error nor Initialialized are indicated
7426                          * by the firmware keep waiting till we exhaust our
7427                          * timeout ... and then retry if we haven't exhausted
7428                          * our retries ...
7429                          */
7430                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7431                         if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7432                                 if (waiting <= 0) {
7433                                         if (retries-- > 0)
7434                                                 goto retry;
7435
7436                                         return -ETIMEDOUT;
7437                                 }
7438                                 continue;
7439                         }
7440
7441                         /*
7442                          * We either have an Error or Initialized condition
7443                          * report errors preferentially.
7444                          */
7445                         if (state) {
7446                                 if (pcie_fw & F_PCIE_FW_ERR)
7447                                         *state = DEV_STATE_ERR;
7448                                 else if (pcie_fw & F_PCIE_FW_INIT)
7449                                         *state = DEV_STATE_INIT;
7450                         }
7451
7452                         /*
7453                          * If we arrived before a Master PF was selected and
7454                          * there's not a valid Master PF, grab its identity
7455                          * for our caller.
7456                          */
7457                         if (master_mbox == M_PCIE_FW_MASTER &&
7458                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
7459                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7460                         break;
7461                 }
7462         }
7463
7464         return master_mbox;
7465 }
7466
7467 /**
7468  *      t4_fw_bye - end communication with FW
7469  *      @adap: the adapter
7470  *      @mbox: mailbox to use for the FW command
7471  *
7472  *      Issues a command to terminate communication with FW.
7473  */
7474 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7475 {
7476         struct fw_bye_cmd c;
7477
7478         memset(&c, 0, sizeof(c));
7479         INIT_CMD(c, BYE, WRITE);
7480         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7481 }
7482
7483 /**
7484  *      t4_fw_reset - issue a reset to FW
7485  *      @adap: the adapter
7486  *      @mbox: mailbox to use for the FW command
7487  *      @reset: specifies the type of reset to perform
7488  *
7489  *      Issues a reset command of the specified type to FW.
7490  */
7491 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7492 {
7493         struct fw_reset_cmd c;
7494
7495         memset(&c, 0, sizeof(c));
7496         INIT_CMD(c, RESET, WRITE);
7497         c.val = cpu_to_be32(reset);
7498         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7499 }
7500
7501 /**
7502  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7503  *      @adap: the adapter
7504  *      @mbox: mailbox to use for the FW RESET command (if desired)
7505  *      @force: force uP into RESET even if FW RESET command fails
7506  *
7507  *      Issues a RESET command to firmware (if desired) with a HALT indication
7508  *      and then puts the microprocessor into RESET state.  The RESET command
7509  *      will only be issued if a legitimate mailbox is provided (mbox <=
7510  *      M_PCIE_FW_MASTER).
7511  *
7512  *      This is generally used in order for the host to safely manipulate the
7513  *      adapter without fear of conflicting with whatever the firmware might
7514  *      be doing.  The only way out of this state is to RESTART the firmware
7515  *      ...
7516  */
7517 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7518 {
7519         int ret = 0;
7520
7521         /*
7522          * If a legitimate mailbox is provided, issue a RESET command
7523          * with a HALT indication.
7524          */
7525         if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7526                 struct fw_reset_cmd c;
7527
7528                 memset(&c, 0, sizeof(c));
7529                 INIT_CMD(c, RESET, WRITE);
7530                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7531                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7532                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7533         }
7534
7535         /*
7536          * Normally we won't complete the operation if the firmware RESET
7537          * command fails but if our caller insists we'll go ahead and put the
7538          * uP into RESET.  This can be useful if the firmware is hung or even
7539          * missing ...  We'll have to take the risk of putting the uP into
7540          * RESET without the cooperation of firmware in that case.
7541          *
7542          * We also force the firmware's HALT flag to be on in case we bypassed
7543          * the firmware RESET command above or we're dealing with old firmware
7544          * which doesn't have the HALT capability.  This will serve as a flag
7545          * for the incoming firmware to know that it's coming out of a HALT
7546          * rather than a RESET ... if it's new enough to understand that ...
7547          */
7548         if (ret == 0 || force) {
7549                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7550                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7551                                  F_PCIE_FW_HALT);
7552         }
7553
7554         /*
7555          * And we always return the result of the firmware RESET command
7556          * even when we force the uP into RESET ...
7557          */
7558         return ret;
7559 }
7560
7561 /**
7562  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7563  *      @adap: the adapter
7564  *
7565  *      Restart firmware previously halted by t4_fw_halt().  On successful
7566  *      return the previous PF Master remains as the new PF Master and there
7567  *      is no need to issue a new HELLO command, etc.
7568  */
7569 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7570 {
7571         int ms;
7572
7573         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7574         for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7575                 if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7576                         return FW_SUCCESS;
7577                 msleep(100);
7578                 ms += 100;
7579         }
7580
7581         return -ETIMEDOUT;
7582 }
7583
7584 /**
7585  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7586  *      @adap: the adapter
7587  *      @mbox: mailbox to use for the FW RESET command (if desired)
7588  *      @fw_data: the firmware image to write
7589  *      @size: image size
7590  *      @force: force upgrade even if firmware doesn't cooperate
7591  *
7592  *      Perform all of the steps necessary for upgrading an adapter's
7593  *      firmware image.  Normally this requires the cooperation of the
7594  *      existing firmware in order to halt all existing activities
7595  *      but if an invalid mailbox token is passed in we skip that step
7596  *      (though we'll still put the adapter microprocessor into RESET in
7597  *      that case).
7598  *
7599  *      On successful return the new firmware will have been loaded and
7600  *      the adapter will have been fully RESET losing all previous setup
7601  *      state.  On unsuccessful return the adapter may be completely hosed ...
7602  *      positive errno indicates that the adapter is ~probably~ intact, a
7603  *      negative errno indicates that things are looking bad ...
7604  */
7605 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7606                   const u8 *fw_data, unsigned int size, int force)
7607 {
7608         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7609         unsigned int bootstrap =
7610             be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7611         int ret;
7612
7613         if (!t4_fw_matches_chip(adap, fw_hdr))
7614                 return -EINVAL;
7615
7616         if (!bootstrap) {
7617                 ret = t4_fw_halt(adap, mbox, force);
7618                 if (ret < 0 && !force)
7619                         return ret;
7620         }
7621
7622         ret = t4_load_fw(adap, fw_data, size);
7623         if (ret < 0 || bootstrap)
7624                 return ret;
7625
7626         return t4_fw_restart(adap, mbox);
7627 }
7628
7629 /**
7630  *      t4_fw_initialize - ask FW to initialize the device
7631  *      @adap: the adapter
7632  *      @mbox: mailbox to use for the FW command
7633  *
7634  *      Issues a command to FW to partially initialize the device.  This
7635  *      performs initialization that generally doesn't depend on user input.
7636  */
7637 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7638 {
7639         struct fw_initialize_cmd c;
7640
7641         memset(&c, 0, sizeof(c));
7642         INIT_CMD(c, INITIALIZE, WRITE);
7643         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7644 }
7645
7646 /**
7647  *      t4_query_params_rw - query FW or device parameters
7648  *      @adap: the adapter
7649  *      @mbox: mailbox to use for the FW command
7650  *      @pf: the PF
7651  *      @vf: the VF
7652  *      @nparams: the number of parameters
7653  *      @params: the parameter names
7654  *      @val: the parameter values
7655  *      @rw: Write and read flag
7656  *
7657  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7658  *      queried at once.
7659  */
7660 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7661                        unsigned int vf, unsigned int nparams, const u32 *params,
7662                        u32 *val, int rw)
7663 {
7664         int i, ret;
7665         struct fw_params_cmd c;
7666         __be32 *p = &c.param[0].mnem;
7667
7668         if (nparams > 7)
7669                 return -EINVAL;
7670
7671         memset(&c, 0, sizeof(c));
7672         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7673                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
7674                                   V_FW_PARAMS_CMD_PFN(pf) |
7675                                   V_FW_PARAMS_CMD_VFN(vf));
7676         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7677
7678         for (i = 0; i < nparams; i++) {
7679                 *p++ = cpu_to_be32(*params++);
7680                 if (rw)
7681                         *p = cpu_to_be32(*(val + i));
7682                 p++;
7683         }
7684
7685         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7686         if (ret == 0)
7687                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7688                         *val++ = be32_to_cpu(*p);
7689         return ret;
7690 }
7691
7692 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7693                     unsigned int vf, unsigned int nparams, const u32 *params,
7694                     u32 *val)
7695 {
7696         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7697 }
7698
7699 /**
7700  *      t4_set_params_timeout - sets FW or device parameters
7701  *      @adap: the adapter
7702  *      @mbox: mailbox to use for the FW command
7703  *      @pf: the PF
7704  *      @vf: the VF
7705  *      @nparams: the number of parameters
7706  *      @params: the parameter names
7707  *      @val: the parameter values
7708  *      @timeout: the timeout time
7709  *
7710  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7711  *      specified at once.
7712  */
7713 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7714                           unsigned int pf, unsigned int vf,
7715                           unsigned int nparams, const u32 *params,
7716                           const u32 *val, int timeout)
7717 {
7718         struct fw_params_cmd c;
7719         __be32 *p = &c.param[0].mnem;
7720
7721         if (nparams > 7)
7722                 return -EINVAL;
7723
7724         memset(&c, 0, sizeof(c));
7725         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7726                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7727                                   V_FW_PARAMS_CMD_PFN(pf) |
7728                                   V_FW_PARAMS_CMD_VFN(vf));
7729         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7730
7731         while (nparams--) {
7732                 *p++ = cpu_to_be32(*params++);
7733                 *p++ = cpu_to_be32(*val++);
7734         }
7735
7736         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7737 }
7738
7739 /**
7740  *      t4_set_params - sets FW or device parameters
7741  *      @adap: the adapter
7742  *      @mbox: mailbox to use for the FW command
7743  *      @pf: the PF
7744  *      @vf: the VF
7745  *      @nparams: the number of parameters
7746  *      @params: the parameter names
7747  *      @val: the parameter values
7748  *
7749  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7750  *      specified at once.
7751  */
7752 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7753                   unsigned int vf, unsigned int nparams, const u32 *params,
7754                   const u32 *val)
7755 {
7756         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7757                                      FW_CMD_MAX_TIMEOUT);
7758 }
7759
7760 /**
7761  *      t4_cfg_pfvf - configure PF/VF resource limits
7762  *      @adap: the adapter
7763  *      @mbox: mailbox to use for the FW command
7764  *      @pf: the PF being configured
7765  *      @vf: the VF being configured
7766  *      @txq: the max number of egress queues
7767  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7768  *      @rxqi: the max number of interrupt-capable ingress queues
7769  *      @rxq: the max number of interruptless ingress queues
7770  *      @tc: the PCI traffic class
7771  *      @vi: the max number of virtual interfaces
7772  *      @cmask: the channel access rights mask for the PF/VF
7773  *      @pmask: the port access rights mask for the PF/VF
7774  *      @nexact: the maximum number of exact MPS filters
7775  *      @rcaps: read capabilities
7776  *      @wxcaps: write/execute capabilities
7777  *
7778  *      Configures resource limits and capabilities for a physical or virtual
7779  *      function.
7780  */
7781 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7782                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7783                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7784                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7785                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7786 {
7787         struct fw_pfvf_cmd c;
7788
7789         memset(&c, 0, sizeof(c));
7790         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7791                                   F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7792                                   V_FW_PFVF_CMD_VFN(vf));
7793         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7794         c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7795                                      V_FW_PFVF_CMD_NIQ(rxq));
7796         c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7797                                     V_FW_PFVF_CMD_PMASK(pmask) |
7798                                     V_FW_PFVF_CMD_NEQ(txq));
7799         c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7800                                       V_FW_PFVF_CMD_NVI(vi) |
7801                                       V_FW_PFVF_CMD_NEXACTF(nexact));
7802         c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7803                                      V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7804                                      V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7805         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7806 }
7807
7808 /**
7809  *      t4_alloc_vi_func - allocate a virtual interface
7810  *      @adap: the adapter
7811  *      @mbox: mailbox to use for the FW command
7812  *      @port: physical port associated with the VI
7813  *      @pf: the PF owning the VI
7814  *      @vf: the VF owning the VI
7815  *      @nmac: number of MAC addresses needed (1 to 5)
7816  *      @mac: the MAC addresses of the VI
7817  *      @rss_size: size of RSS table slice associated with this VI
7818  *      @portfunc: which Port Application Function MAC Address is desired
7819  *      @idstype: Intrusion Detection Type
7820  *
7821  *      Allocates a virtual interface for the given physical port.  If @mac is
7822  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7823  *      If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7824  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7825  *      stored consecutively so the space needed is @nmac * 6 bytes.
7826  *      Returns a negative error number or the non-negative VI id.
7827  */
7828 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7829                      unsigned int port, unsigned int pf, unsigned int vf,
7830                      unsigned int nmac, u8 *mac, u16 *rss_size,
7831                      uint8_t *vfvld, uint16_t *vin,
7832                      unsigned int portfunc, unsigned int idstype)
7833 {
7834         int ret;
7835         struct fw_vi_cmd c;
7836
7837         memset(&c, 0, sizeof(c));
7838         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7839                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7840                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7841         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7842         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7843                                      V_FW_VI_CMD_FUNC(portfunc));
7844         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7845         c.nmac = nmac - 1;
7846         if(!rss_size)
7847                 c.norss_rsssize = F_FW_VI_CMD_NORSS;
7848
7849         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7850         if (ret)
7851                 return ret;
7852         ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7853
7854         if (mac) {
7855                 memcpy(mac, c.mac, sizeof(c.mac));
7856                 switch (nmac) {
7857                 case 5:
7858                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7859                 case 4:
7860                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7861                 case 3:
7862                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7863                 case 2:
7864                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7865                 }
7866         }
7867         if (rss_size)
7868                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7869         if (vfvld) {
7870                 *vfvld = adap->params.viid_smt_extn_support ?
7871                     G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
7872                     G_FW_VIID_VIVLD(ret);
7873         }
7874         if (vin) {
7875                 *vin = adap->params.viid_smt_extn_support ?
7876                     G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
7877                     G_FW_VIID_VIN(ret);
7878         }
7879
7880         return ret;
7881 }
7882
7883 /**
7884  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7885  *      @adap: the adapter
7886  *      @mbox: mailbox to use for the FW command
7887  *      @port: physical port associated with the VI
7888  *      @pf: the PF owning the VI
7889  *      @vf: the VF owning the VI
7890  *      @nmac: number of MAC addresses needed (1 to 5)
7891  *      @mac: the MAC addresses of the VI
7892  *      @rss_size: size of RSS table slice associated with this VI
7893  *
7894  *      backwards compatible and convieniance routine to allocate a Virtual
7895  *      Interface with a Ethernet Port Application Function and Intrustion
7896  *      Detection System disabled.
7897  */
7898 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7899                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7900                 u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
7901 {
7902         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7903                                 vfvld, vin, FW_VI_FUNC_ETH, 0);
7904 }
7905
7906 /**
7907  *      t4_free_vi - free a virtual interface
7908  *      @adap: the adapter
7909  *      @mbox: mailbox to use for the FW command
7910  *      @pf: the PF owning the VI
7911  *      @vf: the VF owning the VI
7912  *      @viid: virtual interface identifiler
7913  *
7914  *      Free a previously allocated virtual interface.
7915  */
7916 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7917                unsigned int vf, unsigned int viid)
7918 {
7919         struct fw_vi_cmd c;
7920
7921         memset(&c, 0, sizeof(c));
7922         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7923                                   F_FW_CMD_REQUEST |
7924                                   F_FW_CMD_EXEC |
7925                                   V_FW_VI_CMD_PFN(pf) |
7926                                   V_FW_VI_CMD_VFN(vf));
7927         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7928         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7929
7930         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7931 }
7932
7933 /**
7934  *      t4_set_rxmode - set Rx properties of a virtual interface
7935  *      @adap: the adapter
7936  *      @mbox: mailbox to use for the FW command
7937  *      @viid: the VI id
7938  *      @mtu: the new MTU or -1
7939  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7940  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7941  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7942  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7943  *      @sleep_ok: if true we may sleep while awaiting command completion
7944  *
7945  *      Sets Rx properties of a virtual interface.
7946  */
7947 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7948                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
7949                   bool sleep_ok)
7950 {
7951         struct fw_vi_rxmode_cmd c;
7952
7953         /* convert to FW values */
7954         if (mtu < 0)
7955                 mtu = M_FW_VI_RXMODE_CMD_MTU;
7956         if (promisc < 0)
7957                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7958         if (all_multi < 0)
7959                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7960         if (bcast < 0)
7961                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7962         if (vlanex < 0)
7963                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7964
7965         memset(&c, 0, sizeof(c));
7966         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7967                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7968                                    V_FW_VI_RXMODE_CMD_VIID(viid));
7969         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7970         c.mtu_to_vlanexen =
7971                 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7972                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7973                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7974                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7975                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7976         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7977 }
7978
7979 /**
7980  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7981  *      @adap: the adapter
7982  *      @mbox: mailbox to use for the FW command
7983  *      @viid: the VI id
7984  *      @free: if true any existing filters for this VI id are first removed
7985  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7986  *      @addr: the MAC address(es)
7987  *      @idx: where to store the index of each allocated filter
7988  *      @hash: pointer to hash address filter bitmap
7989  *      @sleep_ok: call is allowed to sleep
7990  *
7991  *      Allocates an exact-match filter for each of the supplied addresses and
7992  *      sets it to the corresponding address.  If @idx is not %NULL it should
7993  *      have at least @naddr entries, each of which will be set to the index of
7994  *      the filter allocated for the corresponding MAC address.  If a filter
7995  *      could not be allocated for an address its index is set to 0xffff.
7996  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7997  *      are hashed and update the hash filter bitmap pointed at by @hash.
7998  *
7999  *      Returns a negative error number or the number of filters allocated.
8000  */
8001 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8002                       unsigned int viid, bool free, unsigned int naddr,
8003                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8004 {
8005         int offset, ret = 0;
8006         struct fw_vi_mac_cmd c;
8007         unsigned int nfilters = 0;
8008         unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8009         unsigned int rem = naddr;
8010
8011         if (naddr > max_naddr)
8012                 return -EINVAL;
8013
8014         for (offset = 0; offset < naddr ; /**/) {
8015                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8016                                          ? rem
8017                                          : ARRAY_SIZE(c.u.exact));
8018                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8019                                                      u.exact[fw_naddr]), 16);
8020                 struct fw_vi_mac_exact *p;
8021                 int i;
8022
8023                 memset(&c, 0, sizeof(c));
8024                 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8025                                            F_FW_CMD_REQUEST |
8026                                            F_FW_CMD_WRITE |
8027                                            V_FW_CMD_EXEC(free) |
8028                                            V_FW_VI_MAC_CMD_VIID(viid));
8029                 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8030                                                   V_FW_CMD_LEN16(len16));
8031
8032                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8033                         p->valid_to_idx =
8034                                 cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8035                                             V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8036                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8037                 }
8038
8039                 /*
8040                  * It's okay if we run out of space in our MAC address arena.
8041                  * Some of the addresses we submit may get stored so we need
8042                  * to run through the reply to see what the results were ...
8043                  */
8044                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8045                 if (ret && ret != -FW_ENOMEM)
8046                         break;
8047
8048                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8049                         u16 index = G_FW_VI_MAC_CMD_IDX(
8050                                                 be16_to_cpu(p->valid_to_idx));
8051
8052                         if (idx)
8053                                 idx[offset+i] = (index >=  max_naddr
8054                                                  ? 0xffff
8055                                                  : index);
8056                         if (index < max_naddr)
8057                                 nfilters++;
8058                         else if (hash)
8059                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8060                 }
8061
8062                 free = false;
8063                 offset += fw_naddr;
8064                 rem -= fw_naddr;
8065         }
8066
8067         if (ret == 0 || ret == -FW_ENOMEM)
8068                 ret = nfilters;
8069         return ret;
8070 }
8071
8072 /**
8073  *      t4_change_mac - modifies the exact-match filter for a MAC address
8074  *      @adap: the adapter
8075  *      @mbox: mailbox to use for the FW command
8076  *      @viid: the VI id
8077  *      @idx: index of existing filter for old value of MAC address, or -1
8078  *      @addr: the new MAC address value
8079  *      @persist: whether a new MAC allocation should be persistent
8080  *      @smt_idx: add MAC to SMT and return its index, or NULL
8081  *
8082  *      Modifies an exact-match filter and sets it to the new MAC address if
8083  *      @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8084  *      latter case the address is added persistently if @persist is %true.
8085  *
8086  *      Note that in general it is not possible to modify the value of a given
8087  *      filter so the generic way to modify an address filter is to free the one
8088  *      being used by the old address value and allocate a new filter for the
8089  *      new address value.
8090  *
8091  *      Returns a negative error number or the index of the filter with the new
8092  *      MAC value.  Note that this index may differ from @idx.
8093  */
8094 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8095                   int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8096 {
8097         int ret, mode;
8098         struct fw_vi_mac_cmd c;
8099         struct fw_vi_mac_exact *p = c.u.exact;
8100         unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8101
8102         if (idx < 0)            /* new allocation */
8103                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8104         mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8105
8106         memset(&c, 0, sizeof(c));
8107         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8108                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8109                                    V_FW_VI_MAC_CMD_VIID(viid));
8110         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8111         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8112                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8113                                       V_FW_VI_MAC_CMD_IDX(idx));
8114         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8115
8116         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8117         if (ret == 0) {
8118                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8119                 if (ret >= max_mac_addr)
8120                         ret = -ENOMEM;
8121                 if (smt_idx) {
8122                         if (adap->params.viid_smt_extn_support)
8123                                 *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8124                         else {
8125                                 if (chip_id(adap) <= CHELSIO_T5)
8126                                         *smt_idx = (viid & M_FW_VIID_VIN) << 1;
8127                                 else
8128                                         *smt_idx = viid & M_FW_VIID_VIN;
8129                         }
8130                 }
8131         }
8132         return ret;
8133 }
8134
8135 /**
8136  *      t4_set_addr_hash - program the MAC inexact-match hash filter
8137  *      @adap: the adapter
8138  *      @mbox: mailbox to use for the FW command
8139  *      @viid: the VI id
8140  *      @ucast: whether the hash filter should also match unicast addresses
8141  *      @vec: the value to be written to the hash filter
8142  *      @sleep_ok: call is allowed to sleep
8143  *
8144  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8145  */
8146 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8147                      bool ucast, u64 vec, bool sleep_ok)
8148 {
8149         struct fw_vi_mac_cmd c;
8150         u32 val;
8151
8152         memset(&c, 0, sizeof(c));
8153         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8154                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8155                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8156         val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8157               V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8158         c.freemacs_to_len16 = cpu_to_be32(val);
8159         c.u.hash.hashvec = cpu_to_be64(vec);
8160         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8161 }
8162
8163 /**
8164  *      t4_enable_vi_params - enable/disable a virtual interface
8165  *      @adap: the adapter
8166  *      @mbox: mailbox to use for the FW command
8167  *      @viid: the VI id
8168  *      @rx_en: 1=enable Rx, 0=disable Rx
8169  *      @tx_en: 1=enable Tx, 0=disable Tx
8170  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8171  *
8172  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8173  *      only makes sense when enabling a Virtual Interface ...
8174  */
8175 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8176                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8177 {
8178         struct fw_vi_enable_cmd c;
8179
8180         memset(&c, 0, sizeof(c));
8181         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8182                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8183                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8184         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8185                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8186                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8187                                      FW_LEN16(c));
8188         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8189 }
8190
8191 /**
8192  *      t4_enable_vi - enable/disable a virtual interface
8193  *      @adap: the adapter
8194  *      @mbox: mailbox to use for the FW command
8195  *      @viid: the VI id
8196  *      @rx_en: 1=enable Rx, 0=disable Rx
8197  *      @tx_en: 1=enable Tx, 0=disable Tx
8198  *
8199  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8200  *      only makes sense when enabling a Virtual Interface ...
8201  */
8202 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8203                  bool rx_en, bool tx_en)
8204 {
8205         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8206 }
8207
8208 /**
8209  *      t4_identify_port - identify a VI's port by blinking its LED
8210  *      @adap: the adapter
8211  *      @mbox: mailbox to use for the FW command
8212  *      @viid: the VI id
8213  *      @nblinks: how many times to blink LED at 2.5 Hz
8214  *
8215  *      Identifies a VI's port by blinking its LED.
8216  */
8217 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8218                      unsigned int nblinks)
8219 {
8220         struct fw_vi_enable_cmd c;
8221
8222         memset(&c, 0, sizeof(c));
8223         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8224                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8225                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8226         c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8227         c.blinkdur = cpu_to_be16(nblinks);
8228         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8229 }
8230
8231 /**
8232  *      t4_iq_stop - stop an ingress queue and its FLs
8233  *      @adap: the adapter
8234  *      @mbox: mailbox to use for the FW command
8235  *      @pf: the PF owning the queues
8236  *      @vf: the VF owning the queues
8237  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8238  *      @iqid: ingress queue id
8239  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8240  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8241  *
8242  *      Stops an ingress queue and its associated FLs, if any.  This causes
8243  *      any current or future data/messages destined for these queues to be
8244  *      tossed.
8245  */
8246 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8247                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8248                unsigned int fl0id, unsigned int fl1id)
8249 {
8250         struct fw_iq_cmd c;
8251
8252         memset(&c, 0, sizeof(c));
8253         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8254                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8255                                   V_FW_IQ_CMD_VFN(vf));
8256         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8257         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8258         c.iqid = cpu_to_be16(iqid);
8259         c.fl0id = cpu_to_be16(fl0id);
8260         c.fl1id = cpu_to_be16(fl1id);
8261         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8262 }
8263
8264 /**
8265  *      t4_iq_free - free an ingress queue and its FLs
8266  *      @adap: the adapter
8267  *      @mbox: mailbox to use for the FW command
8268  *      @pf: the PF owning the queues
8269  *      @vf: the VF owning the queues
8270  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8271  *      @iqid: ingress queue id
8272  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8273  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8274  *
8275  *      Frees an ingress queue and its associated FLs, if any.
8276  */
8277 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8278                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8279                unsigned int fl0id, unsigned int fl1id)
8280 {
8281         struct fw_iq_cmd c;
8282
8283         memset(&c, 0, sizeof(c));
8284         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8285                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8286                                   V_FW_IQ_CMD_VFN(vf));
8287         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8288         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8289         c.iqid = cpu_to_be16(iqid);
8290         c.fl0id = cpu_to_be16(fl0id);
8291         c.fl1id = cpu_to_be16(fl1id);
8292         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8293 }
8294
8295 /**
8296  *      t4_eth_eq_free - free an Ethernet egress queue
8297  *      @adap: the adapter
8298  *      @mbox: mailbox to use for the FW command
8299  *      @pf: the PF owning the queue
8300  *      @vf: the VF owning the queue
8301  *      @eqid: egress queue id
8302  *
8303  *      Frees an Ethernet egress queue.
8304  */
8305 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8306                    unsigned int vf, unsigned int eqid)
8307 {
8308         struct fw_eq_eth_cmd c;
8309
8310         memset(&c, 0, sizeof(c));
8311         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8312                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8313                                   V_FW_EQ_ETH_CMD_PFN(pf) |
8314                                   V_FW_EQ_ETH_CMD_VFN(vf));
8315         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8316         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8317         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8318 }
8319
8320 /**
8321  *      t4_ctrl_eq_free - free a control egress queue
8322  *      @adap: the adapter
8323  *      @mbox: mailbox to use for the FW command
8324  *      @pf: the PF owning the queue
8325  *      @vf: the VF owning the queue
8326  *      @eqid: egress queue id
8327  *
8328  *      Frees a control egress queue.
8329  */
8330 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8331                     unsigned int vf, unsigned int eqid)
8332 {
8333         struct fw_eq_ctrl_cmd c;
8334
8335         memset(&c, 0, sizeof(c));
8336         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8337                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8338                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
8339                                   V_FW_EQ_CTRL_CMD_VFN(vf));
8340         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8341         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8342         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8343 }
8344
8345 /**
8346  *      t4_ofld_eq_free - free an offload egress queue
8347  *      @adap: the adapter
8348  *      @mbox: mailbox to use for the FW command
8349  *      @pf: the PF owning the queue
8350  *      @vf: the VF owning the queue
8351  *      @eqid: egress queue id
8352  *
8353  *      Frees a control egress queue.
8354  */
8355 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8356                     unsigned int vf, unsigned int eqid)
8357 {
8358         struct fw_eq_ofld_cmd c;
8359
8360         memset(&c, 0, sizeof(c));
8361         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8362                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8363                                   V_FW_EQ_OFLD_CMD_PFN(pf) |
8364                                   V_FW_EQ_OFLD_CMD_VFN(vf));
8365         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8366         c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8367         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8368 }
8369
8370 /**
8371  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8372  *      @link_down_rc: Link Down Reason Code
8373  *
8374  *      Returns a string representation of the Link Down Reason Code.
8375  */
8376 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8377 {
8378         static const char *reason[] = {
8379                 "Link Down",
8380                 "Remote Fault",
8381                 "Auto-negotiation Failure",
8382                 "Reserved3",
8383                 "Insufficient Airflow",
8384                 "Unable To Determine Reason",
8385                 "No RX Signal Detected",
8386                 "Reserved7",
8387         };
8388
8389         if (link_down_rc >= ARRAY_SIZE(reason))
8390                 return "Bad Reason Code";
8391
8392         return reason[link_down_rc];
8393 }
8394
8395 /*
8396  * Return the highest speed set in the port capabilities, in Mb/s.
8397  */
8398 unsigned int fwcap_to_speed(uint32_t caps)
8399 {
8400         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8401                 do { \
8402                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8403                                 return __speed; \
8404                 } while (0)
8405
8406         TEST_SPEED_RETURN(400G, 400000);
8407         TEST_SPEED_RETURN(200G, 200000);
8408         TEST_SPEED_RETURN(100G, 100000);
8409         TEST_SPEED_RETURN(50G,   50000);
8410         TEST_SPEED_RETURN(40G,   40000);
8411         TEST_SPEED_RETURN(25G,   25000);
8412         TEST_SPEED_RETURN(10G,   10000);
8413         TEST_SPEED_RETURN(1G,     1000);
8414         TEST_SPEED_RETURN(100M,    100);
8415
8416         #undef TEST_SPEED_RETURN
8417
8418         return 0;
8419 }
8420
8421 /*
8422  * Return the port capabilities bit for the given speed, which is in Mb/s.
8423  */
8424 uint32_t speed_to_fwcap(unsigned int speed)
8425 {
8426         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8427                 do { \
8428                         if (speed == __speed) \
8429                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8430                 } while (0)
8431
8432         TEST_SPEED_RETURN(400G, 400000);
8433         TEST_SPEED_RETURN(200G, 200000);
8434         TEST_SPEED_RETURN(100G, 100000);
8435         TEST_SPEED_RETURN(50G,   50000);
8436         TEST_SPEED_RETURN(40G,   40000);
8437         TEST_SPEED_RETURN(25G,   25000);
8438         TEST_SPEED_RETURN(10G,   10000);
8439         TEST_SPEED_RETURN(1G,     1000);
8440         TEST_SPEED_RETURN(100M,    100);
8441
8442         #undef TEST_SPEED_RETURN
8443
8444         return 0;
8445 }
8446
8447 /*
8448  * Return the port capabilities bit for the highest speed in the capabilities.
8449  */
8450 uint32_t fwcap_top_speed(uint32_t caps)
8451 {
8452         #define TEST_SPEED_RETURN(__caps_speed) \
8453                 do { \
8454                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8455                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8456                 } while (0)
8457
8458         TEST_SPEED_RETURN(400G);
8459         TEST_SPEED_RETURN(200G);
8460         TEST_SPEED_RETURN(100G);
8461         TEST_SPEED_RETURN(50G);
8462         TEST_SPEED_RETURN(40G);
8463         TEST_SPEED_RETURN(25G);
8464         TEST_SPEED_RETURN(10G);
8465         TEST_SPEED_RETURN(1G);
8466         TEST_SPEED_RETURN(100M);
8467
8468         #undef TEST_SPEED_RETURN
8469
8470         return 0;
8471 }
8472
8473
8474 /**
8475  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8476  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8477  *
8478  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8479  *      32-bit Port Capabilities value.
8480  */
8481 static uint32_t lstatus_to_fwcap(u32 lstatus)
8482 {
8483         uint32_t linkattr = 0;
8484
8485         /*
8486          * Unfortunately the format of the Link Status in the old
8487          * 16-bit Port Information message isn't the same as the
8488          * 16-bit Port Capabilities bitfield used everywhere else ...
8489          */
8490         if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8491                 linkattr |= FW_PORT_CAP32_FC_RX;
8492         if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8493                 linkattr |= FW_PORT_CAP32_FC_TX;
8494         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8495                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8496         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8497                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8498         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8499                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8500         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8501                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8502         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8503                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8504         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8505                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8506
8507         return linkattr;
8508 }
8509
8510 /*
8511  * Updates all fields owned by the common code in port_info and link_config
8512  * based on information provided by the firmware.  Does not touch any
8513  * requested_* field.
8514  */
8515 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8516     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8517 {
8518         struct link_config old_lc, *lc = &pi->link_cfg;
8519         unsigned char fc, fec;
8520         u32 stat, linkattr;
8521         int old_ptype, old_mtype;
8522
8523         old_ptype = pi->port_type;
8524         old_mtype = pi->mod_type;
8525         old_lc = *lc;
8526         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8527                 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8528
8529                 pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8530                 pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8531                 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8532                     G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8533
8534                 lc->supported = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8535                 lc->advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8536                 lc->lp_advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8537                 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8538                 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8539
8540                 linkattr = lstatus_to_fwcap(stat);
8541         } else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8542                 stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8543
8544                 pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8545                 pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8546                 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8547                     G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8548
8549                 lc->supported = be32_to_cpu(p->u.info32.pcaps32);
8550                 lc->advertising = be32_to_cpu(p->u.info32.acaps32);
8551                 lc->lp_advertising = be16_to_cpu(p->u.info32.lpacaps32);
8552                 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8553                 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8554
8555                 linkattr = be32_to_cpu(p->u.info32.linkattr32);
8556         } else {
8557                 CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8558                 return;
8559         }
8560
8561         lc->speed = fwcap_to_speed(linkattr);
8562
8563         fc = 0;
8564         if (linkattr & FW_PORT_CAP32_FC_RX)
8565                 fc |= PAUSE_RX;
8566         if (linkattr & FW_PORT_CAP32_FC_TX)
8567                 fc |= PAUSE_TX;
8568         lc->fc = fc;
8569
8570         fec = FEC_NONE;
8571         if (linkattr & FW_PORT_CAP32_FEC_RS)
8572                 fec |= FEC_RS;
8573         if (linkattr & FW_PORT_CAP32_FEC_BASER_RS)
8574                 fec |= FEC_BASER_RS;
8575         lc->fec = fec;
8576
8577         if (mod_changed != NULL)
8578                 *mod_changed = false;
8579         if (link_changed != NULL)
8580                 *link_changed = false;
8581         if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8582             old_lc.supported != lc->supported) {
8583                 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
8584                         lc->fec_hint = lc->advertising &
8585                             V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
8586                 }
8587                 if (mod_changed != NULL)
8588                         *mod_changed = true;
8589         }
8590         if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8591             old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8592                 if (link_changed != NULL)
8593                         *link_changed = true;
8594         }
8595 }
8596
8597 /**
8598  *      t4_update_port_info - retrieve and update port information if changed
8599  *      @pi: the port_info
8600  *
8601  *      We issue a Get Port Information Command to the Firmware and, if
8602  *      successful, we check to see if anything is different from what we
8603  *      last recorded and update things accordingly.
8604  */
8605  int t4_update_port_info(struct port_info *pi)
8606  {
8607         struct adapter *sc = pi->adapter;
8608         struct fw_port_cmd cmd;
8609         enum fw_port_action action;
8610         int ret;
8611
8612         memset(&cmd, 0, sizeof(cmd));
8613         cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8614             F_FW_CMD_REQUEST | F_FW_CMD_READ |
8615             V_FW_PORT_CMD_PORTID(pi->tx_chan));
8616         action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8617             FW_PORT_ACTION_GET_PORT_INFO;
8618         cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8619             FW_LEN16(cmd));
8620         ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8621         if (ret)
8622                 return ret;
8623
8624         handle_port_info(pi, &cmd, action, NULL, NULL);
8625         return 0;
8626 }
8627
8628 /**
8629  *      t4_handle_fw_rpl - process a FW reply message
8630  *      @adap: the adapter
8631  *      @rpl: start of the FW message
8632  *
8633  *      Processes a FW message, such as link state change messages.
8634  */
8635 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8636 {
8637         u8 opcode = *(const u8 *)rpl;
8638         const struct fw_port_cmd *p = (const void *)rpl;
8639         enum fw_port_action action =
8640             G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8641         bool mod_changed, link_changed;
8642
8643         if (opcode == FW_PORT_CMD &&
8644             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8645             action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8646                 /* link/module state change message */
8647                 int i;
8648                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8649                 struct port_info *pi = NULL;
8650                 struct link_config *lc;
8651
8652                 for_each_port(adap, i) {
8653                         pi = adap2pinfo(adap, i);
8654                         if (pi->tx_chan == chan)
8655                                 break;
8656                 }
8657
8658                 lc = &pi->link_cfg;
8659                 PORT_LOCK(pi);
8660                 handle_port_info(pi, p, action, &mod_changed, &link_changed);
8661                 PORT_UNLOCK(pi);
8662                 if (mod_changed)
8663                         t4_os_portmod_changed(pi);
8664                 if (link_changed) {
8665                         PORT_LOCK(pi);
8666                         t4_os_link_changed(pi);
8667                         PORT_UNLOCK(pi);
8668                 }
8669         } else {
8670                 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
8671                 return -EINVAL;
8672         }
8673         return 0;
8674 }
8675
8676 /**
8677  *      get_pci_mode - determine a card's PCI mode
8678  *      @adapter: the adapter
8679  *      @p: where to store the PCI settings
8680  *
8681  *      Determines a card's PCI mode and associated parameters, such as speed
8682  *      and width.
8683  */
8684 static void get_pci_mode(struct adapter *adapter,
8685                                    struct pci_params *p)
8686 {
8687         u16 val;
8688         u32 pcie_cap;
8689
8690         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8691         if (pcie_cap) {
8692                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
8693                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8694                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8695         }
8696 }
8697
8698 struct flash_desc {
8699         u32 vendor_and_model_id;
8700         u32 size_mb;
8701 };
8702
8703 int t4_get_flash_params(struct adapter *adapter)
8704 {
8705         /*
8706          * Table for non-standard supported Flash parts.  Note, all Flash
8707          * parts must have 64KB sectors.
8708          */
8709         static struct flash_desc supported_flash[] = {
8710                 { 0x00150201, 4 << 20 },        /* Spansion 4MB S25FL032P */
8711         };
8712
8713         int ret;
8714         u32 flashid = 0;
8715         unsigned int part, manufacturer;
8716         unsigned int density, size = 0;
8717
8718
8719         /*
8720          * Issue a Read ID Command to the Flash part.  We decode supported
8721          * Flash parts and their sizes from this.  There's a newer Query
8722          * Command which can retrieve detailed geometry information but many
8723          * Flash parts don't support it.
8724          */
8725         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
8726         if (!ret)
8727                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
8728         t4_write_reg(adapter, A_SF_OP, 0);      /* unlock SF */
8729         if (ret < 0)
8730                 return ret;
8731
8732         /*
8733          * Check to see if it's one of our non-standard supported Flash parts.
8734          */
8735         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8736                 if (supported_flash[part].vendor_and_model_id == flashid) {
8737                         adapter->params.sf_size =
8738                                 supported_flash[part].size_mb;
8739                         adapter->params.sf_nsec =
8740                                 adapter->params.sf_size / SF_SEC_SIZE;
8741                         goto found;
8742                 }
8743
8744         /*
8745          * Decode Flash part size.  The code below looks repetative with
8746          * common encodings, but that's not guaranteed in the JEDEC
8747          * specification for the Read JADEC ID command.  The only thing that
8748          * we're guaranteed by the JADEC specification is where the
8749          * Manufacturer ID is in the returned result.  After that each
8750          * Manufacturer ~could~ encode things completely differently.
8751          * Note, all Flash parts must have 64KB sectors.
8752          */
8753         manufacturer = flashid & 0xff;
8754         switch (manufacturer) {
8755         case 0x20: /* Micron/Numonix */
8756                 /*
8757                  * This Density -> Size decoding table is taken from Micron
8758                  * Data Sheets.
8759                  */
8760                 density = (flashid >> 16) & 0xff;
8761                 switch (density) {
8762                 case 0x14: size = 1 << 20; break; /*   1MB */
8763                 case 0x15: size = 1 << 21; break; /*   2MB */
8764                 case 0x16: size = 1 << 22; break; /*   4MB */
8765                 case 0x17: size = 1 << 23; break; /*   8MB */
8766                 case 0x18: size = 1 << 24; break; /*  16MB */
8767                 case 0x19: size = 1 << 25; break; /*  32MB */
8768                 case 0x20: size = 1 << 26; break; /*  64MB */
8769                 case 0x21: size = 1 << 27; break; /* 128MB */
8770                 case 0x22: size = 1 << 28; break; /* 256MB */
8771                 }
8772                 break;
8773
8774         case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
8775                 /*
8776                  * This Density -> Size decoding table is taken from ISSI
8777                  * Data Sheets.
8778                  */
8779                 density = (flashid >> 16) & 0xff;
8780                 switch (density) {
8781                 case 0x16: size = 1 << 25; break; /*  32MB */
8782                 case 0x17: size = 1 << 26; break; /*  64MB */
8783                 }
8784                 break;
8785
8786         case 0xc2: /* Macronix */
8787                 /*
8788                  * This Density -> Size decoding table is taken from Macronix
8789                  * Data Sheets.
8790                  */
8791                 density = (flashid >> 16) & 0xff;
8792                 switch (density) {
8793                 case 0x17: size = 1 << 23; break; /*   8MB */
8794                 case 0x18: size = 1 << 24; break; /*  16MB */
8795                 }
8796                 break;
8797
8798         case 0xef: /* Winbond */
8799                 /*
8800                  * This Density -> Size decoding table is taken from Winbond
8801                  * Data Sheets.
8802                  */
8803                 density = (flashid >> 16) & 0xff;
8804                 switch (density) {
8805                 case 0x17: size = 1 << 23; break; /*   8MB */
8806                 case 0x18: size = 1 << 24; break; /*  16MB */
8807                 }
8808                 break;
8809         }
8810
8811         /* If we didn't recognize the FLASH part, that's no real issue: the
8812          * Hardware/Software contract says that Hardware will _*ALWAYS*_
8813          * use a FLASH part which is at least 4MB in size and has 64KB
8814          * sectors.  The unrecognized FLASH part is likely to be much larger
8815          * than 4MB, but that's all we really need.
8816          */
8817         if (size == 0) {
8818                 CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
8819                 size = 1 << 22;
8820         }
8821
8822         /*
8823          * Store decoded Flash size and fall through into vetting code.
8824          */
8825         adapter->params.sf_size = size;
8826         adapter->params.sf_nsec = size / SF_SEC_SIZE;
8827
8828  found:
8829         /*
8830          * We should ~probably~ reject adapters with FLASHes which are too
8831          * small but we have some legacy FPGAs with small FLASHes that we'd
8832          * still like to use.  So instead we emit a scary message ...
8833          */
8834         if (adapter->params.sf_size < FLASH_MIN_SIZE)
8835                 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8836                         flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
8837
8838         return 0;
8839 }
8840
8841 static void set_pcie_completion_timeout(struct adapter *adapter,
8842                                                   u8 range)
8843 {
8844         u16 val;
8845         u32 pcie_cap;
8846
8847         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8848         if (pcie_cap) {
8849                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
8850                 val &= 0xfff0;
8851                 val |= range ;
8852                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8853         }
8854 }
8855
8856 const struct chip_params *t4_get_chip_params(int chipid)
8857 {
8858         static const struct chip_params chip_params[] = {
8859                 {
8860                         /* T4 */
8861                         .nchan = NCHAN,
8862                         .pm_stats_cnt = PM_NSTATS,
8863                         .cng_ch_bits_log = 2,
8864                         .nsched_cls = 15,
8865                         .cim_num_obq = CIM_NUM_OBQ,
8866                         .mps_rplc_size = 128,
8867                         .vfcount = 128,
8868                         .sge_fl_db = F_DBPRIO,
8869                         .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8870                 },
8871                 {
8872                         /* T5 */
8873                         .nchan = NCHAN,
8874                         .pm_stats_cnt = PM_NSTATS,
8875                         .cng_ch_bits_log = 2,
8876                         .nsched_cls = 16,
8877                         .cim_num_obq = CIM_NUM_OBQ_T5,
8878                         .mps_rplc_size = 128,
8879                         .vfcount = 128,
8880                         .sge_fl_db = F_DBPRIO | F_DBTYPE,
8881                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8882                 },
8883                 {
8884                         /* T6 */
8885                         .nchan = T6_NCHAN,
8886                         .pm_stats_cnt = T6_PM_NSTATS,
8887                         .cng_ch_bits_log = 3,
8888                         .nsched_cls = 16,
8889                         .cim_num_obq = CIM_NUM_OBQ_T5,
8890                         .mps_rplc_size = 256,
8891                         .vfcount = 256,
8892                         .sge_fl_db = 0,
8893                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8894                 },
8895         };
8896
8897         chipid -= CHELSIO_T4;
8898         if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8899                 return NULL;
8900
8901         return &chip_params[chipid];
8902 }
8903
8904 /**
8905  *      t4_prep_adapter - prepare SW and HW for operation
8906  *      @adapter: the adapter
8907  *      @buf: temporary space of at least VPD_LEN size provided by the caller.
8908  *
8909  *      Initialize adapter SW state for the various HW modules, set initial
8910  *      values for some adapter tunables, take PHYs out of reset, and
8911  *      initialize the MDIO interface.
8912  */
8913 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8914 {
8915         int ret;
8916         uint16_t device_id;
8917         uint32_t pl_rev;
8918
8919         get_pci_mode(adapter, &adapter->params.pci);
8920
8921         pl_rev = t4_read_reg(adapter, A_PL_REV);
8922         adapter->params.chipid = G_CHIPID(pl_rev);
8923         adapter->params.rev = G_REV(pl_rev);
8924         if (adapter->params.chipid == 0) {
8925                 /* T4 did not have chipid in PL_REV (T5 onwards do) */
8926                 adapter->params.chipid = CHELSIO_T4;
8927
8928                 /* T4A1 chip is not supported */
8929                 if (adapter->params.rev == 1) {
8930                         CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8931                         return -EINVAL;
8932                 }
8933         }
8934
8935         adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8936         if (adapter->chip_params == NULL)
8937                 return -EINVAL;
8938
8939         adapter->params.pci.vpd_cap_addr =
8940             t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8941
8942         ret = t4_get_flash_params(adapter);
8943         if (ret < 0)
8944                 return ret;
8945
8946         /* Cards with real ASICs have the chipid in the PCIe device id */
8947         t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8948         if (device_id >> 12 == chip_id(adapter))
8949                 adapter->params.cim_la_size = CIMLA_SIZE;
8950         else {
8951                 /* FPGA */
8952                 adapter->params.fpga = 1;
8953                 adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8954         }
8955
8956         ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8957         if (ret < 0)
8958                 return ret;
8959
8960         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8961
8962         /*
8963          * Default port and clock for debugging in case we can't reach FW.
8964          */
8965         adapter->params.nports = 1;
8966         adapter->params.portvec = 1;
8967         adapter->params.vpd.cclk = 50000;
8968
8969         /* Set pci completion timeout value to 4 seconds. */
8970         set_pcie_completion_timeout(adapter, 0xd);
8971         return 0;
8972 }
8973
8974 /**
8975  *      t4_shutdown_adapter - shut down adapter, host & wire
8976  *      @adapter: the adapter
8977  *
8978  *      Perform an emergency shutdown of the adapter and stop it from
8979  *      continuing any further communication on the ports or DMA to the
8980  *      host.  This is typically used when the adapter and/or firmware
8981  *      have crashed and we want to prevent any further accidental
8982  *      communication with the rest of the world.  This will also force
8983  *      the port Link Status to go down -- if register writes work --
8984  *      which should help our peers figure out that we're down.
8985  */
8986 int t4_shutdown_adapter(struct adapter *adapter)
8987 {
8988         int port;
8989
8990         t4_intr_disable(adapter);
8991         t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8992         for_each_port(adapter, port) {
8993                 u32 a_port_cfg = is_t4(adapter) ?
8994                                  PORT_REG(port, A_XGMAC_PORT_CFG) :
8995                                  T5_PORT_REG(port, A_MAC_PORT_CFG);
8996
8997                 t4_write_reg(adapter, a_port_cfg,
8998                              t4_read_reg(adapter, a_port_cfg)
8999                              & ~V_SIGNAL_DET(1));
9000         }
9001         t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9002
9003         return 0;
9004 }
9005
9006 /**
9007  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9008  *      @adapter: the adapter
9009  *      @qid: the Queue ID
9010  *      @qtype: the Ingress or Egress type for @qid
9011  *      @user: true if this request is for a user mode queue
9012  *      @pbar2_qoffset: BAR2 Queue Offset
9013  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9014  *
9015  *      Returns the BAR2 SGE Queue Registers information associated with the
9016  *      indicated Absolute Queue ID.  These are passed back in return value
9017  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9018  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9019  *
9020  *      This may return an error which indicates that BAR2 SGE Queue
9021  *      registers aren't available.  If an error is not returned, then the
9022  *      following values are returned:
9023  *
9024  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9025  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9026  *
9027  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9028  *      require the "Inferred Queue ID" ability may be used.  E.g. the
9029  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9030  *      then these "Inferred Queue ID" register may not be used.
9031  */
9032 int t4_bar2_sge_qregs(struct adapter *adapter,
9033                       unsigned int qid,
9034                       enum t4_bar2_qtype qtype,
9035                       int user,
9036                       u64 *pbar2_qoffset,
9037                       unsigned int *pbar2_qid)
9038 {
9039         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9040         u64 bar2_page_offset, bar2_qoffset;
9041         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9042
9043         /* T4 doesn't support BAR2 SGE Queue registers for kernel
9044          * mode queues.
9045          */
9046         if (!user && is_t4(adapter))
9047                 return -EINVAL;
9048
9049         /* Get our SGE Page Size parameters.
9050          */
9051         page_shift = adapter->params.sge.page_shift;
9052         page_size = 1 << page_shift;
9053
9054         /* Get the right Queues per Page parameters for our Queue.
9055          */
9056         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9057                      ? adapter->params.sge.eq_s_qpp
9058                      : adapter->params.sge.iq_s_qpp);
9059         qpp_mask = (1 << qpp_shift) - 1;
9060
9061         /* Calculate the basics of the BAR2 SGE Queue register area:
9062          *  o The BAR2 page the Queue registers will be in.
9063          *  o The BAR2 Queue ID.
9064          *  o The BAR2 Queue ID Offset into the BAR2 page.
9065          */
9066         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9067         bar2_qid = qid & qpp_mask;
9068         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9069
9070         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9071          * hardware will infer the Absolute Queue ID simply from the writes to
9072          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9073          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9074          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9075          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9076          * from the BAR2 Page and BAR2 Queue ID.
9077          *
9078          * One important censequence of this is that some BAR2 SGE registers
9079          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9080          * there.  But other registers synthesize the SGE Queue ID purely
9081          * from the writes to the registers -- the Write Combined Doorbell
9082          * Buffer is a good example.  These BAR2 SGE Registers are only
9083          * available for those BAR2 SGE Register areas where the SGE Absolute
9084          * Queue ID can be inferred from simple writes.
9085          */
9086         bar2_qoffset = bar2_page_offset;
9087         bar2_qinferred = (bar2_qid_offset < page_size);
9088         if (bar2_qinferred) {
9089                 bar2_qoffset += bar2_qid_offset;
9090                 bar2_qid = 0;
9091         }
9092
9093         *pbar2_qoffset = bar2_qoffset;
9094         *pbar2_qid = bar2_qid;
9095         return 0;
9096 }
9097
9098 /**
9099  *      t4_init_devlog_params - initialize adapter->params.devlog
9100  *      @adap: the adapter
9101  *      @fw_attach: whether we can talk to the firmware
9102  *
9103  *      Initialize various fields of the adapter's Firmware Device Log
9104  *      Parameters structure.
9105  */
9106 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9107 {
9108         struct devlog_params *dparams = &adap->params.devlog;
9109         u32 pf_dparams;
9110         unsigned int devlog_meminfo;
9111         struct fw_devlog_cmd devlog_cmd;
9112         int ret;
9113
9114         /* If we're dealing with newer firmware, the Device Log Paramerters
9115          * are stored in a designated register which allows us to access the
9116          * Device Log even if we can't talk to the firmware.
9117          */
9118         pf_dparams =
9119                 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9120         if (pf_dparams) {
9121                 unsigned int nentries, nentries128;
9122
9123                 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9124                 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9125
9126                 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9127                 nentries = (nentries128 + 1) * 128;
9128                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9129
9130                 return 0;
9131         }
9132
9133         /*
9134          * For any failing returns ...
9135          */
9136         memset(dparams, 0, sizeof *dparams);
9137
9138         /*
9139          * If we can't talk to the firmware, there's really nothing we can do
9140          * at this point.
9141          */
9142         if (!fw_attach)
9143                 return -ENXIO;
9144
9145         /* Otherwise, ask the firmware for it's Device Log Parameters.
9146          */
9147         memset(&devlog_cmd, 0, sizeof devlog_cmd);
9148         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9149                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
9150         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9151         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9152                          &devlog_cmd);
9153         if (ret)
9154                 return ret;
9155
9156         devlog_meminfo =
9157                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9158         dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9159         dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9160         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9161
9162         return 0;
9163 }
9164
9165 /**
9166  *      t4_init_sge_params - initialize adap->params.sge
9167  *      @adapter: the adapter
9168  *
9169  *      Initialize various fields of the adapter's SGE Parameters structure.
9170  */
9171 int t4_init_sge_params(struct adapter *adapter)
9172 {
9173         u32 r;
9174         struct sge_params *sp = &adapter->params.sge;
9175         unsigned i, tscale = 1;
9176
9177         r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9178         sp->counter_val[0] = G_THRESHOLD_0(r);
9179         sp->counter_val[1] = G_THRESHOLD_1(r);
9180         sp->counter_val[2] = G_THRESHOLD_2(r);
9181         sp->counter_val[3] = G_THRESHOLD_3(r);
9182
9183         if (chip_id(adapter) >= CHELSIO_T6) {
9184                 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9185                 tscale = G_TSCALE(r);
9186                 if (tscale == 0)
9187                         tscale = 1;
9188                 else
9189                         tscale += 2;
9190         }
9191
9192         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9193         sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9194         sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9195         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9196         sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9197         sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9198         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9199         sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9200         sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9201
9202         r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9203         sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9204         if (is_t4(adapter))
9205                 sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9206         else if (is_t5(adapter))
9207                 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9208         else
9209                 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9210
9211         /* egress queues: log2 of # of doorbells per BAR2 page */
9212         r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9213         r >>= S_QUEUESPERPAGEPF0 +
9214             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9215         sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9216
9217         /* ingress queues: log2 of # of doorbells per BAR2 page */
9218         r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9219         r >>= S_QUEUESPERPAGEPF0 +
9220             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9221         sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9222
9223         r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9224         r >>= S_HOSTPAGESIZEPF0 +
9225             (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9226         sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9227
9228         r = t4_read_reg(adapter, A_SGE_CONTROL);
9229         sp->sge_control = r;
9230         sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9231         sp->fl_pktshift = G_PKTSHIFT(r);
9232         if (chip_id(adapter) <= CHELSIO_T5) {
9233                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9234                     X_INGPADBOUNDARY_SHIFT);
9235         } else {
9236                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9237                     X_T6_INGPADBOUNDARY_SHIFT);
9238         }
9239         if (is_t4(adapter))
9240                 sp->pack_boundary = sp->pad_boundary;
9241         else {
9242                 r = t4_read_reg(adapter, A_SGE_CONTROL2);
9243                 if (G_INGPACKBOUNDARY(r) == 0)
9244                         sp->pack_boundary = 16;
9245                 else
9246                         sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9247         }
9248         for (i = 0; i < SGE_FLBUF_SIZES; i++)
9249                 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9250                     A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9251
9252         return 0;
9253 }
9254
9255 /*
9256  * Read and cache the adapter's compressed filter mode and ingress config.
9257  */
9258 static void read_filter_mode_and_ingress_config(struct adapter *adap,
9259     bool sleep_ok)
9260 {
9261         uint32_t v;
9262         struct tp_params *tpp = &adap->params.tp;
9263
9264         t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
9265             sleep_ok);
9266         t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
9267             sleep_ok);
9268
9269         /*
9270          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9271          * shift positions of several elements of the Compressed Filter Tuple
9272          * for this adapter which we need frequently ...
9273          */
9274         tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9275         tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9276         tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9277         tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9278         tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9279         tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9280         tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9281         tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9282         tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9283         tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9284
9285         if (chip_id(adap) > CHELSIO_T4) {
9286                 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9287                 adap->params.tp.hash_filter_mask = v;
9288                 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9289                 adap->params.tp.hash_filter_mask |= (u64)v << 32;
9290         }
9291 }
9292
9293 /**
9294  *      t4_init_tp_params - initialize adap->params.tp
9295  *      @adap: the adapter
9296  *
9297  *      Initialize various fields of the adapter's TP Parameters structure.
9298  */
9299 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9300 {
9301         int chan;
9302         u32 v;
9303         struct tp_params *tpp = &adap->params.tp;
9304
9305         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9306         tpp->tre = G_TIMERRESOLUTION(v);
9307         tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9308
9309         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9310         for (chan = 0; chan < MAX_NCHAN; chan++)
9311                 tpp->tx_modq[chan] = chan;
9312
9313         read_filter_mode_and_ingress_config(adap, sleep_ok);
9314
9315         /*
9316          * Cache a mask of the bits that represent the error vector portion of
9317          * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
9318          * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
9319          */
9320         tpp->err_vec_mask = htobe16(0xffff);
9321         if (chip_id(adap) > CHELSIO_T5) {
9322                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9323                 if (v & F_CRXPKTENC) {
9324                         tpp->err_vec_mask =
9325                             htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
9326                 }
9327         }
9328
9329         return 0;
9330 }
9331
9332 /**
9333  *      t4_filter_field_shift - calculate filter field shift
9334  *      @adap: the adapter
9335  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9336  *
9337  *      Return the shift position of a filter field within the Compressed
9338  *      Filter Tuple.  The filter field is specified via its selection bit
9339  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9340  */
9341 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9342 {
9343         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9344         unsigned int sel;
9345         int field_shift;
9346
9347         if ((filter_mode & filter_sel) == 0)
9348                 return -1;
9349
9350         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9351                 switch (filter_mode & sel) {
9352                 case F_FCOE:
9353                         field_shift += W_FT_FCOE;
9354                         break;
9355                 case F_PORT:
9356                         field_shift += W_FT_PORT;
9357                         break;
9358                 case F_VNIC_ID:
9359                         field_shift += W_FT_VNIC_ID;
9360                         break;
9361                 case F_VLAN:
9362                         field_shift += W_FT_VLAN;
9363                         break;
9364                 case F_TOS:
9365                         field_shift += W_FT_TOS;
9366                         break;
9367                 case F_PROTOCOL:
9368                         field_shift += W_FT_PROTOCOL;
9369                         break;
9370                 case F_ETHERTYPE:
9371                         field_shift += W_FT_ETHERTYPE;
9372                         break;
9373                 case F_MACMATCH:
9374                         field_shift += W_FT_MACMATCH;
9375                         break;
9376                 case F_MPSHITTYPE:
9377                         field_shift += W_FT_MPSHITTYPE;
9378                         break;
9379                 case F_FRAGMENTATION:
9380                         field_shift += W_FT_FRAGMENTATION;
9381                         break;
9382                 }
9383         }
9384         return field_shift;
9385 }
9386
9387 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9388 {
9389         u8 addr[6];
9390         int ret, i, j;
9391         struct port_info *p = adap2pinfo(adap, port_id);
9392         u32 param, val;
9393         struct vi_info *vi = &p->vi[0];
9394
9395         for (i = 0, j = -1; i <= p->port_id; i++) {
9396                 do {
9397                         j++;
9398                 } while ((adap->params.portvec & (1 << j)) == 0);
9399         }
9400
9401         p->tx_chan = j;
9402         p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9403         p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9404         p->lport = j;
9405
9406         if (!(adap->flags & IS_VF) ||
9407             adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9408                 t4_update_port_info(p);
9409         }
9410
9411         ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9412             &vi->vfvld, &vi->vin);
9413         if (ret < 0)
9414                 return ret;
9415
9416         vi->viid = ret;
9417         t4_os_set_hw_addr(p, addr);
9418
9419         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9420             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9421             V_FW_PARAMS_PARAM_YZ(vi->viid);
9422         ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9423         if (ret)
9424                 vi->rss_base = 0xffff;
9425         else {
9426                 /* MPASS((val >> 16) == rss_size); */
9427                 vi->rss_base = val & 0xffff;
9428         }
9429
9430         return 0;
9431 }
9432
9433 /**
9434  *      t4_read_cimq_cfg - read CIM queue configuration
9435  *      @adap: the adapter
9436  *      @base: holds the queue base addresses in bytes
9437  *      @size: holds the queue sizes in bytes
9438  *      @thres: holds the queue full thresholds in bytes
9439  *
9440  *      Returns the current configuration of the CIM queues, starting with
9441  *      the IBQs, then the OBQs.
9442  */
9443 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9444 {
9445         unsigned int i, v;
9446         int cim_num_obq = adap->chip_params->cim_num_obq;
9447
9448         for (i = 0; i < CIM_NUM_IBQ; i++) {
9449                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9450                              V_QUENUMSELECT(i));
9451                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9452                 /* value is in 256-byte units */
9453                 *base++ = G_CIMQBASE(v) * 256;
9454                 *size++ = G_CIMQSIZE(v) * 256;
9455                 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9456         }
9457         for (i = 0; i < cim_num_obq; i++) {
9458                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9459                              V_QUENUMSELECT(i));
9460                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9461                 /* value is in 256-byte units */
9462                 *base++ = G_CIMQBASE(v) * 256;
9463                 *size++ = G_CIMQSIZE(v) * 256;
9464         }
9465 }
9466
9467 /**
9468  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9469  *      @adap: the adapter
9470  *      @qid: the queue index
9471  *      @data: where to store the queue contents
9472  *      @n: capacity of @data in 32-bit words
9473  *
9474  *      Reads the contents of the selected CIM queue starting at address 0 up
9475  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9476  *      error and the number of 32-bit words actually read on success.
9477  */
9478 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9479 {
9480         int i, err, attempts;
9481         unsigned int addr;
9482         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9483
9484         if (qid > 5 || (n & 3))
9485                 return -EINVAL;
9486
9487         addr = qid * nwords;
9488         if (n > nwords)
9489                 n = nwords;
9490
9491         /* It might take 3-10ms before the IBQ debug read access is allowed.
9492          * Wait for 1 Sec with a delay of 1 usec.
9493          */
9494         attempts = 1000000;
9495
9496         for (i = 0; i < n; i++, addr++) {
9497                 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9498                              F_IBQDBGEN);
9499                 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9500                                       attempts, 1);
9501                 if (err)
9502                         return err;
9503                 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9504         }
9505         t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9506         return i;
9507 }
9508
9509 /**
9510  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9511  *      @adap: the adapter
9512  *      @qid: the queue index
9513  *      @data: where to store the queue contents
9514  *      @n: capacity of @data in 32-bit words
9515  *
9516  *      Reads the contents of the selected CIM queue starting at address 0 up
9517  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9518  *      error and the number of 32-bit words actually read on success.
9519  */
9520 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9521 {
9522         int i, err;
9523         unsigned int addr, v, nwords;
9524         int cim_num_obq = adap->chip_params->cim_num_obq;
9525
9526         if ((qid > (cim_num_obq - 1)) || (n & 3))
9527                 return -EINVAL;
9528
9529         t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9530                      V_QUENUMSELECT(qid));
9531         v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9532
9533         addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9534         nwords = G_CIMQSIZE(v) * 64;  /* same */
9535         if (n > nwords)
9536                 n = nwords;
9537
9538         for (i = 0; i < n; i++, addr++) {
9539                 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9540                              F_OBQDBGEN);
9541                 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
9542                                       2, 1);
9543                 if (err)
9544                         return err;
9545                 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
9546         }
9547         t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
9548         return i;
9549 }
9550
9551 enum {
9552         CIM_QCTL_BASE     = 0,
9553         CIM_CTL_BASE      = 0x2000,
9554         CIM_PBT_ADDR_BASE = 0x2800,
9555         CIM_PBT_LRF_BASE  = 0x3000,
9556         CIM_PBT_DATA_BASE = 0x3800
9557 };
9558
9559 /**
9560  *      t4_cim_read - read a block from CIM internal address space
9561  *      @adap: the adapter
9562  *      @addr: the start address within the CIM address space
9563  *      @n: number of words to read
9564  *      @valp: where to store the result
9565  *
9566  *      Reads a block of 4-byte words from the CIM intenal address space.
9567  */
9568 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9569                 unsigned int *valp)
9570 {
9571         int ret = 0;
9572
9573         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9574                 return -EBUSY;
9575
9576         for ( ; !ret && n--; addr += 4) {
9577                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9578                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9579                                       0, 5, 2);
9580                 if (!ret)
9581                         *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9582         }
9583         return ret;
9584 }
9585
9586 /**
9587  *      t4_cim_write - write a block into CIM internal address space
9588  *      @adap: the adapter
9589  *      @addr: the start address within the CIM address space
9590  *      @n: number of words to write
9591  *      @valp: set of values to write
9592  *
9593  *      Writes a block of 4-byte words into the CIM intenal address space.
9594  */
9595 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9596                  const unsigned int *valp)
9597 {
9598         int ret = 0;
9599
9600         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9601                 return -EBUSY;
9602
9603         for ( ; !ret && n--; addr += 4) {
9604                 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9605                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9606                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9607                                       0, 5, 2);
9608         }
9609         return ret;
9610 }
9611
9612 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9613                          unsigned int val)
9614 {
9615         return t4_cim_write(adap, addr, 1, &val);
9616 }
9617
9618 /**
9619  *      t4_cim_ctl_read - read a block from CIM control region
9620  *      @adap: the adapter
9621  *      @addr: the start address within the CIM control region
9622  *      @n: number of words to read
9623  *      @valp: where to store the result
9624  *
9625  *      Reads a block of 4-byte words from the CIM control region.
9626  */
9627 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9628                     unsigned int *valp)
9629 {
9630         return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9631 }
9632
9633 /**
9634  *      t4_cim_read_la - read CIM LA capture buffer
9635  *      @adap: the adapter
9636  *      @la_buf: where to store the LA data
9637  *      @wrptr: the HW write pointer within the capture buffer
9638  *
9639  *      Reads the contents of the CIM LA buffer with the most recent entry at
9640  *      the end of the returned data and with the entry at @wrptr first.
9641  *      We try to leave the LA in the running state we find it in.
9642  */
9643 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9644 {
9645         int i, ret;
9646         unsigned int cfg, val, idx;
9647
9648         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9649         if (ret)
9650                 return ret;
9651
9652         if (cfg & F_UPDBGLAEN) {        /* LA is running, freeze it */
9653                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
9654                 if (ret)
9655                         return ret;
9656         }
9657
9658         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9659         if (ret)
9660                 goto restart;
9661
9662         idx = G_UPDBGLAWRPTR(val);
9663         if (wrptr)
9664                 *wrptr = idx;
9665
9666         for (i = 0; i < adap->params.cim_la_size; i++) {
9667                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9668                                     V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
9669                 if (ret)
9670                         break;
9671                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9672                 if (ret)
9673                         break;
9674                 if (val & F_UPDBGLARDEN) {
9675                         ret = -ETIMEDOUT;
9676                         break;
9677                 }
9678                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
9679                 if (ret)
9680                         break;
9681
9682                 /* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
9683                 idx = (idx + 1) & M_UPDBGLARDPTR;
9684                 /*
9685                  * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9686                  * identify the 32-bit portion of the full 312-bit data
9687                  */
9688                 if (is_t6(adap))
9689                         while ((idx & 0xf) > 9)
9690                                 idx = (idx + 1) % M_UPDBGLARDPTR;
9691         }
9692 restart:
9693         if (cfg & F_UPDBGLAEN) {
9694                 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9695                                       cfg & ~F_UPDBGLARDEN);
9696                 if (!ret)
9697                         ret = r;
9698         }
9699         return ret;
9700 }
9701
9702 /**
9703  *      t4_tp_read_la - read TP LA capture buffer
9704  *      @adap: the adapter
9705  *      @la_buf: where to store the LA data
9706  *      @wrptr: the HW write pointer within the capture buffer
9707  *
9708  *      Reads the contents of the TP LA buffer with the most recent entry at
9709  *      the end of the returned data and with the entry at @wrptr first.
9710  *      We leave the LA in the running state we find it in.
9711  */
9712 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9713 {
9714         bool last_incomplete;
9715         unsigned int i, cfg, val, idx;
9716
9717         cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
9718         if (cfg & F_DBGLAENABLE)                        /* freeze LA */
9719                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9720                              adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
9721
9722         val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
9723         idx = G_DBGLAWPTR(val);
9724         last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
9725         if (last_incomplete)
9726                 idx = (idx + 1) & M_DBGLARPTR;
9727         if (wrptr)
9728                 *wrptr = idx;
9729
9730         val &= 0xffff;
9731         val &= ~V_DBGLARPTR(M_DBGLARPTR);
9732         val |= adap->params.tp.la_mask;
9733
9734         for (i = 0; i < TPLA_SIZE; i++) {
9735                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
9736                 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
9737                 idx = (idx + 1) & M_DBGLARPTR;
9738         }
9739
9740         /* Wipe out last entry if it isn't valid */
9741         if (last_incomplete)
9742                 la_buf[TPLA_SIZE - 1] = ~0ULL;
9743
9744         if (cfg & F_DBGLAENABLE)                /* restore running state */
9745                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9746                              cfg | adap->params.tp.la_mask);
9747 }
9748
9749 /*
9750  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9751  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9752  * state for more than the Warning Threshold then we'll issue a warning about
9753  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9754  * appears to be hung every Warning Repeat second till the situation clears.
9755  * If the situation clears, we'll note that as well.
9756  */
9757 #define SGE_IDMA_WARN_THRESH 1
9758 #define SGE_IDMA_WARN_REPEAT 300
9759
9760 /**
9761  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9762  *      @adapter: the adapter
9763  *      @idma: the adapter IDMA Monitor state
9764  *
9765  *      Initialize the state of an SGE Ingress DMA Monitor.
9766  */
9767 void t4_idma_monitor_init(struct adapter *adapter,
9768                           struct sge_idma_monitor_state *idma)
9769 {
9770         /* Initialize the state variables for detecting an SGE Ingress DMA
9771          * hang.  The SGE has internal counters which count up on each clock
9772          * tick whenever the SGE finds its Ingress DMA State Engines in the
9773          * same state they were on the previous clock tick.  The clock used is
9774          * the Core Clock so we have a limit on the maximum "time" they can
9775          * record; typically a very small number of seconds.  For instance,
9776          * with a 600MHz Core Clock, we can only count up to a bit more than
9777          * 7s.  So we'll synthesize a larger counter in order to not run the
9778          * risk of having the "timers" overflow and give us the flexibility to
9779          * maintain a Hung SGE State Machine of our own which operates across
9780          * a longer time frame.
9781          */
9782         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9783         idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
9784 }
9785
9786 /**
9787  *      t4_idma_monitor - monitor SGE Ingress DMA state
9788  *      @adapter: the adapter
9789  *      @idma: the adapter IDMA Monitor state
9790  *      @hz: number of ticks/second
9791  *      @ticks: number of ticks since the last IDMA Monitor call
9792  */
9793 void t4_idma_monitor(struct adapter *adapter,
9794                      struct sge_idma_monitor_state *idma,
9795                      int hz, int ticks)
9796 {
9797         int i, idma_same_state_cnt[2];
9798
9799          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9800           * are counters inside the SGE which count up on each clock when the
9801           * SGE finds its Ingress DMA State Engines in the same states they
9802           * were in the previous clock.  The counters will peg out at
9803           * 0xffffffff without wrapping around so once they pass the 1s
9804           * threshold they'll stay above that till the IDMA state changes.
9805           */
9806         t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
9807         idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
9808         idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9809
9810         for (i = 0; i < 2; i++) {
9811                 u32 debug0, debug11;
9812
9813                 /* If the Ingress DMA Same State Counter ("timer") is less
9814                  * than 1s, then we can reset our synthesized Stall Timer and
9815                  * continue.  If we have previously emitted warnings about a
9816                  * potential stalled Ingress Queue, issue a note indicating
9817                  * that the Ingress Queue has resumed forward progress.
9818                  */
9819                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9820                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
9821                                 CH_WARN(adapter, "SGE idma%d, queue %u, "
9822                                         "resumed after %d seconds\n",
9823                                         i, idma->idma_qid[i],
9824                                         idma->idma_stalled[i]/hz);
9825                         idma->idma_stalled[i] = 0;
9826                         continue;
9827                 }
9828
9829                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9830                  * domain.  The first time we get here it'll be because we
9831                  * passed the 1s Threshold; each additional time it'll be
9832                  * because the RX Timer Callback is being fired on its regular
9833                  * schedule.
9834                  *
9835                  * If the stall is below our Potential Hung Ingress Queue
9836                  * Warning Threshold, continue.
9837                  */
9838                 if (idma->idma_stalled[i] == 0) {
9839                         idma->idma_stalled[i] = hz;
9840                         idma->idma_warn[i] = 0;
9841                 } else {
9842                         idma->idma_stalled[i] += ticks;
9843                         idma->idma_warn[i] -= ticks;
9844                 }
9845
9846                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
9847                         continue;
9848
9849                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9850                  */
9851                 if (idma->idma_warn[i] > 0)
9852                         continue;
9853                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9854
9855                 /* Read and save the SGE IDMA State and Queue ID information.
9856                  * We do this every time in case it changes across time ...
9857                  * can't be too careful ...
9858                  */
9859                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9860                 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9861                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9862
9863                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9864                 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9865                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9866
9867                 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9868                         " state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9869                         i, idma->idma_qid[i], idma->idma_state[i],
9870                         idma->idma_stalled[i]/hz,
9871                         debug0, debug11);
9872                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9873         }
9874 }
9875
9876 /**
9877  *      t4_read_pace_tbl - read the pace table
9878  *      @adap: the adapter
9879  *      @pace_vals: holds the returned values
9880  *
9881  *      Returns the values of TP's pace table in microseconds.
9882  */
9883 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9884 {
9885         unsigned int i, v;
9886
9887         for (i = 0; i < NTX_SCHED; i++) {
9888                 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9889                 v = t4_read_reg(adap, A_TP_PACE_TABLE);
9890                 pace_vals[i] = dack_ticks_to_usec(adap, v);
9891         }
9892 }
9893
9894 /**
9895  *      t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9896  *      @adap: the adapter
9897  *      @sched: the scheduler index
9898  *      @kbps: the byte rate in Kbps
9899  *      @ipg: the interpacket delay in tenths of nanoseconds
9900  *
9901  *      Return the current configuration of a HW Tx scheduler.
9902  */
9903 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9904                      unsigned int *ipg, bool sleep_ok)
9905 {
9906         unsigned int v, addr, bpt, cpt;
9907
9908         if (kbps) {
9909                 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9910                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9911                 if (sched & 1)
9912                         v >>= 16;
9913                 bpt = (v >> 8) & 0xff;
9914                 cpt = v & 0xff;
9915                 if (!cpt)
9916                         *kbps = 0;      /* scheduler disabled */
9917                 else {
9918                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9919                         *kbps = (v * bpt) / 125;
9920                 }
9921         }
9922         if (ipg) {
9923                 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9924                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9925                 if (sched & 1)
9926                         v >>= 16;
9927                 v &= 0xffff;
9928                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
9929         }
9930 }
9931
9932 /**
9933  *      t4_load_cfg - download config file
9934  *      @adap: the adapter
9935  *      @cfg_data: the cfg text file to write
9936  *      @size: text file size
9937  *
9938  *      Write the supplied config text file to the card's serial flash.
9939  */
9940 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9941 {
9942         int ret, i, n, cfg_addr;
9943         unsigned int addr;
9944         unsigned int flash_cfg_start_sec;
9945         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9946
9947         cfg_addr = t4_flash_cfg_addr(adap);
9948         if (cfg_addr < 0)
9949                 return cfg_addr;
9950
9951         addr = cfg_addr;
9952         flash_cfg_start_sec = addr / SF_SEC_SIZE;
9953
9954         if (size > FLASH_CFG_MAX_SIZE) {
9955                 CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9956                        FLASH_CFG_MAX_SIZE);
9957                 return -EFBIG;
9958         }
9959
9960         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
9961                          sf_sec_size);
9962         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9963                                      flash_cfg_start_sec + i - 1);
9964         /*
9965          * If size == 0 then we're simply erasing the FLASH sectors associated
9966          * with the on-adapter Firmware Configuration File.
9967          */
9968         if (ret || size == 0)
9969                 goto out;
9970
9971         /* this will write to the flash up to SF_PAGE_SIZE at a time */
9972         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9973                 if ( (size - i) <  SF_PAGE_SIZE)
9974                         n = size - i;
9975                 else
9976                         n = SF_PAGE_SIZE;
9977                 ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9978                 if (ret)
9979                         goto out;
9980
9981                 addr += SF_PAGE_SIZE;
9982                 cfg_data += SF_PAGE_SIZE;
9983         }
9984
9985 out:
9986         if (ret)
9987                 CH_ERR(adap, "config file %s failed %d\n",
9988                        (size == 0 ? "clear" : "download"), ret);
9989         return ret;
9990 }
9991
9992 /**
9993  *      t5_fw_init_extern_mem - initialize the external memory
9994  *      @adap: the adapter
9995  *
9996  *      Initializes the external memory on T5.
9997  */
9998 int t5_fw_init_extern_mem(struct adapter *adap)
9999 {
10000         u32 params[1], val[1];
10001         int ret;
10002
10003         if (!is_t5(adap))
10004                 return 0;
10005
10006         val[0] = 0xff; /* Initialize all MCs */
10007         params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10008                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10009         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10010                         FW_CMD_MAX_TIMEOUT);
10011
10012         return ret;
10013 }
10014
10015 /* BIOS boot headers */
10016 typedef struct pci_expansion_rom_header {
10017         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
10018         u8      reserved[22]; /* Reserved per processor Architecture data */
10019         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
10020 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10021
10022 /* Legacy PCI Expansion ROM Header */
10023 typedef struct legacy_pci_expansion_rom_header {
10024         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
10025         u8      size512; /* Current Image Size in units of 512 bytes */
10026         u8      initentry_point[4];
10027         u8      cksum; /* Checksum computed on the entire Image */
10028         u8      reserved[16]; /* Reserved */
10029         u8      pcir_offset[2]; /* Offset to PCI Data Struture */
10030 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10031
10032 /* EFI PCI Expansion ROM Header */
10033 typedef struct efi_pci_expansion_rom_header {
10034         u8      signature[2]; // ROM signature. The value 0xaa55
10035         u8      initialization_size[2]; /* Units 512. Includes this header */
10036         u8      efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10037         u8      efi_subsystem[2]; /* Subsystem value for EFI image header */
10038         u8      efi_machine_type[2]; /* Machine type from EFI image header */
10039         u8      compression_type[2]; /* Compression type. */
10040                 /*
10041                  * Compression type definition
10042                  * 0x0: uncompressed
10043                  * 0x1: Compressed
10044                  * 0x2-0xFFFF: Reserved
10045                  */
10046         u8      reserved[8]; /* Reserved */
10047         u8      efi_image_header_offset[2]; /* Offset to EFI Image */
10048         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
10049 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10050
10051 /* PCI Data Structure Format */
10052 typedef struct pcir_data_structure { /* PCI Data Structure */
10053         u8      signature[4]; /* Signature. The string "PCIR" */
10054         u8      vendor_id[2]; /* Vendor Identification */
10055         u8      device_id[2]; /* Device Identification */
10056         u8      vital_product[2]; /* Pointer to Vital Product Data */
10057         u8      length[2]; /* PCIR Data Structure Length */
10058         u8      revision; /* PCIR Data Structure Revision */
10059         u8      class_code[3]; /* Class Code */
10060         u8      image_length[2]; /* Image Length. Multiple of 512B */
10061         u8      code_revision[2]; /* Revision Level of Code/Data */
10062         u8      code_type; /* Code Type. */
10063                 /*
10064                  * PCI Expansion ROM Code Types
10065                  * 0x00: Intel IA-32, PC-AT compatible. Legacy
10066                  * 0x01: Open Firmware standard for PCI. FCODE
10067                  * 0x02: Hewlett-Packard PA RISC. HP reserved
10068                  * 0x03: EFI Image. EFI
10069                  * 0x04-0xFF: Reserved.
10070                  */
10071         u8      indicator; /* Indicator. Identifies the last image in the ROM */
10072         u8      reserved[2]; /* Reserved */
10073 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10074
10075 /* BOOT constants */
10076 enum {
10077         BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10078         BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10079         BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10080         BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10081         BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10082         VENDOR_ID = 0x1425, /* Vendor ID */
10083         PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10084 };
10085
10086 /*
10087  *      modify_device_id - Modifies the device ID of the Boot BIOS image
10088  *      @adatper: the device ID to write.
10089  *      @boot_data: the boot image to modify.
10090  *
10091  *      Write the supplied device ID to the boot BIOS image.
10092  */
10093 static void modify_device_id(int device_id, u8 *boot_data)
10094 {
10095         legacy_pci_exp_rom_header_t *header;
10096         pcir_data_t *pcir_header;
10097         u32 cur_header = 0;
10098
10099         /*
10100          * Loop through all chained images and change the device ID's
10101          */
10102         while (1) {
10103                 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10104                 pcir_header = (pcir_data_t *) &boot_data[cur_header +
10105                               le16_to_cpu(*(u16*)header->pcir_offset)];
10106
10107                 /*
10108                  * Only modify the Device ID if code type is Legacy or HP.
10109                  * 0x00: Okay to modify
10110                  * 0x01: FCODE. Do not be modify
10111                  * 0x03: Okay to modify
10112                  * 0x04-0xFF: Do not modify
10113                  */
10114                 if (pcir_header->code_type == 0x00) {
10115                         u8 csum = 0;
10116                         int i;
10117
10118                         /*
10119                          * Modify Device ID to match current adatper
10120                          */
10121                         *(u16*) pcir_header->device_id = device_id;
10122
10123                         /*
10124                          * Set checksum temporarily to 0.
10125                          * We will recalculate it later.
10126                          */
10127                         header->cksum = 0x0;
10128
10129                         /*
10130                          * Calculate and update checksum
10131                          */
10132                         for (i = 0; i < (header->size512 * 512); i++)
10133                                 csum += (u8)boot_data[cur_header + i];
10134
10135                         /*
10136                          * Invert summed value to create the checksum
10137                          * Writing new checksum value directly to the boot data
10138                          */
10139                         boot_data[cur_header + 7] = -csum;
10140
10141                 } else if (pcir_header->code_type == 0x03) {
10142
10143                         /*
10144                          * Modify Device ID to match current adatper
10145                          */
10146                         *(u16*) pcir_header->device_id = device_id;
10147
10148                 }
10149
10150
10151                 /*
10152                  * Check indicator element to identify if this is the last
10153                  * image in the ROM.
10154                  */
10155                 if (pcir_header->indicator & 0x80)
10156                         break;
10157
10158                 /*
10159                  * Move header pointer up to the next image in the ROM.
10160                  */
10161                 cur_header += header->size512 * 512;
10162         }
10163 }
10164
10165 /*
10166  *      t4_load_boot - download boot flash
10167  *      @adapter: the adapter
10168  *      @boot_data: the boot image to write
10169  *      @boot_addr: offset in flash to write boot_data
10170  *      @size: image size
10171  *
10172  *      Write the supplied boot image to the card's serial flash.
10173  *      The boot image has the following sections: a 28-byte header and the
10174  *      boot image.
10175  */
10176 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10177                  unsigned int boot_addr, unsigned int size)
10178 {
10179         pci_exp_rom_header_t *header;
10180         int pcir_offset ;
10181         pcir_data_t *pcir_header;
10182         int ret, addr;
10183         uint16_t device_id;
10184         unsigned int i;
10185         unsigned int boot_sector = (boot_addr * 1024 );
10186         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10187
10188         /*
10189          * Make sure the boot image does not encroach on the firmware region
10190          */
10191         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10192                 CH_ERR(adap, "boot image encroaching on firmware region\n");
10193                 return -EFBIG;
10194         }
10195
10196         /*
10197          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10198          * and Boot configuration data sections. These 3 boot sections span
10199          * sectors 0 to 7 in flash and live right before the FW image location.
10200          */
10201         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10202                         sf_sec_size);
10203         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10204                                      (boot_sector >> 16) + i - 1);
10205
10206         /*
10207          * If size == 0 then we're simply erasing the FLASH sectors associated
10208          * with the on-adapter option ROM file
10209          */
10210         if (ret || (size == 0))
10211                 goto out;
10212
10213         /* Get boot header */
10214         header = (pci_exp_rom_header_t *)boot_data;
10215         pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10216         /* PCIR Data Structure */
10217         pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10218
10219         /*
10220          * Perform some primitive sanity testing to avoid accidentally
10221          * writing garbage over the boot sectors.  We ought to check for
10222          * more but it's not worth it for now ...
10223          */
10224         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10225                 CH_ERR(adap, "boot image too small/large\n");
10226                 return -EFBIG;
10227         }
10228
10229 #ifndef CHELSIO_T4_DIAGS
10230         /*
10231          * Check BOOT ROM header signature
10232          */
10233         if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10234                 CH_ERR(adap, "Boot image missing signature\n");
10235                 return -EINVAL;
10236         }
10237
10238         /*
10239          * Check PCI header signature
10240          */
10241         if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10242                 CH_ERR(adap, "PCI header missing signature\n");
10243                 return -EINVAL;
10244         }
10245
10246         /*
10247          * Check Vendor ID matches Chelsio ID
10248          */
10249         if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10250                 CH_ERR(adap, "Vendor ID missing signature\n");
10251                 return -EINVAL;
10252         }
10253 #endif
10254
10255         /*
10256          * Retrieve adapter's device ID
10257          */
10258         t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10259         /* Want to deal with PF 0 so I strip off PF 4 indicator */
10260         device_id = device_id & 0xf0ff;
10261
10262         /*
10263          * Check PCIE Device ID
10264          */
10265         if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10266                 /*
10267                  * Change the device ID in the Boot BIOS image to match
10268                  * the Device ID of the current adapter.
10269                  */
10270                 modify_device_id(device_id, boot_data);
10271         }
10272
10273         /*
10274          * Skip over the first SF_PAGE_SIZE worth of data and write it after
10275          * we finish copying the rest of the boot image. This will ensure
10276          * that the BIOS boot header will only be written if the boot image
10277          * was written in full.
10278          */
10279         addr = boot_sector;
10280         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10281                 addr += SF_PAGE_SIZE;
10282                 boot_data += SF_PAGE_SIZE;
10283                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10284                 if (ret)
10285                         goto out;
10286         }
10287
10288         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10289                              (const u8 *)header, 0);
10290
10291 out:
10292         if (ret)
10293                 CH_ERR(adap, "boot image download failed, error %d\n", ret);
10294         return ret;
10295 }
10296
10297 /*
10298  *      t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10299  *      @adapter: the adapter
10300  *
10301  *      Return the address within the flash where the OptionROM Configuration
10302  *      is stored, or an error if the device FLASH is too small to contain
10303  *      a OptionROM Configuration.
10304  */
10305 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10306 {
10307         /*
10308          * If the device FLASH isn't large enough to hold a Firmware
10309          * Configuration File, return an error.
10310          */
10311         if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10312                 return -ENOSPC;
10313
10314         return FLASH_BOOTCFG_START;
10315 }
10316
10317 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10318 {
10319         int ret, i, n, cfg_addr;
10320         unsigned int addr;
10321         unsigned int flash_cfg_start_sec;
10322         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10323
10324         cfg_addr = t4_flash_bootcfg_addr(adap);
10325         if (cfg_addr < 0)
10326                 return cfg_addr;
10327
10328         addr = cfg_addr;
10329         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10330
10331         if (size > FLASH_BOOTCFG_MAX_SIZE) {
10332                 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10333                         FLASH_BOOTCFG_MAX_SIZE);
10334                 return -EFBIG;
10335         }
10336
10337         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10338                          sf_sec_size);
10339         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10340                                         flash_cfg_start_sec + i - 1);
10341
10342         /*
10343          * If size == 0 then we're simply erasing the FLASH sectors associated
10344          * with the on-adapter OptionROM Configuration File.
10345          */
10346         if (ret || size == 0)
10347                 goto out;
10348
10349         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10350         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10351                 if ( (size - i) <  SF_PAGE_SIZE)
10352                         n = size - i;
10353                 else
10354                         n = SF_PAGE_SIZE;
10355                 ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10356                 if (ret)
10357                         goto out;
10358
10359                 addr += SF_PAGE_SIZE;
10360                 cfg_data += SF_PAGE_SIZE;
10361         }
10362
10363 out:
10364         if (ret)
10365                 CH_ERR(adap, "boot config data %s failed %d\n",
10366                                 (size == 0 ? "clear" : "download"), ret);
10367         return ret;
10368 }
10369
10370 /**
10371  *      t4_set_filter_mode - configure the optional components of filter tuples
10372  *      @adap: the adapter
10373  *      @mode_map: a bitmap selcting which optional filter components to enable
10374  *      @sleep_ok: if true we may sleep while awaiting command completion
10375  *
10376  *      Sets the filter mode by selecting the optional components to enable
10377  *      in filter tuples.  Returns 0 on success and a negative error if the
10378  *      requested mode needs more bits than are available for optional
10379  *      components.
10380  */
10381 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
10382                        bool sleep_ok)
10383 {
10384         static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
10385
10386         int i, nbits = 0;
10387
10388         for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
10389                 if (mode_map & (1 << i))
10390                         nbits += width[i];
10391         if (nbits > FILTER_OPT_LEN)
10392                 return -EINVAL;
10393         t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
10394         read_filter_mode_and_ingress_config(adap, sleep_ok);
10395
10396         return 0;
10397 }
10398
10399 /**
10400  *      t4_clr_port_stats - clear port statistics
10401  *      @adap: the adapter
10402  *      @idx: the port index
10403  *
10404  *      Clear HW statistics for the given port.
10405  */
10406 void t4_clr_port_stats(struct adapter *adap, int idx)
10407 {
10408         unsigned int i;
10409         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10410         u32 port_base_addr;
10411
10412         if (is_t4(adap))
10413                 port_base_addr = PORT_BASE(idx);
10414         else
10415                 port_base_addr = T5_PORT_BASE(idx);
10416
10417         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10418                         i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10419                 t4_write_reg(adap, port_base_addr + i, 0);
10420         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10421                         i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10422                 t4_write_reg(adap, port_base_addr + i, 0);
10423         for (i = 0; i < 4; i++)
10424                 if (bgmap & (1 << i)) {
10425                         t4_write_reg(adap,
10426                         A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10427                         t4_write_reg(adap,
10428                         A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10429                 }
10430 }
10431
10432 /**
10433  *      t4_i2c_rd - read I2C data from adapter
10434  *      @adap: the adapter
10435  *      @port: Port number if per-port device; <0 if not
10436  *      @devid: per-port device ID or absolute device ID
10437  *      @offset: byte offset into device I2C space
10438  *      @len: byte length of I2C space data
10439  *      @buf: buffer in which to return I2C data
10440  *
10441  *      Reads the I2C data from the indicated device and location.
10442  */
10443 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
10444               int port, unsigned int devid,
10445               unsigned int offset, unsigned int len,
10446               u8 *buf)
10447 {
10448         u32 ldst_addrspace;
10449         struct fw_ldst_cmd ldst;
10450         int ret;
10451
10452         if (port >= 4 ||
10453             devid >= 256 ||
10454             offset >= 256 ||
10455             len > sizeof ldst.u.i2c.data)
10456                 return -EINVAL;
10457
10458         memset(&ldst, 0, sizeof ldst);
10459         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10460         ldst.op_to_addrspace =
10461                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10462                             F_FW_CMD_REQUEST |
10463                             F_FW_CMD_READ |
10464                             ldst_addrspace);
10465         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10466         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10467         ldst.u.i2c.did = devid;
10468         ldst.u.i2c.boffset = offset;
10469         ldst.u.i2c.blen = len;
10470         ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10471         if (!ret)
10472                 memcpy(buf, ldst.u.i2c.data, len);
10473         return ret;
10474 }
10475
10476 /**
10477  *      t4_i2c_wr - write I2C data to adapter
10478  *      @adap: the adapter
10479  *      @port: Port number if per-port device; <0 if not
10480  *      @devid: per-port device ID or absolute device ID
10481  *      @offset: byte offset into device I2C space
10482  *      @len: byte length of I2C space data
10483  *      @buf: buffer containing new I2C data
10484  *
10485  *      Write the I2C data to the indicated device and location.
10486  */
10487 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
10488               int port, unsigned int devid,
10489               unsigned int offset, unsigned int len,
10490               u8 *buf)
10491 {
10492         u32 ldst_addrspace;
10493         struct fw_ldst_cmd ldst;
10494
10495         if (port >= 4 ||
10496             devid >= 256 ||
10497             offset >= 256 ||
10498             len > sizeof ldst.u.i2c.data)
10499                 return -EINVAL;
10500
10501         memset(&ldst, 0, sizeof ldst);
10502         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10503         ldst.op_to_addrspace =
10504                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10505                             F_FW_CMD_REQUEST |
10506                             F_FW_CMD_WRITE |
10507                             ldst_addrspace);
10508         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10509         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10510         ldst.u.i2c.did = devid;
10511         ldst.u.i2c.boffset = offset;
10512         ldst.u.i2c.blen = len;
10513         memcpy(ldst.u.i2c.data, buf, len);
10514         return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10515 }
10516
10517 /**
10518  *      t4_sge_ctxt_rd - read an SGE context through FW
10519  *      @adap: the adapter
10520  *      @mbox: mailbox to use for the FW command
10521  *      @cid: the context id
10522  *      @ctype: the context type
10523  *      @data: where to store the context data
10524  *
10525  *      Issues a FW command through the given mailbox to read an SGE context.
10526  */
10527 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10528                    enum ctxt_type ctype, u32 *data)
10529 {
10530         int ret;
10531         struct fw_ldst_cmd c;
10532
10533         if (ctype == CTXT_EGRESS)
10534                 ret = FW_LDST_ADDRSPC_SGE_EGRC;
10535         else if (ctype == CTXT_INGRESS)
10536                 ret = FW_LDST_ADDRSPC_SGE_INGC;
10537         else if (ctype == CTXT_FLM)
10538                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10539         else
10540                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10541
10542         memset(&c, 0, sizeof(c));
10543         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10544                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
10545                                         V_FW_LDST_CMD_ADDRSPACE(ret));
10546         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10547         c.u.idctxt.physid = cpu_to_be32(cid);
10548
10549         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10550         if (ret == 0) {
10551                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10552                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10553                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10554                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10555                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10556                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10557         }
10558         return ret;
10559 }
10560
10561 /**
10562  *      t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10563  *      @adap: the adapter
10564  *      @cid: the context id
10565  *      @ctype: the context type
10566  *      @data: where to store the context data
10567  *
10568  *      Reads an SGE context directly, bypassing FW.  This is only for
10569  *      debugging when FW is unavailable.
10570  */
10571 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10572                       u32 *data)
10573 {
10574         int i, ret;
10575
10576         t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
10577         ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
10578         if (!ret)
10579                 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
10580                         *data++ = t4_read_reg(adap, i);
10581         return ret;
10582 }
10583
10584 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
10585     int sleep_ok)
10586 {
10587         struct fw_sched_cmd cmd;
10588
10589         memset(&cmd, 0, sizeof(cmd));
10590         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10591                                       F_FW_CMD_REQUEST |
10592                                       F_FW_CMD_WRITE);
10593         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10594
10595         cmd.u.config.sc = FW_SCHED_SC_CONFIG;
10596         cmd.u.config.type = type;
10597         cmd.u.config.minmaxen = minmaxen;
10598
10599         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10600                                NULL, sleep_ok);
10601 }
10602
10603 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10604                     int rateunit, int ratemode, int channel, int cl,
10605                     int minrate, int maxrate, int weight, int pktsize,
10606                     int burstsize, int sleep_ok)
10607 {
10608         struct fw_sched_cmd cmd;
10609
10610         memset(&cmd, 0, sizeof(cmd));
10611         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10612                                       F_FW_CMD_REQUEST |
10613                                       F_FW_CMD_WRITE);
10614         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10615
10616         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10617         cmd.u.params.type = type;
10618         cmd.u.params.level = level;
10619         cmd.u.params.mode = mode;
10620         cmd.u.params.ch = channel;
10621         cmd.u.params.cl = cl;
10622         cmd.u.params.unit = rateunit;
10623         cmd.u.params.rate = ratemode;
10624         cmd.u.params.min = cpu_to_be32(minrate);
10625         cmd.u.params.max = cpu_to_be32(maxrate);
10626         cmd.u.params.weight = cpu_to_be16(weight);
10627         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10628         cmd.u.params.burstsize = cpu_to_be16(burstsize);
10629
10630         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10631                                NULL, sleep_ok);
10632 }
10633
10634 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
10635     unsigned int maxrate, int sleep_ok)
10636 {
10637         struct fw_sched_cmd cmd;
10638
10639         memset(&cmd, 0, sizeof(cmd));
10640         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10641                                       F_FW_CMD_REQUEST |
10642                                       F_FW_CMD_WRITE);
10643         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10644
10645         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10646         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10647         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
10648         cmd.u.params.ch = channel;
10649         cmd.u.params.rate = ratemode;           /* REL or ABS */
10650         cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
10651
10652         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10653                                NULL, sleep_ok);
10654 }
10655
10656 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
10657     int weight, int sleep_ok)
10658 {
10659         struct fw_sched_cmd cmd;
10660
10661         if (weight < 0 || weight > 100)
10662                 return -EINVAL;
10663
10664         memset(&cmd, 0, sizeof(cmd));
10665         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10666                                       F_FW_CMD_REQUEST |
10667                                       F_FW_CMD_WRITE);
10668         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10669
10670         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10671         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10672         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
10673         cmd.u.params.ch = channel;
10674         cmd.u.params.cl = cl;
10675         cmd.u.params.weight = cpu_to_be16(weight);
10676
10677         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10678                                NULL, sleep_ok);
10679 }
10680
10681 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
10682     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
10683 {
10684         struct fw_sched_cmd cmd;
10685
10686         memset(&cmd, 0, sizeof(cmd));
10687         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10688                                       F_FW_CMD_REQUEST |
10689                                       F_FW_CMD_WRITE);
10690         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10691
10692         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10693         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10694         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
10695         cmd.u.params.mode = mode;
10696         cmd.u.params.ch = channel;
10697         cmd.u.params.cl = cl;
10698         cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
10699         cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
10700         cmd.u.params.max = cpu_to_be32(maxrate);
10701         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10702
10703         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10704                                NULL, sleep_ok);
10705 }
10706
10707 /*
10708  *      t4_config_watchdog - configure (enable/disable) a watchdog timer
10709  *      @adapter: the adapter
10710  *      @mbox: mailbox to use for the FW command
10711  *      @pf: the PF owning the queue
10712  *      @vf: the VF owning the queue
10713  *      @timeout: watchdog timeout in ms
10714  *      @action: watchdog timer / action
10715  *
10716  *      There are separate watchdog timers for each possible watchdog
10717  *      action.  Configure one of the watchdog timers by setting a non-zero
10718  *      timeout.  Disable a watchdog timer by using a timeout of zero.
10719  */
10720 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
10721                        unsigned int pf, unsigned int vf,
10722                        unsigned int timeout, unsigned int action)
10723 {
10724         struct fw_watchdog_cmd wdog;
10725         unsigned int ticks;
10726
10727         /*
10728          * The watchdog command expects a timeout in units of 10ms so we need
10729          * to convert it here (via rounding) and force a minimum of one 10ms
10730          * "tick" if the timeout is non-zero but the conversion results in 0
10731          * ticks.
10732          */
10733         ticks = (timeout + 5)/10;
10734         if (timeout && !ticks)
10735                 ticks = 1;
10736
10737         memset(&wdog, 0, sizeof wdog);
10738         wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
10739                                      F_FW_CMD_REQUEST |
10740                                      F_FW_CMD_WRITE |
10741                                      V_FW_PARAMS_CMD_PFN(pf) |
10742                                      V_FW_PARAMS_CMD_VFN(vf));
10743         wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
10744         wdog.timeout = cpu_to_be32(ticks);
10745         wdog.action = cpu_to_be32(action);
10746
10747         return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
10748 }
10749
10750 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
10751 {
10752         struct fw_devlog_cmd devlog_cmd;
10753         int ret;
10754
10755         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10756         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10757                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
10758         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10759         ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10760                          sizeof(devlog_cmd), &devlog_cmd);
10761         if (ret)
10762                 return ret;
10763
10764         *level = devlog_cmd.level;
10765         return 0;
10766 }
10767
10768 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
10769 {
10770         struct fw_devlog_cmd devlog_cmd;
10771
10772         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10773         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10774                                              F_FW_CMD_REQUEST |
10775                                              F_FW_CMD_WRITE);
10776         devlog_cmd.level = level;
10777         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10778         return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10779                           sizeof(devlog_cmd), &devlog_cmd);
10780 }