]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/common/t4_hw.c
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt, libc++,
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / common / t4_hw.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_inet.h"
33
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41
42 #undef msleep
43 #define msleep(x) do { \
44         if (cold) \
45                 DELAY((x) * 1000); \
46         else \
47                 pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49
50 /**
51  *      t4_wait_op_done_val - wait until an operation is completed
52  *      @adapter: the adapter performing the operation
53  *      @reg: the register to check for completion
54  *      @mask: a single-bit field within @reg that indicates completion
55  *      @polarity: the value of the field when the operation is completed
56  *      @attempts: number of check iterations
57  *      @delay: delay in usecs between iterations
58  *      @valp: where to store the value of the register at completion time
59  *
60  *      Wait until an operation is completed by checking a bit in a register
61  *      up to @attempts times.  If @valp is not NULL the value of the register
62  *      at the time it indicated completion is stored there.  Returns 0 if the
63  *      operation completes and -EAGAIN otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66                                int polarity, int attempts, int delay, u32 *valp)
67 {
68         while (1) {
69                 u32 val = t4_read_reg(adapter, reg);
70
71                 if (!!(val & mask) == polarity) {
72                         if (valp)
73                                 *valp = val;
74                         return 0;
75                 }
76                 if (--attempts == 0)
77                         return -EAGAIN;
78                 if (delay)
79                         udelay(delay);
80         }
81 }
82
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84                                   int polarity, int attempts, int delay)
85 {
86         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87                                    delay, NULL);
88 }
89
90 /**
91  *      t4_set_reg_field - set a register field to a value
92  *      @adapter: the adapter to program
93  *      @addr: the register address
94  *      @mask: specifies the portion of the register to modify
95  *      @val: the new value for the register field
96  *
97  *      Sets a register field specified by the supplied mask to the
98  *      given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101                       u32 val)
102 {
103         u32 v = t4_read_reg(adapter, addr) & ~mask;
104
105         t4_write_reg(adapter, addr, v | val);
106         (void) t4_read_reg(adapter, addr);      /* flush */
107 }
108
109 /**
110  *      t4_read_indirect - read indirectly addressed registers
111  *      @adap: the adapter
112  *      @addr_reg: register holding the indirect address
113  *      @data_reg: register holding the value of the indirect register
114  *      @vals: where the read register values are stored
115  *      @nregs: how many indirect registers to read
116  *      @start_idx: index of first indirect register to read
117  *
118  *      Reads registers that are accessed indirectly through an address/data
119  *      register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122                              unsigned int data_reg, u32 *vals,
123                              unsigned int nregs, unsigned int start_idx)
124 {
125         while (nregs--) {
126                 t4_write_reg(adap, addr_reg, start_idx);
127                 *vals++ = t4_read_reg(adap, data_reg);
128                 start_idx++;
129         }
130 }
131
132 /**
133  *      t4_write_indirect - write indirectly addressed registers
134  *      @adap: the adapter
135  *      @addr_reg: register holding the indirect addresses
136  *      @data_reg: register holding the value for the indirect registers
137  *      @vals: values to write
138  *      @nregs: how many indirect registers to write
139  *      @start_idx: address of first indirect register to write
140  *
141  *      Writes a sequential block of registers that are accessed indirectly
142  *      through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145                        unsigned int data_reg, const u32 *vals,
146                        unsigned int nregs, unsigned int start_idx)
147 {
148         while (nregs--) {
149                 t4_write_reg(adap, addr_reg, start_idx++);
150                 t4_write_reg(adap, data_reg, *vals++);
151         }
152 }
153
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166         u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167         u32 val;
168
169         if (chip_id(adap) <= CHELSIO_T5)
170                 req |= F_ENABLE;
171         else
172                 req |= F_T6_ENABLE;
173
174         if (is_t4(adap))
175                 req |= F_LOCALCFG;
176
177         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178         val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179
180         /*
181          * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182          * Configuration Space read.  (None of the other fields matter when
183          * F_ENABLE is 0 so a simple register write is easier than a
184          * read-modify-write via t4_set_reg_field().)
185          */
186         t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187
188         return val;
189 }
190
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201         static const char *const reason[] = {
202                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
203                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
204                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
205                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
206                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
208                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
209                 "Reserved",                     /* reserved */
210         };
211         u32 pcie_fw;
212
213         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214         if (pcie_fw & F_PCIE_FW_ERR) {
215                 adap->flags &= ~FW_OK;
216                 CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217                     reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218                 if (pcie_fw != 0xffffffff)
219                         t4_os_dump_devlog(adap);
220         }
221 }
222
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227                          u32 mbox_addr)
228 {
229         for ( ; nflit; nflit--, mbox_addr += 8)
230                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238         CH_ALERT(adap,
239                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240                   asrt->u.assert.filename_0_7,
241                   be32_to_cpu(asrt->u.assert.line),
242                   be32_to_cpu(asrt->u.assert.x),
243                   be32_to_cpu(asrt->u.assert.y));
244 }
245
246 struct port_tx_state {
247         uint64_t rx_pause;
248         uint64_t tx_frames;
249 };
250
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254         uint32_t rx_pause_reg, tx_frames_reg;
255
256         if (is_t4(sc)) {
257                 tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258                 rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259         } else {
260                 tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261                 rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262         }
263
264         tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265         tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271         int i;
272
273         for_each_port(sc, i)
274                 read_tx_state_one(sc, i, &tx_state[i]);
275 }
276
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280         uint32_t port_ctl_reg;
281         uint64_t tx_frames, rx_pause;
282         int i;
283
284         for_each_port(sc, i) {
285                 rx_pause = tx_state[i].rx_pause;
286                 tx_frames = tx_state[i].tx_frames;
287                 read_tx_state_one(sc, i, &tx_state[i]); /* update */
288
289                 if (is_t4(sc))
290                         port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291                 else
292                         port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293                 if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294                     rx_pause != tx_state[i].rx_pause &&
295                     tx_frames == tx_state[i].tx_frames) {
296                         t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297                         mdelay(1);
298                         t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299                 }
300         }
301 }
302
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *      @adap: the adapter
307  *      @mbox: index of the mailbox to use
308  *      @cmd: the command to write
309  *      @size: command length in bytes
310  *      @rpl: where to optionally store the reply
311  *      @sleep_ok: if true we may sleep while awaiting command completion
312  *      @timeout: time to wait for command to finish before timing out
313  *              (negative implies @sleep_ok=false)
314  *
315  *      Sends the given command to FW through the selected mailbox and waits
316  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *      store the FW's reply to the command.  The command and its optional
318  *      reply are of the same length.  Some FW commands like RESET and
319  *      INITIALIZE can take a considerable amount of time to execute.
320  *      @sleep_ok determines whether we may sleep while awaiting the response.
321  *      If sleeping is allowed we use progressive backoff otherwise we spin.
322  *      Note that passing in a negative @timeout is an alternate mechanism
323  *      for specifying @sleep_ok=false.  This is useful when a higher level
324  *      interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *      The return value is 0 on success or a negative errno on failure.  A
327  *      failure can happen either because we are not able to execute the
328  *      command or FW executes it but signals an error.  In the latter case
329  *      the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332                             int size, void *rpl, bool sleep_ok, int timeout)
333 {
334         /*
335          * We delay in small increments at first in an effort to maintain
336          * responsiveness for simple, fast executing commands but then back
337          * off to larger delays to a maximum retry delay.
338          */
339         static const int delay[] = {
340                 1, 1, 3, 5, 10, 10, 20, 50, 100
341         };
342         u32 v;
343         u64 res;
344         int i, ms, delay_idx, ret, next_tx_check;
345         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347         u32 ctl;
348         __be64 cmd_rpl[MBOX_LEN/8];
349         u32 pcie_fw;
350         struct port_tx_state tx_state[MAX_NPORTS];
351
352         if (adap->flags & CHK_MBOX_ACCESS)
353                 ASSERT_SYNCHRONIZED_OP(adap);
354
355         if (size <= 0 || (size & 15) || size > MBOX_LEN)
356                 return -EINVAL;
357
358         if (adap->flags & IS_VF) {
359                 if (is_t6(adap))
360                         data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361                 else
362                         data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363                 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364         }
365
366         /*
367          * If we have a negative timeout, that implies that we can't sleep.
368          */
369         if (timeout < 0) {
370                 sleep_ok = false;
371                 timeout = -timeout;
372         }
373
374         /*
375          * Attempt to gain access to the mailbox.
376          */
377         for (i = 0; i < 4; i++) {
378                 ctl = t4_read_reg(adap, ctl_reg);
379                 v = G_MBOWNER(ctl);
380                 if (v != X_MBOWNER_NONE)
381                         break;
382         }
383
384         /*
385          * If we were unable to gain access, report the error to our caller.
386          */
387         if (v != X_MBOWNER_PL) {
388                 t4_report_fw_error(adap);
389                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390                 return ret;
391         }
392
393         /*
394          * If we gain ownership of the mailbox and there's a "valid" message
395          * in it, this is likely an asynchronous error message from the
396          * firmware.  So we'll report that and then proceed on with attempting
397          * to issue our own command ... which may well fail if the error
398          * presaged the firmware crashing ...
399          */
400         if (ctl & F_MBMSGVALID) {
401                 CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402         }
403
404         /*
405          * Copy in the new mailbox command and send it on its way ...
406          */
407         memset(cmd_rpl, 0, sizeof(cmd_rpl));
408         memcpy(cmd_rpl, cmd, size);
409         CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410         for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411                 t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412
413         if (adap->flags & IS_VF) {
414                 /*
415                  * For the VFs, the Mailbox Data "registers" are
416                  * actually backed by T4's "MA" interface rather than
417                  * PL Registers (as is the case for the PFs).  Because
418                  * these are in different coherency domains, the write
419                  * to the VF's PL-register-backed Mailbox Control can
420                  * race in front of the writes to the MA-backed VF
421                  * Mailbox Data "registers".  So we need to do a
422                  * read-back on at least one byte of the VF Mailbox
423                  * Data registers before doing the write to the VF
424                  * Mailbox Control register.
425                  */
426                 t4_read_reg(adap, data_reg);
427         }
428
429         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430         read_tx_state(adap, &tx_state[0]);      /* also flushes the write_reg */
431         next_tx_check = 1000;
432         delay_idx = 0;
433         ms = delay[0];
434
435         /*
436          * Loop waiting for the reply; bail out if we time out or the firmware
437          * reports an error.
438          */
439         pcie_fw = 0;
440         for (i = 0; i < timeout; i += ms) {
441                 if (!(adap->flags & IS_VF)) {
442                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443                         if (pcie_fw & F_PCIE_FW_ERR)
444                                 break;
445                 }
446
447                 if (i >= next_tx_check) {
448                         check_tx_state(adap, &tx_state[0]);
449                         next_tx_check = i + 1000;
450                 }
451
452                 if (sleep_ok) {
453                         ms = delay[delay_idx];  /* last element may repeat */
454                         if (delay_idx < ARRAY_SIZE(delay) - 1)
455                                 delay_idx++;
456                         msleep(ms);
457                 } else {
458                         mdelay(ms);
459                 }
460
461                 v = t4_read_reg(adap, ctl_reg);
462                 if (v == X_CIM_PF_NOACCESS)
463                         continue;
464                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
465                         if (!(v & F_MBMSGVALID)) {
466                                 t4_write_reg(adap, ctl_reg,
467                                              V_MBOWNER(X_MBOWNER_NONE));
468                                 continue;
469                         }
470
471                         /*
472                          * Retrieve the command reply and release the mailbox.
473                          */
474                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475                         CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477
478                         res = be64_to_cpu(cmd_rpl[0]);
479                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480                                 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481                                 res = V_FW_CMD_RETVAL(EIO);
482                         } else if (rpl)
483                                 memcpy(rpl, cmd_rpl, size);
484                         return -G_FW_CMD_RETVAL((int)res);
485                 }
486         }
487
488         /*
489          * We timed out waiting for a reply to our mailbox command.  Report
490          * the error and also check to see if the firmware reported any
491          * errors ...
492          */
493         CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494             *(const u8 *)cmd, mbox, pcie_fw);
495         CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496         CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497
498         if (pcie_fw & F_PCIE_FW_ERR) {
499                 ret = -ENXIO;
500                 t4_report_fw_error(adap);
501         } else {
502                 ret = -ETIMEDOUT;
503                 t4_os_dump_devlog(adap);
504         }
505
506         t4_fatal_err(adap, true);
507         return ret;
508 }
509
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511                     void *rpl, bool sleep_ok)
512 {
513                 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514                                                sleep_ok, FW_CMD_MAX_TIMEOUT);
515
516 }
517
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520         u32 edc_ecc_err_addr_reg;
521         u32 edc_bist_status_rdata_reg;
522
523         if (is_t4(adap)) {
524                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525                 return 0;
526         }
527         if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529                 return 0;
530         }
531
532         edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533         edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534
535         CH_WARN(adap,
536                 "edc%d err addr 0x%x: 0x%x.\n",
537                 idx, edc_ecc_err_addr_reg,
538                 t4_read_reg(adap, edc_ecc_err_addr_reg));
539         CH_WARN(adap,
540                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541                 edc_bist_status_rdata_reg,
542                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550                 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551
552         return 0;
553 }
554
555 /**
556  *      t4_mc_read - read from MC through backdoor accesses
557  *      @adap: the adapter
558  *      @idx: which MC to access
559  *      @addr: address of first byte requested
560  *      @data: 64 bytes of data containing the requested address
561  *      @ecc: where to store the corresponding 64-bit ECC word
562  *
563  *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *      that covers the requested address @addr.  If @parity is not %NULL it
565  *      is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569         int i;
570         u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571         u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572
573         if (is_t4(adap)) {
574                 mc_bist_cmd_reg = A_MC_BIST_CMD;
575                 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576                 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577                 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578                 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579         } else {
580                 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581                 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582                 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583                 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584                                                   idx);
585                 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586                                                   idx);
587         }
588
589         if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590                 return -EBUSY;
591         t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592         t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593         t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594         t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595                      F_START_BIST | V_BIST_CMD_GAP(1));
596         i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597         if (i)
598                 return i;
599
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601
602         for (i = 15; i >= 0; i--)
603                 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604         if (ecc)
605                 *ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607         return 0;
608 }
609
610 /**
611  *      t4_edc_read - read from EDC through backdoor accesses
612  *      @adap: the adapter
613  *      @idx: which EDC to access
614  *      @addr: address of first byte requested
615  *      @data: 64 bytes of data containing the requested address
616  *      @ecc: where to store the corresponding 64-bit ECC word
617  *
618  *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *      that covers the requested address @addr.  If @parity is not %NULL it
620  *      is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624         int i;
625         u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626         u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627
628         if (is_t4(adap)) {
629                 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630                 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631                 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632                 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633                                                     idx);
634                 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635                                                     idx);
636         } else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643                 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644                 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645                 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646                 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647                                                     idx);
648                 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649                                                     idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652         }
653
654         if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655                 return -EBUSY;
656         t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657         t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658         t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659         t4_write_reg(adap, edc_bist_cmd_reg,
660                      V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661         i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662         if (i)
663                 return i;
664
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666
667         for (i = 15; i >= 0; i--)
668                 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669         if (ecc)
670                 *ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672         return 0;
673 }
674
675 /**
676  *      t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *      @adap: the adapter
678  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *      @addr: address within indicated memory type
680  *      @len: amount of memory to read
681  *      @buf: host memory buffer
682  *
683  *      Reads an [almost] arbitrary memory region in the firmware: the
684  *      firmware memory address, length and host buffer must be aligned on
685  *      32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *      the firmware's memory.  If this memory contains data structures which
687  *      contain multi-byte integers, it's the callers responsibility to
688  *      perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691                 __be32 *buf)
692 {
693         u32 pos, start, end, offset;
694         int ret;
695
696         /*
697          * Argument sanity checks ...
698          */
699         if ((addr & 0x3) || (len & 0x3))
700                 return -EINVAL;
701
702         /*
703          * The underlaying EDC/MC read routines read 64 bytes at a time so we
704          * need to round down the start and round up the end.  We'll start
705          * copying out of the first line at (addr - start) a word at a time.
706          */
707         start = rounddown2(addr, 64);
708         end = roundup2(addr + len, 64);
709         offset = (addr - start)/sizeof(__be32);
710
711         for (pos = start; pos < end; pos += 64, offset = 0) {
712                 __be32 data[16];
713
714                 /*
715                  * Read the chip's memory block and bail if there's an error.
716                  */
717                 if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718                         ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719                 else
720                         ret = t4_edc_read(adap, mtype, pos, data, NULL);
721                 if (ret)
722                         return ret;
723
724                 /*
725                  * Copy the data into the caller's memory buffer.
726                  */
727                 while (offset < 16 && len > 0) {
728                         *buf++ = data[offset++];
729                         len -= sizeof(__be32);
730                 }
731         }
732
733         return 0;
734 }
735
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744
745         /*
746          * If fw_attach != 0, construct and send the Firmware LDST Command to
747          * retrieve the specified PCI-E Configuration Space register.
748          */
749         if (drv_fw_attach != 0) {
750                 struct fw_ldst_cmd ldst_cmd;
751                 int ret;
752
753                 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754                 ldst_cmd.op_to_addrspace =
755                         cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756                                     F_FW_CMD_REQUEST |
757                                     F_FW_CMD_READ |
758                                     V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759                 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760                 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761                 ldst_cmd.u.pcie.ctrl_to_fn =
762                         (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763                 ldst_cmd.u.pcie.r = reg;
764
765                 /*
766                  * If the LDST Command succeeds, return the result, otherwise
767                  * fall through to reading it directly ourselves ...
768                  */
769                 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770                                  &ldst_cmd);
771                 if (ret == 0)
772                         return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773
774                 CH_WARN(adap, "Firmware failed to return "
775                         "Configuration Space register %d, err = %d\n",
776                         reg, -ret);
777         }
778
779         /*
780          * Read the desired Configuration Space register via the PCI-E
781          * Backdoor mechanism.
782          */
783         return t4_hw_pci_read_cfg4(adap, reg);
784 }
785
786 /**
787  *      t4_get_regs_len - return the size of the chips register set
788  *      @adapter: the adapter
789  *
790  *      Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794         unsigned int chip_version = chip_id(adapter);
795
796         switch (chip_version) {
797         case CHELSIO_T4:
798                 if (adapter->flags & IS_VF)
799                         return FW_T4VF_REGMAP_SIZE;
800                 return T4_REGMAP_SIZE;
801
802         case CHELSIO_T5:
803         case CHELSIO_T6:
804                 if (adapter->flags & IS_VF)
805                         return FW_T4VF_REGMAP_SIZE;
806                 return T5_REGMAP_SIZE;
807         }
808
809         CH_ERR(adapter,
810                 "Unsupported chip version %d\n", chip_version);
811         return 0;
812 }
813
814 /**
815  *      t4_get_regs - read chip registers into provided buffer
816  *      @adap: the adapter
817  *      @buf: register buffer
818  *      @buf_size: size (in bytes) of register buffer
819  *
820  *      If the provided register buffer isn't large enough for the chip's
821  *      full register range, the register dump will be truncated to the
822  *      register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826         static const unsigned int t4_reg_ranges[] = {
827                 0x1008, 0x1108,
828                 0x1180, 0x1184,
829                 0x1190, 0x1194,
830                 0x11a0, 0x11a4,
831                 0x11b0, 0x11b4,
832                 0x11fc, 0x123c,
833                 0x1300, 0x173c,
834                 0x1800, 0x18fc,
835                 0x3000, 0x30d8,
836                 0x30e0, 0x30e4,
837                 0x30ec, 0x5910,
838                 0x5920, 0x5924,
839                 0x5960, 0x5960,
840                 0x5968, 0x5968,
841                 0x5970, 0x5970,
842                 0x5978, 0x5978,
843                 0x5980, 0x5980,
844                 0x5988, 0x5988,
845                 0x5990, 0x5990,
846                 0x5998, 0x5998,
847                 0x59a0, 0x59d4,
848                 0x5a00, 0x5ae0,
849                 0x5ae8, 0x5ae8,
850                 0x5af0, 0x5af0,
851                 0x5af8, 0x5af8,
852                 0x6000, 0x6098,
853                 0x6100, 0x6150,
854                 0x6200, 0x6208,
855                 0x6240, 0x6248,
856                 0x6280, 0x62b0,
857                 0x62c0, 0x6338,
858                 0x6370, 0x638c,
859                 0x6400, 0x643c,
860                 0x6500, 0x6524,
861                 0x6a00, 0x6a04,
862                 0x6a14, 0x6a38,
863                 0x6a60, 0x6a70,
864                 0x6a78, 0x6a78,
865                 0x6b00, 0x6b0c,
866                 0x6b1c, 0x6b84,
867                 0x6bf0, 0x6bf8,
868                 0x6c00, 0x6c0c,
869                 0x6c1c, 0x6c84,
870                 0x6cf0, 0x6cf8,
871                 0x6d00, 0x6d0c,
872                 0x6d1c, 0x6d84,
873                 0x6df0, 0x6df8,
874                 0x6e00, 0x6e0c,
875                 0x6e1c, 0x6e84,
876                 0x6ef0, 0x6ef8,
877                 0x6f00, 0x6f0c,
878                 0x6f1c, 0x6f84,
879                 0x6ff0, 0x6ff8,
880                 0x7000, 0x700c,
881                 0x701c, 0x7084,
882                 0x70f0, 0x70f8,
883                 0x7100, 0x710c,
884                 0x711c, 0x7184,
885                 0x71f0, 0x71f8,
886                 0x7200, 0x720c,
887                 0x721c, 0x7284,
888                 0x72f0, 0x72f8,
889                 0x7300, 0x730c,
890                 0x731c, 0x7384,
891                 0x73f0, 0x73f8,
892                 0x7400, 0x7450,
893                 0x7500, 0x7530,
894                 0x7600, 0x760c,
895                 0x7614, 0x761c,
896                 0x7680, 0x76cc,
897                 0x7700, 0x7798,
898                 0x77c0, 0x77fc,
899                 0x7900, 0x79fc,
900                 0x7b00, 0x7b58,
901                 0x7b60, 0x7b84,
902                 0x7b8c, 0x7c38,
903                 0x7d00, 0x7d38,
904                 0x7d40, 0x7d80,
905                 0x7d8c, 0x7ddc,
906                 0x7de4, 0x7e04,
907                 0x7e10, 0x7e1c,
908                 0x7e24, 0x7e38,
909                 0x7e40, 0x7e44,
910                 0x7e4c, 0x7e78,
911                 0x7e80, 0x7ea4,
912                 0x7eac, 0x7edc,
913                 0x7ee8, 0x7efc,
914                 0x8dc0, 0x8e04,
915                 0x8e10, 0x8e1c,
916                 0x8e30, 0x8e78,
917                 0x8ea0, 0x8eb8,
918                 0x8ec0, 0x8f6c,
919                 0x8fc0, 0x9008,
920                 0x9010, 0x9058,
921                 0x9060, 0x9060,
922                 0x9068, 0x9074,
923                 0x90fc, 0x90fc,
924                 0x9400, 0x9408,
925                 0x9410, 0x9458,
926                 0x9600, 0x9600,
927                 0x9608, 0x9638,
928                 0x9640, 0x96bc,
929                 0x9800, 0x9808,
930                 0x9820, 0x983c,
931                 0x9850, 0x9864,
932                 0x9c00, 0x9c6c,
933                 0x9c80, 0x9cec,
934                 0x9d00, 0x9d6c,
935                 0x9d80, 0x9dec,
936                 0x9e00, 0x9e6c,
937                 0x9e80, 0x9eec,
938                 0x9f00, 0x9f6c,
939                 0x9f80, 0x9fec,
940                 0xd004, 0xd004,
941                 0xd010, 0xd03c,
942                 0xdfc0, 0xdfe0,
943                 0xe000, 0xea7c,
944                 0xf000, 0x11110,
945                 0x11118, 0x11190,
946                 0x19040, 0x1906c,
947                 0x19078, 0x19080,
948                 0x1908c, 0x190e4,
949                 0x190f0, 0x190f8,
950                 0x19100, 0x19110,
951                 0x19120, 0x19124,
952                 0x19150, 0x19194,
953                 0x1919c, 0x191b0,
954                 0x191d0, 0x191e8,
955                 0x19238, 0x1924c,
956                 0x193f8, 0x1943c,
957                 0x1944c, 0x19474,
958                 0x19490, 0x194e0,
959                 0x194f0, 0x194f8,
960                 0x19800, 0x19c08,
961                 0x19c10, 0x19c90,
962                 0x19ca0, 0x19ce4,
963                 0x19cf0, 0x19d40,
964                 0x19d50, 0x19d94,
965                 0x19da0, 0x19de8,
966                 0x19df0, 0x19e40,
967                 0x19e50, 0x19e90,
968                 0x19ea0, 0x19f4c,
969                 0x1a000, 0x1a004,
970                 0x1a010, 0x1a06c,
971                 0x1a0b0, 0x1a0e4,
972                 0x1a0ec, 0x1a0f4,
973                 0x1a100, 0x1a108,
974                 0x1a114, 0x1a120,
975                 0x1a128, 0x1a130,
976                 0x1a138, 0x1a138,
977                 0x1a190, 0x1a1c4,
978                 0x1a1fc, 0x1a1fc,
979                 0x1e040, 0x1e04c,
980                 0x1e284, 0x1e28c,
981                 0x1e2c0, 0x1e2c0,
982                 0x1e2e0, 0x1e2e0,
983                 0x1e300, 0x1e384,
984                 0x1e3c0, 0x1e3c8,
985                 0x1e440, 0x1e44c,
986                 0x1e684, 0x1e68c,
987                 0x1e6c0, 0x1e6c0,
988                 0x1e6e0, 0x1e6e0,
989                 0x1e700, 0x1e784,
990                 0x1e7c0, 0x1e7c8,
991                 0x1e840, 0x1e84c,
992                 0x1ea84, 0x1ea8c,
993                 0x1eac0, 0x1eac0,
994                 0x1eae0, 0x1eae0,
995                 0x1eb00, 0x1eb84,
996                 0x1ebc0, 0x1ebc8,
997                 0x1ec40, 0x1ec4c,
998                 0x1ee84, 0x1ee8c,
999                 0x1eec0, 0x1eec0,
1000                 0x1eee0, 0x1eee0,
1001                 0x1ef00, 0x1ef84,
1002                 0x1efc0, 0x1efc8,
1003                 0x1f040, 0x1f04c,
1004                 0x1f284, 0x1f28c,
1005                 0x1f2c0, 0x1f2c0,
1006                 0x1f2e0, 0x1f2e0,
1007                 0x1f300, 0x1f384,
1008                 0x1f3c0, 0x1f3c8,
1009                 0x1f440, 0x1f44c,
1010                 0x1f684, 0x1f68c,
1011                 0x1f6c0, 0x1f6c0,
1012                 0x1f6e0, 0x1f6e0,
1013                 0x1f700, 0x1f784,
1014                 0x1f7c0, 0x1f7c8,
1015                 0x1f840, 0x1f84c,
1016                 0x1fa84, 0x1fa8c,
1017                 0x1fac0, 0x1fac0,
1018                 0x1fae0, 0x1fae0,
1019                 0x1fb00, 0x1fb84,
1020                 0x1fbc0, 0x1fbc8,
1021                 0x1fc40, 0x1fc4c,
1022                 0x1fe84, 0x1fe8c,
1023                 0x1fec0, 0x1fec0,
1024                 0x1fee0, 0x1fee0,
1025                 0x1ff00, 0x1ff84,
1026                 0x1ffc0, 0x1ffc8,
1027                 0x20000, 0x2002c,
1028                 0x20100, 0x2013c,
1029                 0x20190, 0x201a0,
1030                 0x201a8, 0x201b8,
1031                 0x201c4, 0x201c8,
1032                 0x20200, 0x20318,
1033                 0x20400, 0x204b4,
1034                 0x204c0, 0x20528,
1035                 0x20540, 0x20614,
1036                 0x21000, 0x21040,
1037                 0x2104c, 0x21060,
1038                 0x210c0, 0x210ec,
1039                 0x21200, 0x21268,
1040                 0x21270, 0x21284,
1041                 0x212fc, 0x21388,
1042                 0x21400, 0x21404,
1043                 0x21500, 0x21500,
1044                 0x21510, 0x21518,
1045                 0x2152c, 0x21530,
1046                 0x2153c, 0x2153c,
1047                 0x21550, 0x21554,
1048                 0x21600, 0x21600,
1049                 0x21608, 0x2161c,
1050                 0x21624, 0x21628,
1051                 0x21630, 0x21634,
1052                 0x2163c, 0x2163c,
1053                 0x21700, 0x2171c,
1054                 0x21780, 0x2178c,
1055                 0x21800, 0x21818,
1056                 0x21820, 0x21828,
1057                 0x21830, 0x21848,
1058                 0x21850, 0x21854,
1059                 0x21860, 0x21868,
1060                 0x21870, 0x21870,
1061                 0x21878, 0x21898,
1062                 0x218a0, 0x218a8,
1063                 0x218b0, 0x218c8,
1064                 0x218d0, 0x218d4,
1065                 0x218e0, 0x218e8,
1066                 0x218f0, 0x218f0,
1067                 0x218f8, 0x21a18,
1068                 0x21a20, 0x21a28,
1069                 0x21a30, 0x21a48,
1070                 0x21a50, 0x21a54,
1071                 0x21a60, 0x21a68,
1072                 0x21a70, 0x21a70,
1073                 0x21a78, 0x21a98,
1074                 0x21aa0, 0x21aa8,
1075                 0x21ab0, 0x21ac8,
1076                 0x21ad0, 0x21ad4,
1077                 0x21ae0, 0x21ae8,
1078                 0x21af0, 0x21af0,
1079                 0x21af8, 0x21c18,
1080                 0x21c20, 0x21c20,
1081                 0x21c28, 0x21c30,
1082                 0x21c38, 0x21c38,
1083                 0x21c80, 0x21c98,
1084                 0x21ca0, 0x21ca8,
1085                 0x21cb0, 0x21cc8,
1086                 0x21cd0, 0x21cd4,
1087                 0x21ce0, 0x21ce8,
1088                 0x21cf0, 0x21cf0,
1089                 0x21cf8, 0x21d7c,
1090                 0x21e00, 0x21e04,
1091                 0x22000, 0x2202c,
1092                 0x22100, 0x2213c,
1093                 0x22190, 0x221a0,
1094                 0x221a8, 0x221b8,
1095                 0x221c4, 0x221c8,
1096                 0x22200, 0x22318,
1097                 0x22400, 0x224b4,
1098                 0x224c0, 0x22528,
1099                 0x22540, 0x22614,
1100                 0x23000, 0x23040,
1101                 0x2304c, 0x23060,
1102                 0x230c0, 0x230ec,
1103                 0x23200, 0x23268,
1104                 0x23270, 0x23284,
1105                 0x232fc, 0x23388,
1106                 0x23400, 0x23404,
1107                 0x23500, 0x23500,
1108                 0x23510, 0x23518,
1109                 0x2352c, 0x23530,
1110                 0x2353c, 0x2353c,
1111                 0x23550, 0x23554,
1112                 0x23600, 0x23600,
1113                 0x23608, 0x2361c,
1114                 0x23624, 0x23628,
1115                 0x23630, 0x23634,
1116                 0x2363c, 0x2363c,
1117                 0x23700, 0x2371c,
1118                 0x23780, 0x2378c,
1119                 0x23800, 0x23818,
1120                 0x23820, 0x23828,
1121                 0x23830, 0x23848,
1122                 0x23850, 0x23854,
1123                 0x23860, 0x23868,
1124                 0x23870, 0x23870,
1125                 0x23878, 0x23898,
1126                 0x238a0, 0x238a8,
1127                 0x238b0, 0x238c8,
1128                 0x238d0, 0x238d4,
1129                 0x238e0, 0x238e8,
1130                 0x238f0, 0x238f0,
1131                 0x238f8, 0x23a18,
1132                 0x23a20, 0x23a28,
1133                 0x23a30, 0x23a48,
1134                 0x23a50, 0x23a54,
1135                 0x23a60, 0x23a68,
1136                 0x23a70, 0x23a70,
1137                 0x23a78, 0x23a98,
1138                 0x23aa0, 0x23aa8,
1139                 0x23ab0, 0x23ac8,
1140                 0x23ad0, 0x23ad4,
1141                 0x23ae0, 0x23ae8,
1142                 0x23af0, 0x23af0,
1143                 0x23af8, 0x23c18,
1144                 0x23c20, 0x23c20,
1145                 0x23c28, 0x23c30,
1146                 0x23c38, 0x23c38,
1147                 0x23c80, 0x23c98,
1148                 0x23ca0, 0x23ca8,
1149                 0x23cb0, 0x23cc8,
1150                 0x23cd0, 0x23cd4,
1151                 0x23ce0, 0x23ce8,
1152                 0x23cf0, 0x23cf0,
1153                 0x23cf8, 0x23d7c,
1154                 0x23e00, 0x23e04,
1155                 0x24000, 0x2402c,
1156                 0x24100, 0x2413c,
1157                 0x24190, 0x241a0,
1158                 0x241a8, 0x241b8,
1159                 0x241c4, 0x241c8,
1160                 0x24200, 0x24318,
1161                 0x24400, 0x244b4,
1162                 0x244c0, 0x24528,
1163                 0x24540, 0x24614,
1164                 0x25000, 0x25040,
1165                 0x2504c, 0x25060,
1166                 0x250c0, 0x250ec,
1167                 0x25200, 0x25268,
1168                 0x25270, 0x25284,
1169                 0x252fc, 0x25388,
1170                 0x25400, 0x25404,
1171                 0x25500, 0x25500,
1172                 0x25510, 0x25518,
1173                 0x2552c, 0x25530,
1174                 0x2553c, 0x2553c,
1175                 0x25550, 0x25554,
1176                 0x25600, 0x25600,
1177                 0x25608, 0x2561c,
1178                 0x25624, 0x25628,
1179                 0x25630, 0x25634,
1180                 0x2563c, 0x2563c,
1181                 0x25700, 0x2571c,
1182                 0x25780, 0x2578c,
1183                 0x25800, 0x25818,
1184                 0x25820, 0x25828,
1185                 0x25830, 0x25848,
1186                 0x25850, 0x25854,
1187                 0x25860, 0x25868,
1188                 0x25870, 0x25870,
1189                 0x25878, 0x25898,
1190                 0x258a0, 0x258a8,
1191                 0x258b0, 0x258c8,
1192                 0x258d0, 0x258d4,
1193                 0x258e0, 0x258e8,
1194                 0x258f0, 0x258f0,
1195                 0x258f8, 0x25a18,
1196                 0x25a20, 0x25a28,
1197                 0x25a30, 0x25a48,
1198                 0x25a50, 0x25a54,
1199                 0x25a60, 0x25a68,
1200                 0x25a70, 0x25a70,
1201                 0x25a78, 0x25a98,
1202                 0x25aa0, 0x25aa8,
1203                 0x25ab0, 0x25ac8,
1204                 0x25ad0, 0x25ad4,
1205                 0x25ae0, 0x25ae8,
1206                 0x25af0, 0x25af0,
1207                 0x25af8, 0x25c18,
1208                 0x25c20, 0x25c20,
1209                 0x25c28, 0x25c30,
1210                 0x25c38, 0x25c38,
1211                 0x25c80, 0x25c98,
1212                 0x25ca0, 0x25ca8,
1213                 0x25cb0, 0x25cc8,
1214                 0x25cd0, 0x25cd4,
1215                 0x25ce0, 0x25ce8,
1216                 0x25cf0, 0x25cf0,
1217                 0x25cf8, 0x25d7c,
1218                 0x25e00, 0x25e04,
1219                 0x26000, 0x2602c,
1220                 0x26100, 0x2613c,
1221                 0x26190, 0x261a0,
1222                 0x261a8, 0x261b8,
1223                 0x261c4, 0x261c8,
1224                 0x26200, 0x26318,
1225                 0x26400, 0x264b4,
1226                 0x264c0, 0x26528,
1227                 0x26540, 0x26614,
1228                 0x27000, 0x27040,
1229                 0x2704c, 0x27060,
1230                 0x270c0, 0x270ec,
1231                 0x27200, 0x27268,
1232                 0x27270, 0x27284,
1233                 0x272fc, 0x27388,
1234                 0x27400, 0x27404,
1235                 0x27500, 0x27500,
1236                 0x27510, 0x27518,
1237                 0x2752c, 0x27530,
1238                 0x2753c, 0x2753c,
1239                 0x27550, 0x27554,
1240                 0x27600, 0x27600,
1241                 0x27608, 0x2761c,
1242                 0x27624, 0x27628,
1243                 0x27630, 0x27634,
1244                 0x2763c, 0x2763c,
1245                 0x27700, 0x2771c,
1246                 0x27780, 0x2778c,
1247                 0x27800, 0x27818,
1248                 0x27820, 0x27828,
1249                 0x27830, 0x27848,
1250                 0x27850, 0x27854,
1251                 0x27860, 0x27868,
1252                 0x27870, 0x27870,
1253                 0x27878, 0x27898,
1254                 0x278a0, 0x278a8,
1255                 0x278b0, 0x278c8,
1256                 0x278d0, 0x278d4,
1257                 0x278e0, 0x278e8,
1258                 0x278f0, 0x278f0,
1259                 0x278f8, 0x27a18,
1260                 0x27a20, 0x27a28,
1261                 0x27a30, 0x27a48,
1262                 0x27a50, 0x27a54,
1263                 0x27a60, 0x27a68,
1264                 0x27a70, 0x27a70,
1265                 0x27a78, 0x27a98,
1266                 0x27aa0, 0x27aa8,
1267                 0x27ab0, 0x27ac8,
1268                 0x27ad0, 0x27ad4,
1269                 0x27ae0, 0x27ae8,
1270                 0x27af0, 0x27af0,
1271                 0x27af8, 0x27c18,
1272                 0x27c20, 0x27c20,
1273                 0x27c28, 0x27c30,
1274                 0x27c38, 0x27c38,
1275                 0x27c80, 0x27c98,
1276                 0x27ca0, 0x27ca8,
1277                 0x27cb0, 0x27cc8,
1278                 0x27cd0, 0x27cd4,
1279                 0x27ce0, 0x27ce8,
1280                 0x27cf0, 0x27cf0,
1281                 0x27cf8, 0x27d7c,
1282                 0x27e00, 0x27e04,
1283         };
1284
1285         static const unsigned int t4vf_reg_ranges[] = {
1286                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287                 VF_MPS_REG(A_MPS_VF_CTL),
1288                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292                 FW_T4VF_MBDATA_BASE_ADDR,
1293                 FW_T4VF_MBDATA_BASE_ADDR +
1294                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295         };
1296
1297         static const unsigned int t5_reg_ranges[] = {
1298                 0x1008, 0x10c0,
1299                 0x10cc, 0x10f8,
1300                 0x1100, 0x1100,
1301                 0x110c, 0x1148,
1302                 0x1180, 0x1184,
1303                 0x1190, 0x1194,
1304                 0x11a0, 0x11a4,
1305                 0x11b0, 0x11b4,
1306                 0x11fc, 0x123c,
1307                 0x1280, 0x173c,
1308                 0x1800, 0x18fc,
1309                 0x3000, 0x3028,
1310                 0x3060, 0x30b0,
1311                 0x30b8, 0x30d8,
1312                 0x30e0, 0x30fc,
1313                 0x3140, 0x357c,
1314                 0x35a8, 0x35cc,
1315                 0x35ec, 0x35ec,
1316                 0x3600, 0x5624,
1317                 0x56cc, 0x56ec,
1318                 0x56f4, 0x5720,
1319                 0x5728, 0x575c,
1320                 0x580c, 0x5814,
1321                 0x5890, 0x589c,
1322                 0x58a4, 0x58ac,
1323                 0x58b8, 0x58bc,
1324                 0x5940, 0x59c8,
1325                 0x59d0, 0x59dc,
1326                 0x59fc, 0x5a18,
1327                 0x5a60, 0x5a70,
1328                 0x5a80, 0x5a9c,
1329                 0x5b94, 0x5bfc,
1330                 0x6000, 0x6020,
1331                 0x6028, 0x6040,
1332                 0x6058, 0x609c,
1333                 0x60a8, 0x614c,
1334                 0x7700, 0x7798,
1335                 0x77c0, 0x78fc,
1336                 0x7b00, 0x7b58,
1337                 0x7b60, 0x7b84,
1338                 0x7b8c, 0x7c54,
1339                 0x7d00, 0x7d38,
1340                 0x7d40, 0x7d80,
1341                 0x7d8c, 0x7ddc,
1342                 0x7de4, 0x7e04,
1343                 0x7e10, 0x7e1c,
1344                 0x7e24, 0x7e38,
1345                 0x7e40, 0x7e44,
1346                 0x7e4c, 0x7e78,
1347                 0x7e80, 0x7edc,
1348                 0x7ee8, 0x7efc,
1349                 0x8dc0, 0x8de0,
1350                 0x8df8, 0x8e04,
1351                 0x8e10, 0x8e84,
1352                 0x8ea0, 0x8f84,
1353                 0x8fc0, 0x9058,
1354                 0x9060, 0x9060,
1355                 0x9068, 0x90f8,
1356                 0x9400, 0x9408,
1357                 0x9410, 0x9470,
1358                 0x9600, 0x9600,
1359                 0x9608, 0x9638,
1360                 0x9640, 0x96f4,
1361                 0x9800, 0x9808,
1362                 0x9820, 0x983c,
1363                 0x9850, 0x9864,
1364                 0x9c00, 0x9c6c,
1365                 0x9c80, 0x9cec,
1366                 0x9d00, 0x9d6c,
1367                 0x9d80, 0x9dec,
1368                 0x9e00, 0x9e6c,
1369                 0x9e80, 0x9eec,
1370                 0x9f00, 0x9f6c,
1371                 0x9f80, 0xa020,
1372                 0xd004, 0xd004,
1373                 0xd010, 0xd03c,
1374                 0xdfc0, 0xdfe0,
1375                 0xe000, 0x1106c,
1376                 0x11074, 0x11088,
1377                 0x1109c, 0x1117c,
1378                 0x11190, 0x11204,
1379                 0x19040, 0x1906c,
1380                 0x19078, 0x19080,
1381                 0x1908c, 0x190e8,
1382                 0x190f0, 0x190f8,
1383                 0x19100, 0x19110,
1384                 0x19120, 0x19124,
1385                 0x19150, 0x19194,
1386                 0x1919c, 0x191b0,
1387                 0x191d0, 0x191e8,
1388                 0x19238, 0x19290,
1389                 0x193f8, 0x19428,
1390                 0x19430, 0x19444,
1391                 0x1944c, 0x1946c,
1392                 0x19474, 0x19474,
1393                 0x19490, 0x194cc,
1394                 0x194f0, 0x194f8,
1395                 0x19c00, 0x19c08,
1396                 0x19c10, 0x19c60,
1397                 0x19c94, 0x19ce4,
1398                 0x19cf0, 0x19d40,
1399                 0x19d50, 0x19d94,
1400                 0x19da0, 0x19de8,
1401                 0x19df0, 0x19e10,
1402                 0x19e50, 0x19e90,
1403                 0x19ea0, 0x19f24,
1404                 0x19f34, 0x19f34,
1405                 0x19f40, 0x19f50,
1406                 0x19f90, 0x19fb4,
1407                 0x19fc4, 0x19fe4,
1408                 0x1a000, 0x1a004,
1409                 0x1a010, 0x1a06c,
1410                 0x1a0b0, 0x1a0e4,
1411                 0x1a0ec, 0x1a0f8,
1412                 0x1a100, 0x1a108,
1413                 0x1a114, 0x1a120,
1414                 0x1a128, 0x1a130,
1415                 0x1a138, 0x1a138,
1416                 0x1a190, 0x1a1c4,
1417                 0x1a1fc, 0x1a1fc,
1418                 0x1e008, 0x1e00c,
1419                 0x1e040, 0x1e044,
1420                 0x1e04c, 0x1e04c,
1421                 0x1e284, 0x1e290,
1422                 0x1e2c0, 0x1e2c0,
1423                 0x1e2e0, 0x1e2e0,
1424                 0x1e300, 0x1e384,
1425                 0x1e3c0, 0x1e3c8,
1426                 0x1e408, 0x1e40c,
1427                 0x1e440, 0x1e444,
1428                 0x1e44c, 0x1e44c,
1429                 0x1e684, 0x1e690,
1430                 0x1e6c0, 0x1e6c0,
1431                 0x1e6e0, 0x1e6e0,
1432                 0x1e700, 0x1e784,
1433                 0x1e7c0, 0x1e7c8,
1434                 0x1e808, 0x1e80c,
1435                 0x1e840, 0x1e844,
1436                 0x1e84c, 0x1e84c,
1437                 0x1ea84, 0x1ea90,
1438                 0x1eac0, 0x1eac0,
1439                 0x1eae0, 0x1eae0,
1440                 0x1eb00, 0x1eb84,
1441                 0x1ebc0, 0x1ebc8,
1442                 0x1ec08, 0x1ec0c,
1443                 0x1ec40, 0x1ec44,
1444                 0x1ec4c, 0x1ec4c,
1445                 0x1ee84, 0x1ee90,
1446                 0x1eec0, 0x1eec0,
1447                 0x1eee0, 0x1eee0,
1448                 0x1ef00, 0x1ef84,
1449                 0x1efc0, 0x1efc8,
1450                 0x1f008, 0x1f00c,
1451                 0x1f040, 0x1f044,
1452                 0x1f04c, 0x1f04c,
1453                 0x1f284, 0x1f290,
1454                 0x1f2c0, 0x1f2c0,
1455                 0x1f2e0, 0x1f2e0,
1456                 0x1f300, 0x1f384,
1457                 0x1f3c0, 0x1f3c8,
1458                 0x1f408, 0x1f40c,
1459                 0x1f440, 0x1f444,
1460                 0x1f44c, 0x1f44c,
1461                 0x1f684, 0x1f690,
1462                 0x1f6c0, 0x1f6c0,
1463                 0x1f6e0, 0x1f6e0,
1464                 0x1f700, 0x1f784,
1465                 0x1f7c0, 0x1f7c8,
1466                 0x1f808, 0x1f80c,
1467                 0x1f840, 0x1f844,
1468                 0x1f84c, 0x1f84c,
1469                 0x1fa84, 0x1fa90,
1470                 0x1fac0, 0x1fac0,
1471                 0x1fae0, 0x1fae0,
1472                 0x1fb00, 0x1fb84,
1473                 0x1fbc0, 0x1fbc8,
1474                 0x1fc08, 0x1fc0c,
1475                 0x1fc40, 0x1fc44,
1476                 0x1fc4c, 0x1fc4c,
1477                 0x1fe84, 0x1fe90,
1478                 0x1fec0, 0x1fec0,
1479                 0x1fee0, 0x1fee0,
1480                 0x1ff00, 0x1ff84,
1481                 0x1ffc0, 0x1ffc8,
1482                 0x30000, 0x30030,
1483                 0x30100, 0x30144,
1484                 0x30190, 0x301a0,
1485                 0x301a8, 0x301b8,
1486                 0x301c4, 0x301c8,
1487                 0x301d0, 0x301d0,
1488                 0x30200, 0x30318,
1489                 0x30400, 0x304b4,
1490                 0x304c0, 0x3052c,
1491                 0x30540, 0x3061c,
1492                 0x30800, 0x30828,
1493                 0x30834, 0x30834,
1494                 0x308c0, 0x30908,
1495                 0x30910, 0x309ac,
1496                 0x30a00, 0x30a14,
1497                 0x30a1c, 0x30a2c,
1498                 0x30a44, 0x30a50,
1499                 0x30a74, 0x30a74,
1500                 0x30a7c, 0x30afc,
1501                 0x30b08, 0x30c24,
1502                 0x30d00, 0x30d00,
1503                 0x30d08, 0x30d14,
1504                 0x30d1c, 0x30d20,
1505                 0x30d3c, 0x30d3c,
1506                 0x30d48, 0x30d50,
1507                 0x31200, 0x3120c,
1508                 0x31220, 0x31220,
1509                 0x31240, 0x31240,
1510                 0x31600, 0x3160c,
1511                 0x31a00, 0x31a1c,
1512                 0x31e00, 0x31e20,
1513                 0x31e38, 0x31e3c,
1514                 0x31e80, 0x31e80,
1515                 0x31e88, 0x31ea8,
1516                 0x31eb0, 0x31eb4,
1517                 0x31ec8, 0x31ed4,
1518                 0x31fb8, 0x32004,
1519                 0x32200, 0x32200,
1520                 0x32208, 0x32240,
1521                 0x32248, 0x32280,
1522                 0x32288, 0x322c0,
1523                 0x322c8, 0x322fc,
1524                 0x32600, 0x32630,
1525                 0x32a00, 0x32abc,
1526                 0x32b00, 0x32b10,
1527                 0x32b20, 0x32b30,
1528                 0x32b40, 0x32b50,
1529                 0x32b60, 0x32b70,
1530                 0x33000, 0x33028,
1531                 0x33030, 0x33048,
1532                 0x33060, 0x33068,
1533                 0x33070, 0x3309c,
1534                 0x330f0, 0x33128,
1535                 0x33130, 0x33148,
1536                 0x33160, 0x33168,
1537                 0x33170, 0x3319c,
1538                 0x331f0, 0x33238,
1539                 0x33240, 0x33240,
1540                 0x33248, 0x33250,
1541                 0x3325c, 0x33264,
1542                 0x33270, 0x332b8,
1543                 0x332c0, 0x332e4,
1544                 0x332f8, 0x33338,
1545                 0x33340, 0x33340,
1546                 0x33348, 0x33350,
1547                 0x3335c, 0x33364,
1548                 0x33370, 0x333b8,
1549                 0x333c0, 0x333e4,
1550                 0x333f8, 0x33428,
1551                 0x33430, 0x33448,
1552                 0x33460, 0x33468,
1553                 0x33470, 0x3349c,
1554                 0x334f0, 0x33528,
1555                 0x33530, 0x33548,
1556                 0x33560, 0x33568,
1557                 0x33570, 0x3359c,
1558                 0x335f0, 0x33638,
1559                 0x33640, 0x33640,
1560                 0x33648, 0x33650,
1561                 0x3365c, 0x33664,
1562                 0x33670, 0x336b8,
1563                 0x336c0, 0x336e4,
1564                 0x336f8, 0x33738,
1565                 0x33740, 0x33740,
1566                 0x33748, 0x33750,
1567                 0x3375c, 0x33764,
1568                 0x33770, 0x337b8,
1569                 0x337c0, 0x337e4,
1570                 0x337f8, 0x337fc,
1571                 0x33814, 0x33814,
1572                 0x3382c, 0x3382c,
1573                 0x33880, 0x3388c,
1574                 0x338e8, 0x338ec,
1575                 0x33900, 0x33928,
1576                 0x33930, 0x33948,
1577                 0x33960, 0x33968,
1578                 0x33970, 0x3399c,
1579                 0x339f0, 0x33a38,
1580                 0x33a40, 0x33a40,
1581                 0x33a48, 0x33a50,
1582                 0x33a5c, 0x33a64,
1583                 0x33a70, 0x33ab8,
1584                 0x33ac0, 0x33ae4,
1585                 0x33af8, 0x33b10,
1586                 0x33b28, 0x33b28,
1587                 0x33b3c, 0x33b50,
1588                 0x33bf0, 0x33c10,
1589                 0x33c28, 0x33c28,
1590                 0x33c3c, 0x33c50,
1591                 0x33cf0, 0x33cfc,
1592                 0x34000, 0x34030,
1593                 0x34100, 0x34144,
1594                 0x34190, 0x341a0,
1595                 0x341a8, 0x341b8,
1596                 0x341c4, 0x341c8,
1597                 0x341d0, 0x341d0,
1598                 0x34200, 0x34318,
1599                 0x34400, 0x344b4,
1600                 0x344c0, 0x3452c,
1601                 0x34540, 0x3461c,
1602                 0x34800, 0x34828,
1603                 0x34834, 0x34834,
1604                 0x348c0, 0x34908,
1605                 0x34910, 0x349ac,
1606                 0x34a00, 0x34a14,
1607                 0x34a1c, 0x34a2c,
1608                 0x34a44, 0x34a50,
1609                 0x34a74, 0x34a74,
1610                 0x34a7c, 0x34afc,
1611                 0x34b08, 0x34c24,
1612                 0x34d00, 0x34d00,
1613                 0x34d08, 0x34d14,
1614                 0x34d1c, 0x34d20,
1615                 0x34d3c, 0x34d3c,
1616                 0x34d48, 0x34d50,
1617                 0x35200, 0x3520c,
1618                 0x35220, 0x35220,
1619                 0x35240, 0x35240,
1620                 0x35600, 0x3560c,
1621                 0x35a00, 0x35a1c,
1622                 0x35e00, 0x35e20,
1623                 0x35e38, 0x35e3c,
1624                 0x35e80, 0x35e80,
1625                 0x35e88, 0x35ea8,
1626                 0x35eb0, 0x35eb4,
1627                 0x35ec8, 0x35ed4,
1628                 0x35fb8, 0x36004,
1629                 0x36200, 0x36200,
1630                 0x36208, 0x36240,
1631                 0x36248, 0x36280,
1632                 0x36288, 0x362c0,
1633                 0x362c8, 0x362fc,
1634                 0x36600, 0x36630,
1635                 0x36a00, 0x36abc,
1636                 0x36b00, 0x36b10,
1637                 0x36b20, 0x36b30,
1638                 0x36b40, 0x36b50,
1639                 0x36b60, 0x36b70,
1640                 0x37000, 0x37028,
1641                 0x37030, 0x37048,
1642                 0x37060, 0x37068,
1643                 0x37070, 0x3709c,
1644                 0x370f0, 0x37128,
1645                 0x37130, 0x37148,
1646                 0x37160, 0x37168,
1647                 0x37170, 0x3719c,
1648                 0x371f0, 0x37238,
1649                 0x37240, 0x37240,
1650                 0x37248, 0x37250,
1651                 0x3725c, 0x37264,
1652                 0x37270, 0x372b8,
1653                 0x372c0, 0x372e4,
1654                 0x372f8, 0x37338,
1655                 0x37340, 0x37340,
1656                 0x37348, 0x37350,
1657                 0x3735c, 0x37364,
1658                 0x37370, 0x373b8,
1659                 0x373c0, 0x373e4,
1660                 0x373f8, 0x37428,
1661                 0x37430, 0x37448,
1662                 0x37460, 0x37468,
1663                 0x37470, 0x3749c,
1664                 0x374f0, 0x37528,
1665                 0x37530, 0x37548,
1666                 0x37560, 0x37568,
1667                 0x37570, 0x3759c,
1668                 0x375f0, 0x37638,
1669                 0x37640, 0x37640,
1670                 0x37648, 0x37650,
1671                 0x3765c, 0x37664,
1672                 0x37670, 0x376b8,
1673                 0x376c0, 0x376e4,
1674                 0x376f8, 0x37738,
1675                 0x37740, 0x37740,
1676                 0x37748, 0x37750,
1677                 0x3775c, 0x37764,
1678                 0x37770, 0x377b8,
1679                 0x377c0, 0x377e4,
1680                 0x377f8, 0x377fc,
1681                 0x37814, 0x37814,
1682                 0x3782c, 0x3782c,
1683                 0x37880, 0x3788c,
1684                 0x378e8, 0x378ec,
1685                 0x37900, 0x37928,
1686                 0x37930, 0x37948,
1687                 0x37960, 0x37968,
1688                 0x37970, 0x3799c,
1689                 0x379f0, 0x37a38,
1690                 0x37a40, 0x37a40,
1691                 0x37a48, 0x37a50,
1692                 0x37a5c, 0x37a64,
1693                 0x37a70, 0x37ab8,
1694                 0x37ac0, 0x37ae4,
1695                 0x37af8, 0x37b10,
1696                 0x37b28, 0x37b28,
1697                 0x37b3c, 0x37b50,
1698                 0x37bf0, 0x37c10,
1699                 0x37c28, 0x37c28,
1700                 0x37c3c, 0x37c50,
1701                 0x37cf0, 0x37cfc,
1702                 0x38000, 0x38030,
1703                 0x38100, 0x38144,
1704                 0x38190, 0x381a0,
1705                 0x381a8, 0x381b8,
1706                 0x381c4, 0x381c8,
1707                 0x381d0, 0x381d0,
1708                 0x38200, 0x38318,
1709                 0x38400, 0x384b4,
1710                 0x384c0, 0x3852c,
1711                 0x38540, 0x3861c,
1712                 0x38800, 0x38828,
1713                 0x38834, 0x38834,
1714                 0x388c0, 0x38908,
1715                 0x38910, 0x389ac,
1716                 0x38a00, 0x38a14,
1717                 0x38a1c, 0x38a2c,
1718                 0x38a44, 0x38a50,
1719                 0x38a74, 0x38a74,
1720                 0x38a7c, 0x38afc,
1721                 0x38b08, 0x38c24,
1722                 0x38d00, 0x38d00,
1723                 0x38d08, 0x38d14,
1724                 0x38d1c, 0x38d20,
1725                 0x38d3c, 0x38d3c,
1726                 0x38d48, 0x38d50,
1727                 0x39200, 0x3920c,
1728                 0x39220, 0x39220,
1729                 0x39240, 0x39240,
1730                 0x39600, 0x3960c,
1731                 0x39a00, 0x39a1c,
1732                 0x39e00, 0x39e20,
1733                 0x39e38, 0x39e3c,
1734                 0x39e80, 0x39e80,
1735                 0x39e88, 0x39ea8,
1736                 0x39eb0, 0x39eb4,
1737                 0x39ec8, 0x39ed4,
1738                 0x39fb8, 0x3a004,
1739                 0x3a200, 0x3a200,
1740                 0x3a208, 0x3a240,
1741                 0x3a248, 0x3a280,
1742                 0x3a288, 0x3a2c0,
1743                 0x3a2c8, 0x3a2fc,
1744                 0x3a600, 0x3a630,
1745                 0x3aa00, 0x3aabc,
1746                 0x3ab00, 0x3ab10,
1747                 0x3ab20, 0x3ab30,
1748                 0x3ab40, 0x3ab50,
1749                 0x3ab60, 0x3ab70,
1750                 0x3b000, 0x3b028,
1751                 0x3b030, 0x3b048,
1752                 0x3b060, 0x3b068,
1753                 0x3b070, 0x3b09c,
1754                 0x3b0f0, 0x3b128,
1755                 0x3b130, 0x3b148,
1756                 0x3b160, 0x3b168,
1757                 0x3b170, 0x3b19c,
1758                 0x3b1f0, 0x3b238,
1759                 0x3b240, 0x3b240,
1760                 0x3b248, 0x3b250,
1761                 0x3b25c, 0x3b264,
1762                 0x3b270, 0x3b2b8,
1763                 0x3b2c0, 0x3b2e4,
1764                 0x3b2f8, 0x3b338,
1765                 0x3b340, 0x3b340,
1766                 0x3b348, 0x3b350,
1767                 0x3b35c, 0x3b364,
1768                 0x3b370, 0x3b3b8,
1769                 0x3b3c0, 0x3b3e4,
1770                 0x3b3f8, 0x3b428,
1771                 0x3b430, 0x3b448,
1772                 0x3b460, 0x3b468,
1773                 0x3b470, 0x3b49c,
1774                 0x3b4f0, 0x3b528,
1775                 0x3b530, 0x3b548,
1776                 0x3b560, 0x3b568,
1777                 0x3b570, 0x3b59c,
1778                 0x3b5f0, 0x3b638,
1779                 0x3b640, 0x3b640,
1780                 0x3b648, 0x3b650,
1781                 0x3b65c, 0x3b664,
1782                 0x3b670, 0x3b6b8,
1783                 0x3b6c0, 0x3b6e4,
1784                 0x3b6f8, 0x3b738,
1785                 0x3b740, 0x3b740,
1786                 0x3b748, 0x3b750,
1787                 0x3b75c, 0x3b764,
1788                 0x3b770, 0x3b7b8,
1789                 0x3b7c0, 0x3b7e4,
1790                 0x3b7f8, 0x3b7fc,
1791                 0x3b814, 0x3b814,
1792                 0x3b82c, 0x3b82c,
1793                 0x3b880, 0x3b88c,
1794                 0x3b8e8, 0x3b8ec,
1795                 0x3b900, 0x3b928,
1796                 0x3b930, 0x3b948,
1797                 0x3b960, 0x3b968,
1798                 0x3b970, 0x3b99c,
1799                 0x3b9f0, 0x3ba38,
1800                 0x3ba40, 0x3ba40,
1801                 0x3ba48, 0x3ba50,
1802                 0x3ba5c, 0x3ba64,
1803                 0x3ba70, 0x3bab8,
1804                 0x3bac0, 0x3bae4,
1805                 0x3baf8, 0x3bb10,
1806                 0x3bb28, 0x3bb28,
1807                 0x3bb3c, 0x3bb50,
1808                 0x3bbf0, 0x3bc10,
1809                 0x3bc28, 0x3bc28,
1810                 0x3bc3c, 0x3bc50,
1811                 0x3bcf0, 0x3bcfc,
1812                 0x3c000, 0x3c030,
1813                 0x3c100, 0x3c144,
1814                 0x3c190, 0x3c1a0,
1815                 0x3c1a8, 0x3c1b8,
1816                 0x3c1c4, 0x3c1c8,
1817                 0x3c1d0, 0x3c1d0,
1818                 0x3c200, 0x3c318,
1819                 0x3c400, 0x3c4b4,
1820                 0x3c4c0, 0x3c52c,
1821                 0x3c540, 0x3c61c,
1822                 0x3c800, 0x3c828,
1823                 0x3c834, 0x3c834,
1824                 0x3c8c0, 0x3c908,
1825                 0x3c910, 0x3c9ac,
1826                 0x3ca00, 0x3ca14,
1827                 0x3ca1c, 0x3ca2c,
1828                 0x3ca44, 0x3ca50,
1829                 0x3ca74, 0x3ca74,
1830                 0x3ca7c, 0x3cafc,
1831                 0x3cb08, 0x3cc24,
1832                 0x3cd00, 0x3cd00,
1833                 0x3cd08, 0x3cd14,
1834                 0x3cd1c, 0x3cd20,
1835                 0x3cd3c, 0x3cd3c,
1836                 0x3cd48, 0x3cd50,
1837                 0x3d200, 0x3d20c,
1838                 0x3d220, 0x3d220,
1839                 0x3d240, 0x3d240,
1840                 0x3d600, 0x3d60c,
1841                 0x3da00, 0x3da1c,
1842                 0x3de00, 0x3de20,
1843                 0x3de38, 0x3de3c,
1844                 0x3de80, 0x3de80,
1845                 0x3de88, 0x3dea8,
1846                 0x3deb0, 0x3deb4,
1847                 0x3dec8, 0x3ded4,
1848                 0x3dfb8, 0x3e004,
1849                 0x3e200, 0x3e200,
1850                 0x3e208, 0x3e240,
1851                 0x3e248, 0x3e280,
1852                 0x3e288, 0x3e2c0,
1853                 0x3e2c8, 0x3e2fc,
1854                 0x3e600, 0x3e630,
1855                 0x3ea00, 0x3eabc,
1856                 0x3eb00, 0x3eb10,
1857                 0x3eb20, 0x3eb30,
1858                 0x3eb40, 0x3eb50,
1859                 0x3eb60, 0x3eb70,
1860                 0x3f000, 0x3f028,
1861                 0x3f030, 0x3f048,
1862                 0x3f060, 0x3f068,
1863                 0x3f070, 0x3f09c,
1864                 0x3f0f0, 0x3f128,
1865                 0x3f130, 0x3f148,
1866                 0x3f160, 0x3f168,
1867                 0x3f170, 0x3f19c,
1868                 0x3f1f0, 0x3f238,
1869                 0x3f240, 0x3f240,
1870                 0x3f248, 0x3f250,
1871                 0x3f25c, 0x3f264,
1872                 0x3f270, 0x3f2b8,
1873                 0x3f2c0, 0x3f2e4,
1874                 0x3f2f8, 0x3f338,
1875                 0x3f340, 0x3f340,
1876                 0x3f348, 0x3f350,
1877                 0x3f35c, 0x3f364,
1878                 0x3f370, 0x3f3b8,
1879                 0x3f3c0, 0x3f3e4,
1880                 0x3f3f8, 0x3f428,
1881                 0x3f430, 0x3f448,
1882                 0x3f460, 0x3f468,
1883                 0x3f470, 0x3f49c,
1884                 0x3f4f0, 0x3f528,
1885                 0x3f530, 0x3f548,
1886                 0x3f560, 0x3f568,
1887                 0x3f570, 0x3f59c,
1888                 0x3f5f0, 0x3f638,
1889                 0x3f640, 0x3f640,
1890                 0x3f648, 0x3f650,
1891                 0x3f65c, 0x3f664,
1892                 0x3f670, 0x3f6b8,
1893                 0x3f6c0, 0x3f6e4,
1894                 0x3f6f8, 0x3f738,
1895                 0x3f740, 0x3f740,
1896                 0x3f748, 0x3f750,
1897                 0x3f75c, 0x3f764,
1898                 0x3f770, 0x3f7b8,
1899                 0x3f7c0, 0x3f7e4,
1900                 0x3f7f8, 0x3f7fc,
1901                 0x3f814, 0x3f814,
1902                 0x3f82c, 0x3f82c,
1903                 0x3f880, 0x3f88c,
1904                 0x3f8e8, 0x3f8ec,
1905                 0x3f900, 0x3f928,
1906                 0x3f930, 0x3f948,
1907                 0x3f960, 0x3f968,
1908                 0x3f970, 0x3f99c,
1909                 0x3f9f0, 0x3fa38,
1910                 0x3fa40, 0x3fa40,
1911                 0x3fa48, 0x3fa50,
1912                 0x3fa5c, 0x3fa64,
1913                 0x3fa70, 0x3fab8,
1914                 0x3fac0, 0x3fae4,
1915                 0x3faf8, 0x3fb10,
1916                 0x3fb28, 0x3fb28,
1917                 0x3fb3c, 0x3fb50,
1918                 0x3fbf0, 0x3fc10,
1919                 0x3fc28, 0x3fc28,
1920                 0x3fc3c, 0x3fc50,
1921                 0x3fcf0, 0x3fcfc,
1922                 0x40000, 0x4000c,
1923                 0x40040, 0x40050,
1924                 0x40060, 0x40068,
1925                 0x4007c, 0x4008c,
1926                 0x40094, 0x400b0,
1927                 0x400c0, 0x40144,
1928                 0x40180, 0x4018c,
1929                 0x40200, 0x40254,
1930                 0x40260, 0x40264,
1931                 0x40270, 0x40288,
1932                 0x40290, 0x40298,
1933                 0x402ac, 0x402c8,
1934                 0x402d0, 0x402e0,
1935                 0x402f0, 0x402f0,
1936                 0x40300, 0x4033c,
1937                 0x403f8, 0x403fc,
1938                 0x41304, 0x413c4,
1939                 0x41400, 0x4140c,
1940                 0x41414, 0x4141c,
1941                 0x41480, 0x414d0,
1942                 0x44000, 0x44054,
1943                 0x4405c, 0x44078,
1944                 0x440c0, 0x44174,
1945                 0x44180, 0x441ac,
1946                 0x441b4, 0x441b8,
1947                 0x441c0, 0x44254,
1948                 0x4425c, 0x44278,
1949                 0x442c0, 0x44374,
1950                 0x44380, 0x443ac,
1951                 0x443b4, 0x443b8,
1952                 0x443c0, 0x44454,
1953                 0x4445c, 0x44478,
1954                 0x444c0, 0x44574,
1955                 0x44580, 0x445ac,
1956                 0x445b4, 0x445b8,
1957                 0x445c0, 0x44654,
1958                 0x4465c, 0x44678,
1959                 0x446c0, 0x44774,
1960                 0x44780, 0x447ac,
1961                 0x447b4, 0x447b8,
1962                 0x447c0, 0x44854,
1963                 0x4485c, 0x44878,
1964                 0x448c0, 0x44974,
1965                 0x44980, 0x449ac,
1966                 0x449b4, 0x449b8,
1967                 0x449c0, 0x449fc,
1968                 0x45000, 0x45004,
1969                 0x45010, 0x45030,
1970                 0x45040, 0x45060,
1971                 0x45068, 0x45068,
1972                 0x45080, 0x45084,
1973                 0x450a0, 0x450b0,
1974                 0x45200, 0x45204,
1975                 0x45210, 0x45230,
1976                 0x45240, 0x45260,
1977                 0x45268, 0x45268,
1978                 0x45280, 0x45284,
1979                 0x452a0, 0x452b0,
1980                 0x460c0, 0x460e4,
1981                 0x47000, 0x4703c,
1982                 0x47044, 0x4708c,
1983                 0x47200, 0x47250,
1984                 0x47400, 0x47408,
1985                 0x47414, 0x47420,
1986                 0x47600, 0x47618,
1987                 0x47800, 0x47814,
1988                 0x48000, 0x4800c,
1989                 0x48040, 0x48050,
1990                 0x48060, 0x48068,
1991                 0x4807c, 0x4808c,
1992                 0x48094, 0x480b0,
1993                 0x480c0, 0x48144,
1994                 0x48180, 0x4818c,
1995                 0x48200, 0x48254,
1996                 0x48260, 0x48264,
1997                 0x48270, 0x48288,
1998                 0x48290, 0x48298,
1999                 0x482ac, 0x482c8,
2000                 0x482d0, 0x482e0,
2001                 0x482f0, 0x482f0,
2002                 0x48300, 0x4833c,
2003                 0x483f8, 0x483fc,
2004                 0x49304, 0x493c4,
2005                 0x49400, 0x4940c,
2006                 0x49414, 0x4941c,
2007                 0x49480, 0x494d0,
2008                 0x4c000, 0x4c054,
2009                 0x4c05c, 0x4c078,
2010                 0x4c0c0, 0x4c174,
2011                 0x4c180, 0x4c1ac,
2012                 0x4c1b4, 0x4c1b8,
2013                 0x4c1c0, 0x4c254,
2014                 0x4c25c, 0x4c278,
2015                 0x4c2c0, 0x4c374,
2016                 0x4c380, 0x4c3ac,
2017                 0x4c3b4, 0x4c3b8,
2018                 0x4c3c0, 0x4c454,
2019                 0x4c45c, 0x4c478,
2020                 0x4c4c0, 0x4c574,
2021                 0x4c580, 0x4c5ac,
2022                 0x4c5b4, 0x4c5b8,
2023                 0x4c5c0, 0x4c654,
2024                 0x4c65c, 0x4c678,
2025                 0x4c6c0, 0x4c774,
2026                 0x4c780, 0x4c7ac,
2027                 0x4c7b4, 0x4c7b8,
2028                 0x4c7c0, 0x4c854,
2029                 0x4c85c, 0x4c878,
2030                 0x4c8c0, 0x4c974,
2031                 0x4c980, 0x4c9ac,
2032                 0x4c9b4, 0x4c9b8,
2033                 0x4c9c0, 0x4c9fc,
2034                 0x4d000, 0x4d004,
2035                 0x4d010, 0x4d030,
2036                 0x4d040, 0x4d060,
2037                 0x4d068, 0x4d068,
2038                 0x4d080, 0x4d084,
2039                 0x4d0a0, 0x4d0b0,
2040                 0x4d200, 0x4d204,
2041                 0x4d210, 0x4d230,
2042                 0x4d240, 0x4d260,
2043                 0x4d268, 0x4d268,
2044                 0x4d280, 0x4d284,
2045                 0x4d2a0, 0x4d2b0,
2046                 0x4e0c0, 0x4e0e4,
2047                 0x4f000, 0x4f03c,
2048                 0x4f044, 0x4f08c,
2049                 0x4f200, 0x4f250,
2050                 0x4f400, 0x4f408,
2051                 0x4f414, 0x4f420,
2052                 0x4f600, 0x4f618,
2053                 0x4f800, 0x4f814,
2054                 0x50000, 0x50084,
2055                 0x50090, 0x500cc,
2056                 0x50400, 0x50400,
2057                 0x50800, 0x50884,
2058                 0x50890, 0x508cc,
2059                 0x50c00, 0x50c00,
2060                 0x51000, 0x5101c,
2061                 0x51300, 0x51308,
2062         };
2063
2064         static const unsigned int t5vf_reg_ranges[] = {
2065                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2066                 VF_MPS_REG(A_MPS_VF_CTL),
2067                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2068                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2069                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2070                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2071                 FW_T4VF_MBDATA_BASE_ADDR,
2072                 FW_T4VF_MBDATA_BASE_ADDR +
2073                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2074         };
2075
2076         static const unsigned int t6_reg_ranges[] = {
2077                 0x1008, 0x101c,
2078                 0x1024, 0x10a8,
2079                 0x10b4, 0x10f8,
2080                 0x1100, 0x1114,
2081                 0x111c, 0x112c,
2082                 0x1138, 0x113c,
2083                 0x1144, 0x114c,
2084                 0x1180, 0x1184,
2085                 0x1190, 0x1194,
2086                 0x11a0, 0x11a4,
2087                 0x11b0, 0x11b4,
2088                 0x11fc, 0x1274,
2089                 0x1280, 0x133c,
2090                 0x1800, 0x18fc,
2091                 0x3000, 0x302c,
2092                 0x3060, 0x30b0,
2093                 0x30b8, 0x30d8,
2094                 0x30e0, 0x30fc,
2095                 0x3140, 0x357c,
2096                 0x35a8, 0x35cc,
2097                 0x35ec, 0x35ec,
2098                 0x3600, 0x5624,
2099                 0x56cc, 0x56ec,
2100                 0x56f4, 0x5720,
2101                 0x5728, 0x575c,
2102                 0x580c, 0x5814,
2103                 0x5890, 0x589c,
2104                 0x58a4, 0x58ac,
2105                 0x58b8, 0x58bc,
2106                 0x5940, 0x595c,
2107                 0x5980, 0x598c,
2108                 0x59b0, 0x59c8,
2109                 0x59d0, 0x59dc,
2110                 0x59fc, 0x5a18,
2111                 0x5a60, 0x5a6c,
2112                 0x5a80, 0x5a8c,
2113                 0x5a94, 0x5a9c,
2114                 0x5b94, 0x5bfc,
2115                 0x5c10, 0x5e48,
2116                 0x5e50, 0x5e94,
2117                 0x5ea0, 0x5eb0,
2118                 0x5ec0, 0x5ec0,
2119                 0x5ec8, 0x5ed0,
2120                 0x5ee0, 0x5ee0,
2121                 0x5ef0, 0x5ef0,
2122                 0x5f00, 0x5f00,
2123                 0x6000, 0x6020,
2124                 0x6028, 0x6040,
2125                 0x6058, 0x609c,
2126                 0x60a8, 0x619c,
2127                 0x7700, 0x7798,
2128                 0x77c0, 0x7880,
2129                 0x78cc, 0x78fc,
2130                 0x7b00, 0x7b58,
2131                 0x7b60, 0x7b84,
2132                 0x7b8c, 0x7c54,
2133                 0x7d00, 0x7d38,
2134                 0x7d40, 0x7d84,
2135                 0x7d8c, 0x7ddc,
2136                 0x7de4, 0x7e04,
2137                 0x7e10, 0x7e1c,
2138                 0x7e24, 0x7e38,
2139                 0x7e40, 0x7e44,
2140                 0x7e4c, 0x7e78,
2141                 0x7e80, 0x7edc,
2142                 0x7ee8, 0x7efc,
2143                 0x8dc0, 0x8de4,
2144                 0x8df8, 0x8e04,
2145                 0x8e10, 0x8e84,
2146                 0x8ea0, 0x8f88,
2147                 0x8fb8, 0x9058,
2148                 0x9060, 0x9060,
2149                 0x9068, 0x90f8,
2150                 0x9100, 0x9124,
2151                 0x9400, 0x9470,
2152                 0x9600, 0x9600,
2153                 0x9608, 0x9638,
2154                 0x9640, 0x9704,
2155                 0x9710, 0x971c,
2156                 0x9800, 0x9808,
2157                 0x9820, 0x983c,
2158                 0x9850, 0x9864,
2159                 0x9c00, 0x9c6c,
2160                 0x9c80, 0x9cec,
2161                 0x9d00, 0x9d6c,
2162                 0x9d80, 0x9dec,
2163                 0x9e00, 0x9e6c,
2164                 0x9e80, 0x9eec,
2165                 0x9f00, 0x9f6c,
2166                 0x9f80, 0xa020,
2167                 0xd004, 0xd03c,
2168                 0xd100, 0xd118,
2169                 0xd200, 0xd214,
2170                 0xd220, 0xd234,
2171                 0xd240, 0xd254,
2172                 0xd260, 0xd274,
2173                 0xd280, 0xd294,
2174                 0xd2a0, 0xd2b4,
2175                 0xd2c0, 0xd2d4,
2176                 0xd2e0, 0xd2f4,
2177                 0xd300, 0xd31c,
2178                 0xdfc0, 0xdfe0,
2179                 0xe000, 0xf008,
2180                 0xf010, 0xf018,
2181                 0xf020, 0xf028,
2182                 0x11000, 0x11014,
2183                 0x11048, 0x1106c,
2184                 0x11074, 0x11088,
2185                 0x11098, 0x11120,
2186                 0x1112c, 0x1117c,
2187                 0x11190, 0x112e0,
2188                 0x11300, 0x1130c,
2189                 0x12000, 0x1206c,
2190                 0x19040, 0x1906c,
2191                 0x19078, 0x19080,
2192                 0x1908c, 0x190e8,
2193                 0x190f0, 0x190f8,
2194                 0x19100, 0x19110,
2195                 0x19120, 0x19124,
2196                 0x19150, 0x19194,
2197                 0x1919c, 0x191b0,
2198                 0x191d0, 0x191e8,
2199                 0x19238, 0x19290,
2200                 0x192a4, 0x192b0,
2201                 0x192bc, 0x192bc,
2202                 0x19348, 0x1934c,
2203                 0x193f8, 0x19418,
2204                 0x19420, 0x19428,
2205                 0x19430, 0x19444,
2206                 0x1944c, 0x1946c,
2207                 0x19474, 0x19474,
2208                 0x19490, 0x194cc,
2209                 0x194f0, 0x194f8,
2210                 0x19c00, 0x19c48,
2211                 0x19c50, 0x19c80,
2212                 0x19c94, 0x19c98,
2213                 0x19ca0, 0x19cbc,
2214                 0x19ce4, 0x19ce4,
2215                 0x19cf0, 0x19cf8,
2216                 0x19d00, 0x19d28,
2217                 0x19d50, 0x19d78,
2218                 0x19d94, 0x19d98,
2219                 0x19da0, 0x19dc8,
2220                 0x19df0, 0x19e10,
2221                 0x19e50, 0x19e6c,
2222                 0x19ea0, 0x19ebc,
2223                 0x19ec4, 0x19ef4,
2224                 0x19f04, 0x19f2c,
2225                 0x19f34, 0x19f34,
2226                 0x19f40, 0x19f50,
2227                 0x19f90, 0x19fac,
2228                 0x19fc4, 0x19fc8,
2229                 0x19fd0, 0x19fe4,
2230                 0x1a000, 0x1a004,
2231                 0x1a010, 0x1a06c,
2232                 0x1a0b0, 0x1a0e4,
2233                 0x1a0ec, 0x1a0f8,
2234                 0x1a100, 0x1a108,
2235                 0x1a114, 0x1a120,
2236                 0x1a128, 0x1a130,
2237                 0x1a138, 0x1a138,
2238                 0x1a190, 0x1a1c4,
2239                 0x1a1fc, 0x1a1fc,
2240                 0x1e008, 0x1e00c,
2241                 0x1e040, 0x1e044,
2242                 0x1e04c, 0x1e04c,
2243                 0x1e284, 0x1e290,
2244                 0x1e2c0, 0x1e2c0,
2245                 0x1e2e0, 0x1e2e0,
2246                 0x1e300, 0x1e384,
2247                 0x1e3c0, 0x1e3c8,
2248                 0x1e408, 0x1e40c,
2249                 0x1e440, 0x1e444,
2250                 0x1e44c, 0x1e44c,
2251                 0x1e684, 0x1e690,
2252                 0x1e6c0, 0x1e6c0,
2253                 0x1e6e0, 0x1e6e0,
2254                 0x1e700, 0x1e784,
2255                 0x1e7c0, 0x1e7c8,
2256                 0x1e808, 0x1e80c,
2257                 0x1e840, 0x1e844,
2258                 0x1e84c, 0x1e84c,
2259                 0x1ea84, 0x1ea90,
2260                 0x1eac0, 0x1eac0,
2261                 0x1eae0, 0x1eae0,
2262                 0x1eb00, 0x1eb84,
2263                 0x1ebc0, 0x1ebc8,
2264                 0x1ec08, 0x1ec0c,
2265                 0x1ec40, 0x1ec44,
2266                 0x1ec4c, 0x1ec4c,
2267                 0x1ee84, 0x1ee90,
2268                 0x1eec0, 0x1eec0,
2269                 0x1eee0, 0x1eee0,
2270                 0x1ef00, 0x1ef84,
2271                 0x1efc0, 0x1efc8,
2272                 0x1f008, 0x1f00c,
2273                 0x1f040, 0x1f044,
2274                 0x1f04c, 0x1f04c,
2275                 0x1f284, 0x1f290,
2276                 0x1f2c0, 0x1f2c0,
2277                 0x1f2e0, 0x1f2e0,
2278                 0x1f300, 0x1f384,
2279                 0x1f3c0, 0x1f3c8,
2280                 0x1f408, 0x1f40c,
2281                 0x1f440, 0x1f444,
2282                 0x1f44c, 0x1f44c,
2283                 0x1f684, 0x1f690,
2284                 0x1f6c0, 0x1f6c0,
2285                 0x1f6e0, 0x1f6e0,
2286                 0x1f700, 0x1f784,
2287                 0x1f7c0, 0x1f7c8,
2288                 0x1f808, 0x1f80c,
2289                 0x1f840, 0x1f844,
2290                 0x1f84c, 0x1f84c,
2291                 0x1fa84, 0x1fa90,
2292                 0x1fac0, 0x1fac0,
2293                 0x1fae0, 0x1fae0,
2294                 0x1fb00, 0x1fb84,
2295                 0x1fbc0, 0x1fbc8,
2296                 0x1fc08, 0x1fc0c,
2297                 0x1fc40, 0x1fc44,
2298                 0x1fc4c, 0x1fc4c,
2299                 0x1fe84, 0x1fe90,
2300                 0x1fec0, 0x1fec0,
2301                 0x1fee0, 0x1fee0,
2302                 0x1ff00, 0x1ff84,
2303                 0x1ffc0, 0x1ffc8,
2304                 0x30000, 0x30030,
2305                 0x30100, 0x30168,
2306                 0x30190, 0x301a0,
2307                 0x301a8, 0x301b8,
2308                 0x301c4, 0x301c8,
2309                 0x301d0, 0x301d0,
2310                 0x30200, 0x30320,
2311                 0x30400, 0x304b4,
2312                 0x304c0, 0x3052c,
2313                 0x30540, 0x3061c,
2314                 0x30800, 0x308a0,
2315                 0x308c0, 0x30908,
2316                 0x30910, 0x309b8,
2317                 0x30a00, 0x30a04,
2318                 0x30a0c, 0x30a14,
2319                 0x30a1c, 0x30a2c,
2320                 0x30a44, 0x30a50,
2321                 0x30a74, 0x30a74,
2322                 0x30a7c, 0x30afc,
2323                 0x30b08, 0x30c24,
2324                 0x30d00, 0x30d14,
2325                 0x30d1c, 0x30d3c,
2326                 0x30d44, 0x30d4c,
2327                 0x30d54, 0x30d74,
2328                 0x30d7c, 0x30d7c,
2329                 0x30de0, 0x30de0,
2330                 0x30e00, 0x30ed4,
2331                 0x30f00, 0x30fa4,
2332                 0x30fc0, 0x30fc4,
2333                 0x31000, 0x31004,
2334                 0x31080, 0x310fc,
2335                 0x31208, 0x31220,
2336                 0x3123c, 0x31254,
2337                 0x31300, 0x31300,
2338                 0x31308, 0x3131c,
2339                 0x31338, 0x3133c,
2340                 0x31380, 0x31380,
2341                 0x31388, 0x313a8,
2342                 0x313b4, 0x313b4,
2343                 0x31400, 0x31420,
2344                 0x31438, 0x3143c,
2345                 0x31480, 0x31480,
2346                 0x314a8, 0x314a8,
2347                 0x314b0, 0x314b4,
2348                 0x314c8, 0x314d4,
2349                 0x31a40, 0x31a4c,
2350                 0x31af0, 0x31b20,
2351                 0x31b38, 0x31b3c,
2352                 0x31b80, 0x31b80,
2353                 0x31ba8, 0x31ba8,
2354                 0x31bb0, 0x31bb4,
2355                 0x31bc8, 0x31bd4,
2356                 0x32140, 0x3218c,
2357                 0x321f0, 0x321f4,
2358                 0x32200, 0x32200,
2359                 0x32218, 0x32218,
2360                 0x32400, 0x32400,
2361                 0x32408, 0x3241c,
2362                 0x32618, 0x32620,
2363                 0x32664, 0x32664,
2364                 0x326a8, 0x326a8,
2365                 0x326ec, 0x326ec,
2366                 0x32a00, 0x32abc,
2367                 0x32b00, 0x32b18,
2368                 0x32b20, 0x32b38,
2369                 0x32b40, 0x32b58,
2370                 0x32b60, 0x32b78,
2371                 0x32c00, 0x32c00,
2372                 0x32c08, 0x32c3c,
2373                 0x33000, 0x3302c,
2374                 0x33034, 0x33050,
2375                 0x33058, 0x33058,
2376                 0x33060, 0x3308c,
2377                 0x3309c, 0x330ac,
2378                 0x330c0, 0x330c0,
2379                 0x330c8, 0x330d0,
2380                 0x330d8, 0x330e0,
2381                 0x330ec, 0x3312c,
2382                 0x33134, 0x33150,
2383                 0x33158, 0x33158,
2384                 0x33160, 0x3318c,
2385                 0x3319c, 0x331ac,
2386                 0x331c0, 0x331c0,
2387                 0x331c8, 0x331d0,
2388                 0x331d8, 0x331e0,
2389                 0x331ec, 0x33290,
2390                 0x33298, 0x332c4,
2391                 0x332e4, 0x33390,
2392                 0x33398, 0x333c4,
2393                 0x333e4, 0x3342c,
2394                 0x33434, 0x33450,
2395                 0x33458, 0x33458,
2396                 0x33460, 0x3348c,
2397                 0x3349c, 0x334ac,
2398                 0x334c0, 0x334c0,
2399                 0x334c8, 0x334d0,
2400                 0x334d8, 0x334e0,
2401                 0x334ec, 0x3352c,
2402                 0x33534, 0x33550,
2403                 0x33558, 0x33558,
2404                 0x33560, 0x3358c,
2405                 0x3359c, 0x335ac,
2406                 0x335c0, 0x335c0,
2407                 0x335c8, 0x335d0,
2408                 0x335d8, 0x335e0,
2409                 0x335ec, 0x33690,
2410                 0x33698, 0x336c4,
2411                 0x336e4, 0x33790,
2412                 0x33798, 0x337c4,
2413                 0x337e4, 0x337fc,
2414                 0x33814, 0x33814,
2415                 0x33854, 0x33868,
2416                 0x33880, 0x3388c,
2417                 0x338c0, 0x338d0,
2418                 0x338e8, 0x338ec,
2419                 0x33900, 0x3392c,
2420                 0x33934, 0x33950,
2421                 0x33958, 0x33958,
2422                 0x33960, 0x3398c,
2423                 0x3399c, 0x339ac,
2424                 0x339c0, 0x339c0,
2425                 0x339c8, 0x339d0,
2426                 0x339d8, 0x339e0,
2427                 0x339ec, 0x33a90,
2428                 0x33a98, 0x33ac4,
2429                 0x33ae4, 0x33b10,
2430                 0x33b24, 0x33b28,
2431                 0x33b38, 0x33b50,
2432                 0x33bf0, 0x33c10,
2433                 0x33c24, 0x33c28,
2434                 0x33c38, 0x33c50,
2435                 0x33cf0, 0x33cfc,
2436                 0x34000, 0x34030,
2437                 0x34100, 0x34168,
2438                 0x34190, 0x341a0,
2439                 0x341a8, 0x341b8,
2440                 0x341c4, 0x341c8,
2441                 0x341d0, 0x341d0,
2442                 0x34200, 0x34320,
2443                 0x34400, 0x344b4,
2444                 0x344c0, 0x3452c,
2445                 0x34540, 0x3461c,
2446                 0x34800, 0x348a0,
2447                 0x348c0, 0x34908,
2448                 0x34910, 0x349b8,
2449                 0x34a00, 0x34a04,
2450                 0x34a0c, 0x34a14,
2451                 0x34a1c, 0x34a2c,
2452                 0x34a44, 0x34a50,
2453                 0x34a74, 0x34a74,
2454                 0x34a7c, 0x34afc,
2455                 0x34b08, 0x34c24,
2456                 0x34d00, 0x34d14,
2457                 0x34d1c, 0x34d3c,
2458                 0x34d44, 0x34d4c,
2459                 0x34d54, 0x34d74,
2460                 0x34d7c, 0x34d7c,
2461                 0x34de0, 0x34de0,
2462                 0x34e00, 0x34ed4,
2463                 0x34f00, 0x34fa4,
2464                 0x34fc0, 0x34fc4,
2465                 0x35000, 0x35004,
2466                 0x35080, 0x350fc,
2467                 0x35208, 0x35220,
2468                 0x3523c, 0x35254,
2469                 0x35300, 0x35300,
2470                 0x35308, 0x3531c,
2471                 0x35338, 0x3533c,
2472                 0x35380, 0x35380,
2473                 0x35388, 0x353a8,
2474                 0x353b4, 0x353b4,
2475                 0x35400, 0x35420,
2476                 0x35438, 0x3543c,
2477                 0x35480, 0x35480,
2478                 0x354a8, 0x354a8,
2479                 0x354b0, 0x354b4,
2480                 0x354c8, 0x354d4,
2481                 0x35a40, 0x35a4c,
2482                 0x35af0, 0x35b20,
2483                 0x35b38, 0x35b3c,
2484                 0x35b80, 0x35b80,
2485                 0x35ba8, 0x35ba8,
2486                 0x35bb0, 0x35bb4,
2487                 0x35bc8, 0x35bd4,
2488                 0x36140, 0x3618c,
2489                 0x361f0, 0x361f4,
2490                 0x36200, 0x36200,
2491                 0x36218, 0x36218,
2492                 0x36400, 0x36400,
2493                 0x36408, 0x3641c,
2494                 0x36618, 0x36620,
2495                 0x36664, 0x36664,
2496                 0x366a8, 0x366a8,
2497                 0x366ec, 0x366ec,
2498                 0x36a00, 0x36abc,
2499                 0x36b00, 0x36b18,
2500                 0x36b20, 0x36b38,
2501                 0x36b40, 0x36b58,
2502                 0x36b60, 0x36b78,
2503                 0x36c00, 0x36c00,
2504                 0x36c08, 0x36c3c,
2505                 0x37000, 0x3702c,
2506                 0x37034, 0x37050,
2507                 0x37058, 0x37058,
2508                 0x37060, 0x3708c,
2509                 0x3709c, 0x370ac,
2510                 0x370c0, 0x370c0,
2511                 0x370c8, 0x370d0,
2512                 0x370d8, 0x370e0,
2513                 0x370ec, 0x3712c,
2514                 0x37134, 0x37150,
2515                 0x37158, 0x37158,
2516                 0x37160, 0x3718c,
2517                 0x3719c, 0x371ac,
2518                 0x371c0, 0x371c0,
2519                 0x371c8, 0x371d0,
2520                 0x371d8, 0x371e0,
2521                 0x371ec, 0x37290,
2522                 0x37298, 0x372c4,
2523                 0x372e4, 0x37390,
2524                 0x37398, 0x373c4,
2525                 0x373e4, 0x3742c,
2526                 0x37434, 0x37450,
2527                 0x37458, 0x37458,
2528                 0x37460, 0x3748c,
2529                 0x3749c, 0x374ac,
2530                 0x374c0, 0x374c0,
2531                 0x374c8, 0x374d0,
2532                 0x374d8, 0x374e0,
2533                 0x374ec, 0x3752c,
2534                 0x37534, 0x37550,
2535                 0x37558, 0x37558,
2536                 0x37560, 0x3758c,
2537                 0x3759c, 0x375ac,
2538                 0x375c0, 0x375c0,
2539                 0x375c8, 0x375d0,
2540                 0x375d8, 0x375e0,
2541                 0x375ec, 0x37690,
2542                 0x37698, 0x376c4,
2543                 0x376e4, 0x37790,
2544                 0x37798, 0x377c4,
2545                 0x377e4, 0x377fc,
2546                 0x37814, 0x37814,
2547                 0x37854, 0x37868,
2548                 0x37880, 0x3788c,
2549                 0x378c0, 0x378d0,
2550                 0x378e8, 0x378ec,
2551                 0x37900, 0x3792c,
2552                 0x37934, 0x37950,
2553                 0x37958, 0x37958,
2554                 0x37960, 0x3798c,
2555                 0x3799c, 0x379ac,
2556                 0x379c0, 0x379c0,
2557                 0x379c8, 0x379d0,
2558                 0x379d8, 0x379e0,
2559                 0x379ec, 0x37a90,
2560                 0x37a98, 0x37ac4,
2561                 0x37ae4, 0x37b10,
2562                 0x37b24, 0x37b28,
2563                 0x37b38, 0x37b50,
2564                 0x37bf0, 0x37c10,
2565                 0x37c24, 0x37c28,
2566                 0x37c38, 0x37c50,
2567                 0x37cf0, 0x37cfc,
2568                 0x40040, 0x40040,
2569                 0x40080, 0x40084,
2570                 0x40100, 0x40100,
2571                 0x40140, 0x401bc,
2572                 0x40200, 0x40214,
2573                 0x40228, 0x40228,
2574                 0x40240, 0x40258,
2575                 0x40280, 0x40280,
2576                 0x40304, 0x40304,
2577                 0x40330, 0x4033c,
2578                 0x41304, 0x413c8,
2579                 0x413d0, 0x413dc,
2580                 0x413f0, 0x413f0,
2581                 0x41400, 0x4140c,
2582                 0x41414, 0x4141c,
2583                 0x41480, 0x414d0,
2584                 0x44000, 0x4407c,
2585                 0x440c0, 0x441ac,
2586                 0x441b4, 0x4427c,
2587                 0x442c0, 0x443ac,
2588                 0x443b4, 0x4447c,
2589                 0x444c0, 0x445ac,
2590                 0x445b4, 0x4467c,
2591                 0x446c0, 0x447ac,
2592                 0x447b4, 0x4487c,
2593                 0x448c0, 0x449ac,
2594                 0x449b4, 0x44a7c,
2595                 0x44ac0, 0x44bac,
2596                 0x44bb4, 0x44c7c,
2597                 0x44cc0, 0x44dac,
2598                 0x44db4, 0x44e7c,
2599                 0x44ec0, 0x44fac,
2600                 0x44fb4, 0x4507c,
2601                 0x450c0, 0x451ac,
2602                 0x451b4, 0x451fc,
2603                 0x45800, 0x45804,
2604                 0x45810, 0x45830,
2605                 0x45840, 0x45860,
2606                 0x45868, 0x45868,
2607                 0x45880, 0x45884,
2608                 0x458a0, 0x458b0,
2609                 0x45a00, 0x45a04,
2610                 0x45a10, 0x45a30,
2611                 0x45a40, 0x45a60,
2612                 0x45a68, 0x45a68,
2613                 0x45a80, 0x45a84,
2614                 0x45aa0, 0x45ab0,
2615                 0x460c0, 0x460e4,
2616                 0x47000, 0x4703c,
2617                 0x47044, 0x4708c,
2618                 0x47200, 0x47250,
2619                 0x47400, 0x47408,
2620                 0x47414, 0x47420,
2621                 0x47600, 0x47618,
2622                 0x47800, 0x47814,
2623                 0x47820, 0x4782c,
2624                 0x50000, 0x50084,
2625                 0x50090, 0x500cc,
2626                 0x50300, 0x50384,
2627                 0x50400, 0x50400,
2628                 0x50800, 0x50884,
2629                 0x50890, 0x508cc,
2630                 0x50b00, 0x50b84,
2631                 0x50c00, 0x50c00,
2632                 0x51000, 0x51020,
2633                 0x51028, 0x510b0,
2634                 0x51300, 0x51324,
2635         };
2636
2637         static const unsigned int t6vf_reg_ranges[] = {
2638                 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2639                 VF_MPS_REG(A_MPS_VF_CTL),
2640                 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2641                 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2642                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2643                 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2644                 FW_T6VF_MBDATA_BASE_ADDR,
2645                 FW_T6VF_MBDATA_BASE_ADDR +
2646                 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2647         };
2648
2649         u32 *buf_end = (u32 *)(buf + buf_size);
2650         const unsigned int *reg_ranges;
2651         int reg_ranges_size, range;
2652         unsigned int chip_version = chip_id(adap);
2653
2654         /*
2655          * Select the right set of register ranges to dump depending on the
2656          * adapter chip type.
2657          */
2658         switch (chip_version) {
2659         case CHELSIO_T4:
2660                 if (adap->flags & IS_VF) {
2661                         reg_ranges = t4vf_reg_ranges;
2662                         reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2663                 } else {
2664                         reg_ranges = t4_reg_ranges;
2665                         reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2666                 }
2667                 break;
2668
2669         case CHELSIO_T5:
2670                 if (adap->flags & IS_VF) {
2671                         reg_ranges = t5vf_reg_ranges;
2672                         reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2673                 } else {
2674                         reg_ranges = t5_reg_ranges;
2675                         reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2676                 }
2677                 break;
2678
2679         case CHELSIO_T6:
2680                 if (adap->flags & IS_VF) {
2681                         reg_ranges = t6vf_reg_ranges;
2682                         reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2683                 } else {
2684                         reg_ranges = t6_reg_ranges;
2685                         reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2686                 }
2687                 break;
2688
2689         default:
2690                 CH_ERR(adap,
2691                         "Unsupported chip version %d\n", chip_version);
2692                 return;
2693         }
2694
2695         /*
2696          * Clear the register buffer and insert the appropriate register
2697          * values selected by the above register ranges.
2698          */
2699         memset(buf, 0, buf_size);
2700         for (range = 0; range < reg_ranges_size; range += 2) {
2701                 unsigned int reg = reg_ranges[range];
2702                 unsigned int last_reg = reg_ranges[range + 1];
2703                 u32 *bufp = (u32 *)(buf + reg);
2704
2705                 /*
2706                  * Iterate across the register range filling in the register
2707                  * buffer but don't write past the end of the register buffer.
2708                  */
2709                 while (reg <= last_reg && bufp < buf_end) {
2710                         *bufp++ = t4_read_reg(adap, reg);
2711                         reg += sizeof(u32);
2712                 }
2713         }
2714 }
2715
2716 /*
2717  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2718  * header followed by one or more VPD-R sections, each with its own header.
2719  */
2720 struct t4_vpd_hdr {
2721         u8  id_tag;
2722         u8  id_len[2];
2723         u8  id_data[ID_LEN];
2724 };
2725
2726 struct t4_vpdr_hdr {
2727         u8  vpdr_tag;
2728         u8  vpdr_len[2];
2729 };
2730
2731 /*
2732  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2733  */
2734 #define EEPROM_DELAY            10              /* 10us per poll spin */
2735 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
2736
2737 #define EEPROM_STAT_ADDR        0x7bfc
2738 #define VPD_SIZE                0x800
2739 #define VPD_BASE                0x400
2740 #define VPD_BASE_OLD            0
2741 #define VPD_LEN                 1024
2742 #define VPD_INFO_FLD_HDR_SIZE   3
2743 #define CHELSIO_VPD_UNIQUE_ID   0x82
2744
2745 /*
2746  * Small utility function to wait till any outstanding VPD Access is complete.
2747  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2748  * VPD Access in flight.  This allows us to handle the problem of having a
2749  * previous VPD Access time out and prevent an attempt to inject a new VPD
2750  * Request before any in-flight VPD reguest has completed.
2751  */
2752 static int t4_seeprom_wait(struct adapter *adapter)
2753 {
2754         unsigned int base = adapter->params.pci.vpd_cap_addr;
2755         int max_poll;
2756
2757         /*
2758          * If no VPD Access is in flight, we can just return success right
2759          * away.
2760          */
2761         if (!adapter->vpd_busy)
2762                 return 0;
2763
2764         /*
2765          * Poll the VPD Capability Address/Flag register waiting for it
2766          * to indicate that the operation is complete.
2767          */
2768         max_poll = EEPROM_MAX_POLL;
2769         do {
2770                 u16 val;
2771
2772                 udelay(EEPROM_DELAY);
2773                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2774
2775                 /*
2776                  * If the operation is complete, mark the VPD as no longer
2777                  * busy and return success.
2778                  */
2779                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2780                         adapter->vpd_busy = 0;
2781                         return 0;
2782                 }
2783         } while (--max_poll);
2784
2785         /*
2786          * Failure!  Note that we leave the VPD Busy status set in order to
2787          * avoid pushing a new VPD Access request into the VPD Capability till
2788          * the current operation eventually succeeds.  It's a bug to issue a
2789          * new request when an existing request is in flight and will result
2790          * in corrupt hardware state.
2791          */
2792         return -ETIMEDOUT;
2793 }
2794
2795 /**
2796  *      t4_seeprom_read - read a serial EEPROM location
2797  *      @adapter: adapter to read
2798  *      @addr: EEPROM virtual address
2799  *      @data: where to store the read data
2800  *
2801  *      Read a 32-bit word from a location in serial EEPROM using the card's PCI
2802  *      VPD capability.  Note that this function must be called with a virtual
2803  *      address.
2804  */
2805 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2806 {
2807         unsigned int base = adapter->params.pci.vpd_cap_addr;
2808         int ret;
2809
2810         /*
2811          * VPD Accesses must alway be 4-byte aligned!
2812          */
2813         if (addr >= EEPROMVSIZE || (addr & 3))
2814                 return -EINVAL;
2815
2816         /*
2817          * Wait for any previous operation which may still be in flight to
2818          * complete.
2819          */
2820         ret = t4_seeprom_wait(adapter);
2821         if (ret) {
2822                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2823                 return ret;
2824         }
2825
2826         /*
2827          * Issue our new VPD Read request, mark the VPD as being busy and wait
2828          * for our request to complete.  If it doesn't complete, note the
2829          * error and return it to our caller.  Note that we do not reset the
2830          * VPD Busy status!
2831          */
2832         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2833         adapter->vpd_busy = 1;
2834         adapter->vpd_flag = PCI_VPD_ADDR_F;
2835         ret = t4_seeprom_wait(adapter);
2836         if (ret) {
2837                 CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2838                 return ret;
2839         }
2840
2841         /*
2842          * Grab the returned data, swizzle it into our endianness and
2843          * return success.
2844          */
2845         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2846         *data = le32_to_cpu(*data);
2847         return 0;
2848 }
2849
2850 /**
2851  *      t4_seeprom_write - write a serial EEPROM location
2852  *      @adapter: adapter to write
2853  *      @addr: virtual EEPROM address
2854  *      @data: value to write
2855  *
2856  *      Write a 32-bit word to a location in serial EEPROM using the card's PCI
2857  *      VPD capability.  Note that this function must be called with a virtual
2858  *      address.
2859  */
2860 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2861 {
2862         unsigned int base = adapter->params.pci.vpd_cap_addr;
2863         int ret;
2864         u32 stats_reg;
2865         int max_poll;
2866
2867         /*
2868          * VPD Accesses must alway be 4-byte aligned!
2869          */
2870         if (addr >= EEPROMVSIZE || (addr & 3))
2871                 return -EINVAL;
2872
2873         /*
2874          * Wait for any previous operation which may still be in flight to
2875          * complete.
2876          */
2877         ret = t4_seeprom_wait(adapter);
2878         if (ret) {
2879                 CH_ERR(adapter, "VPD still busy from previous operation\n");
2880                 return ret;
2881         }
2882
2883         /*
2884          * Issue our new VPD Read request, mark the VPD as being busy and wait
2885          * for our request to complete.  If it doesn't complete, note the
2886          * error and return it to our caller.  Note that we do not reset the
2887          * VPD Busy status!
2888          */
2889         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2890                                  cpu_to_le32(data));
2891         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2892                                  (u16)addr | PCI_VPD_ADDR_F);
2893         adapter->vpd_busy = 1;
2894         adapter->vpd_flag = 0;
2895         ret = t4_seeprom_wait(adapter);
2896         if (ret) {
2897                 CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2898                 return ret;
2899         }
2900
2901         /*
2902          * Reset PCI_VPD_DATA register after a transaction and wait for our
2903          * request to complete. If it doesn't complete, return error.
2904          */
2905         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2906         max_poll = EEPROM_MAX_POLL;
2907         do {
2908                 udelay(EEPROM_DELAY);
2909                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2910         } while ((stats_reg & 0x1) && --max_poll);
2911         if (!max_poll)
2912                 return -ETIMEDOUT;
2913
2914         /* Return success! */
2915         return 0;
2916 }
2917
2918 /**
2919  *      t4_eeprom_ptov - translate a physical EEPROM address to virtual
2920  *      @phys_addr: the physical EEPROM address
2921  *      @fn: the PCI function number
2922  *      @sz: size of function-specific area
2923  *
2924  *      Translate a physical EEPROM address to virtual.  The first 1K is
2925  *      accessed through virtual addresses starting at 31K, the rest is
2926  *      accessed through virtual addresses starting at 0.
2927  *
2928  *      The mapping is as follows:
2929  *      [0..1K) -> [31K..32K)
2930  *      [1K..1K+A) -> [ES-A..ES)
2931  *      [1K+A..ES) -> [0..ES-A-1K)
2932  *
2933  *      where A = @fn * @sz, and ES = EEPROM size.
2934  */
2935 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2936 {
2937         fn *= sz;
2938         if (phys_addr < 1024)
2939                 return phys_addr + (31 << 10);
2940         if (phys_addr < 1024 + fn)
2941                 return EEPROMSIZE - fn + phys_addr - 1024;
2942         if (phys_addr < EEPROMSIZE)
2943                 return phys_addr - 1024 - fn;
2944         return -EINVAL;
2945 }
2946
2947 /**
2948  *      t4_seeprom_wp - enable/disable EEPROM write protection
2949  *      @adapter: the adapter
2950  *      @enable: whether to enable or disable write protection
2951  *
2952  *      Enables or disables write protection on the serial EEPROM.
2953  */
2954 int t4_seeprom_wp(struct adapter *adapter, int enable)
2955 {
2956         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2957 }
2958
2959 /**
2960  *      get_vpd_keyword_val - Locates an information field keyword in the VPD
2961  *      @vpd: Pointer to buffered vpd data structure
2962  *      @kw: The keyword to search for
2963  *      @region: VPD region to search (starting from 0)
2964  *
2965  *      Returns the value of the information field keyword or
2966  *      -ENOENT otherwise.
2967  */
2968 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2969 {
2970         int i, tag;
2971         unsigned int offset, len;
2972         const struct t4_vpdr_hdr *vpdr;
2973
2974         offset = sizeof(struct t4_vpd_hdr);
2975         vpdr = (const void *)(vpd + offset);
2976         tag = vpdr->vpdr_tag;
2977         len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2978         while (region--) {
2979                 offset += sizeof(struct t4_vpdr_hdr) + len;
2980                 vpdr = (const void *)(vpd + offset);
2981                 if (++tag != vpdr->vpdr_tag)
2982                         return -ENOENT;
2983                 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2984         }
2985         offset += sizeof(struct t4_vpdr_hdr);
2986
2987         if (offset + len > VPD_LEN) {
2988                 return -ENOENT;
2989         }
2990
2991         for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2992                 if (memcmp(vpd + i , kw , 2) == 0){
2993                         i += VPD_INFO_FLD_HDR_SIZE;
2994                         return i;
2995                 }
2996
2997                 i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2998         }
2999
3000         return -ENOENT;
3001 }
3002
3003
3004 /**
3005  *      get_vpd_params - read VPD parameters from VPD EEPROM
3006  *      @adapter: adapter to read
3007  *      @p: where to store the parameters
3008  *      @vpd: caller provided temporary space to read the VPD into
3009  *
3010  *      Reads card parameters stored in VPD EEPROM.
3011  */
3012 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3013     uint16_t device_id, u32 *buf)
3014 {
3015         int i, ret, addr;
3016         int ec, sn, pn, na, md;
3017         u8 csum;
3018         const u8 *vpd = (const u8 *)buf;
3019
3020         /*
3021          * Card information normally starts at VPD_BASE but early cards had
3022          * it at 0.
3023          */
3024         ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3025         if (ret)
3026                 return (ret);
3027
3028         /*
3029          * The VPD shall have a unique identifier specified by the PCI SIG.
3030          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3031          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3032          * is expected to automatically put this entry at the
3033          * beginning of the VPD.
3034          */
3035         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3036
3037         for (i = 0; i < VPD_LEN; i += 4) {
3038                 ret = t4_seeprom_read(adapter, addr + i, buf++);
3039                 if (ret)
3040                         return ret;
3041         }
3042
3043 #define FIND_VPD_KW(var,name) do { \
3044         var = get_vpd_keyword_val(vpd, name, 0); \
3045         if (var < 0) { \
3046                 CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3047                 return -EINVAL; \
3048         } \
3049 } while (0)
3050
3051         FIND_VPD_KW(i, "RV");
3052         for (csum = 0; i >= 0; i--)
3053                 csum += vpd[i];
3054
3055         if (csum) {
3056                 CH_ERR(adapter,
3057                         "corrupted VPD EEPROM, actual csum %u\n", csum);
3058                 return -EINVAL;
3059         }
3060
3061         FIND_VPD_KW(ec, "EC");
3062         FIND_VPD_KW(sn, "SN");
3063         FIND_VPD_KW(pn, "PN");
3064         FIND_VPD_KW(na, "NA");
3065 #undef FIND_VPD_KW
3066
3067         memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3068         strstrip(p->id);
3069         memcpy(p->ec, vpd + ec, EC_LEN);
3070         strstrip(p->ec);
3071         i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3072         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3073         strstrip(p->sn);
3074         i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3075         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3076         strstrip((char *)p->pn);
3077         i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3078         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3079         strstrip((char *)p->na);
3080
3081         if (device_id & 0x80)
3082                 return 0;       /* Custom card */
3083
3084         md = get_vpd_keyword_val(vpd, "VF", 1);
3085         if (md < 0) {
3086                 snprintf(p->md, sizeof(p->md), "unknown");
3087         } else {
3088                 i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3089                 memcpy(p->md, vpd + md, min(i, MD_LEN));
3090                 strstrip((char *)p->md);
3091         }
3092
3093         return 0;
3094 }
3095
3096 /* serial flash and firmware constants and flash config file constants */
3097 enum {
3098         SF_ATTEMPTS = 10,       /* max retries for SF operations */
3099
3100         /* flash command opcodes */
3101         SF_PROG_PAGE    = 2,    /* program 256B page */
3102         SF_WR_DISABLE   = 4,    /* disable writes */
3103         SF_RD_STATUS    = 5,    /* read status register */
3104         SF_WR_ENABLE    = 6,    /* enable writes */
3105         SF_RD_DATA_FAST = 0xb,  /* read flash */
3106         SF_RD_ID        = 0x9f, /* read ID */
3107         SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */
3108 };
3109
3110 /**
3111  *      sf1_read - read data from the serial flash
3112  *      @adapter: the adapter
3113  *      @byte_cnt: number of bytes to read
3114  *      @cont: whether another operation will be chained
3115  *      @lock: whether to lock SF for PL access only
3116  *      @valp: where to store the read data
3117  *
3118  *      Reads up to 4 bytes of data from the serial flash.  The location of
3119  *      the read needs to be specified prior to calling this by issuing the
3120  *      appropriate commands to the serial flash.
3121  */
3122 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3123                     int lock, u32 *valp)
3124 {
3125         int ret;
3126
3127         if (!byte_cnt || byte_cnt > 4)
3128                 return -EINVAL;
3129         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3130                 return -EBUSY;
3131         t4_write_reg(adapter, A_SF_OP,
3132                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3133         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3134         if (!ret)
3135                 *valp = t4_read_reg(adapter, A_SF_DATA);
3136         return ret;
3137 }
3138
3139 /**
3140  *      sf1_write - write data to the serial flash
3141  *      @adapter: the adapter
3142  *      @byte_cnt: number of bytes to write
3143  *      @cont: whether another operation will be chained
3144  *      @lock: whether to lock SF for PL access only
3145  *      @val: value to write
3146  *
3147  *      Writes up to 4 bytes of data to the serial flash.  The location of
3148  *      the write needs to be specified prior to calling this by issuing the
3149  *      appropriate commands to the serial flash.
3150  */
3151 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3152                      int lock, u32 val)
3153 {
3154         if (!byte_cnt || byte_cnt > 4)
3155                 return -EINVAL;
3156         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3157                 return -EBUSY;
3158         t4_write_reg(adapter, A_SF_DATA, val);
3159         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3160                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3161         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3162 }
3163
3164 /**
3165  *      flash_wait_op - wait for a flash operation to complete
3166  *      @adapter: the adapter
3167  *      @attempts: max number of polls of the status register
3168  *      @delay: delay between polls in ms
3169  *
3170  *      Wait for a flash operation to complete by polling the status register.
3171  */
3172 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3173 {
3174         int ret;
3175         u32 status;
3176
3177         while (1) {
3178                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3179                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3180                         return ret;
3181                 if (!(status & 1))
3182                         return 0;
3183                 if (--attempts == 0)
3184                         return -EAGAIN;
3185                 if (delay)
3186                         msleep(delay);
3187         }
3188 }
3189
3190 /**
3191  *      t4_read_flash - read words from serial flash
3192  *      @adapter: the adapter
3193  *      @addr: the start address for the read
3194  *      @nwords: how many 32-bit words to read
3195  *      @data: where to store the read data
3196  *      @byte_oriented: whether to store data as bytes or as words
3197  *
3198  *      Read the specified number of 32-bit words from the serial flash.
3199  *      If @byte_oriented is set the read data is stored as a byte array
3200  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3201  *      natural endianness.
3202  */
3203 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3204                   unsigned int nwords, u32 *data, int byte_oriented)
3205 {
3206         int ret;
3207
3208         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3209                 return -EINVAL;
3210
3211         addr = swab32(addr) | SF_RD_DATA_FAST;
3212
3213         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3214             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3215                 return ret;
3216
3217         for ( ; nwords; nwords--, data++) {
3218                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3219                 if (nwords == 1)
3220                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3221                 if (ret)
3222                         return ret;
3223                 if (byte_oriented)
3224                         *data = (__force __u32)(cpu_to_be32(*data));
3225         }
3226         return 0;
3227 }
3228
3229 /**
3230  *      t4_write_flash - write up to a page of data to the serial flash
3231  *      @adapter: the adapter
3232  *      @addr: the start address to write
3233  *      @n: length of data to write in bytes
3234  *      @data: the data to write
3235  *      @byte_oriented: whether to store data as bytes or as words
3236  *
3237  *      Writes up to a page of data (256 bytes) to the serial flash starting
3238  *      at the given address.  All the data must be written to the same page.
3239  *      If @byte_oriented is set the write data is stored as byte stream
3240  *      (i.e. matches what on disk), otherwise in big-endian.
3241  */
3242 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3243                           unsigned int n, const u8 *data, int byte_oriented)
3244 {
3245         int ret;
3246         u32 buf[SF_PAGE_SIZE / 4];
3247         unsigned int i, c, left, val, offset = addr & 0xff;
3248
3249         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3250                 return -EINVAL;
3251
3252         val = swab32(addr) | SF_PROG_PAGE;
3253
3254         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3255             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3256                 goto unlock;
3257
3258         for (left = n; left; left -= c) {
3259                 c = min(left, 4U);
3260                 for (val = 0, i = 0; i < c; ++i)
3261                         val = (val << 8) + *data++;
3262
3263                 if (!byte_oriented)
3264                         val = cpu_to_be32(val);
3265
3266                 ret = sf1_write(adapter, c, c != left, 1, val);
3267                 if (ret)
3268                         goto unlock;
3269         }
3270         ret = flash_wait_op(adapter, 8, 1);
3271         if (ret)
3272                 goto unlock;
3273
3274         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3275
3276         /* Read the page to verify the write succeeded */
3277         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3278                             byte_oriented);
3279         if (ret)
3280                 return ret;
3281
3282         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3283                 CH_ERR(adapter,
3284                         "failed to correctly write the flash page at %#x\n",
3285                         addr);
3286                 return -EIO;
3287         }
3288         return 0;
3289
3290 unlock:
3291         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3292         return ret;
3293 }
3294
3295 /**
3296  *      t4_get_fw_version - read the firmware version
3297  *      @adapter: the adapter
3298  *      @vers: where to place the version
3299  *
3300  *      Reads the FW version from flash.
3301  */
3302 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3303 {
3304         return t4_read_flash(adapter, FLASH_FW_START +
3305                              offsetof(struct fw_hdr, fw_ver), 1,
3306                              vers, 0);
3307 }
3308
3309 /**
3310  *      t4_get_fw_hdr - read the firmware header
3311  *      @adapter: the adapter
3312  *      @hdr: where to place the version
3313  *
3314  *      Reads the FW header from flash into caller provided buffer.
3315  */
3316 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3317 {
3318         return t4_read_flash(adapter, FLASH_FW_START,
3319             sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3320 }
3321
3322 /**
3323  *      t4_get_bs_version - read the firmware bootstrap version
3324  *      @adapter: the adapter
3325  *      @vers: where to place the version
3326  *
3327  *      Reads the FW Bootstrap version from flash.
3328  */
3329 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3330 {
3331         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3332                              offsetof(struct fw_hdr, fw_ver), 1,
3333                              vers, 0);
3334 }
3335
3336 /**
3337  *      t4_get_tp_version - read the TP microcode version
3338  *      @adapter: the adapter
3339  *      @vers: where to place the version
3340  *
3341  *      Reads the TP microcode version from flash.
3342  */
3343 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3344 {
3345         return t4_read_flash(adapter, FLASH_FW_START +
3346                              offsetof(struct fw_hdr, tp_microcode_ver),
3347                              1, vers, 0);
3348 }
3349
3350 /**
3351  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3352  *      @adapter: the adapter
3353  *      @vers: where to place the version
3354  *
3355  *      Reads the Expansion ROM header from FLASH and returns the version
3356  *      number (if present) through the @vers return value pointer.  We return
3357  *      this in the Firmware Version Format since it's convenient.  Return
3358  *      0 on success, -ENOENT if no Expansion ROM is present.
3359  */
3360 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3361 {
3362         struct exprom_header {
3363                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3364                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3365         } *hdr;
3366         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3367                                            sizeof(u32))];
3368         int ret;
3369
3370         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3371                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3372                             0);
3373         if (ret)
3374                 return ret;
3375
3376         hdr = (struct exprom_header *)exprom_header_buf;
3377         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3378                 return -ENOENT;
3379
3380         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3381                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3382                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3383                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3384         return 0;
3385 }
3386
3387 /**
3388  *      t4_get_scfg_version - return the Serial Configuration version
3389  *      @adapter: the adapter
3390  *      @vers: where to place the version
3391  *
3392  *      Reads the Serial Configuration Version via the Firmware interface
3393  *      (thus this can only be called once we're ready to issue Firmware
3394  *      commands).  The format of the Serial Configuration version is
3395  *      adapter specific.  Returns 0 on success, an error on failure.
3396  *
3397  *      Note that early versions of the Firmware didn't include the ability
3398  *      to retrieve the Serial Configuration version, so we zero-out the
3399  *      return-value parameter in that case to avoid leaving it with
3400  *      garbage in it.
3401  *
3402  *      Also note that the Firmware will return its cached copy of the Serial
3403  *      Initialization Revision ID, not the actual Revision ID as written in
3404  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3405  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3406  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3407  *      been issued if the Host Driver will be performing a full adapter
3408  *      initialization.
3409  */
3410 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3411 {
3412         u32 scfgrev_param;
3413         int ret;
3414
3415         scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3416                          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3417         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3418                               1, &scfgrev_param, vers);
3419         if (ret)
3420                 *vers = 0;
3421         return ret;
3422 }
3423
3424 /**
3425  *      t4_get_vpd_version - return the VPD version
3426  *      @adapter: the adapter
3427  *      @vers: where to place the version
3428  *
3429  *      Reads the VPD via the Firmware interface (thus this can only be called
3430  *      once we're ready to issue Firmware commands).  The format of the
3431  *      VPD version is adapter specific.  Returns 0 on success, an error on
3432  *      failure.
3433  *
3434  *      Note that early versions of the Firmware didn't include the ability
3435  *      to retrieve the VPD version, so we zero-out the return-value parameter
3436  *      in that case to avoid leaving it with garbage in it.
3437  *
3438  *      Also note that the Firmware will return its cached copy of the VPD
3439  *      Revision ID, not the actual Revision ID as written in the Serial
3440  *      EEPROM.  This is only an issue if a new VPD has been written and the
3441  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3442  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3443  *      if the Host Driver will be performing a full adapter initialization.
3444  */
3445 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3446 {
3447         u32 vpdrev_param;
3448         int ret;
3449
3450         vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3451                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3452         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3453                               1, &vpdrev_param, vers);
3454         if (ret)
3455                 *vers = 0;
3456         return ret;
3457 }
3458
3459 /**
3460  *      t4_get_version_info - extract various chip/firmware version information
3461  *      @adapter: the adapter
3462  *
3463  *      Reads various chip/firmware version numbers and stores them into the
3464  *      adapter Adapter Parameters structure.  If any of the efforts fails
3465  *      the first failure will be returned, but all of the version numbers
3466  *      will be read.
3467  */
3468 int t4_get_version_info(struct adapter *adapter)
3469 {
3470         int ret = 0;
3471
3472         #define FIRST_RET(__getvinfo) \
3473         do { \
3474                 int __ret = __getvinfo; \
3475                 if (__ret && !ret) \
3476                         ret = __ret; \
3477         } while (0)
3478
3479         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3480         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3481         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3482         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3483         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3484         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3485
3486         #undef FIRST_RET
3487
3488         return ret;
3489 }
3490
3491 /**
3492  *      t4_flash_erase_sectors - erase a range of flash sectors
3493  *      @adapter: the adapter
3494  *      @start: the first sector to erase
3495  *      @end: the last sector to erase
3496  *
3497  *      Erases the sectors in the given inclusive range.
3498  */
3499 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3500 {
3501         int ret = 0;
3502
3503         if (end >= adapter->params.sf_nsec)
3504                 return -EINVAL;
3505
3506         while (start <= end) {
3507                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3508                     (ret = sf1_write(adapter, 4, 0, 1,
3509                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3510                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3511                         CH_ERR(adapter,
3512                                 "erase of flash sector %d failed, error %d\n",
3513                                 start, ret);
3514                         break;
3515                 }
3516                 start++;
3517         }
3518         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3519         return ret;
3520 }
3521
3522 /**
3523  *      t4_flash_cfg_addr - return the address of the flash configuration file
3524  *      @adapter: the adapter
3525  *
3526  *      Return the address within the flash where the Firmware Configuration
3527  *      File is stored, or an error if the device FLASH is too small to contain
3528  *      a Firmware Configuration File.
3529  */
3530 int t4_flash_cfg_addr(struct adapter *adapter)
3531 {
3532         /*
3533          * If the device FLASH isn't large enough to hold a Firmware
3534          * Configuration File, return an error.
3535          */
3536         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3537                 return -ENOSPC;
3538
3539         return FLASH_CFG_START;
3540 }
3541
3542 /*
3543  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3544  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3545  * and emit an error message for mismatched firmware to save our caller the
3546  * effort ...
3547  */
3548 static int t4_fw_matches_chip(struct adapter *adap,
3549                               const struct fw_hdr *hdr)
3550 {
3551         /*
3552          * The expression below will return FALSE for any unsupported adapter
3553          * which will keep us "honest" in the future ...
3554          */
3555         if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3556             (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3557             (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3558                 return 1;
3559
3560         CH_ERR(adap,
3561                 "FW image (%d) is not suitable for this adapter (%d)\n",
3562                 hdr->chip, chip_id(adap));
3563         return 0;
3564 }
3565
3566 /**
3567  *      t4_load_fw - download firmware
3568  *      @adap: the adapter
3569  *      @fw_data: the firmware image to write
3570  *      @size: image size
3571  *
3572  *      Write the supplied firmware image to the card's serial flash.
3573  */
3574 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3575 {
3576         u32 csum;
3577         int ret, addr;
3578         unsigned int i;
3579         u8 first_page[SF_PAGE_SIZE];
3580         const u32 *p = (const u32 *)fw_data;
3581         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3582         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3583         unsigned int fw_start_sec;
3584         unsigned int fw_start;
3585         unsigned int fw_size;
3586
3587         if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3588                 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3589                 fw_start = FLASH_FWBOOTSTRAP_START;
3590                 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3591         } else {
3592                 fw_start_sec = FLASH_FW_START_SEC;
3593                 fw_start = FLASH_FW_START;
3594                 fw_size = FLASH_FW_MAX_SIZE;
3595         }
3596
3597         if (!size) {
3598                 CH_ERR(adap, "FW image has no data\n");
3599                 return -EINVAL;
3600         }
3601         if (size & 511) {
3602                 CH_ERR(adap,
3603                         "FW image size not multiple of 512 bytes\n");
3604                 return -EINVAL;
3605         }
3606         if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3607                 CH_ERR(adap,
3608                         "FW image size differs from size in FW header\n");
3609                 return -EINVAL;
3610         }
3611         if (size > fw_size) {
3612                 CH_ERR(adap, "FW image too large, max is %u bytes\n",
3613                         fw_size);
3614                 return -EFBIG;
3615         }
3616         if (!t4_fw_matches_chip(adap, hdr))
3617                 return -EINVAL;
3618
3619         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3620                 csum += be32_to_cpu(p[i]);
3621
3622         if (csum != 0xffffffff) {
3623                 CH_ERR(adap,
3624                         "corrupted firmware image, checksum %#x\n", csum);
3625                 return -EINVAL;
3626         }
3627
3628         i = DIV_ROUND_UP(size, sf_sec_size);    /* # of sectors spanned */
3629         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3630         if (ret)
3631                 goto out;
3632
3633         /*
3634          * We write the correct version at the end so the driver can see a bad
3635          * version if the FW write fails.  Start by writing a copy of the
3636          * first page with a bad version.
3637          */
3638         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3639         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3640         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3641         if (ret)
3642                 goto out;
3643
3644         addr = fw_start;
3645         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3646                 addr += SF_PAGE_SIZE;
3647                 fw_data += SF_PAGE_SIZE;
3648                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3649                 if (ret)
3650                         goto out;
3651         }
3652
3653         ret = t4_write_flash(adap,
3654                              fw_start + offsetof(struct fw_hdr, fw_ver),
3655                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3656 out:
3657         if (ret)
3658                 CH_ERR(adap, "firmware download failed, error %d\n",
3659                         ret);
3660         return ret;
3661 }
3662
3663 /**
3664  *      t4_fwcache - firmware cache operation
3665  *      @adap: the adapter
3666  *      @op  : the operation (flush or flush and invalidate)
3667  */
3668 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3669 {
3670         struct fw_params_cmd c;
3671
3672         memset(&c, 0, sizeof(c));
3673         c.op_to_vfn =
3674             cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3675                             F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3676                                 V_FW_PARAMS_CMD_PFN(adap->pf) |
3677                                 V_FW_PARAMS_CMD_VFN(0));
3678         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3679         c.param[0].mnem =
3680             cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3681                             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3682         c.param[0].val = (__force __be32)op;
3683
3684         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3685 }
3686
3687 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3688                         unsigned int *pif_req_wrptr,
3689                         unsigned int *pif_rsp_wrptr)
3690 {
3691         int i, j;
3692         u32 cfg, val, req, rsp;
3693
3694         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3695         if (cfg & F_LADBGEN)
3696                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3697
3698         val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3699         req = G_POLADBGWRPTR(val);
3700         rsp = G_PILADBGWRPTR(val);
3701         if (pif_req_wrptr)
3702                 *pif_req_wrptr = req;
3703         if (pif_rsp_wrptr)
3704                 *pif_rsp_wrptr = rsp;
3705
3706         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3707                 for (j = 0; j < 6; j++) {
3708                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3709                                      V_PILADBGRDPTR(rsp));
3710                         *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3711                         *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3712                         req++;
3713                         rsp++;
3714                 }
3715                 req = (req + 2) & M_POLADBGRDPTR;
3716                 rsp = (rsp + 2) & M_PILADBGRDPTR;
3717         }
3718         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3719 }
3720
3721 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3722 {
3723         u32 cfg;
3724         int i, j, idx;
3725
3726         cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3727         if (cfg & F_LADBGEN)
3728                 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3729
3730         for (i = 0; i < CIM_MALA_SIZE; i++) {
3731                 for (j = 0; j < 5; j++) {
3732                         idx = 8 * i + j;
3733                         t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3734                                      V_PILADBGRDPTR(idx));
3735                         *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3736                         *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3737                 }
3738         }
3739         t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3740 }
3741
3742 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3743 {
3744         unsigned int i, j;
3745
3746         for (i = 0; i < 8; i++) {
3747                 u32 *p = la_buf + i;
3748
3749                 t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3750                 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3751                 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3752                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3753                         *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3754         }
3755 }
3756
3757 /**
3758  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3759  *      @caps16: a 16-bit Port Capabilities value
3760  *
3761  *      Returns the equivalent 32-bit Port Capabilities value.
3762  */
3763 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3764 {
3765         uint32_t caps32 = 0;
3766
3767         #define CAP16_TO_CAP32(__cap) \
3768                 do { \
3769                         if (caps16 & FW_PORT_CAP_##__cap) \
3770                                 caps32 |= FW_PORT_CAP32_##__cap; \
3771                 } while (0)
3772
3773         CAP16_TO_CAP32(SPEED_100M);
3774         CAP16_TO_CAP32(SPEED_1G);
3775         CAP16_TO_CAP32(SPEED_25G);
3776         CAP16_TO_CAP32(SPEED_10G);
3777         CAP16_TO_CAP32(SPEED_40G);
3778         CAP16_TO_CAP32(SPEED_100G);
3779         CAP16_TO_CAP32(FC_RX);
3780         CAP16_TO_CAP32(FC_TX);
3781         CAP16_TO_CAP32(ANEG);
3782         CAP16_TO_CAP32(FORCE_PAUSE);
3783         CAP16_TO_CAP32(MDIAUTO);
3784         CAP16_TO_CAP32(MDISTRAIGHT);
3785         CAP16_TO_CAP32(FEC_RS);
3786         CAP16_TO_CAP32(FEC_BASER_RS);
3787         CAP16_TO_CAP32(802_3_PAUSE);
3788         CAP16_TO_CAP32(802_3_ASM_DIR);
3789
3790         #undef CAP16_TO_CAP32
3791
3792         return caps32;
3793 }
3794
3795 /**
3796  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3797  *      @caps32: a 32-bit Port Capabilities value
3798  *
3799  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
3800  *      not all 32-bit Port Capabilities can be represented in the 16-bit
3801  *      Port Capabilities and some fields/values may not make it.
3802  */
3803 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3804 {
3805         uint16_t caps16 = 0;
3806
3807         #define CAP32_TO_CAP16(__cap) \
3808                 do { \
3809                         if (caps32 & FW_PORT_CAP32_##__cap) \
3810                                 caps16 |= FW_PORT_CAP_##__cap; \
3811                 } while (0)
3812
3813         CAP32_TO_CAP16(SPEED_100M);
3814         CAP32_TO_CAP16(SPEED_1G);
3815         CAP32_TO_CAP16(SPEED_10G);
3816         CAP32_TO_CAP16(SPEED_25G);
3817         CAP32_TO_CAP16(SPEED_40G);
3818         CAP32_TO_CAP16(SPEED_100G);
3819         CAP32_TO_CAP16(FC_RX);
3820         CAP32_TO_CAP16(FC_TX);
3821         CAP32_TO_CAP16(802_3_PAUSE);
3822         CAP32_TO_CAP16(802_3_ASM_DIR);
3823         CAP32_TO_CAP16(ANEG);
3824         CAP32_TO_CAP16(FORCE_PAUSE);
3825         CAP32_TO_CAP16(MDIAUTO);
3826         CAP32_TO_CAP16(MDISTRAIGHT);
3827         CAP32_TO_CAP16(FEC_RS);
3828         CAP32_TO_CAP16(FEC_BASER_RS);
3829
3830         #undef CAP32_TO_CAP16
3831
3832         return caps16;
3833 }
3834
3835 static bool
3836 is_bt(struct port_info *pi)
3837 {
3838
3839         return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3840             pi->port_type == FW_PORT_TYPE_BT_XFI ||
3841             pi->port_type == FW_PORT_TYPE_BT_XAUI);
3842 }
3843
3844 /**
3845  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3846  *      @phy: the PHY to setup
3847  *      @mac: the MAC to setup
3848  *      @lc: the requested link configuration
3849  *
3850  *      Set up a port's MAC and PHY according to a desired link configuration.
3851  *      - If the PHY can auto-negotiate first decide what to advertise, then
3852  *        enable/disable auto-negotiation as desired, and reset.
3853  *      - If the PHY does not auto-negotiate just reset it.
3854  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3855  *        otherwise do it later based on the outcome of auto-negotiation.
3856  */
3857 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3858                   struct link_config *lc)
3859 {
3860         struct fw_port_cmd c;
3861         unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3862         unsigned int aneg, fc, fec, speed, rcap;
3863
3864         fc = 0;
3865         if (lc->requested_fc & PAUSE_RX)
3866                 fc |= FW_PORT_CAP32_FC_RX;
3867         if (lc->requested_fc & PAUSE_TX)
3868                 fc |= FW_PORT_CAP32_FC_TX;
3869         if (!(lc->requested_fc & PAUSE_AUTONEG))
3870                 fc |= FW_PORT_CAP32_FORCE_PAUSE;
3871
3872         fec = 0;
3873         if (lc->requested_fec == FEC_AUTO)
3874                 fec = lc->fec_hint;
3875         else {
3876                 if (lc->requested_fec & FEC_RS)
3877                         fec |= FW_PORT_CAP32_FEC_RS;
3878                 if (lc->requested_fec & FEC_BASER_RS)
3879                         fec |= FW_PORT_CAP32_FEC_BASER_RS;
3880         }
3881
3882         if (lc->requested_aneg == AUTONEG_DISABLE)
3883                 aneg = 0;
3884         else if (lc->requested_aneg == AUTONEG_ENABLE)
3885                 aneg = FW_PORT_CAP32_ANEG;
3886         else
3887                 aneg = lc->supported & FW_PORT_CAP32_ANEG;
3888
3889         if (aneg) {
3890                 speed = lc->supported & V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3891         } else if (lc->requested_speed != 0)
3892                 speed = speed_to_fwcap(lc->requested_speed);
3893         else
3894                 speed = fwcap_top_speed(lc->supported);
3895
3896         /* Force AN on for BT cards. */
3897         if (is_bt(adap->port[adap->chan_map[port]]))
3898                 aneg = lc->supported & FW_PORT_CAP32_ANEG;
3899
3900         rcap = aneg | speed | fc | fec;
3901         if ((rcap | lc->supported) != lc->supported) {
3902 #ifdef INVARIANTS
3903                 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3904                     lc->supported);
3905 #endif
3906                 rcap &= lc->supported;
3907         }
3908         rcap |= mdi;
3909
3910         memset(&c, 0, sizeof(c));
3911         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3912                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3913                                      V_FW_PORT_CMD_PORTID(port));
3914         if (adap->params.port_caps32) {
3915                 c.action_to_len16 =
3916                     cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3917                         FW_LEN16(c));
3918                 c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3919         } else {
3920                 c.action_to_len16 =
3921                     cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3922                             FW_LEN16(c));
3923                 c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3924         }
3925
3926         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3927 }
3928
3929 /**
3930  *      t4_restart_aneg - restart autonegotiation
3931  *      @adap: the adapter
3932  *      @mbox: mbox to use for the FW command
3933  *      @port: the port id
3934  *
3935  *      Restarts autonegotiation for the selected port.
3936  */
3937 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3938 {
3939         struct fw_port_cmd c;
3940
3941         memset(&c, 0, sizeof(c));
3942         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3943                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3944                                      V_FW_PORT_CMD_PORTID(port));
3945         c.action_to_len16 =
3946                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3947                             FW_LEN16(c));
3948         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3949         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3950 }
3951
3952 struct intr_details {
3953         u32 mask;
3954         const char *msg;
3955 };
3956
3957 struct intr_action {
3958         u32 mask;
3959         int arg;
3960         bool (*action)(struct adapter *, int, bool);
3961 };
3962
3963 #define NONFATAL_IF_DISABLED 1
3964 struct intr_info {
3965         const char *name;       /* name of the INT_CAUSE register */
3966         int cause_reg;          /* INT_CAUSE register */
3967         int enable_reg;         /* INT_ENABLE register */
3968         u32 fatal;              /* bits that are fatal */
3969         int flags;              /* hints */
3970         const struct intr_details *details;
3971         const struct intr_action *actions;
3972 };
3973
3974 static inline char
3975 intr_alert_char(u32 cause, u32 enable, u32 fatal)
3976 {
3977
3978         if (cause & fatal)
3979                 return ('!');
3980         if (cause & enable)
3981                 return ('*');
3982         return ('-');
3983 }
3984
3985 static void
3986 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
3987 {
3988         u32 enable, fatal, leftover;
3989         const struct intr_details *details;
3990         char alert;
3991
3992         enable = t4_read_reg(adap, ii->enable_reg);
3993         if (ii->flags & NONFATAL_IF_DISABLED)
3994                 fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
3995         else
3996                 fatal = ii->fatal;
3997         alert = intr_alert_char(cause, enable, fatal);
3998         CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
3999             alert, ii->name, ii->cause_reg, cause, enable, fatal);
4000
4001         leftover = cause;
4002         for (details = ii->details; details && details->mask != 0; details++) {
4003                 u32 msgbits = details->mask & cause;
4004                 if (msgbits == 0)
4005                         continue;
4006                 alert = intr_alert_char(msgbits, enable, ii->fatal);
4007                 CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4008                     details->msg);
4009                 leftover &= ~msgbits;
4010         }
4011         if (leftover != 0 && leftover != cause)
4012                 CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4013 }
4014
4015 /*
4016  * Returns true for fatal error.
4017  */
4018 static bool
4019 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4020     u32 additional_cause, bool verbose)
4021 {
4022         u32 cause, fatal;
4023         bool rc;
4024         const struct intr_action *action;
4025
4026         /* read and display cause. */
4027         cause = t4_read_reg(adap, ii->cause_reg);
4028         if (verbose || cause != 0)
4029                 t4_show_intr_info(adap, ii, cause);
4030         /*
4031          * The top level interrupt cause is a bit special and we need to ignore
4032          * the bits that are not in the enable.  Note that we did display them
4033          * above in t4_show_intr_info but will not clear them.
4034          */
4035         if (ii->cause_reg == A_PL_INT_CAUSE)
4036                 cause &= t4_read_reg(adap, ii->enable_reg);
4037         fatal = cause & ii->fatal;
4038         if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4039                 fatal &= t4_read_reg(adap, ii->enable_reg);
4040         cause |= additional_cause;
4041         if (cause == 0)
4042                 return (false);
4043
4044         rc = fatal != 0;
4045         for (action = ii->actions; action && action->mask != 0; action++) {
4046                 if (!(action->mask & cause))
4047                         continue;
4048                 rc |= (action->action)(adap, action->arg, verbose);
4049         }
4050
4051         /* clear */
4052         t4_write_reg(adap, ii->cause_reg, cause);
4053         (void)t4_read_reg(adap, ii->cause_reg);
4054
4055         return (rc);
4056 }
4057
4058 /*
4059  * Interrupt handler for the PCIE module.
4060  */
4061 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4062 {
4063         static const struct intr_details sysbus_intr_details[] = {
4064                 { F_RNPP, "RXNP array parity error" },
4065                 { F_RPCP, "RXPC array parity error" },
4066                 { F_RCIP, "RXCIF array parity error" },
4067                 { F_RCCP, "Rx completions control array parity error" },
4068                 { F_RFTP, "RXFT array parity error" },
4069                 { 0 }
4070         };
4071         static const struct intr_info sysbus_intr_info = {
4072                 .name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4073                 .cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4074                 .enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4075                 .fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4076                 .flags = 0,
4077                 .details = sysbus_intr_details,
4078                 .actions = NULL,
4079         };
4080         static const struct intr_details pcie_port_intr_details[] = {
4081                 { F_TPCP, "TXPC array parity error" },
4082                 { F_TNPP, "TXNP array parity error" },
4083                 { F_TFTP, "TXFT array parity error" },
4084                 { F_TCAP, "TXCA array parity error" },
4085                 { F_TCIP, "TXCIF array parity error" },
4086                 { F_RCAP, "RXCA array parity error" },
4087                 { F_OTDD, "outbound request TLP discarded" },
4088                 { F_RDPE, "Rx data parity error" },
4089                 { F_TDUE, "Tx uncorrectable data error" },
4090                 { 0 }
4091         };
4092         static const struct intr_info pcie_port_intr_info = {
4093                 .name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4094                 .cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4095                 .enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4096                 .fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4097                     F_OTDD | F_RDPE | F_TDUE,
4098                 .flags = 0,
4099                 .details = pcie_port_intr_details,
4100                 .actions = NULL,
4101         };
4102         static const struct intr_details pcie_intr_details[] = {
4103                 { F_MSIADDRLPERR, "MSI AddrL parity error" },
4104                 { F_MSIADDRHPERR, "MSI AddrH parity error" },
4105                 { F_MSIDATAPERR, "MSI data parity error" },
4106                 { F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4107                 { F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4108                 { F_MSIXDATAPERR, "MSI-X data parity error" },
4109                 { F_MSIXDIPERR, "MSI-X DI parity error" },
4110                 { F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4111                 { F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4112                 { F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4113                 { F_CCNTPERR, "PCIe CMD channel count parity error" },
4114                 { F_CREQPERR, "PCIe CMD channel request parity error" },
4115                 { F_CRSPPERR, "PCIe CMD channel response parity error" },
4116                 { F_DCNTPERR, "PCIe DMA channel count parity error" },
4117                 { F_DREQPERR, "PCIe DMA channel request parity error" },
4118                 { F_DRSPPERR, "PCIe DMA channel response parity error" },
4119                 { F_HCNTPERR, "PCIe HMA channel count parity error" },
4120                 { F_HREQPERR, "PCIe HMA channel request parity error" },
4121                 { F_HRSPPERR, "PCIe HMA channel response parity error" },
4122                 { F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4123                 { F_FIDPERR, "PCIe FID parity error" },
4124                 { F_INTXCLRPERR, "PCIe INTx clear parity error" },
4125                 { F_MATAGPERR, "PCIe MA tag parity error" },
4126                 { F_PIOTAGPERR, "PCIe PIO tag parity error" },
4127                 { F_RXCPLPERR, "PCIe Rx completion parity error" },
4128                 { F_RXWRPERR, "PCIe Rx write parity error" },
4129                 { F_RPLPERR, "PCIe replay buffer parity error" },
4130                 { F_PCIESINT, "PCIe core secondary fault" },
4131                 { F_PCIEPINT, "PCIe core primary fault" },
4132                 { F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4133                 { 0 }
4134         };
4135         static const struct intr_details t5_pcie_intr_details[] = {
4136                 { F_IPGRPPERR, "Parity errors observed by IP" },
4137                 { F_NONFATALERR, "PCIe non-fatal error" },
4138                 { F_READRSPERR, "Outbound read error" },
4139                 { F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4140                 { F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4141                 { F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4142                 { F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4143                 { F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4144                 { F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4145                 { F_MAGRPPERR, "MA group FIFO parity error" },
4146                 { F_VFIDPERR, "VFID SRAM parity error" },
4147                 { F_FIDPERR, "FID SRAM parity error" },
4148                 { F_CFGSNPPERR, "config snoop FIFO parity error" },
4149                 { F_HRSPPERR, "HMA channel response data SRAM parity error" },
4150                 { F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4151                 { F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4152                 { F_DRSPPERR, "DMA channel response data SRAM parity error" },
4153                 { F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4154                 { F_CRSPPERR, "CMD channel response data SRAM parity error" },
4155                 { F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4156                 { F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4157                 { F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4158                 { F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4159                 { F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4160                 { F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4161                 { F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4162                 { F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4163                 { F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4164                 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4165                 { F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4166                 { F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4167                 { 0 }
4168         };
4169         struct intr_info pcie_intr_info = {
4170                 .name = "PCIE_INT_CAUSE",
4171                 .cause_reg = A_PCIE_INT_CAUSE,
4172                 .enable_reg = A_PCIE_INT_ENABLE,
4173                 .fatal = 0xffffffff,
4174                 .flags = NONFATAL_IF_DISABLED,
4175                 .details = NULL,
4176                 .actions = NULL,
4177         };
4178         bool fatal = false;
4179
4180         if (is_t4(adap)) {
4181                 fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4182                 fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4183
4184                 pcie_intr_info.details = pcie_intr_details;
4185         } else {
4186                 pcie_intr_info.details = t5_pcie_intr_details;
4187         }
4188         fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4189
4190         return (fatal);
4191 }
4192
4193 /*
4194  * TP interrupt handler.
4195  */
4196 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4197 {
4198         static const struct intr_details tp_intr_details[] = {
4199                 { 0x3fffffff, "TP parity error" },
4200                 { F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4201                 { 0 }
4202         };
4203         static const struct intr_info tp_intr_info = {
4204                 .name = "TP_INT_CAUSE",
4205                 .cause_reg = A_TP_INT_CAUSE,
4206                 .enable_reg = A_TP_INT_ENABLE,
4207                 .fatal = 0x7fffffff,
4208                 .flags = NONFATAL_IF_DISABLED,
4209                 .details = tp_intr_details,
4210                 .actions = NULL,
4211         };
4212
4213         return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4214 }
4215
4216 /*
4217  * SGE interrupt handler.
4218  */
4219 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4220 {
4221         static const struct intr_info sge_int1_info = {
4222                 .name = "SGE_INT_CAUSE1",
4223                 .cause_reg = A_SGE_INT_CAUSE1,
4224                 .enable_reg = A_SGE_INT_ENABLE1,
4225                 .fatal = 0xffffffff,
4226                 .flags = NONFATAL_IF_DISABLED,
4227                 .details = NULL,
4228                 .actions = NULL,
4229         };
4230         static const struct intr_info sge_int2_info = {
4231                 .name = "SGE_INT_CAUSE2",
4232                 .cause_reg = A_SGE_INT_CAUSE2,
4233                 .enable_reg = A_SGE_INT_ENABLE2,
4234                 .fatal = 0xffffffff,
4235                 .flags = NONFATAL_IF_DISABLED,
4236                 .details = NULL,
4237                 .actions = NULL,
4238         };
4239         static const struct intr_details sge_int3_details[] = {
4240                 { F_ERR_FLM_DBP,
4241                         "DBP pointer delivery for invalid context or QID" },
4242                 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4243                         "Invalid QID or header request by IDMA" },
4244                 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4245                 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4246                 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4247                 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4248                 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4249                 { F_ERR_TIMER_ABOVE_MAX_QID,
4250                         "SGE GTS with timer 0-5 for IQID > 1023" },
4251                 { F_ERR_CPL_EXCEED_IQE_SIZE,
4252                         "SGE received CPL exceeding IQE size" },
4253                 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4254                 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4255                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4256                 { F_ERR_DROPPED_DB, "SGE DB dropped" },
4257                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4258                   "SGE IQID > 1023 received CPL for FL" },
4259                 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4260                         F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4261                 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4262                 { F_ERR_ING_CTXT_PRIO,
4263                         "Ingress context manager priority user error" },
4264                 { F_ERR_EGR_CTXT_PRIO,
4265                         "Egress context manager priority user error" },
4266                 { F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4267                 { F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4268                 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4269                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4270                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4271                 { 0x0000000f, "SGE context access for invalid queue" },
4272                 { 0 }
4273         };
4274         static const struct intr_details t6_sge_int3_details[] = {
4275                 { F_ERR_FLM_DBP,
4276                         "DBP pointer delivery for invalid context or QID" },
4277                 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4278                         "Invalid QID or header request by IDMA" },
4279                 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4280                 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4281                 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4282                 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4283                 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4284                 { F_ERR_TIMER_ABOVE_MAX_QID,
4285                         "SGE GTS with timer 0-5 for IQID > 1023" },
4286                 { F_ERR_CPL_EXCEED_IQE_SIZE,
4287                         "SGE received CPL exceeding IQE size" },
4288                 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4289                 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4290                 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4291                 { F_ERR_DROPPED_DB, "SGE DB dropped" },
4292                 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4293                         "SGE IQID > 1023 received CPL for FL" },
4294                 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4295                         F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4296                 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4297                 { F_ERR_ING_CTXT_PRIO,
4298                         "Ingress context manager priority user error" },
4299                 { F_ERR_EGR_CTXT_PRIO,
4300                         "Egress context manager priority user error" },
4301                 { F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4302                 { F_FATAL_WRE_LEN,
4303                         "SGE WRE packet less than advertized length" },
4304                 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4305                 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4306                 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4307                 { 0x0000000f, "SGE context access for invalid queue" },
4308                 { 0 }
4309         };
4310         struct intr_info sge_int3_info = {
4311                 .name = "SGE_INT_CAUSE3",
4312                 .cause_reg = A_SGE_INT_CAUSE3,
4313                 .enable_reg = A_SGE_INT_ENABLE3,
4314                 .fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4315                 .flags = 0,
4316                 .details = NULL,
4317                 .actions = NULL,
4318         };
4319         static const struct intr_info sge_int4_info = {
4320                 .name = "SGE_INT_CAUSE4",
4321                 .cause_reg = A_SGE_INT_CAUSE4,
4322                 .enable_reg = A_SGE_INT_ENABLE4,
4323                 .fatal = 0,
4324                 .flags = 0,
4325                 .details = NULL,
4326                 .actions = NULL,
4327         };
4328         static const struct intr_info sge_int5_info = {
4329                 .name = "SGE_INT_CAUSE5",
4330                 .cause_reg = A_SGE_INT_CAUSE5,
4331                 .enable_reg = A_SGE_INT_ENABLE5,
4332                 .fatal = 0xffffffff,
4333                 .flags = NONFATAL_IF_DISABLED,
4334                 .details = NULL,
4335                 .actions = NULL,
4336         };
4337         static const struct intr_info sge_int6_info = {
4338                 .name = "SGE_INT_CAUSE6",
4339                 .cause_reg = A_SGE_INT_CAUSE6,
4340                 .enable_reg = A_SGE_INT_ENABLE6,
4341                 .fatal = 0,
4342                 .flags = 0,
4343                 .details = NULL,
4344                 .actions = NULL,
4345         };
4346
4347         bool fatal;
4348         u32 v;
4349
4350         if (chip_id(adap) <= CHELSIO_T5) {
4351                 sge_int3_info.details = sge_int3_details;
4352         } else {
4353                 sge_int3_info.details = t6_sge_int3_details;
4354         }
4355
4356         fatal = false;
4357         fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4358         fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4359         fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4360         fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4361         if (chip_id(adap) >= CHELSIO_T5)
4362                 fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4363         if (chip_id(adap) >= CHELSIO_T6)
4364                 fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4365
4366         v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4367         if (v & F_ERROR_QID_VALID) {
4368                 CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4369                 if (v & F_UNCAPTURED_ERROR)
4370                         CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4371                 t4_write_reg(adap, A_SGE_ERROR_STATS,
4372                     F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4373         }
4374
4375         return (fatal);
4376 }
4377
4378 /*
4379  * CIM interrupt handler.
4380  */
4381 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4382 {
4383         static const struct intr_action cim_host_intr_actions[] = {
4384                 { F_TIMER0INT, 0, t4_os_dump_cimla },
4385                 { 0 },
4386         };
4387         static const struct intr_details cim_host_intr_details[] = {
4388                 /* T6+ */
4389                 { F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4390
4391                 /* T5+ */
4392                 { F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4393                 { F_PLCIM_MSTRSPDATAPARERR,
4394                         "PL2CIM master response data parity error" },
4395                 { F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4396                 { F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4397                 { F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4398                 { F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4399                 { F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4400                 { F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4401
4402                 /* T4+ */
4403                 { F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4404                 { F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4405                 { F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4406                 { F_MBUPPARERR, "CIM mailbox uP parity error" },
4407                 { F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4408                 { F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4409                 { F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4410                 { F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4411                 { F_IBQSGEHIPARERR | F_IBQPCIEPARERR,   /* same bit */
4412                         "CIM IBQ PCIe/SGE_HI parity error" },
4413                 { F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4414                 { F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4415                 { F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4416                 { F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4417                 { F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4418                 { F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4419                 { F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4420                 { F_TIMER1INT, "CIM TIMER0 interrupt" },
4421                 { F_TIMER0INT, "CIM TIMER0 interrupt" },
4422                 { F_PREFDROPINT, "CIM control register prefetch drop" },
4423                 { 0}
4424         };
4425         static const struct intr_info cim_host_intr_info = {
4426                 .name = "CIM_HOST_INT_CAUSE",
4427                 .cause_reg = A_CIM_HOST_INT_CAUSE,
4428                 .enable_reg = A_CIM_HOST_INT_ENABLE,
4429                 .fatal = 0x007fffe6,
4430                 .flags = NONFATAL_IF_DISABLED,
4431                 .details = cim_host_intr_details,
4432                 .actions = cim_host_intr_actions,
4433         };
4434         static const struct intr_details cim_host_upacc_intr_details[] = {
4435                 { F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4436                 { F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4437                 { F_TIMEOUTINT, "CIM PIF timeout" },
4438                 { F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4439                 { F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4440                 { F_BLKWRPLINT, "CIM block write to PL space" },
4441                 { F_BLKRDPLINT, "CIM block read from PL space" },
4442                 { F_SGLWRPLINT,
4443                         "CIM single write to PL space with illegal BEs" },
4444                 { F_SGLRDPLINT,
4445                         "CIM single read from PL space with illegal BEs" },
4446                 { F_BLKWRCTLINT, "CIM block write to CTL space" },
4447                 { F_BLKRDCTLINT, "CIM block read from CTL space" },
4448                 { F_SGLWRCTLINT,
4449                         "CIM single write to CTL space with illegal BEs" },
4450                 { F_SGLRDCTLINT,
4451                         "CIM single read from CTL space with illegal BEs" },
4452                 { F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4453                 { F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4454                 { F_SGLWREEPROMINT,
4455                         "CIM single write to EEPROM space with illegal BEs" },
4456                 { F_SGLRDEEPROMINT,
4457                         "CIM single read from EEPROM space with illegal BEs" },
4458                 { F_BLKWRFLASHINT, "CIM block write to flash space" },
4459                 { F_BLKRDFLASHINT, "CIM block read from flash space" },
4460                 { F_SGLWRFLASHINT, "CIM single write to flash space" },
4461                 { F_SGLRDFLASHINT,
4462                         "CIM single read from flash space with illegal BEs" },
4463                 { F_BLKWRBOOTINT, "CIM block write to boot space" },
4464                 { F_BLKRDBOOTINT, "CIM block read from boot space" },
4465                 { F_SGLWRBOOTINT, "CIM single write to boot space" },
4466                 { F_SGLRDBOOTINT,
4467                         "CIM single read from boot space with illegal BEs" },
4468                 { F_ILLWRBEINT, "CIM illegal write BEs" },
4469                 { F_ILLRDBEINT, "CIM illegal read BEs" },
4470                 { F_ILLRDINT, "CIM illegal read" },
4471                 { F_ILLWRINT, "CIM illegal write" },
4472                 { F_ILLTRANSINT, "CIM illegal transaction" },
4473                 { F_RSVDSPACEINT, "CIM reserved space access" },
4474                 {0}
4475         };
4476         static const struct intr_info cim_host_upacc_intr_info = {
4477                 .name = "CIM_HOST_UPACC_INT_CAUSE",
4478                 .cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4479                 .enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4480                 .fatal = 0x3fffeeff,
4481                 .flags = NONFATAL_IF_DISABLED,
4482                 .details = cim_host_upacc_intr_details,
4483                 .actions = NULL,
4484         };
4485         static const struct intr_info cim_pf_host_intr_info = {
4486                 .name = "CIM_PF_HOST_INT_CAUSE",
4487                 .cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4488                 .enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4489                 .fatal = 0,
4490                 .flags = 0,
4491                 .details = NULL,
4492                 .actions = NULL,
4493         };
4494         u32 val, fw_err;
4495         bool fatal;
4496
4497         fw_err = t4_read_reg(adap, A_PCIE_FW);
4498         if (fw_err & F_PCIE_FW_ERR)
4499                 t4_report_fw_error(adap);
4500
4501         /*
4502          * When the Firmware detects an internal error which normally wouldn't
4503          * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4504          * to make sure the Host sees the Firmware Crash.  So if we have a
4505          * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4506          * interrupt.
4507          */
4508         val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4509         if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4510             G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4511                 t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4512         }
4513
4514         fatal = false;
4515         fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4516         fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4517         fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4518
4519         return (fatal);
4520 }
4521
4522 /*
4523  * ULP RX interrupt handler.
4524  */
4525 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4526 {
4527         static const struct intr_details ulprx_intr_details[] = {
4528                 /* T5+ */
4529                 { F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4530                 { F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4531
4532                 /* T4+ */
4533                 { F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4534                 { F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4535                 { 0x007fffff, "ULPRX parity error" },
4536                 { 0 }
4537         };
4538         static const struct intr_info ulprx_intr_info = {
4539                 .name = "ULP_RX_INT_CAUSE",
4540                 .cause_reg = A_ULP_RX_INT_CAUSE,
4541                 .enable_reg = A_ULP_RX_INT_ENABLE,
4542                 .fatal = 0x07ffffff,
4543                 .flags = NONFATAL_IF_DISABLED,
4544                 .details = ulprx_intr_details,
4545                 .actions = NULL,
4546         };
4547         static const struct intr_info ulprx_intr2_info = {
4548                 .name = "ULP_RX_INT_CAUSE_2",
4549                 .cause_reg = A_ULP_RX_INT_CAUSE_2,
4550                 .enable_reg = A_ULP_RX_INT_ENABLE_2,
4551                 .fatal = 0,
4552                 .flags = 0,
4553                 .details = NULL,
4554                 .actions = NULL,
4555         };
4556         bool fatal = false;
4557
4558         fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4559         fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4560
4561         return (fatal);
4562 }
4563
4564 /*
4565  * ULP TX interrupt handler.
4566  */
4567 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4568 {
4569         static const struct intr_details ulptx_intr_details[] = {
4570                 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4571                 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4572                 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4573                 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4574                 { 0x0fffffff, "ULPTX parity error" },
4575                 { 0 }
4576         };
4577         static const struct intr_info ulptx_intr_info = {
4578                 .name = "ULP_TX_INT_CAUSE",
4579                 .cause_reg = A_ULP_TX_INT_CAUSE,
4580                 .enable_reg = A_ULP_TX_INT_ENABLE,
4581                 .fatal = 0x0fffffff,
4582                 .flags = NONFATAL_IF_DISABLED,
4583                 .details = ulptx_intr_details,
4584                 .actions = NULL,
4585         };
4586         static const struct intr_info ulptx_intr2_info = {
4587                 .name = "ULP_TX_INT_CAUSE_2",
4588                 .cause_reg = A_ULP_TX_INT_CAUSE_2,
4589                 .enable_reg = A_ULP_TX_INT_ENABLE_2,
4590                 .fatal = 0xf0,
4591                 .flags = NONFATAL_IF_DISABLED,
4592                 .details = NULL,
4593                 .actions = NULL,
4594         };
4595         bool fatal = false;
4596
4597         fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4598         fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4599
4600         return (fatal);
4601 }
4602
4603 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4604 {
4605         int i;
4606         u32 data[17];
4607
4608         t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4609             ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4610         for (i = 0; i < ARRAY_SIZE(data); i++) {
4611                 CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4612                     A_PM_TX_DBG_STAT0 + i, data[i]);
4613         }
4614
4615         return (false);
4616 }
4617
4618 /*
4619  * PM TX interrupt handler.
4620  */
4621 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4622 {
4623         static const struct intr_action pmtx_intr_actions[] = {
4624                 { 0xffffffff, 0, pmtx_dump_dbg_stats },
4625                 { 0 },
4626         };
4627         static const struct intr_details pmtx_intr_details[] = {
4628                 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4629                 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4630                 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4631                 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4632                 { 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4633                 { 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4634                 { 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4635                 { 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4636                 { 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4637                 { 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4638                 { F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4639                 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4640                 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4641                 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4642                 { 0 }
4643         };
4644         static const struct intr_info pmtx_intr_info = {
4645                 .name = "PM_TX_INT_CAUSE",
4646                 .cause_reg = A_PM_TX_INT_CAUSE,
4647                 .enable_reg = A_PM_TX_INT_ENABLE,
4648                 .fatal = 0xffffffff,
4649                 .flags = 0,
4650                 .details = pmtx_intr_details,
4651                 .actions = pmtx_intr_actions,
4652         };
4653
4654         return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4655 }
4656
4657 /*
4658  * PM RX interrupt handler.
4659  */
4660 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4661 {
4662         static const struct intr_details pmrx_intr_details[] = {
4663                 /* T6+ */
4664                 { 0x18000000, "PMRX ospi overflow" },
4665                 { F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4666                 { F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4667                 { F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4668                 { F_SDC_ERR, "PMRX SDC error" },
4669
4670                 /* T4+ */
4671                 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4672                 { 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4673                 { 0x0003c000, "PMRX iespi Rx framing error" },
4674                 { 0x00003c00, "PMRX iespi Tx framing error" },
4675                 { 0x00000300, "PMRX ocspi Rx framing error" },
4676                 { 0x000000c0, "PMRX ocspi Tx framing error" },
4677                 { 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4678                 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4679                 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4680                 { F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4681                 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4682                 { 0 }
4683         };
4684         static const struct intr_info pmrx_intr_info = {
4685                 .name = "PM_RX_INT_CAUSE",
4686                 .cause_reg = A_PM_RX_INT_CAUSE,
4687                 .enable_reg = A_PM_RX_INT_ENABLE,
4688                 .fatal = 0x1fffffff,
4689                 .flags = NONFATAL_IF_DISABLED,
4690                 .details = pmrx_intr_details,
4691                 .actions = NULL,
4692         };
4693
4694         return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4695 }
4696
4697 /*
4698  * CPL switch interrupt handler.
4699  */
4700 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4701 {
4702         static const struct intr_details cplsw_intr_details[] = {
4703                 /* T5+ */
4704                 { F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4705                 { F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4706
4707                 /* T4+ */
4708                 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4709                 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4710                 { F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4711                 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4712                 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4713                 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4714                 { 0 }
4715         };
4716         static const struct intr_info cplsw_intr_info = {
4717                 .name = "CPL_INTR_CAUSE",
4718                 .cause_reg = A_CPL_INTR_CAUSE,
4719                 .enable_reg = A_CPL_INTR_ENABLE,
4720                 .fatal = 0xff,
4721                 .flags = NONFATAL_IF_DISABLED,
4722                 .details = cplsw_intr_details,
4723                 .actions = NULL,
4724         };
4725
4726         return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4727 }
4728
4729 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4730 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4731 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4732     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4733     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4734     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4735 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4736     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4737     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4738
4739 /*
4740  * LE interrupt handler.
4741  */
4742 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4743 {
4744         static const struct intr_details le_intr_details[] = {
4745                 { F_REQQPARERR, "LE request queue parity error" },
4746                 { F_UNKNOWNCMD, "LE unknown command" },
4747                 { F_ACTRGNFULL, "LE active region full" },
4748                 { F_PARITYERR, "LE parity error" },
4749                 { F_LIPMISS, "LE LIP miss" },
4750                 { F_LIP0, "LE 0 LIP error" },
4751                 { 0 }
4752         };
4753         static const struct intr_details t6_le_intr_details[] = {
4754                 { F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4755                 { F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4756                 { F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4757                 { F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4758                 { F_TOTCNTERR, "LE total active < TCAM count" },
4759                 { F_CMDPRSRINTERR, "LE internal error in parser" },
4760                 { F_CMDTIDERR, "Incorrect tid in LE command" },
4761                 { F_T6_ACTRGNFULL, "LE active region full" },
4762                 { F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4763                 { F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4764                 { F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4765                 { F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4766                 { F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4767                 { F_TCAMACCFAIL, "LE TCAM access failure" },
4768                 { F_T6_UNKNOWNCMD, "LE unknown command" },
4769                 { F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4770                 { F_T6_LIPMISS, "LE CLIP lookup miss" },
4771                 { T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4772                 { 0 }
4773         };
4774         struct intr_info le_intr_info = {
4775                 .name = "LE_DB_INT_CAUSE",
4776                 .cause_reg = A_LE_DB_INT_CAUSE,
4777                 .enable_reg = A_LE_DB_INT_ENABLE,
4778                 .fatal = 0,
4779                 .flags = NONFATAL_IF_DISABLED,
4780                 .details = NULL,
4781                 .actions = NULL,
4782         };
4783
4784         if (chip_id(adap) <= CHELSIO_T5) {
4785                 le_intr_info.details = le_intr_details;
4786                 le_intr_info.fatal = T5_LE_FATAL_MASK;
4787         } else {
4788                 le_intr_info.details = t6_le_intr_details;
4789                 le_intr_info.fatal = T6_LE_FATAL_MASK;
4790         }
4791
4792         return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4793 }
4794
4795 /*
4796  * MPS interrupt handler.
4797  */
4798 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4799 {
4800         static const struct intr_details mps_rx_perr_intr_details[] = {
4801                 { 0xffffffff, "MPS Rx parity error" },
4802                 { 0 }
4803         };
4804         static const struct intr_info mps_rx_perr_intr_info = {
4805                 .name = "MPS_RX_PERR_INT_CAUSE",
4806                 .cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4807                 .enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4808                 .fatal = 0xffffffff,
4809                 .flags = NONFATAL_IF_DISABLED,
4810                 .details = mps_rx_perr_intr_details,
4811                 .actions = NULL,
4812         };
4813         static const struct intr_details mps_tx_intr_details[] = {
4814                 { F_PORTERR, "MPS Tx destination port is disabled" },
4815                 { F_FRMERR, "MPS Tx framing error" },
4816                 { F_SECNTERR, "MPS Tx SOP/EOP error" },
4817                 { F_BUBBLE, "MPS Tx underflow" },
4818                 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4819                 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4820                 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4821                 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4822                 { 0 }
4823         };
4824         static const struct intr_info mps_tx_intr_info = {
4825                 .name = "MPS_TX_INT_CAUSE",
4826                 .cause_reg = A_MPS_TX_INT_CAUSE,
4827                 .enable_reg = A_MPS_TX_INT_ENABLE,
4828                 .fatal = 0x1ffff,
4829                 .flags = NONFATAL_IF_DISABLED,
4830                 .details = mps_tx_intr_details,
4831                 .actions = NULL,
4832         };
4833         static const struct intr_details mps_trc_intr_details[] = {
4834                 { F_MISCPERR, "MPS TRC misc parity error" },
4835                 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4836                 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4837                 { 0 }
4838         };
4839         static const struct intr_info mps_trc_intr_info = {
4840                 .name = "MPS_TRC_INT_CAUSE",
4841                 .cause_reg = A_MPS_TRC_INT_CAUSE,
4842                 .enable_reg = A_MPS_TRC_INT_ENABLE,
4843                 .fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4844                 .flags = 0,
4845                 .details = mps_trc_intr_details,
4846                 .actions = NULL,
4847         };
4848         static const struct intr_details mps_stat_sram_intr_details[] = {
4849                 { 0xffffffff, "MPS statistics SRAM parity error" },
4850                 { 0 }
4851         };
4852         static const struct intr_info mps_stat_sram_intr_info = {
4853                 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4854                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4855                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4856                 .fatal = 0x1fffffff,
4857                 .flags = NONFATAL_IF_DISABLED,
4858                 .details = mps_stat_sram_intr_details,
4859                 .actions = NULL,
4860         };
4861         static const struct intr_details mps_stat_tx_intr_details[] = {
4862                 { 0xffffff, "MPS statistics Tx FIFO parity error" },
4863                 { 0 }
4864         };
4865         static const struct intr_info mps_stat_tx_intr_info = {
4866                 .name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4867                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4868                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4869                 .fatal =  0xffffff,
4870                 .flags = NONFATAL_IF_DISABLED,
4871                 .details = mps_stat_tx_intr_details,
4872                 .actions = NULL,
4873         };
4874         static const struct intr_details mps_stat_rx_intr_details[] = {
4875                 { 0xffffff, "MPS statistics Rx FIFO parity error" },
4876                 { 0 }
4877         };
4878         static const struct intr_info mps_stat_rx_intr_info = {
4879                 .name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4880                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4881                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4882                 .fatal =  0xffffff,
4883                 .flags = 0,
4884                 .details = mps_stat_rx_intr_details,
4885                 .actions = NULL,
4886         };
4887         static const struct intr_details mps_cls_intr_details[] = {
4888                 { F_HASHSRAM, "MPS hash SRAM parity error" },
4889                 { F_MATCHTCAM, "MPS match TCAM parity error" },
4890                 { F_MATCHSRAM, "MPS match SRAM parity error" },
4891                 { 0 }
4892         };
4893         static const struct intr_info mps_cls_intr_info = {
4894                 .name = "MPS_CLS_INT_CAUSE",
4895                 .cause_reg = A_MPS_CLS_INT_CAUSE,
4896                 .enable_reg = A_MPS_CLS_INT_ENABLE,
4897                 .fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4898                 .flags = 0,
4899                 .details = mps_cls_intr_details,
4900                 .actions = NULL,
4901         };
4902         static const struct intr_details mps_stat_sram1_intr_details[] = {
4903                 { 0xff, "MPS statistics SRAM1 parity error" },
4904                 { 0 }
4905         };
4906         static const struct intr_info mps_stat_sram1_intr_info = {
4907                 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4908                 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4909                 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4910                 .fatal = 0xff,
4911                 .flags = 0,
4912                 .details = mps_stat_sram1_intr_details,
4913                 .actions = NULL,
4914         };
4915
4916         bool fatal;
4917
4918         fatal = false;
4919         fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4920         fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4921         fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4922         fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4923         fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4924         fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4925         fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4926         if (chip_id(adap) > CHELSIO_T4) {
4927                 fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4928                     verbose);
4929         }
4930
4931         t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4932         t4_read_reg(adap, A_MPS_INT_CAUSE);     /* flush */
4933
4934         return (fatal);
4935
4936 }
4937
4938 /*
4939  * EDC/MC interrupt handler.
4940  */
4941 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4942 {
4943         static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
4944         unsigned int count_reg, v;
4945         static const struct intr_details mem_intr_details[] = {
4946                 { F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
4947                 { F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
4948                 { F_PERR_INT_CAUSE, "FIFO parity error" },
4949                 { 0 }
4950         };
4951         struct intr_info ii = {
4952                 .fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
4953                 .details = mem_intr_details,
4954                 .flags = 0,
4955                 .actions = NULL,
4956         };
4957         bool fatal;
4958
4959         switch (idx) {
4960         case MEM_EDC0:
4961                 ii.name = "EDC0_INT_CAUSE";
4962                 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
4963                 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
4964                 count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
4965                 break;
4966         case MEM_EDC1:
4967                 ii.name = "EDC1_INT_CAUSE";
4968                 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
4969                 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
4970                 count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
4971                 break;
4972         case MEM_MC0:
4973                 ii.name = "MC0_INT_CAUSE";
4974                 if (is_t4(adap)) {
4975                         ii.cause_reg = A_MC_INT_CAUSE;
4976                         ii.enable_reg = A_MC_INT_ENABLE;
4977                         count_reg = A_MC_ECC_STATUS;
4978                 } else {
4979                         ii.cause_reg = A_MC_P_INT_CAUSE;
4980                         ii.enable_reg = A_MC_P_INT_ENABLE;
4981                         count_reg = A_MC_P_ECC_STATUS;
4982                 }
4983                 break;
4984         case MEM_MC1:
4985                 ii.name = "MC1_INT_CAUSE";
4986                 ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
4987                 ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
4988                 count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
4989                 break;
4990         }
4991
4992         fatal = t4_handle_intr(adap, &ii, 0, verbose);
4993
4994         v = t4_read_reg(adap, count_reg);
4995         if (v != 0) {
4996                 if (G_ECC_UECNT(v) != 0) {
4997                         CH_ALERT(adap,
4998                             "%s: %u uncorrectable ECC data error(s)\n",
4999                             name[idx], G_ECC_UECNT(v));
5000                 }
5001                 if (G_ECC_CECNT(v) != 0) {
5002                         if (idx <= MEM_EDC1)
5003                                 t4_edc_err_read(adap, idx);
5004                         CH_WARN_RATELIMIT(adap,
5005                             "%s: %u correctable ECC data error(s)\n",
5006                             name[idx], G_ECC_CECNT(v));
5007                 }
5008                 t4_write_reg(adap, count_reg, 0xffffffff);
5009         }
5010
5011         return (fatal);
5012 }
5013
5014 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5015 {
5016         u32 v;
5017
5018         v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5019         CH_ALERT(adap,
5020             "MA address wrap-around error by client %u to address %#x\n",
5021             G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5022         t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5023
5024         return (false);
5025 }
5026
5027
5028 /*
5029  * MA interrupt handler.
5030  */
5031 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5032 {
5033         static const struct intr_action ma_intr_actions[] = {
5034                 { F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5035                 { 0 },
5036         };
5037         static const struct intr_info ma_intr_info = {
5038                 .name = "MA_INT_CAUSE",
5039                 .cause_reg = A_MA_INT_CAUSE,
5040                 .enable_reg = A_MA_INT_ENABLE,
5041                 .fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5042                 .flags = NONFATAL_IF_DISABLED,
5043                 .details = NULL,
5044                 .actions = ma_intr_actions,
5045         };
5046         static const struct intr_info ma_perr_status1 = {
5047                 .name = "MA_PARITY_ERROR_STATUS1",
5048                 .cause_reg = A_MA_PARITY_ERROR_STATUS1,
5049                 .enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5050                 .fatal = 0xffffffff,
5051                 .flags = 0,
5052                 .details = NULL,
5053                 .actions = NULL,
5054         };
5055         static const struct intr_info ma_perr_status2 = {
5056                 .name = "MA_PARITY_ERROR_STATUS2",
5057                 .cause_reg = A_MA_PARITY_ERROR_STATUS2,
5058                 .enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5059                 .fatal = 0xffffffff,
5060                 .flags = 0,
5061                 .details = NULL,
5062                 .actions = NULL,
5063         };
5064         bool fatal;
5065
5066         fatal = false;
5067         fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5068         fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5069         if (chip_id(adap) > CHELSIO_T4)
5070                 fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5071
5072         return (fatal);
5073 }
5074
5075 /*
5076  * SMB interrupt handler.
5077  */
5078 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5079 {
5080         static const struct intr_details smb_intr_details[] = {
5081                 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5082                 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5083                 { F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5084                 { 0 }
5085         };
5086         static const struct intr_info smb_intr_info = {
5087                 .name = "SMB_INT_CAUSE",
5088                 .cause_reg = A_SMB_INT_CAUSE,
5089                 .enable_reg = A_SMB_INT_ENABLE,
5090                 .fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5091                 .flags = 0,
5092                 .details = smb_intr_details,
5093                 .actions = NULL,
5094         };
5095
5096         return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5097 }
5098
5099 /*
5100  * NC-SI interrupt handler.
5101  */
5102 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5103 {
5104         static const struct intr_details ncsi_intr_details[] = {
5105                 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5106                 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5107                 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5108                 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5109                 { 0 }
5110         };
5111         static const struct intr_info ncsi_intr_info = {
5112                 .name = "NCSI_INT_CAUSE",
5113                 .cause_reg = A_NCSI_INT_CAUSE,
5114                 .enable_reg = A_NCSI_INT_ENABLE,
5115                 .fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5116                     F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5117                 .flags = 0,
5118                 .details = ncsi_intr_details,
5119                 .actions = NULL,
5120         };
5121
5122         return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5123 }
5124
5125 /*
5126  * MAC interrupt handler.
5127  */
5128 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5129 {
5130         static const struct intr_details mac_intr_details[] = {
5131                 { F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5132                 { F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5133                 { 0 }
5134         };
5135         char name[32];
5136         struct intr_info ii;
5137         bool fatal = false;
5138
5139         if (is_t4(adap)) {
5140                 snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5141                 ii.name = &name[0];
5142                 ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5143                 ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5144                 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5145                 ii.flags = 0;
5146                 ii.details = mac_intr_details;
5147                 ii.actions = NULL;
5148         } else {
5149                 snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5150                 ii.name = &name[0];
5151                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5152                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5153                 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5154                 ii.flags = 0;
5155                 ii.details = mac_intr_details;
5156                 ii.actions = NULL;
5157         }
5158         fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5159
5160         if (chip_id(adap) >= CHELSIO_T5) {
5161                 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5162                 ii.name = &name[0];
5163                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5164                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5165                 ii.fatal = 0;
5166                 ii.flags = 0;
5167                 ii.details = NULL;
5168                 ii.actions = NULL;
5169                 fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5170         }
5171
5172         if (chip_id(adap) >= CHELSIO_T6) {
5173                 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5174                 ii.name = &name[0];
5175                 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5176                 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5177                 ii.fatal = 0;
5178                 ii.flags = 0;
5179                 ii.details = NULL;
5180                 ii.actions = NULL;
5181                 fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5182         }
5183
5184         return (fatal);
5185 }
5186
5187 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5188 {
5189         static const struct intr_details plpl_intr_details[] = {
5190                 { F_FATALPERR, "Fatal parity error" },
5191                 { F_PERRVFID, "VFID_MAP parity error" },
5192                 { 0 }
5193         };
5194         static const struct intr_info plpl_intr_info = {
5195                 .name = "PL_PL_INT_CAUSE",
5196                 .cause_reg = A_PL_PL_INT_CAUSE,
5197                 .enable_reg = A_PL_PL_INT_ENABLE,
5198                 .fatal = F_FATALPERR | F_PERRVFID,
5199                 .flags = NONFATAL_IF_DISABLED,
5200                 .details = plpl_intr_details,
5201                 .actions = NULL,
5202         };
5203
5204         return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5205 }
5206
5207 /**
5208  *      t4_slow_intr_handler - control path interrupt handler
5209  *      @adap: the adapter
5210  *      @verbose: increased verbosity, for debug
5211  *
5212  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
5213  *      The designation 'slow' is because it involves register reads, while
5214  *      data interrupts typically don't involve any MMIOs.
5215  */
5216 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5217 {
5218         static const struct intr_details pl_intr_details[] = {
5219                 { F_MC1, "MC1" },
5220                 { F_UART, "UART" },
5221                 { F_ULP_TX, "ULP TX" },
5222                 { F_SGE, "SGE" },
5223                 { F_HMA, "HMA" },
5224                 { F_CPL_SWITCH, "CPL Switch" },
5225                 { F_ULP_RX, "ULP RX" },
5226                 { F_PM_RX, "PM RX" },
5227                 { F_PM_TX, "PM TX" },
5228                 { F_MA, "MA" },
5229                 { F_TP, "TP" },
5230                 { F_LE, "LE" },
5231                 { F_EDC1, "EDC1" },
5232                 { F_EDC0, "EDC0" },
5233                 { F_MC, "MC0" },
5234                 { F_PCIE, "PCIE" },
5235                 { F_PMU, "PMU" },
5236                 { F_MAC3, "MAC3" },
5237                 { F_MAC2, "MAC2" },
5238                 { F_MAC1, "MAC1" },
5239                 { F_MAC0, "MAC0" },
5240                 { F_SMB, "SMB" },
5241                 { F_SF, "SF" },
5242                 { F_PL, "PL" },
5243                 { F_NCSI, "NC-SI" },
5244                 { F_MPS, "MPS" },
5245                 { F_MI, "MI" },
5246                 { F_DBG, "DBG" },
5247                 { F_I2CM, "I2CM" },
5248                 { F_CIM, "CIM" },
5249                 { 0 }
5250         };
5251         static const struct intr_info pl_perr_cause = {
5252                 .name = "PL_PERR_CAUSE",
5253                 .cause_reg = A_PL_PERR_CAUSE,
5254                 .enable_reg = A_PL_PERR_ENABLE,
5255                 .fatal = 0xffffffff,
5256                 .flags = 0,
5257                 .details = pl_intr_details,
5258                 .actions = NULL,
5259         };
5260         static const struct intr_action pl_intr_action[] = {
5261                 { F_MC1, MEM_MC1, mem_intr_handler },
5262                 { F_ULP_TX, -1, ulptx_intr_handler },
5263                 { F_SGE, -1, sge_intr_handler },
5264                 { F_CPL_SWITCH, -1, cplsw_intr_handler },
5265                 { F_ULP_RX, -1, ulprx_intr_handler },
5266                 { F_PM_RX, -1, pmrx_intr_handler},
5267                 { F_PM_TX, -1, pmtx_intr_handler},
5268                 { F_MA, -1, ma_intr_handler },
5269                 { F_TP, -1, tp_intr_handler },
5270                 { F_LE, -1, le_intr_handler },
5271                 { F_EDC1, MEM_EDC1, mem_intr_handler },
5272                 { F_EDC0, MEM_EDC0, mem_intr_handler },
5273                 { F_MC0, MEM_MC0, mem_intr_handler },
5274                 { F_PCIE, -1, pcie_intr_handler },
5275                 { F_MAC3, 3, mac_intr_handler},
5276                 { F_MAC2, 2, mac_intr_handler},
5277                 { F_MAC1, 1, mac_intr_handler},
5278                 { F_MAC0, 0, mac_intr_handler},
5279                 { F_SMB, -1, smb_intr_handler},
5280                 { F_PL, -1, plpl_intr_handler },
5281                 { F_NCSI, -1, ncsi_intr_handler},
5282                 { F_MPS, -1, mps_intr_handler },
5283                 { F_CIM, -1, cim_intr_handler },
5284                 { 0 }
5285         };
5286         static const struct intr_info pl_intr_info = {
5287                 .name = "PL_INT_CAUSE",
5288                 .cause_reg = A_PL_INT_CAUSE,
5289                 .enable_reg = A_PL_INT_ENABLE,
5290                 .fatal = 0,
5291                 .flags = 0,
5292                 .details = pl_intr_details,
5293                 .actions = pl_intr_action,
5294         };
5295         bool fatal;
5296         u32 perr;
5297
5298         perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5299         if (verbose || perr != 0) {
5300                 t4_show_intr_info(adap, &pl_perr_cause, perr);
5301                 if (perr != 0)
5302                         t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5303                 if (verbose)
5304                         perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5305         }
5306         fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5307         if (fatal)
5308                 t4_fatal_err(adap, false);
5309
5310         return (0);
5311 }
5312
5313 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5314
5315 /**
5316  *      t4_intr_enable - enable interrupts
5317  *      @adapter: the adapter whose interrupts should be enabled
5318  *
5319  *      Enable PF-specific interrupts for the calling function and the top-level
5320  *      interrupt concentrator for global interrupts.  Interrupts are already
5321  *      enabled at each module, here we just enable the roots of the interrupt
5322  *      hierarchies.
5323  *
5324  *      Note: this function should be called only when the driver manages
5325  *      non PF-specific interrupts from the various HW modules.  Only one PCI
5326  *      function at a time should be doing this.
5327  */
5328 void t4_intr_enable(struct adapter *adap)
5329 {
5330         u32 val = 0;
5331
5332         if (chip_id(adap) <= CHELSIO_T5)
5333                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5334         else
5335                 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5336         val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5337             F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5338             F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5339             F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5340             F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5341             F_EGRESS_SIZE_ERR;
5342         t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5343         t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5344         t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5345         t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5346 }
5347
5348 /**
5349  *      t4_intr_disable - disable interrupts
5350  *      @adap: the adapter whose interrupts should be disabled
5351  *
5352  *      Disable interrupts.  We only disable the top-level interrupt
5353  *      concentrators.  The caller must be a PCI function managing global
5354  *      interrupts.
5355  */
5356 void t4_intr_disable(struct adapter *adap)
5357 {
5358
5359         t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5360         t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5361 }
5362
5363 /**
5364  *      t4_intr_clear - clear all interrupts
5365  *      @adap: the adapter whose interrupts should be cleared
5366  *
5367  *      Clears all interrupts.  The caller must be a PCI function managing
5368  *      global interrupts.
5369  */
5370 void t4_intr_clear(struct adapter *adap)
5371 {
5372         static const u32 cause_reg[] = {
5373                 A_CIM_HOST_INT_CAUSE,
5374                 A_CIM_HOST_UPACC_INT_CAUSE,
5375                 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5376                 A_CPL_INTR_CAUSE,
5377                 EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5378                 A_LE_DB_INT_CAUSE,
5379                 A_MA_INT_WRAP_STATUS,
5380                 A_MA_PARITY_ERROR_STATUS1,
5381                 A_MA_INT_CAUSE,
5382                 A_MPS_CLS_INT_CAUSE,
5383                 A_MPS_RX_PERR_INT_CAUSE,
5384                 A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5385                 A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5386                 A_MPS_TRC_INT_CAUSE,
5387                 A_MPS_TX_INT_CAUSE,
5388                 A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5389                 A_NCSI_INT_CAUSE,
5390                 A_PCIE_INT_CAUSE,
5391                 A_PCIE_NONFAT_ERR,
5392                 A_PL_PL_INT_CAUSE,
5393                 A_PM_RX_INT_CAUSE,
5394                 A_PM_TX_INT_CAUSE,
5395                 A_SGE_INT_CAUSE1,
5396                 A_SGE_INT_CAUSE2,
5397                 A_SGE_INT_CAUSE3,
5398                 A_SGE_INT_CAUSE4,
5399                 A_SMB_INT_CAUSE,
5400                 A_TP_INT_CAUSE,
5401                 A_ULP_RX_INT_CAUSE,
5402                 A_ULP_RX_INT_CAUSE_2,
5403                 A_ULP_TX_INT_CAUSE,
5404                 A_ULP_TX_INT_CAUSE_2,
5405
5406                 MYPF_REG(A_PL_PF_INT_CAUSE),
5407         };
5408         int i;
5409         const int nchan = adap->chip_params->nchan;
5410
5411         for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5412                 t4_write_reg(adap, cause_reg[i], 0xffffffff);
5413
5414         if (is_t4(adap)) {
5415                 t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5416                     0xffffffff);
5417                 t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5418                     0xffffffff);
5419                 t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5420                 for (i = 0; i < nchan; i++) {
5421                         t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5422                             0xffffffff);
5423                 }
5424         }
5425         if (chip_id(adap) >= CHELSIO_T5) {
5426                 t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5427                 t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5428                 t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5429                 t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5430                 if (is_t5(adap)) {
5431                         t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5432                             0xffffffff);
5433                 }
5434                 for (i = 0; i < nchan; i++) {
5435                         t4_write_reg(adap, T5_PORT_REG(i,
5436                             A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5437                         if (chip_id(adap) > CHELSIO_T5) {
5438                                 t4_write_reg(adap, T5_PORT_REG(i,
5439                                     A_MAC_PORT_PERR_INT_CAUSE_100G),
5440                                     0xffffffff);
5441                         }
5442                         t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5443                             0xffffffff);
5444                 }
5445         }
5446         if (chip_id(adap) >= CHELSIO_T6) {
5447                 t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5448         }
5449
5450         t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5451         t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5452         t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5453         (void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5454 }
5455
5456 /**
5457  *      hash_mac_addr - return the hash value of a MAC address
5458  *      @addr: the 48-bit Ethernet MAC address
5459  *
5460  *      Hashes a MAC address according to the hash function used by HW inexact
5461  *      (hash) address matching.
5462  */
5463 static int hash_mac_addr(const u8 *addr)
5464 {
5465         u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5466         u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5467         a ^= b;
5468         a ^= (a >> 12);
5469         a ^= (a >> 6);
5470         return a & 0x3f;
5471 }
5472
5473 /**
5474  *      t4_config_rss_range - configure a portion of the RSS mapping table
5475  *      @adapter: the adapter
5476  *      @mbox: mbox to use for the FW command
5477  *      @viid: virtual interface whose RSS subtable is to be written
5478  *      @start: start entry in the table to write
5479  *      @n: how many table entries to write
5480  *      @rspq: values for the "response queue" (Ingress Queue) lookup table
5481  *      @nrspq: number of values in @rspq
5482  *
5483  *      Programs the selected part of the VI's RSS mapping table with the
5484  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5485  *      until the full table range is populated.
5486  *
5487  *      The caller must ensure the values in @rspq are in the range allowed for
5488  *      @viid.
5489  */
5490 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5491                         int start, int n, const u16 *rspq, unsigned int nrspq)
5492 {
5493         int ret;
5494         const u16 *rsp = rspq;
5495         const u16 *rsp_end = rspq + nrspq;
5496         struct fw_rss_ind_tbl_cmd cmd;
5497
5498         memset(&cmd, 0, sizeof(cmd));
5499         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5500                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5501                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
5502         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5503
5504         /*
5505          * Each firmware RSS command can accommodate up to 32 RSS Ingress
5506          * Queue Identifiers.  These Ingress Queue IDs are packed three to
5507          * a 32-bit word as 10-bit values with the upper remaining 2 bits
5508          * reserved.
5509          */
5510         while (n > 0) {
5511                 int nq = min(n, 32);
5512                 int nq_packed = 0;
5513                 __be32 *qp = &cmd.iq0_to_iq2;
5514
5515                 /*
5516                  * Set up the firmware RSS command header to send the next
5517                  * "nq" Ingress Queue IDs to the firmware.
5518                  */
5519                 cmd.niqid = cpu_to_be16(nq);
5520                 cmd.startidx = cpu_to_be16(start);
5521
5522                 /*
5523                  * "nq" more done for the start of the next loop.
5524                  */
5525                 start += nq;
5526                 n -= nq;
5527
5528                 /*
5529                  * While there are still Ingress Queue IDs to stuff into the
5530                  * current firmware RSS command, retrieve them from the
5531                  * Ingress Queue ID array and insert them into the command.
5532                  */
5533                 while (nq > 0) {
5534                         /*
5535                          * Grab up to the next 3 Ingress Queue IDs (wrapping
5536                          * around the Ingress Queue ID array if necessary) and
5537                          * insert them into the firmware RSS command at the
5538                          * current 3-tuple position within the commad.
5539                          */
5540                         u16 qbuf[3];
5541                         u16 *qbp = qbuf;
5542                         int nqbuf = min(3, nq);
5543
5544                         nq -= nqbuf;
5545                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
5546                         while (nqbuf && nq_packed < 32) {
5547                                 nqbuf--;
5548                                 nq_packed++;
5549                                 *qbp++ = *rsp++;
5550                                 if (rsp >= rsp_end)
5551                                         rsp = rspq;
5552                         }
5553                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5554                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5555                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5556                 }
5557
5558                 /*
5559                  * Send this portion of the RRS table update to the firmware;
5560                  * bail out on any errors.
5561                  */
5562                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5563                 if (ret)
5564                         return ret;
5565         }
5566         return 0;
5567 }
5568
5569 /**
5570  *      t4_config_glbl_rss - configure the global RSS mode
5571  *      @adapter: the adapter
5572  *      @mbox: mbox to use for the FW command
5573  *      @mode: global RSS mode
5574  *      @flags: mode-specific flags
5575  *
5576  *      Sets the global RSS mode.
5577  */
5578 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5579                        unsigned int flags)
5580 {
5581         struct fw_rss_glb_config_cmd c;
5582
5583         memset(&c, 0, sizeof(c));
5584         c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5585                                     F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5586         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5587         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5588                 c.u.manual.mode_pkd =
5589                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5590         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5591                 c.u.basicvirtual.mode_keymode =
5592                         cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5593                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5594         } else
5595                 return -EINVAL;
5596         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5597 }
5598
5599 /**
5600  *      t4_config_vi_rss - configure per VI RSS settings
5601  *      @adapter: the adapter
5602  *      @mbox: mbox to use for the FW command
5603  *      @viid: the VI id
5604  *      @flags: RSS flags
5605  *      @defq: id of the default RSS queue for the VI.
5606  *      @skeyidx: RSS secret key table index for non-global mode
5607  *      @skey: RSS vf_scramble key for VI.
5608  *
5609  *      Configures VI-specific RSS properties.
5610  */
5611 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5612                      unsigned int flags, unsigned int defq, unsigned int skeyidx,
5613                      unsigned int skey)
5614 {
5615         struct fw_rss_vi_config_cmd c;
5616
5617         memset(&c, 0, sizeof(c));
5618         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5619                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5620                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5621         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5622         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5623                                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5624         c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5625                                         V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5626         c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5627
5628         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5629 }
5630
5631 /* Read an RSS table row */
5632 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5633 {
5634         t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5635         return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5636                                    5, 0, val);
5637 }
5638
5639 /**
5640  *      t4_read_rss - read the contents of the RSS mapping table
5641  *      @adapter: the adapter
5642  *      @map: holds the contents of the RSS mapping table
5643  *
5644  *      Reads the contents of the RSS hash->queue mapping table.
5645  */
5646 int t4_read_rss(struct adapter *adapter, u16 *map)
5647 {
5648         u32 val;
5649         int i, ret;
5650
5651         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5652                 ret = rd_rss_row(adapter, i, &val);
5653                 if (ret)
5654                         return ret;
5655                 *map++ = G_LKPTBLQUEUE0(val);
5656                 *map++ = G_LKPTBLQUEUE1(val);
5657         }
5658         return 0;
5659 }
5660
5661 /**
5662  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5663  * @adap: the adapter
5664  * @cmd: TP fw ldst address space type
5665  * @vals: where the indirect register values are stored/written
5666  * @nregs: how many indirect registers to read/write
5667  * @start_idx: index of first indirect register to read/write
5668  * @rw: Read (1) or Write (0)
5669  * @sleep_ok: if true we may sleep while awaiting command completion
5670  *
5671  * Access TP indirect registers through LDST
5672  **/
5673 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5674                             unsigned int nregs, unsigned int start_index,
5675                             unsigned int rw, bool sleep_ok)
5676 {
5677         int ret = 0;
5678         unsigned int i;
5679         struct fw_ldst_cmd c;
5680
5681         for (i = 0; i < nregs; i++) {
5682                 memset(&c, 0, sizeof(c));
5683                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5684                                                 F_FW_CMD_REQUEST |
5685                                                 (rw ? F_FW_CMD_READ :
5686                                                       F_FW_CMD_WRITE) |
5687                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
5688                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5689
5690                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5691                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5692                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5693                                       sleep_ok);
5694                 if (ret)
5695                         return ret;
5696
5697                 if (rw)
5698                         vals[i] = be32_to_cpu(c.u.addrval.val);
5699         }
5700         return 0;
5701 }
5702
5703 /**
5704  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5705  * @adap: the adapter
5706  * @reg_addr: Address Register
5707  * @reg_data: Data register
5708  * @buff: where the indirect register values are stored/written
5709  * @nregs: how many indirect registers to read/write
5710  * @start_index: index of first indirect register to read/write
5711  * @rw: READ(1) or WRITE(0)
5712  * @sleep_ok: if true we may sleep while awaiting command completion
5713  *
5714  * Read/Write TP indirect registers through LDST if possible.
5715  * Else, use backdoor access
5716  **/
5717 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5718                               u32 *buff, u32 nregs, u32 start_index, int rw,
5719                               bool sleep_ok)
5720 {
5721         int rc = -EINVAL;
5722         int cmd;
5723
5724         switch (reg_addr) {
5725         case A_TP_PIO_ADDR:
5726                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5727                 break;
5728         case A_TP_TM_PIO_ADDR:
5729                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5730                 break;
5731         case A_TP_MIB_INDEX:
5732                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5733                 break;
5734         default:
5735                 goto indirect_access;
5736         }
5737
5738         if (t4_use_ldst(adap))
5739                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5740                                       sleep_ok);
5741
5742 indirect_access:
5743
5744         if (rc) {
5745                 if (rw)
5746                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5747                                          start_index);
5748                 else
5749                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5750                                           start_index);
5751         }
5752 }
5753
5754 /**
5755  * t4_tp_pio_read - Read TP PIO registers
5756  * @adap: the adapter
5757  * @buff: where the indirect register values are written
5758  * @nregs: how many indirect registers to read
5759  * @start_index: index of first indirect register to read
5760  * @sleep_ok: if true we may sleep while awaiting command completion
5761  *
5762  * Read TP PIO Registers
5763  **/
5764 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5765                     u32 start_index, bool sleep_ok)
5766 {
5767         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5768                           start_index, 1, sleep_ok);
5769 }
5770
5771 /**
5772  * t4_tp_pio_write - Write TP PIO registers
5773  * @adap: the adapter
5774  * @buff: where the indirect register values are stored
5775  * @nregs: how many indirect registers to write
5776  * @start_index: index of first indirect register to write
5777  * @sleep_ok: if true we may sleep while awaiting command completion
5778  *
5779  * Write TP PIO Registers
5780  **/
5781 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5782                      u32 start_index, bool sleep_ok)
5783 {
5784         t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5785             __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5786 }
5787
5788 /**
5789  * t4_tp_tm_pio_read - Read TP TM PIO registers
5790  * @adap: the adapter
5791  * @buff: where the indirect register values are written
5792  * @nregs: how many indirect registers to read
5793  * @start_index: index of first indirect register to read
5794  * @sleep_ok: if true we may sleep while awaiting command completion
5795  *
5796  * Read TP TM PIO Registers
5797  **/
5798 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5799                        u32 start_index, bool sleep_ok)
5800 {
5801         t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5802                           nregs, start_index, 1, sleep_ok);
5803 }
5804
5805 /**
5806  * t4_tp_mib_read - Read TP MIB registers
5807  * @adap: the adapter
5808  * @buff: where the indirect register values are written
5809  * @nregs: how many indirect registers to read
5810  * @start_index: index of first indirect register to read
5811  * @sleep_ok: if true we may sleep while awaiting command completion
5812  *
5813  * Read TP MIB Registers
5814  **/
5815 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5816                     bool sleep_ok)
5817 {
5818         t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5819                           start_index, 1, sleep_ok);
5820 }
5821
5822 /**
5823  *      t4_read_rss_key - read the global RSS key
5824  *      @adap: the adapter
5825  *      @key: 10-entry array holding the 320-bit RSS key
5826  *      @sleep_ok: if true we may sleep while awaiting command completion
5827  *
5828  *      Reads the global 320-bit RSS key.
5829  */
5830 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5831 {
5832         t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5833 }
5834
5835 /**
5836  *      t4_write_rss_key - program one of the RSS keys
5837  *      @adap: the adapter
5838  *      @key: 10-entry array holding the 320-bit RSS key
5839  *      @idx: which RSS key to write
5840  *      @sleep_ok: if true we may sleep while awaiting command completion
5841  *
5842  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5843  *      0..15 the corresponding entry in the RSS key table is written,
5844  *      otherwise the global RSS key is written.
5845  */
5846 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5847                       bool sleep_ok)
5848 {
5849         u8 rss_key_addr_cnt = 16;
5850         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5851
5852         /*
5853          * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5854          * allows access to key addresses 16-63 by using KeyWrAddrX
5855          * as index[5:4](upper 2) into key table
5856          */
5857         if ((chip_id(adap) > CHELSIO_T5) &&
5858             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5859                 rss_key_addr_cnt = 32;
5860
5861         t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5862
5863         if (idx >= 0 && idx < rss_key_addr_cnt) {
5864                 if (rss_key_addr_cnt > 16)
5865                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5866                                      vrt | V_KEYWRADDRX(idx >> 4) |
5867                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
5868                 else
5869                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5870                                      vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5871         }
5872 }
5873
5874 /**
5875  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5876  *      @adapter: the adapter
5877  *      @index: the entry in the PF RSS table to read
5878  *      @valp: where to store the returned value
5879  *      @sleep_ok: if true we may sleep while awaiting command completion
5880  *
5881  *      Reads the PF RSS Configuration Table at the specified index and returns
5882  *      the value found there.
5883  */
5884 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5885                            u32 *valp, bool sleep_ok)
5886 {
5887         t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5888 }
5889
5890 /**
5891  *      t4_write_rss_pf_config - write PF RSS Configuration Table
5892  *      @adapter: the adapter
5893  *      @index: the entry in the VF RSS table to read
5894  *      @val: the value to store
5895  *      @sleep_ok: if true we may sleep while awaiting command completion
5896  *
5897  *      Writes the PF RSS Configuration Table at the specified index with the
5898  *      specified value.
5899  */
5900 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5901                             u32 val, bool sleep_ok)
5902 {
5903         t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5904                         sleep_ok);
5905 }
5906
5907 /**
5908  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5909  *      @adapter: the adapter
5910  *      @index: the entry in the VF RSS table to read
5911  *      @vfl: where to store the returned VFL
5912  *      @vfh: where to store the returned VFH
5913  *      @sleep_ok: if true we may sleep while awaiting command completion
5914  *
5915  *      Reads the VF RSS Configuration Table at the specified index and returns
5916  *      the (VFL, VFH) values found there.
5917  */
5918 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5919                            u32 *vfl, u32 *vfh, bool sleep_ok)
5920 {
5921         u32 vrt, mask, data;
5922
5923         if (chip_id(adapter) <= CHELSIO_T5) {
5924                 mask = V_VFWRADDR(M_VFWRADDR);
5925                 data = V_VFWRADDR(index);
5926         } else {
5927                  mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5928                  data = V_T6_VFWRADDR(index);
5929         }
5930         /*
5931          * Request that the index'th VF Table values be read into VFL/VFH.
5932          */
5933         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5934         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5935         vrt |= data | F_VFRDEN;
5936         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5937
5938         /*
5939          * Grab the VFL/VFH values ...
5940          */
5941         t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5942         t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5943 }
5944
5945 /**
5946  *      t4_write_rss_vf_config - write VF RSS Configuration Table
5947  *
5948  *      @adapter: the adapter
5949  *      @index: the entry in the VF RSS table to write
5950  *      @vfl: the VFL to store
5951  *      @vfh: the VFH to store
5952  *
5953  *      Writes the VF RSS Configuration Table at the specified index with the
5954  *      specified (VFL, VFH) values.
5955  */
5956 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5957                             u32 vfl, u32 vfh, bool sleep_ok)
5958 {
5959         u32 vrt, mask, data;
5960
5961         if (chip_id(adapter) <= CHELSIO_T5) {
5962                 mask = V_VFWRADDR(M_VFWRADDR);
5963                 data = V_VFWRADDR(index);
5964         } else {
5965                 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5966                 data = V_T6_VFWRADDR(index);
5967         }
5968
5969         /*
5970          * Load up VFL/VFH with the values to be written ...
5971          */
5972         t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5973         t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5974
5975         /*
5976          * Write the VFL/VFH into the VF Table at index'th location.
5977          */
5978         vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5979         vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5980         vrt |= data | F_VFRDEN;
5981         t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5982 }
5983
5984 /**
5985  *      t4_read_rss_pf_map - read PF RSS Map
5986  *      @adapter: the adapter
5987  *      @sleep_ok: if true we may sleep while awaiting command completion
5988  *
5989  *      Reads the PF RSS Map register and returns its value.
5990  */
5991 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5992 {
5993         u32 pfmap;
5994
5995         t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5996
5997         return pfmap;
5998 }
5999
6000 /**
6001  *      t4_write_rss_pf_map - write PF RSS Map
6002  *      @adapter: the adapter
6003  *      @pfmap: PF RSS Map value
6004  *
6005  *      Writes the specified value to the PF RSS Map register.
6006  */
6007 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6008 {
6009         t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6010 }
6011
6012 /**
6013  *      t4_read_rss_pf_mask - read PF RSS Mask
6014  *      @adapter: the adapter
6015  *      @sleep_ok: if true we may sleep while awaiting command completion
6016  *
6017  *      Reads the PF RSS Mask register and returns its value.
6018  */
6019 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6020 {
6021         u32 pfmask;
6022
6023         t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6024
6025         return pfmask;
6026 }
6027
6028 /**
6029  *      t4_write_rss_pf_mask - write PF RSS Mask
6030  *      @adapter: the adapter
6031  *      @pfmask: PF RSS Mask value
6032  *
6033  *      Writes the specified value to the PF RSS Mask register.
6034  */
6035 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6036 {
6037         t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6038 }
6039
6040 /**
6041  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
6042  *      @adap: the adapter
6043  *      @v4: holds the TCP/IP counter values
6044  *      @v6: holds the TCP/IPv6 counter values
6045  *      @sleep_ok: if true we may sleep while awaiting command completion
6046  *
6047  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6048  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6049  */
6050 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6051                          struct tp_tcp_stats *v6, bool sleep_ok)
6052 {
6053         u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6054
6055 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6056 #define STAT(x)     val[STAT_IDX(x)]
6057 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6058
6059         if (v4) {
6060                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6061                                A_TP_MIB_TCP_OUT_RST, sleep_ok);
6062                 v4->tcp_out_rsts = STAT(OUT_RST);
6063                 v4->tcp_in_segs  = STAT64(IN_SEG);
6064                 v4->tcp_out_segs = STAT64(OUT_SEG);
6065                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
6066         }
6067         if (v6) {
6068                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6069                                A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6070                 v6->tcp_out_rsts = STAT(OUT_RST);
6071                 v6->tcp_in_segs  = STAT64(IN_SEG);
6072                 v6->tcp_out_segs = STAT64(OUT_SEG);
6073                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
6074         }
6075 #undef STAT64
6076 #undef STAT
6077 #undef STAT_IDX
6078 }
6079
6080 /**
6081  *      t4_tp_get_err_stats - read TP's error MIB counters
6082  *      @adap: the adapter
6083  *      @st: holds the counter values
6084  *      @sleep_ok: if true we may sleep while awaiting command completion
6085  *
6086  *      Returns the values of TP's error counters.
6087  */
6088 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6089                          bool sleep_ok)
6090 {
6091         int nchan = adap->chip_params->nchan;
6092
6093         t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6094                        sleep_ok);
6095
6096         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6097                        sleep_ok);
6098
6099         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6100                        sleep_ok);
6101
6102         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6103                        A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6104
6105         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6106                        A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6107
6108         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6109                        sleep_ok);
6110
6111         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6112                        A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6113
6114         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6115                        A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6116
6117         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6118                        sleep_ok);
6119 }
6120
6121 /**
6122  *      t4_tp_get_proxy_stats - read TP's proxy MIB counters
6123  *      @adap: the adapter
6124  *      @st: holds the counter values
6125  *
6126  *      Returns the values of TP's proxy counters.
6127  */
6128 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6129     bool sleep_ok)
6130 {
6131         int nchan = adap->chip_params->nchan;
6132
6133         t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6134 }
6135
6136 /**
6137  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
6138  *      @adap: the adapter
6139  *      @st: holds the counter values
6140  *      @sleep_ok: if true we may sleep while awaiting command completion
6141  *
6142  *      Returns the values of TP's CPL counters.
6143  */
6144 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6145                          bool sleep_ok)
6146 {
6147         int nchan = adap->chip_params->nchan;
6148
6149         t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6150
6151         t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6152 }
6153
6154 /**
6155  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6156  *      @adap: the adapter
6157  *      @st: holds the counter values
6158  *
6159  *      Returns the values of TP's RDMA counters.
6160  */
6161 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6162                           bool sleep_ok)
6163 {
6164         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6165                        sleep_ok);
6166 }
6167
6168 /**
6169  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6170  *      @adap: the adapter
6171  *      @idx: the port index
6172  *      @st: holds the counter values
6173  *      @sleep_ok: if true we may sleep while awaiting command completion
6174  *
6175  *      Returns the values of TP's FCoE counters for the selected port.
6176  */
6177 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6178                        struct tp_fcoe_stats *st, bool sleep_ok)
6179 {
6180         u32 val[2];
6181
6182         t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6183                        sleep_ok);
6184
6185         t4_tp_mib_read(adap, &st->frames_drop, 1,
6186                        A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6187
6188         t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6189                        sleep_ok);
6190
6191         st->octets_ddp = ((u64)val[0] << 32) | val[1];
6192 }
6193
6194 /**
6195  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6196  *      @adap: the adapter
6197  *      @st: holds the counter values
6198  *      @sleep_ok: if true we may sleep while awaiting command completion
6199  *
6200  *      Returns the values of TP's counters for non-TCP directly-placed packets.
6201  */
6202 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6203                       bool sleep_ok)
6204 {
6205         u32 val[4];
6206
6207         t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6208
6209         st->frames = val[0];
6210         st->drops = val[1];
6211         st->octets = ((u64)val[2] << 32) | val[3];
6212 }
6213
6214 /**
6215  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
6216  *      @adap: the adapter
6217  *      @mtus: where to store the MTU values
6218  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
6219  *
6220  *      Reads the HW path MTU table.
6221  */
6222 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6223 {
6224         u32 v;
6225         int i;
6226
6227         for (i = 0; i < NMTUS; ++i) {
6228                 t4_write_reg(adap, A_TP_MTU_TABLE,
6229                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
6230                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
6231                 mtus[i] = G_MTUVALUE(v);
6232                 if (mtu_log)
6233                         mtu_log[i] = G_MTUWIDTH(v);
6234         }
6235 }
6236
6237 /**
6238  *      t4_read_cong_tbl - reads the congestion control table
6239  *      @adap: the adapter
6240  *      @incr: where to store the alpha values
6241  *
6242  *      Reads the additive increments programmed into the HW congestion
6243  *      control table.
6244  */
6245 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6246 {
6247         unsigned int mtu, w;
6248
6249         for (mtu = 0; mtu < NMTUS; ++mtu)
6250                 for (w = 0; w < NCCTRL_WIN; ++w) {
6251                         t4_write_reg(adap, A_TP_CCTRL_TABLE,
6252                                      V_ROWINDEX(0xffff) | (mtu << 5) | w);
6253                         incr[mtu][w] = (u16)t4_read_reg(adap,
6254                                                 A_TP_CCTRL_TABLE) & 0x1fff;
6255                 }
6256 }
6257
6258 /**
6259  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6260  *      @adap: the adapter
6261  *      @addr: the indirect TP register address
6262  *      @mask: specifies the field within the register to modify
6263  *      @val: new value for the field
6264  *
6265  *      Sets a field of an indirect TP register to the given value.
6266  */
6267 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6268                             unsigned int mask, unsigned int val)
6269 {
6270         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6271         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6272         t4_write_reg(adap, A_TP_PIO_DATA, val);
6273 }
6274
6275 /**
6276  *      init_cong_ctrl - initialize congestion control parameters
6277  *      @a: the alpha values for congestion control
6278  *      @b: the beta values for congestion control
6279  *
6280  *      Initialize the congestion control parameters.
6281  */
6282 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6283 {
6284         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6285         a[9] = 2;
6286         a[10] = 3;
6287         a[11] = 4;
6288         a[12] = 5;
6289         a[13] = 6;
6290         a[14] = 7;
6291         a[15] = 8;
6292         a[16] = 9;
6293         a[17] = 10;
6294         a[18] = 14;
6295         a[19] = 17;
6296         a[20] = 21;
6297         a[21] = 25;
6298         a[22] = 30;
6299         a[23] = 35;
6300         a[24] = 45;
6301         a[25] = 60;
6302         a[26] = 80;
6303         a[27] = 100;
6304         a[28] = 200;
6305         a[29] = 300;
6306         a[30] = 400;
6307         a[31] = 500;
6308
6309         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6310         b[9] = b[10] = 1;
6311         b[11] = b[12] = 2;
6312         b[13] = b[14] = b[15] = b[16] = 3;
6313         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6314         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6315         b[28] = b[29] = 6;
6316         b[30] = b[31] = 7;
6317 }
6318
6319 /* The minimum additive increment value for the congestion control table */
6320 #define CC_MIN_INCR 2U
6321
6322 /**
6323  *      t4_load_mtus - write the MTU and congestion control HW tables
6324  *      @adap: the adapter
6325  *      @mtus: the values for the MTU table
6326  *      @alpha: the values for the congestion control alpha parameter
6327  *      @beta: the values for the congestion control beta parameter
6328  *
6329  *      Write the HW MTU table with the supplied MTUs and the high-speed
6330  *      congestion control table with the supplied alpha, beta, and MTUs.
6331  *      We write the two tables together because the additive increments
6332  *      depend on the MTUs.
6333  */
6334 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6335                   const unsigned short *alpha, const unsigned short *beta)
6336 {
6337         static const unsigned int avg_pkts[NCCTRL_WIN] = {
6338                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6339                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6340                 28672, 40960, 57344, 81920, 114688, 163840, 229376
6341         };
6342
6343         unsigned int i, w;
6344
6345         for (i = 0; i < NMTUS; ++i) {
6346                 unsigned int mtu = mtus[i];
6347                 unsigned int log2 = fls(mtu);
6348
6349                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
6350                         log2--;
6351                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6352                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6353
6354                 for (w = 0; w < NCCTRL_WIN; ++w) {
6355                         unsigned int inc;
6356
6357                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6358                                   CC_MIN_INCR);
6359
6360                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6361                                      (w << 16) | (beta[w] << 13) | inc);
6362                 }
6363         }
6364 }
6365
6366 /**
6367  *      t4_set_pace_tbl - set the pace table
6368  *      @adap: the adapter
6369  *      @pace_vals: the pace values in microseconds
6370  *      @start: index of the first entry in the HW pace table to set
6371  *      @n: how many entries to set
6372  *
6373  *      Sets (a subset of the) HW pace table.
6374  */
6375 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6376                      unsigned int start, unsigned int n)
6377 {
6378         unsigned int vals[NTX_SCHED], i;
6379         unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6380
6381         if (n > NTX_SCHED)
6382             return -ERANGE;
6383
6384         /* convert values from us to dack ticks, rounding to closest value */
6385         for (i = 0; i < n; i++, pace_vals++) {
6386                 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6387                 if (vals[i] > 0x7ff)
6388                         return -ERANGE;
6389                 if (*pace_vals && vals[i] == 0)
6390                         return -ERANGE;
6391         }
6392         for (i = 0; i < n; i++, start++)
6393                 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6394         return 0;
6395 }
6396
6397 /**
6398  *      t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6399  *      @adap: the adapter
6400  *      @kbps: target rate in Kbps
6401  *      @sched: the scheduler index
6402  *
6403  *      Configure a Tx HW scheduler for the target rate.
6404  */
6405 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6406 {
6407         unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6408         unsigned int clk = adap->params.vpd.cclk * 1000;
6409         unsigned int selected_cpt = 0, selected_bpt = 0;
6410
6411         if (kbps > 0) {
6412                 kbps *= 125;     /* -> bytes */
6413                 for (cpt = 1; cpt <= 255; cpt++) {
6414                         tps = clk / cpt;
6415                         bpt = (kbps + tps / 2) / tps;
6416                         if (bpt > 0 && bpt <= 255) {
6417                                 v = bpt * tps;
6418                                 delta = v >= kbps ? v - kbps : kbps - v;
6419                                 if (delta < mindelta) {
6420                                         mindelta = delta;
6421                                         selected_cpt = cpt;
6422                                         selected_bpt = bpt;
6423                                 }
6424                         } else if (selected_cpt)
6425                                 break;
6426                 }
6427                 if (!selected_cpt)
6428                         return -EINVAL;
6429         }
6430         t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6431                      A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6432         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6433         if (sched & 1)
6434                 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6435         else
6436                 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6437         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6438         return 0;
6439 }
6440
6441 /**
6442  *      t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6443  *      @adap: the adapter
6444  *      @sched: the scheduler index
6445  *      @ipg: the interpacket delay in tenths of nanoseconds
6446  *
6447  *      Set the interpacket delay for a HW packet rate scheduler.
6448  */
6449 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6450 {
6451         unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6452
6453         /* convert ipg to nearest number of core clocks */
6454         ipg *= core_ticks_per_usec(adap);
6455         ipg = (ipg + 5000) / 10000;
6456         if (ipg > M_TXTIMERSEPQ0)
6457                 return -EINVAL;
6458
6459         t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6460         v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6461         if (sched & 1)
6462                 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6463         else
6464                 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6465         t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6466         t4_read_reg(adap, A_TP_TM_PIO_DATA);
6467         return 0;
6468 }
6469
6470 /*
6471  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6472  * clocks.  The formula is
6473  *
6474  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6475  *
6476  * which is equivalent to
6477  *
6478  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6479  */
6480 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6481 {
6482         u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6483
6484         return v * 62 + v / 2;
6485 }
6486
6487 /**
6488  *      t4_get_chan_txrate - get the current per channel Tx rates
6489  *      @adap: the adapter
6490  *      @nic_rate: rates for NIC traffic
6491  *      @ofld_rate: rates for offloaded traffic
6492  *
6493  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
6494  *      for each channel.
6495  */
6496 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6497 {
6498         u32 v;
6499
6500         v = t4_read_reg(adap, A_TP_TX_TRATE);
6501         nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6502         nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6503         if (adap->chip_params->nchan > 2) {
6504                 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6505                 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6506         }
6507
6508         v = t4_read_reg(adap, A_TP_TX_ORATE);
6509         ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6510         ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6511         if (adap->chip_params->nchan > 2) {
6512                 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6513                 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6514         }
6515 }
6516
6517 /**
6518  *      t4_set_trace_filter - configure one of the tracing filters
6519  *      @adap: the adapter
6520  *      @tp: the desired trace filter parameters
6521  *      @idx: which filter to configure
6522  *      @enable: whether to enable or disable the filter
6523  *
6524  *      Configures one of the tracing filters available in HW.  If @tp is %NULL
6525  *      it indicates that the filter is already written in the register and it
6526  *      just needs to be enabled or disabled.
6527  */
6528 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6529     int idx, int enable)
6530 {
6531         int i, ofst = idx * 4;
6532         u32 data_reg, mask_reg, cfg;
6533         u32 multitrc = F_TRCMULTIFILTER;
6534         u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6535
6536         if (idx < 0 || idx >= NTRACE)
6537                 return -EINVAL;
6538
6539         if (tp == NULL || !enable) {
6540                 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6541                     enable ? en : 0);
6542                 return 0;
6543         }
6544
6545         /*
6546          * TODO - After T4 data book is updated, specify the exact
6547          * section below.
6548          *
6549          * See T4 data book - MPS section for a complete description
6550          * of the below if..else handling of A_MPS_TRC_CFG register
6551          * value.
6552          */
6553         cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6554         if (cfg & F_TRCMULTIFILTER) {
6555                 /*
6556                  * If multiple tracers are enabled, then maximum
6557                  * capture size is 2.5KB (FIFO size of a single channel)
6558                  * minus 2 flits for CPL_TRACE_PKT header.
6559                  */
6560                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6561                         return -EINVAL;
6562         } else {
6563                 /*
6564                  * If multiple tracers are disabled, to avoid deadlocks
6565                  * maximum packet capture size of 9600 bytes is recommended.
6566                  * Also in this mode, only trace0 can be enabled and running.
6567                  */
6568                 multitrc = 0;
6569                 if (tp->snap_len > 9600 || idx)
6570                         return -EINVAL;
6571         }
6572
6573         if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6574             tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6575             tp->min_len > M_TFMINPKTSIZE)
6576                 return -EINVAL;
6577
6578         /* stop the tracer we'll be changing */
6579         t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6580
6581         idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6582         data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6583         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6584
6585         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6586                 t4_write_reg(adap, data_reg, tp->data[i]);
6587                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6588         }
6589         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6590                      V_TFCAPTUREMAX(tp->snap_len) |
6591                      V_TFMINPKTSIZE(tp->min_len));
6592         t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6593                      V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6594                      (is_t4(adap) ?
6595                      V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6596                      V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6597
6598         return 0;
6599 }
6600
6601 /**
6602  *      t4_get_trace_filter - query one of the tracing filters
6603  *      @adap: the adapter
6604  *      @tp: the current trace filter parameters
6605  *      @idx: which trace filter to query
6606  *      @enabled: non-zero if the filter is enabled
6607  *
6608  *      Returns the current settings of one of the HW tracing filters.
6609  */
6610 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6611                          int *enabled)
6612 {
6613         u32 ctla, ctlb;
6614         int i, ofst = idx * 4;
6615         u32 data_reg, mask_reg;
6616
6617         ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6618         ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6619
6620         if (is_t4(adap)) {
6621                 *enabled = !!(ctla & F_TFEN);
6622                 tp->port =  G_TFPORT(ctla);
6623                 tp->invert = !!(ctla & F_TFINVERTMATCH);
6624         } else {
6625                 *enabled = !!(ctla & F_T5_TFEN);
6626                 tp->port = G_T5_TFPORT(ctla);
6627                 tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6628         }
6629         tp->snap_len = G_TFCAPTUREMAX(ctlb);
6630         tp->min_len = G_TFMINPKTSIZE(ctlb);
6631         tp->skip_ofst = G_TFOFFSET(ctla);
6632         tp->skip_len = G_TFLENGTH(ctla);
6633
6634         ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6635         data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6636         mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6637
6638         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6639                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6640                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6641         }
6642 }
6643
6644 /**
6645  *      t4_pmtx_get_stats - returns the HW stats from PMTX
6646  *      @adap: the adapter
6647  *      @cnt: where to store the count statistics
6648  *      @cycles: where to store the cycle statistics
6649  *
6650  *      Returns performance statistics from PMTX.
6651  */
6652 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6653 {
6654         int i;
6655         u32 data[2];
6656
6657         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6658                 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6659                 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6660                 if (is_t4(adap))
6661                         cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6662                 else {
6663                         t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6664                                          A_PM_TX_DBG_DATA, data, 2,
6665                                          A_PM_TX_DBG_STAT_MSB);
6666                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6667                 }
6668         }
6669 }
6670
6671 /**
6672  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6673  *      @adap: the adapter
6674  *      @cnt: where to store the count statistics
6675  *      @cycles: where to store the cycle statistics
6676  *
6677  *      Returns performance statistics from PMRX.
6678  */
6679 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6680 {
6681         int i;
6682         u32 data[2];
6683
6684         for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6685                 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6686                 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6687                 if (is_t4(adap)) {
6688                         cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6689                 } else {
6690                         t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6691                                          A_PM_RX_DBG_DATA, data, 2,
6692                                          A_PM_RX_DBG_STAT_MSB);
6693                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6694                 }
6695         }
6696 }
6697
6698 /**
6699  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6700  *      @adap: the adapter
6701  *      @idx: the port index
6702  *
6703  *      Returns a bitmap indicating which MPS buffer groups are associated
6704  *      with the given port.  Bit i is set if buffer group i is used by the
6705  *      port.
6706  */
6707 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6708 {
6709         u32 n;
6710
6711         if (adap->params.mps_bg_map)
6712                 return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6713
6714         n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6715         if (n == 0)
6716                 return idx == 0 ? 0xf : 0;
6717         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6718                 return idx < 2 ? (3 << (2 * idx)) : 0;
6719         return 1 << idx;
6720 }
6721
6722 /*
6723  * TP RX e-channels associated with the port.
6724  */
6725 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6726 {
6727         u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6728
6729         if (n == 0)
6730                 return idx == 0 ? 0xf : 0;
6731         if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6732                 return idx < 2 ? (3 << (2 * idx)) : 0;
6733         return 1 << idx;
6734 }
6735
6736 /**
6737  *      t4_get_port_type_description - return Port Type string description
6738  *      @port_type: firmware Port Type enumeration
6739  */
6740 const char *t4_get_port_type_description(enum fw_port_type port_type)
6741 {
6742         static const char *const port_type_description[] = {
6743                 "Fiber_XFI",
6744                 "Fiber_XAUI",
6745                 "BT_SGMII",
6746                 "BT_XFI",
6747                 "BT_XAUI",
6748                 "KX4",
6749                 "CX4",
6750                 "KX",
6751                 "KR",
6752                 "SFP",
6753                 "BP_AP",
6754                 "BP4_AP",
6755                 "QSFP_10G",
6756                 "QSA",
6757                 "QSFP",
6758                 "BP40_BA",
6759                 "KR4_100G",
6760                 "CR4_QSFP",
6761                 "CR_QSFP",
6762                 "CR2_QSFP",
6763                 "SFP28",
6764                 "KR_SFP28",
6765         };
6766
6767         if (port_type < ARRAY_SIZE(port_type_description))
6768                 return port_type_description[port_type];
6769         return "UNKNOWN";
6770 }
6771
6772 /**
6773  *      t4_get_port_stats_offset - collect port stats relative to a previous
6774  *                                 snapshot
6775  *      @adap: The adapter
6776  *      @idx: The port
6777  *      @stats: Current stats to fill
6778  *      @offset: Previous stats snapshot
6779  */
6780 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6781                 struct port_stats *stats,
6782                 struct port_stats *offset)
6783 {
6784         u64 *s, *o;
6785         int i;
6786
6787         t4_get_port_stats(adap, idx, stats);
6788         for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6789                         i < (sizeof(struct port_stats)/sizeof(u64)) ;
6790                         i++, s++, o++)
6791                 *s -= *o;
6792 }
6793
6794 /**
6795  *      t4_get_port_stats - collect port statistics
6796  *      @adap: the adapter
6797  *      @idx: the port index
6798  *      @p: the stats structure to fill
6799  *
6800  *      Collect statistics related to the given port from HW.
6801  */
6802 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6803 {
6804         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6805         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6806
6807 #define GET_STAT(name) \
6808         t4_read_reg64(adap, \
6809         (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6810         T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6811 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6812
6813         p->tx_pause             = GET_STAT(TX_PORT_PAUSE);
6814         p->tx_octets            = GET_STAT(TX_PORT_BYTES);
6815         p->tx_frames            = GET_STAT(TX_PORT_FRAMES);
6816         p->tx_bcast_frames      = GET_STAT(TX_PORT_BCAST);
6817         p->tx_mcast_frames      = GET_STAT(TX_PORT_MCAST);
6818         p->tx_ucast_frames      = GET_STAT(TX_PORT_UCAST);
6819         p->tx_error_frames      = GET_STAT(TX_PORT_ERROR);
6820         p->tx_frames_64         = GET_STAT(TX_PORT_64B);
6821         p->tx_frames_65_127     = GET_STAT(TX_PORT_65B_127B);
6822         p->tx_frames_128_255    = GET_STAT(TX_PORT_128B_255B);
6823         p->tx_frames_256_511    = GET_STAT(TX_PORT_256B_511B);
6824         p->tx_frames_512_1023   = GET_STAT(TX_PORT_512B_1023B);
6825         p->tx_frames_1024_1518  = GET_STAT(TX_PORT_1024B_1518B);
6826         p->tx_frames_1519_max   = GET_STAT(TX_PORT_1519B_MAX);
6827         p->tx_drop              = GET_STAT(TX_PORT_DROP);
6828         p->tx_ppp0              = GET_STAT(TX_PORT_PPP0);
6829         p->tx_ppp1              = GET_STAT(TX_PORT_PPP1);
6830         p->tx_ppp2              = GET_STAT(TX_PORT_PPP2);
6831         p->tx_ppp3              = GET_STAT(TX_PORT_PPP3);
6832         p->tx_ppp4              = GET_STAT(TX_PORT_PPP4);
6833         p->tx_ppp5              = GET_STAT(TX_PORT_PPP5);
6834         p->tx_ppp6              = GET_STAT(TX_PORT_PPP6);
6835         p->tx_ppp7              = GET_STAT(TX_PORT_PPP7);
6836
6837         if (chip_id(adap) >= CHELSIO_T5) {
6838                 if (stat_ctl & F_COUNTPAUSESTATTX) {
6839                         p->tx_frames -= p->tx_pause;
6840                         p->tx_octets -= p->tx_pause * 64;
6841                 }
6842                 if (stat_ctl & F_COUNTPAUSEMCTX)
6843                         p->tx_mcast_frames -= p->tx_pause;
6844         }
6845
6846         p->rx_pause             = GET_STAT(RX_PORT_PAUSE);
6847         p->rx_octets            = GET_STAT(RX_PORT_BYTES);
6848         p->rx_frames            = GET_STAT(RX_PORT_FRAMES);
6849         p->rx_bcast_frames      = GET_STAT(RX_PORT_BCAST);
6850         p->rx_mcast_frames      = GET_STAT(RX_PORT_MCAST);
6851         p->rx_ucast_frames      = GET_STAT(RX_PORT_UCAST);
6852         p->rx_too_long          = GET_STAT(RX_PORT_MTU_ERROR);
6853         p->rx_jabber            = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6854         p->rx_fcs_err           = GET_STAT(RX_PORT_CRC_ERROR);
6855         p->rx_len_err           = GET_STAT(RX_PORT_LEN_ERROR);
6856         p->rx_symbol_err        = GET_STAT(RX_PORT_SYM_ERROR);
6857         p->rx_runt              = GET_STAT(RX_PORT_LESS_64B);
6858         p->rx_frames_64         = GET_STAT(RX_PORT_64B);
6859         p->rx_frames_65_127     = GET_STAT(RX_PORT_65B_127B);
6860         p->rx_frames_128_255    = GET_STAT(RX_PORT_128B_255B);
6861         p->rx_frames_256_511    = GET_STAT(RX_PORT_256B_511B);
6862         p->rx_frames_512_1023   = GET_STAT(RX_PORT_512B_1023B);
6863         p->rx_frames_1024_1518  = GET_STAT(RX_PORT_1024B_1518B);
6864         p->rx_frames_1519_max   = GET_STAT(RX_PORT_1519B_MAX);
6865         p->rx_ppp0              = GET_STAT(RX_PORT_PPP0);
6866         p->rx_ppp1              = GET_STAT(RX_PORT_PPP1);
6867         p->rx_ppp2              = GET_STAT(RX_PORT_PPP2);
6868         p->rx_ppp3              = GET_STAT(RX_PORT_PPP3);
6869         p->rx_ppp4              = GET_STAT(RX_PORT_PPP4);
6870         p->rx_ppp5              = GET_STAT(RX_PORT_PPP5);
6871         p->rx_ppp6              = GET_STAT(RX_PORT_PPP6);
6872         p->rx_ppp7              = GET_STAT(RX_PORT_PPP7);
6873
6874         if (chip_id(adap) >= CHELSIO_T5) {
6875                 if (stat_ctl & F_COUNTPAUSESTATRX) {
6876                         p->rx_frames -= p->rx_pause;
6877                         p->rx_octets -= p->rx_pause * 64;
6878                 }
6879                 if (stat_ctl & F_COUNTPAUSEMCRX)
6880                         p->rx_mcast_frames -= p->rx_pause;
6881         }
6882
6883         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6884         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6885         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6886         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6887         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6888         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6889         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6890         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6891
6892 #undef GET_STAT
6893 #undef GET_STAT_COM
6894 }
6895
6896 /**
6897  *      t4_get_lb_stats - collect loopback port statistics
6898  *      @adap: the adapter
6899  *      @idx: the loopback port index
6900  *      @p: the stats structure to fill
6901  *
6902  *      Return HW statistics for the given loopback port.
6903  */
6904 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6905 {
6906         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6907
6908 #define GET_STAT(name) \
6909         t4_read_reg64(adap, \
6910         (is_t4(adap) ? \
6911         PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6912         T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6913 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6914
6915         p->octets       = GET_STAT(BYTES);
6916         p->frames       = GET_STAT(FRAMES);
6917         p->bcast_frames = GET_STAT(BCAST);
6918         p->mcast_frames = GET_STAT(MCAST);
6919         p->ucast_frames = GET_STAT(UCAST);
6920         p->error_frames = GET_STAT(ERROR);
6921
6922         p->frames_64            = GET_STAT(64B);
6923         p->frames_65_127        = GET_STAT(65B_127B);
6924         p->frames_128_255       = GET_STAT(128B_255B);
6925         p->frames_256_511       = GET_STAT(256B_511B);
6926         p->frames_512_1023      = GET_STAT(512B_1023B);
6927         p->frames_1024_1518     = GET_STAT(1024B_1518B);
6928         p->frames_1519_max      = GET_STAT(1519B_MAX);
6929         p->drop                 = GET_STAT(DROP_FRAMES);
6930
6931         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6932         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6933         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6934         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6935         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6936         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6937         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6938         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6939
6940 #undef GET_STAT
6941 #undef GET_STAT_COM
6942 }
6943
6944 /**
6945  *      t4_wol_magic_enable - enable/disable magic packet WoL
6946  *      @adap: the adapter
6947  *      @port: the physical port index
6948  *      @addr: MAC address expected in magic packets, %NULL to disable
6949  *
6950  *      Enables/disables magic packet wake-on-LAN for the selected port.
6951  */
6952 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6953                          const u8 *addr)
6954 {
6955         u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6956
6957         if (is_t4(adap)) {
6958                 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6959                 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6960                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6961         } else {
6962                 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6963                 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6964                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6965         }
6966
6967         if (addr) {
6968                 t4_write_reg(adap, mag_id_reg_l,
6969                              (addr[2] << 24) | (addr[3] << 16) |
6970                              (addr[4] << 8) | addr[5]);
6971                 t4_write_reg(adap, mag_id_reg_h,
6972                              (addr[0] << 8) | addr[1]);
6973         }
6974         t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6975                          V_MAGICEN(addr != NULL));
6976 }
6977
6978 /**
6979  *      t4_wol_pat_enable - enable/disable pattern-based WoL
6980  *      @adap: the adapter
6981  *      @port: the physical port index
6982  *      @map: bitmap of which HW pattern filters to set
6983  *      @mask0: byte mask for bytes 0-63 of a packet
6984  *      @mask1: byte mask for bytes 64-127 of a packet
6985  *      @crc: Ethernet CRC for selected bytes
6986  *      @enable: enable/disable switch
6987  *
6988  *      Sets the pattern filters indicated in @map to mask out the bytes
6989  *      specified in @mask0/@mask1 in received packets and compare the CRC of
6990  *      the resulting packet against @crc.  If @enable is %true pattern-based
6991  *      WoL is enabled, otherwise disabled.
6992  */
6993 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6994                       u64 mask0, u64 mask1, unsigned int crc, bool enable)
6995 {
6996         int i;
6997         u32 port_cfg_reg;
6998
6999         if (is_t4(adap))
7000                 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7001         else
7002                 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7003
7004         if (!enable) {
7005                 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7006                 return 0;
7007         }
7008         if (map > 0xff)
7009                 return -EINVAL;
7010
7011 #define EPIO_REG(name) \
7012         (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7013         T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7014
7015         t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7016         t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7017         t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7018
7019         for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7020                 if (!(map & 1))
7021                         continue;
7022
7023                 /* write byte masks */
7024                 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7025                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7026                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7027                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7028                         return -ETIMEDOUT;
7029
7030                 /* write CRC */
7031                 t4_write_reg(adap, EPIO_REG(DATA0), crc);
7032                 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7033                 t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7034                 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7035                         return -ETIMEDOUT;
7036         }
7037 #undef EPIO_REG
7038
7039         t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7040         return 0;
7041 }
7042
7043 /*     t4_mk_filtdelwr - create a delete filter WR
7044  *     @ftid: the filter ID
7045  *     @wr: the filter work request to populate
7046  *     @qid: ingress queue to receive the delete notification
7047  *
7048  *     Creates a filter work request to delete the supplied filter.  If @qid is
7049  *     negative the delete notification is suppressed.
7050  */
7051 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7052 {
7053         memset(wr, 0, sizeof(*wr));
7054         wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7055         wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7056         wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7057                                     V_FW_FILTER_WR_NOREPLY(qid < 0));
7058         wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7059         if (qid >= 0)
7060                 wr->rx_chan_rx_rpl_iq =
7061                                 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7062 }
7063
7064 #define INIT_CMD(var, cmd, rd_wr) do { \
7065         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7066                                         F_FW_CMD_REQUEST | \
7067                                         F_FW_CMD_##rd_wr); \
7068         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7069 } while (0)
7070
7071 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7072                           u32 addr, u32 val)
7073 {
7074         u32 ldst_addrspace;
7075         struct fw_ldst_cmd c;
7076
7077         memset(&c, 0, sizeof(c));
7078         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7079         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7080                                         F_FW_CMD_REQUEST |
7081                                         F_FW_CMD_WRITE |
7082                                         ldst_addrspace);
7083         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7084         c.u.addrval.addr = cpu_to_be32(addr);
7085         c.u.addrval.val = cpu_to_be32(val);
7086
7087         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7088 }
7089
7090 /**
7091  *      t4_mdio_rd - read a PHY register through MDIO
7092  *      @adap: the adapter
7093  *      @mbox: mailbox to use for the FW command
7094  *      @phy_addr: the PHY address
7095  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
7096  *      @reg: the register to read
7097  *      @valp: where to store the value
7098  *
7099  *      Issues a FW command through the given mailbox to read a PHY register.
7100  */
7101 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7102                unsigned int mmd, unsigned int reg, unsigned int *valp)
7103 {
7104         int ret;
7105         u32 ldst_addrspace;
7106         struct fw_ldst_cmd c;
7107
7108         memset(&c, 0, sizeof(c));
7109         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7110         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7111                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
7112                                         ldst_addrspace);
7113         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7114         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7115                                          V_FW_LDST_CMD_MMD(mmd));
7116         c.u.mdio.raddr = cpu_to_be16(reg);
7117
7118         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7119         if (ret == 0)
7120                 *valp = be16_to_cpu(c.u.mdio.rval);
7121         return ret;
7122 }
7123
7124 /**
7125  *      t4_mdio_wr - write a PHY register through MDIO
7126  *      @adap: the adapter
7127  *      @mbox: mailbox to use for the FW command
7128  *      @phy_addr: the PHY address
7129  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
7130  *      @reg: the register to write
7131  *      @valp: value to write
7132  *
7133  *      Issues a FW command through the given mailbox to write a PHY register.
7134  */
7135 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7136                unsigned int mmd, unsigned int reg, unsigned int val)
7137 {
7138         u32 ldst_addrspace;
7139         struct fw_ldst_cmd c;
7140
7141         memset(&c, 0, sizeof(c));
7142         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7143         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7144                                         F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7145                                         ldst_addrspace);
7146         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7147         c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7148                                          V_FW_LDST_CMD_MMD(mmd));
7149         c.u.mdio.raddr = cpu_to_be16(reg);
7150         c.u.mdio.rval = cpu_to_be16(val);
7151
7152         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7153 }
7154
7155 /**
7156  *
7157  *      t4_sge_decode_idma_state - decode the idma state
7158  *      @adap: the adapter
7159  *      @state: the state idma is stuck in
7160  */
7161 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7162 {
7163         static const char * const t4_decode[] = {
7164                 "IDMA_IDLE",
7165                 "IDMA_PUSH_MORE_CPL_FIFO",
7166                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7167                 "Not used",
7168                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7169                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7170                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7171                 "IDMA_SEND_FIFO_TO_IMSG",
7172                 "IDMA_FL_REQ_DATA_FL_PREP",
7173                 "IDMA_FL_REQ_DATA_FL",
7174                 "IDMA_FL_DROP",
7175                 "IDMA_FL_H_REQ_HEADER_FL",
7176                 "IDMA_FL_H_SEND_PCIEHDR",
7177                 "IDMA_FL_H_PUSH_CPL_FIFO",
7178                 "IDMA_FL_H_SEND_CPL",
7179                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7180                 "IDMA_FL_H_SEND_IP_HDR",
7181                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7182                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7183                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7184                 "IDMA_FL_D_SEND_PCIEHDR",
7185                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7186                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7187                 "IDMA_FL_SEND_PCIEHDR",
7188                 "IDMA_FL_PUSH_CPL_FIFO",
7189                 "IDMA_FL_SEND_CPL",
7190                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7191                 "IDMA_FL_SEND_PAYLOAD",
7192                 "IDMA_FL_REQ_NEXT_DATA_FL",
7193                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7194                 "IDMA_FL_SEND_PADDING",
7195                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7196                 "IDMA_FL_SEND_FIFO_TO_IMSG",
7197                 "IDMA_FL_REQ_DATAFL_DONE",
7198                 "IDMA_FL_REQ_HEADERFL_DONE",
7199         };
7200         static const char * const t5_decode[] = {
7201                 "IDMA_IDLE",
7202                 "IDMA_ALMOST_IDLE",
7203                 "IDMA_PUSH_MORE_CPL_FIFO",
7204                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7205                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7206                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7207                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7208                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7209                 "IDMA_SEND_FIFO_TO_IMSG",
7210                 "IDMA_FL_REQ_DATA_FL",
7211                 "IDMA_FL_DROP",
7212                 "IDMA_FL_DROP_SEND_INC",
7213                 "IDMA_FL_H_REQ_HEADER_FL",
7214                 "IDMA_FL_H_SEND_PCIEHDR",
7215                 "IDMA_FL_H_PUSH_CPL_FIFO",
7216                 "IDMA_FL_H_SEND_CPL",
7217                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7218                 "IDMA_FL_H_SEND_IP_HDR",
7219                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7220                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7221                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7222                 "IDMA_FL_D_SEND_PCIEHDR",
7223                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7224                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7225                 "IDMA_FL_SEND_PCIEHDR",
7226                 "IDMA_FL_PUSH_CPL_FIFO",
7227                 "IDMA_FL_SEND_CPL",
7228                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7229                 "IDMA_FL_SEND_PAYLOAD",
7230                 "IDMA_FL_REQ_NEXT_DATA_FL",
7231                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7232                 "IDMA_FL_SEND_PADDING",
7233                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7234         };
7235         static const char * const t6_decode[] = {
7236                 "IDMA_IDLE",
7237                 "IDMA_PUSH_MORE_CPL_FIFO",
7238                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7239                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7240                 "IDMA_PHYSADDR_SEND_PCIEHDR",
7241                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7242                 "IDMA_PHYSADDR_SEND_PAYLOAD",
7243                 "IDMA_FL_REQ_DATA_FL",
7244                 "IDMA_FL_DROP",
7245                 "IDMA_FL_DROP_SEND_INC",
7246                 "IDMA_FL_H_REQ_HEADER_FL",
7247                 "IDMA_FL_H_SEND_PCIEHDR",
7248                 "IDMA_FL_H_PUSH_CPL_FIFO",
7249                 "IDMA_FL_H_SEND_CPL",
7250                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
7251                 "IDMA_FL_H_SEND_IP_HDR",
7252                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
7253                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
7254                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
7255                 "IDMA_FL_D_SEND_PCIEHDR",
7256                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7257                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
7258                 "IDMA_FL_SEND_PCIEHDR",
7259                 "IDMA_FL_PUSH_CPL_FIFO",
7260                 "IDMA_FL_SEND_CPL",
7261                 "IDMA_FL_SEND_PAYLOAD_FIRST",
7262                 "IDMA_FL_SEND_PAYLOAD",
7263                 "IDMA_FL_REQ_NEXT_DATA_FL",
7264                 "IDMA_FL_SEND_NEXT_PCIEHDR",
7265                 "IDMA_FL_SEND_PADDING",
7266                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
7267         };
7268         static const u32 sge_regs[] = {
7269                 A_SGE_DEBUG_DATA_LOW_INDEX_2,
7270                 A_SGE_DEBUG_DATA_LOW_INDEX_3,
7271                 A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7272         };
7273         const char * const *sge_idma_decode;
7274         int sge_idma_decode_nstates;
7275         int i;
7276         unsigned int chip_version = chip_id(adapter);
7277
7278         /* Select the right set of decode strings to dump depending on the
7279          * adapter chip type.
7280          */
7281         switch (chip_version) {
7282         case CHELSIO_T4:
7283                 sge_idma_decode = (const char * const *)t4_decode;
7284                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7285                 break;
7286
7287         case CHELSIO_T5:
7288                 sge_idma_decode = (const char * const *)t5_decode;
7289                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7290                 break;
7291
7292         case CHELSIO_T6:
7293                 sge_idma_decode = (const char * const *)t6_decode;
7294                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7295                 break;
7296
7297         default:
7298                 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version);
7299                 return;
7300         }
7301
7302         if (state < sge_idma_decode_nstates)
7303                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7304         else
7305                 CH_WARN(adapter, "idma state %d unknown\n", state);
7306
7307         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7308                 CH_WARN(adapter, "SGE register %#x value %#x\n",
7309                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7310 }
7311
7312 /**
7313  *      t4_sge_ctxt_flush - flush the SGE context cache
7314  *      @adap: the adapter
7315  *      @mbox: mailbox to use for the FW command
7316  *
7317  *      Issues a FW command through the given mailbox to flush the
7318  *      SGE context cache.
7319  */
7320 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
7321 {
7322         int ret;
7323         u32 ldst_addrspace;
7324         struct fw_ldst_cmd c;
7325
7326         memset(&c, 0, sizeof(c));
7327         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
7328         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7329                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
7330                                         ldst_addrspace);
7331         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7332         c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7333
7334         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7335         return ret;
7336 }
7337
7338 /**
7339  *      t4_fw_hello - establish communication with FW
7340  *      @adap: the adapter
7341  *      @mbox: mailbox to use for the FW command
7342  *      @evt_mbox: mailbox to receive async FW events
7343  *      @master: specifies the caller's willingness to be the device master
7344  *      @state: returns the current device state (if non-NULL)
7345  *
7346  *      Issues a command to establish communication with FW.  Returns either
7347  *      an error (negative integer) or the mailbox of the Master PF.
7348  */
7349 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7350                 enum dev_master master, enum dev_state *state)
7351 {
7352         int ret;
7353         struct fw_hello_cmd c;
7354         u32 v;
7355         unsigned int master_mbox;
7356         int retries = FW_CMD_HELLO_RETRIES;
7357
7358 retry:
7359         memset(&c, 0, sizeof(c));
7360         INIT_CMD(c, HELLO, WRITE);
7361         c.err_to_clearinit = cpu_to_be32(
7362                 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7363                 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7364                 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7365                                         mbox : M_FW_HELLO_CMD_MBMASTER) |
7366                 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7367                 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7368                 F_FW_HELLO_CMD_CLEARINIT);
7369
7370         /*
7371          * Issue the HELLO command to the firmware.  If it's not successful
7372          * but indicates that we got a "busy" or "timeout" condition, retry
7373          * the HELLO until we exhaust our retry limit.  If we do exceed our
7374          * retry limit, check to see if the firmware left us any error
7375          * information and report that if so ...
7376          */
7377         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7378         if (ret != FW_SUCCESS) {
7379                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7380                         goto retry;
7381                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7382                         t4_report_fw_error(adap);
7383                 return ret;
7384         }
7385
7386         v = be32_to_cpu(c.err_to_clearinit);
7387         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7388         if (state) {
7389                 if (v & F_FW_HELLO_CMD_ERR)
7390                         *state = DEV_STATE_ERR;
7391                 else if (v & F_FW_HELLO_CMD_INIT)
7392                         *state = DEV_STATE_INIT;
7393                 else
7394                         *state = DEV_STATE_UNINIT;
7395         }
7396
7397         /*
7398          * If we're not the Master PF then we need to wait around for the
7399          * Master PF Driver to finish setting up the adapter.
7400          *
7401          * Note that we also do this wait if we're a non-Master-capable PF and
7402          * there is no current Master PF; a Master PF may show up momentarily
7403          * and we wouldn't want to fail pointlessly.  (This can happen when an
7404          * OS loads lots of different drivers rapidly at the same time).  In
7405          * this case, the Master PF returned by the firmware will be
7406          * M_PCIE_FW_MASTER so the test below will work ...
7407          */
7408         if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7409             master_mbox != mbox) {
7410                 int waiting = FW_CMD_HELLO_TIMEOUT;
7411
7412                 /*
7413                  * Wait for the firmware to either indicate an error or
7414                  * initialized state.  If we see either of these we bail out
7415                  * and report the issue to the caller.  If we exhaust the
7416                  * "hello timeout" and we haven't exhausted our retries, try
7417                  * again.  Otherwise bail with a timeout error.
7418                  */
7419                 for (;;) {
7420                         u32 pcie_fw;
7421
7422                         msleep(50);
7423                         waiting -= 50;
7424
7425                         /*
7426                          * If neither Error nor Initialialized are indicated
7427                          * by the firmware keep waiting till we exhaust our
7428                          * timeout ... and then retry if we haven't exhausted
7429                          * our retries ...
7430                          */
7431                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7432                         if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7433                                 if (waiting <= 0) {
7434                                         if (retries-- > 0)
7435                                                 goto retry;
7436
7437                                         return -ETIMEDOUT;
7438                                 }
7439                                 continue;
7440                         }
7441
7442                         /*
7443                          * We either have an Error or Initialized condition
7444                          * report errors preferentially.
7445                          */
7446                         if (state) {
7447                                 if (pcie_fw & F_PCIE_FW_ERR)
7448                                         *state = DEV_STATE_ERR;
7449                                 else if (pcie_fw & F_PCIE_FW_INIT)
7450                                         *state = DEV_STATE_INIT;
7451                         }
7452
7453                         /*
7454                          * If we arrived before a Master PF was selected and
7455                          * there's not a valid Master PF, grab its identity
7456                          * for our caller.
7457                          */
7458                         if (master_mbox == M_PCIE_FW_MASTER &&
7459                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
7460                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7461                         break;
7462                 }
7463         }
7464
7465         return master_mbox;
7466 }
7467
7468 /**
7469  *      t4_fw_bye - end communication with FW
7470  *      @adap: the adapter
7471  *      @mbox: mailbox to use for the FW command
7472  *
7473  *      Issues a command to terminate communication with FW.
7474  */
7475 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7476 {
7477         struct fw_bye_cmd c;
7478
7479         memset(&c, 0, sizeof(c));
7480         INIT_CMD(c, BYE, WRITE);
7481         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7482 }
7483
7484 /**
7485  *      t4_fw_reset - issue a reset to FW
7486  *      @adap: the adapter
7487  *      @mbox: mailbox to use for the FW command
7488  *      @reset: specifies the type of reset to perform
7489  *
7490  *      Issues a reset command of the specified type to FW.
7491  */
7492 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7493 {
7494         struct fw_reset_cmd c;
7495
7496         memset(&c, 0, sizeof(c));
7497         INIT_CMD(c, RESET, WRITE);
7498         c.val = cpu_to_be32(reset);
7499         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7500 }
7501
7502 /**
7503  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7504  *      @adap: the adapter
7505  *      @mbox: mailbox to use for the FW RESET command (if desired)
7506  *      @force: force uP into RESET even if FW RESET command fails
7507  *
7508  *      Issues a RESET command to firmware (if desired) with a HALT indication
7509  *      and then puts the microprocessor into RESET state.  The RESET command
7510  *      will only be issued if a legitimate mailbox is provided (mbox <=
7511  *      M_PCIE_FW_MASTER).
7512  *
7513  *      This is generally used in order for the host to safely manipulate the
7514  *      adapter without fear of conflicting with whatever the firmware might
7515  *      be doing.  The only way out of this state is to RESTART the firmware
7516  *      ...
7517  */
7518 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7519 {
7520         int ret = 0;
7521
7522         /*
7523          * If a legitimate mailbox is provided, issue a RESET command
7524          * with a HALT indication.
7525          */
7526         if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7527                 struct fw_reset_cmd c;
7528
7529                 memset(&c, 0, sizeof(c));
7530                 INIT_CMD(c, RESET, WRITE);
7531                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7532                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7533                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7534         }
7535
7536         /*
7537          * Normally we won't complete the operation if the firmware RESET
7538          * command fails but if our caller insists we'll go ahead and put the
7539          * uP into RESET.  This can be useful if the firmware is hung or even
7540          * missing ...  We'll have to take the risk of putting the uP into
7541          * RESET without the cooperation of firmware in that case.
7542          *
7543          * We also force the firmware's HALT flag to be on in case we bypassed
7544          * the firmware RESET command above or we're dealing with old firmware
7545          * which doesn't have the HALT capability.  This will serve as a flag
7546          * for the incoming firmware to know that it's coming out of a HALT
7547          * rather than a RESET ... if it's new enough to understand that ...
7548          */
7549         if (ret == 0 || force) {
7550                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7551                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7552                                  F_PCIE_FW_HALT);
7553         }
7554
7555         /*
7556          * And we always return the result of the firmware RESET command
7557          * even when we force the uP into RESET ...
7558          */
7559         return ret;
7560 }
7561
7562 /**
7563  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7564  *      @adap: the adapter
7565  *
7566  *      Restart firmware previously halted by t4_fw_halt().  On successful
7567  *      return the previous PF Master remains as the new PF Master and there
7568  *      is no need to issue a new HELLO command, etc.
7569  */
7570 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7571 {
7572         int ms;
7573
7574         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7575         for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7576                 if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7577                         return FW_SUCCESS;
7578                 msleep(100);
7579                 ms += 100;
7580         }
7581
7582         return -ETIMEDOUT;
7583 }
7584
7585 /**
7586  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7587  *      @adap: the adapter
7588  *      @mbox: mailbox to use for the FW RESET command (if desired)
7589  *      @fw_data: the firmware image to write
7590  *      @size: image size
7591  *      @force: force upgrade even if firmware doesn't cooperate
7592  *
7593  *      Perform all of the steps necessary for upgrading an adapter's
7594  *      firmware image.  Normally this requires the cooperation of the
7595  *      existing firmware in order to halt all existing activities
7596  *      but if an invalid mailbox token is passed in we skip that step
7597  *      (though we'll still put the adapter microprocessor into RESET in
7598  *      that case).
7599  *
7600  *      On successful return the new firmware will have been loaded and
7601  *      the adapter will have been fully RESET losing all previous setup
7602  *      state.  On unsuccessful return the adapter may be completely hosed ...
7603  *      positive errno indicates that the adapter is ~probably~ intact, a
7604  *      negative errno indicates that things are looking bad ...
7605  */
7606 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7607                   const u8 *fw_data, unsigned int size, int force)
7608 {
7609         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7610         unsigned int bootstrap =
7611             be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7612         int ret;
7613
7614         if (!t4_fw_matches_chip(adap, fw_hdr))
7615                 return -EINVAL;
7616
7617         if (!bootstrap) {
7618                 ret = t4_fw_halt(adap, mbox, force);
7619                 if (ret < 0 && !force)
7620                         return ret;
7621         }
7622
7623         ret = t4_load_fw(adap, fw_data, size);
7624         if (ret < 0 || bootstrap)
7625                 return ret;
7626
7627         return t4_fw_restart(adap, mbox);
7628 }
7629
7630 /**
7631  *      t4_fw_initialize - ask FW to initialize the device
7632  *      @adap: the adapter
7633  *      @mbox: mailbox to use for the FW command
7634  *
7635  *      Issues a command to FW to partially initialize the device.  This
7636  *      performs initialization that generally doesn't depend on user input.
7637  */
7638 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7639 {
7640         struct fw_initialize_cmd c;
7641
7642         memset(&c, 0, sizeof(c));
7643         INIT_CMD(c, INITIALIZE, WRITE);
7644         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7645 }
7646
7647 /**
7648  *      t4_query_params_rw - query FW or device parameters
7649  *      @adap: the adapter
7650  *      @mbox: mailbox to use for the FW command
7651  *      @pf: the PF
7652  *      @vf: the VF
7653  *      @nparams: the number of parameters
7654  *      @params: the parameter names
7655  *      @val: the parameter values
7656  *      @rw: Write and read flag
7657  *
7658  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7659  *      queried at once.
7660  */
7661 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7662                        unsigned int vf, unsigned int nparams, const u32 *params,
7663                        u32 *val, int rw)
7664 {
7665         int i, ret;
7666         struct fw_params_cmd c;
7667         __be32 *p = &c.param[0].mnem;
7668
7669         if (nparams > 7)
7670                 return -EINVAL;
7671
7672         memset(&c, 0, sizeof(c));
7673         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7674                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
7675                                   V_FW_PARAMS_CMD_PFN(pf) |
7676                                   V_FW_PARAMS_CMD_VFN(vf));
7677         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7678
7679         for (i = 0; i < nparams; i++) {
7680                 *p++ = cpu_to_be32(*params++);
7681                 if (rw)
7682                         *p = cpu_to_be32(*(val + i));
7683                 p++;
7684         }
7685
7686         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7687         if (ret == 0)
7688                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7689                         *val++ = be32_to_cpu(*p);
7690         return ret;
7691 }
7692
7693 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7694                     unsigned int vf, unsigned int nparams, const u32 *params,
7695                     u32 *val)
7696 {
7697         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7698 }
7699
7700 /**
7701  *      t4_set_params_timeout - sets FW or device parameters
7702  *      @adap: the adapter
7703  *      @mbox: mailbox to use for the FW command
7704  *      @pf: the PF
7705  *      @vf: the VF
7706  *      @nparams: the number of parameters
7707  *      @params: the parameter names
7708  *      @val: the parameter values
7709  *      @timeout: the timeout time
7710  *
7711  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7712  *      specified at once.
7713  */
7714 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7715                           unsigned int pf, unsigned int vf,
7716                           unsigned int nparams, const u32 *params,
7717                           const u32 *val, int timeout)
7718 {
7719         struct fw_params_cmd c;
7720         __be32 *p = &c.param[0].mnem;
7721
7722         if (nparams > 7)
7723                 return -EINVAL;
7724
7725         memset(&c, 0, sizeof(c));
7726         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7727                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7728                                   V_FW_PARAMS_CMD_PFN(pf) |
7729                                   V_FW_PARAMS_CMD_VFN(vf));
7730         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7731
7732         while (nparams--) {
7733                 *p++ = cpu_to_be32(*params++);
7734                 *p++ = cpu_to_be32(*val++);
7735         }
7736
7737         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7738 }
7739
7740 /**
7741  *      t4_set_params - sets FW or device parameters
7742  *      @adap: the adapter
7743  *      @mbox: mailbox to use for the FW command
7744  *      @pf: the PF
7745  *      @vf: the VF
7746  *      @nparams: the number of parameters
7747  *      @params: the parameter names
7748  *      @val: the parameter values
7749  *
7750  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7751  *      specified at once.
7752  */
7753 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7754                   unsigned int vf, unsigned int nparams, const u32 *params,
7755                   const u32 *val)
7756 {
7757         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7758                                      FW_CMD_MAX_TIMEOUT);
7759 }
7760
7761 /**
7762  *      t4_cfg_pfvf - configure PF/VF resource limits
7763  *      @adap: the adapter
7764  *      @mbox: mailbox to use for the FW command
7765  *      @pf: the PF being configured
7766  *      @vf: the VF being configured
7767  *      @txq: the max number of egress queues
7768  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7769  *      @rxqi: the max number of interrupt-capable ingress queues
7770  *      @rxq: the max number of interruptless ingress queues
7771  *      @tc: the PCI traffic class
7772  *      @vi: the max number of virtual interfaces
7773  *      @cmask: the channel access rights mask for the PF/VF
7774  *      @pmask: the port access rights mask for the PF/VF
7775  *      @nexact: the maximum number of exact MPS filters
7776  *      @rcaps: read capabilities
7777  *      @wxcaps: write/execute capabilities
7778  *
7779  *      Configures resource limits and capabilities for a physical or virtual
7780  *      function.
7781  */
7782 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7783                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7784                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7785                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7786                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7787 {
7788         struct fw_pfvf_cmd c;
7789
7790         memset(&c, 0, sizeof(c));
7791         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7792                                   F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7793                                   V_FW_PFVF_CMD_VFN(vf));
7794         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7795         c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7796                                      V_FW_PFVF_CMD_NIQ(rxq));
7797         c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7798                                     V_FW_PFVF_CMD_PMASK(pmask) |
7799                                     V_FW_PFVF_CMD_NEQ(txq));
7800         c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7801                                       V_FW_PFVF_CMD_NVI(vi) |
7802                                       V_FW_PFVF_CMD_NEXACTF(nexact));
7803         c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7804                                      V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7805                                      V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7806         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7807 }
7808
7809 /**
7810  *      t4_alloc_vi_func - allocate a virtual interface
7811  *      @adap: the adapter
7812  *      @mbox: mailbox to use for the FW command
7813  *      @port: physical port associated with the VI
7814  *      @pf: the PF owning the VI
7815  *      @vf: the VF owning the VI
7816  *      @nmac: number of MAC addresses needed (1 to 5)
7817  *      @mac: the MAC addresses of the VI
7818  *      @rss_size: size of RSS table slice associated with this VI
7819  *      @portfunc: which Port Application Function MAC Address is desired
7820  *      @idstype: Intrusion Detection Type
7821  *
7822  *      Allocates a virtual interface for the given physical port.  If @mac is
7823  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7824  *      If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7825  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7826  *      stored consecutively so the space needed is @nmac * 6 bytes.
7827  *      Returns a negative error number or the non-negative VI id.
7828  */
7829 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7830                      unsigned int port, unsigned int pf, unsigned int vf,
7831                      unsigned int nmac, u8 *mac, u16 *rss_size,
7832                      uint8_t *vfvld, uint16_t *vin,
7833                      unsigned int portfunc, unsigned int idstype)
7834 {
7835         int ret;
7836         struct fw_vi_cmd c;
7837
7838         memset(&c, 0, sizeof(c));
7839         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7840                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7841                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7842         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7843         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7844                                      V_FW_VI_CMD_FUNC(portfunc));
7845         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7846         c.nmac = nmac - 1;
7847         if(!rss_size)
7848                 c.norss_rsssize = F_FW_VI_CMD_NORSS;
7849
7850         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7851         if (ret)
7852                 return ret;
7853         ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7854
7855         if (mac) {
7856                 memcpy(mac, c.mac, sizeof(c.mac));
7857                 switch (nmac) {
7858                 case 5:
7859                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7860                 case 4:
7861                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7862                 case 3:
7863                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7864                 case 2:
7865                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7866                 }
7867         }
7868         if (rss_size)
7869                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7870         if (vfvld) {
7871                 *vfvld = adap->params.viid_smt_extn_support ?
7872                     G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
7873                     G_FW_VIID_VIVLD(ret);
7874         }
7875         if (vin) {
7876                 *vin = adap->params.viid_smt_extn_support ?
7877                     G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
7878                     G_FW_VIID_VIN(ret);
7879         }
7880
7881         return ret;
7882 }
7883
7884 /**
7885  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7886  *      @adap: the adapter
7887  *      @mbox: mailbox to use for the FW command
7888  *      @port: physical port associated with the VI
7889  *      @pf: the PF owning the VI
7890  *      @vf: the VF owning the VI
7891  *      @nmac: number of MAC addresses needed (1 to 5)
7892  *      @mac: the MAC addresses of the VI
7893  *      @rss_size: size of RSS table slice associated with this VI
7894  *
7895  *      backwards compatible and convieniance routine to allocate a Virtual
7896  *      Interface with a Ethernet Port Application Function and Intrustion
7897  *      Detection System disabled.
7898  */
7899 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7900                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7901                 u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
7902 {
7903         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7904                                 vfvld, vin, FW_VI_FUNC_ETH, 0);
7905 }
7906
7907 /**
7908  *      t4_free_vi - free a virtual interface
7909  *      @adap: the adapter
7910  *      @mbox: mailbox to use for the FW command
7911  *      @pf: the PF owning the VI
7912  *      @vf: the VF owning the VI
7913  *      @viid: virtual interface identifiler
7914  *
7915  *      Free a previously allocated virtual interface.
7916  */
7917 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7918                unsigned int vf, unsigned int viid)
7919 {
7920         struct fw_vi_cmd c;
7921
7922         memset(&c, 0, sizeof(c));
7923         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7924                                   F_FW_CMD_REQUEST |
7925                                   F_FW_CMD_EXEC |
7926                                   V_FW_VI_CMD_PFN(pf) |
7927                                   V_FW_VI_CMD_VFN(vf));
7928         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7929         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7930
7931         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7932 }
7933
7934 /**
7935  *      t4_set_rxmode - set Rx properties of a virtual interface
7936  *      @adap: the adapter
7937  *      @mbox: mailbox to use for the FW command
7938  *      @viid: the VI id
7939  *      @mtu: the new MTU or -1
7940  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7941  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7942  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7943  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7944  *      @sleep_ok: if true we may sleep while awaiting command completion
7945  *
7946  *      Sets Rx properties of a virtual interface.
7947  */
7948 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7949                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
7950                   bool sleep_ok)
7951 {
7952         struct fw_vi_rxmode_cmd c;
7953
7954         /* convert to FW values */
7955         if (mtu < 0)
7956                 mtu = M_FW_VI_RXMODE_CMD_MTU;
7957         if (promisc < 0)
7958                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7959         if (all_multi < 0)
7960                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7961         if (bcast < 0)
7962                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7963         if (vlanex < 0)
7964                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7965
7966         memset(&c, 0, sizeof(c));
7967         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7968                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7969                                    V_FW_VI_RXMODE_CMD_VIID(viid));
7970         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7971         c.mtu_to_vlanexen =
7972                 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7973                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7974                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7975                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7976                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7977         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7978 }
7979
7980 /**
7981  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7982  *      @adap: the adapter
7983  *      @mbox: mailbox to use for the FW command
7984  *      @viid: the VI id
7985  *      @free: if true any existing filters for this VI id are first removed
7986  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7987  *      @addr: the MAC address(es)
7988  *      @idx: where to store the index of each allocated filter
7989  *      @hash: pointer to hash address filter bitmap
7990  *      @sleep_ok: call is allowed to sleep
7991  *
7992  *      Allocates an exact-match filter for each of the supplied addresses and
7993  *      sets it to the corresponding address.  If @idx is not %NULL it should
7994  *      have at least @naddr entries, each of which will be set to the index of
7995  *      the filter allocated for the corresponding MAC address.  If a filter
7996  *      could not be allocated for an address its index is set to 0xffff.
7997  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7998  *      are hashed and update the hash filter bitmap pointed at by @hash.
7999  *
8000  *      Returns a negative error number or the number of filters allocated.
8001  */
8002 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8003                       unsigned int viid, bool free, unsigned int naddr,
8004                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8005 {
8006         int offset, ret = 0;
8007         struct fw_vi_mac_cmd c;
8008         unsigned int nfilters = 0;
8009         unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8010         unsigned int rem = naddr;
8011
8012         if (naddr > max_naddr)
8013                 return -EINVAL;
8014
8015         for (offset = 0; offset < naddr ; /**/) {
8016                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8017                                          ? rem
8018                                          : ARRAY_SIZE(c.u.exact));
8019                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8020                                                      u.exact[fw_naddr]), 16);
8021                 struct fw_vi_mac_exact *p;
8022                 int i;
8023
8024                 memset(&c, 0, sizeof(c));
8025                 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8026                                            F_FW_CMD_REQUEST |
8027                                            F_FW_CMD_WRITE |
8028                                            V_FW_CMD_EXEC(free) |
8029                                            V_FW_VI_MAC_CMD_VIID(viid));
8030                 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8031                                                   V_FW_CMD_LEN16(len16));
8032
8033                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8034                         p->valid_to_idx =
8035                                 cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8036                                             V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8037                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8038                 }
8039
8040                 /*
8041                  * It's okay if we run out of space in our MAC address arena.
8042                  * Some of the addresses we submit may get stored so we need
8043                  * to run through the reply to see what the results were ...
8044                  */
8045                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8046                 if (ret && ret != -FW_ENOMEM)
8047                         break;
8048
8049                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8050                         u16 index = G_FW_VI_MAC_CMD_IDX(
8051                                                 be16_to_cpu(p->valid_to_idx));
8052
8053                         if (idx)
8054                                 idx[offset+i] = (index >=  max_naddr
8055                                                  ? 0xffff
8056                                                  : index);
8057                         if (index < max_naddr)
8058                                 nfilters++;
8059                         else if (hash)
8060                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8061                 }
8062
8063                 free = false;
8064                 offset += fw_naddr;
8065                 rem -= fw_naddr;
8066         }
8067
8068         if (ret == 0 || ret == -FW_ENOMEM)
8069                 ret = nfilters;
8070         return ret;
8071 }
8072
8073 /**
8074  *      t4_change_mac - modifies the exact-match filter for a MAC address
8075  *      @adap: the adapter
8076  *      @mbox: mailbox to use for the FW command
8077  *      @viid: the VI id
8078  *      @idx: index of existing filter for old value of MAC address, or -1
8079  *      @addr: the new MAC address value
8080  *      @persist: whether a new MAC allocation should be persistent
8081  *      @smt_idx: add MAC to SMT and return its index, or NULL
8082  *
8083  *      Modifies an exact-match filter and sets it to the new MAC address if
8084  *      @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8085  *      latter case the address is added persistently if @persist is %true.
8086  *
8087  *      Note that in general it is not possible to modify the value of a given
8088  *      filter so the generic way to modify an address filter is to free the one
8089  *      being used by the old address value and allocate a new filter for the
8090  *      new address value.
8091  *
8092  *      Returns a negative error number or the index of the filter with the new
8093  *      MAC value.  Note that this index may differ from @idx.
8094  */
8095 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8096                   int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8097 {
8098         int ret, mode;
8099         struct fw_vi_mac_cmd c;
8100         struct fw_vi_mac_exact *p = c.u.exact;
8101         unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8102
8103         if (idx < 0)            /* new allocation */
8104                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8105         mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8106
8107         memset(&c, 0, sizeof(c));
8108         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8109                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8110                                    V_FW_VI_MAC_CMD_VIID(viid));
8111         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8112         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8113                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8114                                       V_FW_VI_MAC_CMD_IDX(idx));
8115         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8116
8117         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8118         if (ret == 0) {
8119                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8120                 if (ret >= max_mac_addr)
8121                         ret = -ENOMEM;
8122                 if (smt_idx) {
8123                         if (adap->params.viid_smt_extn_support)
8124                                 *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8125                         else {
8126                                 if (chip_id(adap) <= CHELSIO_T5)
8127                                         *smt_idx = (viid & M_FW_VIID_VIN) << 1;
8128                                 else
8129                                         *smt_idx = viid & M_FW_VIID_VIN;
8130                         }
8131                 }
8132         }
8133         return ret;
8134 }
8135
8136 /**
8137  *      t4_set_addr_hash - program the MAC inexact-match hash filter
8138  *      @adap: the adapter
8139  *      @mbox: mailbox to use for the FW command
8140  *      @viid: the VI id
8141  *      @ucast: whether the hash filter should also match unicast addresses
8142  *      @vec: the value to be written to the hash filter
8143  *      @sleep_ok: call is allowed to sleep
8144  *
8145  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8146  */
8147 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8148                      bool ucast, u64 vec, bool sleep_ok)
8149 {
8150         struct fw_vi_mac_cmd c;
8151         u32 val;
8152
8153         memset(&c, 0, sizeof(c));
8154         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8155                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8156                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8157         val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8158               V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8159         c.freemacs_to_len16 = cpu_to_be32(val);
8160         c.u.hash.hashvec = cpu_to_be64(vec);
8161         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8162 }
8163
8164 /**
8165  *      t4_enable_vi_params - enable/disable a virtual interface
8166  *      @adap: the adapter
8167  *      @mbox: mailbox to use for the FW command
8168  *      @viid: the VI id
8169  *      @rx_en: 1=enable Rx, 0=disable Rx
8170  *      @tx_en: 1=enable Tx, 0=disable Tx
8171  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8172  *
8173  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8174  *      only makes sense when enabling a Virtual Interface ...
8175  */
8176 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8177                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8178 {
8179         struct fw_vi_enable_cmd c;
8180
8181         memset(&c, 0, sizeof(c));
8182         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8183                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8184                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8185         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8186                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8187                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8188                                      FW_LEN16(c));
8189         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8190 }
8191
8192 /**
8193  *      t4_enable_vi - enable/disable a virtual interface
8194  *      @adap: the adapter
8195  *      @mbox: mailbox to use for the FW command
8196  *      @viid: the VI id
8197  *      @rx_en: 1=enable Rx, 0=disable Rx
8198  *      @tx_en: 1=enable Tx, 0=disable Tx
8199  *
8200  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8201  *      only makes sense when enabling a Virtual Interface ...
8202  */
8203 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8204                  bool rx_en, bool tx_en)
8205 {
8206         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8207 }
8208
8209 /**
8210  *      t4_identify_port - identify a VI's port by blinking its LED
8211  *      @adap: the adapter
8212  *      @mbox: mailbox to use for the FW command
8213  *      @viid: the VI id
8214  *      @nblinks: how many times to blink LED at 2.5 Hz
8215  *
8216  *      Identifies a VI's port by blinking its LED.
8217  */
8218 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8219                      unsigned int nblinks)
8220 {
8221         struct fw_vi_enable_cmd c;
8222
8223         memset(&c, 0, sizeof(c));
8224         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8225                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8226                                    V_FW_VI_ENABLE_CMD_VIID(viid));
8227         c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8228         c.blinkdur = cpu_to_be16(nblinks);
8229         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8230 }
8231
8232 /**
8233  *      t4_iq_stop - stop an ingress queue and its FLs
8234  *      @adap: the adapter
8235  *      @mbox: mailbox to use for the FW command
8236  *      @pf: the PF owning the queues
8237  *      @vf: the VF owning the queues
8238  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8239  *      @iqid: ingress queue id
8240  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8241  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8242  *
8243  *      Stops an ingress queue and its associated FLs, if any.  This causes
8244  *      any current or future data/messages destined for these queues to be
8245  *      tossed.
8246  */
8247 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8248                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8249                unsigned int fl0id, unsigned int fl1id)
8250 {
8251         struct fw_iq_cmd c;
8252
8253         memset(&c, 0, sizeof(c));
8254         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8255                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8256                                   V_FW_IQ_CMD_VFN(vf));
8257         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8258         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8259         c.iqid = cpu_to_be16(iqid);
8260         c.fl0id = cpu_to_be16(fl0id);
8261         c.fl1id = cpu_to_be16(fl1id);
8262         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8263 }
8264
8265 /**
8266  *      t4_iq_free - free an ingress queue and its FLs
8267  *      @adap: the adapter
8268  *      @mbox: mailbox to use for the FW command
8269  *      @pf: the PF owning the queues
8270  *      @vf: the VF owning the queues
8271  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8272  *      @iqid: ingress queue id
8273  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8274  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8275  *
8276  *      Frees an ingress queue and its associated FLs, if any.
8277  */
8278 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8279                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8280                unsigned int fl0id, unsigned int fl1id)
8281 {
8282         struct fw_iq_cmd c;
8283
8284         memset(&c, 0, sizeof(c));
8285         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8286                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8287                                   V_FW_IQ_CMD_VFN(vf));
8288         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8289         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8290         c.iqid = cpu_to_be16(iqid);
8291         c.fl0id = cpu_to_be16(fl0id);
8292         c.fl1id = cpu_to_be16(fl1id);
8293         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8294 }
8295
8296 /**
8297  *      t4_eth_eq_free - free an Ethernet egress queue
8298  *      @adap: the adapter
8299  *      @mbox: mailbox to use for the FW command
8300  *      @pf: the PF owning the queue
8301  *      @vf: the VF owning the queue
8302  *      @eqid: egress queue id
8303  *
8304  *      Frees an Ethernet egress queue.
8305  */
8306 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8307                    unsigned int vf, unsigned int eqid)
8308 {
8309         struct fw_eq_eth_cmd c;
8310
8311         memset(&c, 0, sizeof(c));
8312         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8313                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8314                                   V_FW_EQ_ETH_CMD_PFN(pf) |
8315                                   V_FW_EQ_ETH_CMD_VFN(vf));
8316         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8317         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8318         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8319 }
8320
8321 /**
8322  *      t4_ctrl_eq_free - free a control egress queue
8323  *      @adap: the adapter
8324  *      @mbox: mailbox to use for the FW command
8325  *      @pf: the PF owning the queue
8326  *      @vf: the VF owning the queue
8327  *      @eqid: egress queue id
8328  *
8329  *      Frees a control egress queue.
8330  */
8331 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8332                     unsigned int vf, unsigned int eqid)
8333 {
8334         struct fw_eq_ctrl_cmd c;
8335
8336         memset(&c, 0, sizeof(c));
8337         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8338                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8339                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
8340                                   V_FW_EQ_CTRL_CMD_VFN(vf));
8341         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8342         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8343         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8344 }
8345
8346 /**
8347  *      t4_ofld_eq_free - free an offload egress queue
8348  *      @adap: the adapter
8349  *      @mbox: mailbox to use for the FW command
8350  *      @pf: the PF owning the queue
8351  *      @vf: the VF owning the queue
8352  *      @eqid: egress queue id
8353  *
8354  *      Frees a control egress queue.
8355  */
8356 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8357                     unsigned int vf, unsigned int eqid)
8358 {
8359         struct fw_eq_ofld_cmd c;
8360
8361         memset(&c, 0, sizeof(c));
8362         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8363                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8364                                   V_FW_EQ_OFLD_CMD_PFN(pf) |
8365                                   V_FW_EQ_OFLD_CMD_VFN(vf));
8366         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8367         c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8368         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8369 }
8370
8371 /**
8372  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8373  *      @link_down_rc: Link Down Reason Code
8374  *
8375  *      Returns a string representation of the Link Down Reason Code.
8376  */
8377 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8378 {
8379         static const char *reason[] = {
8380                 "Link Down",
8381                 "Remote Fault",
8382                 "Auto-negotiation Failure",
8383                 "Reserved3",
8384                 "Insufficient Airflow",
8385                 "Unable To Determine Reason",
8386                 "No RX Signal Detected",
8387                 "Reserved7",
8388         };
8389
8390         if (link_down_rc >= ARRAY_SIZE(reason))
8391                 return "Bad Reason Code";
8392
8393         return reason[link_down_rc];
8394 }
8395
8396 /*
8397  * Return the highest speed set in the port capabilities, in Mb/s.
8398  */
8399 unsigned int fwcap_to_speed(uint32_t caps)
8400 {
8401         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8402                 do { \
8403                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8404                                 return __speed; \
8405                 } while (0)
8406
8407         TEST_SPEED_RETURN(400G, 400000);
8408         TEST_SPEED_RETURN(200G, 200000);
8409         TEST_SPEED_RETURN(100G, 100000);
8410         TEST_SPEED_RETURN(50G,   50000);
8411         TEST_SPEED_RETURN(40G,   40000);
8412         TEST_SPEED_RETURN(25G,   25000);
8413         TEST_SPEED_RETURN(10G,   10000);
8414         TEST_SPEED_RETURN(1G,     1000);
8415         TEST_SPEED_RETURN(100M,    100);
8416
8417         #undef TEST_SPEED_RETURN
8418
8419         return 0;
8420 }
8421
8422 /*
8423  * Return the port capabilities bit for the given speed, which is in Mb/s.
8424  */
8425 uint32_t speed_to_fwcap(unsigned int speed)
8426 {
8427         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8428                 do { \
8429                         if (speed == __speed) \
8430                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8431                 } while (0)
8432
8433         TEST_SPEED_RETURN(400G, 400000);
8434         TEST_SPEED_RETURN(200G, 200000);
8435         TEST_SPEED_RETURN(100G, 100000);
8436         TEST_SPEED_RETURN(50G,   50000);
8437         TEST_SPEED_RETURN(40G,   40000);
8438         TEST_SPEED_RETURN(25G,   25000);
8439         TEST_SPEED_RETURN(10G,   10000);
8440         TEST_SPEED_RETURN(1G,     1000);
8441         TEST_SPEED_RETURN(100M,    100);
8442
8443         #undef TEST_SPEED_RETURN
8444
8445         return 0;
8446 }
8447
8448 /*
8449  * Return the port capabilities bit for the highest speed in the capabilities.
8450  */
8451 uint32_t fwcap_top_speed(uint32_t caps)
8452 {
8453         #define TEST_SPEED_RETURN(__caps_speed) \
8454                 do { \
8455                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8456                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8457                 } while (0)
8458
8459         TEST_SPEED_RETURN(400G);
8460         TEST_SPEED_RETURN(200G);
8461         TEST_SPEED_RETURN(100G);
8462         TEST_SPEED_RETURN(50G);
8463         TEST_SPEED_RETURN(40G);
8464         TEST_SPEED_RETURN(25G);
8465         TEST_SPEED_RETURN(10G);
8466         TEST_SPEED_RETURN(1G);
8467         TEST_SPEED_RETURN(100M);
8468
8469         #undef TEST_SPEED_RETURN
8470
8471         return 0;
8472 }
8473
8474
8475 /**
8476  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8477  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8478  *
8479  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8480  *      32-bit Port Capabilities value.
8481  */
8482 static uint32_t lstatus_to_fwcap(u32 lstatus)
8483 {
8484         uint32_t linkattr = 0;
8485
8486         /*
8487          * Unfortunately the format of the Link Status in the old
8488          * 16-bit Port Information message isn't the same as the
8489          * 16-bit Port Capabilities bitfield used everywhere else ...
8490          */
8491         if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8492                 linkattr |= FW_PORT_CAP32_FC_RX;
8493         if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8494                 linkattr |= FW_PORT_CAP32_FC_TX;
8495         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8496                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8497         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8498                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8499         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8500                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8501         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8502                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8503         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8504                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8505         if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8506                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8507
8508         return linkattr;
8509 }
8510
8511 /*
8512  * Updates all fields owned by the common code in port_info and link_config
8513  * based on information provided by the firmware.  Does not touch any
8514  * requested_* field.
8515  */
8516 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8517     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8518 {
8519         struct link_config old_lc, *lc = &pi->link_cfg;
8520         unsigned char fc, fec;
8521         u32 stat, linkattr;
8522         int old_ptype, old_mtype;
8523
8524         old_ptype = pi->port_type;
8525         old_mtype = pi->mod_type;
8526         old_lc = *lc;
8527         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8528                 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8529
8530                 pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8531                 pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8532                 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8533                     G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8534
8535                 lc->supported = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8536                 lc->advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8537                 lc->lp_advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8538                 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8539                 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8540
8541                 linkattr = lstatus_to_fwcap(stat);
8542         } else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8543                 stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8544
8545                 pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8546                 pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8547                 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8548                     G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8549
8550                 lc->supported = be32_to_cpu(p->u.info32.pcaps32);
8551                 lc->advertising = be32_to_cpu(p->u.info32.acaps32);
8552                 lc->lp_advertising = be16_to_cpu(p->u.info32.lpacaps32);
8553                 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8554                 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8555
8556                 linkattr = be32_to_cpu(p->u.info32.linkattr32);
8557         } else {
8558                 CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8559                 return;
8560         }
8561
8562         lc->speed = fwcap_to_speed(linkattr);
8563
8564         fc = 0;
8565         if (linkattr & FW_PORT_CAP32_FC_RX)
8566                 fc |= PAUSE_RX;
8567         if (linkattr & FW_PORT_CAP32_FC_TX)
8568                 fc |= PAUSE_TX;
8569         lc->fc = fc;
8570
8571         fec = FEC_NONE;
8572         if (linkattr & FW_PORT_CAP32_FEC_RS)
8573                 fec |= FEC_RS;
8574         if (linkattr & FW_PORT_CAP32_FEC_BASER_RS)
8575                 fec |= FEC_BASER_RS;
8576         lc->fec = fec;
8577
8578         if (mod_changed != NULL)
8579                 *mod_changed = false;
8580         if (link_changed != NULL)
8581                 *link_changed = false;
8582         if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8583             old_lc.supported != lc->supported) {
8584                 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
8585                         lc->fec_hint = lc->advertising &
8586                             V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
8587                 }
8588                 if (mod_changed != NULL)
8589                         *mod_changed = true;
8590         }
8591         if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8592             old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8593                 if (link_changed != NULL)
8594                         *link_changed = true;
8595         }
8596 }
8597
8598 /**
8599  *      t4_update_port_info - retrieve and update port information if changed
8600  *      @pi: the port_info
8601  *
8602  *      We issue a Get Port Information Command to the Firmware and, if
8603  *      successful, we check to see if anything is different from what we
8604  *      last recorded and update things accordingly.
8605  */
8606  int t4_update_port_info(struct port_info *pi)
8607  {
8608         struct adapter *sc = pi->adapter;
8609         struct fw_port_cmd cmd;
8610         enum fw_port_action action;
8611         int ret;
8612
8613         memset(&cmd, 0, sizeof(cmd));
8614         cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8615             F_FW_CMD_REQUEST | F_FW_CMD_READ |
8616             V_FW_PORT_CMD_PORTID(pi->tx_chan));
8617         action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8618             FW_PORT_ACTION_GET_PORT_INFO;
8619         cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8620             FW_LEN16(cmd));
8621         ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8622         if (ret)
8623                 return ret;
8624
8625         handle_port_info(pi, &cmd, action, NULL, NULL);
8626         return 0;
8627 }
8628
8629 /**
8630  *      t4_handle_fw_rpl - process a FW reply message
8631  *      @adap: the adapter
8632  *      @rpl: start of the FW message
8633  *
8634  *      Processes a FW message, such as link state change messages.
8635  */
8636 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8637 {
8638         u8 opcode = *(const u8 *)rpl;
8639         const struct fw_port_cmd *p = (const void *)rpl;
8640         enum fw_port_action action =
8641             G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8642         bool mod_changed, link_changed;
8643
8644         if (opcode == FW_PORT_CMD &&
8645             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8646             action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8647                 /* link/module state change message */
8648                 int i;
8649                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8650                 struct port_info *pi = NULL;
8651                 struct link_config *lc;
8652
8653                 for_each_port(adap, i) {
8654                         pi = adap2pinfo(adap, i);
8655                         if (pi->tx_chan == chan)
8656                                 break;
8657                 }
8658
8659                 lc = &pi->link_cfg;
8660                 PORT_LOCK(pi);
8661                 handle_port_info(pi, p, action, &mod_changed, &link_changed);
8662                 PORT_UNLOCK(pi);
8663                 if (mod_changed)
8664                         t4_os_portmod_changed(pi);
8665                 if (link_changed) {
8666                         PORT_LOCK(pi);
8667                         t4_os_link_changed(pi);
8668                         PORT_UNLOCK(pi);
8669                 }
8670         } else {
8671                 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
8672                 return -EINVAL;
8673         }
8674         return 0;
8675 }
8676
8677 /**
8678  *      get_pci_mode - determine a card's PCI mode
8679  *      @adapter: the adapter
8680  *      @p: where to store the PCI settings
8681  *
8682  *      Determines a card's PCI mode and associated parameters, such as speed
8683  *      and width.
8684  */
8685 static void get_pci_mode(struct adapter *adapter,
8686                                    struct pci_params *p)
8687 {
8688         u16 val;
8689         u32 pcie_cap;
8690
8691         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8692         if (pcie_cap) {
8693                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
8694                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8695                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8696         }
8697 }
8698
8699 struct flash_desc {
8700         u32 vendor_and_model_id;
8701         u32 size_mb;
8702 };
8703
8704 int t4_get_flash_params(struct adapter *adapter)
8705 {
8706         /*
8707          * Table for non-standard supported Flash parts.  Note, all Flash
8708          * parts must have 64KB sectors.
8709          */
8710         static struct flash_desc supported_flash[] = {
8711                 { 0x00150201, 4 << 20 },        /* Spansion 4MB S25FL032P */
8712         };
8713
8714         int ret;
8715         u32 flashid = 0;
8716         unsigned int part, manufacturer;
8717         unsigned int density, size = 0;
8718
8719
8720         /*
8721          * Issue a Read ID Command to the Flash part.  We decode supported
8722          * Flash parts and their sizes from this.  There's a newer Query
8723          * Command which can retrieve detailed geometry information but many
8724          * Flash parts don't support it.
8725          */
8726         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
8727         if (!ret)
8728                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
8729         t4_write_reg(adapter, A_SF_OP, 0);      /* unlock SF */
8730         if (ret < 0)
8731                 return ret;
8732
8733         /*
8734          * Check to see if it's one of our non-standard supported Flash parts.
8735          */
8736         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8737                 if (supported_flash[part].vendor_and_model_id == flashid) {
8738                         adapter->params.sf_size =
8739                                 supported_flash[part].size_mb;
8740                         adapter->params.sf_nsec =
8741                                 adapter->params.sf_size / SF_SEC_SIZE;
8742                         goto found;
8743                 }
8744
8745         /*
8746          * Decode Flash part size.  The code below looks repetative with
8747          * common encodings, but that's not guaranteed in the JEDEC
8748          * specification for the Read JADEC ID command.  The only thing that
8749          * we're guaranteed by the JADEC specification is where the
8750          * Manufacturer ID is in the returned result.  After that each
8751          * Manufacturer ~could~ encode things completely differently.
8752          * Note, all Flash parts must have 64KB sectors.
8753          */
8754         manufacturer = flashid & 0xff;
8755         switch (manufacturer) {
8756         case 0x20: /* Micron/Numonix */
8757                 /*
8758                  * This Density -> Size decoding table is taken from Micron
8759                  * Data Sheets.
8760                  */
8761                 density = (flashid >> 16) & 0xff;
8762                 switch (density) {
8763                 case 0x14: size = 1 << 20; break; /*   1MB */
8764                 case 0x15: size = 1 << 21; break; /*   2MB */
8765                 case 0x16: size = 1 << 22; break; /*   4MB */
8766                 case 0x17: size = 1 << 23; break; /*   8MB */
8767                 case 0x18: size = 1 << 24; break; /*  16MB */
8768                 case 0x19: size = 1 << 25; break; /*  32MB */
8769                 case 0x20: size = 1 << 26; break; /*  64MB */
8770                 case 0x21: size = 1 << 27; break; /* 128MB */
8771                 case 0x22: size = 1 << 28; break; /* 256MB */
8772                 }
8773                 break;
8774
8775         case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
8776                 /*
8777                  * This Density -> Size decoding table is taken from ISSI
8778                  * Data Sheets.
8779                  */
8780                 density = (flashid >> 16) & 0xff;
8781                 switch (density) {
8782                 case 0x16: size = 1 << 25; break; /*  32MB */
8783                 case 0x17: size = 1 << 26; break; /*  64MB */
8784                 }
8785                 break;
8786
8787         case 0xc2: /* Macronix */
8788                 /*
8789                  * This Density -> Size decoding table is taken from Macronix
8790                  * Data Sheets.
8791                  */
8792                 density = (flashid >> 16) & 0xff;
8793                 switch (density) {
8794                 case 0x17: size = 1 << 23; break; /*   8MB */
8795                 case 0x18: size = 1 << 24; break; /*  16MB */
8796                 }
8797                 break;
8798
8799         case 0xef: /* Winbond */
8800                 /*
8801                  * This Density -> Size decoding table is taken from Winbond
8802                  * Data Sheets.
8803                  */
8804                 density = (flashid >> 16) & 0xff;
8805                 switch (density) {
8806                 case 0x17: size = 1 << 23; break; /*   8MB */
8807                 case 0x18: size = 1 << 24; break; /*  16MB */
8808                 }
8809                 break;
8810         }
8811
8812         /* If we didn't recognize the FLASH part, that's no real issue: the
8813          * Hardware/Software contract says that Hardware will _*ALWAYS*_
8814          * use a FLASH part which is at least 4MB in size and has 64KB
8815          * sectors.  The unrecognized FLASH part is likely to be much larger
8816          * than 4MB, but that's all we really need.
8817          */
8818         if (size == 0) {
8819                 CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
8820                 size = 1 << 22;
8821         }
8822
8823         /*
8824          * Store decoded Flash size and fall through into vetting code.
8825          */
8826         adapter->params.sf_size = size;
8827         adapter->params.sf_nsec = size / SF_SEC_SIZE;
8828
8829  found:
8830         /*
8831          * We should ~probably~ reject adapters with FLASHes which are too
8832          * small but we have some legacy FPGAs with small FLASHes that we'd
8833          * still like to use.  So instead we emit a scary message ...
8834          */
8835         if (adapter->params.sf_size < FLASH_MIN_SIZE)
8836                 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8837                         flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
8838
8839         return 0;
8840 }
8841
8842 static void set_pcie_completion_timeout(struct adapter *adapter,
8843                                                   u8 range)
8844 {
8845         u16 val;
8846         u32 pcie_cap;
8847
8848         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8849         if (pcie_cap) {
8850                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
8851                 val &= 0xfff0;
8852                 val |= range ;
8853                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8854         }
8855 }
8856
8857 const struct chip_params *t4_get_chip_params(int chipid)
8858 {
8859         static const struct chip_params chip_params[] = {
8860                 {
8861                         /* T4 */
8862                         .nchan = NCHAN,
8863                         .pm_stats_cnt = PM_NSTATS,
8864                         .cng_ch_bits_log = 2,
8865                         .nsched_cls = 15,
8866                         .cim_num_obq = CIM_NUM_OBQ,
8867                         .mps_rplc_size = 128,
8868                         .vfcount = 128,
8869                         .sge_fl_db = F_DBPRIO,
8870                         .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8871                 },
8872                 {
8873                         /* T5 */
8874                         .nchan = NCHAN,
8875                         .pm_stats_cnt = PM_NSTATS,
8876                         .cng_ch_bits_log = 2,
8877                         .nsched_cls = 16,
8878                         .cim_num_obq = CIM_NUM_OBQ_T5,
8879                         .mps_rplc_size = 128,
8880                         .vfcount = 128,
8881                         .sge_fl_db = F_DBPRIO | F_DBTYPE,
8882                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8883                 },
8884                 {
8885                         /* T6 */
8886                         .nchan = T6_NCHAN,
8887                         .pm_stats_cnt = T6_PM_NSTATS,
8888                         .cng_ch_bits_log = 3,
8889                         .nsched_cls = 16,
8890                         .cim_num_obq = CIM_NUM_OBQ_T5,
8891                         .mps_rplc_size = 256,
8892                         .vfcount = 256,
8893                         .sge_fl_db = 0,
8894                         .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8895                 },
8896         };
8897
8898         chipid -= CHELSIO_T4;
8899         if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8900                 return NULL;
8901
8902         return &chip_params[chipid];
8903 }
8904
8905 /**
8906  *      t4_prep_adapter - prepare SW and HW for operation
8907  *      @adapter: the adapter
8908  *      @buf: temporary space of at least VPD_LEN size provided by the caller.
8909  *
8910  *      Initialize adapter SW state for the various HW modules, set initial
8911  *      values for some adapter tunables, take PHYs out of reset, and
8912  *      initialize the MDIO interface.
8913  */
8914 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8915 {
8916         int ret;
8917         uint16_t device_id;
8918         uint32_t pl_rev;
8919
8920         get_pci_mode(adapter, &adapter->params.pci);
8921
8922         pl_rev = t4_read_reg(adapter, A_PL_REV);
8923         adapter->params.chipid = G_CHIPID(pl_rev);
8924         adapter->params.rev = G_REV(pl_rev);
8925         if (adapter->params.chipid == 0) {
8926                 /* T4 did not have chipid in PL_REV (T5 onwards do) */
8927                 adapter->params.chipid = CHELSIO_T4;
8928
8929                 /* T4A1 chip is not supported */
8930                 if (adapter->params.rev == 1) {
8931                         CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8932                         return -EINVAL;
8933                 }
8934         }
8935
8936         adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8937         if (adapter->chip_params == NULL)
8938                 return -EINVAL;
8939
8940         adapter->params.pci.vpd_cap_addr =
8941             t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8942
8943         ret = t4_get_flash_params(adapter);
8944         if (ret < 0)
8945                 return ret;
8946
8947         /* Cards with real ASICs have the chipid in the PCIe device id */
8948         t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8949         if (device_id >> 12 == chip_id(adapter))
8950                 adapter->params.cim_la_size = CIMLA_SIZE;
8951         else {
8952                 /* FPGA */
8953                 adapter->params.fpga = 1;
8954                 adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8955         }
8956
8957         ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8958         if (ret < 0)
8959                 return ret;
8960
8961         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8962
8963         /*
8964          * Default port and clock for debugging in case we can't reach FW.
8965          */
8966         adapter->params.nports = 1;
8967         adapter->params.portvec = 1;
8968         adapter->params.vpd.cclk = 50000;
8969
8970         /* Set pci completion timeout value to 4 seconds. */
8971         set_pcie_completion_timeout(adapter, 0xd);
8972         return 0;
8973 }
8974
8975 /**
8976  *      t4_shutdown_adapter - shut down adapter, host & wire
8977  *      @adapter: the adapter
8978  *
8979  *      Perform an emergency shutdown of the adapter and stop it from
8980  *      continuing any further communication on the ports or DMA to the
8981  *      host.  This is typically used when the adapter and/or firmware
8982  *      have crashed and we want to prevent any further accidental
8983  *      communication with the rest of the world.  This will also force
8984  *      the port Link Status to go down -- if register writes work --
8985  *      which should help our peers figure out that we're down.
8986  */
8987 int t4_shutdown_adapter(struct adapter *adapter)
8988 {
8989         int port;
8990
8991         t4_intr_disable(adapter);
8992         t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8993         for_each_port(adapter, port) {
8994                 u32 a_port_cfg = is_t4(adapter) ?
8995                                  PORT_REG(port, A_XGMAC_PORT_CFG) :
8996                                  T5_PORT_REG(port, A_MAC_PORT_CFG);
8997
8998                 t4_write_reg(adapter, a_port_cfg,
8999                              t4_read_reg(adapter, a_port_cfg)
9000                              & ~V_SIGNAL_DET(1));
9001         }
9002         t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9003
9004         return 0;
9005 }
9006
9007 /**
9008  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9009  *      @adapter: the adapter
9010  *      @qid: the Queue ID
9011  *      @qtype: the Ingress or Egress type for @qid
9012  *      @user: true if this request is for a user mode queue
9013  *      @pbar2_qoffset: BAR2 Queue Offset
9014  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9015  *
9016  *      Returns the BAR2 SGE Queue Registers information associated with the
9017  *      indicated Absolute Queue ID.  These are passed back in return value
9018  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9019  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9020  *
9021  *      This may return an error which indicates that BAR2 SGE Queue
9022  *      registers aren't available.  If an error is not returned, then the
9023  *      following values are returned:
9024  *
9025  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9026  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9027  *
9028  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9029  *      require the "Inferred Queue ID" ability may be used.  E.g. the
9030  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9031  *      then these "Inferred Queue ID" register may not be used.
9032  */
9033 int t4_bar2_sge_qregs(struct adapter *adapter,
9034                       unsigned int qid,
9035                       enum t4_bar2_qtype qtype,
9036                       int user,
9037                       u64 *pbar2_qoffset,
9038                       unsigned int *pbar2_qid)
9039 {
9040         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9041         u64 bar2_page_offset, bar2_qoffset;
9042         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9043
9044         /* T4 doesn't support BAR2 SGE Queue registers for kernel
9045          * mode queues.
9046          */
9047         if (!user && is_t4(adapter))
9048                 return -EINVAL;
9049
9050         /* Get our SGE Page Size parameters.
9051          */
9052         page_shift = adapter->params.sge.page_shift;
9053         page_size = 1 << page_shift;
9054
9055         /* Get the right Queues per Page parameters for our Queue.
9056          */
9057         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9058                      ? adapter->params.sge.eq_s_qpp
9059                      : adapter->params.sge.iq_s_qpp);
9060         qpp_mask = (1 << qpp_shift) - 1;
9061
9062         /* Calculate the basics of the BAR2 SGE Queue register area:
9063          *  o The BAR2 page the Queue registers will be in.
9064          *  o The BAR2 Queue ID.
9065          *  o The BAR2 Queue ID Offset into the BAR2 page.
9066          */
9067         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9068         bar2_qid = qid & qpp_mask;
9069         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9070
9071         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9072          * hardware will infer the Absolute Queue ID simply from the writes to
9073          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9074          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9075          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9076          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9077          * from the BAR2 Page and BAR2 Queue ID.
9078          *
9079          * One important censequence of this is that some BAR2 SGE registers
9080          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9081          * there.  But other registers synthesize the SGE Queue ID purely
9082          * from the writes to the registers -- the Write Combined Doorbell
9083          * Buffer is a good example.  These BAR2 SGE Registers are only
9084          * available for those BAR2 SGE Register areas where the SGE Absolute
9085          * Queue ID can be inferred from simple writes.
9086          */
9087         bar2_qoffset = bar2_page_offset;
9088         bar2_qinferred = (bar2_qid_offset < page_size);
9089         if (bar2_qinferred) {
9090                 bar2_qoffset += bar2_qid_offset;
9091                 bar2_qid = 0;
9092         }
9093
9094         *pbar2_qoffset = bar2_qoffset;
9095         *pbar2_qid = bar2_qid;
9096         return 0;
9097 }
9098
9099 /**
9100  *      t4_init_devlog_params - initialize adapter->params.devlog
9101  *      @adap: the adapter
9102  *      @fw_attach: whether we can talk to the firmware
9103  *
9104  *      Initialize various fields of the adapter's Firmware Device Log
9105  *      Parameters structure.
9106  */
9107 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9108 {
9109         struct devlog_params *dparams = &adap->params.devlog;
9110         u32 pf_dparams;
9111         unsigned int devlog_meminfo;
9112         struct fw_devlog_cmd devlog_cmd;
9113         int ret;
9114
9115         /* If we're dealing with newer firmware, the Device Log Paramerters
9116          * are stored in a designated register which allows us to access the
9117          * Device Log even if we can't talk to the firmware.
9118          */
9119         pf_dparams =
9120                 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9121         if (pf_dparams) {
9122                 unsigned int nentries, nentries128;
9123
9124                 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9125                 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9126
9127                 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9128                 nentries = (nentries128 + 1) * 128;
9129                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9130
9131                 return 0;
9132         }
9133
9134         /*
9135          * For any failing returns ...
9136          */
9137         memset(dparams, 0, sizeof *dparams);
9138
9139         /*
9140          * If we can't talk to the firmware, there's really nothing we can do
9141          * at this point.
9142          */
9143         if (!fw_attach)
9144                 return -ENXIO;
9145
9146         /* Otherwise, ask the firmware for it's Device Log Parameters.
9147          */
9148         memset(&devlog_cmd, 0, sizeof devlog_cmd);
9149         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9150                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
9151         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9152         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9153                          &devlog_cmd);
9154         if (ret)
9155                 return ret;
9156
9157         devlog_meminfo =
9158                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9159         dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9160         dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9161         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9162
9163         return 0;
9164 }
9165
9166 /**
9167  *      t4_init_sge_params - initialize adap->params.sge
9168  *      @adapter: the adapter
9169  *
9170  *      Initialize various fields of the adapter's SGE Parameters structure.
9171  */
9172 int t4_init_sge_params(struct adapter *adapter)
9173 {
9174         u32 r;
9175         struct sge_params *sp = &adapter->params.sge;
9176         unsigned i, tscale = 1;
9177
9178         r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9179         sp->counter_val[0] = G_THRESHOLD_0(r);
9180         sp->counter_val[1] = G_THRESHOLD_1(r);
9181         sp->counter_val[2] = G_THRESHOLD_2(r);
9182         sp->counter_val[3] = G_THRESHOLD_3(r);
9183
9184         if (chip_id(adapter) >= CHELSIO_T6) {
9185                 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9186                 tscale = G_TSCALE(r);
9187                 if (tscale == 0)
9188                         tscale = 1;
9189                 else
9190                         tscale += 2;
9191         }
9192
9193         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9194         sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9195         sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9196         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9197         sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9198         sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9199         r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9200         sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9201         sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9202
9203         r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9204         sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9205         if (is_t4(adapter))
9206                 sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9207         else if (is_t5(adapter))
9208                 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9209         else
9210                 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9211
9212         /* egress queues: log2 of # of doorbells per BAR2 page */
9213         r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9214         r >>= S_QUEUESPERPAGEPF0 +
9215             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9216         sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9217
9218         /* ingress queues: log2 of # of doorbells per BAR2 page */
9219         r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9220         r >>= S_QUEUESPERPAGEPF0 +
9221             (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9222         sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9223
9224         r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9225         r >>= S_HOSTPAGESIZEPF0 +
9226             (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9227         sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9228
9229         r = t4_read_reg(adapter, A_SGE_CONTROL);
9230         sp->sge_control = r;
9231         sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9232         sp->fl_pktshift = G_PKTSHIFT(r);
9233         if (chip_id(adapter) <= CHELSIO_T5) {
9234                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9235                     X_INGPADBOUNDARY_SHIFT);
9236         } else {
9237                 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9238                     X_T6_INGPADBOUNDARY_SHIFT);
9239         }
9240         if (is_t4(adapter))
9241                 sp->pack_boundary = sp->pad_boundary;
9242         else {
9243                 r = t4_read_reg(adapter, A_SGE_CONTROL2);
9244                 if (G_INGPACKBOUNDARY(r) == 0)
9245                         sp->pack_boundary = 16;
9246                 else
9247                         sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9248         }
9249         for (i = 0; i < SGE_FLBUF_SIZES; i++)
9250                 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9251                     A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9252
9253         return 0;
9254 }
9255
9256 /*
9257  * Read and cache the adapter's compressed filter mode and ingress config.
9258  */
9259 static void read_filter_mode_and_ingress_config(struct adapter *adap,
9260     bool sleep_ok)
9261 {
9262         uint32_t v;
9263         struct tp_params *tpp = &adap->params.tp;
9264
9265         t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
9266             sleep_ok);
9267         t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
9268             sleep_ok);
9269
9270         /*
9271          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9272          * shift positions of several elements of the Compressed Filter Tuple
9273          * for this adapter which we need frequently ...
9274          */
9275         tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9276         tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9277         tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9278         tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9279         tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9280         tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9281         tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9282         tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9283         tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9284         tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9285
9286         if (chip_id(adap) > CHELSIO_T4) {
9287                 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9288                 adap->params.tp.hash_filter_mask = v;
9289                 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9290                 adap->params.tp.hash_filter_mask |= (u64)v << 32;
9291         }
9292 }
9293
9294 /**
9295  *      t4_init_tp_params - initialize adap->params.tp
9296  *      @adap: the adapter
9297  *
9298  *      Initialize various fields of the adapter's TP Parameters structure.
9299  */
9300 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9301 {
9302         int chan;
9303         u32 v;
9304         struct tp_params *tpp = &adap->params.tp;
9305
9306         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9307         tpp->tre = G_TIMERRESOLUTION(v);
9308         tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9309
9310         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9311         for (chan = 0; chan < MAX_NCHAN; chan++)
9312                 tpp->tx_modq[chan] = chan;
9313
9314         read_filter_mode_and_ingress_config(adap, sleep_ok);
9315
9316         /*
9317          * Cache a mask of the bits that represent the error vector portion of
9318          * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
9319          * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
9320          */
9321         tpp->err_vec_mask = htobe16(0xffff);
9322         if (chip_id(adap) > CHELSIO_T5) {
9323                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9324                 if (v & F_CRXPKTENC) {
9325                         tpp->err_vec_mask =
9326                             htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
9327                 }
9328         }
9329
9330         return 0;
9331 }
9332
9333 /**
9334  *      t4_filter_field_shift - calculate filter field shift
9335  *      @adap: the adapter
9336  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9337  *
9338  *      Return the shift position of a filter field within the Compressed
9339  *      Filter Tuple.  The filter field is specified via its selection bit
9340  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9341  */
9342 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9343 {
9344         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9345         unsigned int sel;
9346         int field_shift;
9347
9348         if ((filter_mode & filter_sel) == 0)
9349                 return -1;
9350
9351         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9352                 switch (filter_mode & sel) {
9353                 case F_FCOE:
9354                         field_shift += W_FT_FCOE;
9355                         break;
9356                 case F_PORT:
9357                         field_shift += W_FT_PORT;
9358                         break;
9359                 case F_VNIC_ID:
9360                         field_shift += W_FT_VNIC_ID;
9361                         break;
9362                 case F_VLAN:
9363                         field_shift += W_FT_VLAN;
9364                         break;
9365                 case F_TOS:
9366                         field_shift += W_FT_TOS;
9367                         break;
9368                 case F_PROTOCOL:
9369                         field_shift += W_FT_PROTOCOL;
9370                         break;
9371                 case F_ETHERTYPE:
9372                         field_shift += W_FT_ETHERTYPE;
9373                         break;
9374                 case F_MACMATCH:
9375                         field_shift += W_FT_MACMATCH;
9376                         break;
9377                 case F_MPSHITTYPE:
9378                         field_shift += W_FT_MPSHITTYPE;
9379                         break;
9380                 case F_FRAGMENTATION:
9381                         field_shift += W_FT_FRAGMENTATION;
9382                         break;
9383                 }
9384         }
9385         return field_shift;
9386 }
9387
9388 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9389 {
9390         u8 addr[6];
9391         int ret, i, j;
9392         struct port_info *p = adap2pinfo(adap, port_id);
9393         u32 param, val;
9394         struct vi_info *vi = &p->vi[0];
9395
9396         for (i = 0, j = -1; i <= p->port_id; i++) {
9397                 do {
9398                         j++;
9399                 } while ((adap->params.portvec & (1 << j)) == 0);
9400         }
9401
9402         p->tx_chan = j;
9403         p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9404         p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9405         p->lport = j;
9406
9407         if (!(adap->flags & IS_VF) ||
9408             adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9409                 t4_update_port_info(p);
9410         }
9411
9412         ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9413             &vi->vfvld, &vi->vin);
9414         if (ret < 0)
9415                 return ret;
9416
9417         vi->viid = ret;
9418         t4_os_set_hw_addr(p, addr);
9419
9420         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9421             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9422             V_FW_PARAMS_PARAM_YZ(vi->viid);
9423         ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9424         if (ret)
9425                 vi->rss_base = 0xffff;
9426         else {
9427                 /* MPASS((val >> 16) == rss_size); */
9428                 vi->rss_base = val & 0xffff;
9429         }
9430
9431         return 0;
9432 }
9433
9434 /**
9435  *      t4_read_cimq_cfg - read CIM queue configuration
9436  *      @adap: the adapter
9437  *      @base: holds the queue base addresses in bytes
9438  *      @size: holds the queue sizes in bytes
9439  *      @thres: holds the queue full thresholds in bytes
9440  *
9441  *      Returns the current configuration of the CIM queues, starting with
9442  *      the IBQs, then the OBQs.
9443  */
9444 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9445 {
9446         unsigned int i, v;
9447         int cim_num_obq = adap->chip_params->cim_num_obq;
9448
9449         for (i = 0; i < CIM_NUM_IBQ; i++) {
9450                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9451                              V_QUENUMSELECT(i));
9452                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9453                 /* value is in 256-byte units */
9454                 *base++ = G_CIMQBASE(v) * 256;
9455                 *size++ = G_CIMQSIZE(v) * 256;
9456                 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9457         }
9458         for (i = 0; i < cim_num_obq; i++) {
9459                 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9460                              V_QUENUMSELECT(i));
9461                 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9462                 /* value is in 256-byte units */
9463                 *base++ = G_CIMQBASE(v) * 256;
9464                 *size++ = G_CIMQSIZE(v) * 256;
9465         }
9466 }
9467
9468 /**
9469  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9470  *      @adap: the adapter
9471  *      @qid: the queue index
9472  *      @data: where to store the queue contents
9473  *      @n: capacity of @data in 32-bit words
9474  *
9475  *      Reads the contents of the selected CIM queue starting at address 0 up
9476  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9477  *      error and the number of 32-bit words actually read on success.
9478  */
9479 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9480 {
9481         int i, err, attempts;
9482         unsigned int addr;
9483         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9484
9485         if (qid > 5 || (n & 3))
9486                 return -EINVAL;
9487
9488         addr = qid * nwords;
9489         if (n > nwords)
9490                 n = nwords;
9491
9492         /* It might take 3-10ms before the IBQ debug read access is allowed.
9493          * Wait for 1 Sec with a delay of 1 usec.
9494          */
9495         attempts = 1000000;
9496
9497         for (i = 0; i < n; i++, addr++) {
9498                 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9499                              F_IBQDBGEN);
9500                 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9501                                       attempts, 1);
9502                 if (err)
9503                         return err;
9504                 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9505         }
9506         t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9507         return i;
9508 }
9509
9510 /**
9511  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9512  *      @adap: the adapter
9513  *      @qid: the queue index
9514  *      @data: where to store the queue contents
9515  *      @n: capacity of @data in 32-bit words
9516  *
9517  *      Reads the contents of the selected CIM queue starting at address 0 up
9518  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9519  *      error and the number of 32-bit words actually read on success.
9520  */
9521 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9522 {
9523         int i, err;
9524         unsigned int addr, v, nwords;
9525         int cim_num_obq = adap->chip_params->cim_num_obq;
9526
9527         if ((qid > (cim_num_obq - 1)) || (n & 3))
9528                 return -EINVAL;
9529
9530         t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9531                      V_QUENUMSELECT(qid));
9532         v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9533
9534         addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9535         nwords = G_CIMQSIZE(v) * 64;  /* same */
9536         if (n > nwords)
9537                 n = nwords;
9538
9539         for (i = 0; i < n; i++, addr++) {
9540                 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9541                              F_OBQDBGEN);
9542                 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
9543                                       2, 1);
9544                 if (err)
9545                         return err;
9546                 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
9547         }
9548         t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
9549         return i;
9550 }
9551
9552 enum {
9553         CIM_QCTL_BASE     = 0,
9554         CIM_CTL_BASE      = 0x2000,
9555         CIM_PBT_ADDR_BASE = 0x2800,
9556         CIM_PBT_LRF_BASE  = 0x3000,
9557         CIM_PBT_DATA_BASE = 0x3800
9558 };
9559
9560 /**
9561  *      t4_cim_read - read a block from CIM internal address space
9562  *      @adap: the adapter
9563  *      @addr: the start address within the CIM address space
9564  *      @n: number of words to read
9565  *      @valp: where to store the result
9566  *
9567  *      Reads a block of 4-byte words from the CIM intenal address space.
9568  */
9569 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9570                 unsigned int *valp)
9571 {
9572         int ret = 0;
9573
9574         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9575                 return -EBUSY;
9576
9577         for ( ; !ret && n--; addr += 4) {
9578                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9579                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9580                                       0, 5, 2);
9581                 if (!ret)
9582                         *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9583         }
9584         return ret;
9585 }
9586
9587 /**
9588  *      t4_cim_write - write a block into CIM internal address space
9589  *      @adap: the adapter
9590  *      @addr: the start address within the CIM address space
9591  *      @n: number of words to write
9592  *      @valp: set of values to write
9593  *
9594  *      Writes a block of 4-byte words into the CIM intenal address space.
9595  */
9596 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9597                  const unsigned int *valp)
9598 {
9599         int ret = 0;
9600
9601         if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9602                 return -EBUSY;
9603
9604         for ( ; !ret && n--; addr += 4) {
9605                 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9606                 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9607                 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9608                                       0, 5, 2);
9609         }
9610         return ret;
9611 }
9612
9613 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9614                          unsigned int val)
9615 {
9616         return t4_cim_write(adap, addr, 1, &val);
9617 }
9618
9619 /**
9620  *      t4_cim_ctl_read - read a block from CIM control region
9621  *      @adap: the adapter
9622  *      @addr: the start address within the CIM control region
9623  *      @n: number of words to read
9624  *      @valp: where to store the result
9625  *
9626  *      Reads a block of 4-byte words from the CIM control region.
9627  */
9628 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9629                     unsigned int *valp)
9630 {
9631         return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9632 }
9633
9634 /**
9635  *      t4_cim_read_la - read CIM LA capture buffer
9636  *      @adap: the adapter
9637  *      @la_buf: where to store the LA data
9638  *      @wrptr: the HW write pointer within the capture buffer
9639  *
9640  *      Reads the contents of the CIM LA buffer with the most recent entry at
9641  *      the end of the returned data and with the entry at @wrptr first.
9642  *      We try to leave the LA in the running state we find it in.
9643  */
9644 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9645 {
9646         int i, ret;
9647         unsigned int cfg, val, idx;
9648
9649         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9650         if (ret)
9651                 return ret;
9652
9653         if (cfg & F_UPDBGLAEN) {        /* LA is running, freeze it */
9654                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
9655                 if (ret)
9656                         return ret;
9657         }
9658
9659         ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9660         if (ret)
9661                 goto restart;
9662
9663         idx = G_UPDBGLAWRPTR(val);
9664         if (wrptr)
9665                 *wrptr = idx;
9666
9667         for (i = 0; i < adap->params.cim_la_size; i++) {
9668                 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9669                                     V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
9670                 if (ret)
9671                         break;
9672                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9673                 if (ret)
9674                         break;
9675                 if (val & F_UPDBGLARDEN) {
9676                         ret = -ETIMEDOUT;
9677                         break;
9678                 }
9679                 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
9680                 if (ret)
9681                         break;
9682
9683                 /* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
9684                 idx = (idx + 1) & M_UPDBGLARDPTR;
9685                 /*
9686                  * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9687                  * identify the 32-bit portion of the full 312-bit data
9688                  */
9689                 if (is_t6(adap))
9690                         while ((idx & 0xf) > 9)
9691                                 idx = (idx + 1) % M_UPDBGLARDPTR;
9692         }
9693 restart:
9694         if (cfg & F_UPDBGLAEN) {
9695                 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9696                                       cfg & ~F_UPDBGLARDEN);
9697                 if (!ret)
9698                         ret = r;
9699         }
9700         return ret;
9701 }
9702
9703 /**
9704  *      t4_tp_read_la - read TP LA capture buffer
9705  *      @adap: the adapter
9706  *      @la_buf: where to store the LA data
9707  *      @wrptr: the HW write pointer within the capture buffer
9708  *
9709  *      Reads the contents of the TP LA buffer with the most recent entry at
9710  *      the end of the returned data and with the entry at @wrptr first.
9711  *      We leave the LA in the running state we find it in.
9712  */
9713 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9714 {
9715         bool last_incomplete;
9716         unsigned int i, cfg, val, idx;
9717
9718         cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
9719         if (cfg & F_DBGLAENABLE)                        /* freeze LA */
9720                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9721                              adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
9722
9723         val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
9724         idx = G_DBGLAWPTR(val);
9725         last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
9726         if (last_incomplete)
9727                 idx = (idx + 1) & M_DBGLARPTR;
9728         if (wrptr)
9729                 *wrptr = idx;
9730
9731         val &= 0xffff;
9732         val &= ~V_DBGLARPTR(M_DBGLARPTR);
9733         val |= adap->params.tp.la_mask;
9734
9735         for (i = 0; i < TPLA_SIZE; i++) {
9736                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
9737                 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
9738                 idx = (idx + 1) & M_DBGLARPTR;
9739         }
9740
9741         /* Wipe out last entry if it isn't valid */
9742         if (last_incomplete)
9743                 la_buf[TPLA_SIZE - 1] = ~0ULL;
9744
9745         if (cfg & F_DBGLAENABLE)                /* restore running state */
9746                 t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9747                              cfg | adap->params.tp.la_mask);
9748 }
9749
9750 /*
9751  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9752  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9753  * state for more than the Warning Threshold then we'll issue a warning about
9754  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9755  * appears to be hung every Warning Repeat second till the situation clears.
9756  * If the situation clears, we'll note that as well.
9757  */
9758 #define SGE_IDMA_WARN_THRESH 1
9759 #define SGE_IDMA_WARN_REPEAT 300
9760
9761 /**
9762  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9763  *      @adapter: the adapter
9764  *      @idma: the adapter IDMA Monitor state
9765  *
9766  *      Initialize the state of an SGE Ingress DMA Monitor.
9767  */
9768 void t4_idma_monitor_init(struct adapter *adapter,
9769                           struct sge_idma_monitor_state *idma)
9770 {
9771         /* Initialize the state variables for detecting an SGE Ingress DMA
9772          * hang.  The SGE has internal counters which count up on each clock
9773          * tick whenever the SGE finds its Ingress DMA State Engines in the
9774          * same state they were on the previous clock tick.  The clock used is
9775          * the Core Clock so we have a limit on the maximum "time" they can
9776          * record; typically a very small number of seconds.  For instance,
9777          * with a 600MHz Core Clock, we can only count up to a bit more than
9778          * 7s.  So we'll synthesize a larger counter in order to not run the
9779          * risk of having the "timers" overflow and give us the flexibility to
9780          * maintain a Hung SGE State Machine of our own which operates across
9781          * a longer time frame.
9782          */
9783         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9784         idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
9785 }
9786
9787 /**
9788  *      t4_idma_monitor - monitor SGE Ingress DMA state
9789  *      @adapter: the adapter
9790  *      @idma: the adapter IDMA Monitor state
9791  *      @hz: number of ticks/second
9792  *      @ticks: number of ticks since the last IDMA Monitor call
9793  */
9794 void t4_idma_monitor(struct adapter *adapter,
9795                      struct sge_idma_monitor_state *idma,
9796                      int hz, int ticks)
9797 {
9798         int i, idma_same_state_cnt[2];
9799
9800          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9801           * are counters inside the SGE which count up on each clock when the
9802           * SGE finds its Ingress DMA State Engines in the same states they
9803           * were in the previous clock.  The counters will peg out at
9804           * 0xffffffff without wrapping around so once they pass the 1s
9805           * threshold they'll stay above that till the IDMA state changes.
9806           */
9807         t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
9808         idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
9809         idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9810
9811         for (i = 0; i < 2; i++) {
9812                 u32 debug0, debug11;
9813
9814                 /* If the Ingress DMA Same State Counter ("timer") is less
9815                  * than 1s, then we can reset our synthesized Stall Timer and
9816                  * continue.  If we have previously emitted warnings about a
9817                  * potential stalled Ingress Queue, issue a note indicating
9818                  * that the Ingress Queue has resumed forward progress.
9819                  */
9820                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9821                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
9822                                 CH_WARN(adapter, "SGE idma%d, queue %u, "
9823                                         "resumed after %d seconds\n",
9824                                         i, idma->idma_qid[i],
9825                                         idma->idma_stalled[i]/hz);
9826                         idma->idma_stalled[i] = 0;
9827                         continue;
9828                 }
9829
9830                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9831                  * domain.  The first time we get here it'll be because we
9832                  * passed the 1s Threshold; each additional time it'll be
9833                  * because the RX Timer Callback is being fired on its regular
9834                  * schedule.
9835                  *
9836                  * If the stall is below our Potential Hung Ingress Queue
9837                  * Warning Threshold, continue.
9838                  */
9839                 if (idma->idma_stalled[i] == 0) {
9840                         idma->idma_stalled[i] = hz;
9841                         idma->idma_warn[i] = 0;
9842                 } else {
9843                         idma->idma_stalled[i] += ticks;
9844                         idma->idma_warn[i] -= ticks;
9845                 }
9846
9847                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
9848                         continue;
9849
9850                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9851                  */
9852                 if (idma->idma_warn[i] > 0)
9853                         continue;
9854                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9855
9856                 /* Read and save the SGE IDMA State and Queue ID information.
9857                  * We do this every time in case it changes across time ...
9858                  * can't be too careful ...
9859                  */
9860                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9861                 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9862                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9863
9864                 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9865                 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9866                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9867
9868                 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9869                         " state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9870                         i, idma->idma_qid[i], idma->idma_state[i],
9871                         idma->idma_stalled[i]/hz,
9872                         debug0, debug11);
9873                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9874         }
9875 }
9876
9877 /**
9878  *      t4_read_pace_tbl - read the pace table
9879  *      @adap: the adapter
9880  *      @pace_vals: holds the returned values
9881  *
9882  *      Returns the values of TP's pace table in microseconds.
9883  */
9884 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9885 {
9886         unsigned int i, v;
9887
9888         for (i = 0; i < NTX_SCHED; i++) {
9889                 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9890                 v = t4_read_reg(adap, A_TP_PACE_TABLE);
9891                 pace_vals[i] = dack_ticks_to_usec(adap, v);
9892         }
9893 }
9894
9895 /**
9896  *      t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9897  *      @adap: the adapter
9898  *      @sched: the scheduler index
9899  *      @kbps: the byte rate in Kbps
9900  *      @ipg: the interpacket delay in tenths of nanoseconds
9901  *
9902  *      Return the current configuration of a HW Tx scheduler.
9903  */
9904 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9905                      unsigned int *ipg, bool sleep_ok)
9906 {
9907         unsigned int v, addr, bpt, cpt;
9908
9909         if (kbps) {
9910                 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9911                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9912                 if (sched & 1)
9913                         v >>= 16;
9914                 bpt = (v >> 8) & 0xff;
9915                 cpt = v & 0xff;
9916                 if (!cpt)
9917                         *kbps = 0;      /* scheduler disabled */
9918                 else {
9919                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9920                         *kbps = (v * bpt) / 125;
9921                 }
9922         }
9923         if (ipg) {
9924                 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9925                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9926                 if (sched & 1)
9927                         v >>= 16;
9928                 v &= 0xffff;
9929                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
9930         }
9931 }
9932
9933 /**
9934  *      t4_load_cfg - download config file
9935  *      @adap: the adapter
9936  *      @cfg_data: the cfg text file to write
9937  *      @size: text file size
9938  *
9939  *      Write the supplied config text file to the card's serial flash.
9940  */
9941 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9942 {
9943         int ret, i, n, cfg_addr;
9944         unsigned int addr;
9945         unsigned int flash_cfg_start_sec;
9946         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9947
9948         cfg_addr = t4_flash_cfg_addr(adap);
9949         if (cfg_addr < 0)
9950                 return cfg_addr;
9951
9952         addr = cfg_addr;
9953         flash_cfg_start_sec = addr / SF_SEC_SIZE;
9954
9955         if (size > FLASH_CFG_MAX_SIZE) {
9956                 CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9957                        FLASH_CFG_MAX_SIZE);
9958                 return -EFBIG;
9959         }
9960
9961         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
9962                          sf_sec_size);
9963         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9964                                      flash_cfg_start_sec + i - 1);
9965         /*
9966          * If size == 0 then we're simply erasing the FLASH sectors associated
9967          * with the on-adapter Firmware Configuration File.
9968          */
9969         if (ret || size == 0)
9970                 goto out;
9971
9972         /* this will write to the flash up to SF_PAGE_SIZE at a time */
9973         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9974                 if ( (size - i) <  SF_PAGE_SIZE)
9975                         n = size - i;
9976                 else
9977                         n = SF_PAGE_SIZE;
9978                 ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9979                 if (ret)
9980                         goto out;
9981
9982                 addr += SF_PAGE_SIZE;
9983                 cfg_data += SF_PAGE_SIZE;
9984         }
9985
9986 out:
9987         if (ret)
9988                 CH_ERR(adap, "config file %s failed %d\n",
9989                        (size == 0 ? "clear" : "download"), ret);
9990         return ret;
9991 }
9992
9993 /**
9994  *      t5_fw_init_extern_mem - initialize the external memory
9995  *      @adap: the adapter
9996  *
9997  *      Initializes the external memory on T5.
9998  */
9999 int t5_fw_init_extern_mem(struct adapter *adap)
10000 {
10001         u32 params[1], val[1];
10002         int ret;
10003
10004         if (!is_t5(adap))
10005                 return 0;
10006
10007         val[0] = 0xff; /* Initialize all MCs */
10008         params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10009                         V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10010         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10011                         FW_CMD_MAX_TIMEOUT);
10012
10013         return ret;
10014 }
10015
10016 /* BIOS boot headers */
10017 typedef struct pci_expansion_rom_header {
10018         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
10019         u8      reserved[22]; /* Reserved per processor Architecture data */
10020         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
10021 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10022
10023 /* Legacy PCI Expansion ROM Header */
10024 typedef struct legacy_pci_expansion_rom_header {
10025         u8      signature[2]; /* ROM Signature. Should be 0xaa55 */
10026         u8      size512; /* Current Image Size in units of 512 bytes */
10027         u8      initentry_point[4];
10028         u8      cksum; /* Checksum computed on the entire Image */
10029         u8      reserved[16]; /* Reserved */
10030         u8      pcir_offset[2]; /* Offset to PCI Data Struture */
10031 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10032
10033 /* EFI PCI Expansion ROM Header */
10034 typedef struct efi_pci_expansion_rom_header {
10035         u8      signature[2]; // ROM signature. The value 0xaa55
10036         u8      initialization_size[2]; /* Units 512. Includes this header */
10037         u8      efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10038         u8      efi_subsystem[2]; /* Subsystem value for EFI image header */
10039         u8      efi_machine_type[2]; /* Machine type from EFI image header */
10040         u8      compression_type[2]; /* Compression type. */
10041                 /*
10042                  * Compression type definition
10043                  * 0x0: uncompressed
10044                  * 0x1: Compressed
10045                  * 0x2-0xFFFF: Reserved
10046                  */
10047         u8      reserved[8]; /* Reserved */
10048         u8      efi_image_header_offset[2]; /* Offset to EFI Image */
10049         u8      pcir_offset[2]; /* Offset to PCI Data Structure */
10050 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10051
10052 /* PCI Data Structure Format */
10053 typedef struct pcir_data_structure { /* PCI Data Structure */
10054         u8      signature[4]; /* Signature. The string "PCIR" */
10055         u8      vendor_id[2]; /* Vendor Identification */
10056         u8      device_id[2]; /* Device Identification */
10057         u8      vital_product[2]; /* Pointer to Vital Product Data */
10058         u8      length[2]; /* PCIR Data Structure Length */
10059         u8      revision; /* PCIR Data Structure Revision */
10060         u8      class_code[3]; /* Class Code */
10061         u8      image_length[2]; /* Image Length. Multiple of 512B */
10062         u8      code_revision[2]; /* Revision Level of Code/Data */
10063         u8      code_type; /* Code Type. */
10064                 /*
10065                  * PCI Expansion ROM Code Types
10066                  * 0x00: Intel IA-32, PC-AT compatible. Legacy
10067                  * 0x01: Open Firmware standard for PCI. FCODE
10068                  * 0x02: Hewlett-Packard PA RISC. HP reserved
10069                  * 0x03: EFI Image. EFI
10070                  * 0x04-0xFF: Reserved.
10071                  */
10072         u8      indicator; /* Indicator. Identifies the last image in the ROM */
10073         u8      reserved[2]; /* Reserved */
10074 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10075
10076 /* BOOT constants */
10077 enum {
10078         BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10079         BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10080         BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10081         BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10082         BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10083         VENDOR_ID = 0x1425, /* Vendor ID */
10084         PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10085 };
10086
10087 /*
10088  *      modify_device_id - Modifies the device ID of the Boot BIOS image
10089  *      @adatper: the device ID to write.
10090  *      @boot_data: the boot image to modify.
10091  *
10092  *      Write the supplied device ID to the boot BIOS image.
10093  */
10094 static void modify_device_id(int device_id, u8 *boot_data)
10095 {
10096         legacy_pci_exp_rom_header_t *header;
10097         pcir_data_t *pcir_header;
10098         u32 cur_header = 0;
10099
10100         /*
10101          * Loop through all chained images and change the device ID's
10102          */
10103         while (1) {
10104                 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10105                 pcir_header = (pcir_data_t *) &boot_data[cur_header +
10106                               le16_to_cpu(*(u16*)header->pcir_offset)];
10107
10108                 /*
10109                  * Only modify the Device ID if code type is Legacy or HP.
10110                  * 0x00: Okay to modify
10111                  * 0x01: FCODE. Do not be modify
10112                  * 0x03: Okay to modify
10113                  * 0x04-0xFF: Do not modify
10114                  */
10115                 if (pcir_header->code_type == 0x00) {
10116                         u8 csum = 0;
10117                         int i;
10118
10119                         /*
10120                          * Modify Device ID to match current adatper
10121                          */
10122                         *(u16*) pcir_header->device_id = device_id;
10123
10124                         /*
10125                          * Set checksum temporarily to 0.
10126                          * We will recalculate it later.
10127                          */
10128                         header->cksum = 0x0;
10129
10130                         /*
10131                          * Calculate and update checksum
10132                          */
10133                         for (i = 0; i < (header->size512 * 512); i++)
10134                                 csum += (u8)boot_data[cur_header + i];
10135
10136                         /*
10137                          * Invert summed value to create the checksum
10138                          * Writing new checksum value directly to the boot data
10139                          */
10140                         boot_data[cur_header + 7] = -csum;
10141
10142                 } else if (pcir_header->code_type == 0x03) {
10143
10144                         /*
10145                          * Modify Device ID to match current adatper
10146                          */
10147                         *(u16*) pcir_header->device_id = device_id;
10148
10149                 }
10150
10151
10152                 /*
10153                  * Check indicator element to identify if this is the last
10154                  * image in the ROM.
10155                  */
10156                 if (pcir_header->indicator & 0x80)
10157                         break;
10158
10159                 /*
10160                  * Move header pointer up to the next image in the ROM.
10161                  */
10162                 cur_header += header->size512 * 512;
10163         }
10164 }
10165
10166 /*
10167  *      t4_load_boot - download boot flash
10168  *      @adapter: the adapter
10169  *      @boot_data: the boot image to write
10170  *      @boot_addr: offset in flash to write boot_data
10171  *      @size: image size
10172  *
10173  *      Write the supplied boot image to the card's serial flash.
10174  *      The boot image has the following sections: a 28-byte header and the
10175  *      boot image.
10176  */
10177 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10178                  unsigned int boot_addr, unsigned int size)
10179 {
10180         pci_exp_rom_header_t *header;
10181         int pcir_offset ;
10182         pcir_data_t *pcir_header;
10183         int ret, addr;
10184         uint16_t device_id;
10185         unsigned int i;
10186         unsigned int boot_sector = (boot_addr * 1024 );
10187         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10188
10189         /*
10190          * Make sure the boot image does not encroach on the firmware region
10191          */
10192         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10193                 CH_ERR(adap, "boot image encroaching on firmware region\n");
10194                 return -EFBIG;
10195         }
10196
10197         /*
10198          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10199          * and Boot configuration data sections. These 3 boot sections span
10200          * sectors 0 to 7 in flash and live right before the FW image location.
10201          */
10202         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10203                         sf_sec_size);
10204         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10205                                      (boot_sector >> 16) + i - 1);
10206
10207         /*
10208          * If size == 0 then we're simply erasing the FLASH sectors associated
10209          * with the on-adapter option ROM file
10210          */
10211         if (ret || (size == 0))
10212                 goto out;
10213
10214         /* Get boot header */
10215         header = (pci_exp_rom_header_t *)boot_data;
10216         pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10217         /* PCIR Data Structure */
10218         pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10219
10220         /*
10221          * Perform some primitive sanity testing to avoid accidentally
10222          * writing garbage over the boot sectors.  We ought to check for
10223          * more but it's not worth it for now ...
10224          */
10225         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10226                 CH_ERR(adap, "boot image too small/large\n");
10227                 return -EFBIG;
10228         }
10229
10230 #ifndef CHELSIO_T4_DIAGS
10231         /*
10232          * Check BOOT ROM header signature
10233          */
10234         if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10235                 CH_ERR(adap, "Boot image missing signature\n");
10236                 return -EINVAL;
10237         }
10238
10239         /*
10240          * Check PCI header signature
10241          */
10242         if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10243                 CH_ERR(adap, "PCI header missing signature\n");
10244                 return -EINVAL;
10245         }
10246
10247         /*
10248          * Check Vendor ID matches Chelsio ID
10249          */
10250         if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10251                 CH_ERR(adap, "Vendor ID missing signature\n");
10252                 return -EINVAL;
10253         }
10254 #endif
10255
10256         /*
10257          * Retrieve adapter's device ID
10258          */
10259         t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10260         /* Want to deal with PF 0 so I strip off PF 4 indicator */
10261         device_id = device_id & 0xf0ff;
10262
10263         /*
10264          * Check PCIE Device ID
10265          */
10266         if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10267                 /*
10268                  * Change the device ID in the Boot BIOS image to match
10269                  * the Device ID of the current adapter.
10270                  */
10271                 modify_device_id(device_id, boot_data);
10272         }
10273
10274         /*
10275          * Skip over the first SF_PAGE_SIZE worth of data and write it after
10276          * we finish copying the rest of the boot image. This will ensure
10277          * that the BIOS boot header will only be written if the boot image
10278          * was written in full.
10279          */
10280         addr = boot_sector;
10281         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10282                 addr += SF_PAGE_SIZE;
10283                 boot_data += SF_PAGE_SIZE;
10284                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10285                 if (ret)
10286                         goto out;
10287         }
10288
10289         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10290                              (const u8 *)header, 0);
10291
10292 out:
10293         if (ret)
10294                 CH_ERR(adap, "boot image download failed, error %d\n", ret);
10295         return ret;
10296 }
10297
10298 /*
10299  *      t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10300  *      @adapter: the adapter
10301  *
10302  *      Return the address within the flash where the OptionROM Configuration
10303  *      is stored, or an error if the device FLASH is too small to contain
10304  *      a OptionROM Configuration.
10305  */
10306 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10307 {
10308         /*
10309          * If the device FLASH isn't large enough to hold a Firmware
10310          * Configuration File, return an error.
10311          */
10312         if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10313                 return -ENOSPC;
10314
10315         return FLASH_BOOTCFG_START;
10316 }
10317
10318 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10319 {
10320         int ret, i, n, cfg_addr;
10321         unsigned int addr;
10322         unsigned int flash_cfg_start_sec;
10323         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10324
10325         cfg_addr = t4_flash_bootcfg_addr(adap);
10326         if (cfg_addr < 0)
10327                 return cfg_addr;
10328
10329         addr = cfg_addr;
10330         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10331
10332         if (size > FLASH_BOOTCFG_MAX_SIZE) {
10333                 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10334                         FLASH_BOOTCFG_MAX_SIZE);
10335                 return -EFBIG;
10336         }
10337
10338         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10339                          sf_sec_size);
10340         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10341                                         flash_cfg_start_sec + i - 1);
10342
10343         /*
10344          * If size == 0 then we're simply erasing the FLASH sectors associated
10345          * with the on-adapter OptionROM Configuration File.
10346          */
10347         if (ret || size == 0)
10348                 goto out;
10349
10350         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10351         for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10352                 if ( (size - i) <  SF_PAGE_SIZE)
10353                         n = size - i;
10354                 else
10355                         n = SF_PAGE_SIZE;
10356                 ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10357                 if (ret)
10358                         goto out;
10359
10360                 addr += SF_PAGE_SIZE;
10361                 cfg_data += SF_PAGE_SIZE;
10362         }
10363
10364 out:
10365         if (ret)
10366                 CH_ERR(adap, "boot config data %s failed %d\n",
10367                                 (size == 0 ? "clear" : "download"), ret);
10368         return ret;
10369 }
10370
10371 /**
10372  *      t4_set_filter_mode - configure the optional components of filter tuples
10373  *      @adap: the adapter
10374  *      @mode_map: a bitmap selcting which optional filter components to enable
10375  *      @sleep_ok: if true we may sleep while awaiting command completion
10376  *
10377  *      Sets the filter mode by selecting the optional components to enable
10378  *      in filter tuples.  Returns 0 on success and a negative error if the
10379  *      requested mode needs more bits than are available for optional
10380  *      components.
10381  */
10382 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
10383                        bool sleep_ok)
10384 {
10385         static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
10386
10387         int i, nbits = 0;
10388
10389         for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
10390                 if (mode_map & (1 << i))
10391                         nbits += width[i];
10392         if (nbits > FILTER_OPT_LEN)
10393                 return -EINVAL;
10394         t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
10395         read_filter_mode_and_ingress_config(adap, sleep_ok);
10396
10397         return 0;
10398 }
10399
10400 /**
10401  *      t4_clr_port_stats - clear port statistics
10402  *      @adap: the adapter
10403  *      @idx: the port index
10404  *
10405  *      Clear HW statistics for the given port.
10406  */
10407 void t4_clr_port_stats(struct adapter *adap, int idx)
10408 {
10409         unsigned int i;
10410         u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10411         u32 port_base_addr;
10412
10413         if (is_t4(adap))
10414                 port_base_addr = PORT_BASE(idx);
10415         else
10416                 port_base_addr = T5_PORT_BASE(idx);
10417
10418         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10419                         i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10420                 t4_write_reg(adap, port_base_addr + i, 0);
10421         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10422                         i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10423                 t4_write_reg(adap, port_base_addr + i, 0);
10424         for (i = 0; i < 4; i++)
10425                 if (bgmap & (1 << i)) {
10426                         t4_write_reg(adap,
10427                         A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10428                         t4_write_reg(adap,
10429                         A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10430                 }
10431 }
10432
10433 /**
10434  *      t4_i2c_rd - read I2C data from adapter
10435  *      @adap: the adapter
10436  *      @port: Port number if per-port device; <0 if not
10437  *      @devid: per-port device ID or absolute device ID
10438  *      @offset: byte offset into device I2C space
10439  *      @len: byte length of I2C space data
10440  *      @buf: buffer in which to return I2C data
10441  *
10442  *      Reads the I2C data from the indicated device and location.
10443  */
10444 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
10445               int port, unsigned int devid,
10446               unsigned int offset, unsigned int len,
10447               u8 *buf)
10448 {
10449         u32 ldst_addrspace;
10450         struct fw_ldst_cmd ldst;
10451         int ret;
10452
10453         if (port >= 4 ||
10454             devid >= 256 ||
10455             offset >= 256 ||
10456             len > sizeof ldst.u.i2c.data)
10457                 return -EINVAL;
10458
10459         memset(&ldst, 0, sizeof ldst);
10460         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10461         ldst.op_to_addrspace =
10462                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10463                             F_FW_CMD_REQUEST |
10464                             F_FW_CMD_READ |
10465                             ldst_addrspace);
10466         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10467         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10468         ldst.u.i2c.did = devid;
10469         ldst.u.i2c.boffset = offset;
10470         ldst.u.i2c.blen = len;
10471         ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10472         if (!ret)
10473                 memcpy(buf, ldst.u.i2c.data, len);
10474         return ret;
10475 }
10476
10477 /**
10478  *      t4_i2c_wr - write I2C data to adapter
10479  *      @adap: the adapter
10480  *      @port: Port number if per-port device; <0 if not
10481  *      @devid: per-port device ID or absolute device ID
10482  *      @offset: byte offset into device I2C space
10483  *      @len: byte length of I2C space data
10484  *      @buf: buffer containing new I2C data
10485  *
10486  *      Write the I2C data to the indicated device and location.
10487  */
10488 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
10489               int port, unsigned int devid,
10490               unsigned int offset, unsigned int len,
10491               u8 *buf)
10492 {
10493         u32 ldst_addrspace;
10494         struct fw_ldst_cmd ldst;
10495
10496         if (port >= 4 ||
10497             devid >= 256 ||
10498             offset >= 256 ||
10499             len > sizeof ldst.u.i2c.data)
10500                 return -EINVAL;
10501
10502         memset(&ldst, 0, sizeof ldst);
10503         ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10504         ldst.op_to_addrspace =
10505                 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10506                             F_FW_CMD_REQUEST |
10507                             F_FW_CMD_WRITE |
10508                             ldst_addrspace);
10509         ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10510         ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10511         ldst.u.i2c.did = devid;
10512         ldst.u.i2c.boffset = offset;
10513         ldst.u.i2c.blen = len;
10514         memcpy(ldst.u.i2c.data, buf, len);
10515         return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10516 }
10517
10518 /**
10519  *      t4_sge_ctxt_rd - read an SGE context through FW
10520  *      @adap: the adapter
10521  *      @mbox: mailbox to use for the FW command
10522  *      @cid: the context id
10523  *      @ctype: the context type
10524  *      @data: where to store the context data
10525  *
10526  *      Issues a FW command through the given mailbox to read an SGE context.
10527  */
10528 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10529                    enum ctxt_type ctype, u32 *data)
10530 {
10531         int ret;
10532         struct fw_ldst_cmd c;
10533
10534         if (ctype == CTXT_EGRESS)
10535                 ret = FW_LDST_ADDRSPC_SGE_EGRC;
10536         else if (ctype == CTXT_INGRESS)
10537                 ret = FW_LDST_ADDRSPC_SGE_INGC;
10538         else if (ctype == CTXT_FLM)
10539                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10540         else
10541                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10542
10543         memset(&c, 0, sizeof(c));
10544         c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10545                                         F_FW_CMD_REQUEST | F_FW_CMD_READ |
10546                                         V_FW_LDST_CMD_ADDRSPACE(ret));
10547         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10548         c.u.idctxt.physid = cpu_to_be32(cid);
10549
10550         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10551         if (ret == 0) {
10552                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10553                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10554                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10555                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10556                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10557                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10558         }
10559         return ret;
10560 }
10561
10562 /**
10563  *      t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10564  *      @adap: the adapter
10565  *      @cid: the context id
10566  *      @ctype: the context type
10567  *      @data: where to store the context data
10568  *
10569  *      Reads an SGE context directly, bypassing FW.  This is only for
10570  *      debugging when FW is unavailable.
10571  */
10572 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10573                       u32 *data)
10574 {
10575         int i, ret;
10576
10577         t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
10578         ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
10579         if (!ret)
10580                 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
10581                         *data++ = t4_read_reg(adap, i);
10582         return ret;
10583 }
10584
10585 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
10586     int sleep_ok)
10587 {
10588         struct fw_sched_cmd cmd;
10589
10590         memset(&cmd, 0, sizeof(cmd));
10591         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10592                                       F_FW_CMD_REQUEST |
10593                                       F_FW_CMD_WRITE);
10594         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10595
10596         cmd.u.config.sc = FW_SCHED_SC_CONFIG;
10597         cmd.u.config.type = type;
10598         cmd.u.config.minmaxen = minmaxen;
10599
10600         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10601                                NULL, sleep_ok);
10602 }
10603
10604 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10605                     int rateunit, int ratemode, int channel, int cl,
10606                     int minrate, int maxrate, int weight, int pktsize,
10607                     int burstsize, int sleep_ok)
10608 {
10609         struct fw_sched_cmd cmd;
10610
10611         memset(&cmd, 0, sizeof(cmd));
10612         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10613                                       F_FW_CMD_REQUEST |
10614                                       F_FW_CMD_WRITE);
10615         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10616
10617         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10618         cmd.u.params.type = type;
10619         cmd.u.params.level = level;
10620         cmd.u.params.mode = mode;
10621         cmd.u.params.ch = channel;
10622         cmd.u.params.cl = cl;
10623         cmd.u.params.unit = rateunit;
10624         cmd.u.params.rate = ratemode;
10625         cmd.u.params.min = cpu_to_be32(minrate);
10626         cmd.u.params.max = cpu_to_be32(maxrate);
10627         cmd.u.params.weight = cpu_to_be16(weight);
10628         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10629         cmd.u.params.burstsize = cpu_to_be16(burstsize);
10630
10631         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10632                                NULL, sleep_ok);
10633 }
10634
10635 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
10636     unsigned int maxrate, int sleep_ok)
10637 {
10638         struct fw_sched_cmd cmd;
10639
10640         memset(&cmd, 0, sizeof(cmd));
10641         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10642                                       F_FW_CMD_REQUEST |
10643                                       F_FW_CMD_WRITE);
10644         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10645
10646         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10647         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10648         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
10649         cmd.u.params.ch = channel;
10650         cmd.u.params.rate = ratemode;           /* REL or ABS */
10651         cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
10652
10653         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10654                                NULL, sleep_ok);
10655 }
10656
10657 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
10658     int weight, int sleep_ok)
10659 {
10660         struct fw_sched_cmd cmd;
10661
10662         if (weight < 0 || weight > 100)
10663                 return -EINVAL;
10664
10665         memset(&cmd, 0, sizeof(cmd));
10666         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10667                                       F_FW_CMD_REQUEST |
10668                                       F_FW_CMD_WRITE);
10669         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10670
10671         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10672         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10673         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
10674         cmd.u.params.ch = channel;
10675         cmd.u.params.cl = cl;
10676         cmd.u.params.weight = cpu_to_be16(weight);
10677
10678         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10679                                NULL, sleep_ok);
10680 }
10681
10682 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
10683     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
10684 {
10685         struct fw_sched_cmd cmd;
10686
10687         memset(&cmd, 0, sizeof(cmd));
10688         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10689                                       F_FW_CMD_REQUEST |
10690                                       F_FW_CMD_WRITE);
10691         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10692
10693         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10694         cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10695         cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
10696         cmd.u.params.mode = mode;
10697         cmd.u.params.ch = channel;
10698         cmd.u.params.cl = cl;
10699         cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
10700         cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
10701         cmd.u.params.max = cpu_to_be32(maxrate);
10702         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10703
10704         return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10705                                NULL, sleep_ok);
10706 }
10707
10708 /*
10709  *      t4_config_watchdog - configure (enable/disable) a watchdog timer
10710  *      @adapter: the adapter
10711  *      @mbox: mailbox to use for the FW command
10712  *      @pf: the PF owning the queue
10713  *      @vf: the VF owning the queue
10714  *      @timeout: watchdog timeout in ms
10715  *      @action: watchdog timer / action
10716  *
10717  *      There are separate watchdog timers for each possible watchdog
10718  *      action.  Configure one of the watchdog timers by setting a non-zero
10719  *      timeout.  Disable a watchdog timer by using a timeout of zero.
10720  */
10721 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
10722                        unsigned int pf, unsigned int vf,
10723                        unsigned int timeout, unsigned int action)
10724 {
10725         struct fw_watchdog_cmd wdog;
10726         unsigned int ticks;
10727
10728         /*
10729          * The watchdog command expects a timeout in units of 10ms so we need
10730          * to convert it here (via rounding) and force a minimum of one 10ms
10731          * "tick" if the timeout is non-zero but the conversion results in 0
10732          * ticks.
10733          */
10734         ticks = (timeout + 5)/10;
10735         if (timeout && !ticks)
10736                 ticks = 1;
10737
10738         memset(&wdog, 0, sizeof wdog);
10739         wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
10740                                      F_FW_CMD_REQUEST |
10741                                      F_FW_CMD_WRITE |
10742                                      V_FW_PARAMS_CMD_PFN(pf) |
10743                                      V_FW_PARAMS_CMD_VFN(vf));
10744         wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
10745         wdog.timeout = cpu_to_be32(ticks);
10746         wdog.action = cpu_to_be32(action);
10747
10748         return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
10749 }
10750
10751 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
10752 {
10753         struct fw_devlog_cmd devlog_cmd;
10754         int ret;
10755
10756         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10757         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10758                                              F_FW_CMD_REQUEST | F_FW_CMD_READ);
10759         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10760         ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10761                          sizeof(devlog_cmd), &devlog_cmd);
10762         if (ret)
10763                 return ret;
10764
10765         *level = devlog_cmd.level;
10766         return 0;
10767 }
10768
10769 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
10770 {
10771         struct fw_devlog_cmd devlog_cmd;
10772
10773         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10774         devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10775                                              F_FW_CMD_REQUEST |
10776                                              F_FW_CMD_WRITE);
10777         devlog_cmd.level = level;
10778         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10779         return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10780                           sizeof(devlog_cmd), &devlog_cmd);
10781 }