]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/t4_main.c
cxgbe(4): Display the number of free PM pages and p-structs in meminfo.
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / t4_main.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_ddb.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_kern_tls.h"
37 #include "opt_ratelimit.h"
38 #include "opt_rss.h"
39
40 #include <sys/param.h>
41 #include <sys/conf.h>
42 #include <sys/priv.h>
43 #include <sys/kernel.h>
44 #include <sys/bus.h>
45 #include <sys/eventhandler.h>
46 #include <sys/module.h>
47 #include <sys/malloc.h>
48 #include <sys/queue.h>
49 #include <sys/taskqueue.h>
50 #include <sys/pciio.h>
51 #include <dev/pci/pcireg.h>
52 #include <dev/pci/pcivar.h>
53 #include <dev/pci/pci_private.h>
54 #include <sys/firmware.h>
55 #include <sys/sbuf.h>
56 #include <sys/smp.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/sysctl.h>
60 #include <net/ethernet.h>
61 #include <net/if.h>
62 #include <net/if_types.h>
63 #include <net/if_dl.h>
64 #include <net/if_vlan_var.h>
65 #ifdef RSS
66 #include <net/rss_config.h>
67 #endif
68 #include <netinet/in.h>
69 #include <netinet/ip.h>
70 #ifdef KERN_TLS
71 #include <netinet/tcp_seq.h>
72 #endif
73 #if defined(__i386__) || defined(__amd64__)
74 #include <machine/md_var.h>
75 #include <machine/cputypes.h>
76 #include <vm/vm.h>
77 #include <vm/pmap.h>
78 #endif
79 #ifdef DDB
80 #include <ddb/ddb.h>
81 #include <ddb/db_lex.h>
82 #endif
83
84 #include "common/common.h"
85 #include "common/t4_msg.h"
86 #include "common/t4_regs.h"
87 #include "common/t4_regs_values.h"
88 #include "cudbg/cudbg.h"
89 #include "t4_clip.h"
90 #include "t4_ioctl.h"
91 #include "t4_l2t.h"
92 #include "t4_mp_ring.h"
93 #include "t4_if.h"
94 #include "t4_smt.h"
95
96 /* T4 bus driver interface */
97 static int t4_probe(device_t);
98 static int t4_attach(device_t);
99 static int t4_detach(device_t);
100 static int t4_child_location(device_t, device_t, struct sbuf *);
101 static int t4_ready(device_t);
102 static int t4_read_port_device(device_t, int, device_t *);
103 static int t4_suspend(device_t);
104 static int t4_resume(device_t);
105 static int t4_reset_prepare(device_t, device_t);
106 static int t4_reset_post(device_t, device_t);
107 static device_method_t t4_methods[] = {
108         DEVMETHOD(device_probe,         t4_probe),
109         DEVMETHOD(device_attach,        t4_attach),
110         DEVMETHOD(device_detach,        t4_detach),
111         DEVMETHOD(device_suspend,       t4_suspend),
112         DEVMETHOD(device_resume,        t4_resume),
113
114         DEVMETHOD(bus_child_location,   t4_child_location),
115         DEVMETHOD(bus_reset_prepare,    t4_reset_prepare),
116         DEVMETHOD(bus_reset_post,       t4_reset_post),
117
118         DEVMETHOD(t4_is_main_ready,     t4_ready),
119         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
120
121         DEVMETHOD_END
122 };
123 static driver_t t4_driver = {
124         "t4nex",
125         t4_methods,
126         sizeof(struct adapter)
127 };
128
129
130 /* T4 port (cxgbe) interface */
131 static int cxgbe_probe(device_t);
132 static int cxgbe_attach(device_t);
133 static int cxgbe_detach(device_t);
134 device_method_t cxgbe_methods[] = {
135         DEVMETHOD(device_probe,         cxgbe_probe),
136         DEVMETHOD(device_attach,        cxgbe_attach),
137         DEVMETHOD(device_detach,        cxgbe_detach),
138         { 0, 0 }
139 };
140 static driver_t cxgbe_driver = {
141         "cxgbe",
142         cxgbe_methods,
143         sizeof(struct port_info)
144 };
145
146 /* T4 VI (vcxgbe) interface */
147 static int vcxgbe_probe(device_t);
148 static int vcxgbe_attach(device_t);
149 static int vcxgbe_detach(device_t);
150 static device_method_t vcxgbe_methods[] = {
151         DEVMETHOD(device_probe,         vcxgbe_probe),
152         DEVMETHOD(device_attach,        vcxgbe_attach),
153         DEVMETHOD(device_detach,        vcxgbe_detach),
154         { 0, 0 }
155 };
156 static driver_t vcxgbe_driver = {
157         "vcxgbe",
158         vcxgbe_methods,
159         sizeof(struct vi_info)
160 };
161
162 static d_ioctl_t t4_ioctl;
163
164 static struct cdevsw t4_cdevsw = {
165        .d_version = D_VERSION,
166        .d_ioctl = t4_ioctl,
167        .d_name = "t4nex",
168 };
169
170 /* T5 bus driver interface */
171 static int t5_probe(device_t);
172 static device_method_t t5_methods[] = {
173         DEVMETHOD(device_probe,         t5_probe),
174         DEVMETHOD(device_attach,        t4_attach),
175         DEVMETHOD(device_detach,        t4_detach),
176         DEVMETHOD(device_suspend,       t4_suspend),
177         DEVMETHOD(device_resume,        t4_resume),
178
179         DEVMETHOD(bus_child_location,   t4_child_location),
180         DEVMETHOD(bus_reset_prepare,    t4_reset_prepare),
181         DEVMETHOD(bus_reset_post,       t4_reset_post),
182
183         DEVMETHOD(t4_is_main_ready,     t4_ready),
184         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
185
186         DEVMETHOD_END
187 };
188 static driver_t t5_driver = {
189         "t5nex",
190         t5_methods,
191         sizeof(struct adapter)
192 };
193
194
195 /* T5 port (cxl) interface */
196 static driver_t cxl_driver = {
197         "cxl",
198         cxgbe_methods,
199         sizeof(struct port_info)
200 };
201
202 /* T5 VI (vcxl) interface */
203 static driver_t vcxl_driver = {
204         "vcxl",
205         vcxgbe_methods,
206         sizeof(struct vi_info)
207 };
208
209 /* T6 bus driver interface */
210 static int t6_probe(device_t);
211 static device_method_t t6_methods[] = {
212         DEVMETHOD(device_probe,         t6_probe),
213         DEVMETHOD(device_attach,        t4_attach),
214         DEVMETHOD(device_detach,        t4_detach),
215         DEVMETHOD(device_suspend,       t4_suspend),
216         DEVMETHOD(device_resume,        t4_resume),
217
218         DEVMETHOD(bus_child_location,   t4_child_location),
219         DEVMETHOD(bus_reset_prepare,    t4_reset_prepare),
220         DEVMETHOD(bus_reset_post,       t4_reset_post),
221
222         DEVMETHOD(t4_is_main_ready,     t4_ready),
223         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
224
225         DEVMETHOD_END
226 };
227 static driver_t t6_driver = {
228         "t6nex",
229         t6_methods,
230         sizeof(struct adapter)
231 };
232
233
234 /* T6 port (cc) interface */
235 static driver_t cc_driver = {
236         "cc",
237         cxgbe_methods,
238         sizeof(struct port_info)
239 };
240
241 /* T6 VI (vcc) interface */
242 static driver_t vcc_driver = {
243         "vcc",
244         vcxgbe_methods,
245         sizeof(struct vi_info)
246 };
247
248 /* ifnet interface */
249 static void cxgbe_init(void *);
250 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
251 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
252 static void cxgbe_qflush(struct ifnet *);
253 #if defined(KERN_TLS) || defined(RATELIMIT)
254 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *,
255     struct m_snd_tag **);
256 #endif
257
258 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
259
260 /*
261  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
262  * then ADAPTER_LOCK, then t4_uld_list_lock.
263  */
264 static struct sx t4_list_lock;
265 SLIST_HEAD(, adapter) t4_list;
266 #ifdef TCP_OFFLOAD
267 static struct sx t4_uld_list_lock;
268 SLIST_HEAD(, uld_info) t4_uld_list;
269 #endif
270
271 /*
272  * Tunables.  See tweak_tunables() too.
273  *
274  * Each tunable is set to a default value here if it's known at compile-time.
275  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
276  * provide a reasonable default (upto n) when the driver is loaded.
277  *
278  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
279  * T5 are under hw.cxl.
280  */
281 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
282     "cxgbe(4) parameters");
283 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
284     "cxgbe(4) T5+ parameters");
285 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
286     "cxgbe(4) TOE parameters");
287
288 /*
289  * Number of queues for tx and rx, NIC and offload.
290  */
291 #define NTXQ 16
292 int t4_ntxq = -NTXQ;
293 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
294     "Number of TX queues per port");
295 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);      /* Old name, undocumented */
296
297 #define NRXQ 8
298 int t4_nrxq = -NRXQ;
299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
300     "Number of RX queues per port");
301 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);      /* Old name, undocumented */
302
303 #define NTXQ_VI 1
304 static int t4_ntxq_vi = -NTXQ_VI;
305 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
306     "Number of TX queues per VI");
307
308 #define NRXQ_VI 1
309 static int t4_nrxq_vi = -NRXQ_VI;
310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
311     "Number of RX queues per VI");
312
313 static int t4_rsrv_noflowq = 0;
314 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
315     0, "Reserve TX queue 0 of each VI for non-flowid packets");
316
317 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
318 #define NOFLDTXQ 8
319 static int t4_nofldtxq = -NOFLDTXQ;
320 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
321     "Number of offload TX queues per port");
322
323 #define NOFLDRXQ 2
324 static int t4_nofldrxq = -NOFLDRXQ;
325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
326     "Number of offload RX queues per port");
327
328 #define NOFLDTXQ_VI 1
329 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
331     "Number of offload TX queues per VI");
332
333 #define NOFLDRXQ_VI 1
334 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
336     "Number of offload RX queues per VI");
337
338 #define TMR_IDX_OFLD 1
339 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
341     &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
342
343 #define PKTC_IDX_OFLD (-1)
344 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
346     &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
347
348 /* 0 means chip/fw default, non-zero number is value in microseconds */
349 static u_long t4_toe_keepalive_idle = 0;
350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
351     &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
352
353 /* 0 means chip/fw default, non-zero number is value in microseconds */
354 static u_long t4_toe_keepalive_interval = 0;
355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
356     &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
357
358 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
359 static int t4_toe_keepalive_count = 0;
360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
361     &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
362
363 /* 0 means chip/fw default, non-zero number is value in microseconds */
364 static u_long t4_toe_rexmt_min = 0;
365 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
366     &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
367
368 /* 0 means chip/fw default, non-zero number is value in microseconds */
369 static u_long t4_toe_rexmt_max = 0;
370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
371     &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
372
373 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
374 static int t4_toe_rexmt_count = 0;
375 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
376     &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
377
378 /* -1 means chip/fw default, other values are raw backoff values to use */
379 static int t4_toe_rexmt_backoff[16] = {
380         -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
381 };
382 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
383     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
384     "cxgbe(4) TOE retransmit backoff values");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
386     &t4_toe_rexmt_backoff[0], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
388     &t4_toe_rexmt_backoff[1], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
390     &t4_toe_rexmt_backoff[2], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
392     &t4_toe_rexmt_backoff[3], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
394     &t4_toe_rexmt_backoff[4], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
396     &t4_toe_rexmt_backoff[5], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
398     &t4_toe_rexmt_backoff[6], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
400     &t4_toe_rexmt_backoff[7], 0, "");
401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
402     &t4_toe_rexmt_backoff[8], 0, "");
403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
404     &t4_toe_rexmt_backoff[9], 0, "");
405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
406     &t4_toe_rexmt_backoff[10], 0, "");
407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
408     &t4_toe_rexmt_backoff[11], 0, "");
409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
410     &t4_toe_rexmt_backoff[12], 0, "");
411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
412     &t4_toe_rexmt_backoff[13], 0, "");
413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
414     &t4_toe_rexmt_backoff[14], 0, "");
415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
416     &t4_toe_rexmt_backoff[15], 0, "");
417
418 static int t4_toe_tls_rx_timeout = 5;
419 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, tls_rx_timeout, CTLFLAG_RDTUN,
420     &t4_toe_tls_rx_timeout, 0,
421     "Timeout in seconds to downgrade TLS sockets to plain TOE");
422 #endif
423
424 #ifdef DEV_NETMAP
425 #define NN_MAIN_VI      (1 << 0)        /* Native netmap on the main VI */
426 #define NN_EXTRA_VI     (1 << 1)        /* Native netmap on the extra VI(s) */
427 static int t4_native_netmap = NN_EXTRA_VI;
428 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
429     0, "Native netmap support.  bit 0 = main VI, bit 1 = extra VIs");
430
431 #define NNMTXQ 8
432 static int t4_nnmtxq = -NNMTXQ;
433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
434     "Number of netmap TX queues");
435
436 #define NNMRXQ 8
437 static int t4_nnmrxq = -NNMRXQ;
438 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
439     "Number of netmap RX queues");
440
441 #define NNMTXQ_VI 2
442 static int t4_nnmtxq_vi = -NNMTXQ_VI;
443 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
444     "Number of netmap TX queues per VI");
445
446 #define NNMRXQ_VI 2
447 static int t4_nnmrxq_vi = -NNMRXQ_VI;
448 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
449     "Number of netmap RX queues per VI");
450 #endif
451
452 /*
453  * Holdoff parameters for ports.
454  */
455 #define TMR_IDX 1
456 int t4_tmr_idx = TMR_IDX;
457 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
458     0, "Holdoff timer index");
459 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);     /* Old name */
460
461 #define PKTC_IDX (-1)
462 int t4_pktc_idx = PKTC_IDX;
463 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
464     0, "Holdoff packet counter index");
465 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);     /* Old name */
466
467 /*
468  * Size (# of entries) of each tx and rx queue.
469  */
470 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
472     "Number of descriptors in each TX queue");
473
474 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
476     "Number of descriptors in each RX queue");
477
478 /*
479  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
480  */
481 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
482 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
483     0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
484
485 /*
486  * Configuration file.  All the _CF names here are special.
487  */
488 #define DEFAULT_CF      "default"
489 #define BUILTIN_CF      "built-in"
490 #define FLASH_CF        "flash"
491 #define UWIRE_CF        "uwire"
492 #define FPGA_CF         "fpga"
493 static char t4_cfg_file[32] = DEFAULT_CF;
494 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
495     sizeof(t4_cfg_file), "Firmware configuration file");
496
497 /*
498  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
499  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
500  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
501  *            mark or when signalled to do so, 0 to never emit PAUSE.
502  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
503  *                 negotiated settings will override rx_pause/tx_pause.
504  *                 Otherwise rx_pause/tx_pause are applied forcibly.
505  */
506 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
507 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
508     &t4_pause_settings, 0,
509     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
510
511 /*
512  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
513  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
514  *  0 to disable FEC.
515  */
516 static int t4_fec = -1;
517 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
518     "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
519
520 /*
521  * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
522  * issues to the firmware.  If the firmware doesn't support FORCE_FEC then the
523  * driver runs as if this is set to 0.
524  * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
525  *  0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
526  *    transceiver. Multiple FEC bits may not be okay but will be passed on to
527  *    the firmware anyway (may result in l1cfg errors with old firmwares).
528  *  1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
529  *    means set all FEC bits that are valid for the speed.
530  */
531 static int t4_force_fec = -1;
532 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
533     "Controls the use of FORCE_FEC bit in L1 configuration.");
534
535 /*
536  * Link autonegotiation.
537  * -1 to run with the firmware default.
538  *  0 to disable.
539  *  1 to enable.
540  */
541 static int t4_autoneg = -1;
542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
543     "Link autonegotiation");
544
545 /*
546  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
547  * encouraged respectively).  '-n' is the same as 'n' except the firmware
548  * version used in the checks is read from the firmware bundled with the driver.
549  */
550 static int t4_fw_install = 1;
551 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
552     "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
553
554 /*
555  * ASIC features that will be used.  Disable the ones you don't want so that the
556  * chip resources aren't wasted on features that will not be used.
557  */
558 static int t4_nbmcaps_allowed = 0;
559 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
560     &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
561
562 static int t4_linkcaps_allowed = 0;     /* No DCBX, PPP, etc. by default */
563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
564     &t4_linkcaps_allowed, 0, "Default link capabilities");
565
566 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
567     FW_CAPS_CONFIG_SWITCH_EGRESS;
568 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
569     &t4_switchcaps_allowed, 0, "Default switch capabilities");
570
571 #ifdef RATELIMIT
572 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
573         FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
574 #else
575 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
576         FW_CAPS_CONFIG_NIC_HASHFILTER;
577 #endif
578 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
579     &t4_niccaps_allowed, 0, "Default NIC capabilities");
580
581 static int t4_toecaps_allowed = -1;
582 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
583     &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
584
585 static int t4_rdmacaps_allowed = -1;
586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
587     &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
588
589 static int t4_cryptocaps_allowed = -1;
590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
591     &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
592
593 static int t4_iscsicaps_allowed = -1;
594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
595     &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
596
597 static int t4_fcoecaps_allowed = 0;
598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
599     &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
600
601 static int t5_write_combine = 0;
602 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
603     0, "Use WC instead of UC for BAR2");
604
605 static int t4_num_vis = 1;
606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
607     "Number of VIs per port");
608
609 /*
610  * PCIe Relaxed Ordering.
611  * -1: driver should figure out a good value.
612  * 0: disable RO.
613  * 1: enable RO.
614  * 2: leave RO alone.
615  */
616 static int pcie_relaxed_ordering = -1;
617 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
618     &pcie_relaxed_ordering, 0,
619     "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
620
621 static int t4_panic_on_fatal_err = 0;
622 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
623     &t4_panic_on_fatal_err, 0, "panic on fatal errors");
624
625 static int t4_reset_on_fatal_err = 0;
626 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
627     &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
628
629 static int t4_tx_vm_wr = 0;
630 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
631     "Use VM work requests to transmit packets.");
632
633 /*
634  * Set to non-zero to enable the attack filter.  A packet that matches any of
635  * these conditions will get dropped on ingress:
636  * 1) IP && source address == destination address.
637  * 2) TCP/IP && source address is not a unicast address.
638  * 3) TCP/IP && destination address is not a unicast address.
639  * 4) IP && source address is loopback (127.x.y.z).
640  * 5) IP && destination address is loopback (127.x.y.z).
641  * 6) IPv6 && source address == destination address.
642  * 7) IPv6 && source address is not a unicast address.
643  * 8) IPv6 && source address is loopback (::1/128).
644  * 9) IPv6 && destination address is loopback (::1/128).
645  * 10) IPv6 && source address is unspecified (::/128).
646  * 11) IPv6 && destination address is unspecified (::/128).
647  * 12) TCP/IPv6 && source address is multicast (ff00::/8).
648  * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
649  */
650 static int t4_attack_filter = 0;
651 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
652     &t4_attack_filter, 0, "Drop suspicious traffic");
653
654 static int t4_drop_ip_fragments = 0;
655 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
656     &t4_drop_ip_fragments, 0, "Drop IP fragments");
657
658 static int t4_drop_pkts_with_l2_errors = 1;
659 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
660     &t4_drop_pkts_with_l2_errors, 0,
661     "Drop all frames with Layer 2 length or checksum errors");
662
663 static int t4_drop_pkts_with_l3_errors = 0;
664 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
665     &t4_drop_pkts_with_l3_errors, 0,
666     "Drop all frames with IP version, length, or checksum errors");
667
668 static int t4_drop_pkts_with_l4_errors = 0;
669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
670     &t4_drop_pkts_with_l4_errors, 0,
671     "Drop all frames with Layer 4 length, checksum, or other errors");
672
673 #ifdef TCP_OFFLOAD
674 /*
675  * TOE tunables.
676  */
677 static int t4_cop_managed_offloading = 0;
678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
679     &t4_cop_managed_offloading, 0,
680     "COP (Connection Offload Policy) controls all TOE offload");
681 #endif
682
683 #ifdef KERN_TLS
684 /*
685  * This enables KERN_TLS for all adapters if set.
686  */
687 static int t4_kern_tls = 0;
688 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
689     "Enable KERN_TLS mode for all supported adapters");
690
691 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
692     "cxgbe(4) KERN_TLS parameters");
693
694 static int t4_tls_inline_keys = 0;
695 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
696     &t4_tls_inline_keys, 0,
697     "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
698     "in card memory.");
699
700 static int t4_tls_combo_wrs = 0;
701 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
702     0, "Attempt to combine TCB field updates with TLS record work requests.");
703 #endif
704
705 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
706 static int vi_mac_funcs[] = {
707         FW_VI_FUNC_ETH,
708         FW_VI_FUNC_OFLD,
709         FW_VI_FUNC_IWARP,
710         FW_VI_FUNC_OPENISCSI,
711         FW_VI_FUNC_OPENFCOE,
712         FW_VI_FUNC_FOISCSI,
713         FW_VI_FUNC_FOFCOE,
714 };
715
716 struct intrs_and_queues {
717         uint16_t intr_type;     /* INTx, MSI, or MSI-X */
718         uint16_t num_vis;       /* number of VIs for each port */
719         uint16_t nirq;          /* Total # of vectors */
720         uint16_t ntxq;          /* # of NIC txq's for each port */
721         uint16_t nrxq;          /* # of NIC rxq's for each port */
722         uint16_t nofldtxq;      /* # of TOE/ETHOFLD txq's for each port */
723         uint16_t nofldrxq;      /* # of TOE rxq's for each port */
724         uint16_t nnmtxq;        /* # of netmap txq's */
725         uint16_t nnmrxq;        /* # of netmap rxq's */
726
727         /* The vcxgbe/vcxl interfaces use these and not the ones above. */
728         uint16_t ntxq_vi;       /* # of NIC txq's */
729         uint16_t nrxq_vi;       /* # of NIC rxq's */
730         uint16_t nofldtxq_vi;   /* # of TOE txq's */
731         uint16_t nofldrxq_vi;   /* # of TOE rxq's */
732         uint16_t nnmtxq_vi;     /* # of netmap txq's */
733         uint16_t nnmrxq_vi;     /* # of netmap rxq's */
734 };
735
736 static void setup_memwin(struct adapter *);
737 static void position_memwin(struct adapter *, int, uint32_t);
738 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
739 static int fwmtype_to_hwmtype(int);
740 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
741     uint32_t *);
742 static int fixup_devlog_params(struct adapter *);
743 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
744 static int contact_firmware(struct adapter *);
745 static int partition_resources(struct adapter *);
746 static int get_params__pre_init(struct adapter *);
747 static int set_params__pre_init(struct adapter *);
748 static int get_params__post_init(struct adapter *);
749 static int set_params__post_init(struct adapter *);
750 static void t4_set_desc(struct adapter *);
751 static bool fixed_ifmedia(struct port_info *);
752 static void build_medialist(struct port_info *);
753 static void init_link_config(struct port_info *);
754 static int fixup_link_config(struct port_info *);
755 static int apply_link_config(struct port_info *);
756 static int cxgbe_init_synchronized(struct vi_info *);
757 static int cxgbe_uninit_synchronized(struct vi_info *);
758 static int adapter_full_init(struct adapter *);
759 static void adapter_full_uninit(struct adapter *);
760 static int vi_full_init(struct vi_info *);
761 static void vi_full_uninit(struct vi_info *);
762 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
763 static void quiesce_txq(struct sge_txq *);
764 static void quiesce_wrq(struct sge_wrq *);
765 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
766 static void quiesce_vi(struct vi_info *);
767 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
768     driver_intr_t *, void *, char *);
769 static int t4_free_irq(struct adapter *, struct irq *);
770 static void t4_init_atid_table(struct adapter *);
771 static void t4_free_atid_table(struct adapter *);
772 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
773 static void vi_refresh_stats(struct vi_info *);
774 static void cxgbe_refresh_stats(struct vi_info *);
775 static void cxgbe_tick(void *);
776 static void vi_tick(void *);
777 static void cxgbe_sysctls(struct port_info *);
778 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
779 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
780 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
781 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
782 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
783 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
784 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
785 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
786 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
787 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
788 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
789 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
790 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
791 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
792 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
793 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
794 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
795 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
796 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
797 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
798 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
799 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
800 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
801 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
802 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
803 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
804 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
805 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
806 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
807 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
808 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
809 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
810 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
811 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
812 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
813 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
814 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
815 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
816 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
817 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
818 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
819 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
820 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
821 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
822 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
823 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
824 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
825 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
826 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
827 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
828 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
829 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
830 #ifdef TCP_OFFLOAD
831 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
832 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS);
833 static int sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS);
834 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
835 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
836 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
837 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
838 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
839 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
840 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
841 #endif
842 static int get_sge_context(struct adapter *, struct t4_sge_context *);
843 static int load_fw(struct adapter *, struct t4_data *);
844 static int load_cfg(struct adapter *, struct t4_data *);
845 static int load_boot(struct adapter *, struct t4_bootrom *);
846 static int load_bootcfg(struct adapter *, struct t4_data *);
847 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
848 static void free_offload_policy(struct t4_offload_policy *);
849 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
850 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
851 static int read_i2c(struct adapter *, struct t4_i2c_data *);
852 static int clear_stats(struct adapter *, u_int);
853 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
854 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
855 #ifdef TCP_OFFLOAD
856 static int toe_capability(struct vi_info *, bool);
857 static void t4_async_event(struct adapter *);
858 #endif
859 #ifdef KERN_TLS
860 static int ktls_capability(struct adapter *, bool);
861 #endif
862 static int mod_event(module_t, int, void *);
863 static int notify_siblings(device_t, int);
864 static uint64_t vi_get_counter(struct ifnet *, ift_counter);
865 static uint64_t cxgbe_get_counter(struct ifnet *, ift_counter);
866 static void enable_vxlan_rx(struct adapter *);
867 static void reset_adapter_task(void *, int);
868 static void fatal_error_task(void *, int);
869 static void dump_devlog(struct adapter *);
870 static void dump_cim_regs(struct adapter *);
871 static void dump_cimla(struct adapter *);
872
873 struct {
874         uint16_t device;
875         char *desc;
876 } t4_pciids[] = {
877         {0xa000, "Chelsio Terminator 4 FPGA"},
878         {0x4400, "Chelsio T440-dbg"},
879         {0x4401, "Chelsio T420-CR"},
880         {0x4402, "Chelsio T422-CR"},
881         {0x4403, "Chelsio T440-CR"},
882         {0x4404, "Chelsio T420-BCH"},
883         {0x4405, "Chelsio T440-BCH"},
884         {0x4406, "Chelsio T440-CH"},
885         {0x4407, "Chelsio T420-SO"},
886         {0x4408, "Chelsio T420-CX"},
887         {0x4409, "Chelsio T420-BT"},
888         {0x440a, "Chelsio T404-BT"},
889         {0x440e, "Chelsio T440-LP-CR"},
890 }, t5_pciids[] = {
891         {0xb000, "Chelsio Terminator 5 FPGA"},
892         {0x5400, "Chelsio T580-dbg"},
893         {0x5401,  "Chelsio T520-CR"},           /* 2 x 10G */
894         {0x5402,  "Chelsio T522-CR"},           /* 2 x 10G, 2 X 1G */
895         {0x5403,  "Chelsio T540-CR"},           /* 4 x 10G */
896         {0x5407,  "Chelsio T520-SO"},           /* 2 x 10G, nomem */
897         {0x5409,  "Chelsio T520-BT"},           /* 2 x 10GBaseT */
898         {0x540a,  "Chelsio T504-BT"},           /* 4 x 1G */
899         {0x540d,  "Chelsio T580-CR"},           /* 2 x 40G */
900         {0x540e,  "Chelsio T540-LP-CR"},        /* 4 x 10G */
901         {0x5410,  "Chelsio T580-LP-CR"},        /* 2 x 40G */
902         {0x5411,  "Chelsio T520-LL-CR"},        /* 2 x 10G */
903         {0x5412,  "Chelsio T560-CR"},           /* 1 x 40G, 2 x 10G */
904         {0x5414,  "Chelsio T580-LP-SO-CR"},     /* 2 x 40G, nomem */
905         {0x5415,  "Chelsio T502-BT"},           /* 2 x 1G */
906         {0x5418,  "Chelsio T540-BT"},           /* 4 x 10GBaseT */
907         {0x5419,  "Chelsio T540-LP-BT"},        /* 4 x 10GBaseT */
908         {0x541a,  "Chelsio T540-SO-BT"},        /* 4 x 10GBaseT, nomem */
909         {0x541b,  "Chelsio T540-SO-CR"},        /* 4 x 10G, nomem */
910
911         /* Custom */
912         {0x5483, "Custom T540-CR"},
913         {0x5484, "Custom T540-BT"},
914 }, t6_pciids[] = {
915         {0xc006, "Chelsio Terminator 6 FPGA"},  /* T6 PE10K6 FPGA (PF0) */
916         {0x6400, "Chelsio T6-DBG-25"},          /* 2 x 10/25G, debug */
917         {0x6401, "Chelsio T6225-CR"},           /* 2 x 10/25G */
918         {0x6402, "Chelsio T6225-SO-CR"},        /* 2 x 10/25G, nomem */
919         {0x6403, "Chelsio T6425-CR"},           /* 4 x 10/25G */
920         {0x6404, "Chelsio T6425-SO-CR"},        /* 4 x 10/25G, nomem */
921         {0x6405, "Chelsio T6225-OCP-SO"},       /* 2 x 10/25G, nomem */
922         {0x6406, "Chelsio T62100-OCP-SO"},      /* 2 x 40/50/100G, nomem */
923         {0x6407, "Chelsio T62100-LP-CR"},       /* 2 x 40/50/100G */
924         {0x6408, "Chelsio T62100-SO-CR"},       /* 2 x 40/50/100G, nomem */
925         {0x6409, "Chelsio T6210-BT"},           /* 2 x 10GBASE-T */
926         {0x640d, "Chelsio T62100-CR"},          /* 2 x 40/50/100G */
927         {0x6410, "Chelsio T6-DBG-100"},         /* 2 x 40/50/100G, debug */
928         {0x6411, "Chelsio T6225-LL-CR"},        /* 2 x 10/25G */
929         {0x6414, "Chelsio T61100-OCP-SO"},      /* 1 x 40/50/100G, nomem */
930         {0x6415, "Chelsio T6201-BT"},           /* 2 x 1000BASE-T */
931
932         /* Custom */
933         {0x6480, "Custom T6225-CR"},
934         {0x6481, "Custom T62100-CR"},
935         {0x6482, "Custom T6225-CR"},
936         {0x6483, "Custom T62100-CR"},
937         {0x6484, "Custom T64100-CR"},
938         {0x6485, "Custom T6240-SO"},
939         {0x6486, "Custom T6225-SO-CR"},
940         {0x6487, "Custom T6225-CR"},
941 };
942
943 #ifdef TCP_OFFLOAD
944 /*
945  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
946  * be exactly the same for both rxq and ofld_rxq.
947  */
948 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
949 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
950 #endif
951 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
952
953 static int
954 t4_probe(device_t dev)
955 {
956         int i;
957         uint16_t v = pci_get_vendor(dev);
958         uint16_t d = pci_get_device(dev);
959         uint8_t f = pci_get_function(dev);
960
961         if (v != PCI_VENDOR_ID_CHELSIO)
962                 return (ENXIO);
963
964         /* Attach only to PF0 of the FPGA */
965         if (d == 0xa000 && f != 0)
966                 return (ENXIO);
967
968         for (i = 0; i < nitems(t4_pciids); i++) {
969                 if (d == t4_pciids[i].device) {
970                         device_set_desc(dev, t4_pciids[i].desc);
971                         return (BUS_PROBE_DEFAULT);
972                 }
973         }
974
975         return (ENXIO);
976 }
977
978 static int
979 t5_probe(device_t dev)
980 {
981         int i;
982         uint16_t v = pci_get_vendor(dev);
983         uint16_t d = pci_get_device(dev);
984         uint8_t f = pci_get_function(dev);
985
986         if (v != PCI_VENDOR_ID_CHELSIO)
987                 return (ENXIO);
988
989         /* Attach only to PF0 of the FPGA */
990         if (d == 0xb000 && f != 0)
991                 return (ENXIO);
992
993         for (i = 0; i < nitems(t5_pciids); i++) {
994                 if (d == t5_pciids[i].device) {
995                         device_set_desc(dev, t5_pciids[i].desc);
996                         return (BUS_PROBE_DEFAULT);
997                 }
998         }
999
1000         return (ENXIO);
1001 }
1002
1003 static int
1004 t6_probe(device_t dev)
1005 {
1006         int i;
1007         uint16_t v = pci_get_vendor(dev);
1008         uint16_t d = pci_get_device(dev);
1009
1010         if (v != PCI_VENDOR_ID_CHELSIO)
1011                 return (ENXIO);
1012
1013         for (i = 0; i < nitems(t6_pciids); i++) {
1014                 if (d == t6_pciids[i].device) {
1015                         device_set_desc(dev, t6_pciids[i].desc);
1016                         return (BUS_PROBE_DEFAULT);
1017                 }
1018         }
1019
1020         return (ENXIO);
1021 }
1022
1023 static void
1024 t5_attribute_workaround(device_t dev)
1025 {
1026         device_t root_port;
1027         uint32_t v;
1028
1029         /*
1030          * The T5 chips do not properly echo the No Snoop and Relaxed
1031          * Ordering attributes when replying to a TLP from a Root
1032          * Port.  As a workaround, find the parent Root Port and
1033          * disable No Snoop and Relaxed Ordering.  Note that this
1034          * affects all devices under this root port.
1035          */
1036         root_port = pci_find_pcie_root_port(dev);
1037         if (root_port == NULL) {
1038                 device_printf(dev, "Unable to find parent root port\n");
1039                 return;
1040         }
1041
1042         v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1043             PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1044         if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1045             0)
1046                 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1047                     device_get_nameunit(root_port));
1048 }
1049
1050 static const struct devnames devnames[] = {
1051         {
1052                 .nexus_name = "t4nex",
1053                 .ifnet_name = "cxgbe",
1054                 .vi_ifnet_name = "vcxgbe",
1055                 .pf03_drv_name = "t4iov",
1056                 .vf_nexus_name = "t4vf",
1057                 .vf_ifnet_name = "cxgbev"
1058         }, {
1059                 .nexus_name = "t5nex",
1060                 .ifnet_name = "cxl",
1061                 .vi_ifnet_name = "vcxl",
1062                 .pf03_drv_name = "t5iov",
1063                 .vf_nexus_name = "t5vf",
1064                 .vf_ifnet_name = "cxlv"
1065         }, {
1066                 .nexus_name = "t6nex",
1067                 .ifnet_name = "cc",
1068                 .vi_ifnet_name = "vcc",
1069                 .pf03_drv_name = "t6iov",
1070                 .vf_nexus_name = "t6vf",
1071                 .vf_ifnet_name = "ccv"
1072         }
1073 };
1074
1075 void
1076 t4_init_devnames(struct adapter *sc)
1077 {
1078         int id;
1079
1080         id = chip_id(sc);
1081         if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
1082                 sc->names = &devnames[id - CHELSIO_T4];
1083         else {
1084                 device_printf(sc->dev, "chip id %d is not supported.\n", id);
1085                 sc->names = NULL;
1086         }
1087 }
1088
1089 static int
1090 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1091 {
1092         const char *parent, *name;
1093         long value;
1094         int line, unit;
1095
1096         line = 0;
1097         parent = device_get_nameunit(sc->dev);
1098         name = sc->names->ifnet_name;
1099         while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1100                 if (resource_long_value(name, unit, "port", &value) == 0 &&
1101                     value == pi->port_id)
1102                         return (unit);
1103         }
1104         return (-1);
1105 }
1106
1107 static int
1108 t4_attach(device_t dev)
1109 {
1110         struct adapter *sc;
1111         int rc = 0, i, j, rqidx, tqidx, nports;
1112         struct make_dev_args mda;
1113         struct intrs_and_queues iaq;
1114         struct sge *s;
1115         uint32_t *buf;
1116 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1117         int ofld_tqidx;
1118 #endif
1119 #ifdef TCP_OFFLOAD
1120         int ofld_rqidx;
1121 #endif
1122 #ifdef DEV_NETMAP
1123         int nm_rqidx, nm_tqidx;
1124 #endif
1125         int num_vis;
1126
1127         sc = device_get_softc(dev);
1128         sc->dev = dev;
1129         sysctl_ctx_init(&sc->ctx);
1130         TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1131
1132         if ((pci_get_device(dev) & 0xff00) == 0x5400)
1133                 t5_attribute_workaround(dev);
1134         pci_enable_busmaster(dev);
1135         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1136                 uint32_t v;
1137
1138                 pci_set_max_read_req(dev, 4096);
1139                 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1140                 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1141                 if (pcie_relaxed_ordering == 0 &&
1142                     (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1143                         v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1144                         pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1145                 } else if (pcie_relaxed_ordering == 1 &&
1146                     (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1147                         v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1148                         pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1149                 }
1150         }
1151
1152         sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1153         sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1154         sc->traceq = -1;
1155         mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1156         snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1157             device_get_nameunit(dev));
1158
1159         snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1160             device_get_nameunit(dev));
1161         mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1162         t4_add_adapter(sc);
1163
1164         mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1165         TAILQ_INIT(&sc->sfl);
1166         callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1167
1168         mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1169
1170         sc->policy = NULL;
1171         rw_init(&sc->policy_lock, "connection offload policy");
1172
1173         callout_init(&sc->ktls_tick, 1);
1174
1175         refcount_init(&sc->vxlan_refcount, 0);
1176
1177         TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1178         TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1179
1180         sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1181             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1182             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1183         sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1184             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1185             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1186
1187         rc = t4_map_bars_0_and_4(sc);
1188         if (rc != 0)
1189                 goto done; /* error message displayed already */
1190
1191         memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1192
1193         /* Prepare the adapter for operation. */
1194         buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1195         rc = -t4_prep_adapter(sc, buf);
1196         free(buf, M_CXGBE);
1197         if (rc != 0) {
1198                 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1199                 goto done;
1200         }
1201
1202         /*
1203          * This is the real PF# to which we're attaching.  Works from within PCI
1204          * passthrough environments too, where pci_get_function() could return a
1205          * different PF# depending on the passthrough configuration.  We need to
1206          * use the real PF# in all our communication with the firmware.
1207          */
1208         j = t4_read_reg(sc, A_PL_WHOAMI);
1209         sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1210         sc->mbox = sc->pf;
1211
1212         t4_init_devnames(sc);
1213         if (sc->names == NULL) {
1214                 rc = ENOTSUP;
1215                 goto done; /* error message displayed already */
1216         }
1217
1218         /*
1219          * Do this really early, with the memory windows set up even before the
1220          * character device.  The userland tool's register i/o and mem read
1221          * will work even in "recovery mode".
1222          */
1223         setup_memwin(sc);
1224         if (t4_init_devlog_params(sc, 0) == 0)
1225                 fixup_devlog_params(sc);
1226         make_dev_args_init(&mda);
1227         mda.mda_devsw = &t4_cdevsw;
1228         mda.mda_uid = UID_ROOT;
1229         mda.mda_gid = GID_WHEEL;
1230         mda.mda_mode = 0600;
1231         mda.mda_si_drv1 = sc;
1232         rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1233         if (rc != 0)
1234                 device_printf(dev, "failed to create nexus char device: %d.\n",
1235                     rc);
1236
1237         /* Go no further if recovery mode has been requested. */
1238         if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1239                 device_printf(dev, "recovery mode.\n");
1240                 goto done;
1241         }
1242
1243 #if defined(__i386__)
1244         if ((cpu_feature & CPUID_CX8) == 0) {
1245                 device_printf(dev, "64 bit atomics not available.\n");
1246                 rc = ENOTSUP;
1247                 goto done;
1248         }
1249 #endif
1250
1251         /* Contact the firmware and try to become the master driver. */
1252         rc = contact_firmware(sc);
1253         if (rc != 0)
1254                 goto done; /* error message displayed already */
1255         MPASS(sc->flags & FW_OK);
1256
1257         rc = get_params__pre_init(sc);
1258         if (rc != 0)
1259                 goto done; /* error message displayed already */
1260
1261         if (sc->flags & MASTER_PF) {
1262                 rc = partition_resources(sc);
1263                 if (rc != 0)
1264                         goto done; /* error message displayed already */
1265                 t4_intr_clear(sc);
1266         }
1267
1268         rc = get_params__post_init(sc);
1269         if (rc != 0)
1270                 goto done; /* error message displayed already */
1271
1272         rc = set_params__post_init(sc);
1273         if (rc != 0)
1274                 goto done; /* error message displayed already */
1275
1276         rc = t4_map_bar_2(sc);
1277         if (rc != 0)
1278                 goto done; /* error message displayed already */
1279
1280         rc = t4_create_dma_tag(sc);
1281         if (rc != 0)
1282                 goto done; /* error message displayed already */
1283
1284         /*
1285          * First pass over all the ports - allocate VIs and initialize some
1286          * basic parameters like mac address, port type, etc.
1287          */
1288         for_each_port(sc, i) {
1289                 struct port_info *pi;
1290
1291                 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1292                 sc->port[i] = pi;
1293
1294                 /* These must be set before t4_port_init */
1295                 pi->adapter = sc;
1296                 pi->port_id = i;
1297                 /*
1298                  * XXX: vi[0] is special so we can't delay this allocation until
1299                  * pi->nvi's final value is known.
1300                  */
1301                 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1302                     M_ZERO | M_WAITOK);
1303
1304                 /*
1305                  * Allocate the "main" VI and initialize parameters
1306                  * like mac addr.
1307                  */
1308                 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1309                 if (rc != 0) {
1310                         device_printf(dev, "unable to initialize port %d: %d\n",
1311                             i, rc);
1312                         free(pi->vi, M_CXGBE);
1313                         free(pi, M_CXGBE);
1314                         sc->port[i] = NULL;
1315                         goto done;
1316                 }
1317
1318                 if (is_bt(pi->port_type))
1319                         setbit(&sc->bt_map, pi->tx_chan);
1320                 else
1321                         MPASS(!isset(&sc->bt_map, pi->tx_chan));
1322
1323                 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1324                     device_get_nameunit(dev), i);
1325                 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1326                 sc->chan_map[pi->tx_chan] = i;
1327
1328                 /*
1329                  * The MPS counter for FCS errors doesn't work correctly on the
1330                  * T6 so we use the MAC counter here.  Which MAC is in use
1331                  * depends on the link settings which will be known when the
1332                  * link comes up.
1333                  */
1334                 if (is_t6(sc)) {
1335                         pi->fcs_reg = -1;
1336                 } else if (is_t4(sc)) {
1337                         pi->fcs_reg = PORT_REG(pi->tx_chan,
1338                             A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1339                 } else {
1340                         pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
1341                             A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1342                 }
1343                 pi->fcs_base = 0;
1344
1345                 /* All VIs on this port share this media. */
1346                 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1347                     cxgbe_media_status);
1348
1349                 PORT_LOCK(pi);
1350                 init_link_config(pi);
1351                 fixup_link_config(pi);
1352                 build_medialist(pi);
1353                 if (fixed_ifmedia(pi))
1354                         pi->flags |= FIXED_IFMEDIA;
1355                 PORT_UNLOCK(pi);
1356
1357                 pi->dev = device_add_child(dev, sc->names->ifnet_name,
1358                     t4_ifnet_unit(sc, pi));
1359                 if (pi->dev == NULL) {
1360                         device_printf(dev,
1361                             "failed to add device for port %d.\n", i);
1362                         rc = ENXIO;
1363                         goto done;
1364                 }
1365                 pi->vi[0].dev = pi->dev;
1366                 device_set_softc(pi->dev, pi);
1367         }
1368
1369         /*
1370          * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1371          */
1372         nports = sc->params.nports;
1373         rc = cfg_itype_and_nqueues(sc, &iaq);
1374         if (rc != 0)
1375                 goto done; /* error message displayed already */
1376
1377         num_vis = iaq.num_vis;
1378         sc->intr_type = iaq.intr_type;
1379         sc->intr_count = iaq.nirq;
1380
1381         s = &sc->sge;
1382         s->nrxq = nports * iaq.nrxq;
1383         s->ntxq = nports * iaq.ntxq;
1384         if (num_vis > 1) {
1385                 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1386                 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1387         }
1388         s->neq = s->ntxq + s->nrxq;     /* the free list in an rxq is an eq */
1389         s->neq += nports;               /* ctrl queues: 1 per port */
1390         s->niq = s->nrxq + 1;           /* 1 extra for firmware event queue */
1391 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1392         if (is_offload(sc) || is_ethoffload(sc)) {
1393                 s->nofldtxq = nports * iaq.nofldtxq;
1394                 if (num_vis > 1)
1395                         s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1396                 s->neq += s->nofldtxq;
1397
1398                 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1399                     M_CXGBE, M_ZERO | M_WAITOK);
1400         }
1401 #endif
1402 #ifdef TCP_OFFLOAD
1403         if (is_offload(sc)) {
1404                 s->nofldrxq = nports * iaq.nofldrxq;
1405                 if (num_vis > 1)
1406                         s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1407                 s->neq += s->nofldrxq;  /* free list */
1408                 s->niq += s->nofldrxq;
1409
1410                 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1411                     M_CXGBE, M_ZERO | M_WAITOK);
1412         }
1413 #endif
1414 #ifdef DEV_NETMAP
1415         s->nnmrxq = 0;
1416         s->nnmtxq = 0;
1417         if (t4_native_netmap & NN_MAIN_VI) {
1418                 s->nnmrxq += nports * iaq.nnmrxq;
1419                 s->nnmtxq += nports * iaq.nnmtxq;
1420         }
1421         if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1422                 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1423                 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1424         }
1425         s->neq += s->nnmtxq + s->nnmrxq;
1426         s->niq += s->nnmrxq;
1427
1428         s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1429             M_CXGBE, M_ZERO | M_WAITOK);
1430         s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1431             M_CXGBE, M_ZERO | M_WAITOK);
1432 #endif
1433         MPASS(s->niq <= s->iqmap_sz);
1434         MPASS(s->neq <= s->eqmap_sz);
1435
1436         s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1437             M_ZERO | M_WAITOK);
1438         s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1439             M_ZERO | M_WAITOK);
1440         s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1441             M_ZERO | M_WAITOK);
1442         s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1443             M_ZERO | M_WAITOK);
1444         s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1445             M_ZERO | M_WAITOK);
1446
1447         sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1448             M_ZERO | M_WAITOK);
1449
1450         t4_init_l2t(sc, M_WAITOK);
1451         t4_init_smt(sc, M_WAITOK);
1452         t4_init_tx_sched(sc);
1453         t4_init_atid_table(sc);
1454 #ifdef RATELIMIT
1455         t4_init_etid_table(sc);
1456 #endif
1457 #ifdef INET6
1458         t4_init_clip_table(sc);
1459 #endif
1460         if (sc->vres.key.size != 0)
1461                 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1462                     sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1463
1464         /*
1465          * Second pass over the ports.  This time we know the number of rx and
1466          * tx queues that each port should get.
1467          */
1468         rqidx = tqidx = 0;
1469 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1470         ofld_tqidx = 0;
1471 #endif
1472 #ifdef TCP_OFFLOAD
1473         ofld_rqidx = 0;
1474 #endif
1475 #ifdef DEV_NETMAP
1476         nm_rqidx = nm_tqidx = 0;
1477 #endif
1478         for_each_port(sc, i) {
1479                 struct port_info *pi = sc->port[i];
1480                 struct vi_info *vi;
1481
1482                 if (pi == NULL)
1483                         continue;
1484
1485                 pi->nvi = num_vis;
1486                 for_each_vi(pi, j, vi) {
1487                         vi->pi = pi;
1488                         vi->adapter = sc;
1489                         vi->first_intr = -1;
1490                         vi->qsize_rxq = t4_qsize_rxq;
1491                         vi->qsize_txq = t4_qsize_txq;
1492
1493                         vi->first_rxq = rqidx;
1494                         vi->first_txq = tqidx;
1495                         vi->tmr_idx = t4_tmr_idx;
1496                         vi->pktc_idx = t4_pktc_idx;
1497                         vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1498                         vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1499
1500                         rqidx += vi->nrxq;
1501                         tqidx += vi->ntxq;
1502
1503                         if (j == 0 && vi->ntxq > 1)
1504                                 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1505                         else
1506                                 vi->rsrv_noflowq = 0;
1507
1508 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1509                         vi->first_ofld_txq = ofld_tqidx;
1510                         vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1511                         ofld_tqidx += vi->nofldtxq;
1512 #endif
1513 #ifdef TCP_OFFLOAD
1514                         vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1515                         vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1516                         vi->first_ofld_rxq = ofld_rqidx;
1517                         vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1518
1519                         ofld_rqidx += vi->nofldrxq;
1520 #endif
1521 #ifdef DEV_NETMAP
1522                         vi->first_nm_rxq = nm_rqidx;
1523                         vi->first_nm_txq = nm_tqidx;
1524                         if (j == 0) {
1525                                 vi->nnmrxq = iaq.nnmrxq;
1526                                 vi->nnmtxq = iaq.nnmtxq;
1527                         } else {
1528                                 vi->nnmrxq = iaq.nnmrxq_vi;
1529                                 vi->nnmtxq = iaq.nnmtxq_vi;
1530                         }
1531                         nm_rqidx += vi->nnmrxq;
1532                         nm_tqidx += vi->nnmtxq;
1533 #endif
1534                 }
1535         }
1536
1537         rc = t4_setup_intr_handlers(sc);
1538         if (rc != 0) {
1539                 device_printf(dev,
1540                     "failed to setup interrupt handlers: %d\n", rc);
1541                 goto done;
1542         }
1543
1544         rc = bus_generic_probe(dev);
1545         if (rc != 0) {
1546                 device_printf(dev, "failed to probe child drivers: %d\n", rc);
1547                 goto done;
1548         }
1549
1550         /*
1551          * Ensure thread-safe mailbox access (in debug builds).
1552          *
1553          * So far this was the only thread accessing the mailbox but various
1554          * ifnets and sysctls are about to be created and their handlers/ioctls
1555          * will access the mailbox from different threads.
1556          */
1557         sc->flags |= CHK_MBOX_ACCESS;
1558
1559         rc = bus_generic_attach(dev);
1560         if (rc != 0) {
1561                 device_printf(dev,
1562                     "failed to attach all child ports: %d\n", rc);
1563                 goto done;
1564         }
1565
1566         device_printf(dev,
1567             "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1568             sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1569             sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1570             (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1571             sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1572
1573         t4_set_desc(sc);
1574
1575         notify_siblings(dev, 0);
1576
1577 done:
1578         if (rc != 0 && sc->cdev) {
1579                 /* cdev was created and so cxgbetool works; recover that way. */
1580                 device_printf(dev,
1581                     "error during attach, adapter is now in recovery mode.\n");
1582                 rc = 0;
1583         }
1584
1585         if (rc != 0)
1586                 t4_detach_common(dev);
1587         else
1588                 t4_sysctls(sc);
1589
1590         return (rc);
1591 }
1592
1593 static int
1594 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1595 {
1596         struct adapter *sc;
1597         struct port_info *pi;
1598         int i;
1599
1600         sc = device_get_softc(bus);
1601         for_each_port(sc, i) {
1602                 pi = sc->port[i];
1603                 if (pi != NULL && pi->dev == dev) {
1604                         sbuf_printf(sb, "port=%d", pi->port_id);
1605                         break;
1606                 }
1607         }
1608         return (0);
1609 }
1610
1611 static int
1612 t4_ready(device_t dev)
1613 {
1614         struct adapter *sc;
1615
1616         sc = device_get_softc(dev);
1617         if (sc->flags & FW_OK)
1618                 return (0);
1619         return (ENXIO);
1620 }
1621
1622 static int
1623 t4_read_port_device(device_t dev, int port, device_t *child)
1624 {
1625         struct adapter *sc;
1626         struct port_info *pi;
1627
1628         sc = device_get_softc(dev);
1629         if (port < 0 || port >= MAX_NPORTS)
1630                 return (EINVAL);
1631         pi = sc->port[port];
1632         if (pi == NULL || pi->dev == NULL)
1633                 return (ENXIO);
1634         *child = pi->dev;
1635         return (0);
1636 }
1637
1638 static int
1639 notify_siblings(device_t dev, int detaching)
1640 {
1641         device_t sibling;
1642         int error, i;
1643
1644         error = 0;
1645         for (i = 0; i < PCI_FUNCMAX; i++) {
1646                 if (i == pci_get_function(dev))
1647                         continue;
1648                 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1649                     pci_get_slot(dev), i);
1650                 if (sibling == NULL || !device_is_attached(sibling))
1651                         continue;
1652                 if (detaching)
1653                         error = T4_DETACH_CHILD(sibling);
1654                 else
1655                         (void)T4_ATTACH_CHILD(sibling);
1656                 if (error)
1657                         break;
1658         }
1659         return (error);
1660 }
1661
1662 /*
1663  * Idempotent
1664  */
1665 static int
1666 t4_detach(device_t dev)
1667 {
1668         int rc;
1669
1670         rc = notify_siblings(dev, 1);
1671         if (rc) {
1672                 device_printf(dev,
1673                     "failed to detach sibling devices: %d\n", rc);
1674                 return (rc);
1675         }
1676
1677         return (t4_detach_common(dev));
1678 }
1679
1680 int
1681 t4_detach_common(device_t dev)
1682 {
1683         struct adapter *sc;
1684         struct port_info *pi;
1685         int i, rc;
1686
1687         sc = device_get_softc(dev);
1688
1689         if (sc->cdev) {
1690                 destroy_dev(sc->cdev);
1691                 sc->cdev = NULL;
1692         }
1693
1694         sx_xlock(&t4_list_lock);
1695         SLIST_REMOVE(&t4_list, sc, adapter, link);
1696         sx_xunlock(&t4_list_lock);
1697
1698         sc->flags &= ~CHK_MBOX_ACCESS;
1699         if (sc->flags & FULL_INIT_DONE) {
1700                 if (!(sc->flags & IS_VF))
1701                         t4_intr_disable(sc);
1702         }
1703
1704         if (device_is_attached(dev)) {
1705                 rc = bus_generic_detach(dev);
1706                 if (rc) {
1707                         device_printf(dev,
1708                             "failed to detach child devices: %d\n", rc);
1709                         return (rc);
1710                 }
1711         }
1712
1713         for (i = 0; i < sc->intr_count; i++)
1714                 t4_free_irq(sc, &sc->irq[i]);
1715
1716         if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1717                 t4_free_tx_sched(sc);
1718
1719         for (i = 0; i < MAX_NPORTS; i++) {
1720                 pi = sc->port[i];
1721                 if (pi) {
1722                         t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1723                         if (pi->dev)
1724                                 device_delete_child(dev, pi->dev);
1725
1726                         mtx_destroy(&pi->pi_lock);
1727                         free(pi->vi, M_CXGBE);
1728                         free(pi, M_CXGBE);
1729                 }
1730         }
1731
1732         device_delete_children(dev);
1733         sysctl_ctx_free(&sc->ctx);
1734         adapter_full_uninit(sc);
1735
1736         if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1737                 t4_fw_bye(sc, sc->mbox);
1738
1739         if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1740                 pci_release_msi(dev);
1741
1742         if (sc->regs_res)
1743                 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1744                     sc->regs_res);
1745
1746         if (sc->udbs_res)
1747                 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1748                     sc->udbs_res);
1749
1750         if (sc->msix_res)
1751                 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1752                     sc->msix_res);
1753
1754         if (sc->l2t)
1755                 t4_free_l2t(sc->l2t);
1756         if (sc->smt)
1757                 t4_free_smt(sc->smt);
1758         t4_free_atid_table(sc);
1759 #ifdef RATELIMIT
1760         t4_free_etid_table(sc);
1761 #endif
1762         if (sc->key_map)
1763                 vmem_destroy(sc->key_map);
1764 #ifdef INET6
1765         t4_destroy_clip_table(sc);
1766 #endif
1767
1768 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1769         free(sc->sge.ofld_txq, M_CXGBE);
1770 #endif
1771 #ifdef TCP_OFFLOAD
1772         free(sc->sge.ofld_rxq, M_CXGBE);
1773 #endif
1774 #ifdef DEV_NETMAP
1775         free(sc->sge.nm_rxq, M_CXGBE);
1776         free(sc->sge.nm_txq, M_CXGBE);
1777 #endif
1778         free(sc->irq, M_CXGBE);
1779         free(sc->sge.rxq, M_CXGBE);
1780         free(sc->sge.txq, M_CXGBE);
1781         free(sc->sge.ctrlq, M_CXGBE);
1782         free(sc->sge.iqmap, M_CXGBE);
1783         free(sc->sge.eqmap, M_CXGBE);
1784         free(sc->tids.ftid_tab, M_CXGBE);
1785         free(sc->tids.hpftid_tab, M_CXGBE);
1786         free_hftid_hash(&sc->tids);
1787         free(sc->tids.tid_tab, M_CXGBE);
1788         free(sc->tt.tls_rx_ports, M_CXGBE);
1789         t4_destroy_dma_tag(sc);
1790
1791         callout_drain(&sc->ktls_tick);
1792         callout_drain(&sc->sfl_callout);
1793         if (mtx_initialized(&sc->tids.ftid_lock)) {
1794                 mtx_destroy(&sc->tids.ftid_lock);
1795                 cv_destroy(&sc->tids.ftid_cv);
1796         }
1797         if (mtx_initialized(&sc->tids.atid_lock))
1798                 mtx_destroy(&sc->tids.atid_lock);
1799         if (mtx_initialized(&sc->ifp_lock))
1800                 mtx_destroy(&sc->ifp_lock);
1801
1802         if (rw_initialized(&sc->policy_lock)) {
1803                 rw_destroy(&sc->policy_lock);
1804 #ifdef TCP_OFFLOAD
1805                 if (sc->policy != NULL)
1806                         free_offload_policy(sc->policy);
1807 #endif
1808         }
1809
1810         for (i = 0; i < NUM_MEMWIN; i++) {
1811                 struct memwin *mw = &sc->memwin[i];
1812
1813                 if (rw_initialized(&mw->mw_lock))
1814                         rw_destroy(&mw->mw_lock);
1815         }
1816
1817         mtx_destroy(&sc->sfl_lock);
1818         mtx_destroy(&sc->reg_lock);
1819         mtx_destroy(&sc->sc_lock);
1820
1821         bzero(sc, sizeof(*sc));
1822
1823         return (0);
1824 }
1825
1826 static inline bool
1827 ok_to_reset(struct adapter *sc)
1828 {
1829         struct tid_info *t = &sc->tids;
1830         struct port_info *pi;
1831         struct vi_info *vi;
1832         int i, j;
1833         const int caps = IFCAP_TOE | IFCAP_TXTLS | IFCAP_NETMAP | IFCAP_TXRTLMT;
1834
1835         ASSERT_SYNCHRONIZED_OP(sc);
1836         MPASS(!(sc->flags & IS_VF));
1837
1838         for_each_port(sc, i) {
1839                 pi = sc->port[i];
1840                 for_each_vi(pi, j, vi) {
1841                         if (vi->ifp->if_capenable & caps)
1842                                 return (false);
1843                 }
1844         }
1845
1846         if (atomic_load_int(&t->tids_in_use) > 0)
1847                 return (false);
1848         if (atomic_load_int(&t->stids_in_use) > 0)
1849                 return (false);
1850         if (atomic_load_int(&t->atids_in_use) > 0)
1851                 return (false);
1852         if (atomic_load_int(&t->ftids_in_use) > 0)
1853                 return (false);
1854         if (atomic_load_int(&t->hpftids_in_use) > 0)
1855                 return (false);
1856         if (atomic_load_int(&t->etids_in_use) > 0)
1857                 return (false);
1858
1859         return (true);
1860 }
1861
1862 static inline int
1863 stop_adapter(struct adapter *sc)
1864 {
1865         if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED)))
1866                 return (1);             /* Already stopped. */
1867         return (t4_shutdown_adapter(sc));
1868 }
1869
1870 static int
1871 t4_suspend(device_t dev)
1872 {
1873         struct adapter *sc = device_get_softc(dev);
1874         struct port_info *pi;
1875         struct vi_info *vi;
1876         struct ifnet *ifp;
1877         struct sge_rxq *rxq;
1878         struct sge_txq *txq;
1879         struct sge_wrq *wrq;
1880 #ifdef TCP_OFFLOAD
1881         struct sge_ofld_rxq *ofld_rxq;
1882 #endif
1883 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1884         struct sge_ofld_txq *ofld_txq;
1885 #endif
1886         int rc, i, j, k;
1887
1888         CH_ALERT(sc, "suspend requested\n");
1889
1890         rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus");
1891         if (rc != 0)
1892                 return (ENXIO);
1893
1894         /* XXX: Can the kernel call suspend repeatedly without resume? */
1895         MPASS(!hw_off_limits(sc));
1896
1897         if (!ok_to_reset(sc)) {
1898                 /* XXX: should list what resource is preventing suspend. */
1899                 CH_ERR(sc, "not safe to suspend.\n");
1900                 rc = EBUSY;
1901                 goto done;
1902         }
1903
1904         /* No more DMA or interrupts. */
1905         stop_adapter(sc);
1906
1907         /* Quiesce all activity. */
1908         for_each_port(sc, i) {
1909                 pi = sc->port[i];
1910                 pi->vxlan_tcam_entry = false;
1911
1912                 PORT_LOCK(pi);
1913                 if (pi->up_vis > 0) {
1914                         /*
1915                          * t4_shutdown_adapter has already shut down all the
1916                          * PHYs but it also disables interrupts and DMA so there
1917                          * won't be a link interrupt.  So we update the state
1918                          * manually and inform the kernel.
1919                          */
1920                         pi->link_cfg.link_ok = false;
1921                         t4_os_link_changed(pi);
1922                 }
1923                 PORT_UNLOCK(pi);
1924
1925                 for_each_vi(pi, j, vi) {
1926                         vi->xact_addr_filt = -1;
1927                         mtx_lock(&vi->tick_mtx);
1928                         vi->flags |= VI_SKIP_STATS;
1929                         mtx_unlock(&vi->tick_mtx);
1930                         if (!(vi->flags & VI_INIT_DONE))
1931                                 continue;
1932
1933                         ifp = vi->ifp;
1934                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1935                                 mtx_lock(&vi->tick_mtx);
1936                                 callout_stop(&vi->tick);
1937                                 mtx_unlock(&vi->tick_mtx);
1938                                 callout_drain(&vi->tick);
1939                         }
1940
1941                         /*
1942                          * Note that the HW is not available.
1943                          */
1944                         for_each_txq(vi, k, txq) {
1945                                 TXQ_LOCK(txq);
1946                                 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
1947                                 TXQ_UNLOCK(txq);
1948                         }
1949 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1950                         for_each_ofld_txq(vi, k, ofld_txq) {
1951                                 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
1952                         }
1953 #endif
1954                         for_each_rxq(vi, k, rxq) {
1955                                 rxq->iq.flags &= ~IQ_HW_ALLOCATED;
1956                         }
1957 #if defined(TCP_OFFLOAD)
1958                         for_each_ofld_rxq(vi, k, ofld_rxq) {
1959                                 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
1960                         }
1961 #endif
1962
1963                         quiesce_vi(vi);
1964                 }
1965
1966                 if (sc->flags & FULL_INIT_DONE) {
1967                         /* Control queue */
1968                         wrq = &sc->sge.ctrlq[i];
1969                         wrq->eq.flags &= ~EQ_HW_ALLOCATED;
1970                         quiesce_wrq(wrq);
1971                 }
1972         }
1973         if (sc->flags & FULL_INIT_DONE) {
1974                 /* Firmware event queue */
1975                 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
1976                 quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
1977         }
1978
1979         /* Mark the adapter totally off limits. */
1980         mtx_lock(&sc->reg_lock);
1981         atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
1982         sc->flags &= ~(FW_OK | MASTER_PF);
1983         sc->reset_thread = NULL;
1984         mtx_unlock(&sc->reg_lock);
1985
1986         CH_ALERT(sc, "suspend completed.\n");
1987 done:
1988         end_synchronized_op(sc, 0);
1989         return (rc);
1990 }
1991
1992 struct adapter_pre_reset_state {
1993         u_int flags;
1994         uint16_t nbmcaps;
1995         uint16_t linkcaps;
1996         uint16_t switchcaps;
1997         uint16_t niccaps;
1998         uint16_t toecaps;
1999         uint16_t rdmacaps;
2000         uint16_t cryptocaps;
2001         uint16_t iscsicaps;
2002         uint16_t fcoecaps;
2003
2004         u_int cfcsum;
2005         char cfg_file[32];
2006
2007         struct adapter_params params;
2008         struct t4_virt_res vres;
2009         struct tid_info tids;
2010         struct sge sge;
2011
2012         int rawf_base;
2013         int nrawf;
2014
2015 };
2016
2017 static void
2018 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2019 {
2020
2021         ASSERT_SYNCHRONIZED_OP(sc);
2022
2023         o->flags = sc->flags;
2024
2025         o->nbmcaps =  sc->nbmcaps;
2026         o->linkcaps = sc->linkcaps;
2027         o->switchcaps = sc->switchcaps;
2028         o->niccaps = sc->niccaps;
2029         o->toecaps = sc->toecaps;
2030         o->rdmacaps = sc->rdmacaps;
2031         o->cryptocaps = sc->cryptocaps;
2032         o->iscsicaps = sc->iscsicaps;
2033         o->fcoecaps = sc->fcoecaps;
2034
2035         o->cfcsum = sc->cfcsum;
2036         MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2037         memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2038
2039         o->params = sc->params;
2040         o->vres = sc->vres;
2041         o->tids = sc->tids;
2042         o->sge = sc->sge;
2043
2044         o->rawf_base = sc->rawf_base;
2045         o->nrawf = sc->nrawf;
2046 }
2047
2048 static int
2049 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2050 {
2051         int rc = 0;
2052
2053         ASSERT_SYNCHRONIZED_OP(sc);
2054
2055         /* Capabilities */
2056 #define COMPARE_CAPS(c) do { \
2057         if (o->c##caps != sc->c##caps) { \
2058                 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2059                     sc->c##caps); \
2060                 rc = EINVAL; \
2061         } \
2062 } while (0)
2063         COMPARE_CAPS(nbm);
2064         COMPARE_CAPS(link);
2065         COMPARE_CAPS(switch);
2066         COMPARE_CAPS(nic);
2067         COMPARE_CAPS(toe);
2068         COMPARE_CAPS(rdma);
2069         COMPARE_CAPS(crypto);
2070         COMPARE_CAPS(iscsi);
2071         COMPARE_CAPS(fcoe);
2072 #undef COMPARE_CAPS
2073
2074         /* Firmware config file */
2075         if (o->cfcsum != sc->cfcsum) {
2076                 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2077                     o->cfcsum, sc->cfg_file, sc->cfcsum);
2078                 rc = EINVAL;
2079         }
2080
2081 #define COMPARE_PARAM(p, name) do { \
2082         if (o->p != sc->p) { \
2083                 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2084                 rc = EINVAL; \
2085         } \
2086 } while (0)
2087         COMPARE_PARAM(sge.iq_start, iq_start);
2088         COMPARE_PARAM(sge.eq_start, eq_start);
2089         COMPARE_PARAM(tids.ftid_base, ftid_base);
2090         COMPARE_PARAM(tids.ftid_end, ftid_end);
2091         COMPARE_PARAM(tids.nftids, nftids);
2092         COMPARE_PARAM(vres.l2t.start, l2t_start);
2093         COMPARE_PARAM(vres.l2t.size, l2t_size);
2094         COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2095         COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2096         COMPARE_PARAM(tids.tid_base, tid_base);
2097         COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2098         COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2099         COMPARE_PARAM(tids.nhpftids, nhpftids);
2100         COMPARE_PARAM(rawf_base, rawf_base);
2101         COMPARE_PARAM(nrawf, nrawf);
2102         COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2103         COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2104         COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2105         COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2106         COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2107         COMPARE_PARAM(tids.ntids, ntids);
2108         COMPARE_PARAM(tids.etid_base, etid_base);
2109         COMPARE_PARAM(tids.etid_end, etid_end);
2110         COMPARE_PARAM(tids.netids, netids);
2111         COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2112         COMPARE_PARAM(params.ethoffload, ethoffload);
2113         COMPARE_PARAM(tids.natids, natids);
2114         COMPARE_PARAM(tids.stid_base, stid_base);
2115         COMPARE_PARAM(vres.ddp.start, ddp_start);
2116         COMPARE_PARAM(vres.ddp.size, ddp_size);
2117         COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2118         COMPARE_PARAM(vres.stag.start, stag_start);
2119         COMPARE_PARAM(vres.stag.size, stag_size);
2120         COMPARE_PARAM(vres.rq.start, rq_start);
2121         COMPARE_PARAM(vres.rq.size, rq_size);
2122         COMPARE_PARAM(vres.pbl.start, pbl_start);
2123         COMPARE_PARAM(vres.pbl.size, pbl_size);
2124         COMPARE_PARAM(vres.qp.start, qp_start);
2125         COMPARE_PARAM(vres.qp.size, qp_size);
2126         COMPARE_PARAM(vres.cq.start, cq_start);
2127         COMPARE_PARAM(vres.cq.size, cq_size);
2128         COMPARE_PARAM(vres.ocq.start, ocq_start);
2129         COMPARE_PARAM(vres.ocq.size, ocq_size);
2130         COMPARE_PARAM(vres.srq.start, srq_start);
2131         COMPARE_PARAM(vres.srq.size, srq_size);
2132         COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2133         COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2134         COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2135         COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2136         COMPARE_PARAM(vres.key.start, key_start);
2137         COMPARE_PARAM(vres.key.size, key_size);
2138 #undef COMPARE_PARAM
2139
2140         return (rc);
2141 }
2142
2143 static int
2144 t4_resume(device_t dev)
2145 {
2146         struct adapter *sc = device_get_softc(dev);
2147         struct adapter_pre_reset_state *old_state = NULL;
2148         struct port_info *pi;
2149         struct vi_info *vi;
2150         struct ifnet *ifp;
2151         struct sge_txq *txq;
2152         int rc, i, j, k;
2153
2154         CH_ALERT(sc, "resume requested.\n");
2155
2156         rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res");
2157         if (rc != 0)
2158                 return (ENXIO);
2159         MPASS(hw_off_limits(sc));
2160         MPASS((sc->flags & FW_OK) == 0);
2161         MPASS((sc->flags & MASTER_PF) == 0);
2162         MPASS(sc->reset_thread == NULL);
2163         sc->reset_thread = curthread;
2164
2165         /* Register access is expected to work by the time we're here. */
2166         if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) {
2167                 CH_ERR(sc, "%s: can't read device registers\n", __func__);
2168                 rc = ENXIO;
2169                 goto done;
2170         }
2171
2172         /* Note that HW_OFF_LIMITS is cleared a bit later. */
2173         atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED);
2174
2175         /* Restore memory window. */
2176         setup_memwin(sc);
2177
2178         /* Go no further if recovery mode has been requested. */
2179         if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2180                 CH_ALERT(sc, "recovery mode on resume.\n");
2181                 rc = 0;
2182                 mtx_lock(&sc->reg_lock);
2183                 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2184                 mtx_unlock(&sc->reg_lock);
2185                 goto done;
2186         }
2187
2188         old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2189         save_caps_and_params(sc, old_state);
2190
2191         /* Reestablish contact with firmware and become the primary PF. */
2192         rc = contact_firmware(sc);
2193         if (rc != 0)
2194                 goto done; /* error message displayed already */
2195         MPASS(sc->flags & FW_OK);
2196
2197         if (sc->flags & MASTER_PF) {
2198                 rc = partition_resources(sc);
2199                 if (rc != 0)
2200                         goto done; /* error message displayed already */
2201                 t4_intr_clear(sc);
2202         }
2203
2204         rc = get_params__post_init(sc);
2205         if (rc != 0)
2206                 goto done; /* error message displayed already */
2207
2208         rc = set_params__post_init(sc);
2209         if (rc != 0)
2210                 goto done; /* error message displayed already */
2211
2212         rc = compare_caps_and_params(sc, old_state);
2213         if (rc != 0)
2214                 goto done; /* error message displayed already */
2215
2216         for_each_port(sc, i) {
2217                 pi = sc->port[i];
2218                 MPASS(pi != NULL);
2219                 MPASS(pi->vi != NULL);
2220                 MPASS(pi->vi[0].dev == pi->dev);
2221
2222                 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2223                 if (rc != 0) {
2224                         CH_ERR(sc,
2225                             "failed to re-initialize port %d: %d\n", i, rc);
2226                         goto done;
2227                 }
2228                 MPASS(sc->chan_map[pi->tx_chan] == i);
2229
2230                 PORT_LOCK(pi);
2231                 fixup_link_config(pi);
2232                 build_medialist(pi);
2233                 PORT_UNLOCK(pi);
2234                 for_each_vi(pi, j, vi) {
2235                         if (IS_MAIN_VI(vi))
2236                                 continue;
2237                         rc = alloc_extra_vi(sc, pi, vi);
2238                         if (rc != 0) {
2239                                 CH_ERR(vi,
2240                                     "failed to re-allocate extra VI: %d\n", rc);
2241                                 goto done;
2242                         }
2243                 }
2244         }
2245
2246         /*
2247          * Interrupts and queues are about to be enabled and other threads will
2248          * want to access the hardware too.  It is safe to do so.  Note that
2249          * this thread is still in the middle of a synchronized_op.
2250          */
2251         mtx_lock(&sc->reg_lock);
2252         atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2253         mtx_unlock(&sc->reg_lock);
2254
2255         if (sc->flags & FULL_INIT_DONE) {
2256                 rc = adapter_full_init(sc);
2257                 if (rc != 0) {
2258                         CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2259                         goto done;
2260                 }
2261
2262                 if (sc->vxlan_refcount > 0)
2263                         enable_vxlan_rx(sc);
2264
2265                 for_each_port(sc, i) {
2266                         pi = sc->port[i];
2267                         for_each_vi(pi, j, vi) {
2268                                 mtx_lock(&vi->tick_mtx);
2269                                 vi->flags &= ~VI_SKIP_STATS;
2270                                 mtx_unlock(&vi->tick_mtx);
2271                                 if (!(vi->flags & VI_INIT_DONE))
2272                                         continue;
2273                                 rc = vi_full_init(vi);
2274                                 if (rc != 0) {
2275                                         CH_ERR(vi, "failed to re-initialize "
2276                                             "interface: %d\n", rc);
2277                                         goto done;
2278                                 }
2279
2280                                 ifp = vi->ifp;
2281                                 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2282                                         continue;
2283                                 /*
2284                                  * Note that we do not setup multicast addresses
2285                                  * in the first pass.  This ensures that the
2286                                  * unicast DMACs for all VIs on all ports get an
2287                                  * MPS TCAM entry.
2288                                  */
2289                                 rc = update_mac_settings(ifp, XGMAC_ALL &
2290                                     ~XGMAC_MCADDRS);
2291                                 if (rc != 0) {
2292                                         CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2293                                         goto done;
2294                                 }
2295                                 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2296                                     true);
2297                                 if (rc != 0) {
2298                                         CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2299                                         goto done;
2300                                 }
2301                                 for_each_txq(vi, k, txq) {
2302                                         TXQ_LOCK(txq);
2303                                         txq->eq.flags |= EQ_ENABLED;
2304                                         TXQ_UNLOCK(txq);
2305                                 }
2306                                 mtx_lock(&vi->tick_mtx);
2307                                 callout_schedule(&vi->tick, hz);
2308                                 mtx_unlock(&vi->tick_mtx);
2309                         }
2310                         PORT_LOCK(pi);
2311                         if (pi->up_vis > 0) {
2312                                 t4_update_port_info(pi);
2313                                 fixup_link_config(pi);
2314                                 build_medialist(pi);
2315                                 apply_link_config(pi);
2316                                 if (pi->link_cfg.link_ok)
2317                                         t4_os_link_changed(pi);
2318                         }
2319                         PORT_UNLOCK(pi);
2320                 }
2321
2322                 /* Now reprogram the L2 multicast addresses. */
2323                 for_each_port(sc, i) {
2324                         pi = sc->port[i];
2325                         for_each_vi(pi, j, vi) {
2326                                 if (!(vi->flags & VI_INIT_DONE))
2327                                         continue;
2328                                 ifp = vi->ifp;
2329                                 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2330                                         continue;
2331                                 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2332                                 if (rc != 0) {
2333                                         CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2334                                         rc = 0; /* carry on */
2335                                 }
2336                         }
2337                 }
2338         }
2339 done:
2340         if (rc == 0) {
2341                 sc->incarnation++;
2342                 CH_ALERT(sc, "resume completed.\n");
2343         }
2344         end_synchronized_op(sc, 0);
2345         free(old_state, M_CXGBE);
2346         return (rc);
2347 }
2348
2349 static int
2350 t4_reset_prepare(device_t dev, device_t child)
2351 {
2352         struct adapter *sc = device_get_softc(dev);
2353
2354         CH_ALERT(sc, "reset_prepare.\n");
2355         return (0);
2356 }
2357
2358 static int
2359 t4_reset_post(device_t dev, device_t child)
2360 {
2361         struct adapter *sc = device_get_softc(dev);
2362
2363         CH_ALERT(sc, "reset_post.\n");
2364         return (0);
2365 }
2366
2367 static int
2368 reset_adapter(struct adapter *sc)
2369 {
2370         int rc, oldinc, error_flags;
2371
2372         CH_ALERT(sc, "reset requested.\n");
2373
2374         rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1");
2375         if (rc != 0)
2376                 return (EBUSY);
2377
2378         if (hw_off_limits(sc)) {
2379                 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n");
2380                 rc = ENXIO;
2381                 goto done;
2382         }
2383
2384         if (!ok_to_reset(sc)) {
2385                 /* XXX: should list what resource is preventing reset. */
2386                 CH_ERR(sc, "not safe to reset.\n");
2387                 rc = EBUSY;
2388                 goto done;
2389         }
2390
2391 done:
2392         oldinc = sc->incarnation;
2393         end_synchronized_op(sc, 0);
2394         if (rc != 0)
2395                 return (rc);    /* Error logged already. */
2396
2397         atomic_add_int(&sc->num_resets, 1);
2398         mtx_lock(&Giant);
2399         rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0);
2400         mtx_unlock(&Giant);
2401         if (rc != 0)
2402                 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc);
2403         else {
2404                 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2");
2405                 if (rc != 0)
2406                         return (EBUSY);
2407                 error_flags = atomic_load_int(&sc->error_flags);
2408                 if (sc->incarnation > oldinc && error_flags == 0) {
2409                         CH_ALERT(sc, "bus_reset_child succeeded.\n");
2410                 } else {
2411                         CH_ERR(sc, "adapter did not reset properly, flags "
2412                             "0x%08x, error_flags 0x%08x.\n", sc->flags,
2413                             error_flags);
2414                         rc = ENXIO;
2415                 }
2416                 end_synchronized_op(sc, 0);
2417         }
2418
2419         return (rc);
2420 }
2421
2422 static void
2423 reset_adapter_task(void *arg, int pending)
2424 {
2425         /* XXX: t4_async_event here? */
2426         reset_adapter(arg);
2427 }
2428
2429 static int
2430 cxgbe_probe(device_t dev)
2431 {
2432         char buf[128];
2433         struct port_info *pi = device_get_softc(dev);
2434
2435         snprintf(buf, sizeof(buf), "port %d", pi->port_id);
2436         device_set_desc_copy(dev, buf);
2437
2438         return (BUS_PROBE_DEFAULT);
2439 }
2440
2441 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2442     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2443     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2444     IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2445 #define T4_CAP_ENABLE (T4_CAP)
2446
2447 static int
2448 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2449 {
2450         struct ifnet *ifp;
2451         struct sbuf *sb;
2452         struct sysctl_ctx_list *ctx = &vi->ctx;
2453         struct sysctl_oid_list *children;
2454         struct pfil_head_args pa;
2455         struct adapter *sc = vi->adapter;
2456
2457         sysctl_ctx_init(ctx);
2458         children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2459         vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2460             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2461         vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2462             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2463 #ifdef DEV_NETMAP
2464         vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2465             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2466         vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2467             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2468 #endif
2469 #ifdef TCP_OFFLOAD
2470         vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2471             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2472 #endif
2473 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2474         vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2475             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2476 #endif
2477
2478         vi->xact_addr_filt = -1;
2479         mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2480         callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2481         if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2482                 vi->flags |= TX_USES_VM_WR;
2483
2484         /* Allocate an ifnet and set it up */
2485         ifp = if_alloc_dev(IFT_ETHER, dev);
2486         if (ifp == NULL) {
2487                 device_printf(dev, "Cannot allocate ifnet\n");
2488                 return (ENOMEM);
2489         }
2490         vi->ifp = ifp;
2491         ifp->if_softc = vi;
2492
2493         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2494         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2495
2496         ifp->if_init = cxgbe_init;
2497         ifp->if_ioctl = cxgbe_ioctl;
2498         ifp->if_transmit = cxgbe_transmit;
2499         ifp->if_qflush = cxgbe_qflush;
2500         if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2501                 ifp->if_get_counter = vi_get_counter;
2502         else
2503                 ifp->if_get_counter = cxgbe_get_counter;
2504 #if defined(KERN_TLS) || defined(RATELIMIT)
2505         ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc;
2506 #endif
2507 #ifdef RATELIMIT
2508         ifp->if_ratelimit_query = cxgbe_ratelimit_query;
2509 #endif
2510
2511         ifp->if_capabilities = T4_CAP;
2512         ifp->if_capenable = T4_CAP_ENABLE;
2513         ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2514             CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
2515         if (chip_id(sc) >= CHELSIO_T6) {
2516                 ifp->if_capabilities |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO;
2517                 ifp->if_capenable |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO;
2518                 ifp->if_hwassist |= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2519                     CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2520                     CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN;
2521         }
2522
2523 #ifdef TCP_OFFLOAD
2524         if (vi->nofldrxq != 0)
2525                 ifp->if_capabilities |= IFCAP_TOE;
2526 #endif
2527 #ifdef RATELIMIT
2528         if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2529                 ifp->if_capabilities |= IFCAP_TXRTLMT;
2530                 ifp->if_capenable |= IFCAP_TXRTLMT;
2531         }
2532 #endif
2533
2534         ifp->if_hw_tsomax = IP_MAXPACKET;
2535         if (vi->flags & TX_USES_VM_WR)
2536                 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO;
2537         else
2538                 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO;
2539 #ifdef RATELIMIT
2540         if (is_ethoffload(sc) && vi->nofldtxq != 0)
2541                 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO;
2542 #endif
2543         ifp->if_hw_tsomaxsegsize = 65536;
2544 #ifdef KERN_TLS
2545         if (is_ktls(sc)) {
2546                 ifp->if_capabilities |= IFCAP_TXTLS;
2547                 if (sc->flags & KERN_TLS_ON)
2548                         ifp->if_capenable |= IFCAP_TXTLS;
2549         }
2550 #endif
2551
2552         ether_ifattach(ifp, vi->hw_addr);
2553 #ifdef DEV_NETMAP
2554         if (vi->nnmrxq != 0)
2555                 cxgbe_nm_attach(vi);
2556 #endif
2557         sb = sbuf_new_auto();
2558         sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2559 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2560         switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2561         case IFCAP_TOE:
2562                 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2563                 break;
2564         case IFCAP_TOE | IFCAP_TXRTLMT:
2565                 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2566                 break;
2567         case IFCAP_TXRTLMT:
2568                 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2569                 break;
2570         }
2571 #endif
2572 #ifdef TCP_OFFLOAD
2573         if (ifp->if_capabilities & IFCAP_TOE)
2574                 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2575 #endif
2576 #ifdef DEV_NETMAP
2577         if (ifp->if_capabilities & IFCAP_NETMAP)
2578                 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2579                     vi->nnmtxq, vi->nnmrxq);
2580 #endif
2581         sbuf_finish(sb);
2582         device_printf(dev, "%s\n", sbuf_data(sb));
2583         sbuf_delete(sb);
2584
2585         vi_sysctls(vi);
2586
2587         pa.pa_version = PFIL_VERSION;
2588         pa.pa_flags = PFIL_IN;
2589         pa.pa_type = PFIL_TYPE_ETHERNET;
2590         pa.pa_headname = ifp->if_xname;
2591         vi->pfil = pfil_head_register(&pa);
2592
2593         return (0);
2594 }
2595
2596 static int
2597 cxgbe_attach(device_t dev)
2598 {
2599         struct port_info *pi = device_get_softc(dev);
2600         struct adapter *sc = pi->adapter;
2601         struct vi_info *vi;
2602         int i, rc;
2603
2604         sysctl_ctx_init(&pi->ctx);
2605
2606         rc = cxgbe_vi_attach(dev, &pi->vi[0]);
2607         if (rc)
2608                 return (rc);
2609
2610         for_each_vi(pi, i, vi) {
2611                 if (i == 0)
2612                         continue;
2613                 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
2614                 if (vi->dev == NULL) {
2615                         device_printf(dev, "failed to add VI %d\n", i);
2616                         continue;
2617                 }
2618                 device_set_softc(vi->dev, vi);
2619         }
2620
2621         cxgbe_sysctls(pi);
2622
2623         bus_generic_attach(dev);
2624
2625         return (0);
2626 }
2627
2628 static void
2629 cxgbe_vi_detach(struct vi_info *vi)
2630 {
2631         struct ifnet *ifp = vi->ifp;
2632
2633         if (vi->pfil != NULL) {
2634                 pfil_head_unregister(vi->pfil);
2635                 vi->pfil = NULL;
2636         }
2637
2638         ether_ifdetach(ifp);
2639
2640         /* Let detach proceed even if these fail. */
2641 #ifdef DEV_NETMAP
2642         if (ifp->if_capabilities & IFCAP_NETMAP)
2643                 cxgbe_nm_detach(vi);
2644 #endif
2645         cxgbe_uninit_synchronized(vi);
2646         callout_drain(&vi->tick);
2647         sysctl_ctx_free(&vi->ctx);
2648         vi_full_uninit(vi);
2649
2650         if_free(vi->ifp);
2651         vi->ifp = NULL;
2652 }
2653
2654 static int
2655 cxgbe_detach(device_t dev)
2656 {
2657         struct port_info *pi = device_get_softc(dev);
2658         struct adapter *sc = pi->adapter;
2659         int rc;
2660
2661         /* Detach the extra VIs first. */
2662         rc = bus_generic_detach(dev);
2663         if (rc)
2664                 return (rc);
2665         device_delete_children(dev);
2666
2667         sysctl_ctx_free(&pi->ctx);
2668         doom_vi(sc, &pi->vi[0]);
2669
2670         if (pi->flags & HAS_TRACEQ) {
2671                 sc->traceq = -1;        /* cloner should not create ifnet */
2672                 t4_tracer_port_detach(sc);
2673         }
2674
2675         cxgbe_vi_detach(&pi->vi[0]);
2676         ifmedia_removeall(&pi->media);
2677
2678         end_synchronized_op(sc, 0);
2679
2680         return (0);
2681 }
2682
2683 static void
2684 cxgbe_init(void *arg)
2685 {
2686         struct vi_info *vi = arg;
2687         struct adapter *sc = vi->adapter;
2688
2689         if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
2690                 return;
2691         cxgbe_init_synchronized(vi);
2692         end_synchronized_op(sc, 0);
2693 }
2694
2695 static int
2696 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
2697 {
2698         int rc = 0, mtu, flags;
2699         struct vi_info *vi = ifp->if_softc;
2700         struct port_info *pi = vi->pi;
2701         struct adapter *sc = pi->adapter;
2702         struct ifreq *ifr = (struct ifreq *)data;
2703         uint32_t mask;
2704
2705         switch (cmd) {
2706         case SIOCSIFMTU:
2707                 mtu = ifr->ifr_mtu;
2708                 if (mtu < ETHERMIN || mtu > MAX_MTU)
2709                         return (EINVAL);
2710
2711                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
2712                 if (rc)
2713                         return (rc);
2714                 ifp->if_mtu = mtu;
2715                 if (vi->flags & VI_INIT_DONE) {
2716                         t4_update_fl_bufsize(ifp);
2717                         if (!hw_off_limits(sc) &&
2718                             ifp->if_drv_flags & IFF_DRV_RUNNING)
2719                                 rc = update_mac_settings(ifp, XGMAC_MTU);
2720                 }
2721                 end_synchronized_op(sc, 0);
2722                 break;
2723
2724         case SIOCSIFFLAGS:
2725                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
2726                 if (rc)
2727                         return (rc);
2728
2729                 if (hw_off_limits(sc)) {
2730                         rc = ENXIO;
2731                         goto fail;
2732                 }
2733
2734                 if (ifp->if_flags & IFF_UP) {
2735                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2736                                 flags = vi->if_flags;
2737                                 if ((ifp->if_flags ^ flags) &
2738                                     (IFF_PROMISC | IFF_ALLMULTI)) {
2739                                         rc = update_mac_settings(ifp,
2740                                             XGMAC_PROMISC | XGMAC_ALLMULTI);
2741                                 }
2742                         } else {
2743                                 rc = cxgbe_init_synchronized(vi);
2744                         }
2745                         vi->if_flags = ifp->if_flags;
2746                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2747                         rc = cxgbe_uninit_synchronized(vi);
2748                 }
2749                 end_synchronized_op(sc, 0);
2750                 break;
2751
2752         case SIOCADDMULTI:
2753         case SIOCDELMULTI:
2754                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
2755                 if (rc)
2756                         return (rc);
2757                 if (!hw_off_limits(sc) && ifp->if_drv_flags & IFF_DRV_RUNNING)
2758                         rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2759                 end_synchronized_op(sc, 0);
2760                 break;
2761
2762         case SIOCSIFCAP:
2763                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
2764                 if (rc)
2765                         return (rc);
2766
2767                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2768                 if (mask & IFCAP_TXCSUM) {
2769                         ifp->if_capenable ^= IFCAP_TXCSUM;
2770                         ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
2771
2772                         if (IFCAP_TSO4 & ifp->if_capenable &&
2773                             !(IFCAP_TXCSUM & ifp->if_capenable)) {
2774                                 mask &= ~IFCAP_TSO4;
2775                                 ifp->if_capenable &= ~IFCAP_TSO4;
2776                                 if_printf(ifp,
2777                                     "tso4 disabled due to -txcsum.\n");
2778                         }
2779                 }
2780                 if (mask & IFCAP_TXCSUM_IPV6) {
2781                         ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
2782                         ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2783
2784                         if (IFCAP_TSO6 & ifp->if_capenable &&
2785                             !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
2786                                 mask &= ~IFCAP_TSO6;
2787                                 ifp->if_capenable &= ~IFCAP_TSO6;
2788                                 if_printf(ifp,
2789                                     "tso6 disabled due to -txcsum6.\n");
2790                         }
2791                 }
2792                 if (mask & IFCAP_RXCSUM)
2793                         ifp->if_capenable ^= IFCAP_RXCSUM;
2794                 if (mask & IFCAP_RXCSUM_IPV6)
2795                         ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
2796
2797                 /*
2798                  * Note that we leave CSUM_TSO alone (it is always set).  The
2799                  * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
2800                  * sending a TSO request our way, so it's sufficient to toggle
2801                  * IFCAP_TSOx only.
2802                  */
2803                 if (mask & IFCAP_TSO4) {
2804                         if (!(IFCAP_TSO4 & ifp->if_capenable) &&
2805                             !(IFCAP_TXCSUM & ifp->if_capenable)) {
2806                                 if_printf(ifp, "enable txcsum first.\n");
2807                                 rc = EAGAIN;
2808                                 goto fail;
2809                         }
2810                         ifp->if_capenable ^= IFCAP_TSO4;
2811                 }
2812                 if (mask & IFCAP_TSO6) {
2813                         if (!(IFCAP_TSO6 & ifp->if_capenable) &&
2814                             !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
2815                                 if_printf(ifp, "enable txcsum6 first.\n");
2816                                 rc = EAGAIN;
2817                                 goto fail;
2818                         }
2819                         ifp->if_capenable ^= IFCAP_TSO6;
2820                 }
2821                 if (mask & IFCAP_LRO) {
2822 #if defined(INET) || defined(INET6)
2823                         int i;
2824                         struct sge_rxq *rxq;
2825
2826                         ifp->if_capenable ^= IFCAP_LRO;
2827                         for_each_rxq(vi, i, rxq) {
2828                                 if (ifp->if_capenable & IFCAP_LRO)
2829                                         rxq->iq.flags |= IQ_LRO_ENABLED;
2830                                 else
2831                                         rxq->iq.flags &= ~IQ_LRO_ENABLED;
2832                         }
2833 #endif
2834                 }
2835 #ifdef TCP_OFFLOAD
2836                 if (mask & IFCAP_TOE) {
2837                         int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
2838
2839                         rc = toe_capability(vi, enable);
2840                         if (rc != 0)
2841                                 goto fail;
2842
2843                         ifp->if_capenable ^= mask;
2844                 }
2845 #endif
2846                 if (mask & IFCAP_VLAN_HWTAGGING) {
2847                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2848                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2849                                 rc = update_mac_settings(ifp, XGMAC_VLANEX);
2850                 }
2851                 if (mask & IFCAP_VLAN_MTU) {
2852                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
2853
2854                         /* Need to find out how to disable auto-mtu-inflation */
2855                 }
2856                 if (mask & IFCAP_VLAN_HWTSO)
2857                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2858                 if (mask & IFCAP_VLAN_HWCSUM)
2859                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2860 #ifdef RATELIMIT
2861                 if (mask & IFCAP_TXRTLMT)
2862                         ifp->if_capenable ^= IFCAP_TXRTLMT;
2863 #endif
2864                 if (mask & IFCAP_HWRXTSTMP) {
2865                         int i;
2866                         struct sge_rxq *rxq;
2867
2868                         ifp->if_capenable ^= IFCAP_HWRXTSTMP;
2869                         for_each_rxq(vi, i, rxq) {
2870                                 if (ifp->if_capenable & IFCAP_HWRXTSTMP)
2871                                         rxq->iq.flags |= IQ_RX_TIMESTAMP;
2872                                 else
2873                                         rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
2874                         }
2875                 }
2876                 if (mask & IFCAP_MEXTPG)
2877                         ifp->if_capenable ^= IFCAP_MEXTPG;
2878
2879 #ifdef KERN_TLS
2880                 if (mask & IFCAP_TXTLS) {
2881                         int enable = (ifp->if_capenable ^ mask) & IFCAP_TXTLS;
2882
2883                         rc = ktls_capability(sc, enable);
2884                         if (rc != 0)
2885                                 goto fail;
2886
2887                         ifp->if_capenable ^= (mask & IFCAP_TXTLS);
2888                 }
2889 #endif
2890                 if (mask & IFCAP_VXLAN_HWCSUM) {
2891                         ifp->if_capenable ^= IFCAP_VXLAN_HWCSUM;
2892                         ifp->if_hwassist ^= CSUM_INNER_IP6_UDP |
2893                             CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
2894                             CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP;
2895                 }
2896                 if (mask & IFCAP_VXLAN_HWTSO) {
2897                         ifp->if_capenable ^= IFCAP_VXLAN_HWTSO;
2898                         ifp->if_hwassist ^= CSUM_INNER_IP6_TSO |
2899                             CSUM_INNER_IP_TSO;
2900                 }
2901
2902 #ifdef VLAN_CAPABILITIES
2903                 VLAN_CAPABILITIES(ifp);
2904 #endif
2905 fail:
2906                 end_synchronized_op(sc, 0);
2907                 break;
2908
2909         case SIOCSIFMEDIA:
2910         case SIOCGIFMEDIA:
2911         case SIOCGIFXMEDIA:
2912                 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
2913                 break;
2914
2915         case SIOCGI2C: {
2916                 struct ifi2creq i2c;
2917
2918                 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
2919                 if (rc != 0)
2920                         break;
2921                 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
2922                         rc = EPERM;
2923                         break;
2924                 }
2925                 if (i2c.len > sizeof(i2c.data)) {
2926                         rc = EINVAL;
2927                         break;
2928                 }
2929                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
2930                 if (rc)
2931                         return (rc);
2932                 if (hw_off_limits(sc))
2933                         rc = ENXIO;
2934                 else
2935                         rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
2936                             i2c.offset, i2c.len, &i2c.data[0]);
2937                 end_synchronized_op(sc, 0);
2938                 if (rc == 0)
2939                         rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
2940                 break;
2941         }
2942
2943         default:
2944                 rc = ether_ioctl(ifp, cmd, data);
2945         }
2946
2947         return (rc);
2948 }
2949
2950 static int
2951 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
2952 {
2953         struct vi_info *vi = ifp->if_softc;
2954         struct port_info *pi = vi->pi;
2955         struct adapter *sc;
2956         struct sge_txq *txq;
2957         void *items[1];
2958         int rc;
2959
2960         M_ASSERTPKTHDR(m);
2961         MPASS(m->m_nextpkt == NULL);    /* not quite ready for this yet */
2962 #if defined(KERN_TLS) || defined(RATELIMIT)
2963         if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
2964                 MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
2965 #endif
2966
2967         if (__predict_false(pi->link_cfg.link_ok == false)) {
2968                 m_freem(m);
2969                 return (ENETDOWN);
2970         }
2971
2972         rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
2973         if (__predict_false(rc != 0)) {
2974                 MPASS(m == NULL);                       /* was freed already */
2975                 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
2976                 return (rc);
2977         }
2978 #ifdef RATELIMIT
2979         if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
2980                 if (m->m_pkthdr.snd_tag->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT)
2981                         return (ethofld_transmit(ifp, m));
2982         }
2983 #endif
2984
2985         /* Select a txq. */
2986         sc = vi->adapter;
2987         txq = &sc->sge.txq[vi->first_txq];
2988         if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2989                 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
2990                     vi->rsrv_noflowq);
2991
2992         items[0] = m;
2993         rc = mp_ring_enqueue(txq->r, items, 1, 256);
2994         if (__predict_false(rc != 0))
2995                 m_freem(m);
2996
2997         return (rc);
2998 }
2999
3000 static void
3001 cxgbe_qflush(struct ifnet *ifp)
3002 {
3003         struct vi_info *vi = ifp->if_softc;
3004         struct sge_txq *txq;
3005         int i;
3006
3007         /* queues do not exist if !VI_INIT_DONE. */
3008         if (vi->flags & VI_INIT_DONE) {
3009                 for_each_txq(vi, i, txq) {
3010                         TXQ_LOCK(txq);
3011                         txq->eq.flags |= EQ_QFLUSH;
3012                         TXQ_UNLOCK(txq);
3013                         while (!mp_ring_is_idle(txq->r)) {
3014                                 mp_ring_check_drainage(txq->r, 4096);
3015                                 pause("qflush", 1);
3016                         }
3017                         TXQ_LOCK(txq);
3018                         txq->eq.flags &= ~EQ_QFLUSH;
3019                         TXQ_UNLOCK(txq);
3020                 }
3021         }
3022         if_qflush(ifp);
3023 }
3024
3025 static uint64_t
3026 vi_get_counter(struct ifnet *ifp, ift_counter c)
3027 {
3028         struct vi_info *vi = ifp->if_softc;
3029         struct fw_vi_stats_vf *s = &vi->stats;
3030
3031         mtx_lock(&vi->tick_mtx);
3032         vi_refresh_stats(vi);
3033         mtx_unlock(&vi->tick_mtx);
3034
3035         switch (c) {
3036         case IFCOUNTER_IPACKETS:
3037                 return (s->rx_bcast_frames + s->rx_mcast_frames +
3038                     s->rx_ucast_frames);
3039         case IFCOUNTER_IERRORS:
3040                 return (s->rx_err_frames);
3041         case IFCOUNTER_OPACKETS:
3042                 return (s->tx_bcast_frames + s->tx_mcast_frames +
3043                     s->tx_ucast_frames + s->tx_offload_frames);
3044         case IFCOUNTER_OERRORS:
3045                 return (s->tx_drop_frames);
3046         case IFCOUNTER_IBYTES:
3047                 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3048                     s->rx_ucast_bytes);
3049         case IFCOUNTER_OBYTES:
3050                 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3051                     s->tx_ucast_bytes + s->tx_offload_bytes);
3052         case IFCOUNTER_IMCASTS:
3053                 return (s->rx_mcast_frames);
3054         case IFCOUNTER_OMCASTS:
3055                 return (s->tx_mcast_frames);
3056         case IFCOUNTER_OQDROPS: {
3057                 uint64_t drops;
3058
3059                 drops = 0;
3060                 if (vi->flags & VI_INIT_DONE) {
3061                         int i;
3062                         struct sge_txq *txq;
3063
3064                         for_each_txq(vi, i, txq)
3065                                 drops += counter_u64_fetch(txq->r->dropped);
3066                 }
3067
3068                 return (drops);
3069
3070         }
3071
3072         default:
3073                 return (if_get_counter_default(ifp, c));
3074         }
3075 }
3076
3077 static uint64_t
3078 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
3079 {
3080         struct vi_info *vi = ifp->if_softc;
3081         struct port_info *pi = vi->pi;
3082         struct port_stats *s = &pi->stats;
3083
3084         mtx_lock(&vi->tick_mtx);
3085         cxgbe_refresh_stats(vi);
3086         mtx_unlock(&vi->tick_mtx);
3087
3088         switch (c) {
3089         case IFCOUNTER_IPACKETS:
3090                 return (s->rx_frames);
3091
3092         case IFCOUNTER_IERRORS:
3093                 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3094                     s->rx_fcs_err + s->rx_len_err);
3095
3096         case IFCOUNTER_OPACKETS:
3097                 return (s->tx_frames);
3098
3099         case IFCOUNTER_OERRORS:
3100                 return (s->tx_error_frames);
3101
3102         case IFCOUNTER_IBYTES:
3103                 return (s->rx_octets);
3104
3105         case IFCOUNTER_OBYTES:
3106                 return (s->tx_octets);
3107
3108         case IFCOUNTER_IMCASTS:
3109                 return (s->rx_mcast_frames);
3110
3111         case IFCOUNTER_OMCASTS:
3112                 return (s->tx_mcast_frames);
3113
3114         case IFCOUNTER_IQDROPS:
3115                 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3116                     s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3117                     s->rx_trunc3 + pi->tnl_cong_drops);
3118
3119         case IFCOUNTER_OQDROPS: {
3120                 uint64_t drops;
3121
3122                 drops = s->tx_drop;
3123                 if (vi->flags & VI_INIT_DONE) {
3124                         int i;
3125                         struct sge_txq *txq;
3126
3127                         for_each_txq(vi, i, txq)
3128                                 drops += counter_u64_fetch(txq->r->dropped);
3129                 }
3130
3131                 return (drops);
3132
3133         }
3134
3135         default:
3136                 return (if_get_counter_default(ifp, c));
3137         }
3138 }
3139
3140 #if defined(KERN_TLS) || defined(RATELIMIT)
3141 static int
3142 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params,
3143     struct m_snd_tag **pt)
3144 {
3145         int error;
3146
3147         switch (params->hdr.type) {
3148 #ifdef RATELIMIT
3149         case IF_SND_TAG_TYPE_RATE_LIMIT:
3150                 error = cxgbe_rate_tag_alloc(ifp, params, pt);
3151                 break;
3152 #endif
3153 #ifdef KERN_TLS
3154         case IF_SND_TAG_TYPE_TLS:
3155                 error = cxgbe_tls_tag_alloc(ifp, params, pt);
3156                 break;
3157 #endif
3158         default:
3159                 error = EOPNOTSUPP;
3160         }
3161         return (error);
3162 }
3163 #endif
3164
3165 /*
3166  * The kernel picks a media from the list we had provided but we still validate
3167  * the requeste.
3168  */
3169 int
3170 cxgbe_media_change(struct ifnet *ifp)
3171 {
3172         struct vi_info *vi = ifp->if_softc;
3173         struct port_info *pi = vi->pi;
3174         struct ifmedia *ifm = &pi->media;
3175         struct link_config *lc = &pi->link_cfg;
3176         struct adapter *sc = pi->adapter;
3177         int rc;
3178
3179         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3180         if (rc != 0)
3181                 return (rc);
3182         PORT_LOCK(pi);
3183         if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3184                 /* ifconfig .. media autoselect */
3185                 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3186                         rc = ENOTSUP; /* AN not supported by transceiver */
3187                         goto done;
3188                 }
3189                 lc->requested_aneg = AUTONEG_ENABLE;
3190                 lc->requested_speed = 0;
3191                 lc->requested_fc |= PAUSE_AUTONEG;
3192         } else {
3193                 lc->requested_aneg = AUTONEG_DISABLE;
3194                 lc->requested_speed =
3195                     ifmedia_baudrate(ifm->ifm_media) / 1000000;
3196                 lc->requested_fc = 0;
3197                 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3198                         lc->requested_fc |= PAUSE_RX;
3199                 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3200                         lc->requested_fc |= PAUSE_TX;
3201         }
3202         if (pi->up_vis > 0 && !hw_off_limits(sc)) {
3203                 fixup_link_config(pi);
3204                 rc = apply_link_config(pi);
3205         }
3206 done:
3207         PORT_UNLOCK(pi);
3208         end_synchronized_op(sc, 0);
3209         return (rc);
3210 }
3211
3212 /*
3213  * Base media word (without ETHER, pause, link active, etc.) for the port at the
3214  * given speed.
3215  */
3216 static int
3217 port_mword(struct port_info *pi, uint32_t speed)
3218 {
3219
3220         MPASS(speed & M_FW_PORT_CAP32_SPEED);
3221         MPASS(powerof2(speed));
3222
3223         switch(pi->port_type) {
3224         case FW_PORT_TYPE_BT_SGMII:
3225         case FW_PORT_TYPE_BT_XFI:
3226         case FW_PORT_TYPE_BT_XAUI:
3227                 /* BaseT */
3228                 switch (speed) {
3229                 case FW_PORT_CAP32_SPEED_100M:
3230                         return (IFM_100_T);
3231                 case FW_PORT_CAP32_SPEED_1G:
3232                         return (IFM_1000_T);
3233                 case FW_PORT_CAP32_SPEED_10G:
3234                         return (IFM_10G_T);
3235                 }
3236                 break;
3237         case FW_PORT_TYPE_KX4:
3238                 if (speed == FW_PORT_CAP32_SPEED_10G)
3239                         return (IFM_10G_KX4);
3240                 break;
3241         case FW_PORT_TYPE_CX4:
3242                 if (speed == FW_PORT_CAP32_SPEED_10G)
3243                         return (IFM_10G_CX4);
3244                 break;
3245         case FW_PORT_TYPE_KX:
3246                 if (speed == FW_PORT_CAP32_SPEED_1G)
3247                         return (IFM_1000_KX);
3248                 break;
3249         case FW_PORT_TYPE_KR:
3250         case FW_PORT_TYPE_BP_AP:
3251         case FW_PORT_TYPE_BP4_AP:
3252         case FW_PORT_TYPE_BP40_BA:
3253         case FW_PORT_TYPE_KR4_100G:
3254         case FW_PORT_TYPE_KR_SFP28:
3255         case FW_PORT_TYPE_KR_XLAUI:
3256                 switch (speed) {
3257                 case FW_PORT_CAP32_SPEED_1G:
3258                         return (IFM_1000_KX);
3259                 case FW_PORT_CAP32_SPEED_10G:
3260                         return (IFM_10G_KR);
3261                 case FW_PORT_CAP32_SPEED_25G:
3262                         return (IFM_25G_KR);
3263                 case FW_PORT_CAP32_SPEED_40G:
3264                         return (IFM_40G_KR4);
3265                 case FW_PORT_CAP32_SPEED_50G:
3266                         return (IFM_50G_KR2);
3267                 case FW_PORT_CAP32_SPEED_100G:
3268                         return (IFM_100G_KR4);
3269                 }
3270                 break;
3271         case FW_PORT_TYPE_FIBER_XFI:
3272         case FW_PORT_TYPE_FIBER_XAUI:
3273         case FW_PORT_TYPE_SFP:
3274         case FW_PORT_TYPE_QSFP_10G:
3275         case FW_PORT_TYPE_QSA:
3276         case FW_PORT_TYPE_QSFP:
3277         case FW_PORT_TYPE_CR4_QSFP:
3278         case FW_PORT_TYPE_CR_QSFP:
3279         case FW_PORT_TYPE_CR2_QSFP:
3280         case FW_PORT_TYPE_SFP28:
3281                 /* Pluggable transceiver */
3282                 switch (pi->mod_type) {
3283                 case FW_PORT_MOD_TYPE_LR:
3284                         switch (speed) {
3285                         case FW_PORT_CAP32_SPEED_1G:
3286                                 return (IFM_1000_LX);
3287                         case FW_PORT_CAP32_SPEED_10G:
3288                                 return (IFM_10G_LR);
3289                         case FW_PORT_CAP32_SPEED_25G:
3290                                 return (IFM_25G_LR);
3291                         case FW_PORT_CAP32_SPEED_40G:
3292                                 return (IFM_40G_LR4);
3293                         case FW_PORT_CAP32_SPEED_50G:
3294                                 return (IFM_50G_LR2);
3295                         case FW_PORT_CAP32_SPEED_100G:
3296                                 return (IFM_100G_LR4);
3297                         }
3298                         break;
3299                 case FW_PORT_MOD_TYPE_SR:
3300                         switch (speed) {
3301                         case FW_PORT_CAP32_SPEED_1G:
3302                                 return (IFM_1000_SX);
3303                         case FW_PORT_CAP32_SPEED_10G:
3304                                 return (IFM_10G_SR);
3305                         case FW_PORT_CAP32_SPEED_25G:
3306                                 return (IFM_25G_SR);
3307                         case FW_PORT_CAP32_SPEED_40G:
3308                                 return (IFM_40G_SR4);
3309                         case FW_PORT_CAP32_SPEED_50G:
3310                                 return (IFM_50G_SR2);
3311                         case FW_PORT_CAP32_SPEED_100G:
3312                                 return (IFM_100G_SR4);
3313                         }
3314                         break;
3315                 case FW_PORT_MOD_TYPE_ER:
3316                         if (speed == FW_PORT_CAP32_SPEED_10G)
3317                                 return (IFM_10G_ER);
3318                         break;
3319                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3320                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3321                         switch (speed) {
3322                         case FW_PORT_CAP32_SPEED_1G:
3323                                 return (IFM_1000_CX);
3324                         case FW_PORT_CAP32_SPEED_10G:
3325                                 return (IFM_10G_TWINAX);
3326                         case FW_PORT_CAP32_SPEED_25G:
3327                                 return (IFM_25G_CR);
3328                         case FW_PORT_CAP32_SPEED_40G:
3329                                 return (IFM_40G_CR4);
3330                         case FW_PORT_CAP32_SPEED_50G:
3331                                 return (IFM_50G_CR2);
3332                         case FW_PORT_CAP32_SPEED_100G:
3333                                 return (IFM_100G_CR4);
3334                         }
3335                         break;
3336                 case FW_PORT_MOD_TYPE_LRM:
3337                         if (speed == FW_PORT_CAP32_SPEED_10G)
3338                                 return (IFM_10G_LRM);
3339                         break;
3340                 case FW_PORT_MOD_TYPE_NA:
3341                         MPASS(0);       /* Not pluggable? */
3342                         /* fall throough */
3343                 case FW_PORT_MOD_TYPE_ERROR:
3344                 case FW_PORT_MOD_TYPE_UNKNOWN:
3345                 case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3346                         break;
3347                 case FW_PORT_MOD_TYPE_NONE:
3348                         return (IFM_NONE);
3349                 }
3350                 break;
3351         case FW_PORT_TYPE_NONE:
3352                 return (IFM_NONE);
3353         }
3354
3355         return (IFM_UNKNOWN);
3356 }
3357
3358 void
3359 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
3360 {
3361         struct vi_info *vi = ifp->if_softc;
3362         struct port_info *pi = vi->pi;
3363         struct adapter *sc = pi->adapter;
3364         struct link_config *lc = &pi->link_cfg;
3365
3366         if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0)
3367                 return;
3368         PORT_LOCK(pi);
3369
3370         if (pi->up_vis == 0 && !hw_off_limits(sc)) {
3371                 /*
3372                  * If all the interfaces are administratively down the firmware
3373                  * does not report transceiver changes.  Refresh port info here
3374                  * so that ifconfig displays accurate ifmedia at all times.
3375                  * This is the only reason we have a synchronized op in this
3376                  * function.  Just PORT_LOCK would have been enough otherwise.
3377                  */
3378                 t4_update_port_info(pi);
3379                 build_medialist(pi);
3380         }
3381
3382         /* ifm_status */
3383         ifmr->ifm_status = IFM_AVALID;
3384         if (lc->link_ok == false)
3385                 goto done;
3386         ifmr->ifm_status |= IFM_ACTIVE;
3387
3388         /* ifm_active */
3389         ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3390         ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3391         if (lc->fc & PAUSE_RX)
3392                 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3393         if (lc->fc & PAUSE_TX)
3394                 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3395         ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3396 done:
3397         PORT_UNLOCK(pi);
3398         end_synchronized_op(sc, 0);
3399 }
3400
3401 static int
3402 vcxgbe_probe(device_t dev)
3403 {
3404         char buf[128];
3405         struct vi_info *vi = device_get_softc(dev);
3406
3407         snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
3408             vi - vi->pi->vi);
3409         device_set_desc_copy(dev, buf);
3410
3411         return (BUS_PROBE_DEFAULT);
3412 }
3413
3414 static int
3415 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3416 {
3417         int func, index, rc;
3418         uint32_t param, val;
3419
3420         ASSERT_SYNCHRONIZED_OP(sc);
3421
3422         index = vi - pi->vi;
3423         MPASS(index > 0);       /* This function deals with _extra_ VIs only */
3424         KASSERT(index < nitems(vi_mac_funcs),
3425             ("%s: VI %s doesn't have a MAC func", __func__,
3426             device_get_nameunit(vi->dev)));
3427         func = vi_mac_funcs[index];
3428         rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
3429             vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3430         if (rc < 0) {
3431                 CH_ERR(vi, "failed to allocate virtual interface %d"
3432                     "for port %d: %d\n", index, pi->port_id, -rc);
3433                 return (-rc);
3434         }
3435         vi->viid = rc;
3436
3437         if (vi->rss_size == 1) {
3438                 /*
3439                  * This VI didn't get a slice of the RSS table.  Reduce the
3440                  * number of VIs being created (hw.cxgbe.num_vis) or modify the
3441                  * configuration file (nvi, rssnvi for this PF) if this is a
3442                  * problem.
3443                  */
3444                 device_printf(vi->dev, "RSS table not available.\n");
3445                 vi->rss_base = 0xffff;
3446
3447                 return (0);
3448         }
3449
3450         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3451             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3452             V_FW_PARAMS_PARAM_YZ(vi->viid);
3453         rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3454         if (rc)
3455                 vi->rss_base = 0xffff;
3456         else {
3457                 MPASS((val >> 16) == vi->rss_size);
3458                 vi->rss_base = val & 0xffff;
3459         }
3460
3461         return (0);
3462 }
3463
3464 static int
3465 vcxgbe_attach(device_t dev)
3466 {
3467         struct vi_info *vi;
3468         struct port_info *pi;
3469         struct adapter *sc;
3470         int rc;
3471
3472         vi = device_get_softc(dev);
3473         pi = vi->pi;
3474         sc = pi->adapter;
3475
3476         rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3477         if (rc)
3478                 return (rc);
3479         rc = alloc_extra_vi(sc, pi, vi);
3480         end_synchronized_op(sc, 0);
3481         if (rc)
3482                 return (rc);
3483
3484         rc = cxgbe_vi_attach(dev, vi);
3485         if (rc) {
3486                 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3487                 return (rc);
3488         }
3489         return (0);
3490 }
3491
3492 static int
3493 vcxgbe_detach(device_t dev)
3494 {
3495         struct vi_info *vi;
3496         struct adapter *sc;
3497
3498         vi = device_get_softc(dev);
3499         sc = vi->adapter;
3500
3501         doom_vi(sc, vi);
3502
3503         cxgbe_vi_detach(vi);
3504         t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3505
3506         end_synchronized_op(sc, 0);
3507
3508         return (0);
3509 }
3510
3511 static struct callout fatal_callout;
3512 static struct taskqueue *reset_tq;
3513
3514 static void
3515 delayed_panic(void *arg)
3516 {
3517         struct adapter *sc = arg;
3518
3519         panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3520 }
3521
3522 static void
3523 fatal_error_task(void *arg, int pending)
3524 {
3525         struct adapter *sc = arg;
3526         int rc;
3527
3528 #ifdef TCP_OFFLOAD
3529         t4_async_event(sc);
3530 #endif
3531         if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3532                 dump_cim_regs(sc);
3533                 dump_cimla(sc);
3534                 dump_devlog(sc);
3535         }
3536
3537         if (t4_reset_on_fatal_err) {
3538                 CH_ALERT(sc, "resetting on fatal error.\n");
3539                 rc = reset_adapter(sc);
3540                 if (rc == 0 && t4_panic_on_fatal_err) {
3541                         CH_ALERT(sc, "reset was successful, "
3542                             "system will NOT panic.\n");
3543                         return;
3544                 }
3545         }
3546
3547         if (t4_panic_on_fatal_err) {
3548                 CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3549                 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3550         }
3551 }
3552
3553 void
3554 t4_fatal_err(struct adapter *sc, bool fw_error)
3555 {
3556         const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3557
3558         stop_adapter(sc);
3559         if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3560                 return;
3561         if (fw_error) {
3562                 /*
3563                  * We are here because of a firmware error/timeout and not
3564                  * because of a hardware interrupt.  It is possible (although
3565                  * not very likely) that an error interrupt was also raised but
3566                  * this thread ran first and inhibited t4_intr_err.  We walk the
3567                  * main INT_CAUSE registers here to make sure we haven't missed
3568                  * anything interesting.
3569                  */
3570                 t4_slow_intr_handler(sc, verbose);
3571                 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3572         }
3573         t4_report_fw_error(sc);
3574         log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3575             device_get_nameunit(sc->dev), fw_error);
3576         taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3577 }
3578
3579 void
3580 t4_add_adapter(struct adapter *sc)
3581 {
3582         sx_xlock(&t4_list_lock);
3583         SLIST_INSERT_HEAD(&t4_list, sc, link);
3584         sx_xunlock(&t4_list_lock);
3585 }
3586
3587 int
3588 t4_map_bars_0_and_4(struct adapter *sc)
3589 {
3590         sc->regs_rid = PCIR_BAR(0);
3591         sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3592             &sc->regs_rid, RF_ACTIVE);
3593         if (sc->regs_res == NULL) {
3594                 device_printf(sc->dev, "cannot map registers.\n");
3595                 return (ENXIO);
3596         }
3597         sc->bt = rman_get_bustag(sc->regs_res);
3598         sc->bh = rman_get_bushandle(sc->regs_res);
3599         sc->mmio_len = rman_get_size(sc->regs_res);
3600         setbit(&sc->doorbells, DOORBELL_KDB);
3601
3602         sc->msix_rid = PCIR_BAR(4);
3603         sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3604             &sc->msix_rid, RF_ACTIVE);
3605         if (sc->msix_res == NULL) {
3606                 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3607                 return (ENXIO);
3608         }
3609
3610         return (0);
3611 }
3612
3613 int
3614 t4_map_bar_2(struct adapter *sc)
3615 {
3616
3617         /*
3618          * T4: only iWARP driver uses the userspace doorbells.  There is no need
3619          * to map it if RDMA is disabled.
3620          */
3621         if (is_t4(sc) && sc->rdmacaps == 0)
3622                 return (0);
3623
3624         sc->udbs_rid = PCIR_BAR(2);
3625         sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3626             &sc->udbs_rid, RF_ACTIVE);
3627         if (sc->udbs_res == NULL) {
3628                 device_printf(sc->dev, "cannot map doorbell BAR.\n");
3629                 return (ENXIO);
3630         }
3631         sc->udbs_base = rman_get_virtual(sc->udbs_res);
3632
3633         if (chip_id(sc) >= CHELSIO_T5) {
3634                 setbit(&sc->doorbells, DOORBELL_UDB);
3635 #if defined(__i386__) || defined(__amd64__)
3636                 if (t5_write_combine) {
3637                         int rc, mode;
3638
3639                         /*
3640                          * Enable write combining on BAR2.  This is the
3641                          * userspace doorbell BAR and is split into 128B
3642                          * (UDBS_SEG_SIZE) doorbell regions, each associated
3643                          * with an egress queue.  The first 64B has the doorbell
3644                          * and the second 64B can be used to submit a tx work
3645                          * request with an implicit doorbell.
3646                          */
3647
3648                         rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
3649                             rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
3650                         if (rc == 0) {
3651                                 clrbit(&sc->doorbells, DOORBELL_UDB);
3652                                 setbit(&sc->doorbells, DOORBELL_WCWR);
3653                                 setbit(&sc->doorbells, DOORBELL_UDBWC);
3654                         } else {
3655                                 device_printf(sc->dev,
3656                                     "couldn't enable write combining: %d\n",
3657                                     rc);
3658                         }
3659
3660                         mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
3661                         t4_write_reg(sc, A_SGE_STAT_CFG,
3662                             V_STATSOURCE_T5(7) | mode);
3663                 }
3664 #endif
3665         }
3666         sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
3667
3668         return (0);
3669 }
3670
3671 struct memwin_init {
3672         uint32_t base;
3673         uint32_t aperture;
3674 };
3675
3676 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
3677         { MEMWIN0_BASE, MEMWIN0_APERTURE },
3678         { MEMWIN1_BASE, MEMWIN1_APERTURE },
3679         { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
3680 };
3681
3682 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
3683         { MEMWIN0_BASE, MEMWIN0_APERTURE },
3684         { MEMWIN1_BASE, MEMWIN1_APERTURE },
3685         { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
3686 };
3687
3688 static void
3689 setup_memwin(struct adapter *sc)
3690 {
3691         const struct memwin_init *mw_init;
3692         struct memwin *mw;
3693         int i;
3694         uint32_t bar0;
3695
3696         if (is_t4(sc)) {
3697                 /*
3698                  * Read low 32b of bar0 indirectly via the hardware backdoor
3699                  * mechanism.  Works from within PCI passthrough environments
3700                  * too, where rman_get_start() can return a different value.  We
3701                  * need to program the T4 memory window decoders with the actual
3702                  * addresses that will be coming across the PCIe link.
3703                  */
3704                 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
3705                 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
3706
3707                 mw_init = &t4_memwin[0];
3708         } else {
3709                 /* T5+ use the relative offset inside the PCIe BAR */
3710                 bar0 = 0;
3711
3712                 mw_init = &t5_memwin[0];
3713         }
3714
3715         for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
3716                 if (!rw_initialized(&mw->mw_lock)) {
3717                         rw_init(&mw->mw_lock, "memory window access");
3718                         mw->mw_base = mw_init->base;
3719                         mw->mw_aperture = mw_init->aperture;
3720                         mw->mw_curpos = 0;
3721                 }
3722                 t4_write_reg(sc,
3723                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
3724                     (mw->mw_base + bar0) | V_BIR(0) |
3725                     V_WINDOW(ilog2(mw->mw_aperture) - 10));
3726                 rw_wlock(&mw->mw_lock);
3727                 position_memwin(sc, i, mw->mw_curpos);
3728                 rw_wunlock(&mw->mw_lock);
3729         }
3730
3731         /* flush */
3732         t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
3733 }
3734
3735 /*
3736  * Positions the memory window at the given address in the card's address space.
3737  * There are some alignment requirements and the actual position may be at an
3738  * address prior to the requested address.  mw->mw_curpos always has the actual
3739  * position of the window.
3740  */
3741 static void
3742 position_memwin(struct adapter *sc, int idx, uint32_t addr)
3743 {
3744         struct memwin *mw;
3745         uint32_t pf;
3746         uint32_t reg;
3747
3748         MPASS(idx >= 0 && idx < NUM_MEMWIN);
3749         mw = &sc->memwin[idx];
3750         rw_assert(&mw->mw_lock, RA_WLOCKED);
3751
3752         if (is_t4(sc)) {
3753                 pf = 0;
3754                 mw->mw_curpos = addr & ~0xf;    /* start must be 16B aligned */
3755         } else {
3756                 pf = V_PFNUM(sc->pf);
3757                 mw->mw_curpos = addr & ~0x7f;   /* start must be 128B aligned */
3758         }
3759         reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
3760         t4_write_reg(sc, reg, mw->mw_curpos | pf);
3761         t4_read_reg(sc, reg);   /* flush */
3762 }
3763
3764 int
3765 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
3766     int len, int rw)
3767 {
3768         struct memwin *mw;
3769         uint32_t mw_end, v;
3770
3771         MPASS(idx >= 0 && idx < NUM_MEMWIN);
3772
3773         /* Memory can only be accessed in naturally aligned 4 byte units */
3774         if (addr & 3 || len & 3 || len <= 0)
3775                 return (EINVAL);
3776
3777         mw = &sc->memwin[idx];
3778         while (len > 0) {
3779                 rw_rlock(&mw->mw_lock);
3780                 mw_end = mw->mw_curpos + mw->mw_aperture;
3781                 if (addr >= mw_end || addr < mw->mw_curpos) {
3782                         /* Will need to reposition the window */
3783                         if (!rw_try_upgrade(&mw->mw_lock)) {
3784                                 rw_runlock(&mw->mw_lock);
3785                                 rw_wlock(&mw->mw_lock);
3786                         }
3787                         rw_assert(&mw->mw_lock, RA_WLOCKED);
3788                         position_memwin(sc, idx, addr);
3789                         rw_downgrade(&mw->mw_lock);
3790                         mw_end = mw->mw_curpos + mw->mw_aperture;
3791                 }
3792                 rw_assert(&mw->mw_lock, RA_RLOCKED);
3793                 while (addr < mw_end && len > 0) {
3794                         if (rw == 0) {
3795                                 v = t4_read_reg(sc, mw->mw_base + addr -
3796                                     mw->mw_curpos);
3797                                 *val++ = le32toh(v);
3798                         } else {
3799                                 v = *val++;
3800                                 t4_write_reg(sc, mw->mw_base + addr -
3801                                     mw->mw_curpos, htole32(v));
3802                         }
3803                         addr += 4;
3804                         len -= 4;
3805                 }
3806                 rw_runlock(&mw->mw_lock);
3807         }
3808
3809         return (0);
3810 }
3811
3812 static void
3813 t4_init_atid_table(struct adapter *sc)
3814 {
3815         struct tid_info *t;
3816         int i;
3817
3818         t = &sc->tids;
3819         if (t->natids == 0)
3820                 return;
3821
3822         MPASS(t->atid_tab == NULL);
3823
3824         t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
3825             M_ZERO | M_WAITOK);
3826         mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
3827         t->afree = t->atid_tab;
3828         t->atids_in_use = 0;
3829         for (i = 1; i < t->natids; i++)
3830                 t->atid_tab[i - 1].next = &t->atid_tab[i];
3831         t->atid_tab[t->natids - 1].next = NULL;
3832 }
3833
3834 static void
3835 t4_free_atid_table(struct adapter *sc)
3836 {
3837         struct tid_info *t;
3838
3839         t = &sc->tids;
3840
3841         KASSERT(t->atids_in_use == 0,
3842             ("%s: %d atids still in use.", __func__, t->atids_in_use));
3843
3844         if (mtx_initialized(&t->atid_lock))
3845                 mtx_destroy(&t->atid_lock);
3846         free(t->atid_tab, M_CXGBE);
3847         t->atid_tab = NULL;
3848 }
3849
3850 int
3851 alloc_atid(struct adapter *sc, void *ctx)
3852 {
3853         struct tid_info *t = &sc->tids;
3854         int atid = -1;
3855
3856         mtx_lock(&t->atid_lock);
3857         if (t->afree) {
3858                 union aopen_entry *p = t->afree;
3859
3860                 atid = p - t->atid_tab;
3861                 MPASS(atid <= M_TID_TID);
3862                 t->afree = p->next;
3863                 p->data = ctx;
3864                 t->atids_in_use++;
3865         }
3866         mtx_unlock(&t->atid_lock);
3867         return (atid);
3868 }
3869
3870 void *
3871 lookup_atid(struct adapter *sc, int atid)
3872 {
3873         struct tid_info *t = &sc->tids;
3874
3875         return (t->atid_tab[atid].data);
3876 }
3877
3878 void
3879 free_atid(struct adapter *sc, int atid)
3880 {
3881         struct tid_info *t = &sc->tids;
3882         union aopen_entry *p = &t->atid_tab[atid];
3883
3884         mtx_lock(&t->atid_lock);
3885         p->next = t->afree;
3886         t->afree = p;
3887         t->atids_in_use--;
3888         mtx_unlock(&t->atid_lock);
3889 }
3890
3891 static void
3892 queue_tid_release(struct adapter *sc, int tid)
3893 {
3894
3895         CXGBE_UNIMPLEMENTED("deferred tid release");
3896 }
3897
3898 void
3899 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
3900 {
3901         struct wrqe *wr;
3902         struct cpl_tid_release *req;
3903
3904         wr = alloc_wrqe(sizeof(*req), ctrlq);
3905         if (wr == NULL) {
3906                 queue_tid_release(sc, tid);     /* defer */
3907                 return;
3908         }
3909         req = wrtod(wr);
3910
3911         INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
3912
3913         t4_wrq_tx(sc, wr);
3914 }
3915
3916 static int
3917 t4_range_cmp(const void *a, const void *b)
3918 {
3919         return ((const struct t4_range *)a)->start -
3920                ((const struct t4_range *)b)->start;
3921 }
3922
3923 /*
3924  * Verify that the memory range specified by the addr/len pair is valid within
3925  * the card's address space.
3926  */
3927 static int
3928 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
3929 {
3930         struct t4_range mem_ranges[4], *r, *next;
3931         uint32_t em, addr_len;
3932         int i, n, remaining;
3933
3934         /* Memory can only be accessed in naturally aligned 4 byte units */
3935         if (addr & 3 || len & 3 || len == 0)
3936                 return (EINVAL);
3937
3938         /* Enabled memories */
3939         em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
3940
3941         r = &mem_ranges[0];
3942         n = 0;
3943         bzero(r, sizeof(mem_ranges));
3944         if (em & F_EDRAM0_ENABLE) {
3945                 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
3946                 r->size = G_EDRAM0_SIZE(addr_len) << 20;
3947                 if (r->size > 0) {
3948                         r->start = G_EDRAM0_BASE(addr_len) << 20;
3949                         if (addr >= r->start &&
3950                             addr + len <= r->start + r->size)
3951                                 return (0);
3952                         r++;
3953                         n++;
3954                 }
3955         }
3956         if (em & F_EDRAM1_ENABLE) {
3957                 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
3958                 r->size = G_EDRAM1_SIZE(addr_len) << 20;
3959                 if (r->size > 0) {
3960                         r->start = G_EDRAM1_BASE(addr_len) << 20;
3961                         if (addr >= r->start &&
3962                             addr + len <= r->start + r->size)
3963                                 return (0);
3964                         r++;
3965                         n++;
3966                 }
3967         }
3968         if (em & F_EXT_MEM_ENABLE) {
3969                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
3970                 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
3971                 if (r->size > 0) {
3972                         r->start = G_EXT_MEM_BASE(addr_len) << 20;
3973                         if (addr >= r->start &&
3974                             addr + len <= r->start + r->size)
3975                                 return (0);
3976                         r++;
3977                         n++;
3978                 }
3979         }
3980         if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
3981                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
3982                 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
3983                 if (r->size > 0) {
3984                         r->start = G_EXT_MEM1_BASE(addr_len) << 20;
3985                         if (addr >= r->start &&
3986                             addr + len <= r->start + r->size)
3987                                 return (0);
3988                         r++;
3989                         n++;
3990                 }
3991         }
3992         MPASS(n <= nitems(mem_ranges));
3993
3994         if (n > 1) {
3995                 /* Sort and merge the ranges. */
3996                 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
3997
3998                 /* Start from index 0 and examine the next n - 1 entries. */
3999                 r = &mem_ranges[0];
4000                 for (remaining = n - 1; remaining > 0; remaining--, r++) {
4001
4002                         MPASS(r->size > 0);     /* r is a valid entry. */
4003                         next = r + 1;
4004                         MPASS(next->size > 0);  /* and so is the next one. */
4005
4006                         while (r->start + r->size >= next->start) {
4007                                 /* Merge the next one into the current entry. */
4008                                 r->size = max(r->start + r->size,
4009                                     next->start + next->size) - r->start;
4010                                 n--;    /* One fewer entry in total. */
4011                                 if (--remaining == 0)
4012                                         goto done;      /* short circuit */
4013                                 next++;
4014                         }
4015                         if (next != r + 1) {
4016                                 /*
4017                                  * Some entries were merged into r and next
4018                                  * points to the first valid entry that couldn't
4019                                  * be merged.
4020                                  */
4021                                 MPASS(next->size > 0);  /* must be valid */
4022                                 memcpy(r + 1, next, remaining * sizeof(*r));
4023 #ifdef INVARIANTS
4024                                 /*
4025                                  * This so that the foo->size assertion in the
4026                                  * next iteration of the loop do the right
4027                                  * thing for entries that were pulled up and are
4028                                  * no longer valid.
4029                                  */
4030                                 MPASS(n < nitems(mem_ranges));
4031                                 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4032                                     sizeof(struct t4_range));
4033 #endif
4034                         }
4035                 }
4036 done:
4037                 /* Done merging the ranges. */
4038                 MPASS(n > 0);
4039                 r = &mem_ranges[0];
4040                 for (i = 0; i < n; i++, r++) {
4041                         if (addr >= r->start &&
4042                             addr + len <= r->start + r->size)
4043                                 return (0);
4044                 }
4045         }
4046
4047         return (EFAULT);
4048 }
4049
4050 static int
4051 fwmtype_to_hwmtype(int mtype)
4052 {
4053
4054         switch (mtype) {
4055         case FW_MEMTYPE_EDC0:
4056                 return (MEM_EDC0);
4057         case FW_MEMTYPE_EDC1:
4058                 return (MEM_EDC1);
4059         case FW_MEMTYPE_EXTMEM:
4060                 return (MEM_MC0);
4061         case FW_MEMTYPE_EXTMEM1:
4062                 return (MEM_MC1);
4063         default:
4064                 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4065         }
4066 }
4067
4068 /*
4069  * Verify that the memory range specified by the memtype/offset/len pair is
4070  * valid and lies entirely within the memtype specified.  The global address of
4071  * the start of the range is returned in addr.
4072  */
4073 static int
4074 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4075     uint32_t *addr)
4076 {
4077         uint32_t em, addr_len, maddr;
4078
4079         /* Memory can only be accessed in naturally aligned 4 byte units */
4080         if (off & 3 || len & 3 || len == 0)
4081                 return (EINVAL);
4082
4083         em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4084         switch (fwmtype_to_hwmtype(mtype)) {
4085         case MEM_EDC0:
4086                 if (!(em & F_EDRAM0_ENABLE))
4087                         return (EINVAL);
4088                 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4089                 maddr = G_EDRAM0_BASE(addr_len) << 20;
4090                 break;
4091         case MEM_EDC1:
4092                 if (!(em & F_EDRAM1_ENABLE))
4093                         return (EINVAL);
4094                 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4095                 maddr = G_EDRAM1_BASE(addr_len) << 20;
4096                 break;
4097         case MEM_MC:
4098                 if (!(em & F_EXT_MEM_ENABLE))
4099                         return (EINVAL);
4100                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4101                 maddr = G_EXT_MEM_BASE(addr_len) << 20;
4102                 break;
4103         case MEM_MC1:
4104                 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4105                         return (EINVAL);
4106                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4107                 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4108                 break;
4109         default:
4110                 return (EINVAL);
4111         }
4112
4113         *addr = maddr + off;    /* global address */
4114         return (validate_mem_range(sc, *addr, len));
4115 }
4116
4117 static int
4118 fixup_devlog_params(struct adapter *sc)
4119 {
4120         struct devlog_params *dparams = &sc->params.devlog;
4121         int rc;
4122
4123         rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4124             dparams->size, &dparams->addr);
4125
4126         return (rc);
4127 }
4128
4129 static void
4130 update_nirq(struct intrs_and_queues *iaq, int nports)
4131 {
4132
4133         iaq->nirq = T4_EXTRA_INTR;
4134         iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4135         iaq->nirq += nports * iaq->nofldrxq;
4136         iaq->nirq += nports * (iaq->num_vis - 1) *
4137             max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4138         iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4139 }
4140
4141 /*
4142  * Adjust requirements to fit the number of interrupts available.
4143  */
4144 static void
4145 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4146     int navail)
4147 {
4148         int old_nirq;
4149         const int nports = sc->params.nports;
4150
4151         MPASS(nports > 0);
4152         MPASS(navail > 0);
4153
4154         bzero(iaq, sizeof(*iaq));
4155         iaq->intr_type = itype;
4156         iaq->num_vis = t4_num_vis;
4157         iaq->ntxq = t4_ntxq;
4158         iaq->ntxq_vi = t4_ntxq_vi;
4159         iaq->nrxq = t4_nrxq;
4160         iaq->nrxq_vi = t4_nrxq_vi;
4161 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4162         if (is_offload(sc) || is_ethoffload(sc)) {
4163                 iaq->nofldtxq = t4_nofldtxq;
4164                 iaq->nofldtxq_vi = t4_nofldtxq_vi;
4165         }
4166 #endif
4167 #ifdef TCP_OFFLOAD
4168         if (is_offload(sc)) {
4169                 iaq->nofldrxq = t4_nofldrxq;
4170                 iaq->nofldrxq_vi = t4_nofldrxq_vi;
4171         }
4172 #endif
4173 #ifdef DEV_NETMAP
4174         if (t4_native_netmap & NN_MAIN_VI) {
4175                 iaq->nnmtxq = t4_nnmtxq;
4176                 iaq->nnmrxq = t4_nnmrxq;
4177         }
4178         if (t4_native_netmap & NN_EXTRA_VI) {
4179                 iaq->nnmtxq_vi = t4_nnmtxq_vi;
4180                 iaq->nnmrxq_vi = t4_nnmrxq_vi;
4181         }
4182 #endif
4183
4184         update_nirq(iaq, nports);
4185         if (iaq->nirq <= navail &&
4186             (itype != INTR_MSI || powerof2(iaq->nirq))) {
4187                 /*
4188                  * This is the normal case -- there are enough interrupts for
4189                  * everything.
4190                  */
4191                 goto done;
4192         }
4193
4194         /*
4195          * If extra VIs have been configured try reducing their count and see if
4196          * that works.
4197          */
4198         while (iaq->num_vis > 1) {
4199                 iaq->num_vis--;
4200                 update_nirq(iaq, nports);
4201                 if (iaq->nirq <= navail &&
4202                     (itype != INTR_MSI || powerof2(iaq->nirq))) {
4203                         device_printf(sc->dev, "virtual interfaces per port "
4204                             "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
4205                             "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
4206                             "itype %d, navail %u, nirq %d.\n",
4207                             iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4208                             iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4209                             itype, navail, iaq->nirq);
4210                         goto done;
4211                 }
4212         }
4213
4214         /*
4215          * Extra VIs will not be created.  Log a message if they were requested.
4216          */
4217         MPASS(iaq->num_vis == 1);
4218         iaq->ntxq_vi = iaq->nrxq_vi = 0;
4219         iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4220         iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4221         if (iaq->num_vis != t4_num_vis) {
4222                 device_printf(sc->dev, "extra virtual interfaces disabled.  "
4223                     "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4224                     "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
4225                     iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4226                     iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4227         }
4228
4229         /*
4230          * Keep reducing the number of NIC rx queues to the next lower power of
4231          * 2 (for even RSS distribution) and halving the TOE rx queues and see
4232          * if that works.
4233          */
4234         do {
4235                 if (iaq->nrxq > 1) {
4236                         do {
4237                                 iaq->nrxq--;
4238                         } while (!powerof2(iaq->nrxq));
4239                         if (iaq->nnmrxq > iaq->nrxq)
4240                                 iaq->nnmrxq = iaq->nrxq;
4241                 }
4242                 if (iaq->nofldrxq > 1)
4243                         iaq->nofldrxq >>= 1;
4244
4245                 old_nirq = iaq->nirq;
4246                 update_nirq(iaq, nports);
4247                 if (iaq->nirq <= navail &&
4248                     (itype != INTR_MSI || powerof2(iaq->nirq))) {
4249                         device_printf(sc->dev, "running with reduced number of "
4250                             "rx queues because of shortage of interrupts.  "
4251                             "nrxq=%u, nofldrxq=%u.  "
4252                             "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4253                             iaq->nofldrxq, itype, navail, iaq->nirq);
4254                         goto done;
4255                 }
4256         } while (old_nirq != iaq->nirq);
4257
4258         /* One interrupt for everything.  Ugh. */
4259         device_printf(sc->dev, "running with minimal number of queues.  "
4260             "itype %d, navail %u.\n", itype, navail);
4261         iaq->nirq = 1;
4262         iaq->nrxq = 1;
4263         iaq->ntxq = 1;
4264         if (iaq->nofldrxq > 0) {
4265                 iaq->nofldrxq = 1;
4266                 iaq->nofldtxq = 1;
4267         }
4268         iaq->nnmtxq = 0;
4269         iaq->nnmrxq = 0;
4270 done:
4271         MPASS(iaq->num_vis > 0);
4272         if (iaq->num_vis > 1) {
4273                 MPASS(iaq->nrxq_vi > 0);
4274                 MPASS(iaq->ntxq_vi > 0);
4275         }
4276         MPASS(iaq->nirq > 0);
4277         MPASS(iaq->nrxq > 0);
4278         MPASS(iaq->ntxq > 0);
4279         if (itype == INTR_MSI) {
4280                 MPASS(powerof2(iaq->nirq));
4281         }
4282 }
4283
4284 static int
4285 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4286 {
4287         int rc, itype, navail, nalloc;
4288
4289         for (itype = INTR_MSIX; itype; itype >>= 1) {
4290
4291                 if ((itype & t4_intr_types) == 0)
4292                         continue;       /* not allowed */
4293
4294                 if (itype == INTR_MSIX)
4295                         navail = pci_msix_count(sc->dev);
4296                 else if (itype == INTR_MSI)
4297                         navail = pci_msi_count(sc->dev);
4298                 else
4299                         navail = 1;
4300 restart:
4301                 if (navail == 0)
4302                         continue;
4303
4304                 calculate_iaq(sc, iaq, itype, navail);
4305                 nalloc = iaq->nirq;
4306                 rc = 0;
4307                 if (itype == INTR_MSIX)
4308                         rc = pci_alloc_msix(sc->dev, &nalloc);
4309                 else if (itype == INTR_MSI)
4310                         rc = pci_alloc_msi(sc->dev, &nalloc);
4311
4312                 if (rc == 0 && nalloc > 0) {
4313                         if (nalloc == iaq->nirq)
4314                                 return (0);
4315
4316                         /*
4317                          * Didn't get the number requested.  Use whatever number
4318                          * the kernel is willing to allocate.
4319                          */
4320                         device_printf(sc->dev, "fewer vectors than requested, "
4321                             "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4322                             itype, iaq->nirq, nalloc);
4323                         pci_release_msi(sc->dev);
4324                         navail = nalloc;
4325                         goto restart;
4326                 }
4327
4328                 device_printf(sc->dev,
4329                     "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4330                     itype, rc, iaq->nirq, nalloc);
4331         }
4332
4333         device_printf(sc->dev,
4334             "failed to find a usable interrupt type.  "
4335             "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4336             pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4337
4338         return (ENXIO);
4339 }
4340
4341 #define FW_VERSION(chip) ( \
4342     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4343     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4344     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4345     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4346 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4347
4348 /* Just enough of fw_hdr to cover all version info. */
4349 struct fw_h {
4350         __u8    ver;
4351         __u8    chip;
4352         __be16  len512;
4353         __be32  fw_ver;
4354         __be32  tp_microcode_ver;
4355         __u8    intfver_nic;
4356         __u8    intfver_vnic;
4357         __u8    intfver_ofld;
4358         __u8    intfver_ri;
4359         __u8    intfver_iscsipdu;
4360         __u8    intfver_iscsi;
4361         __u8    intfver_fcoepdu;
4362         __u8    intfver_fcoe;
4363 };
4364 /* Spot check a couple of fields. */
4365 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4366 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4367 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4368
4369 struct fw_info {
4370         uint8_t chip;
4371         char *kld_name;
4372         char *fw_mod_name;
4373         struct fw_h fw_h;
4374 } fw_info[] = {
4375         {
4376                 .chip = CHELSIO_T4,
4377                 .kld_name = "t4fw_cfg",
4378                 .fw_mod_name = "t4fw",
4379                 .fw_h = {
4380                         .chip = FW_HDR_CHIP_T4,
4381                         .fw_ver = htobe32(FW_VERSION(T4)),
4382                         .intfver_nic = FW_INTFVER(T4, NIC),
4383                         .intfver_vnic = FW_INTFVER(T4, VNIC),
4384                         .intfver_ofld = FW_INTFVER(T4, OFLD),
4385                         .intfver_ri = FW_INTFVER(T4, RI),
4386                         .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4387                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4388                         .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4389                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
4390                 },
4391         }, {
4392                 .chip = CHELSIO_T5,
4393                 .kld_name = "t5fw_cfg",
4394                 .fw_mod_name = "t5fw",
4395                 .fw_h = {
4396                         .chip = FW_HDR_CHIP_T5,
4397                         .fw_ver = htobe32(FW_VERSION(T5)),
4398                         .intfver_nic = FW_INTFVER(T5, NIC),
4399                         .intfver_vnic = FW_INTFVER(T5, VNIC),
4400                         .intfver_ofld = FW_INTFVER(T5, OFLD),
4401                         .intfver_ri = FW_INTFVER(T5, RI),
4402                         .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4403                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4404                         .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4405                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
4406                 },
4407         }, {
4408                 .chip = CHELSIO_T6,
4409                 .kld_name = "t6fw_cfg",
4410                 .fw_mod_name = "t6fw",
4411                 .fw_h = {
4412                         .chip = FW_HDR_CHIP_T6,
4413                         .fw_ver = htobe32(FW_VERSION(T6)),
4414                         .intfver_nic = FW_INTFVER(T6, NIC),
4415                         .intfver_vnic = FW_INTFVER(T6, VNIC),
4416                         .intfver_ofld = FW_INTFVER(T6, OFLD),
4417                         .intfver_ri = FW_INTFVER(T6, RI),
4418                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4419                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4420                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4421                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
4422                 },
4423         }
4424 };
4425
4426 static struct fw_info *
4427 find_fw_info(int chip)
4428 {
4429         int i;
4430
4431         for (i = 0; i < nitems(fw_info); i++) {
4432                 if (fw_info[i].chip == chip)
4433                         return (&fw_info[i]);
4434         }
4435         return (NULL);
4436 }
4437
4438 /*
4439  * Is the given firmware API compatible with the one the driver was compiled
4440  * with?
4441  */
4442 static int
4443 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4444 {
4445
4446         /* short circuit if it's the exact same firmware version */
4447         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4448                 return (1);
4449
4450         /*
4451          * XXX: Is this too conservative?  Perhaps I should limit this to the
4452          * features that are supported in the driver.
4453          */
4454 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4455         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4456             SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4457             SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4458                 return (1);
4459 #undef SAME_INTF
4460
4461         return (0);
4462 }
4463
4464 static int
4465 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4466     const struct firmware **fw)
4467 {
4468         struct fw_info *fw_info;
4469
4470         *dcfg = NULL;
4471         if (fw != NULL)
4472                 *fw = NULL;
4473
4474         fw_info = find_fw_info(chip_id(sc));
4475         if (fw_info == NULL) {
4476                 device_printf(sc->dev,
4477                     "unable to look up firmware information for chip %d.\n",
4478                     chip_id(sc));
4479                 return (EINVAL);
4480         }
4481
4482         *dcfg = firmware_get(fw_info->kld_name);
4483         if (*dcfg != NULL) {
4484                 if (fw != NULL)
4485                         *fw = firmware_get(fw_info->fw_mod_name);
4486                 return (0);
4487         }
4488
4489         return (ENOENT);
4490 }
4491
4492 static void
4493 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4494     const struct firmware *fw)
4495 {
4496
4497         if (fw != NULL)
4498                 firmware_put(fw, FIRMWARE_UNLOAD);
4499         if (dcfg != NULL)
4500                 firmware_put(dcfg, FIRMWARE_UNLOAD);
4501 }
4502
4503 /*
4504  * Return values:
4505  * 0 means no firmware install attempted.
4506  * ERESTART means a firmware install was attempted and was successful.
4507  * +ve errno means a firmware install was attempted but failed.
4508  */
4509 static int
4510 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4511     const struct fw_h *drv_fw, const char *reason, int *already)
4512 {
4513         const struct firmware *cfg, *fw;
4514         const uint32_t c = be32toh(card_fw->fw_ver);
4515         uint32_t d, k;
4516         int rc, fw_install;
4517         struct fw_h bundled_fw;
4518         bool load_attempted;
4519
4520         cfg = fw = NULL;
4521         load_attempted = false;
4522         fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4523
4524         memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4525         if (t4_fw_install < 0) {
4526                 rc = load_fw_module(sc, &cfg, &fw);
4527                 if (rc != 0 || fw == NULL) {
4528                         device_printf(sc->dev,
4529                             "failed to load firmware module: %d. cfg %p, fw %p;"
4530                             " will use compiled-in firmware version for"
4531                             "hw.cxgbe.fw_install checks.\n",
4532                             rc, cfg, fw);
4533                 } else {
4534                         memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4535                 }
4536                 load_attempted = true;
4537         }
4538         d = be32toh(bundled_fw.fw_ver);
4539
4540         if (reason != NULL)
4541                 goto install;
4542
4543         if ((sc->flags & FW_OK) == 0) {
4544
4545                 if (c == 0xffffffff) {
4546                         reason = "missing";
4547                         goto install;
4548                 }
4549
4550                 rc = 0;
4551                 goto done;
4552         }
4553
4554         if (!fw_compatible(card_fw, &bundled_fw)) {
4555                 reason = "incompatible or unusable";
4556                 goto install;
4557         }
4558
4559         if (d > c) {
4560                 reason = "older than the version bundled with this driver";
4561                 goto install;
4562         }
4563
4564         if (fw_install == 2 && d != c) {
4565                 reason = "different than the version bundled with this driver";
4566                 goto install;
4567         }
4568
4569         /* No reason to do anything to the firmware already on the card. */
4570         rc = 0;
4571         goto done;
4572
4573 install:
4574         rc = 0;
4575         if ((*already)++)
4576                 goto done;
4577
4578         if (fw_install == 0) {
4579                 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4580                     "but the driver is prohibited from installing a firmware "
4581                     "on the card.\n",
4582                     G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4583                     G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4584
4585                 goto done;
4586         }
4587
4588         /*
4589          * We'll attempt to install a firmware.  Load the module first (if it
4590          * hasn't been loaded already).
4591          */
4592         if (!load_attempted) {
4593                 rc = load_fw_module(sc, &cfg, &fw);
4594                 if (rc != 0 || fw == NULL) {
4595                         device_printf(sc->dev,
4596                             "failed to load firmware module: %d. cfg %p, fw %p\n",
4597                             rc, cfg, fw);
4598                         /* carry on */
4599                 }
4600         }
4601         if (fw == NULL) {
4602                 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4603                     "but the driver cannot take corrective action because it "
4604                     "is unable to load the firmware module.\n",
4605                     G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4606                     G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4607                 rc = sc->flags & FW_OK ? 0 : ENOENT;
4608                 goto done;
4609         }
4610         k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
4611         if (k != d) {
4612                 MPASS(t4_fw_install > 0);
4613                 device_printf(sc->dev,
4614                     "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
4615                     "expecting (%u.%u.%u.%u) and will not be used.\n",
4616                     G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
4617                     G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
4618                     G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4619                     G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4620                 rc = sc->flags & FW_OK ? 0 : EINVAL;
4621                 goto done;
4622         }
4623
4624         device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4625             "installing firmware %u.%u.%u.%u on card.\n",
4626             G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4627             G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
4628             G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4629             G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4630
4631         rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
4632         if (rc != 0) {
4633                 device_printf(sc->dev, "failed to install firmware: %d\n", rc);
4634         } else {
4635                 /* Installed successfully, update the cached header too. */
4636                 rc = ERESTART;
4637                 memcpy(card_fw, fw->data, sizeof(*card_fw));
4638         }
4639 done:
4640         unload_fw_module(sc, cfg, fw);
4641
4642         return (rc);
4643 }
4644
4645 /*
4646  * Establish contact with the firmware and attempt to become the master driver.
4647  *
4648  * A firmware will be installed to the card if needed (if the driver is allowed
4649  * to do so).
4650  */
4651 static int
4652 contact_firmware(struct adapter *sc)
4653 {
4654         int rc, already = 0;
4655         enum dev_state state;
4656         struct fw_info *fw_info;
4657         struct fw_hdr *card_fw;         /* fw on the card */
4658         const struct fw_h *drv_fw;
4659
4660         fw_info = find_fw_info(chip_id(sc));
4661         if (fw_info == NULL) {
4662                 device_printf(sc->dev,
4663                     "unable to look up firmware information for chip %d.\n",
4664                     chip_id(sc));
4665                 return (EINVAL);
4666         }
4667         drv_fw = &fw_info->fw_h;
4668
4669         /* Read the header of the firmware on the card */
4670         card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
4671 restart:
4672         rc = -t4_get_fw_hdr(sc, card_fw);
4673         if (rc != 0) {
4674                 device_printf(sc->dev,
4675                     "unable to read firmware header from card's flash: %d\n",
4676                     rc);
4677                 goto done;
4678         }
4679
4680         rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
4681             &already);
4682         if (rc == ERESTART)
4683                 goto restart;
4684         if (rc != 0)
4685                 goto done;
4686
4687         rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
4688         if (rc < 0 || state == DEV_STATE_ERR) {
4689                 rc = -rc;
4690                 device_printf(sc->dev,
4691                     "failed to connect to the firmware: %d, %d.  "
4692                     "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4693 #if 0
4694                 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4695                     "not responding properly to HELLO", &already) == ERESTART)
4696                         goto restart;
4697 #endif
4698                 goto done;
4699         }
4700         MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
4701         sc->flags |= FW_OK;     /* The firmware responded to the FW_HELLO. */
4702
4703         if (rc == sc->pf) {
4704                 sc->flags |= MASTER_PF;
4705                 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4706                     NULL, &already);
4707                 if (rc == ERESTART)
4708                         rc = 0;
4709                 else if (rc != 0)
4710                         goto done;
4711         } else if (state == DEV_STATE_UNINIT) {
4712                 /*
4713                  * We didn't get to be the master so we definitely won't be
4714                  * configuring the chip.  It's a bug if someone else hasn't
4715                  * configured it already.
4716                  */
4717                 device_printf(sc->dev, "couldn't be master(%d), "
4718                     "device not already initialized either(%d).  "
4719                     "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4720                 rc = EPROTO;
4721                 goto done;
4722         } else {
4723                 /*
4724                  * Some other PF is the master and has configured the chip.
4725                  * This is allowed but untested.
4726                  */
4727                 device_printf(sc->dev, "PF%d is master, device state %d.  "
4728                     "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4729                 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
4730                 sc->cfcsum = 0;
4731                 rc = 0;
4732         }
4733 done:
4734         if (rc != 0 && sc->flags & FW_OK) {
4735                 t4_fw_bye(sc, sc->mbox);
4736                 sc->flags &= ~FW_OK;
4737         }
4738         free(card_fw, M_CXGBE);
4739         return (rc);
4740 }
4741
4742 static int
4743 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
4744     uint32_t mtype, uint32_t moff)
4745 {
4746         struct fw_info *fw_info;
4747         const struct firmware *dcfg, *rcfg = NULL;
4748         const uint32_t *cfdata;
4749         uint32_t cflen, addr;
4750         int rc;
4751
4752         load_fw_module(sc, &dcfg, NULL);
4753
4754         /* Card specific interpretation of "default". */
4755         if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4756                 if (pci_get_device(sc->dev) == 0x440a)
4757                         snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
4758                 if (is_fpga(sc))
4759                         snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
4760         }
4761
4762         if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4763                 if (dcfg == NULL) {
4764                         device_printf(sc->dev,
4765                             "KLD with default config is not available.\n");
4766                         rc = ENOENT;
4767                         goto done;
4768                 }
4769                 cfdata = dcfg->data;
4770                 cflen = dcfg->datasize & ~3;
4771         } else {
4772                 char s[32];
4773
4774                 fw_info = find_fw_info(chip_id(sc));
4775                 if (fw_info == NULL) {
4776                         device_printf(sc->dev,
4777                             "unable to look up firmware information for chip %d.\n",
4778                             chip_id(sc));
4779                         rc = EINVAL;
4780                         goto done;
4781                 }
4782                 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
4783
4784                 rcfg = firmware_get(s);
4785                 if (rcfg == NULL) {
4786                         device_printf(sc->dev,
4787                             "unable to load module \"%s\" for configuration "
4788                             "profile \"%s\".\n", s, cfg_file);
4789                         rc = ENOENT;
4790                         goto done;
4791                 }
4792                 cfdata = rcfg->data;
4793                 cflen = rcfg->datasize & ~3;
4794         }
4795
4796         if (cflen > FLASH_CFG_MAX_SIZE) {
4797                 device_printf(sc->dev,
4798                     "config file too long (%d, max allowed is %d).\n",
4799                     cflen, FLASH_CFG_MAX_SIZE);
4800                 rc = EINVAL;
4801                 goto done;
4802         }
4803
4804         rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
4805         if (rc != 0) {
4806                 device_printf(sc->dev,
4807                     "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
4808                     __func__, mtype, moff, cflen, rc);
4809                 rc = EINVAL;
4810                 goto done;
4811         }
4812         write_via_memwin(sc, 2, addr, cfdata, cflen);
4813 done:
4814         if (rcfg != NULL)
4815                 firmware_put(rcfg, FIRMWARE_UNLOAD);
4816         unload_fw_module(sc, dcfg, NULL);
4817         return (rc);
4818 }
4819
4820 struct caps_allowed {
4821         uint16_t nbmcaps;
4822         uint16_t linkcaps;
4823         uint16_t switchcaps;
4824         uint16_t niccaps;
4825         uint16_t toecaps;
4826         uint16_t rdmacaps;
4827         uint16_t cryptocaps;
4828         uint16_t iscsicaps;
4829         uint16_t fcoecaps;
4830 };
4831
4832 #define FW_PARAM_DEV(param) \
4833         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
4834          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
4835 #define FW_PARAM_PFVF(param) \
4836         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
4837          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
4838
4839 /*
4840  * Provide a configuration profile to the firmware and have it initialize the
4841  * chip accordingly.  This may involve uploading a configuration file to the
4842  * card.
4843  */
4844 static int
4845 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
4846     const struct caps_allowed *caps_allowed)
4847 {
4848         int rc;
4849         struct fw_caps_config_cmd caps;
4850         uint32_t mtype, moff, finicsum, cfcsum, param, val;
4851
4852         rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
4853         if (rc != 0) {
4854                 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
4855                 return (rc);
4856         }
4857
4858         bzero(&caps, sizeof(caps));
4859         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4860             F_FW_CMD_REQUEST | F_FW_CMD_READ);
4861         if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
4862                 mtype = 0;
4863                 moff = 0;
4864                 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4865         } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
4866                 mtype = FW_MEMTYPE_FLASH;
4867                 moff = t4_flash_cfg_addr(sc);
4868                 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
4869                     V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4870                     V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
4871                     FW_LEN16(caps));
4872         } else {
4873                 /*
4874                  * Ask the firmware where it wants us to upload the config file.
4875                  */
4876                 param = FW_PARAM_DEV(CF);
4877                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4878                 if (rc != 0) {
4879                         /* No support for config file?  Shouldn't happen. */
4880                         device_printf(sc->dev,
4881                             "failed to query config file location: %d.\n", rc);
4882                         goto done;
4883                 }
4884                 mtype = G_FW_PARAMS_PARAM_Y(val);
4885                 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
4886                 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
4887                     V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4888                     V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
4889                     FW_LEN16(caps));
4890
4891                 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
4892                 if (rc != 0) {
4893                         device_printf(sc->dev,
4894                             "failed to upload config file to card: %d.\n", rc);
4895                         goto done;
4896                 }
4897         }
4898         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
4899         if (rc != 0) {
4900                 device_printf(sc->dev, "failed to pre-process config file: %d "
4901                     "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
4902                 goto done;
4903         }
4904
4905         finicsum = be32toh(caps.finicsum);
4906         cfcsum = be32toh(caps.cfcsum);  /* actual */
4907         if (finicsum != cfcsum) {
4908                 device_printf(sc->dev,
4909                     "WARNING: config file checksum mismatch: %08x %08x\n",
4910                     finicsum, cfcsum);
4911         }
4912         sc->cfcsum = cfcsum;
4913         snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
4914
4915         /*
4916          * Let the firmware know what features will (not) be used so it can tune
4917          * things accordingly.
4918          */
4919 #define LIMIT_CAPS(x) do { \
4920         caps.x##caps &= htobe16(caps_allowed->x##caps); \
4921 } while (0)
4922         LIMIT_CAPS(nbm);
4923         LIMIT_CAPS(link);
4924         LIMIT_CAPS(switch);
4925         LIMIT_CAPS(nic);
4926         LIMIT_CAPS(toe);
4927         LIMIT_CAPS(rdma);
4928         LIMIT_CAPS(crypto);
4929         LIMIT_CAPS(iscsi);
4930         LIMIT_CAPS(fcoe);
4931 #undef LIMIT_CAPS
4932         if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4933                 /*
4934                  * TOE and hashfilters are mutually exclusive.  It is a config
4935                  * file or firmware bug if both are reported as available.  Try
4936                  * to cope with the situation in non-debug builds by disabling
4937                  * TOE.
4938                  */
4939                 MPASS(caps.toecaps == 0);
4940
4941                 caps.toecaps = 0;
4942                 caps.rdmacaps = 0;
4943                 caps.iscsicaps = 0;
4944         }
4945
4946         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4947             F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4948         caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4949         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
4950         if (rc != 0) {
4951                 device_printf(sc->dev,
4952                     "failed to process config file: %d.\n", rc);
4953                 goto done;
4954         }
4955
4956         t4_tweak_chip_settings(sc);
4957         set_params__pre_init(sc);
4958
4959         /* get basic stuff going */
4960         rc = -t4_fw_initialize(sc, sc->mbox);
4961         if (rc != 0) {
4962                 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
4963                 goto done;
4964         }
4965 done:
4966         return (rc);
4967 }
4968
4969 /*
4970  * Partition chip resources for use between various PFs, VFs, etc.
4971  */
4972 static int
4973 partition_resources(struct adapter *sc)
4974 {
4975         char cfg_file[sizeof(t4_cfg_file)];
4976         struct caps_allowed caps_allowed;
4977         int rc;
4978         bool fallback;
4979
4980         /* Only the master driver gets to configure the chip resources. */
4981         MPASS(sc->flags & MASTER_PF);
4982
4983 #define COPY_CAPS(x) do { \
4984         caps_allowed.x##caps = t4_##x##caps_allowed; \
4985 } while (0)
4986         bzero(&caps_allowed, sizeof(caps_allowed));
4987         COPY_CAPS(nbm);
4988         COPY_CAPS(link);
4989         COPY_CAPS(switch);
4990         COPY_CAPS(nic);
4991         COPY_CAPS(toe);
4992         COPY_CAPS(rdma);
4993         COPY_CAPS(crypto);
4994         COPY_CAPS(iscsi);
4995         COPY_CAPS(fcoe);
4996         fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
4997         snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
4998 retry:
4999         rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5000         if (rc != 0 && fallback) {
5001                 device_printf(sc->dev,
5002                     "failed (%d) to configure card with \"%s\" profile, "
5003                     "will fall back to a basic configuration and retry.\n",
5004                     rc, cfg_file);
5005                 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5006                 bzero(&caps_allowed, sizeof(caps_allowed));
5007                 COPY_CAPS(switch);
5008                 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5009                 fallback = false;
5010                 goto retry;
5011         }
5012 #undef COPY_CAPS
5013         return (rc);
5014 }
5015
5016 /*
5017  * Retrieve parameters that are needed (or nice to have) very early.
5018  */
5019 static int
5020 get_params__pre_init(struct adapter *sc)
5021 {
5022         int rc;
5023         uint32_t param[2], val[2];
5024
5025         t4_get_version_info(sc);
5026
5027         snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5028             G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5029             G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5030             G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5031             G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5032
5033         snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5034             G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5035             G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5036             G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5037             G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5038
5039         snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5040             G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5041             G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5042             G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5043             G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5044
5045         snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5046             G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5047             G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5048             G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5049             G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5050
5051         param[0] = FW_PARAM_DEV(PORTVEC);
5052         param[1] = FW_PARAM_DEV(CCLK);
5053         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5054         if (rc != 0) {
5055                 device_printf(sc->dev,
5056                     "failed to query parameters (pre_init): %d.\n", rc);
5057                 return (rc);
5058         }
5059
5060         sc->params.portvec = val[0];
5061         sc->params.nports = bitcount32(val[0]);
5062         sc->params.vpd.cclk = val[1];
5063
5064         /* Read device log parameters. */
5065         rc = -t4_init_devlog_params(sc, 1);
5066         if (rc == 0)
5067                 fixup_devlog_params(sc);
5068         else {
5069                 device_printf(sc->dev,
5070                     "failed to get devlog parameters: %d.\n", rc);
5071                 rc = 0; /* devlog isn't critical for device operation */
5072         }
5073
5074         return (rc);
5075 }
5076
5077 /*
5078  * Any params that need to be set before FW_INITIALIZE.
5079  */
5080 static int
5081 set_params__pre_init(struct adapter *sc)
5082 {
5083         int rc = 0;
5084         uint32_t param, val;
5085
5086         if (chip_id(sc) >= CHELSIO_T6) {
5087                 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5088                 val = 1;
5089                 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5090                 /* firmwares < 1.20.1.0 do not have this param. */
5091                 if (rc == FW_EINVAL &&
5092                     sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5093                         rc = 0;
5094                 }
5095                 if (rc != 0) {
5096                         device_printf(sc->dev,
5097                             "failed to enable high priority filters :%d.\n",
5098                             rc);
5099                 }
5100         }
5101
5102         /* Enable opaque VIIDs with firmwares that support it. */
5103         param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5104         val = 1;
5105         rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5106         if (rc == 0 && val == 1)
5107                 sc->params.viid_smt_extn_support = true;
5108         else
5109                 sc->params.viid_smt_extn_support = false;
5110
5111         return (rc);
5112 }
5113
5114 /*
5115  * Retrieve various parameters that are of interest to the driver.  The device
5116  * has been initialized by the firmware at this point.
5117  */
5118 static int
5119 get_params__post_init(struct adapter *sc)
5120 {
5121         int rc;
5122         uint32_t param[7], val[7];
5123         struct fw_caps_config_cmd caps;
5124
5125         param[0] = FW_PARAM_PFVF(IQFLINT_START);
5126         param[1] = FW_PARAM_PFVF(EQ_START);
5127         param[2] = FW_PARAM_PFVF(FILTER_START);
5128         param[3] = FW_PARAM_PFVF(FILTER_END);
5129         param[4] = FW_PARAM_PFVF(L2T_START);
5130         param[5] = FW_PARAM_PFVF(L2T_END);
5131         param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5132             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5133             V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5134         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5135         if (rc != 0) {
5136                 device_printf(sc->dev,
5137                     "failed to query parameters (post_init): %d.\n", rc);
5138                 return (rc);
5139         }
5140
5141         sc->sge.iq_start = val[0];
5142         sc->sge.eq_start = val[1];
5143         if ((int)val[3] > (int)val[2]) {
5144                 sc->tids.ftid_base = val[2];
5145                 sc->tids.ftid_end = val[3];
5146                 sc->tids.nftids = val[3] - val[2] + 1;
5147         }
5148         sc->vres.l2t.start = val[4];
5149         sc->vres.l2t.size = val[5] - val[4] + 1;
5150         KASSERT(sc->vres.l2t.size <= L2T_SIZE,
5151             ("%s: L2 table size (%u) larger than expected (%u)",
5152             __func__, sc->vres.l2t.size, L2T_SIZE));
5153         sc->params.core_vdd = val[6];
5154
5155         param[0] = FW_PARAM_PFVF(IQFLINT_END);
5156         param[1] = FW_PARAM_PFVF(EQ_END);
5157         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5158         if (rc != 0) {
5159                 device_printf(sc->dev,
5160                     "failed to query parameters (post_init2): %d.\n", rc);
5161                 return (rc);
5162         }
5163         MPASS((int)val[0] >= sc->sge.iq_start);
5164         sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5165         MPASS((int)val[1] >= sc->sge.eq_start);
5166         sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5167
5168         if (chip_id(sc) >= CHELSIO_T6) {
5169
5170                 sc->tids.tid_base = t4_read_reg(sc,
5171                     A_LE_DB_ACTIVE_TABLE_START_INDEX);
5172
5173                 param[0] = FW_PARAM_PFVF(HPFILTER_START);
5174                 param[1] = FW_PARAM_PFVF(HPFILTER_END);
5175                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5176                 if (rc != 0) {
5177                         device_printf(sc->dev,
5178                            "failed to query hpfilter parameters: %d.\n", rc);
5179                         return (rc);
5180                 }
5181                 if ((int)val[1] > (int)val[0]) {
5182                         sc->tids.hpftid_base = val[0];
5183                         sc->tids.hpftid_end = val[1];
5184                         sc->tids.nhpftids = val[1] - val[0] + 1;
5185
5186                         /*
5187                          * These should go off if the layout changes and the
5188                          * driver needs to catch up.
5189                          */
5190                         MPASS(sc->tids.hpftid_base == 0);
5191                         MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5192                 }
5193
5194                 param[0] = FW_PARAM_PFVF(RAWF_START);
5195                 param[1] = FW_PARAM_PFVF(RAWF_END);
5196                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5197                 if (rc != 0) {
5198                         device_printf(sc->dev,
5199                            "failed to query rawf parameters: %d.\n", rc);
5200                         return (rc);
5201                 }
5202                 if ((int)val[1] > (int)val[0]) {
5203                         sc->rawf_base = val[0];
5204                         sc->nrawf = val[1] - val[0] + 1;
5205                 }
5206         }
5207
5208         /*
5209          * MPSBGMAP is queried separately because only recent firmwares support
5210          * it as a parameter and we don't want the compound query above to fail
5211          * on older firmwares.
5212          */
5213         param[0] = FW_PARAM_DEV(MPSBGMAP);
5214         val[0] = 0;
5215         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5216         if (rc == 0)
5217                 sc->params.mps_bg_map = val[0];
5218         else
5219                 sc->params.mps_bg_map = 0;
5220
5221         /*
5222          * Determine whether the firmware supports the filter2 work request.
5223          * This is queried separately for the same reason as MPSBGMAP above.
5224          */
5225         param[0] = FW_PARAM_DEV(FILTER2_WR);
5226         val[0] = 0;
5227         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5228         if (rc == 0)
5229                 sc->params.filter2_wr_support = val[0] != 0;
5230         else
5231                 sc->params.filter2_wr_support = 0;
5232
5233         /*
5234          * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5235          * This is queried separately for the same reason as other params above.
5236          */
5237         param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5238         val[0] = 0;
5239         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5240         if (rc == 0)
5241                 sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5242         else
5243                 sc->params.ulptx_memwrite_dsgl = false;
5244
5245         /* FW_RI_FR_NSMR_TPTE_WR support */
5246         param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5247         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5248         if (rc == 0)
5249                 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5250         else
5251                 sc->params.fr_nsmr_tpte_wr_support = false;
5252
5253         /* Support for 512 SGL entries per FR MR. */
5254         param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5255         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5256         if (rc == 0)
5257                 sc->params.dev_512sgl_mr = val[0] != 0;
5258         else
5259                 sc->params.dev_512sgl_mr = false;
5260
5261         param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5262         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5263         if (rc == 0)
5264                 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5265         else
5266                 sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5267
5268         param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5269         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5270         if (rc == 0) {
5271                 MPASS(val[0] > 0 && val[0] < 256);      /* nsched_cls is 8b */
5272                 sc->params.nsched_cls = val[0];
5273         } else
5274                 sc->params.nsched_cls = sc->chip_params->nsched_cls;
5275
5276         /* get capabilites */
5277         bzero(&caps, sizeof(caps));
5278         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5279             F_FW_CMD_REQUEST | F_FW_CMD_READ);
5280         caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5281         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5282         if (rc != 0) {
5283                 device_printf(sc->dev,
5284                     "failed to get card capabilities: %d.\n", rc);
5285                 return (rc);
5286         }
5287
5288 #define READ_CAPS(x) do { \
5289         sc->x = htobe16(caps.x); \
5290 } while (0)
5291         READ_CAPS(nbmcaps);
5292         READ_CAPS(linkcaps);
5293         READ_CAPS(switchcaps);
5294         READ_CAPS(niccaps);
5295         READ_CAPS(toecaps);
5296         READ_CAPS(rdmacaps);
5297         READ_CAPS(cryptocaps);
5298         READ_CAPS(iscsicaps);
5299         READ_CAPS(fcoecaps);
5300
5301         if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5302                 MPASS(chip_id(sc) > CHELSIO_T4);
5303                 MPASS(sc->toecaps == 0);
5304                 sc->toecaps = 0;
5305
5306                 param[0] = FW_PARAM_DEV(NTID);
5307                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5308                 if (rc != 0) {
5309                         device_printf(sc->dev,
5310                             "failed to query HASHFILTER parameters: %d.\n", rc);
5311                         return (rc);
5312                 }
5313                 sc->tids.ntids = val[0];
5314                 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5315                         MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5316                         sc->tids.ntids -= sc->tids.nhpftids;
5317                 }
5318                 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5319                 sc->params.hash_filter = 1;
5320         }
5321         if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5322                 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5323                 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5324                 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5325                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5326                 if (rc != 0) {
5327                         device_printf(sc->dev,
5328                             "failed to query NIC parameters: %d.\n", rc);
5329                         return (rc);
5330                 }
5331                 if ((int)val[1] > (int)val[0]) {
5332                         sc->tids.etid_base = val[0];
5333                         sc->tids.etid_end = val[1];
5334                         sc->tids.netids = val[1] - val[0] + 1;
5335                         sc->params.eo_wr_cred = val[2];
5336                         sc->params.ethoffload = 1;
5337                 }
5338         }
5339         if (sc->toecaps) {
5340                 /* query offload-related parameters */
5341                 param[0] = FW_PARAM_DEV(NTID);
5342                 param[1] = FW_PARAM_PFVF(SERVER_START);
5343                 param[2] = FW_PARAM_PFVF(SERVER_END);
5344                 param[3] = FW_PARAM_PFVF(TDDP_START);
5345                 param[4] = FW_PARAM_PFVF(TDDP_END);
5346                 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5347                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5348                 if (rc != 0) {
5349                         device_printf(sc->dev,
5350                             "failed to query TOE parameters: %d.\n", rc);
5351                         return (rc);
5352                 }
5353                 sc->tids.ntids = val[0];
5354                 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5355                         MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5356                         sc->tids.ntids -= sc->tids.nhpftids;
5357                 }
5358                 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5359                 if ((int)val[2] > (int)val[1]) {
5360                         sc->tids.stid_base = val[1];
5361                         sc->tids.nstids = val[2] - val[1] + 1;
5362                 }
5363                 sc->vres.ddp.start = val[3];
5364                 sc->vres.ddp.size = val[4] - val[3] + 1;
5365                 sc->params.ofldq_wr_cred = val[5];
5366                 sc->params.offload = 1;
5367         } else {
5368                 /*
5369                  * The firmware attempts memfree TOE configuration for -SO cards
5370                  * and will report toecaps=0 if it runs out of resources (this
5371                  * depends on the config file).  It may not report 0 for other
5372                  * capabilities dependent on the TOE in this case.  Set them to
5373                  * 0 here so that the driver doesn't bother tracking resources
5374                  * that will never be used.
5375                  */
5376                 sc->iscsicaps = 0;
5377                 sc->rdmacaps = 0;
5378         }
5379         if (sc->rdmacaps) {
5380                 param[0] = FW_PARAM_PFVF(STAG_START);
5381                 param[1] = FW_PARAM_PFVF(STAG_END);
5382                 param[2] = FW_PARAM_PFVF(RQ_START);
5383                 param[3] = FW_PARAM_PFVF(RQ_END);
5384                 param[4] = FW_PARAM_PFVF(PBL_START);
5385                 param[5] = FW_PARAM_PFVF(PBL_END);
5386                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5387                 if (rc != 0) {
5388                         device_printf(sc->dev,
5389                             "failed to query RDMA parameters(1): %d.\n", rc);
5390                         return (rc);
5391                 }
5392                 sc->vres.stag.start = val[0];
5393                 sc->vres.stag.size = val[1] - val[0] + 1;
5394                 sc->vres.rq.start = val[2];
5395                 sc->vres.rq.size = val[3] - val[2] + 1;
5396                 sc->vres.pbl.start = val[4];
5397                 sc->vres.pbl.size = val[5] - val[4] + 1;
5398
5399                 param[0] = FW_PARAM_PFVF(SQRQ_START);
5400                 param[1] = FW_PARAM_PFVF(SQRQ_END);
5401                 param[2] = FW_PARAM_PFVF(CQ_START);
5402                 param[3] = FW_PARAM_PFVF(CQ_END);
5403                 param[4] = FW_PARAM_PFVF(OCQ_START);
5404                 param[5] = FW_PARAM_PFVF(OCQ_END);
5405                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5406                 if (rc != 0) {
5407                         device_printf(sc->dev,
5408                             "failed to query RDMA parameters(2): %d.\n", rc);
5409                         return (rc);
5410                 }
5411                 sc->vres.qp.start = val[0];
5412                 sc->vres.qp.size = val[1] - val[0] + 1;
5413                 sc->vres.cq.start = val[2];
5414                 sc->vres.cq.size = val[3] - val[2] + 1;
5415                 sc->vres.ocq.start = val[4];
5416                 sc->vres.ocq.size = val[5] - val[4] + 1;
5417
5418                 param[0] = FW_PARAM_PFVF(SRQ_START);
5419                 param[1] = FW_PARAM_PFVF(SRQ_END);
5420                 param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
5421                 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5422                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5423                 if (rc != 0) {
5424                         device_printf(sc->dev,
5425                             "failed to query RDMA parameters(3): %d.\n", rc);
5426                         return (rc);
5427                 }
5428                 sc->vres.srq.start = val[0];
5429                 sc->vres.srq.size = val[1] - val[0] + 1;
5430                 sc->params.max_ordird_qp = val[2];
5431                 sc->params.max_ird_adapter = val[3];
5432         }
5433         if (sc->iscsicaps) {
5434                 param[0] = FW_PARAM_PFVF(ISCSI_START);
5435                 param[1] = FW_PARAM_PFVF(ISCSI_END);
5436                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5437                 if (rc != 0) {
5438                         device_printf(sc->dev,
5439                             "failed to query iSCSI parameters: %d.\n", rc);
5440                         return (rc);
5441                 }
5442                 sc->vres.iscsi.start = val[0];
5443                 sc->vres.iscsi.size = val[1] - val[0] + 1;
5444         }
5445         if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5446                 param[0] = FW_PARAM_PFVF(TLS_START);
5447                 param[1] = FW_PARAM_PFVF(TLS_END);
5448                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5449                 if (rc != 0) {
5450                         device_printf(sc->dev,
5451                             "failed to query TLS parameters: %d.\n", rc);
5452                         return (rc);
5453                 }
5454                 sc->vres.key.start = val[0];
5455                 sc->vres.key.size = val[1] - val[0] + 1;
5456         }
5457
5458         /*
5459          * We've got the params we wanted to query directly from the firmware.
5460          * Grab some others via other means.
5461          */
5462         t4_init_sge_params(sc);
5463         t4_init_tp_params(sc);
5464         t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5465         t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5466
5467         rc = t4_verify_chip_settings(sc);
5468         if (rc != 0)
5469                 return (rc);
5470         t4_init_rx_buf_info(sc);
5471
5472         return (rc);
5473 }
5474
5475 #ifdef KERN_TLS
5476 static void
5477 ktls_tick(void *arg)
5478 {
5479         struct adapter *sc;
5480         uint32_t tstamp;
5481
5482         sc = arg;
5483         tstamp = tcp_ts_getticks();
5484         t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5485         t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5486         callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5487 }
5488
5489 static int
5490 t4_config_kern_tls(struct adapter *sc, bool enable)
5491 {
5492         int rc;
5493         uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5494             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
5495             V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
5496             V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
5497
5498         rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &param);
5499         if (rc != 0) {
5500                 CH_ERR(sc, "failed to %s NIC TLS: %d\n",
5501                     enable ?  "enable" : "disable", rc);
5502                 return (rc);
5503         }
5504
5505         if (enable) {
5506                 sc->flags |= KERN_TLS_ON;
5507                 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5508                     C_HARDCLOCK);
5509         } else {
5510                 sc->flags &= ~KERN_TLS_ON;
5511                 callout_stop(&sc->ktls_tick);
5512         }
5513
5514         return (rc);
5515 }
5516 #endif
5517
5518 static int
5519 set_params__post_init(struct adapter *sc)
5520 {
5521         uint32_t mask, param, val;
5522 #ifdef TCP_OFFLOAD
5523         int i, v, shift;
5524 #endif
5525
5526         /* ask for encapsulated CPLs */
5527         param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5528         val = 1;
5529         (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5530
5531         /* Enable 32b port caps if the firmware supports it. */
5532         param = FW_PARAM_PFVF(PORT_CAPS32);
5533         val = 1;
5534         if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
5535                 sc->params.port_caps32 = 1;
5536
5537         /* Let filter + maskhash steer to a part of the VI's RSS region. */
5538         val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
5539         t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
5540             V_MASKFILTER(val - 1));
5541
5542         mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
5543             F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
5544             F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5545             F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
5546         val = 0;
5547         if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
5548                 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
5549                     F_ATTACKFILTERENABLE);
5550                 val |= F_DROPERRORATTACK;
5551         }
5552         if (t4_drop_ip_fragments != 0) {
5553                 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
5554                     F_FRAGMENTDROP);
5555                 val |= F_DROPERRORFRAG;
5556         }
5557         if (t4_drop_pkts_with_l2_errors != 0)
5558                 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
5559         if (t4_drop_pkts_with_l3_errors != 0) {
5560                 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
5561                     F_DROPERRORCSUMIP;
5562         }
5563         if (t4_drop_pkts_with_l4_errors != 0) {
5564                 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5565                     F_DROPERRORTCPOPT | F_DROPERRORCSUM;
5566         }
5567         t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
5568
5569 #ifdef TCP_OFFLOAD
5570         /*
5571          * Override the TOE timers with user provided tunables.  This is not the
5572          * recommended way to change the timers (the firmware config file is) so
5573          * these tunables are not documented.
5574          *
5575          * All the timer tunables are in microseconds.
5576          */
5577         if (t4_toe_keepalive_idle != 0) {
5578                 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
5579                 v &= M_KEEPALIVEIDLE;
5580                 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
5581                     V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
5582         }
5583         if (t4_toe_keepalive_interval != 0) {
5584                 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
5585                 v &= M_KEEPALIVEINTVL;
5586                 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
5587                     V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
5588         }
5589         if (t4_toe_keepalive_count != 0) {
5590                 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
5591                 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5592                     V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
5593                     V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
5594                     V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
5595         }
5596         if (t4_toe_rexmt_min != 0) {
5597                 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
5598                 v &= M_RXTMIN;
5599                 t4_set_reg_field(sc, A_TP_RXT_MIN,
5600                     V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
5601         }
5602         if (t4_toe_rexmt_max != 0) {
5603                 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
5604                 v &= M_RXTMAX;
5605                 t4_set_reg_field(sc, A_TP_RXT_MAX,
5606                     V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
5607         }
5608         if (t4_toe_rexmt_count != 0) {
5609                 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
5610                 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5611                     V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
5612                     V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
5613                     V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
5614         }
5615         for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
5616                 if (t4_toe_rexmt_backoff[i] != -1) {
5617                         v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
5618                         shift = (i & 3) << 3;
5619                         t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
5620                             M_TIMERBACKOFFINDEX0 << shift, v << shift);
5621                 }
5622         }
5623 #endif
5624
5625 #ifdef KERN_TLS
5626         if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
5627             sc->toecaps & FW_CAPS_CONFIG_TOE) {
5628                 /*
5629                  * Limit TOE connections to 2 reassembly "islands".  This is
5630                  * required for TOE TLS connections to downgrade to plain TOE
5631                  * connections if an unsupported TLS version or ciphersuite is
5632                  * used.
5633                  */
5634                 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG,
5635                     V_PASSMODE(M_PASSMODE), V_PASSMODE(2));
5636                 if (is_ktls(sc)) {
5637                         sc->tlst.inline_keys = t4_tls_inline_keys;
5638                         sc->tlst.combo_wrs = t4_tls_combo_wrs;
5639                         if (t4_kern_tls != 0)
5640                                 t4_config_kern_tls(sc, true);
5641                 }
5642         }
5643 #endif
5644         return (0);
5645 }
5646
5647 #undef FW_PARAM_PFVF
5648 #undef FW_PARAM_DEV
5649
5650 static void
5651 t4_set_desc(struct adapter *sc)
5652 {
5653         char buf[128];
5654         struct adapter_params *p = &sc->params;
5655
5656         snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
5657
5658         device_set_desc_copy(sc->dev, buf);
5659 }
5660
5661 static inline void
5662 ifmedia_add4(struct ifmedia *ifm, int m)
5663 {
5664
5665         ifmedia_add(ifm, m, 0, NULL);
5666         ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
5667         ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
5668         ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
5669 }
5670
5671 /*
5672  * This is the selected media, which is not quite the same as the active media.
5673  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
5674  * and active are not the same, and "media: Ethernet selected" otherwise.
5675  */
5676 static void
5677 set_current_media(struct port_info *pi)
5678 {
5679         struct link_config *lc;
5680         struct ifmedia *ifm;
5681         int mword;
5682         u_int speed;
5683
5684         PORT_LOCK_ASSERT_OWNED(pi);
5685
5686         /* Leave current media alone if it's already set to IFM_NONE. */
5687         ifm = &pi->media;
5688         if (ifm->ifm_cur != NULL &&
5689             IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
5690                 return;
5691
5692         lc = &pi->link_cfg;
5693         if (lc->requested_aneg != AUTONEG_DISABLE &&
5694             lc->pcaps & FW_PORT_CAP32_ANEG) {
5695                 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
5696                 return;
5697         }
5698         mword = IFM_ETHER | IFM_FDX;
5699         if (lc->requested_fc & PAUSE_TX)
5700                 mword |= IFM_ETH_TXPAUSE;
5701         if (lc->requested_fc & PAUSE_RX)
5702                 mword |= IFM_ETH_RXPAUSE;
5703         if (lc->requested_speed == 0)
5704                 speed = port_top_speed(pi) * 1000;      /* Gbps -> Mbps */
5705         else
5706                 speed = lc->requested_speed;
5707         mword |= port_mword(pi, speed_to_fwcap(speed));
5708         ifmedia_set(ifm, mword);
5709 }
5710
5711 /*
5712  * Returns true if the ifmedia list for the port cannot change.
5713  */
5714 static bool
5715 fixed_ifmedia(struct port_info *pi)
5716 {
5717
5718         return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
5719             pi->port_type == FW_PORT_TYPE_BT_XFI ||
5720             pi->port_type == FW_PORT_TYPE_BT_XAUI ||
5721             pi->port_type == FW_PORT_TYPE_KX4 ||
5722             pi->port_type == FW_PORT_TYPE_KX ||
5723             pi->port_type == FW_PORT_TYPE_KR ||
5724             pi->port_type == FW_PORT_TYPE_BP_AP ||
5725             pi->port_type == FW_PORT_TYPE_BP4_AP ||
5726             pi->port_type == FW_PORT_TYPE_BP40_BA ||
5727             pi->port_type == FW_PORT_TYPE_KR4_100G ||
5728             pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
5729             pi->port_type == FW_PORT_TYPE_KR_XLAUI);
5730 }
5731
5732 static void
5733 build_medialist(struct port_info *pi)
5734 {
5735         uint32_t ss, speed;
5736         int unknown, mword, bit;
5737         struct link_config *lc;
5738         struct ifmedia *ifm;
5739
5740         PORT_LOCK_ASSERT_OWNED(pi);
5741
5742         if (pi->flags & FIXED_IFMEDIA)
5743                 return;
5744
5745         /*
5746          * Rebuild the ifmedia list.
5747          */
5748         ifm = &pi->media;
5749         ifmedia_removeall(ifm);
5750         lc = &pi->link_cfg;
5751         ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
5752         if (__predict_false(ss == 0)) { /* not supposed to happen. */
5753                 MPASS(ss != 0);
5754 no_media:
5755                 MPASS(LIST_EMPTY(&ifm->ifm_list));
5756                 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
5757                 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
5758                 return;
5759         }
5760
5761         unknown = 0;
5762         for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
5763                 speed = 1 << bit;
5764                 MPASS(speed & M_FW_PORT_CAP32_SPEED);
5765                 if (ss & speed) {
5766                         mword = port_mword(pi, speed);
5767                         if (mword == IFM_NONE) {
5768                                 goto no_media;
5769                         } else if (mword == IFM_UNKNOWN)
5770                                 unknown++;
5771                         else
5772                                 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
5773                 }
5774         }
5775         if (unknown > 0) /* Add one unknown for all unknown media types. */
5776                 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
5777         if (lc->pcaps & FW_PORT_CAP32_ANEG)
5778                 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
5779
5780         set_current_media(pi);
5781 }
5782
5783 /*
5784  * Initialize the requested fields in the link config based on driver tunables.
5785  */
5786 static void
5787 init_link_config(struct port_info *pi)
5788 {
5789         struct link_config *lc = &pi->link_cfg;
5790
5791         PORT_LOCK_ASSERT_OWNED(pi);
5792
5793         lc->requested_caps = 0;
5794         lc->requested_speed = 0;
5795
5796         if (t4_autoneg == 0)
5797                 lc->requested_aneg = AUTONEG_DISABLE;
5798         else if (t4_autoneg == 1)
5799                 lc->requested_aneg = AUTONEG_ENABLE;
5800         else
5801                 lc->requested_aneg = AUTONEG_AUTO;
5802
5803         lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
5804             PAUSE_AUTONEG);
5805
5806         if (t4_fec & FEC_AUTO)
5807                 lc->requested_fec = FEC_AUTO;
5808         else if (t4_fec == 0)
5809                 lc->requested_fec = FEC_NONE;
5810         else {
5811                 /* -1 is handled by the FEC_AUTO block above and not here. */
5812                 lc->requested_fec = t4_fec &
5813                     (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
5814                 if (lc->requested_fec == 0)
5815                         lc->requested_fec = FEC_AUTO;
5816         }
5817         if (t4_force_fec < 0)
5818                 lc->force_fec = -1;
5819         else if (t4_force_fec > 0)
5820                 lc->force_fec = 1;
5821         else
5822                 lc->force_fec = 0;
5823 }
5824
5825 /*
5826  * Makes sure that all requested settings comply with what's supported by the
5827  * port.  Returns the number of settings that were invalid and had to be fixed.
5828  */
5829 static int
5830 fixup_link_config(struct port_info *pi)
5831 {
5832         int n = 0;
5833         struct link_config *lc = &pi->link_cfg;
5834         uint32_t fwspeed;
5835
5836         PORT_LOCK_ASSERT_OWNED(pi);
5837
5838         /* Speed (when not autonegotiating) */
5839         if (lc->requested_speed != 0) {
5840                 fwspeed = speed_to_fwcap(lc->requested_speed);
5841                 if ((fwspeed & lc->pcaps) == 0) {
5842                         n++;
5843                         lc->requested_speed = 0;
5844                 }
5845         }
5846
5847         /* Link autonegotiation */
5848         MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
5849             lc->requested_aneg == AUTONEG_DISABLE ||
5850             lc->requested_aneg == AUTONEG_AUTO);
5851         if (lc->requested_aneg == AUTONEG_ENABLE &&
5852             !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
5853                 n++;
5854                 lc->requested_aneg = AUTONEG_AUTO;
5855         }
5856
5857         /* Flow control */
5858         MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
5859         if (lc->requested_fc & PAUSE_TX &&
5860             !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
5861                 n++;
5862                 lc->requested_fc &= ~PAUSE_TX;
5863         }
5864         if (lc->requested_fc & PAUSE_RX &&
5865             !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
5866                 n++;
5867                 lc->requested_fc &= ~PAUSE_RX;
5868         }
5869         if (!(lc->requested_fc & PAUSE_AUTONEG) &&
5870             !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
5871                 n++;
5872                 lc->requested_fc |= PAUSE_AUTONEG;
5873         }
5874
5875         /* FEC */
5876         if ((lc->requested_fec & FEC_RS &&
5877             !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
5878             (lc->requested_fec & FEC_BASER_RS &&
5879             !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
5880                 n++;
5881                 lc->requested_fec = FEC_AUTO;
5882         }
5883
5884         return (n);
5885 }
5886
5887 /*
5888  * Apply the requested L1 settings, which are expected to be valid, to the
5889  * hardware.
5890  */
5891 static int
5892 apply_link_config(struct port_info *pi)
5893 {
5894         struct adapter *sc = pi->adapter;
5895         struct link_config *lc = &pi->link_cfg;
5896         int rc;
5897
5898 #ifdef INVARIANTS
5899         ASSERT_SYNCHRONIZED_OP(sc);
5900         PORT_LOCK_ASSERT_OWNED(pi);
5901
5902         if (lc->requested_aneg == AUTONEG_ENABLE)
5903                 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
5904         if (!(lc->requested_fc & PAUSE_AUTONEG))
5905                 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
5906         if (lc->requested_fc & PAUSE_TX)
5907                 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
5908         if (lc->requested_fc & PAUSE_RX)
5909                 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
5910         if (lc->requested_fec & FEC_RS)
5911                 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
5912         if (lc->requested_fec & FEC_BASER_RS)
5913                 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
5914 #endif
5915         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
5916         if (rc != 0) {
5917                 /* Don't complain if the VF driver gets back an EPERM. */
5918                 if (!(sc->flags & IS_VF) || rc != FW_EPERM)
5919                         device_printf(pi->dev, "l1cfg failed: %d\n", rc);
5920         } else {
5921                 /*
5922                  * An L1_CFG will almost always result in a link-change event if
5923                  * the link is up, and the driver will refresh the actual
5924                  * fec/fc/etc. when the notification is processed.  If the link
5925                  * is down then the actual settings are meaningless.
5926                  *
5927                  * This takes care of the case where a change in the L1 settings
5928                  * may not result in a notification.
5929                  */
5930                 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
5931                         lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
5932         }
5933         return (rc);
5934 }
5935
5936 #define FW_MAC_EXACT_CHUNK      7
5937 struct mcaddr_ctx {
5938         struct ifnet *ifp;
5939         const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
5940         uint64_t hash;
5941         int i;
5942         int del;
5943         int rc;
5944 };
5945
5946 static u_int
5947 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
5948 {
5949         struct mcaddr_ctx *ctx = arg;
5950         struct vi_info *vi = ctx->ifp->if_softc;
5951         struct port_info *pi = vi->pi;
5952         struct adapter *sc = pi->adapter;
5953
5954         if (ctx->rc < 0)
5955                 return (0);
5956
5957         ctx->mcaddr[ctx->i] = LLADDR(sdl);
5958         MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
5959         ctx->i++;
5960
5961         if (ctx->i == FW_MAC_EXACT_CHUNK) {
5962                 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
5963                     ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
5964                 if (ctx->rc < 0) {
5965                         int j;
5966
5967                         for (j = 0; j < ctx->i; j++) {
5968                                 if_printf(ctx->ifp,
5969                                     "failed to add mc address"
5970                                     " %02x:%02x:%02x:"
5971                                     "%02x:%02x:%02x rc=%d\n",
5972                                     ctx->mcaddr[j][0], ctx->mcaddr[j][1],
5973                                     ctx->mcaddr[j][2], ctx->mcaddr[j][3],
5974                                     ctx->mcaddr[j][4], ctx->mcaddr[j][5],
5975                                     -ctx->rc);
5976                         }
5977                         return (0);
5978                 }
5979                 ctx->del = 0;
5980                 ctx->i = 0;
5981         }
5982
5983         return (1);
5984 }
5985
5986 /*
5987  * Program the port's XGMAC based on parameters in ifnet.  The caller also
5988  * indicates which parameters should be programmed (the rest are left alone).
5989  */
5990 int
5991 update_mac_settings(struct ifnet *ifp, int flags)
5992 {
5993         int rc = 0;
5994         struct vi_info *vi = ifp->if_softc;
5995         struct port_info *pi = vi->pi;
5996         struct adapter *sc = pi->adapter;
5997         int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
5998         uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
5999
6000         ASSERT_SYNCHRONIZED_OP(sc);
6001         KASSERT(flags, ("%s: not told what to update.", __func__));
6002
6003         if (flags & XGMAC_MTU)
6004                 mtu = ifp->if_mtu;
6005
6006         if (flags & XGMAC_PROMISC)
6007                 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
6008
6009         if (flags & XGMAC_ALLMULTI)
6010                 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
6011
6012         if (flags & XGMAC_VLANEX)
6013                 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6014
6015         if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6016                 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6017                     allmulti, 1, vlanex, false);
6018                 if (rc) {
6019                         if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6020                             rc);
6021                         return (rc);
6022                 }
6023         }
6024
6025         if (flags & XGMAC_UCADDR) {
6026                 uint8_t ucaddr[ETHER_ADDR_LEN];
6027
6028                 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
6029                 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6030                     ucaddr, true, &vi->smt_idx);
6031                 if (rc < 0) {
6032                         rc = -rc;
6033                         if_printf(ifp, "change_mac failed: %d\n", rc);
6034                         return (rc);
6035                 } else {
6036                         vi->xact_addr_filt = rc;
6037                         rc = 0;
6038                 }
6039         }
6040
6041         if (flags & XGMAC_MCADDRS) {
6042                 struct epoch_tracker et;
6043                 struct mcaddr_ctx ctx;
6044                 int j;
6045
6046                 ctx.ifp = ifp;
6047                 ctx.hash = 0;
6048                 ctx.i = 0;
6049                 ctx.del = 1;
6050                 ctx.rc = 0;
6051                 /*
6052                  * Unlike other drivers, we accumulate list of pointers into
6053                  * interface address lists and we need to keep it safe even
6054                  * after if_foreach_llmaddr() returns, thus we must enter the
6055                  * network epoch.
6056                  */
6057                 NET_EPOCH_ENTER(et);
6058                 if_foreach_llmaddr(ifp, add_maddr, &ctx);
6059                 if (ctx.rc < 0) {
6060                         NET_EPOCH_EXIT(et);
6061                         rc = -ctx.rc;
6062                         return (rc);
6063                 }
6064                 if (ctx.i > 0) {
6065                         rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6066                             ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6067                         NET_EPOCH_EXIT(et);
6068                         if (rc < 0) {
6069                                 rc = -rc;
6070                                 for (j = 0; j < ctx.i; j++) {
6071                                         if_printf(ifp,
6072                                             "failed to add mcast address"
6073                                             " %02x:%02x:%02x:"
6074                                             "%02x:%02x:%02x rc=%d\n",
6075                                             ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6076                                             ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6077                                             ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6078                                             rc);
6079                                 }
6080                                 return (rc);
6081                         }
6082                         ctx.del = 0;
6083                 } else
6084                         NET_EPOCH_EXIT(et);
6085
6086                 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6087                 if (rc != 0)
6088                         if_printf(ifp, "failed to set mcast address hash: %d\n",
6089                             rc);
6090                 if (ctx.del == 0) {
6091                         /* We clobbered the VXLAN entry if there was one. */
6092                         pi->vxlan_tcam_entry = false;
6093                 }
6094         }
6095
6096         if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6097             pi->vxlan_tcam_entry == false) {
6098                 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6099                     match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6100                     true);
6101                 if (rc < 0) {
6102                         rc = -rc;
6103                         if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6104                             rc);
6105                 } else {
6106                         MPASS(rc == sc->rawf_base + pi->port_id);
6107                         rc = 0;
6108                         pi->vxlan_tcam_entry = true;
6109                 }
6110         }
6111
6112         return (rc);
6113 }
6114
6115 /*
6116  * {begin|end}_synchronized_op must be called from the same thread.
6117  */
6118 int
6119 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6120     char *wmesg)
6121 {
6122         int rc, pri;
6123
6124 #ifdef WITNESS
6125         /* the caller thinks it's ok to sleep, but is it really? */
6126         if (flags & SLEEP_OK)
6127                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
6128                     "begin_synchronized_op");
6129 #endif
6130
6131         if (INTR_OK)
6132                 pri = PCATCH;
6133         else
6134                 pri = 0;
6135
6136         ADAPTER_LOCK(sc);
6137         for (;;) {
6138
6139                 if (vi && IS_DOOMED(vi)) {
6140                         rc = ENXIO;
6141                         goto done;
6142                 }
6143
6144                 if (!IS_BUSY(sc)) {
6145                         rc = 0;
6146                         break;
6147                 }
6148
6149                 if (!(flags & SLEEP_OK)) {
6150                         rc = EBUSY;
6151                         goto done;
6152                 }
6153
6154                 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
6155                         rc = EINTR;
6156                         goto done;
6157                 }
6158         }
6159
6160         KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6161         SET_BUSY(sc);
6162 #ifdef INVARIANTS
6163         sc->last_op = wmesg;
6164         sc->last_op_thr = curthread;
6165         sc->last_op_flags = flags;
6166 #endif
6167
6168 done:
6169         if (!(flags & HOLD_LOCK) || rc)
6170                 ADAPTER_UNLOCK(sc);
6171
6172         return (rc);
6173 }
6174
6175 /*
6176  * Tell if_ioctl and if_init that the VI is going away.  This is
6177  * special variant of begin_synchronized_op and must be paired with a
6178  * call to end_synchronized_op.
6179  */
6180 void
6181 doom_vi(struct adapter *sc, struct vi_info *vi)
6182 {
6183
6184         ADAPTER_LOCK(sc);
6185         SET_DOOMED(vi);
6186         wakeup(&sc->flags);
6187         while (IS_BUSY(sc))
6188                 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6189         SET_BUSY(sc);
6190 #ifdef INVARIANTS
6191         sc->last_op = "t4detach";
6192         sc->last_op_thr = curthread;
6193         sc->last_op_flags = 0;
6194 #endif
6195         ADAPTER_UNLOCK(sc);
6196 }
6197
6198 /*
6199  * {begin|end}_synchronized_op must be called from the same thread.
6200  */
6201 void
6202 end_synchronized_op(struct adapter *sc, int flags)
6203 {
6204
6205         if (flags & LOCK_HELD)
6206                 ADAPTER_LOCK_ASSERT_OWNED(sc);
6207         else
6208                 ADAPTER_LOCK(sc);
6209
6210         KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6211         CLR_BUSY(sc);
6212         wakeup(&sc->flags);
6213         ADAPTER_UNLOCK(sc);
6214 }
6215
6216 static int
6217 cxgbe_init_synchronized(struct vi_info *vi)
6218 {
6219         struct port_info *pi = vi->pi;
6220         struct adapter *sc = pi->adapter;
6221         struct ifnet *ifp = vi->ifp;
6222         int rc = 0, i;
6223         struct sge_txq *txq;
6224
6225         ASSERT_SYNCHRONIZED_OP(sc);
6226
6227         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6228                 return (0);     /* already running */
6229
6230         if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6231                 return (rc);    /* error message displayed already */
6232
6233         if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6234                 return (rc); /* error message displayed already */
6235
6236         rc = update_mac_settings(ifp, XGMAC_ALL);
6237         if (rc)
6238                 goto done;      /* error message displayed already */
6239
6240         PORT_LOCK(pi);
6241         if (pi->up_vis == 0) {
6242                 t4_update_port_info(pi);
6243                 fixup_link_config(pi);
6244                 build_medialist(pi);
6245                 apply_link_config(pi);
6246         }
6247
6248         rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6249         if (rc != 0) {
6250                 if_printf(ifp, "enable_vi failed: %d\n", rc);
6251                 PORT_UNLOCK(pi);
6252                 goto done;
6253         }
6254
6255         /*
6256          * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
6257          * if this changes.
6258          */
6259
6260         for_each_txq(vi, i, txq) {
6261                 TXQ_LOCK(txq);
6262                 txq->eq.flags |= EQ_ENABLED;
6263                 TXQ_UNLOCK(txq);
6264         }
6265
6266         /*
6267          * The first iq of the first port to come up is used for tracing.
6268          */
6269         if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6270                 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6271                 t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
6272                     A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
6273                     V_QUEUENUMBER(sc->traceq));
6274                 pi->flags |= HAS_TRACEQ;
6275         }
6276
6277         /* all ok */
6278         pi->up_vis++;
6279         ifp->if_drv_flags |= IFF_DRV_RUNNING;
6280         if (pi->link_cfg.link_ok)
6281                 t4_os_link_changed(pi);
6282         PORT_UNLOCK(pi);
6283
6284         mtx_lock(&vi->tick_mtx);
6285         if (ifp->if_get_counter == vi_get_counter)
6286                 callout_reset(&vi->tick, hz, vi_tick, vi);
6287         else
6288                 callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6289         mtx_unlock(&vi->tick_mtx);
6290 done:
6291         if (rc != 0)
6292                 cxgbe_uninit_synchronized(vi);
6293
6294         return (rc);
6295 }
6296
6297 /*
6298  * Idempotent.
6299  */
6300 static int
6301 cxgbe_uninit_synchronized(struct vi_info *vi)
6302 {
6303         struct port_info *pi = vi->pi;
6304         struct adapter *sc = pi->adapter;
6305         struct ifnet *ifp = vi->ifp;
6306         int rc, i;
6307         struct sge_txq *txq;
6308
6309         ASSERT_SYNCHRONIZED_OP(sc);
6310
6311         if (!(vi->flags & VI_INIT_DONE)) {
6312                 if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6313                         KASSERT(0, ("uninited VI is running"));
6314                         if_printf(ifp, "uninited VI with running ifnet.  "
6315                             "vi->flags 0x%016lx, if_flags 0x%08x, "
6316                             "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags,
6317                             ifp->if_drv_flags);
6318                 }
6319                 return (0);
6320         }
6321
6322         /*
6323          * Disable the VI so that all its data in either direction is discarded
6324          * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
6325          * tick) intact as the TP can deliver negative advice or data that it's
6326          * holding in its RAM (for an offloaded connection) even after the VI is
6327          * disabled.
6328          */
6329         rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6330         if (rc) {
6331                 if_printf(ifp, "disable_vi failed: %d\n", rc);
6332                 return (rc);
6333         }
6334
6335         for_each_txq(vi, i, txq) {
6336                 TXQ_LOCK(txq);
6337                 txq->eq.flags &= ~EQ_ENABLED;
6338                 TXQ_UNLOCK(txq);
6339         }
6340
6341         mtx_lock(&vi->tick_mtx);
6342         callout_stop(&vi->tick);
6343         mtx_unlock(&vi->tick_mtx);
6344
6345         PORT_LOCK(pi);
6346         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6347                 PORT_UNLOCK(pi);
6348                 return (0);
6349         }
6350         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
6351         pi->up_vis--;
6352         if (pi->up_vis > 0) {
6353                 PORT_UNLOCK(pi);
6354                 return (0);
6355         }
6356
6357         pi->link_cfg.link_ok = false;
6358         pi->link_cfg.speed = 0;
6359         pi->link_cfg.link_down_rc = 255;
6360         t4_os_link_changed(pi);
6361         PORT_UNLOCK(pi);
6362
6363         return (0);
6364 }
6365
6366 /*
6367  * It is ok for this function to fail midway and return right away.  t4_detach
6368  * will walk the entire sc->irq list and clean up whatever is valid.
6369  */
6370 int
6371 t4_setup_intr_handlers(struct adapter *sc)
6372 {
6373         int rc, rid, p, q, v;
6374         char s[8];
6375         struct irq *irq;
6376         struct port_info *pi;
6377         struct vi_info *vi;
6378         struct sge *sge = &sc->sge;
6379         struct sge_rxq *rxq;
6380 #ifdef TCP_OFFLOAD
6381         struct sge_ofld_rxq *ofld_rxq;
6382 #endif
6383 #ifdef DEV_NETMAP
6384         struct sge_nm_rxq *nm_rxq;
6385 #endif
6386 #ifdef RSS
6387         int nbuckets = rss_getnumbuckets();
6388 #endif
6389
6390         /*
6391          * Setup interrupts.
6392          */
6393         irq = &sc->irq[0];
6394         rid = sc->intr_type == INTR_INTX ? 0 : 1;
6395         if (forwarding_intr_to_fwq(sc))
6396                 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6397
6398         /* Multiple interrupts. */
6399         if (sc->flags & IS_VF)
6400                 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6401                     ("%s: too few intr.", __func__));
6402         else
6403                 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6404                     ("%s: too few intr.", __func__));
6405
6406         /* The first one is always error intr on PFs */
6407         if (!(sc->flags & IS_VF)) {
6408                 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6409                 if (rc != 0)
6410                         return (rc);
6411                 irq++;
6412                 rid++;
6413         }
6414
6415         /* The second one is always the firmware event queue (first on VFs) */
6416         rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6417         if (rc != 0)
6418                 return (rc);
6419         irq++;
6420         rid++;
6421
6422         for_each_port(sc, p) {
6423                 pi = sc->port[p];
6424                 for_each_vi(pi, v, vi) {
6425                         vi->first_intr = rid - 1;
6426
6427                         if (vi->nnmrxq > 0) {
6428                                 int n = max(vi->nrxq, vi->nnmrxq);
6429
6430                                 rxq = &sge->rxq[vi->first_rxq];
6431 #ifdef DEV_NETMAP
6432                                 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6433 #endif
6434                                 for (q = 0; q < n; q++) {
6435                                         snprintf(s, sizeof(s), "%x%c%x", p,
6436                                             'a' + v, q);
6437                                         if (q < vi->nrxq)
6438                                                 irq->rxq = rxq++;
6439 #ifdef DEV_NETMAP
6440                                         if (q < vi->nnmrxq)
6441                                                 irq->nm_rxq = nm_rxq++;
6442
6443                                         if (irq->nm_rxq != NULL &&
6444                                             irq->rxq == NULL) {
6445                                                 /* Netmap rx only */
6446                                                 rc = t4_alloc_irq(sc, irq, rid,
6447                                                     t4_nm_intr, irq->nm_rxq, s);
6448                                         }
6449                                         if (irq->nm_rxq != NULL &&
6450                                             irq->rxq != NULL) {
6451                                                 /* NIC and Netmap rx */
6452                                                 rc = t4_alloc_irq(sc, irq, rid,
6453                                                     t4_vi_intr, irq, s);
6454                                         }
6455 #endif
6456                                         if (irq->rxq != NULL &&
6457                                             irq->nm_rxq == NULL) {
6458                                                 /* NIC rx only */
6459                                                 rc = t4_alloc_irq(sc, irq, rid,
6460                                                     t4_intr, irq->rxq, s);
6461                                         }
6462                                         if (rc != 0)
6463                                                 return (rc);
6464 #ifdef RSS
6465                                         if (q < vi->nrxq) {
6466                                                 bus_bind_intr(sc->dev, irq->res,
6467                                                     rss_getcpu(q % nbuckets));
6468                                         }
6469 #endif
6470                                         irq++;
6471                                         rid++;
6472                                         vi->nintr++;
6473                                 }
6474                         } else {
6475                                 for_each_rxq(vi, q, rxq) {
6476                                         snprintf(s, sizeof(s), "%x%c%x", p,
6477                                             'a' + v, q);
6478                                         rc = t4_alloc_irq(sc, irq, rid,
6479                                             t4_intr, rxq, s);
6480                                         if (rc != 0)
6481                                                 return (rc);
6482 #ifdef RSS
6483                                         bus_bind_intr(sc->dev, irq->res,
6484                                             rss_getcpu(q % nbuckets));
6485 #endif
6486                                         irq++;
6487                                         rid++;
6488                                         vi->nintr++;
6489                                 }
6490                         }
6491 #ifdef TCP_OFFLOAD
6492                         for_each_ofld_rxq(vi, q, ofld_rxq) {
6493                                 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
6494                                 rc = t4_alloc_irq(sc, irq, rid, t4_intr,
6495                                     ofld_rxq, s);
6496                                 if (rc != 0)
6497                                         return (rc);
6498                                 irq++;
6499                                 rid++;
6500                                 vi->nintr++;
6501                         }
6502 #endif
6503                 }
6504         }
6505         MPASS(irq == &sc->irq[sc->intr_count]);
6506
6507         return (0);
6508 }
6509
6510 static void
6511 write_global_rss_key(struct adapter *sc)
6512 {
6513 #ifdef RSS
6514         int i;
6515         uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6516         uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6517
6518         CTASSERT(RSS_KEYSIZE == 40);
6519
6520         rss_getkey((void *)&raw_rss_key[0]);
6521         for (i = 0; i < nitems(rss_key); i++) {
6522                 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
6523         }
6524         t4_write_rss_key(sc, &rss_key[0], -1, 1);
6525 #endif
6526 }
6527
6528 /*
6529  * Idempotent.
6530  */
6531 static int
6532 adapter_full_init(struct adapter *sc)
6533 {
6534         int rc, i;
6535
6536         ASSERT_SYNCHRONIZED_OP(sc);
6537
6538         /*
6539          * queues that belong to the adapter (not any particular port).
6540          */
6541         rc = t4_setup_adapter_queues(sc);
6542         if (rc != 0)
6543                 return (rc);
6544
6545         for (i = 0; i < nitems(sc->tq); i++) {
6546                 if (sc->tq[i] != NULL)
6547                         continue;
6548                 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
6549                     taskqueue_thread_enqueue, &sc->tq[i]);
6550                 if (sc->tq[i] == NULL) {
6551                         CH_ERR(sc, "failed to allocate task queue %d\n", i);
6552                         return (ENOMEM);
6553                 }
6554                 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
6555                     device_get_nameunit(sc->dev), i);
6556         }
6557
6558         if (!(sc->flags & IS_VF)) {
6559                 write_global_rss_key(sc);
6560                 t4_intr_enable(sc);
6561         }
6562         return (0);
6563 }
6564
6565 int
6566 adapter_init(struct adapter *sc)
6567 {
6568         int rc;
6569
6570         ASSERT_SYNCHRONIZED_OP(sc);
6571         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
6572         KASSERT((sc->flags & FULL_INIT_DONE) == 0,
6573             ("%s: FULL_INIT_DONE already", __func__));
6574
6575         rc = adapter_full_init(sc);
6576         if (rc != 0)
6577                 adapter_full_uninit(sc);
6578         else
6579                 sc->flags |= FULL_INIT_DONE;
6580
6581         return (rc);
6582 }
6583
6584 /*
6585  * Idempotent.
6586  */
6587 static void
6588 adapter_full_uninit(struct adapter *sc)
6589 {
6590         int i;
6591
6592         t4_teardown_adapter_queues(sc);
6593
6594         for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
6595                 taskqueue_free(sc->tq[i]);
6596                 sc->tq[i] = NULL;
6597         }
6598
6599         sc->flags &= ~FULL_INIT_DONE;
6600 }
6601
6602 #ifdef RSS
6603 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
6604     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
6605     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
6606     RSS_HASHTYPE_RSS_UDP_IPV6)
6607
6608 /* Translates kernel hash types to hardware. */
6609 static int
6610 hashconfig_to_hashen(int hashconfig)
6611 {
6612         int hashen = 0;
6613
6614         if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
6615                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
6616         if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
6617                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
6618         if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
6619                 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6620                     F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6621         }
6622         if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
6623                 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6624                     F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6625         }
6626         if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
6627                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6628         if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
6629                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6630
6631         return (hashen);
6632 }
6633
6634 /* Translates hardware hash types to kernel. */
6635 static int
6636 hashen_to_hashconfig(int hashen)
6637 {
6638         int hashconfig = 0;
6639
6640         if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
6641                 /*
6642                  * If UDP hashing was enabled it must have been enabled for
6643                  * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
6644                  * enabling any 4-tuple hash is nonsense configuration.
6645                  */
6646                 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6647                     F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
6648
6649                 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6650                         hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
6651                 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6652                         hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
6653         }
6654         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6655                 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
6656         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6657                 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
6658         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
6659                 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
6660         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
6661                 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
6662
6663         return (hashconfig);
6664 }
6665 #endif
6666
6667 /*
6668  * Idempotent.
6669  */
6670 static int
6671 vi_full_init(struct vi_info *vi)
6672 {
6673         struct adapter *sc = vi->adapter;
6674         struct sge_rxq *rxq;
6675         int rc, i, j;
6676 #ifdef RSS
6677         int nbuckets = rss_getnumbuckets();
6678         int hashconfig = rss_gethashconfig();
6679         int extra;
6680 #endif
6681
6682         ASSERT_SYNCHRONIZED_OP(sc);
6683
6684         /*
6685          * Allocate tx/rx/fl queues for this VI.
6686          */
6687         rc = t4_setup_vi_queues(vi);
6688         if (rc != 0)
6689                 return (rc);
6690
6691         /*
6692          * Setup RSS for this VI.  Save a copy of the RSS table for later use.
6693          */
6694         if (vi->nrxq > vi->rss_size) {
6695                 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
6696                     "some queues will never receive traffic.\n", vi->nrxq,
6697                     vi->rss_size);
6698         } else if (vi->rss_size % vi->nrxq) {
6699                 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
6700                     "expect uneven traffic distribution.\n", vi->nrxq,
6701                     vi->rss_size);
6702         }
6703 #ifdef RSS
6704         if (vi->nrxq != nbuckets) {
6705                 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
6706                     "performance will be impacted.\n", vi->nrxq, nbuckets);
6707         }
6708 #endif
6709         if (vi->rss == NULL)
6710                 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
6711                     M_ZERO | M_WAITOK);
6712         for (i = 0; i < vi->rss_size;) {
6713 #ifdef RSS
6714                 j = rss_get_indirection_to_bucket(i);
6715                 j %= vi->nrxq;
6716                 rxq = &sc->sge.rxq[vi->first_rxq + j];
6717                 vi->rss[i++] = rxq->iq.abs_id;
6718 #else
6719                 for_each_rxq(vi, j, rxq) {
6720                         vi->rss[i++] = rxq->iq.abs_id;
6721                         if (i == vi->rss_size)
6722                                 break;
6723                 }
6724 #endif
6725         }
6726
6727         rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
6728             vi->rss, vi->rss_size);
6729         if (rc != 0) {
6730                 CH_ERR(vi, "rss_config failed: %d\n", rc);
6731                 return (rc);
6732         }
6733
6734 #ifdef RSS
6735         vi->hashen = hashconfig_to_hashen(hashconfig);
6736
6737         /*
6738          * We may have had to enable some hashes even though the global config
6739          * wants them disabled.  This is a potential problem that must be
6740          * reported to the user.
6741          */
6742         extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
6743
6744         /*
6745          * If we consider only the supported hash types, then the enabled hashes
6746          * are a superset of the requested hashes.  In other words, there cannot
6747          * be any supported hash that was requested but not enabled, but there
6748          * can be hashes that were not requested but had to be enabled.
6749          */
6750         extra &= SUPPORTED_RSS_HASHTYPES;
6751         MPASS((extra & hashconfig) == 0);
6752
6753         if (extra) {
6754                 CH_ALERT(vi,
6755                     "global RSS config (0x%x) cannot be accommodated.\n",
6756                     hashconfig);
6757         }
6758         if (extra & RSS_HASHTYPE_RSS_IPV4)
6759                 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
6760         if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
6761                 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
6762         if (extra & RSS_HASHTYPE_RSS_IPV6)
6763                 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
6764         if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
6765                 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
6766         if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
6767                 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
6768         if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
6769                 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
6770 #else
6771         vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
6772             F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
6773             F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6774             F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
6775 #endif
6776         rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
6777             0, 0);
6778         if (rc != 0) {
6779                 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
6780                 return (rc);
6781         }
6782
6783         return (0);
6784 }
6785
6786 int
6787 vi_init(struct vi_info *vi)
6788 {
6789         int rc;
6790
6791         ASSERT_SYNCHRONIZED_OP(vi->adapter);
6792         KASSERT((vi->flags & VI_INIT_DONE) == 0,
6793             ("%s: VI_INIT_DONE already", __func__));
6794
6795         rc = vi_full_init(vi);
6796         if (rc != 0)
6797                 vi_full_uninit(vi);
6798         else
6799                 vi->flags |= VI_INIT_DONE;
6800
6801         return (rc);
6802 }
6803
6804 /*
6805  * Idempotent.
6806  */
6807 static void
6808 vi_full_uninit(struct vi_info *vi)
6809 {
6810
6811         if (vi->flags & VI_INIT_DONE) {
6812                 quiesce_vi(vi);
6813                 free(vi->rss, M_CXGBE);
6814                 free(vi->nm_rss, M_CXGBE);
6815         }
6816
6817         t4_teardown_vi_queues(vi);
6818         vi->flags &= ~VI_INIT_DONE;
6819 }
6820
6821 static void
6822 quiesce_txq(struct sge_txq *txq)
6823 {
6824         struct sge_eq *eq = &txq->eq;
6825         struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6826
6827         MPASS(eq->flags & EQ_SW_ALLOCATED);
6828         MPASS(!(eq->flags & EQ_ENABLED));
6829
6830         /* Wait for the mp_ring to empty. */
6831         while (!mp_ring_is_idle(txq->r)) {
6832                 mp_ring_check_drainage(txq->r, 4096);
6833                 pause("rquiesce", 1);
6834         }
6835         MPASS(txq->txp.npkt == 0);
6836
6837         if (eq->flags & EQ_HW_ALLOCATED) {
6838                 /*
6839                  * Hardware is alive and working normally.  Wait for it to
6840                  * finish and then wait for the driver to catch up and reclaim
6841                  * all descriptors.
6842                  */
6843                 while (spg->cidx != htobe16(eq->pidx))
6844                         pause("equiesce", 1);
6845                 while (eq->cidx != eq->pidx)
6846                         pause("dquiesce", 1);
6847         } else {
6848                 /*
6849                  * Hardware is unavailable.  Discard all pending tx and reclaim
6850                  * descriptors directly.
6851                  */
6852                 TXQ_LOCK(txq);
6853                 while (eq->cidx != eq->pidx) {
6854                         struct mbuf *m, *nextpkt;
6855                         struct tx_sdesc *txsd;
6856
6857                         txsd = &txq->sdesc[eq->cidx];
6858                         for (m = txsd->m; m != NULL; m = nextpkt) {
6859                                 nextpkt = m->m_nextpkt;
6860                                 m->m_nextpkt = NULL;
6861                                 m_freem(m);
6862                         }
6863                         IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
6864                 }
6865                 spg->pidx = spg->cidx = htobe16(eq->cidx);
6866                 TXQ_UNLOCK(txq);
6867         }
6868 }
6869
6870 static void
6871 quiesce_wrq(struct sge_wrq *wrq)
6872 {
6873
6874         /* XXXTX */
6875 }
6876
6877 static void
6878 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
6879 {
6880         /* Synchronize with the interrupt handler */
6881         while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
6882                 pause("iqfree", 1);
6883
6884         if (fl != NULL) {
6885                 MPASS(iq->flags & IQ_HAS_FL);
6886
6887                 mtx_lock(&sc->sfl_lock);
6888                 FL_LOCK(fl);
6889                 fl->flags |= FL_DOOMED;
6890                 FL_UNLOCK(fl);
6891                 callout_stop(&sc->sfl_callout);
6892                 mtx_unlock(&sc->sfl_lock);
6893
6894                 KASSERT((fl->flags & FL_STARVING) == 0,
6895                     ("%s: still starving", __func__));
6896
6897                 /* Release all buffers if hardware is no longer available. */
6898                 if (!(iq->flags & IQ_HW_ALLOCATED))
6899                         free_fl_buffers(sc, fl);
6900         }
6901 }
6902
6903 /*
6904  * Wait for all activity on all the queues of the VI to complete.  It is assumed
6905  * that no new work is being enqueued by the hardware or the driver.  That part
6906  * should be arranged before calling this function.
6907  */
6908 static void
6909 quiesce_vi(struct vi_info *vi)
6910 {
6911         int i;
6912         struct adapter *sc = vi->adapter;
6913         struct sge_rxq *rxq;
6914         struct sge_txq *txq;
6915 #ifdef TCP_OFFLOAD
6916         struct sge_ofld_rxq *ofld_rxq;
6917 #endif
6918 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
6919         struct sge_ofld_txq *ofld_txq;
6920 #endif
6921
6922         if (!(vi->flags & VI_INIT_DONE))
6923                 return;
6924
6925         for_each_txq(vi, i, txq) {
6926                 quiesce_txq(txq);
6927         }
6928
6929 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
6930         for_each_ofld_txq(vi, i, ofld_txq) {
6931                 quiesce_wrq(&ofld_txq->wrq);
6932         }
6933 #endif
6934
6935         for_each_rxq(vi, i, rxq) {
6936                 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
6937         }
6938
6939 #ifdef TCP_OFFLOAD
6940         for_each_ofld_rxq(vi, i, ofld_rxq) {
6941                 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
6942         }
6943 #endif
6944 }
6945
6946 static int
6947 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
6948     driver_intr_t *handler, void *arg, char *name)
6949 {
6950         int rc;
6951
6952         irq->rid = rid;
6953         irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
6954             RF_SHAREABLE | RF_ACTIVE);
6955         if (irq->res == NULL) {
6956                 device_printf(sc->dev,
6957                     "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
6958                 return (ENOMEM);
6959         }
6960
6961         rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
6962             NULL, handler, arg, &irq->tag);
6963         if (rc != 0) {
6964                 device_printf(sc->dev,
6965                     "failed to setup interrupt for rid %d, name %s: %d\n",
6966                     rid, name, rc);
6967         } else if (name)
6968                 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
6969
6970         return (rc);
6971 }
6972
6973 static int
6974 t4_free_irq(struct adapter *sc, struct irq *irq)
6975 {
6976         if (irq->tag)
6977                 bus_teardown_intr(sc->dev, irq->res, irq->tag);
6978         if (irq->res)
6979                 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
6980
6981         bzero(irq, sizeof(*irq));
6982
6983         return (0);
6984 }
6985
6986 static void
6987 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
6988 {
6989
6990         regs->version = chip_id(sc) | chip_rev(sc) << 10;
6991         t4_get_regs(sc, buf, regs->len);
6992 }
6993
6994 #define A_PL_INDIR_CMD  0x1f8
6995
6996 #define S_PL_AUTOINC    31
6997 #define M_PL_AUTOINC    0x1U
6998 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
6999 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7000
7001 #define S_PL_VFID       20
7002 #define M_PL_VFID       0xffU
7003 #define V_PL_VFID(x)    ((x) << S_PL_VFID)
7004 #define G_PL_VFID(x)    (((x) >> S_PL_VFID) & M_PL_VFID)
7005
7006 #define S_PL_ADDR       0
7007 #define M_PL_ADDR       0xfffffU
7008 #define V_PL_ADDR(x)    ((x) << S_PL_ADDR)
7009 #define G_PL_ADDR(x)    (((x) >> S_PL_ADDR) & M_PL_ADDR)
7010
7011 #define A_PL_INDIR_DATA 0x1fc
7012
7013 static uint64_t
7014 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7015 {
7016         u32 stats[2];
7017
7018         if (sc->flags & IS_VF) {
7019                 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7020                 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7021         } else {
7022                 mtx_assert(&sc->reg_lock, MA_OWNED);
7023                 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7024                     V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7025                 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7026                 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7027         }
7028         return (((uint64_t)stats[1]) << 32 | stats[0]);
7029 }
7030
7031 static void
7032 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7033 {
7034
7035 #define GET_STAT(name) \
7036         read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7037
7038         if (!(sc->flags & IS_VF))
7039                 mtx_lock(&sc->reg_lock);
7040         stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
7041         stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
7042         stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
7043         stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
7044         stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
7045         stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
7046         stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
7047         stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
7048         stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7049         stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
7050         stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
7051         stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
7052         stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
7053         stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
7054         stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
7055         stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
7056         if (!(sc->flags & IS_VF))
7057                 mtx_unlock(&sc->reg_lock);
7058
7059 #undef GET_STAT
7060 }
7061
7062 static void
7063 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7064 {
7065         int reg;
7066
7067         t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7068             V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7069         for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7070              reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7071                 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7072 }
7073
7074 static void
7075 vi_refresh_stats(struct vi_info *vi)
7076 {
7077         struct timeval tv;
7078         const struct timeval interval = {0, 250000};    /* 250ms */
7079
7080         mtx_assert(&vi->tick_mtx, MA_OWNED);
7081
7082         if (vi->flags & VI_SKIP_STATS)
7083                 return;
7084
7085         getmicrotime(&tv);
7086         timevalsub(&tv, &interval);
7087         if (timevalcmp(&tv, &vi->last_refreshed, <))
7088                 return;
7089
7090         t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7091         getmicrotime(&vi->last_refreshed);
7092 }
7093
7094 static void
7095 cxgbe_refresh_stats(struct vi_info *vi)
7096 {
7097         u_int i, v, tnl_cong_drops, chan_map;
7098         struct timeval tv;
7099         const struct timeval interval = {0, 250000};    /* 250ms */
7100         struct port_info *pi;
7101         struct adapter *sc;
7102
7103         mtx_assert(&vi->tick_mtx, MA_OWNED);
7104
7105         if (vi->flags & VI_SKIP_STATS)
7106                 return;
7107
7108         getmicrotime(&tv);
7109         timevalsub(&tv, &interval);
7110         if (timevalcmp(&tv, &vi->last_refreshed, <))
7111                 return;
7112
7113         pi = vi->pi;
7114         sc = vi->adapter;
7115         tnl_cong_drops = 0;
7116         t4_get_port_stats(sc, pi->port_id, &pi->stats);
7117         chan_map = pi->rx_e_chan_map;
7118         while (chan_map) {
7119                 i = ffs(chan_map) - 1;
7120                 mtx_lock(&sc->reg_lock);
7121                 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7122                     A_TP_MIB_TNL_CNG_DROP_0 + i);
7123                 mtx_unlock(&sc->reg_lock);
7124                 tnl_cong_drops += v;
7125                 chan_map &= ~(1 << i);
7126         }
7127         pi->tnl_cong_drops = tnl_cong_drops;
7128         getmicrotime(&vi->last_refreshed);
7129 }
7130
7131 static void
7132 cxgbe_tick(void *arg)
7133 {
7134         struct vi_info *vi = arg;
7135
7136         MPASS(IS_MAIN_VI(vi));
7137         mtx_assert(&vi->tick_mtx, MA_OWNED);
7138
7139         cxgbe_refresh_stats(vi);
7140         callout_schedule(&vi->tick, hz);
7141 }
7142
7143 static void
7144 vi_tick(void *arg)
7145 {
7146         struct vi_info *vi = arg;
7147
7148         mtx_assert(&vi->tick_mtx, MA_OWNED);
7149
7150         vi_refresh_stats(vi);
7151         callout_schedule(&vi->tick, hz);
7152 }
7153
7154 /*
7155  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7156  */
7157 static char *caps_decoder[] = {
7158         "\20\001IPMI\002NCSI",                          /* 0: NBM */
7159         "\20\001PPP\002QFC\003DCBX",                    /* 1: link */
7160         "\20\001INGRESS\002EGRESS",                     /* 2: switch */
7161         "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"      /* 3: NIC */
7162             "\006HASHFILTER\007ETHOFLD",
7163         "\20\001TOE",                                   /* 4: TOE */
7164         "\20\001RDDP\002RDMAC",                         /* 5: RDMA */
7165         "\20\001INITIATOR_PDU\002TARGET_PDU"            /* 6: iSCSI */
7166             "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7167             "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7168             "\007T10DIF"
7169             "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7170         "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE"   /* 7: Crypto */
7171             "\004TLS_HW",
7172         "\20\001INITIATOR\002TARGET\003CTRL_OFLD"       /* 8: FCoE */
7173                     "\004PO_INITIATOR\005PO_TARGET",
7174 };
7175
7176 void
7177 t4_sysctls(struct adapter *sc)
7178 {
7179         struct sysctl_ctx_list *ctx = &sc->ctx;
7180         struct sysctl_oid *oid;
7181         struct sysctl_oid_list *children, *c0;
7182         static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7183
7184         /*
7185          * dev.t4nex.X.
7186          */
7187         oid = device_get_sysctl_tree(sc->dev);
7188         c0 = children = SYSCTL_CHILDREN(oid);
7189
7190         sc->sc_do_rxcopy = 1;
7191         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7192             &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7193
7194         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7195             sc->params.nports, "# of ports");
7196
7197         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7198             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7199             (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7200             "available doorbells");
7201
7202         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7203             sc->params.vpd.cclk, "core clock frequency (in KHz)");
7204
7205         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7206             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7207             sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7208             sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7209
7210         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7211             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7212             sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7213             sysctl_int_array, "A", "interrupt holdoff packet counter values");
7214
7215         t4_sge_sysctls(sc, ctx, children);
7216
7217         sc->lro_timeout = 100;
7218         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7219             &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7220
7221         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7222             &sc->debug_flags, 0, "flags to enable runtime debugging");
7223
7224         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7225             CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7226
7227         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7228             CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7229
7230         if (sc->flags & IS_VF)
7231                 return;
7232
7233         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7234             NULL, chip_rev(sc), "chip hardware revision");
7235
7236         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7237             CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7238
7239         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7240             CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7241
7242         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7243             CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7244
7245         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7246             CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7247
7248         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7249             CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7250
7251         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7252             sc->er_version, 0, "expansion ROM version");
7253
7254         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7255             sc->bs_version, 0, "bootstrap firmware version");
7256
7257         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7258             NULL, sc->params.scfg_vers, "serial config version");
7259
7260         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7261             NULL, sc->params.vpd_vers, "VPD version");
7262
7263         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7264             CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7265
7266         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7267             sc->cfcsum, "config file checksum");
7268
7269 #define SYSCTL_CAP(name, n, text) \
7270         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7271             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7272             (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7273             "available " text " capabilities")
7274
7275         SYSCTL_CAP(nbmcaps, 0, "NBM");
7276         SYSCTL_CAP(linkcaps, 1, "link");
7277         SYSCTL_CAP(switchcaps, 2, "switch");
7278         SYSCTL_CAP(niccaps, 3, "NIC");
7279         SYSCTL_CAP(toecaps, 4, "TCP offload");
7280         SYSCTL_CAP(rdmacaps, 5, "RDMA");
7281         SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7282         SYSCTL_CAP(cryptocaps, 7, "crypto");
7283         SYSCTL_CAP(fcoecaps, 8, "FCoE");
7284 #undef SYSCTL_CAP
7285
7286         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7287             NULL, sc->tids.nftids, "number of filters");
7288
7289         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7290             CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7291             sysctl_temperature, "I", "chip temperature (in Celsius)");
7292         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7293             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7294             sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7295
7296         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg",
7297             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7298             sysctl_loadavg, "A",
7299             "microprocessor load averages (debug firmwares only)");
7300
7301         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7302             CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7303             "I", "core Vdd (in mV)");
7304
7305         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7306             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7307             sysctl_cpus, "A", "local CPUs");
7308
7309         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7310             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7311             sysctl_cpus, "A", "preferred CPUs for interrupts");
7312
7313         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7314             &sc->swintr, 0, "software triggered interrupts");
7315
7316         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7317             CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7318             "1 = reset adapter, 0 = zero reset counter");
7319
7320         /*
7321          * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
7322          */
7323         oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7324             CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7325             "logs and miscellaneous information");
7326         children = SYSCTL_CHILDREN(oid);
7327
7328         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7329             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7330             sysctl_cctrl, "A", "congestion control");
7331
7332         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
7333             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7334             sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
7335
7336         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
7337             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7338             sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
7339
7340         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
7341             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7342             sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
7343
7344         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
7345             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3,
7346             sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
7347
7348         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
7349             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4,
7350             sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
7351
7352         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
7353             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5,
7354             sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
7355
7356         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
7357             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7358             sysctl_cim_la, "A", "CIM logic analyzer");
7359
7360         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
7361             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7362             sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7363
7364         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
7365             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7366             0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
7367
7368         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
7369             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7370             1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
7371
7372         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
7373             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7374             2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
7375
7376         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
7377             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7378             3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
7379
7380         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
7381             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7382             4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
7383
7384         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
7385             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7386             5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
7387
7388         if (chip_id(sc) > CHELSIO_T4) {
7389                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
7390                     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7391                     6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7392                     "CIM OBQ 6 (SGE0-RX)");
7393
7394                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
7395                     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7396                     7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7397                     "CIM OBQ 7 (SGE1-RX)");
7398         }
7399
7400         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
7401             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7402             sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7403
7404         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
7405             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7406             sysctl_cim_qcfg, "A", "CIM queue configuration");
7407
7408         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
7409             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7410             sysctl_cpl_stats, "A", "CPL statistics");
7411
7412         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
7413             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7414             sysctl_ddp_stats, "A", "non-TCP DDP statistics");
7415
7416         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
7417             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7418             sysctl_tid_stats, "A", "tid stats");
7419
7420         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
7421             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7422             sysctl_devlog, "A", "firmware's device log");
7423
7424         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
7425             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7426             sysctl_fcoe_stats, "A", "FCoE statistics");
7427
7428         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
7429             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7430             sysctl_hw_sched, "A", "hardware scheduler ");
7431
7432         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
7433             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7434             sysctl_l2t, "A", "hardware L2 table");
7435
7436         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
7437             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7438             sysctl_smt, "A", "hardware source MAC table");
7439
7440 #ifdef INET6
7441         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
7442             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7443             sysctl_clip, "A", "active CLIP table entries");
7444 #endif
7445
7446         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
7447             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7448             sysctl_lb_stats, "A", "loopback statistics");
7449
7450         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
7451             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7452             sysctl_meminfo, "A", "memory regions");
7453
7454         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
7455             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7456             chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
7457             "A", "MPS TCAM entries");
7458
7459         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
7460             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7461             sysctl_path_mtus, "A", "path MTUs");
7462
7463         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
7464             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7465             sysctl_pm_stats, "A", "PM statistics");
7466
7467         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
7468             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7469             sysctl_rdma_stats, "A", "RDMA statistics");
7470
7471         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
7472             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7473             sysctl_tcp_stats, "A", "TCP statistics");
7474
7475         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
7476             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7477             sysctl_tids, "A", "TID information");
7478
7479         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
7480             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7481             sysctl_tp_err_stats, "A", "TP error statistics");
7482
7483         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
7484             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7485             sysctl_tnl_stats, "A", "TP tunnel statistics");
7486
7487         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
7488             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7489             sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
7490
7491         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
7492             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7493             sysctl_tp_la, "A", "TP logic analyzer");
7494
7495         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
7496             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7497             sysctl_tx_rate, "A", "Tx rate");
7498
7499         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
7500             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7501             sysctl_ulprx_la, "A", "ULPRX logic analyzer");
7502
7503         if (chip_id(sc) >= CHELSIO_T5) {
7504                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
7505                     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7506                     sysctl_wcwr_stats, "A", "write combined work requests");
7507         }
7508
7509 #ifdef KERN_TLS
7510         if (is_ktls(sc)) {
7511                 /*
7512                  * dev.t4nex.0.tls.
7513                  */
7514                 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
7515                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
7516                 children = SYSCTL_CHILDREN(oid);
7517
7518                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
7519                     CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
7520                     "keys in work requests (1) or attempt to store TLS keys "
7521                     "in card memory.");
7522                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
7523                     CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine "
7524                     "TCB field updates with TLS record work requests.");
7525         }
7526 #endif
7527
7528 #ifdef TCP_OFFLOAD
7529         if (is_offload(sc)) {
7530                 int i;
7531                 char s[4];
7532
7533                 /*
7534                  * dev.t4nex.X.toe.
7535                  */
7536                 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
7537                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
7538                 children = SYSCTL_CHILDREN(oid);
7539
7540                 sc->tt.cong_algorithm = -1;
7541                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
7542                     CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
7543                     "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
7544                     "3 = highspeed)");
7545
7546                 sc->tt.sndbuf = -1;
7547                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
7548                     &sc->tt.sndbuf, 0, "hardware send buffer");
7549
7550                 sc->tt.ddp = 0;
7551                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
7552                     CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
7553                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
7554                     &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
7555
7556                 sc->tt.rx_coalesce = -1;
7557                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
7558                     CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
7559
7560                 sc->tt.tls = 0;
7561                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
7562                     CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
7563                     "Inline TLS allowed");
7564
7565                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports",
7566                     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7567                     sysctl_tls_rx_ports, "I",
7568                     "TCP ports that use inline TLS+TOE RX");
7569
7570                 sc->tt.tls_rx_timeout = t4_toe_tls_rx_timeout;
7571                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_timeout",
7572                     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7573                     sysctl_tls_rx_timeout, "I",
7574                     "Timeout in seconds to downgrade TLS sockets to plain TOE");
7575
7576                 sc->tt.tx_align = -1;
7577                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
7578                     CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
7579
7580                 sc->tt.tx_zcopy = 0;
7581                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
7582                     CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
7583                     "Enable zero-copy aio_write(2)");
7584
7585                 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
7586                 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7587                     "cop_managed_offloading", CTLFLAG_RW,
7588                     &sc->tt.cop_managed_offloading, 0,
7589                     "COP (Connection Offload Policy) controls all TOE offload");
7590
7591                 sc->tt.autorcvbuf_inc = 16 * 1024;
7592                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
7593                     CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
7594                     "autorcvbuf increment");
7595
7596                 sc->tt.update_hc_on_pmtu_change = 1;
7597                 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7598                     "update_hc_on_pmtu_change", CTLFLAG_RW,
7599                     &sc->tt.update_hc_on_pmtu_change, 0,
7600                     "Update hostcache entry if the PMTU changes");
7601
7602                 sc->tt.iso = 1;
7603                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
7604                     &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
7605
7606                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
7607                     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7608                     sysctl_tp_tick, "A", "TP timer tick (us)");
7609
7610                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
7611                     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7612                     sysctl_tp_tick, "A", "TCP timestamp tick (us)");
7613
7614                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
7615                     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7616                     sysctl_tp_tick, "A", "DACK tick (us)");
7617
7618                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
7619                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7620                     sysctl_tp_dack_timer, "IU", "DACK timer (us)");
7621
7622                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
7623                     CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7624                     A_TP_RXT_MIN, sysctl_tp_timer, "LU",
7625                     "Minimum retransmit interval (us)");
7626
7627                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
7628                     CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7629                     A_TP_RXT_MAX, sysctl_tp_timer, "LU",
7630                     "Maximum retransmit interval (us)");
7631
7632                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
7633                     CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7634                     A_TP_PERS_MIN, sysctl_tp_timer, "LU",
7635                     "Persist timer min (us)");
7636
7637                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
7638                     CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7639                     A_TP_PERS_MAX, sysctl_tp_timer, "LU",
7640                     "Persist timer max (us)");
7641
7642                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
7643                     CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7644                     A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
7645                     "Keepalive idle timer (us)");
7646
7647                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
7648                     CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7649                     A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
7650                     "Keepalive interval timer (us)");
7651
7652                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
7653                     CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7654                     A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
7655
7656                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
7657                     CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7658                     A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
7659                     "FINWAIT2 timer (us)");
7660
7661                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
7662                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7663                     S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
7664                     "Number of SYN retransmissions before abort");
7665
7666                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
7667                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7668                     S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
7669                     "Number of retransmissions before abort");
7670
7671                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
7672                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7673                     S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
7674                     "Number of keepalive probes before abort");
7675
7676                 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
7677                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7678                     "TOE retransmit backoffs");
7679                 children = SYSCTL_CHILDREN(oid);
7680                 for (i = 0; i < 16; i++) {
7681                         snprintf(s, sizeof(s), "%u", i);
7682                         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
7683                             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7684                             i, sysctl_tp_backoff, "IU",
7685                             "TOE retransmit backoff");
7686                 }
7687         }
7688 #endif
7689 }
7690
7691 void
7692 vi_sysctls(struct vi_info *vi)
7693 {
7694         struct sysctl_ctx_list *ctx = &vi->ctx;
7695         struct sysctl_oid *oid;
7696         struct sysctl_oid_list *children;
7697
7698         /*
7699          * dev.v?(cxgbe|cxl).X.
7700          */
7701         oid = device_get_sysctl_tree(vi->dev);
7702         children = SYSCTL_CHILDREN(oid);
7703
7704         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
7705             vi->viid, "VI identifer");
7706         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
7707             &vi->nrxq, 0, "# of rx queues");
7708         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
7709             &vi->ntxq, 0, "# of tx queues");
7710         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
7711             &vi->first_rxq, 0, "index of first rx queue");
7712         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
7713             &vi->first_txq, 0, "index of first tx queue");
7714         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
7715             vi->rss_base, "start of RSS indirection table");
7716         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
7717             vi->rss_size, "size of RSS indirection table");
7718
7719         if (IS_MAIN_VI(vi)) {
7720                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
7721                     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7722                     sysctl_noflowq, "IU",
7723                     "Reserve queue 0 for non-flowid packets");
7724         }
7725
7726         if (vi->adapter->flags & IS_VF) {
7727                 MPASS(vi->flags & TX_USES_VM_WR);
7728                 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
7729                     NULL, 1, "use VM work requests for transmit");
7730         } else {
7731                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
7732                     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7733                     sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
7734         }
7735
7736 #ifdef TCP_OFFLOAD
7737         if (vi->nofldrxq != 0) {
7738                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
7739                     &vi->nofldrxq, 0,
7740                     "# of rx queues for offloaded TCP connections");
7741                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
7742                     CTLFLAG_RD, &vi->first_ofld_rxq, 0,
7743                     "index of first TOE rx queue");
7744                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
7745                     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7746                     sysctl_holdoff_tmr_idx_ofld, "I",
7747                     "holdoff timer index for TOE queues");
7748                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
7749                     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7750                     sysctl_holdoff_pktc_idx_ofld, "I",
7751                     "holdoff packet counter index for TOE queues");
7752         }
7753 #endif
7754 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7755         if (vi->nofldtxq != 0) {
7756                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
7757                     &vi->nofldtxq, 0,
7758                     "# of tx queues for TOE/ETHOFLD");
7759                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
7760                     CTLFLAG_RD, &vi->first_ofld_txq, 0,
7761                     "index of first TOE/ETHOFLD tx queue");
7762         }
7763 #endif
7764 #ifdef DEV_NETMAP
7765         if (vi->nnmrxq != 0) {
7766                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
7767                     &vi->nnmrxq, 0, "# of netmap rx queues");
7768                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
7769                     &vi->nnmtxq, 0, "# of netmap tx queues");
7770                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
7771                     CTLFLAG_RD, &vi->first_nm_rxq, 0,
7772                     "index of first netmap rx queue");
7773                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
7774                     CTLFLAG_RD, &vi->first_nm_txq, 0,
7775                     "index of first netmap tx queue");
7776         }
7777 #endif
7778
7779         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
7780             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7781             sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
7782         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
7783             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7784             sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
7785
7786         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
7787             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7788             sysctl_qsize_rxq, "I", "rx queue size");
7789         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
7790             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7791             sysctl_qsize_txq, "I", "tx queue size");
7792 }
7793
7794 static void
7795 cxgbe_sysctls(struct port_info *pi)
7796 {
7797         struct sysctl_ctx_list *ctx = &pi->ctx;
7798         struct sysctl_oid *oid;
7799         struct sysctl_oid_list *children, *children2;
7800         struct adapter *sc = pi->adapter;
7801         int i;
7802         char name[16];
7803         static char *tc_flags = {"\20\1USER"};
7804
7805         /*
7806          * dev.cxgbe.X.
7807          */
7808         oid = device_get_sysctl_tree(pi->dev);
7809         children = SYSCTL_CHILDREN(oid);
7810
7811         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
7812             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
7813             sysctl_linkdnrc, "A", "reason why link is down");
7814         if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
7815                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7816                     CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
7817                     sysctl_btphy, "I", "PHY temperature (in Celsius)");
7818                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
7819                     CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
7820                     sysctl_btphy, "I", "PHY firmware version");
7821         }
7822
7823         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
7824             CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7825             sysctl_pause_settings, "A",
7826             "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
7827         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
7828             CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
7829             "FEC in use on the link");
7830         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
7831             CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7832             sysctl_requested_fec, "A",
7833             "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
7834         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
7835             CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
7836             "FEC recommended by the cable/transceiver");
7837         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
7838             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7839             sysctl_autoneg, "I",
7840             "autonegotiation (-1 = not supported)");
7841         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
7842             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7843             sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
7844
7845         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
7846             &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
7847         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
7848             &pi->link_cfg.pcaps, 0, "port capabilities");
7849         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
7850             &pi->link_cfg.acaps, 0, "advertised capabilities");
7851         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
7852             &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
7853
7854         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
7855             port_top_speed(pi), "max speed (in Gbps)");
7856         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
7857             pi->mps_bg_map, "MPS buffer group map");
7858         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
7859             NULL, pi->rx_e_chan_map, "TP rx e-channel map");
7860         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL,
7861             pi->rx_c_chan, "TP rx c-channel");
7862
7863         if (sc->flags & IS_VF)
7864                 return;
7865
7866         /*
7867          * dev.(cxgbe|cxl).X.tc.
7868          */
7869         oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
7870             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7871             "Tx scheduler traffic classes (cl_rl)");
7872         children2 = SYSCTL_CHILDREN(oid);
7873         SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
7874             CTLFLAG_RW, &pi->sched_params->pktsize, 0,
7875             "pktsize for per-flow cl-rl (0 means up to the driver )");
7876         SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
7877             CTLFLAG_RW, &pi->sched_params->burstsize, 0,
7878             "burstsize for per-flow cl-rl (0 means up to the driver)");
7879         for (i = 0; i < sc->params.nsched_cls; i++) {
7880                 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
7881
7882                 snprintf(name, sizeof(name), "%d", i);
7883                 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
7884                     SYSCTL_CHILDREN(oid), OID_AUTO, name,
7885                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
7886                 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
7887                     CTLFLAG_RD, &tc->state, 0, "current state");
7888                 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
7889                     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
7890                     (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
7891                 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
7892                     CTLFLAG_RD, &tc->refcount, 0, "references to this class");
7893                 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
7894                     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7895                     (pi->port_id << 16) | i, sysctl_tc_params, "A",
7896                     "traffic class parameters");
7897         }
7898
7899         /*
7900          * dev.cxgbe.X.stats.
7901          */
7902         oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
7903             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
7904         children = SYSCTL_CHILDREN(oid);
7905         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
7906             &pi->tx_parse_error, 0,
7907             "# of tx packets with invalid length or # of segments");
7908
7909 #define T4_REGSTAT(name, stat, desc) \
7910     SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
7911         CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
7912         (is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \
7913         T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \
7914         sysctl_handle_t4_reg64, "QU", desc)
7915
7916 /* We get these from port_stats and they may be stale by up to 1s */
7917 #define T4_PORTSTAT(name, desc) \
7918         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
7919             &pi->stats.name, desc)
7920
7921         T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
7922         T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
7923         T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
7924         T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
7925         T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
7926         T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
7927         T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
7928         T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
7929         T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
7930         T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
7931         T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
7932         T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
7933         T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
7934         T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
7935         T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
7936         T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
7937         T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
7938         T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
7939         T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
7940         T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
7941         T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
7942         T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
7943         T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
7944
7945         T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
7946         T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
7947         T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
7948         T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
7949         T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
7950         T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
7951         T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
7952         if (is_t6(sc)) {
7953                 T4_PORTSTAT(rx_fcs_err,
7954                     "# of frames received with bad FCS since last link up");
7955         } else {
7956                 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
7957                     "# of frames received with bad FCS");
7958         }
7959         T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
7960         T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
7961         T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
7962         T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
7963         T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
7964         T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
7965         T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
7966         T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
7967         T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
7968         T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
7969         T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
7970         T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
7971         T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
7972         T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
7973         T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
7974         T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
7975         T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
7976         T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
7977         T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
7978
7979         T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows");
7980         T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows");
7981         T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows");
7982         T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows");
7983         T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets");
7984         T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets");
7985         T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets");
7986         T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets");
7987
7988 #undef T4_REGSTAT
7989 #undef T4_PORTSTAT
7990 }
7991
7992 static int
7993 sysctl_int_array(SYSCTL_HANDLER_ARGS)
7994 {
7995         int rc, *i, space = 0;
7996         struct sbuf sb;
7997
7998         sbuf_new_for_sysctl(&sb, NULL, 64, req);
7999         for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8000                 if (space)
8001                         sbuf_printf(&sb, " ");
8002                 sbuf_printf(&sb, "%d", *i);
8003                 space = 1;
8004         }
8005         rc = sbuf_finish(&sb);
8006         sbuf_delete(&sb);
8007         return (rc);
8008 }
8009
8010 static int
8011 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8012 {
8013         int rc;
8014         struct sbuf *sb;
8015
8016         rc = sysctl_wire_old_buffer(req, 0);
8017         if (rc != 0)
8018                 return(rc);
8019
8020         sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8021         if (sb == NULL)
8022                 return (ENOMEM);
8023
8024         sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8025         rc = sbuf_finish(sb);
8026         sbuf_delete(sb);
8027
8028         return (rc);
8029 }
8030
8031 static int
8032 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8033 {
8034         int rc;
8035         struct sbuf *sb;
8036
8037         rc = sysctl_wire_old_buffer(req, 0);
8038         if (rc != 0)
8039                 return(rc);
8040
8041         sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8042         if (sb == NULL)
8043                 return (ENOMEM);
8044
8045         sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8046         rc = sbuf_finish(sb);
8047         sbuf_delete(sb);
8048
8049         return (rc);
8050 }
8051
8052 static int
8053 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8054 {
8055         struct port_info *pi = arg1;
8056         int op = arg2;
8057         struct adapter *sc = pi->adapter;
8058         u_int v;
8059         int rc;
8060
8061         rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8062         if (rc)
8063                 return (rc);
8064         if (hw_off_limits(sc))
8065                 rc = ENXIO;
8066         else {
8067                 /* XXX: magic numbers */
8068                 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8069                     op ? 0x20 : 0xc820, &v);
8070         }
8071         end_synchronized_op(sc, 0);
8072         if (rc)
8073                 return (rc);
8074         if (op == 0)
8075                 v /= 256;
8076
8077         rc = sysctl_handle_int(oidp, &v, 0, req);
8078         return (rc);
8079 }
8080
8081 static int
8082 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8083 {
8084         struct vi_info *vi = arg1;
8085         int rc, val;
8086
8087         val = vi->rsrv_noflowq;
8088         rc = sysctl_handle_int(oidp, &val, 0, req);
8089         if (rc != 0 || req->newptr == NULL)
8090                 return (rc);
8091
8092         if ((val >= 1) && (vi->ntxq > 1))
8093                 vi->rsrv_noflowq = 1;
8094         else
8095                 vi->rsrv_noflowq = 0;
8096
8097         return (rc);
8098 }
8099
8100 static int
8101 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8102 {
8103         struct vi_info *vi = arg1;
8104         struct adapter *sc = vi->adapter;
8105         int rc, val, i;
8106
8107         MPASS(!(sc->flags & IS_VF));
8108
8109         val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8110         rc = sysctl_handle_int(oidp, &val, 0, req);
8111         if (rc != 0 || req->newptr == NULL)
8112                 return (rc);
8113
8114         if (val != 0 && val != 1)
8115                 return (EINVAL);
8116
8117         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8118             "t4txvm");
8119         if (rc)
8120                 return (rc);
8121         if (hw_off_limits(sc))
8122                 rc = ENXIO;
8123         else if (vi->ifp->if_drv_flags & IFF_DRV_RUNNING) {
8124                 /*
8125                  * We don't want parse_pkt to run with one setting (VF or PF)
8126                  * and then eth_tx to see a different setting but still use
8127                  * stale information calculated by parse_pkt.
8128                  */
8129                 rc = EBUSY;
8130         } else {
8131                 struct port_info *pi = vi->pi;
8132                 struct sge_txq *txq;
8133                 uint32_t ctrl0;
8134                 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8135
8136                 if (val) {
8137                         vi->flags |= TX_USES_VM_WR;
8138                         vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO;
8139                         ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8140                             V_TXPKT_INTF(pi->tx_chan));
8141                         if (!(sc->flags & IS_VF))
8142                                 npkt--;
8143                 } else {
8144                         vi->flags &= ~TX_USES_VM_WR;
8145                         vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO;
8146                         ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8147                             V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
8148                             V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8149                 }
8150                 for_each_txq(vi, i, txq) {
8151                         txq->cpl_ctrl0 = ctrl0;
8152                         txq->txp.max_npkt = npkt;
8153                 }
8154         }
8155         end_synchronized_op(sc, LOCK_HELD);
8156         return (rc);
8157 }
8158
8159 static int
8160 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8161 {
8162         struct vi_info *vi = arg1;
8163         struct adapter *sc = vi->adapter;
8164         int idx, rc, i;
8165         struct sge_rxq *rxq;
8166         uint8_t v;
8167
8168         idx = vi->tmr_idx;
8169
8170         rc = sysctl_handle_int(oidp, &idx, 0, req);
8171         if (rc != 0 || req->newptr == NULL)
8172                 return (rc);
8173
8174         if (idx < 0 || idx >= SGE_NTIMERS)
8175                 return (EINVAL);
8176
8177         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8178             "t4tmr");
8179         if (rc)
8180                 return (rc);
8181
8182         v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8183         for_each_rxq(vi, i, rxq) {
8184 #ifdef atomic_store_rel_8
8185                 atomic_store_rel_8(&rxq->iq.intr_params, v);
8186 #else
8187                 rxq->iq.intr_params = v;
8188 #endif
8189         }
8190         vi->tmr_idx = idx;
8191
8192         end_synchronized_op(sc, LOCK_HELD);
8193         return (0);
8194 }
8195
8196 static int
8197 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8198 {
8199         struct vi_info *vi = arg1;
8200         struct adapter *sc = vi->adapter;
8201         int idx, rc;
8202
8203         idx = vi->pktc_idx;
8204
8205         rc = sysctl_handle_int(oidp, &idx, 0, req);
8206         if (rc != 0 || req->newptr == NULL)
8207                 return (rc);
8208
8209         if (idx < -1 || idx >= SGE_NCOUNTERS)
8210                 return (EINVAL);
8211
8212         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8213             "t4pktc");
8214         if (rc)
8215                 return (rc);
8216
8217         if (vi->flags & VI_INIT_DONE)
8218                 rc = EBUSY; /* cannot be changed once the queues are created */
8219         else
8220                 vi->pktc_idx = idx;
8221
8222         end_synchronized_op(sc, LOCK_HELD);
8223         return (rc);
8224 }
8225
8226 static int
8227 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8228 {
8229         struct vi_info *vi = arg1;
8230         struct adapter *sc = vi->adapter;
8231         int qsize, rc;
8232
8233         qsize = vi->qsize_rxq;
8234
8235         rc = sysctl_handle_int(oidp, &qsize, 0, req);
8236         if (rc != 0 || req->newptr == NULL)
8237                 return (rc);
8238
8239         if (qsize < 128 || (qsize & 7))
8240                 return (EINVAL);
8241
8242         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8243             "t4rxqs");
8244         if (rc)
8245                 return (rc);
8246
8247         if (vi->flags & VI_INIT_DONE)
8248                 rc = EBUSY; /* cannot be changed once the queues are created */
8249         else
8250                 vi->qsize_rxq = qsize;
8251
8252         end_synchronized_op(sc, LOCK_HELD);
8253         return (rc);
8254 }
8255
8256 static int
8257 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8258 {
8259         struct vi_info *vi = arg1;
8260         struct adapter *sc = vi->adapter;
8261         int qsize, rc;
8262
8263         qsize = vi->qsize_txq;
8264
8265         rc = sysctl_handle_int(oidp, &qsize, 0, req);
8266         if (rc != 0 || req->newptr == NULL)
8267                 return (rc);
8268
8269         if (qsize < 128 || qsize > 65536)
8270                 return (EINVAL);
8271
8272         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8273             "t4txqs");
8274         if (rc)
8275                 return (rc);
8276
8277         if (vi->flags & VI_INIT_DONE)
8278                 rc = EBUSY; /* cannot be changed once the queues are created */
8279         else
8280                 vi->qsize_txq = qsize;
8281
8282         end_synchronized_op(sc, LOCK_HELD);
8283         return (rc);
8284 }
8285
8286 static int
8287 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8288 {
8289         struct port_info *pi = arg1;
8290         struct adapter *sc = pi->adapter;
8291         struct link_config *lc = &pi->link_cfg;
8292         int rc;
8293
8294         if (req->newptr == NULL) {
8295                 struct sbuf *sb;
8296                 static char *bits = "\20\1RX\2TX\3AUTO";
8297
8298                 rc = sysctl_wire_old_buffer(req, 0);
8299                 if (rc != 0)
8300                         return(rc);
8301
8302                 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8303                 if (sb == NULL)
8304                         return (ENOMEM);
8305
8306                 if (lc->link_ok) {
8307                         sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8308                             (lc->requested_fc & PAUSE_AUTONEG), bits);
8309                 } else {
8310                         sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8311                             PAUSE_RX | PAUSE_AUTONEG), bits);
8312                 }
8313                 rc = sbuf_finish(sb);
8314                 sbuf_delete(sb);
8315         } else {
8316                 char s[2];
8317                 int n;
8318
8319                 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8320                     PAUSE_AUTONEG));
8321                 s[1] = 0;
8322
8323                 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8324                 if (rc != 0)
8325                         return(rc);
8326
8327                 if (s[1] != 0)
8328                         return (EINVAL);
8329                 if (s[0] < '0' || s[0] > '9')
8330                         return (EINVAL);        /* not a number */
8331                 n = s[0] - '0';
8332                 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8333                         return (EINVAL);        /* some other bit is set too */
8334
8335                 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8336                     "t4PAUSE");
8337                 if (rc)
8338                         return (rc);
8339                 if (!hw_off_limits(sc)) {
8340                         PORT_LOCK(pi);
8341                         lc->requested_fc = n;
8342                         fixup_link_config(pi);
8343                         if (pi->up_vis > 0)
8344                                 rc = apply_link_config(pi);
8345                         set_current_media(pi);
8346                         PORT_UNLOCK(pi);
8347                 }
8348                 end_synchronized_op(sc, 0);
8349         }
8350
8351         return (rc);
8352 }
8353
8354 static int
8355 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8356 {
8357         struct port_info *pi = arg1;
8358         struct link_config *lc = &pi->link_cfg;
8359         int rc;
8360         struct sbuf *sb;
8361         static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2";
8362
8363         rc = sysctl_wire_old_buffer(req, 0);
8364         if (rc != 0)
8365                 return(rc);
8366
8367         sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8368         if (sb == NULL)
8369                 return (ENOMEM);
8370         if (lc->link_ok)
8371                 sbuf_printf(sb, "%b", lc->fec, bits);
8372         else
8373                 sbuf_printf(sb, "no link");
8374         rc = sbuf_finish(sb);
8375         sbuf_delete(sb);
8376
8377         return (rc);
8378 }
8379
8380 static int
8381 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8382 {
8383         struct port_info *pi = arg1;
8384         struct adapter *sc = pi->adapter;
8385         struct link_config *lc = &pi->link_cfg;
8386         int rc;
8387         int8_t old;
8388
8389         if (req->newptr == NULL) {
8390                 struct sbuf *sb;
8391                 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
8392                     "\5RSVD3\6auto\7module";
8393
8394                 rc = sysctl_wire_old_buffer(req, 0);
8395                 if (rc != 0)
8396                         return(rc);
8397
8398                 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8399                 if (sb == NULL)
8400                         return (ENOMEM);
8401
8402                 sbuf_printf(sb, "%b", lc->requested_fec, bits);
8403                 rc = sbuf_finish(sb);
8404                 sbuf_delete(sb);
8405         } else {
8406                 char s[8];
8407                 int n;
8408
8409                 snprintf(s, sizeof(s), "%d",
8410                     lc->requested_fec == FEC_AUTO ? -1 :
8411                     lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
8412
8413                 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8414                 if (rc != 0)
8415                         return(rc);
8416
8417                 n = strtol(&s[0], NULL, 0);
8418                 if (n < 0 || n & FEC_AUTO)
8419                         n = FEC_AUTO;
8420                 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
8421                         return (EINVAL);/* some other bit is set too */
8422
8423                 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8424                     "t4reqf");
8425                 if (rc)
8426                         return (rc);
8427                 PORT_LOCK(pi);
8428                 old = lc->requested_fec;
8429                 if (n == FEC_AUTO)
8430                         lc->requested_fec = FEC_AUTO;
8431                 else if (n == 0 || n == FEC_NONE)
8432                         lc->requested_fec = FEC_NONE;
8433                 else {
8434                         if ((lc->pcaps |
8435                             V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
8436                             lc->pcaps) {
8437                                 rc = ENOTSUP;
8438                                 goto done;
8439                         }
8440                         lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
8441                             FEC_MODULE);
8442                 }
8443                 if (!hw_off_limits(sc)) {
8444                         fixup_link_config(pi);
8445                         if (pi->up_vis > 0) {
8446                                 rc = apply_link_config(pi);
8447                                 if (rc != 0) {
8448                                         lc->requested_fec = old;
8449                                         if (rc == FW_EPROTO)
8450                                                 rc = ENOTSUP;
8451                                 }
8452                         }
8453                 }
8454 done:
8455                 PORT_UNLOCK(pi);
8456                 end_synchronized_op(sc, 0);
8457         }
8458
8459         return (rc);
8460 }
8461
8462 static int
8463 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
8464 {
8465         struct port_info *pi = arg1;
8466         struct adapter *sc = pi->adapter;
8467         struct link_config *lc = &pi->link_cfg;
8468         int rc;
8469         int8_t fec;
8470         struct sbuf *sb;
8471         static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
8472
8473         rc = sysctl_wire_old_buffer(req, 0);
8474         if (rc != 0)
8475                 return (rc);
8476
8477         sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8478         if (sb == NULL)
8479                 return (ENOMEM);
8480
8481         if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
8482                 rc = EBUSY;
8483                 goto done;
8484         }
8485         if (hw_off_limits(sc)) {
8486                 rc = ENXIO;
8487                 goto done;
8488         }
8489         PORT_LOCK(pi);
8490         if (pi->up_vis == 0) {
8491                 /*
8492                  * If all the interfaces are administratively down the firmware
8493                  * does not report transceiver changes.  Refresh port info here.
8494                  * This is the only reason we have a synchronized op in this
8495                  * function.  Just PORT_LOCK would have been enough otherwise.
8496                  */
8497                 t4_update_port_info(pi);
8498         }
8499
8500         fec = lc->fec_hint;
8501         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
8502             !fec_supported(lc->pcaps)) {
8503                 sbuf_printf(sb, "n/a");
8504         } else {
8505                 if (fec == 0)
8506                         fec = FEC_NONE;
8507                 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
8508         }
8509         rc = sbuf_finish(sb);
8510         PORT_UNLOCK(pi);
8511 done:
8512         sbuf_delete(sb);
8513         end_synchronized_op(sc, 0);
8514
8515         return (rc);
8516 }
8517
8518 static int
8519 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
8520 {
8521         struct port_info *pi = arg1;
8522         struct adapter *sc = pi->adapter;
8523         struct link_config *lc = &pi->link_cfg;
8524         int rc, val;
8525
8526         if (lc->pcaps & FW_PORT_CAP32_ANEG)
8527                 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
8528         else
8529                 val = -1;
8530         rc = sysctl_handle_int(oidp, &val, 0, req);
8531         if (rc != 0 || req->newptr == NULL)
8532                 return (rc);
8533         if (val == 0)
8534                 val = AUTONEG_DISABLE;
8535         else if (val == 1)
8536                 val = AUTONEG_ENABLE;
8537         else
8538                 val = AUTONEG_AUTO;
8539
8540         rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8541             "t4aneg");
8542         if (rc)
8543                 return (rc);
8544         PORT_LOCK(pi);
8545         if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
8546                 rc = ENOTSUP;
8547                 goto done;
8548         }
8549         lc->requested_aneg = val;
8550         if (!hw_off_limits(sc)) {
8551                 fixup_link_config(pi);
8552                 if (pi->up_vis > 0)
8553                         rc = apply_link_config(pi);
8554                 set_current_media(pi);
8555         }
8556 done:
8557         PORT_UNLOCK(pi);
8558         end_synchronized_op(sc, 0);
8559         return (rc);
8560 }
8561
8562 static int
8563 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
8564 {
8565         struct port_info *pi = arg1;
8566         struct adapter *sc = pi->adapter;
8567         struct link_config *lc = &pi->link_cfg;
8568         int rc, val;
8569
8570         val = lc->force_fec;
8571         MPASS(val >= -1 && val <= 1);
8572         rc = sysctl_handle_int(oidp, &val, 0, req);
8573         if (rc != 0 || req->newptr == NULL)
8574                 return (rc);
8575         if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
8576                 return (ENOTSUP);
8577         if (val < -1 || val > 1)
8578                 return (EINVAL);
8579
8580         rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
8581         if (rc)
8582                 return (rc);
8583         PORT_LOCK(pi);
8584         lc->force_fec = val;
8585         if (!hw_off_limits(sc)) {
8586                 fixup_link_config(pi);
8587                 if (pi->up_vis > 0)
8588                         rc = apply_link_config(pi);
8589         }
8590         PORT_UNLOCK(pi);
8591         end_synchronized_op(sc, 0);
8592         return (rc);
8593 }
8594
8595 static int
8596 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
8597 {
8598         struct adapter *sc = arg1;
8599         int rc, reg = arg2;
8600         uint64_t val;
8601
8602         mtx_lock(&sc->reg_lock);
8603         if (hw_off_limits(sc))
8604                 rc = ENXIO;
8605         else {
8606                 rc = 0;
8607                 val = t4_read_reg64(sc, reg);
8608         }
8609         mtx_unlock(&sc->reg_lock);
8610         if (rc == 0)
8611                 rc = sysctl_handle_64(oidp, &val, 0, req);
8612         return (rc);
8613 }
8614
8615 static int
8616 sysctl_temperature(SYSCTL_HANDLER_ARGS)
8617 {
8618         struct adapter *sc = arg1;
8619         int rc, t;
8620         uint32_t param, val;
8621
8622         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
8623         if (rc)
8624                 return (rc);
8625         if (hw_off_limits(sc))
8626                 rc = ENXIO;
8627         else {
8628                 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8629                     V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8630                     V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
8631                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8632         }
8633         end_synchronized_op(sc, 0);
8634         if (rc)
8635                 return (rc);
8636
8637         /* unknown is returned as 0 but we display -1 in that case */
8638         t = val == 0 ? -1 : val;
8639
8640         rc = sysctl_handle_int(oidp, &t, 0, req);
8641         return (rc);
8642 }
8643
8644 static int
8645 sysctl_vdd(SYSCTL_HANDLER_ARGS)
8646 {
8647         struct adapter *sc = arg1;
8648         int rc;
8649         uint32_t param, val;
8650
8651         if (sc->params.core_vdd == 0) {
8652                 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8653                     "t4vdd");
8654                 if (rc)
8655                         return (rc);
8656                 if (hw_off_limits(sc))
8657                         rc = ENXIO;
8658                 else {
8659                         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8660                             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8661                             V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
8662                         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
8663                             &param, &val);
8664                 }
8665                 end_synchronized_op(sc, 0);
8666                 if (rc)
8667                         return (rc);
8668                 sc->params.core_vdd = val;
8669         }
8670
8671         return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
8672 }
8673
8674 static int
8675 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
8676 {
8677         struct adapter *sc = arg1;
8678         int rc, v;
8679         uint32_t param, val;
8680
8681         v = sc->sensor_resets;
8682         rc = sysctl_handle_int(oidp, &v, 0, req);
8683         if (rc != 0 || req->newptr == NULL || v <= 0)
8684                 return (rc);
8685
8686         if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
8687             chip_id(sc) < CHELSIO_T5)
8688                 return (ENOTSUP);
8689
8690         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
8691         if (rc)
8692                 return (rc);
8693         if (hw_off_limits(sc))
8694                 rc = ENXIO;
8695         else {
8696                 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8697                     V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8698                     V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
8699                 val = 1;
8700                 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8701         }
8702         end_synchronized_op(sc, 0);
8703         if (rc == 0)
8704                 sc->sensor_resets++;
8705         return (rc);
8706 }
8707
8708 static int
8709 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
8710 {
8711         struct adapter *sc = arg1;
8712         struct sbuf *sb;
8713         int rc;
8714         uint32_t param, val;
8715
8716         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
8717         if (rc)
8718                 return (rc);
8719         if (hw_off_limits(sc))
8720                 rc = ENXIO;
8721         else {
8722                 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8723                     V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
8724                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8725         }
8726         end_synchronized_op(sc, 0);
8727         if (rc)
8728                 return (rc);
8729
8730         rc = sysctl_wire_old_buffer(req, 0);
8731         if (rc != 0)
8732                 return (rc);
8733
8734         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8735         if (sb == NULL)
8736                 return (ENOMEM);
8737
8738         if (val == 0xffffffff) {
8739                 /* Only debug and custom firmwares report load averages. */
8740                 sbuf_printf(sb, "not available");
8741         } else {
8742                 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
8743                     (val >> 16) & 0xff);
8744         }
8745         rc = sbuf_finish(sb);
8746         sbuf_delete(sb);
8747
8748         return (rc);
8749 }
8750
8751 static int
8752 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
8753 {
8754         struct adapter *sc = arg1;
8755         struct sbuf *sb;
8756         int rc, i;
8757         uint16_t incr[NMTUS][NCCTRL_WIN];
8758         static const char *dec_fac[] = {
8759                 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
8760                 "0.9375"
8761         };
8762
8763         rc = sysctl_wire_old_buffer(req, 0);
8764         if (rc != 0)
8765                 return (rc);
8766
8767         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8768         if (sb == NULL)
8769                 return (ENOMEM);
8770
8771         mtx_lock(&sc->reg_lock);
8772         if (hw_off_limits(sc))
8773                 rc = ENXIO;
8774         else
8775                 t4_read_cong_tbl(sc, incr);
8776         mtx_unlock(&sc->reg_lock);
8777         if (rc)
8778                 goto done;
8779
8780         for (i = 0; i < NCCTRL_WIN; ++i) {
8781                 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
8782                     incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
8783                     incr[5][i], incr[6][i], incr[7][i]);
8784                 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
8785                     incr[8][i], incr[9][i], incr[10][i], incr[11][i],
8786                     incr[12][i], incr[13][i], incr[14][i], incr[15][i],
8787                     sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
8788         }
8789
8790         rc = sbuf_finish(sb);
8791 done:
8792         sbuf_delete(sb);
8793         return (rc);
8794 }
8795
8796 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
8797         "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",   /* ibq's */
8798         "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
8799         "SGE0-RX", "SGE1-RX"    /* additional obq's (T5 onwards) */
8800 };
8801
8802 static int
8803 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
8804 {
8805         struct adapter *sc = arg1;
8806         struct sbuf *sb;
8807         int rc, i, n, qid = arg2;
8808         uint32_t *buf, *p;
8809         char *qtype;
8810         u_int cim_num_obq = sc->chip_params->cim_num_obq;
8811
8812         KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
8813             ("%s: bad qid %d\n", __func__, qid));
8814
8815         if (qid < CIM_NUM_IBQ) {
8816                 /* inbound queue */
8817                 qtype = "IBQ";
8818                 n = 4 * CIM_IBQ_SIZE;
8819                 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
8820                 mtx_lock(&sc->reg_lock);
8821                 if (hw_off_limits(sc))
8822                         rc = -ENXIO;
8823                 else
8824                         rc = t4_read_cim_ibq(sc, qid, buf, n);
8825                 mtx_unlock(&sc->reg_lock);
8826         } else {
8827                 /* outbound queue */
8828                 qtype = "OBQ";
8829                 qid -= CIM_NUM_IBQ;
8830                 n = 4 * cim_num_obq * CIM_OBQ_SIZE;
8831                 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
8832                 mtx_lock(&sc->reg_lock);
8833                 if (hw_off_limits(sc))
8834                         rc = -ENXIO;
8835                 else
8836                         rc = t4_read_cim_obq(sc, qid, buf, n);
8837                 mtx_unlock(&sc->reg_lock);
8838         }
8839
8840         if (rc < 0) {
8841                 rc = -rc;
8842                 goto done;
8843         }
8844         n = rc * sizeof(uint32_t);      /* rc has # of words actually read */
8845
8846         rc = sysctl_wire_old_buffer(req, 0);
8847         if (rc != 0)
8848                 goto done;
8849
8850         sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
8851         if (sb == NULL) {
8852                 rc = ENOMEM;
8853                 goto done;
8854         }
8855
8856         sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
8857         for (i = 0, p = buf; i < n; i += 16, p += 4)
8858                 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
8859                     p[2], p[3]);
8860
8861         rc = sbuf_finish(sb);
8862         sbuf_delete(sb);
8863 done:
8864         free(buf, M_CXGBE);
8865         return (rc);
8866 }
8867
8868 static void
8869 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
8870 {
8871         uint32_t *p;
8872
8873         sbuf_printf(sb, "Status   Data      PC%s",
8874             cfg & F_UPDBGLACAPTPCONLY ? "" :
8875             "     LS0Stat  LS0Addr             LS0Data");
8876
8877         for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
8878                 if (cfg & F_UPDBGLACAPTPCONLY) {
8879                         sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
8880                             p[6], p[7]);
8881                         sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
8882                             (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
8883                             p[4] & 0xff, p[5] >> 8);
8884                         sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
8885                             (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
8886                             p[1] & 0xf, p[2] >> 4);
8887                 } else {
8888                         sbuf_printf(sb,
8889                             "\n  %02x   %x%07x %x%07x %08x %08x "
8890                             "%08x%08x%08x%08x",
8891                             (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
8892                             p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
8893                             p[6], p[7]);
8894                 }
8895         }
8896 }
8897
8898 static void
8899 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
8900 {
8901         uint32_t *p;
8902
8903         sbuf_printf(sb, "Status   Inst    Data      PC%s",
8904             cfg & F_UPDBGLACAPTPCONLY ? "" :
8905             "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
8906
8907         for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
8908                 if (cfg & F_UPDBGLACAPTPCONLY) {
8909                         sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
8910                             p[3] & 0xff, p[2], p[1], p[0]);
8911                         sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
8912                             (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
8913                             p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
8914                         sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
8915                             (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
8916                             p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
8917                             p[6] >> 16);
8918                 } else {
8919                         sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
8920                             "%08x %08x %08x %08x %08x %08x",
8921                             (p[9] >> 16) & 0xff,
8922                             p[9] & 0xffff, p[8] >> 16,
8923                             p[8] & 0xffff, p[7] >> 16,
8924                             p[7] & 0xffff, p[6] >> 16,
8925                             p[2], p[1], p[0], p[5], p[4], p[3]);
8926                 }
8927         }
8928 }
8929
8930 static int
8931 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
8932 {
8933         uint32_t cfg, *buf;
8934         int rc;
8935
8936         MPASS(flags == M_WAITOK || flags == M_NOWAIT);
8937         buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
8938             M_ZERO | flags);
8939         if (buf == NULL)
8940                 return (ENOMEM);
8941
8942         mtx_lock(&sc->reg_lock);
8943         if (hw_off_limits(sc))
8944                 rc = ENXIO;
8945         else {
8946                 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8947                 if (rc == 0)
8948                         rc = -t4_cim_read_la(sc, buf, NULL);
8949         }
8950         mtx_unlock(&sc->reg_lock);
8951         if (rc == 0) {
8952                 if (chip_id(sc) < CHELSIO_T6)
8953                         sbuf_cim_la4(sc, sb, buf, cfg);
8954                 else
8955                         sbuf_cim_la6(sc, sb, buf, cfg);
8956         }
8957         free(buf, M_CXGBE);
8958         return (rc);
8959 }
8960
8961 static int
8962 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
8963 {
8964         struct adapter *sc = arg1;
8965         struct sbuf *sb;
8966         int rc;
8967
8968         rc = sysctl_wire_old_buffer(req, 0);
8969         if (rc != 0)
8970                 return (rc);
8971         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8972         if (sb == NULL)
8973                 return (ENOMEM);
8974
8975         rc = sbuf_cim_la(sc, sb, M_WAITOK);
8976         if (rc == 0)
8977                 rc = sbuf_finish(sb);
8978         sbuf_delete(sb);
8979         return (rc);
8980 }
8981
8982 static void
8983 dump_cim_regs(struct adapter *sc)
8984 {
8985         log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
8986             device_get_nameunit(sc->dev),
8987             t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
8988             t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
8989             t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
8990             t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
8991             t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
8992         log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
8993             device_get_nameunit(sc->dev),
8994             t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
8995             t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
8996             t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
8997             t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
8998             t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
8999 }
9000
9001 static void
9002 dump_cimla(struct adapter *sc)
9003 {
9004         struct sbuf sb;
9005         int rc;
9006
9007         if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9008                 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9009                     device_get_nameunit(sc->dev));
9010                 return;
9011         }
9012         rc = sbuf_cim_la(sc, &sb, M_WAITOK);
9013         if (rc == 0) {
9014                 rc = sbuf_finish(&sb);
9015                 if (rc == 0) {
9016                         log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9017                                 device_get_nameunit(sc->dev), sbuf_data(&sb));
9018                 }
9019         }
9020         sbuf_delete(&sb);
9021 }
9022
9023 void
9024 t4_os_cim_err(struct adapter *sc)
9025 {
9026         atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9027 }
9028
9029 static int
9030 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9031 {
9032         struct adapter *sc = arg1;
9033         u_int i;
9034         struct sbuf *sb;
9035         uint32_t *buf, *p;
9036         int rc;
9037
9038         rc = sysctl_wire_old_buffer(req, 0);
9039         if (rc != 0)
9040                 return (rc);
9041
9042         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9043         if (sb == NULL)
9044                 return (ENOMEM);
9045
9046         buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9047             M_ZERO | M_WAITOK);
9048
9049         mtx_lock(&sc->reg_lock);
9050         if (hw_off_limits(sc))
9051                 rc = ENXIO;
9052         else
9053                 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9054         mtx_unlock(&sc->reg_lock);
9055         if (rc)
9056                 goto done;
9057
9058         p = buf;
9059         for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9060                 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9061                     p[1], p[0]);
9062         }
9063
9064         sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
9065         for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9066                 sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
9067                     (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9068                     (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9069                     (p[1] >> 2) | ((p[2] & 3) << 30),
9070                     (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9071                     p[0] & 1);
9072         }
9073         rc = sbuf_finish(sb);
9074 done:
9075         sbuf_delete(sb);
9076         free(buf, M_CXGBE);
9077         return (rc);
9078 }
9079
9080 static int
9081 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9082 {
9083         struct adapter *sc = arg1;
9084         u_int i;
9085         struct sbuf *sb;
9086         uint32_t *buf, *p;
9087         int rc;
9088
9089         rc = sysctl_wire_old_buffer(req, 0);
9090         if (rc != 0)
9091                 return (rc);
9092
9093         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9094         if (sb == NULL)
9095                 return (ENOMEM);
9096
9097         buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9098             M_ZERO | M_WAITOK);
9099
9100         mtx_lock(&sc->reg_lock);
9101         if (hw_off_limits(sc))
9102                 rc = ENXIO;
9103         else
9104                 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9105         mtx_unlock(&sc->reg_lock);
9106         if (rc)
9107                 goto done;
9108
9109         p = buf;
9110         sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
9111         for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9112                 sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
9113                     (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9114                     p[4], p[3], p[2], p[1], p[0]);
9115         }
9116
9117         sbuf_printf(sb, "\n\nCntl ID               Data");
9118         for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9119                 sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
9120                     (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9121         }
9122
9123         rc = sbuf_finish(sb);
9124 done:
9125         sbuf_delete(sb);
9126         free(buf, M_CXGBE);
9127         return (rc);
9128 }
9129
9130 static int
9131 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9132 {
9133         struct adapter *sc = arg1;
9134         struct sbuf *sb;
9135         int rc, i;
9136         uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9137         uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9138         uint16_t thres[CIM_NUM_IBQ];
9139         uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9140         uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9141         u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9142
9143         cim_num_obq = sc->chip_params->cim_num_obq;
9144         if (is_t4(sc)) {
9145                 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9146                 obq_rdaddr = A_UP_OBQ_0_REALADDR;
9147         } else {
9148                 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9149                 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9150         }
9151         nq = CIM_NUM_IBQ + cim_num_obq;
9152
9153         mtx_lock(&sc->reg_lock);
9154         if (hw_off_limits(sc))
9155                 rc = ENXIO;
9156         else {
9157                 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9158                 if (rc == 0) {
9159                         rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9160                             obq_wr);
9161                         if (rc == 0)
9162                                 t4_read_cimq_cfg(sc, base, size, thres);
9163                 }
9164         }
9165         mtx_unlock(&sc->reg_lock);
9166         if (rc)
9167                 return (rc);
9168
9169         rc = sysctl_wire_old_buffer(req, 0);
9170         if (rc != 0)
9171                 return (rc);
9172
9173         sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9174         if (sb == NULL)
9175                 return (ENOMEM);
9176
9177         sbuf_printf(sb,
9178             "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
9179
9180         for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9181                 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
9182                     qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9183                     G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9184                     G_QUEREMFLITS(p[2]) * 16);
9185         for ( ; i < nq; i++, p += 4, wr += 2)
9186                 sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
9187                     base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9188                     wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9189                     G_QUEREMFLITS(p[2]) * 16);
9190
9191         rc = sbuf_finish(sb);
9192         sbuf_delete(sb);
9193
9194         return (rc);
9195 }
9196
9197 static int
9198 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9199 {
9200         struct adapter *sc = arg1;
9201         struct sbuf *sb;
9202         int rc;
9203         struct tp_cpl_stats stats;
9204
9205         rc = sysctl_wire_old_buffer(req, 0);
9206         if (rc != 0)
9207                 return (rc);
9208
9209         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9210         if (sb == NULL)
9211                 return (ENOMEM);
9212
9213         mtx_lock(&sc->reg_lock);
9214         if (hw_off_limits(sc))
9215                 rc = ENXIO;
9216         else
9217                 t4_tp_get_cpl_stats(sc, &stats, 0);
9218         mtx_unlock(&sc->reg_lock);
9219         if (rc)
9220                 goto done;
9221
9222         if (sc->chip_params->nchan > 2) {
9223                 sbuf_printf(sb, "                 channel 0  channel 1"
9224                     "  channel 2  channel 3");
9225                 sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
9226                     stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9227                 sbuf_printf(sb, "\nCPL responses:  %10u %10u %10u %10u",
9228                     stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9229         } else {
9230                 sbuf_printf(sb, "                 channel 0  channel 1");
9231                 sbuf_printf(sb, "\nCPL requests:   %10u %10u",
9232                     stats.req[0], stats.req[1]);
9233                 sbuf_printf(sb, "\nCPL responses:  %10u %10u",
9234                     stats.rsp[0], stats.rsp[1]);
9235         }
9236
9237         rc = sbuf_finish(sb);
9238 done:
9239         sbuf_delete(sb);
9240         return (rc);
9241 }
9242
9243 static int
9244 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9245 {
9246         struct adapter *sc = arg1;
9247         struct sbuf *sb;
9248         int rc;
9249         struct tp_usm_stats stats;
9250
9251         rc = sysctl_wire_old_buffer(req, 0);
9252         if (rc != 0)
9253                 return(rc);
9254
9255         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9256         if (sb == NULL)
9257                 return (ENOMEM);
9258
9259         mtx_lock(&sc->reg_lock);
9260         if (hw_off_limits(sc))
9261                 rc = ENXIO;
9262         else
9263                 t4_get_usm_stats(sc, &stats, 1);
9264         mtx_unlock(&sc->reg_lock);
9265         if (rc == 0) {
9266                 sbuf_printf(sb, "Frames: %u\n", stats.frames);
9267                 sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9268                 sbuf_printf(sb, "Drops:  %u", stats.drops);
9269                 rc = sbuf_finish(sb);
9270         }
9271         sbuf_delete(sb);
9272
9273         return (rc);
9274 }
9275
9276 static int
9277 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
9278 {
9279         struct adapter *sc = arg1;
9280         struct sbuf *sb;
9281         int rc;
9282         struct tp_tid_stats stats;
9283
9284         rc = sysctl_wire_old_buffer(req, 0);
9285         if (rc != 0)
9286                 return(rc);
9287
9288         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9289         if (sb == NULL)
9290                 return (ENOMEM);
9291
9292         mtx_lock(&sc->reg_lock);
9293         if (hw_off_limits(sc))
9294                 rc = ENXIO;
9295         else
9296                 t4_tp_get_tid_stats(sc, &stats, 1);
9297         mtx_unlock(&sc->reg_lock);
9298         if (rc == 0) {
9299                 sbuf_printf(sb, "Delete:     %u\n", stats.del);
9300                 sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
9301                 sbuf_printf(sb, "Active:     %u\n", stats.act);
9302                 sbuf_printf(sb, "Passive:    %u", stats.pas);
9303                 rc = sbuf_finish(sb);
9304         }
9305         sbuf_delete(sb);
9306
9307         return (rc);
9308 }
9309
9310 static const char * const devlog_level_strings[] = {
9311         [FW_DEVLOG_LEVEL_EMERG]         = "EMERG",
9312         [FW_DEVLOG_LEVEL_CRIT]          = "CRIT",
9313         [FW_DEVLOG_LEVEL_ERR]           = "ERR",
9314         [FW_DEVLOG_LEVEL_NOTICE]        = "NOTICE",
9315         [FW_DEVLOG_LEVEL_INFO]          = "INFO",
9316         [FW_DEVLOG_LEVEL_DEBUG]         = "DEBUG"
9317 };
9318
9319 static const char * const devlog_facility_strings[] = {
9320         [FW_DEVLOG_FACILITY_CORE]       = "CORE",
9321         [FW_DEVLOG_FACILITY_CF]         = "CF",
9322         [FW_DEVLOG_FACILITY_SCHED]      = "SCHED",
9323         [FW_DEVLOG_FACILITY_TIMER]      = "TIMER",
9324         [FW_DEVLOG_FACILITY_RES]        = "RES",
9325         [FW_DEVLOG_FACILITY_HW]         = "HW",
9326         [FW_DEVLOG_FACILITY_FLR]        = "FLR",
9327         [FW_DEVLOG_FACILITY_DMAQ]       = "DMAQ",
9328         [FW_DEVLOG_FACILITY_PHY]        = "PHY",
9329         [FW_DEVLOG_FACILITY_MAC]        = "MAC",
9330         [FW_DEVLOG_FACILITY_PORT]       = "PORT",
9331         [FW_DEVLOG_FACILITY_VI]         = "VI",
9332         [FW_DEVLOG_FACILITY_FILTER]     = "FILTER",
9333         [FW_DEVLOG_FACILITY_ACL]        = "ACL",
9334         [FW_DEVLOG_FACILITY_TM]         = "TM",
9335         [FW_DEVLOG_FACILITY_QFC]        = "QFC",
9336         [FW_DEVLOG_FACILITY_DCB]        = "DCB",
9337         [FW_DEVLOG_FACILITY_ETH]        = "ETH",
9338         [FW_DEVLOG_FACILITY_OFLD]       = "OFLD",
9339         [FW_DEVLOG_FACILITY_RI]         = "RI",
9340         [FW_DEVLOG_FACILITY_ISCSI]      = "ISCSI",
9341         [FW_DEVLOG_FACILITY_FCOE]       = "FCOE",
9342         [FW_DEVLOG_FACILITY_FOISCSI]    = "FOISCSI",
9343         [FW_DEVLOG_FACILITY_FOFCOE]     = "FOFCOE",
9344         [FW_DEVLOG_FACILITY_CHNET]      = "CHNET",
9345 };
9346
9347 static int
9348 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
9349 {
9350         int i, j, rc, nentries, first = 0;
9351         struct devlog_params *dparams = &sc->params.devlog;
9352         struct fw_devlog_e *buf, *e;
9353         uint64_t ftstamp = UINT64_MAX;
9354
9355         if (dparams->addr == 0)
9356                 return (ENXIO);
9357
9358         MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9359         buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
9360         if (buf == NULL)
9361                 return (ENOMEM);
9362
9363         mtx_lock(&sc->reg_lock);
9364         if (hw_off_limits(sc))
9365                 rc = ENXIO;
9366         else
9367                 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf,
9368                     dparams->size);
9369         mtx_unlock(&sc->reg_lock);
9370         if (rc != 0)
9371                 goto done;
9372
9373         nentries = dparams->size / sizeof(struct fw_devlog_e);
9374         for (i = 0; i < nentries; i++) {
9375                 e = &buf[i];
9376
9377                 if (e->timestamp == 0)
9378                         break;  /* end */
9379
9380                 e->timestamp = be64toh(e->timestamp);
9381                 e->seqno = be32toh(e->seqno);
9382                 for (j = 0; j < 8; j++)
9383                         e->params[j] = be32toh(e->params[j]);
9384
9385                 if (e->timestamp < ftstamp) {
9386                         ftstamp = e->timestamp;
9387                         first = i;
9388                 }
9389         }
9390
9391         if (buf[first].timestamp == 0)
9392                 goto done;      /* nothing in the log */
9393
9394         sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
9395             "Seq#", "Tstamp", "Level", "Facility", "Message");
9396
9397         i = first;
9398         do {
9399                 e = &buf[i];
9400                 if (e->timestamp == 0)
9401                         break;  /* end */
9402
9403                 sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
9404                     e->seqno, e->timestamp,
9405                     (e->level < nitems(devlog_level_strings) ?
9406                         devlog_level_strings[e->level] : "UNKNOWN"),
9407                     (e->facility < nitems(devlog_facility_strings) ?
9408                         devlog_facility_strings[e->facility] : "UNKNOWN"));
9409                 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
9410                     e->params[2], e->params[3], e->params[4],
9411                     e->params[5], e->params[6], e->params[7]);
9412
9413                 if (++i == nentries)
9414                         i = 0;
9415         } while (i != first);
9416 done:
9417         free(buf, M_CXGBE);
9418         return (rc);
9419 }
9420
9421 static int
9422 sysctl_devlog(SYSCTL_HANDLER_ARGS)
9423 {
9424         struct adapter *sc = arg1;
9425         int rc;
9426         struct sbuf *sb;
9427
9428         rc = sysctl_wire_old_buffer(req, 0);
9429         if (rc != 0)
9430                 return (rc);
9431         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9432         if (sb == NULL)
9433                 return (ENOMEM);
9434
9435         rc = sbuf_devlog(sc, sb, M_WAITOK);
9436         if (rc == 0)
9437                 rc = sbuf_finish(sb);
9438         sbuf_delete(sb);
9439         return (rc);
9440 }
9441
9442 static void
9443 dump_devlog(struct adapter *sc)
9444 {
9445         int rc;
9446         struct sbuf sb;
9447
9448         if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9449                 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
9450                     device_get_nameunit(sc->dev));
9451                 return;
9452         }
9453         rc = sbuf_devlog(sc, &sb, M_WAITOK);
9454         if (rc == 0) {
9455                 rc = sbuf_finish(&sb);
9456                 if (rc == 0) {
9457                         log(LOG_DEBUG, "%s: device log follows.\n%s",
9458                                 device_get_nameunit(sc->dev), sbuf_data(&sb));
9459                 }
9460         }
9461         sbuf_delete(&sb);
9462 }
9463
9464 static int
9465 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
9466 {
9467         struct adapter *sc = arg1;
9468         struct sbuf *sb;
9469         int rc;
9470         struct tp_fcoe_stats stats[MAX_NCHAN];
9471         int i, nchan = sc->chip_params->nchan;
9472
9473         rc = sysctl_wire_old_buffer(req, 0);
9474         if (rc != 0)
9475                 return (rc);
9476
9477         mtx_lock(&sc->reg_lock);
9478         if (hw_off_limits(sc))
9479                 rc = ENXIO;
9480         else {
9481                 for (i = 0; i < nchan; i++)
9482                         t4_get_fcoe_stats(sc, i, &stats[i], 1);
9483         }
9484         mtx_unlock(&sc->reg_lock);
9485         if (rc != 0)
9486                 return (rc);
9487
9488         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9489         if (sb == NULL)
9490                 return (ENOMEM);
9491
9492         if (nchan > 2) {
9493                 sbuf_printf(sb, "                   channel 0        channel 1"
9494                     "        channel 2        channel 3");
9495                 sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
9496                     stats[0].octets_ddp, stats[1].octets_ddp,
9497                     stats[2].octets_ddp, stats[3].octets_ddp);
9498                 sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
9499                     stats[0].frames_ddp, stats[1].frames_ddp,
9500                     stats[2].frames_ddp, stats[3].frames_ddp);
9501                 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
9502                     stats[0].frames_drop, stats[1].frames_drop,
9503                     stats[2].frames_drop, stats[3].frames_drop);
9504         } else {
9505                 sbuf_printf(sb, "                   channel 0        channel 1");
9506                 sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
9507                     stats[0].octets_ddp, stats[1].octets_ddp);
9508                 sbuf_printf(sb, "\nframesDDP:  %16u %16u",
9509                     stats[0].frames_ddp, stats[1].frames_ddp);
9510                 sbuf_printf(sb, "\nframesDrop: %16u %16u",
9511                     stats[0].frames_drop, stats[1].frames_drop);
9512         }
9513
9514         rc = sbuf_finish(sb);
9515         sbuf_delete(sb);
9516
9517         return (rc);
9518 }
9519
9520 static int
9521 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
9522 {
9523         struct adapter *sc = arg1;
9524         struct sbuf *sb;
9525         int rc, i;
9526         unsigned int map, kbps, ipg, mode;
9527         unsigned int pace_tab[NTX_SCHED];
9528
9529         rc = sysctl_wire_old_buffer(req, 0);
9530         if (rc != 0)
9531                 return (rc);
9532
9533         sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
9534         if (sb == NULL)
9535                 return (ENOMEM);
9536
9537         mtx_lock(&sc->reg_lock);
9538         if (hw_off_limits(sc)) {
9539                 rc = ENXIO;
9540                 goto done;
9541         }
9542
9543         map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
9544         mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
9545         t4_read_pace_tbl(sc, pace_tab);
9546
9547         sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
9548             "Class IPG (0.1 ns)   Flow IPG (us)");
9549
9550         for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
9551                 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
9552                 sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
9553                     (mode & (1 << i)) ? "flow" : "class", map & 3);
9554                 if (kbps)
9555                         sbuf_printf(sb, "%9u     ", kbps);
9556                 else
9557                         sbuf_printf(sb, " disabled     ");
9558
9559                 if (ipg)
9560                         sbuf_printf(sb, "%13u        ", ipg);
9561                 else
9562                         sbuf_printf(sb, "     disabled        ");
9563
9564                 if (pace_tab[i])
9565                         sbuf_printf(sb, "%10u", pace_tab[i]);
9566                 else
9567                         sbuf_printf(sb, "  disabled");
9568         }
9569         rc = sbuf_finish(sb);
9570 done:
9571         mtx_unlock(&sc->reg_lock);
9572         sbuf_delete(sb);
9573         return (rc);
9574 }
9575
9576 static int
9577 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
9578 {
9579         struct adapter *sc = arg1;
9580         struct sbuf *sb;
9581         int rc, i, j;
9582         uint64_t *p0, *p1;
9583         struct lb_port_stats s[2];
9584         static const char *stat_name[] = {
9585                 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
9586                 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
9587                 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
9588                 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
9589                 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
9590                 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
9591                 "BG2FramesTrunc:", "BG3FramesTrunc:"
9592         };
9593
9594         rc = sysctl_wire_old_buffer(req, 0);
9595         if (rc != 0)
9596                 return (rc);
9597
9598         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9599         if (sb == NULL)
9600                 return (ENOMEM);
9601
9602         memset(s, 0, sizeof(s));
9603
9604         for (i = 0; i < sc->chip_params->nchan; i += 2) {
9605                 mtx_lock(&sc->reg_lock);
9606                 if (hw_off_limits(sc))
9607                         rc = ENXIO;
9608                 else {
9609                         t4_get_lb_stats(sc, i, &s[0]);
9610                         t4_get_lb_stats(sc, i + 1, &s[1]);
9611                 }
9612                 mtx_unlock(&sc->reg_lock);
9613                 if (rc != 0)
9614                         break;
9615
9616                 p0 = &s[0].octets;
9617                 p1 = &s[1].octets;
9618                 sbuf_printf(sb, "%s                       Loopback %u"
9619                     "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
9620
9621                 for (j = 0; j < nitems(stat_name); j++)
9622                         sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
9623                                    *p0++, *p1++);
9624         }
9625
9626         rc = sbuf_finish(sb);
9627         sbuf_delete(sb);
9628
9629         return (rc);
9630 }
9631
9632 static int
9633 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
9634 {
9635         int rc = 0;
9636         struct port_info *pi = arg1;
9637         struct link_config *lc = &pi->link_cfg;
9638         struct sbuf *sb;
9639
9640         rc = sysctl_wire_old_buffer(req, 0);
9641         if (rc != 0)
9642                 return(rc);
9643         sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
9644         if (sb == NULL)
9645                 return (ENOMEM);
9646
9647         if (lc->link_ok || lc->link_down_rc == 255)
9648                 sbuf_printf(sb, "n/a");
9649         else
9650                 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
9651
9652         rc = sbuf_finish(sb);
9653         sbuf_delete(sb);
9654
9655         return (rc);
9656 }
9657
9658 struct mem_desc {
9659         u_int base;
9660         u_int limit;
9661         u_int idx;
9662 };
9663
9664 static int
9665 mem_desc_cmp(const void *a, const void *b)
9666 {
9667         const u_int v1 = ((const struct mem_desc *)a)->base;
9668         const u_int v2 = ((const struct mem_desc *)b)->base;
9669
9670         if (v1 < v2)
9671                 return (-1);
9672         else if (v1 > v2)
9673                 return (1);
9674
9675         return (0);
9676 }
9677
9678 static void
9679 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
9680     unsigned int to)
9681 {
9682         unsigned int size;
9683
9684         if (from == to)
9685                 return;
9686
9687         size = to - from + 1;
9688         if (size == 0)
9689                 return;
9690
9691         /* XXX: need humanize_number(3) in libkern for a more readable 'size' */
9692         sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
9693 }
9694
9695 static int
9696 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
9697 {
9698         struct adapter *sc = arg1;
9699         struct sbuf *sb;
9700         int rc, i, n;
9701         uint32_t lo, hi, used, free, alloc;
9702         static const char *memory[] = {
9703                 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
9704         };
9705         static const char *region[] = {
9706                 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
9707                 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
9708                 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
9709                 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
9710                 "RQUDP region:", "PBL region:", "TXPBL region:",
9711                 "TLSKey region:", "DBVFIFO region:", "ULPRX state:",
9712                 "ULPTX state:", "On-chip queues:",
9713         };
9714         struct mem_desc avail[4];
9715         struct mem_desc mem[nitems(region) + 3];        /* up to 3 holes */
9716         struct mem_desc *md = mem;
9717
9718         rc = sysctl_wire_old_buffer(req, 0);
9719         if (rc != 0)
9720                 return (rc);
9721
9722         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9723         if (sb == NULL)
9724                 return (ENOMEM);
9725
9726         for (i = 0; i < nitems(mem); i++) {
9727                 mem[i].limit = 0;
9728                 mem[i].idx = i;
9729         }
9730
9731         mtx_lock(&sc->reg_lock);
9732         if (hw_off_limits(sc)) {
9733                 rc = ENXIO;
9734                 goto done;
9735         }
9736
9737         /* Find and sort the populated memory ranges */
9738         i = 0;
9739         lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
9740         if (lo & F_EDRAM0_ENABLE) {
9741                 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
9742                 avail[i].base = G_EDRAM0_BASE(hi) << 20;
9743                 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
9744                 avail[i].idx = 0;
9745                 i++;
9746         }
9747         if (lo & F_EDRAM1_ENABLE) {
9748                 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
9749                 avail[i].base = G_EDRAM1_BASE(hi) << 20;
9750                 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
9751                 avail[i].idx = 1;
9752                 i++;
9753         }
9754         if (lo & F_EXT_MEM_ENABLE) {
9755                 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
9756                 avail[i].base = G_EXT_MEM_BASE(hi) << 20;
9757                 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
9758                 avail[i].idx = is_t5(sc) ? 3 : 2;       /* Call it MC0 for T5 */
9759                 i++;
9760         }
9761         if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
9762                 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9763                 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9764                 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9765                 avail[i].idx = 4;
9766                 i++;
9767         }
9768         if (is_t6(sc) && lo & F_HMA_MUX) {
9769                 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9770                 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9771                 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9772                 avail[i].idx = 5;
9773                 i++;
9774         }
9775         MPASS(i <= nitems(avail));
9776         if (!i)                                    /* no memory available */
9777                 goto done;
9778         qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
9779
9780         (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
9781         (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
9782         (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
9783         (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9784         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
9785         (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
9786         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
9787         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
9788         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
9789
9790         /* the next few have explicit upper bounds */
9791         md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
9792         md->limit = md->base - 1 +
9793                     t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
9794                     G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
9795         md++;
9796
9797         md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
9798         md->limit = md->base - 1 +
9799                     t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
9800                     G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
9801         md++;
9802
9803         if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
9804                 if (chip_id(sc) <= CHELSIO_T5)
9805                         md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
9806                 else
9807                         md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
9808                 md->limit = 0;
9809         } else {
9810                 md->base = 0;
9811                 md->idx = nitems(region);  /* hide it */
9812         }
9813         md++;
9814
9815 #define ulp_region(reg) \
9816         md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
9817         (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
9818
9819         ulp_region(RX_ISCSI);
9820         ulp_region(RX_TDDP);
9821         ulp_region(TX_TPT);
9822         ulp_region(RX_STAG);
9823         ulp_region(RX_RQ);
9824         ulp_region(RX_RQUDP);
9825         ulp_region(RX_PBL);
9826         ulp_region(TX_PBL);
9827         if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)
9828                 ulp_region(RX_TLS_KEY);
9829 #undef ulp_region
9830
9831         md->base = 0;
9832         if (is_t4(sc))
9833                 md->idx = nitems(region);
9834         else {
9835                 uint32_t size = 0;
9836                 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
9837                 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
9838
9839                 if (is_t5(sc)) {
9840                         if (sge_ctrl & F_VFIFO_ENABLE)
9841                                 size = fifo_size << 2;
9842                 } else
9843                         size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
9844
9845                 if (size) {
9846                         md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
9847                         md->limit = md->base + size - 1;
9848                 } else
9849                         md->idx = nitems(region);
9850         }
9851         md++;
9852
9853         md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
9854         md->limit = 0;
9855         md++;
9856         md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
9857         md->limit = 0;
9858         md++;
9859
9860         md->base = sc->vres.ocq.start;
9861         if (sc->vres.ocq.size)
9862                 md->limit = md->base + sc->vres.ocq.size - 1;
9863         else
9864                 md->idx = nitems(region);  /* hide it */
9865         md++;
9866
9867         /* add any address-space holes, there can be up to 3 */
9868         for (n = 0; n < i - 1; n++)
9869                 if (avail[n].limit < avail[n + 1].base)
9870                         (md++)->base = avail[n].limit;
9871         if (avail[n].limit)
9872                 (md++)->base = avail[n].limit;
9873
9874         n = md - mem;
9875         MPASS(n <= nitems(mem));
9876         qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
9877
9878         for (lo = 0; lo < i; lo++)
9879                 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
9880                                 avail[lo].limit - 1);
9881
9882         sbuf_printf(sb, "\n");
9883         for (i = 0; i < n; i++) {
9884                 if (mem[i].idx >= nitems(region))
9885                         continue;                        /* skip holes */
9886                 if (!mem[i].limit)
9887                         mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
9888                 mem_region_show(sb, region[mem[i].idx], mem[i].base,
9889                                 mem[i].limit);
9890         }
9891
9892         sbuf_printf(sb, "\n");
9893         lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
9894         hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
9895         mem_region_show(sb, "uP RAM:", lo, hi);
9896
9897         lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
9898         hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
9899         mem_region_show(sb, "uP Extmem2:", lo, hi);
9900
9901         lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
9902         for (i = 0, free = 0; i < 2; i++)
9903                 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
9904         sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
9905                    G_PMRXMAXPAGE(lo), free,
9906                    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
9907                    (lo & F_PMRXNUMCHN) ? 2 : 1);
9908
9909         lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
9910         hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
9911         for (i = 0, free = 0; i < 4; i++)
9912                 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
9913         sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
9914                    G_PMTXMAXPAGE(lo), free,
9915                    hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
9916                    hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
9917         sbuf_printf(sb, "%u p-structs (%u free)\n",
9918                    t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
9919                    G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
9920
9921         for (i = 0; i < 4; i++) {
9922                 if (chip_id(sc) > CHELSIO_T5)
9923                         lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
9924                 else
9925                         lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
9926                 if (is_t5(sc)) {
9927                         used = G_T5_USED(lo);
9928                         alloc = G_T5_ALLOC(lo);
9929                 } else {
9930                         used = G_USED(lo);
9931                         alloc = G_ALLOC(lo);
9932                 }
9933                 /* For T6 these are MAC buffer groups */
9934                 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
9935                     i, used, alloc);
9936         }
9937         for (i = 0; i < sc->chip_params->nchan; i++) {
9938                 if (chip_id(sc) > CHELSIO_T5)
9939                         lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
9940                 else
9941                         lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
9942                 if (is_t5(sc)) {
9943                         used = G_T5_USED(lo);
9944                         alloc = G_T5_ALLOC(lo);
9945                 } else {
9946                         used = G_USED(lo);
9947                         alloc = G_ALLOC(lo);
9948                 }
9949                 /* For T6 these are MAC buffer groups */
9950                 sbuf_printf(sb,
9951                     "\nLoopback %d using %u pages out of %u allocated",
9952                     i, used, alloc);
9953         }
9954 done:
9955         mtx_unlock(&sc->reg_lock);
9956         if (rc == 0)
9957                 rc = sbuf_finish(sb);
9958         sbuf_delete(sb);
9959         return (rc);
9960 }
9961
9962 static inline void
9963 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
9964 {
9965         *mask = x | y;
9966         y = htobe64(y);
9967         memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
9968 }
9969
9970 static int
9971 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
9972 {
9973         struct adapter *sc = arg1;
9974         struct sbuf *sb;
9975         int rc, i;
9976
9977         MPASS(chip_id(sc) <= CHELSIO_T5);
9978
9979         rc = sysctl_wire_old_buffer(req, 0);
9980         if (rc != 0)
9981                 return (rc);
9982
9983         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9984         if (sb == NULL)
9985                 return (ENOMEM);
9986
9987         sbuf_printf(sb,
9988             "Idx  Ethernet address     Mask     Vld Ports PF"
9989             "  VF              Replication             P0 P1 P2 P3  ML");
9990         for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
9991                 uint64_t tcamx, tcamy, mask;
9992                 uint32_t cls_lo, cls_hi;
9993                 uint8_t addr[ETHER_ADDR_LEN];
9994
9995                 mtx_lock(&sc->reg_lock);
9996                 if (hw_off_limits(sc))
9997                         rc = ENXIO;
9998                 else {
9999                         tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10000                         tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10001                 }
10002                 mtx_unlock(&sc->reg_lock);
10003                 if (rc != 0)
10004                         break;
10005                 if (tcamx & tcamy)
10006                         continue;
10007                 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10008                 mtx_lock(&sc->reg_lock);
10009                 if (hw_off_limits(sc))
10010                         rc = ENXIO;
10011                 else {
10012                         cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10013                         cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10014                 }
10015                 mtx_unlock(&sc->reg_lock);
10016                 if (rc != 0)
10017                         break;
10018                 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10019                            "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
10020                            addr[3], addr[4], addr[5], (uintmax_t)mask,
10021                            (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10022                            G_PORTMAP(cls_hi), G_PF(cls_lo),
10023                            (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10024
10025                 if (cls_lo & F_REPLICATE) {
10026                         struct fw_ldst_cmd ldst_cmd;
10027
10028                         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10029                         ldst_cmd.op_to_addrspace =
10030                             htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10031                                 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10032                                 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10033                         ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10034                         ldst_cmd.u.mps.rplc.fid_idx =
10035                             htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10036                                 V_FW_LDST_CMD_IDX(i));
10037
10038                         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10039                             "t4mps");
10040                         if (rc)
10041                                 break;
10042                         if (hw_off_limits(sc))
10043                                 rc = ENXIO;
10044                         else
10045                                 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10046                                     sizeof(ldst_cmd), &ldst_cmd);
10047                         end_synchronized_op(sc, 0);
10048                         if (rc != 0)
10049                                 break;
10050                         else {
10051                                 sbuf_printf(sb, " %08x %08x %08x %08x",
10052                                     be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10053                                     be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10054                                     be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10055                                     be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10056                         }
10057                 } else
10058                         sbuf_printf(sb, "%36s", "");
10059
10060                 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10061                     G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10062                     G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10063         }
10064
10065         if (rc)
10066                 (void) sbuf_finish(sb);
10067         else
10068                 rc = sbuf_finish(sb);
10069         sbuf_delete(sb);
10070
10071         return (rc);
10072 }
10073
10074 static int
10075 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10076 {
10077         struct adapter *sc = arg1;
10078         struct sbuf *sb;
10079         int rc, i;
10080
10081         MPASS(chip_id(sc) > CHELSIO_T5);
10082
10083         rc = sysctl_wire_old_buffer(req, 0);
10084         if (rc != 0)
10085                 return (rc);
10086
10087         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10088         if (sb == NULL)
10089                 return (ENOMEM);
10090
10091         sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
10092             "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
10093             "                           Replication"
10094             "                                    P0 P1 P2 P3  ML\n");
10095
10096         for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10097                 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10098                 uint16_t ivlan;
10099                 uint64_t tcamx, tcamy, val, mask;
10100                 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10101                 uint8_t addr[ETHER_ADDR_LEN];
10102
10103                 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10104                 if (i < 256)
10105                         ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10106                 else
10107                         ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10108                 mtx_lock(&sc->reg_lock);
10109                 if (hw_off_limits(sc))
10110                         rc = ENXIO;
10111                 else {
10112                         t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10113                         val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10114                         tcamy = G_DMACH(val) << 32;
10115                         tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10116                         data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10117                 }
10118                 mtx_unlock(&sc->reg_lock);
10119                 if (rc != 0)
10120                         break;
10121
10122                 lookup_type = G_DATALKPTYPE(data2);
10123                 port_num = G_DATAPORTNUM(data2);
10124                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10125                         /* Inner header VNI */
10126                         vniy = ((data2 & F_DATAVIDH2) << 23) |
10127                                        (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10128                         dip_hit = data2 & F_DATADIPHIT;
10129                         vlan_vld = 0;
10130                 } else {
10131                         vniy = 0;
10132                         dip_hit = 0;
10133                         vlan_vld = data2 & F_DATAVIDH2;
10134                         ivlan = G_VIDL(val);
10135                 }
10136
10137                 ctl |= V_CTLXYBITSEL(1);
10138                 mtx_lock(&sc->reg_lock);
10139                 if (hw_off_limits(sc))
10140                         rc = ENXIO;
10141                 else {
10142                         t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10143                         val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10144                         tcamx = G_DMACH(val) << 32;
10145                         tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10146                         data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10147                 }
10148                 mtx_unlock(&sc->reg_lock);
10149                 if (rc != 0)
10150                         break;
10151
10152                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10153                         /* Inner header VNI mask */
10154                         vnix = ((data2 & F_DATAVIDH2) << 23) |
10155                                (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10156                 } else
10157                         vnix = 0;
10158
10159                 if (tcamx & tcamy)
10160                         continue;
10161                 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10162
10163                 mtx_lock(&sc->reg_lock);
10164                 if (hw_off_limits(sc))
10165                         rc = ENXIO;
10166                 else {
10167                         cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10168                         cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10169                 }
10170                 mtx_unlock(&sc->reg_lock);
10171                 if (rc != 0)
10172                         break;
10173
10174                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10175                         sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10176                             "%012jx %06x %06x    -    -   %3c"
10177                             "        I  %4x   %3c   %#x%4u%4d", i, addr[0],
10178                             addr[1], addr[2], addr[3], addr[4], addr[5],
10179                             (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
10180                             port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10181                             G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10182                             cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10183                 } else {
10184                         sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10185                             "%012jx    -       -   ", i, addr[0], addr[1],
10186                             addr[2], addr[3], addr[4], addr[5],
10187                             (uintmax_t)mask);
10188
10189                         if (vlan_vld)
10190                                 sbuf_printf(sb, "%4u   Y     ", ivlan);
10191                         else
10192                                 sbuf_printf(sb, "  -    N     ");
10193
10194                         sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
10195                             lookup_type ? 'I' : 'O', port_num,
10196                             cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10197                             G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10198                             cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10199                 }
10200
10201
10202                 if (cls_lo & F_T6_REPLICATE) {
10203                         struct fw_ldst_cmd ldst_cmd;
10204
10205                         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10206                         ldst_cmd.op_to_addrspace =
10207                             htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10208                                 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10209                                 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10210                         ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10211                         ldst_cmd.u.mps.rplc.fid_idx =
10212                             htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10213                                 V_FW_LDST_CMD_IDX(i));
10214
10215                         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10216                             "t6mps");
10217                         if (rc)
10218                                 break;
10219                         if (hw_off_limits(sc))
10220                                 rc = ENXIO;
10221                         else
10222                                 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10223                                     sizeof(ldst_cmd), &ldst_cmd);
10224                         end_synchronized_op(sc, 0);
10225                         if (rc != 0)
10226                                 break;
10227                         else {
10228                                 sbuf_printf(sb, " %08x %08x %08x %08x"
10229                                     " %08x %08x %08x %08x",
10230                                     be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
10231                                     be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
10232                                     be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
10233                                     be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
10234                                     be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10235                                     be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10236                                     be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10237                                     be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10238                         }
10239                 } else
10240                         sbuf_printf(sb, "%72s", "");
10241
10242                 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
10243                     G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
10244                     G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
10245                     (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
10246         }
10247
10248         if (rc)
10249                 (void) sbuf_finish(sb);
10250         else
10251                 rc = sbuf_finish(sb);
10252         sbuf_delete(sb);
10253
10254         return (rc);
10255 }
10256
10257 static int
10258 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
10259 {
10260         struct adapter *sc = arg1;
10261         struct sbuf *sb;
10262         int rc;
10263         uint16_t mtus[NMTUS];
10264
10265         rc = sysctl_wire_old_buffer(req, 0);
10266         if (rc != 0)
10267                 return (rc);
10268
10269         mtx_lock(&sc->reg_lock);
10270         if (hw_off_limits(sc))
10271                 rc = ENXIO;
10272         else
10273                 t4_read_mtu_tbl(sc, mtus, NULL);
10274         mtx_unlock(&sc->reg_lock);
10275         if (rc != 0)
10276                 return (rc);
10277
10278         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10279         if (sb == NULL)
10280                 return (ENOMEM);
10281
10282         sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
10283             mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
10284             mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
10285             mtus[14], mtus[15]);
10286
10287         rc = sbuf_finish(sb);
10288         sbuf_delete(sb);
10289
10290         return (rc);
10291 }
10292
10293 static int
10294 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
10295 {
10296         struct adapter *sc = arg1;
10297         struct sbuf *sb;
10298         int rc, i;
10299         uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
10300         uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
10301         static const char *tx_stats[MAX_PM_NSTATS] = {
10302                 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
10303                 "Tx FIFO wait", NULL, "Tx latency"
10304         };
10305         static const char *rx_stats[MAX_PM_NSTATS] = {
10306                 "Read:", "Write bypass:", "Write mem:", "Flush:",
10307                 "Rx FIFO wait", NULL, "Rx latency"
10308         };
10309
10310         rc = sysctl_wire_old_buffer(req, 0);
10311         if (rc != 0)
10312                 return (rc);
10313
10314         mtx_lock(&sc->reg_lock);
10315         if (hw_off_limits(sc))
10316                 rc = ENXIO;
10317         else {
10318                 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
10319                 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
10320         }
10321         mtx_unlock(&sc->reg_lock);
10322         if (rc != 0)
10323                 return (rc);
10324
10325         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10326         if (sb == NULL)
10327                 return (ENOMEM);
10328
10329         sbuf_printf(sb, "                Tx pcmds             Tx bytes");
10330         for (i = 0; i < 4; i++) {
10331                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10332                     tx_cyc[i]);
10333         }
10334
10335         sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
10336         for (i = 0; i < 4; i++) {
10337                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10338                     rx_cyc[i]);
10339         }
10340
10341         if (chip_id(sc) > CHELSIO_T5) {
10342                 sbuf_printf(sb,
10343                     "\n              Total wait      Total occupancy");
10344                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10345                     tx_cyc[i]);
10346                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10347                     rx_cyc[i]);
10348
10349                 i += 2;
10350                 MPASS(i < nitems(tx_stats));
10351
10352                 sbuf_printf(sb,
10353                     "\n                   Reads           Total wait");
10354                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10355                     tx_cyc[i]);
10356                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10357                     rx_cyc[i]);
10358         }
10359
10360         rc = sbuf_finish(sb);
10361         sbuf_delete(sb);
10362
10363         return (rc);
10364 }
10365
10366 static int
10367 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
10368 {
10369         struct adapter *sc = arg1;
10370         struct sbuf *sb;
10371         int rc;
10372         struct tp_rdma_stats stats;
10373
10374         rc = sysctl_wire_old_buffer(req, 0);
10375         if (rc != 0)
10376                 return (rc);
10377
10378         mtx_lock(&sc->reg_lock);
10379         if (hw_off_limits(sc))
10380                 rc = ENXIO;
10381         else
10382                 t4_tp_get_rdma_stats(sc, &stats, 0);
10383         mtx_unlock(&sc->reg_lock);
10384         if (rc != 0)
10385                 return (rc);
10386
10387         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10388         if (sb == NULL)
10389                 return (ENOMEM);
10390
10391         sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
10392         sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
10393
10394         rc = sbuf_finish(sb);
10395         sbuf_delete(sb);
10396
10397         return (rc);
10398 }
10399
10400 static int
10401 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
10402 {
10403         struct adapter *sc = arg1;
10404         struct sbuf *sb;
10405         int rc;
10406         struct tp_tcp_stats v4, v6;
10407
10408         rc = sysctl_wire_old_buffer(req, 0);
10409         if (rc != 0)
10410                 return (rc);
10411
10412         mtx_lock(&sc->reg_lock);
10413         if (hw_off_limits(sc))
10414                 rc = ENXIO;
10415         else
10416                 t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
10417         mtx_unlock(&sc->reg_lock);
10418         if (rc != 0)
10419                 return (rc);
10420
10421         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10422         if (sb == NULL)
10423                 return (ENOMEM);
10424
10425         sbuf_printf(sb,
10426             "                                IP                 IPv6\n");
10427         sbuf_printf(sb, "OutRsts:      %20u %20u\n",
10428             v4.tcp_out_rsts, v6.tcp_out_rsts);
10429         sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
10430             v4.tcp_in_segs, v6.tcp_in_segs);
10431         sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
10432             v4.tcp_out_segs, v6.tcp_out_segs);
10433         sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
10434             v4.tcp_retrans_segs, v6.tcp_retrans_segs);
10435
10436         rc = sbuf_finish(sb);
10437         sbuf_delete(sb);
10438
10439         return (rc);
10440 }
10441
10442 static int
10443 sysctl_tids(SYSCTL_HANDLER_ARGS)
10444 {
10445         struct adapter *sc = arg1;
10446         struct sbuf *sb;
10447         int rc;
10448         uint32_t x, y;
10449         struct tid_info *t = &sc->tids;
10450
10451         rc = sysctl_wire_old_buffer(req, 0);
10452         if (rc != 0)
10453                 return (rc);
10454
10455         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10456         if (sb == NULL)
10457                 return (ENOMEM);
10458
10459         if (t->natids) {
10460                 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
10461                     t->atids_in_use);
10462         }
10463
10464         if (t->nhpftids) {
10465                 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
10466                     t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
10467         }
10468
10469         if (t->ntids) {
10470                 bool hashen = false;
10471
10472                 mtx_lock(&sc->reg_lock);
10473                 if (hw_off_limits(sc))
10474                         rc = ENXIO;
10475                 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10476                         hashen = true;
10477                         if (chip_id(sc) <= CHELSIO_T5) {
10478                                 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
10479                                 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
10480                         } else {
10481                                 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
10482                                 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
10483                         }
10484                 }
10485                 mtx_unlock(&sc->reg_lock);
10486                 if (rc != 0)
10487                         goto done;
10488
10489                 sbuf_printf(sb, "TID range: ");
10490                 if (hashen) {
10491                         if (x)
10492                                 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
10493                         sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
10494                 } else {
10495                         sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
10496                             t->ntids - 1);
10497                 }
10498                 sbuf_printf(sb, ", in use: %u\n",
10499                     atomic_load_acq_int(&t->tids_in_use));
10500         }
10501
10502         if (t->nstids) {
10503                 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
10504                     t->stid_base + t->nstids - 1, t->stids_in_use);
10505         }
10506
10507         if (t->nftids) {
10508                 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
10509                     t->ftid_end, t->ftids_in_use);
10510         }
10511
10512         if (t->netids) {
10513                 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
10514                     t->etid_base + t->netids - 1, t->etids_in_use);
10515         }
10516
10517         mtx_lock(&sc->reg_lock);
10518         if (hw_off_limits(sc))
10519                 rc = ENXIO;
10520         else {
10521                 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
10522                 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
10523         }
10524         mtx_unlock(&sc->reg_lock);
10525         if (rc != 0)
10526                 goto done;
10527         sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
10528 done:
10529         if (rc == 0)
10530                 rc = sbuf_finish(sb);
10531         else
10532                 (void)sbuf_finish(sb);
10533         sbuf_delete(sb);
10534
10535         return (rc);
10536 }
10537
10538 static int
10539 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
10540 {
10541         struct adapter *sc = arg1;
10542         struct sbuf *sb;
10543         int rc;
10544         struct tp_err_stats stats;
10545
10546         rc = sysctl_wire_old_buffer(req, 0);
10547         if (rc != 0)
10548                 return (rc);
10549
10550         mtx_lock(&sc->reg_lock);
10551         if (hw_off_limits(sc))
10552                 rc = ENXIO;
10553         else
10554                 t4_tp_get_err_stats(sc, &stats, 0);
10555         mtx_unlock(&sc->reg_lock);
10556         if (rc != 0)
10557                 return (rc);
10558
10559         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10560         if (sb == NULL)
10561                 return (ENOMEM);
10562
10563         if (sc->chip_params->nchan > 2) {
10564                 sbuf_printf(sb, "                 channel 0  channel 1"
10565                     "  channel 2  channel 3\n");
10566                 sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
10567                     stats.mac_in_errs[0], stats.mac_in_errs[1],
10568                     stats.mac_in_errs[2], stats.mac_in_errs[3]);
10569                 sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
10570                     stats.hdr_in_errs[0], stats.hdr_in_errs[1],
10571                     stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
10572                 sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
10573                     stats.tcp_in_errs[0], stats.tcp_in_errs[1],
10574                     stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
10575                 sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
10576                     stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
10577                     stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
10578                 sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
10579                     stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
10580                     stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
10581                 sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
10582                     stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
10583                     stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
10584                 sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
10585                     stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
10586                     stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
10587                 sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
10588                     stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
10589                     stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
10590         } else {
10591                 sbuf_printf(sb, "                 channel 0  channel 1\n");
10592                 sbuf_printf(sb, "macInErrs:      %10u %10u\n",
10593                     stats.mac_in_errs[0], stats.mac_in_errs[1]);
10594                 sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
10595                     stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
10596                 sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
10597                     stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
10598                 sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
10599                     stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
10600                 sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
10601                     stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
10602                 sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
10603                     stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
10604                 sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
10605                     stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
10606                 sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
10607                     stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
10608         }
10609
10610         sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
10611             stats.ofld_no_neigh, stats.ofld_cong_defer);
10612
10613         rc = sbuf_finish(sb);
10614         sbuf_delete(sb);
10615
10616         return (rc);
10617 }
10618
10619 static int
10620 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
10621 {
10622         struct adapter *sc = arg1;
10623         struct sbuf *sb;
10624         int rc;
10625         struct tp_tnl_stats stats;
10626
10627         rc = sysctl_wire_old_buffer(req, 0);
10628         if (rc != 0)
10629                 return(rc);
10630
10631         mtx_lock(&sc->reg_lock);
10632         if (hw_off_limits(sc))
10633                 rc = ENXIO;
10634         else
10635                 t4_tp_get_tnl_stats(sc, &stats, 1);
10636         mtx_unlock(&sc->reg_lock);
10637         if (rc != 0)
10638                 return (rc);
10639
10640         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10641         if (sb == NULL)
10642                 return (ENOMEM);
10643
10644         if (sc->chip_params->nchan > 2) {
10645                 sbuf_printf(sb, "           channel 0  channel 1"
10646                     "  channel 2  channel 3\n");
10647                 sbuf_printf(sb, "OutPkts:  %10u %10u %10u %10u\n",
10648                     stats.out_pkt[0], stats.out_pkt[1],
10649                     stats.out_pkt[2], stats.out_pkt[3]);
10650                 sbuf_printf(sb, "InPkts:   %10u %10u %10u %10u",
10651                     stats.in_pkt[0], stats.in_pkt[1],
10652                     stats.in_pkt[2], stats.in_pkt[3]);
10653         } else {
10654                 sbuf_printf(sb, "           channel 0  channel 1\n");
10655                 sbuf_printf(sb, "OutPkts:  %10u %10u\n",
10656                     stats.out_pkt[0], stats.out_pkt[1]);
10657                 sbuf_printf(sb, "InPkts:   %10u %10u",
10658                     stats.in_pkt[0], stats.in_pkt[1]);
10659         }
10660
10661         rc = sbuf_finish(sb);
10662         sbuf_delete(sb);
10663
10664         return (rc);
10665 }
10666
10667 static int
10668 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
10669 {
10670         struct adapter *sc = arg1;
10671         struct tp_params *tpp = &sc->params.tp;
10672         u_int mask;
10673         int rc;
10674
10675         mask = tpp->la_mask >> 16;
10676         rc = sysctl_handle_int(oidp, &mask, 0, req);
10677         if (rc != 0 || req->newptr == NULL)
10678                 return (rc);
10679         if (mask > 0xffff)
10680                 return (EINVAL);
10681         mtx_lock(&sc->reg_lock);
10682         if (hw_off_limits(sc))
10683                 rc = ENXIO;
10684         else {
10685                 tpp->la_mask = mask << 16;
10686                 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
10687                     tpp->la_mask);
10688         }
10689         mtx_unlock(&sc->reg_lock);
10690
10691         return (rc);
10692 }
10693
10694 struct field_desc {
10695         const char *name;
10696         u_int start;
10697         u_int width;
10698 };
10699
10700 static void
10701 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
10702 {
10703         char buf[32];
10704         int line_size = 0;
10705
10706         while (f->name) {
10707                 uint64_t mask = (1ULL << f->width) - 1;
10708                 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
10709                     ((uintmax_t)v >> f->start) & mask);
10710
10711                 if (line_size + len >= 79) {
10712                         line_size = 8;
10713                         sbuf_printf(sb, "\n        ");
10714                 }
10715                 sbuf_printf(sb, "%s ", buf);
10716                 line_size += len + 1;
10717                 f++;
10718         }
10719         sbuf_printf(sb, "\n");
10720 }
10721
10722 static const struct field_desc tp_la0[] = {
10723         { "RcfOpCodeOut", 60, 4 },
10724         { "State", 56, 4 },
10725         { "WcfState", 52, 4 },
10726         { "RcfOpcSrcOut", 50, 2 },
10727         { "CRxError", 49, 1 },
10728         { "ERxError", 48, 1 },
10729         { "SanityFailed", 47, 1 },
10730         { "SpuriousMsg", 46, 1 },
10731         { "FlushInputMsg", 45, 1 },
10732         { "FlushInputCpl", 44, 1 },
10733         { "RssUpBit", 43, 1 },
10734         { "RssFilterHit", 42, 1 },
10735         { "Tid", 32, 10 },
10736         { "InitTcb", 31, 1 },
10737         { "LineNumber", 24, 7 },
10738         { "Emsg", 23, 1 },
10739         { "EdataOut", 22, 1 },
10740         { "Cmsg", 21, 1 },
10741         { "CdataOut", 20, 1 },
10742         { "EreadPdu", 19, 1 },
10743         { "CreadPdu", 18, 1 },
10744         { "TunnelPkt", 17, 1 },
10745         { "RcfPeerFin", 16, 1 },
10746         { "RcfReasonOut", 12, 4 },
10747         { "TxCchannel", 10, 2 },
10748         { "RcfTxChannel", 8, 2 },
10749         { "RxEchannel", 6, 2 },
10750         { "RcfRxChannel", 5, 1 },
10751         { "RcfDataOutSrdy", 4, 1 },
10752         { "RxDvld", 3, 1 },
10753         { "RxOoDvld", 2, 1 },
10754         { "RxCongestion", 1, 1 },
10755         { "TxCongestion", 0, 1 },
10756         { NULL }
10757 };
10758
10759 static const struct field_desc tp_la1[] = {
10760         { "CplCmdIn", 56, 8 },
10761         { "CplCmdOut", 48, 8 },
10762         { "ESynOut", 47, 1 },
10763         { "EAckOut", 46, 1 },
10764         { "EFinOut", 45, 1 },
10765         { "ERstOut", 44, 1 },
10766         { "SynIn", 43, 1 },
10767         { "AckIn", 42, 1 },
10768         { "FinIn", 41, 1 },
10769         { "RstIn", 40, 1 },
10770         { "DataIn", 39, 1 },
10771         { "DataInVld", 38, 1 },
10772         { "PadIn", 37, 1 },
10773         { "RxBufEmpty", 36, 1 },
10774         { "RxDdp", 35, 1 },
10775         { "RxFbCongestion", 34, 1 },
10776         { "TxFbCongestion", 33, 1 },
10777         { "TxPktSumSrdy", 32, 1 },
10778         { "RcfUlpType", 28, 4 },
10779         { "Eread", 27, 1 },
10780         { "Ebypass", 26, 1 },
10781         { "Esave", 25, 1 },
10782         { "Static0", 24, 1 },
10783         { "Cread", 23, 1 },
10784         { "Cbypass", 22, 1 },
10785         { "Csave", 21, 1 },
10786         { "CPktOut", 20, 1 },
10787         { "RxPagePoolFull", 18, 2 },
10788         { "RxLpbkPkt", 17, 1 },
10789         { "TxLpbkPkt", 16, 1 },
10790         { "RxVfValid", 15, 1 },
10791         { "SynLearned", 14, 1 },
10792         { "SetDelEntry", 13, 1 },
10793         { "SetInvEntry", 12, 1 },
10794         { "CpcmdDvld", 11, 1 },
10795         { "CpcmdSave", 10, 1 },
10796         { "RxPstructsFull", 8, 2 },
10797         { "EpcmdDvld", 7, 1 },
10798         { "EpcmdFlush", 6, 1 },
10799         { "EpcmdTrimPrefix", 5, 1 },
10800         { "EpcmdTrimPostfix", 4, 1 },
10801         { "ERssIp4Pkt", 3, 1 },
10802         { "ERssIp6Pkt", 2, 1 },
10803         { "ERssTcpUdpPkt", 1, 1 },
10804         { "ERssFceFipPkt", 0, 1 },
10805         { NULL }
10806 };
10807
10808 static const struct field_desc tp_la2[] = {
10809         { "CplCmdIn", 56, 8 },
10810         { "MpsVfVld", 55, 1 },
10811         { "MpsPf", 52, 3 },
10812         { "MpsVf", 44, 8 },
10813         { "SynIn", 43, 1 },
10814         { "AckIn", 42, 1 },
10815         { "FinIn", 41, 1 },
10816         { "RstIn", 40, 1 },
10817         { "DataIn", 39, 1 },
10818         { "DataInVld", 38, 1 },
10819         { "PadIn", 37, 1 },
10820         { "RxBufEmpty", 36, 1 },
10821         { "RxDdp", 35, 1 },
10822         { "RxFbCongestion", 34, 1 },
10823         { "TxFbCongestion", 33, 1 },
10824         { "TxPktSumSrdy", 32, 1 },
10825         { "RcfUlpType", 28, 4 },
10826         { "Eread", 27, 1 },
10827         { "Ebypass", 26, 1 },
10828         { "Esave", 25, 1 },
10829         { "Static0", 24, 1 },
10830         { "Cread", 23, 1 },
10831         { "Cbypass", 22, 1 },
10832         { "Csave", 21, 1 },
10833         { "CPktOut", 20, 1 },
10834         { "RxPagePoolFull", 18, 2 },
10835         { "RxLpbkPkt", 17, 1 },
10836         { "TxLpbkPkt", 16, 1 },
10837         { "RxVfValid", 15, 1 },
10838         { "SynLearned", 14, 1 },
10839         { "SetDelEntry", 13, 1 },
10840         { "SetInvEntry", 12, 1 },
10841         { "CpcmdDvld", 11, 1 },
10842         { "CpcmdSave", 10, 1 },
10843         { "RxPstructsFull", 8, 2 },
10844         { "EpcmdDvld", 7, 1 },
10845         { "EpcmdFlush", 6, 1 },
10846         { "EpcmdTrimPrefix", 5, 1 },
10847         { "EpcmdTrimPostfix", 4, 1 },
10848         { "ERssIp4Pkt", 3, 1 },
10849         { "ERssIp6Pkt", 2, 1 },
10850         { "ERssTcpUdpPkt", 1, 1 },
10851         { "ERssFceFipPkt", 0, 1 },
10852         { NULL }
10853 };
10854
10855 static void
10856 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
10857 {
10858
10859         field_desc_show(sb, *p, tp_la0);
10860 }
10861
10862 static void
10863 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
10864 {
10865
10866         if (idx)
10867                 sbuf_printf(sb, "\n");
10868         field_desc_show(sb, p[0], tp_la0);
10869         if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10870                 field_desc_show(sb, p[1], tp_la0);
10871 }
10872
10873 static void
10874 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
10875 {
10876
10877         if (idx)
10878                 sbuf_printf(sb, "\n");
10879         field_desc_show(sb, p[0], tp_la0);
10880         if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10881                 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
10882 }
10883
10884 static int
10885 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
10886 {
10887         struct adapter *sc = arg1;
10888         struct sbuf *sb;
10889         uint64_t *buf, *p;
10890         int rc;
10891         u_int i, inc;
10892         void (*show_func)(struct sbuf *, uint64_t *, int);
10893
10894         rc = sysctl_wire_old_buffer(req, 0);
10895         if (rc != 0)
10896                 return (rc);
10897
10898         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10899         if (sb == NULL)
10900                 return (ENOMEM);
10901
10902         buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
10903
10904         mtx_lock(&sc->reg_lock);
10905         if (hw_off_limits(sc))
10906                 rc = ENXIO;
10907         else {
10908                 t4_tp_read_la(sc, buf, NULL);
10909                 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
10910                 case 2:
10911                         inc = 2;
10912                         show_func = tp_la_show2;
10913                         break;
10914                 case 3:
10915                         inc = 2;
10916                         show_func = tp_la_show3;
10917                         break;
10918                 default:
10919                         inc = 1;
10920                         show_func = tp_la_show;
10921                 }
10922         }
10923         mtx_unlock(&sc->reg_lock);
10924         if (rc != 0)
10925                 goto done;
10926
10927         p = buf;
10928         for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
10929                 (*show_func)(sb, p, i);
10930         rc = sbuf_finish(sb);
10931 done:
10932         sbuf_delete(sb);
10933         free(buf, M_CXGBE);
10934         return (rc);
10935 }
10936
10937 static int
10938 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
10939 {
10940         struct adapter *sc = arg1;
10941         struct sbuf *sb;
10942         int rc;
10943         u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
10944
10945         rc = sysctl_wire_old_buffer(req, 0);
10946         if (rc != 0)
10947                 return (rc);
10948
10949         mtx_lock(&sc->reg_lock);
10950         if (hw_off_limits(sc))
10951                 rc = ENXIO;
10952         else
10953                 t4_get_chan_txrate(sc, nrate, orate);
10954         mtx_unlock(&sc->reg_lock);
10955         if (rc != 0)
10956                 return (rc);
10957
10958         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10959         if (sb == NULL)
10960                 return (ENOMEM);
10961
10962         if (sc->chip_params->nchan > 2) {
10963                 sbuf_printf(sb, "              channel 0   channel 1"
10964                     "   channel 2   channel 3\n");
10965                 sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
10966                     nrate[0], nrate[1], nrate[2], nrate[3]);
10967                 sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
10968                     orate[0], orate[1], orate[2], orate[3]);
10969         } else {
10970                 sbuf_printf(sb, "              channel 0   channel 1\n");
10971                 sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
10972                     nrate[0], nrate[1]);
10973                 sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
10974                     orate[0], orate[1]);
10975         }
10976
10977         rc = sbuf_finish(sb);
10978         sbuf_delete(sb);
10979
10980         return (rc);
10981 }
10982
10983 static int
10984 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
10985 {
10986         struct adapter *sc = arg1;
10987         struct sbuf *sb;
10988         uint32_t *buf, *p;
10989         int rc, i;
10990
10991         rc = sysctl_wire_old_buffer(req, 0);
10992         if (rc != 0)
10993                 return (rc);
10994
10995         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10996         if (sb == NULL)
10997                 return (ENOMEM);
10998
10999         buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
11000             M_ZERO | M_WAITOK);
11001
11002         mtx_lock(&sc->reg_lock);
11003         if (hw_off_limits(sc))
11004                 rc = ENXIO;
11005         else
11006                 t4_ulprx_read_la(sc, buf);
11007         mtx_unlock(&sc->reg_lock);
11008         if (rc != 0)
11009                 goto done;
11010
11011         p = buf;
11012         sbuf_printf(sb, "      Pcmd        Type   Message"
11013             "                Data");
11014         for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
11015                 sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
11016                     p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
11017         }
11018         rc = sbuf_finish(sb);
11019 done:
11020         sbuf_delete(sb);
11021         free(buf, M_CXGBE);
11022         return (rc);
11023 }
11024
11025 static int
11026 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
11027 {
11028         struct adapter *sc = arg1;
11029         struct sbuf *sb;
11030         int rc;
11031         uint32_t cfg, s1, s2;
11032
11033         MPASS(chip_id(sc) >= CHELSIO_T5);
11034
11035         rc = sysctl_wire_old_buffer(req, 0);
11036         if (rc != 0)
11037                 return (rc);
11038
11039         mtx_lock(&sc->reg_lock);
11040         if (hw_off_limits(sc))
11041                 rc = ENXIO;
11042         else {
11043                 cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
11044                 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
11045                 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
11046         }
11047         mtx_unlock(&sc->reg_lock);
11048         if (rc != 0)
11049                 return (rc);
11050
11051         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11052         if (sb == NULL)
11053                 return (ENOMEM);
11054
11055         if (G_STATSOURCE_T5(cfg) == 7) {
11056                 int mode;
11057
11058                 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
11059                 if (mode == 0)
11060                         sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
11061                 else if (mode == 1)
11062                         sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
11063                 else
11064                         sbuf_printf(sb, "unknown mode %d", mode);
11065         }
11066         rc = sbuf_finish(sb);
11067         sbuf_delete(sb);
11068
11069         return (rc);
11070 }
11071
11072 static int
11073 sysctl_cpus(SYSCTL_HANDLER_ARGS)
11074 {
11075         struct adapter *sc = arg1;
11076         enum cpu_sets op = arg2;
11077         cpuset_t cpuset;
11078         struct sbuf *sb;
11079         int i, rc;
11080
11081         MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
11082
11083         CPU_ZERO(&cpuset);
11084         rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
11085         if (rc != 0)
11086                 return (rc);
11087
11088         rc = sysctl_wire_old_buffer(req, 0);
11089         if (rc != 0)
11090                 return (rc);
11091
11092         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11093         if (sb == NULL)
11094                 return (ENOMEM);
11095
11096         CPU_FOREACH(i)
11097                 sbuf_printf(sb, "%d ", i);
11098         rc = sbuf_finish(sb);
11099         sbuf_delete(sb);
11100
11101         return (rc);
11102 }
11103
11104 static int
11105 sysctl_reset(SYSCTL_HANDLER_ARGS)
11106 {
11107         struct adapter *sc = arg1;
11108         u_int val;
11109         int rc;
11110
11111         val = atomic_load_int(&sc->num_resets);
11112         rc = sysctl_handle_int(oidp, &val, 0, req);
11113         if (rc != 0 || req->newptr == NULL)
11114                 return (rc);
11115
11116         if (val == 0) {
11117                 /* Zero out the counter that tracks reset. */
11118                 atomic_store_int(&sc->num_resets, 0);
11119                 return (0);
11120         }
11121
11122         if (val != 1)
11123                 return (EINVAL);        /* 0 or 1 are the only legal values */
11124
11125         if (hw_off_limits(sc))          /* harmless race */
11126                 return (EALREADY);
11127
11128         taskqueue_enqueue(reset_tq, &sc->reset_task);
11129         return (0);
11130 }
11131
11132 #ifdef TCP_OFFLOAD
11133 static int
11134 sysctl_tls(SYSCTL_HANDLER_ARGS)
11135 {
11136         struct adapter *sc = arg1;
11137         int i, j, v, rc;
11138         struct vi_info *vi;
11139
11140         v = sc->tt.tls;
11141         rc = sysctl_handle_int(oidp, &v, 0, req);
11142         if (rc != 0 || req->newptr == NULL)
11143                 return (rc);
11144
11145         if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11146                 return (ENOTSUP);
11147
11148         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
11149         if (rc)
11150                 return (rc);
11151         if (hw_off_limits(sc))
11152                 rc = ENXIO;
11153         else {
11154                 sc->tt.tls = !!v;
11155                 for_each_port(sc, i) {
11156                         for_each_vi(sc->port[i], j, vi) {
11157                                 if (vi->flags & VI_INIT_DONE)
11158                                         t4_update_fl_bufsize(vi->ifp);
11159                         }
11160                 }
11161         }
11162         end_synchronized_op(sc, 0);
11163
11164         return (rc);
11165
11166 }
11167
11168 static int
11169 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS)
11170 {
11171         struct adapter *sc = arg1;
11172         int *old_ports, *new_ports;
11173         int i, new_count, rc;
11174
11175         if (req->newptr == NULL && req->oldptr == NULL)
11176                 return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) *
11177                     sizeof(sc->tt.tls_rx_ports[0])));
11178
11179         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx");
11180         if (rc)
11181                 return (rc);
11182
11183         if (hw_off_limits(sc)) {
11184                 rc = ENXIO;
11185                 goto done;
11186         }
11187
11188         if (sc->tt.num_tls_rx_ports == 0) {
11189                 i = -1;
11190                 rc = SYSCTL_OUT(req, &i, sizeof(i));
11191         } else
11192                 rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports,
11193                     sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0]));
11194         if (rc == 0 && req->newptr != NULL) {
11195                 new_count = req->newlen / sizeof(new_ports[0]);
11196                 new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE,
11197                     M_WAITOK);
11198                 rc = SYSCTL_IN(req, new_ports, new_count *
11199                     sizeof(new_ports[0]));
11200                 if (rc)
11201                         goto err;
11202
11203                 /* Allow setting to a single '-1' to clear the list. */
11204                 if (new_count == 1 && new_ports[0] == -1) {
11205                         ADAPTER_LOCK(sc);
11206                         old_ports = sc->tt.tls_rx_ports;
11207                         sc->tt.tls_rx_ports = NULL;
11208                         sc->tt.num_tls_rx_ports = 0;
11209                         ADAPTER_UNLOCK(sc);
11210                         free(old_ports, M_CXGBE);
11211                 } else {
11212                         for (i = 0; i < new_count; i++) {
11213                                 if (new_ports[i] < 1 ||
11214                                     new_ports[i] > IPPORT_MAX) {
11215                                         rc = EINVAL;
11216                                         goto err;
11217                                 }
11218                         }
11219
11220                         ADAPTER_LOCK(sc);
11221                         old_ports = sc->tt.tls_rx_ports;
11222                         sc->tt.tls_rx_ports = new_ports;
11223                         sc->tt.num_tls_rx_ports = new_count;
11224                         ADAPTER_UNLOCK(sc);
11225                         free(old_ports, M_CXGBE);
11226                         new_ports = NULL;
11227                 }
11228         err:
11229                 free(new_ports, M_CXGBE);
11230         }
11231 done:
11232         end_synchronized_op(sc, 0);
11233         return (rc);
11234 }
11235
11236 static int
11237 sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS)
11238 {
11239         struct adapter *sc = arg1;
11240         int v, rc;
11241
11242         v = sc->tt.tls_rx_timeout;
11243         rc = sysctl_handle_int(oidp, &v, 0, req);
11244         if (rc != 0 || req->newptr == NULL)
11245                 return (rc);
11246
11247         if (v < 0)
11248                 return (EINVAL);
11249
11250         if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11251                 return (ENOTSUP);
11252
11253         sc->tt.tls_rx_timeout = v;
11254
11255         return (0);
11256
11257 }
11258
11259 static void
11260 unit_conv(char *buf, size_t len, u_int val, u_int factor)
11261 {
11262         u_int rem = val % factor;
11263
11264         if (rem == 0)
11265                 snprintf(buf, len, "%u", val / factor);
11266         else {
11267                 while (rem % 10 == 0)
11268                         rem /= 10;
11269                 snprintf(buf, len, "%u.%u", val / factor, rem);
11270         }
11271 }
11272
11273 static int
11274 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
11275 {
11276         struct adapter *sc = arg1;
11277         char buf[16];
11278         u_int res, re;
11279         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11280
11281         mtx_lock(&sc->reg_lock);
11282         if (hw_off_limits(sc))
11283                 res = (u_int)-1;
11284         else
11285                 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
11286         mtx_unlock(&sc->reg_lock);
11287         if (res == (u_int)-1)
11288                 return (ENXIO);
11289
11290         switch (arg2) {
11291         case 0:
11292                 /* timer_tick */
11293                 re = G_TIMERRESOLUTION(res);
11294                 break;
11295         case 1:
11296                 /* TCP timestamp tick */
11297                 re = G_TIMESTAMPRESOLUTION(res);
11298                 break;
11299         case 2:
11300                 /* DACK tick */
11301                 re = G_DELAYEDACKRESOLUTION(res);
11302                 break;
11303         default:
11304                 return (EDOOFUS);
11305         }
11306
11307         unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
11308
11309         return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
11310 }
11311
11312 static int
11313 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
11314 {
11315         struct adapter *sc = arg1;
11316         int rc;
11317         u_int dack_tmr, dack_re, v;
11318         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11319
11320         mtx_lock(&sc->reg_lock);
11321         if (hw_off_limits(sc))
11322                 rc = ENXIO;
11323         else {
11324                 rc = 0;
11325                 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
11326                     A_TP_TIMER_RESOLUTION));
11327                 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
11328         }
11329         mtx_unlock(&sc->reg_lock);
11330         if (rc != 0)
11331                 return (rc);
11332
11333         v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
11334
11335         return (sysctl_handle_int(oidp, &v, 0, req));
11336 }
11337
11338 static int
11339 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
11340 {
11341         struct adapter *sc = arg1;
11342         int rc, reg = arg2;
11343         u_int tre;
11344         u_long tp_tick_us, v;
11345         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11346
11347         MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
11348             reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
11349             reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
11350             reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
11351
11352         mtx_lock(&sc->reg_lock);
11353         if (hw_off_limits(sc))
11354                 rc = ENXIO;
11355         else {
11356                 rc = 0;
11357                 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
11358                 tp_tick_us = (cclk_ps << tre) / 1000000;
11359                 if (reg == A_TP_INIT_SRTT)
11360                         v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
11361                 else
11362                         v = tp_tick_us * t4_read_reg(sc, reg);
11363         }
11364         mtx_unlock(&sc->reg_lock);
11365         if (rc != 0)
11366                 return (rc);
11367         else
11368                 return (sysctl_handle_long(oidp, &v, 0, req));
11369 }
11370
11371 /*
11372  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
11373  * passed to this function.
11374  */
11375 static int
11376 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
11377 {
11378         struct adapter *sc = arg1;
11379         int rc, idx = arg2;
11380         u_int v;
11381
11382         MPASS(idx >= 0 && idx <= 24);
11383
11384         mtx_lock(&sc->reg_lock);
11385         if (hw_off_limits(sc))
11386                 rc = ENXIO;
11387         else {
11388                 rc = 0;
11389                 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
11390         }
11391         mtx_unlock(&sc->reg_lock);
11392         if (rc != 0)
11393                 return (rc);
11394         else
11395                 return (sysctl_handle_int(oidp, &v, 0, req));
11396 }
11397
11398 static int
11399 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
11400 {
11401         struct adapter *sc = arg1;
11402         int rc, idx = arg2;
11403         u_int shift, v, r;
11404
11405         MPASS(idx >= 0 && idx < 16);
11406
11407         r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
11408         shift = (idx & 3) << 3;
11409         mtx_lock(&sc->reg_lock);
11410         if (hw_off_limits(sc))
11411                 rc = ENXIO;
11412         else {
11413                 rc = 0;
11414                 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
11415         }
11416         mtx_unlock(&sc->reg_lock);
11417         if (rc != 0)
11418                 return (rc);
11419         else
11420                 return (sysctl_handle_int(oidp, &v, 0, req));
11421 }
11422
11423 static int
11424 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
11425 {
11426         struct vi_info *vi = arg1;
11427         struct adapter *sc = vi->adapter;
11428         int idx, rc, i;
11429         struct sge_ofld_rxq *ofld_rxq;
11430         uint8_t v;
11431
11432         idx = vi->ofld_tmr_idx;
11433
11434         rc = sysctl_handle_int(oidp, &idx, 0, req);
11435         if (rc != 0 || req->newptr == NULL)
11436                 return (rc);
11437
11438         if (idx < 0 || idx >= SGE_NTIMERS)
11439                 return (EINVAL);
11440
11441         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11442             "t4otmr");
11443         if (rc)
11444                 return (rc);
11445
11446         v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
11447         for_each_ofld_rxq(vi, i, ofld_rxq) {
11448 #ifdef atomic_store_rel_8
11449                 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
11450 #else
11451                 ofld_rxq->iq.intr_params = v;
11452 #endif
11453         }
11454         vi->ofld_tmr_idx = idx;
11455
11456         end_synchronized_op(sc, LOCK_HELD);
11457         return (0);
11458 }
11459
11460 static int
11461 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
11462 {
11463         struct vi_info *vi = arg1;
11464         struct adapter *sc = vi->adapter;
11465         int idx, rc;
11466
11467         idx = vi->ofld_pktc_idx;
11468
11469         rc = sysctl_handle_int(oidp, &idx, 0, req);
11470         if (rc != 0 || req->newptr == NULL)
11471                 return (rc);
11472
11473         if (idx < -1 || idx >= SGE_NCOUNTERS)
11474                 return (EINVAL);
11475
11476         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11477             "t4opktc");
11478         if (rc)
11479                 return (rc);
11480
11481         if (vi->flags & VI_INIT_DONE)
11482                 rc = EBUSY; /* cannot be changed once the queues are created */
11483         else
11484                 vi->ofld_pktc_idx = idx;
11485
11486         end_synchronized_op(sc, LOCK_HELD);
11487         return (rc);
11488 }
11489 #endif
11490
11491 static int
11492 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
11493 {
11494         int rc;
11495
11496         if (cntxt->cid > M_CTXTQID)
11497                 return (EINVAL);
11498
11499         if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
11500             cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
11501                 return (EINVAL);
11502
11503         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
11504         if (rc)
11505                 return (rc);
11506
11507         if (hw_off_limits(sc)) {
11508                 rc = ENXIO;
11509                 goto done;
11510         }
11511
11512         if (sc->flags & FW_OK) {
11513                 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
11514                     &cntxt->data[0]);
11515                 if (rc == 0)
11516                         goto done;
11517         }
11518
11519         /*
11520          * Read via firmware failed or wasn't even attempted.  Read directly via
11521          * the backdoor.
11522          */
11523         rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
11524 done:
11525         end_synchronized_op(sc, 0);
11526         return (rc);
11527 }
11528
11529 static int
11530 load_fw(struct adapter *sc, struct t4_data *fw)
11531 {
11532         int rc;
11533         uint8_t *fw_data;
11534
11535         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
11536         if (rc)
11537                 return (rc);
11538
11539         if (hw_off_limits(sc)) {
11540                 rc = ENXIO;
11541                 goto done;
11542         }
11543
11544         /*
11545          * The firmware, with the sole exception of the memory parity error
11546          * handler, runs from memory and not flash.  It is almost always safe to
11547          * install a new firmware on a running system.  Just set bit 1 in
11548          * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
11549          */
11550         if (sc->flags & FULL_INIT_DONE &&
11551             (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
11552                 rc = EBUSY;
11553                 goto done;
11554         }
11555
11556         fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
11557
11558         rc = copyin(fw->data, fw_data, fw->len);
11559         if (rc == 0)
11560                 rc = -t4_load_fw(sc, fw_data, fw->len);
11561
11562         free(fw_data, M_CXGBE);
11563 done:
11564         end_synchronized_op(sc, 0);
11565         return (rc);
11566 }
11567
11568 static int
11569 load_cfg(struct adapter *sc, struct t4_data *cfg)
11570 {
11571         int rc;
11572         uint8_t *cfg_data = NULL;
11573
11574         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11575         if (rc)
11576                 return (rc);
11577
11578         if (hw_off_limits(sc)) {
11579                 rc = ENXIO;
11580                 goto done;
11581         }
11582
11583         if (cfg->len == 0) {
11584                 /* clear */
11585                 rc = -t4_load_cfg(sc, NULL, 0);
11586                 goto done;
11587         }
11588
11589         cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
11590
11591         rc = copyin(cfg->data, cfg_data, cfg->len);
11592         if (rc == 0)
11593                 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
11594
11595         free(cfg_data, M_CXGBE);
11596 done:
11597         end_synchronized_op(sc, 0);
11598         return (rc);
11599 }
11600
11601 static int
11602 load_boot(struct adapter *sc, struct t4_bootrom *br)
11603 {
11604         int rc;
11605         uint8_t *br_data = NULL;
11606         u_int offset;
11607
11608         if (br->len > 1024 * 1024)
11609                 return (EFBIG);
11610
11611         if (br->pf_offset == 0) {
11612                 /* pfidx */
11613                 if (br->pfidx_addr > 7)
11614                         return (EINVAL);
11615                 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
11616                     A_PCIE_PF_EXPROM_OFST)));
11617         } else if (br->pf_offset == 1) {
11618                 /* offset */
11619                 offset = G_OFFSET(br->pfidx_addr);
11620         } else {
11621                 return (EINVAL);
11622         }
11623
11624         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
11625         if (rc)
11626                 return (rc);
11627
11628         if (hw_off_limits(sc)) {
11629                 rc = ENXIO;
11630                 goto done;
11631         }
11632
11633         if (br->len == 0) {
11634                 /* clear */
11635                 rc = -t4_load_boot(sc, NULL, offset, 0);
11636                 goto done;
11637         }
11638
11639         br_data = malloc(br->len, M_CXGBE, M_WAITOK);
11640
11641         rc = copyin(br->data, br_data, br->len);
11642         if (rc == 0)
11643                 rc = -t4_load_boot(sc, br_data, offset, br->len);
11644
11645         free(br_data, M_CXGBE);
11646 done:
11647         end_synchronized_op(sc, 0);
11648         return (rc);
11649 }
11650
11651 static int
11652 load_bootcfg(struct adapter *sc, struct t4_data *bc)
11653 {
11654         int rc;
11655         uint8_t *bc_data = NULL;
11656
11657         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11658         if (rc)
11659                 return (rc);
11660
11661         if (hw_off_limits(sc)) {
11662                 rc = ENXIO;
11663                 goto done;
11664         }
11665
11666         if (bc->len == 0) {
11667                 /* clear */
11668                 rc = -t4_load_bootcfg(sc, NULL, 0);
11669                 goto done;
11670         }
11671
11672         bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
11673
11674         rc = copyin(bc->data, bc_data, bc->len);
11675         if (rc == 0)
11676                 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
11677
11678         free(bc_data, M_CXGBE);
11679 done:
11680         end_synchronized_op(sc, 0);
11681         return (rc);
11682 }
11683
11684 static int
11685 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
11686 {
11687         int rc;
11688         struct cudbg_init *cudbg;
11689         void *handle, *buf;
11690
11691         /* buf is large, don't block if no memory is available */
11692         buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
11693         if (buf == NULL)
11694                 return (ENOMEM);
11695
11696         handle = cudbg_alloc_handle();
11697         if (handle == NULL) {
11698                 rc = ENOMEM;
11699                 goto done;
11700         }
11701
11702         cudbg = cudbg_get_init(handle);
11703         cudbg->adap = sc;
11704         cudbg->print = (cudbg_print_cb)printf;
11705
11706 #ifndef notyet
11707         device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
11708             __func__, dump->wr_flash, dump->len, dump->data);
11709 #endif
11710
11711         if (dump->wr_flash)
11712                 cudbg->use_flash = 1;
11713         MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
11714         memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
11715
11716         rc = cudbg_collect(handle, buf, &dump->len);
11717         if (rc != 0)
11718                 goto done;
11719
11720         rc = copyout(buf, dump->data, dump->len);
11721 done:
11722         cudbg_free_handle(handle);
11723         free(buf, M_CXGBE);
11724         return (rc);
11725 }
11726
11727 static void
11728 free_offload_policy(struct t4_offload_policy *op)
11729 {
11730         struct offload_rule *r;
11731         int i;
11732
11733         if (op == NULL)
11734                 return;
11735
11736         r = &op->rule[0];
11737         for (i = 0; i < op->nrules; i++, r++) {
11738                 free(r->bpf_prog.bf_insns, M_CXGBE);
11739         }
11740         free(op->rule, M_CXGBE);
11741         free(op, M_CXGBE);
11742 }
11743
11744 static int
11745 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
11746 {
11747         int i, rc, len;
11748         struct t4_offload_policy *op, *old;
11749         struct bpf_program *bf;
11750         const struct offload_settings *s;
11751         struct offload_rule *r;
11752         void *u;
11753
11754         if (!is_offload(sc))
11755                 return (ENODEV);
11756
11757         if (uop->nrules == 0) {
11758                 /* Delete installed policies. */
11759                 op = NULL;
11760                 goto set_policy;
11761         } else if (uop->nrules > 256) { /* arbitrary */
11762                 return (E2BIG);
11763         }
11764
11765         /* Copy userspace offload policy to kernel */
11766         op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
11767         op->nrules = uop->nrules;
11768         len = op->nrules * sizeof(struct offload_rule);
11769         op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11770         rc = copyin(uop->rule, op->rule, len);
11771         if (rc) {
11772                 free(op->rule, M_CXGBE);
11773                 free(op, M_CXGBE);
11774                 return (rc);
11775         }
11776
11777         r = &op->rule[0];
11778         for (i = 0; i < op->nrules; i++, r++) {
11779
11780                 /* Validate open_type */
11781                 if (r->open_type != OPEN_TYPE_LISTEN &&
11782                     r->open_type != OPEN_TYPE_ACTIVE &&
11783                     r->open_type != OPEN_TYPE_PASSIVE &&
11784                     r->open_type != OPEN_TYPE_DONTCARE) {
11785 error:
11786                         /*
11787                          * Rules 0 to i have malloc'd filters that need to be
11788                          * freed.  Rules i+1 to nrules have userspace pointers
11789                          * and should be left alone.
11790                          */
11791                         op->nrules = i;
11792                         free_offload_policy(op);
11793                         return (rc);
11794                 }
11795
11796                 /* Validate settings */
11797                 s = &r->settings;
11798                 if ((s->offload != 0 && s->offload != 1) ||
11799                     s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
11800                     s->sched_class < -1 ||
11801                     s->sched_class >= sc->params.nsched_cls) {
11802                         rc = EINVAL;
11803                         goto error;
11804                 }
11805
11806                 bf = &r->bpf_prog;
11807                 u = bf->bf_insns;       /* userspace ptr */
11808                 bf->bf_insns = NULL;
11809                 if (bf->bf_len == 0) {
11810                         /* legal, matches everything */
11811                         continue;
11812                 }
11813                 len = bf->bf_len * sizeof(*bf->bf_insns);
11814                 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11815                 rc = copyin(u, bf->bf_insns, len);
11816                 if (rc != 0)
11817                         goto error;
11818
11819                 if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
11820                         rc = EINVAL;
11821                         goto error;
11822                 }
11823         }
11824 set_policy:
11825         rw_wlock(&sc->policy_lock);
11826         old = sc->policy;
11827         sc->policy = op;
11828         rw_wunlock(&sc->policy_lock);
11829         free_offload_policy(old);
11830
11831         return (0);
11832 }
11833
11834 #define MAX_READ_BUF_SIZE (128 * 1024)
11835 static int
11836 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
11837 {
11838         uint32_t addr, remaining, n;
11839         uint32_t *buf;
11840         int rc;
11841         uint8_t *dst;
11842
11843         mtx_lock(&sc->reg_lock);
11844         if (hw_off_limits(sc))
11845                 rc = ENXIO;
11846         else
11847                 rc = validate_mem_range(sc, mr->addr, mr->len);
11848         mtx_unlock(&sc->reg_lock);
11849         if (rc != 0)
11850                 return (rc);
11851
11852         buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
11853         addr = mr->addr;
11854         remaining = mr->len;
11855         dst = (void *)mr->data;
11856
11857         while (remaining) {
11858                 n = min(remaining, MAX_READ_BUF_SIZE);
11859                 mtx_lock(&sc->reg_lock);
11860                 if (hw_off_limits(sc))
11861                         rc = ENXIO;
11862                 else
11863                         read_via_memwin(sc, 2, addr, buf, n);
11864                 mtx_unlock(&sc->reg_lock);
11865                 if (rc != 0)
11866                         break;
11867
11868                 rc = copyout(buf, dst, n);
11869                 if (rc != 0)
11870                         break;
11871
11872                 dst += n;
11873                 remaining -= n;
11874                 addr += n;
11875         }
11876
11877         free(buf, M_CXGBE);
11878         return (rc);
11879 }
11880 #undef MAX_READ_BUF_SIZE
11881
11882 static int
11883 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
11884 {
11885         int rc;
11886
11887         if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
11888                 return (EINVAL);
11889
11890         if (i2cd->len > sizeof(i2cd->data))
11891                 return (EFBIG);
11892
11893         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
11894         if (rc)
11895                 return (rc);
11896         if (hw_off_limits(sc))
11897                 rc = ENXIO;
11898         else
11899                 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
11900                     i2cd->offset, i2cd->len, &i2cd->data[0]);
11901         end_synchronized_op(sc, 0);
11902
11903         return (rc);
11904 }
11905
11906 static int
11907 clear_stats(struct adapter *sc, u_int port_id)
11908 {
11909         int i, v, chan_map;
11910         struct port_info *pi;
11911         struct vi_info *vi;
11912         struct sge_rxq *rxq;
11913         struct sge_txq *txq;
11914         struct sge_wrq *wrq;
11915 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11916         struct sge_ofld_txq *ofld_txq;
11917 #endif
11918 #ifdef TCP_OFFLOAD
11919         struct sge_ofld_rxq *ofld_rxq;
11920 #endif
11921
11922         if (port_id >= sc->params.nports)
11923                 return (EINVAL);
11924         pi = sc->port[port_id];
11925         if (pi == NULL)
11926                 return (EIO);
11927
11928         mtx_lock(&sc->reg_lock);
11929         if (!hw_off_limits(sc)) {
11930                 /* MAC stats */
11931                 t4_clr_port_stats(sc, pi->tx_chan);
11932                 if (is_t6(sc)) {
11933                         if (pi->fcs_reg != -1)
11934                                 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
11935                         else
11936                                 pi->stats.rx_fcs_err = 0;
11937                 }
11938                 for_each_vi(pi, v, vi) {
11939                         if (vi->flags & VI_INIT_DONE)
11940                                 t4_clr_vi_stats(sc, vi->vin);
11941                 }
11942                 chan_map = pi->rx_e_chan_map;
11943                 v = 0;  /* reuse */
11944                 while (chan_map) {
11945                         i = ffs(chan_map) - 1;
11946                         t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
11947                             1, A_TP_MIB_TNL_CNG_DROP_0 + i);
11948                         chan_map &= ~(1 << i);
11949                 }
11950         }
11951         mtx_unlock(&sc->reg_lock);
11952         pi->tx_parse_error = 0;
11953         pi->tnl_cong_drops = 0;
11954
11955         /*
11956          * Since this command accepts a port, clear stats for
11957          * all VIs on this port.
11958          */
11959         for_each_vi(pi, v, vi) {
11960                 if (vi->flags & VI_INIT_DONE) {
11961
11962                         for_each_rxq(vi, i, rxq) {
11963 #if defined(INET) || defined(INET6)
11964                                 rxq->lro.lro_queued = 0;
11965                                 rxq->lro.lro_flushed = 0;
11966 #endif
11967                                 rxq->rxcsum = 0;
11968                                 rxq->vlan_extraction = 0;
11969                                 rxq->vxlan_rxcsum = 0;
11970
11971                                 rxq->fl.cl_allocated = 0;
11972                                 rxq->fl.cl_recycled = 0;
11973                                 rxq->fl.cl_fast_recycled = 0;
11974                         }
11975
11976                         for_each_txq(vi, i, txq) {
11977                                 txq->txcsum = 0;
11978                                 txq->tso_wrs = 0;
11979                                 txq->vlan_insertion = 0;
11980                                 txq->imm_wrs = 0;
11981                                 txq->sgl_wrs = 0;
11982                                 txq->txpkt_wrs = 0;
11983                                 txq->txpkts0_wrs = 0;
11984                                 txq->txpkts1_wrs = 0;
11985                                 txq->txpkts0_pkts = 0;
11986                                 txq->txpkts1_pkts = 0;
11987                                 txq->txpkts_flush = 0;
11988                                 txq->raw_wrs = 0;
11989                                 txq->vxlan_tso_wrs = 0;
11990                                 txq->vxlan_txcsum = 0;
11991                                 txq->kern_tls_records = 0;
11992                                 txq->kern_tls_short = 0;
11993                                 txq->kern_tls_partial = 0;
11994                                 txq->kern_tls_full = 0;
11995                                 txq->kern_tls_octets = 0;
11996                                 txq->kern_tls_waste = 0;
11997                                 txq->kern_tls_options = 0;
11998                                 txq->kern_tls_header = 0;
11999                                 txq->kern_tls_fin = 0;
12000                                 txq->kern_tls_fin_short = 0;
12001                                 txq->kern_tls_cbc = 0;
12002                                 txq->kern_tls_gcm = 0;
12003                                 mp_ring_reset_stats(txq->r);
12004                         }
12005
12006 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12007                         for_each_ofld_txq(vi, i, ofld_txq) {
12008                                 ofld_txq->wrq.tx_wrs_direct = 0;
12009                                 ofld_txq->wrq.tx_wrs_copied = 0;
12010                                 counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12011                                 counter_u64_zero(ofld_txq->tx_iscsi_octets);
12012                                 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12013                                 counter_u64_zero(ofld_txq->tx_toe_tls_records);
12014                                 counter_u64_zero(ofld_txq->tx_toe_tls_octets);
12015                         }
12016 #endif
12017 #ifdef TCP_OFFLOAD
12018                         for_each_ofld_rxq(vi, i, ofld_rxq) {
12019                                 ofld_rxq->fl.cl_allocated = 0;
12020                                 ofld_rxq->fl.cl_recycled = 0;
12021                                 ofld_rxq->fl.cl_fast_recycled = 0;
12022                                 counter_u64_zero(
12023                                     ofld_rxq->rx_iscsi_ddp_setup_ok);
12024                                 counter_u64_zero(
12025                                     ofld_rxq->rx_iscsi_ddp_setup_error);
12026                                 ofld_rxq->rx_iscsi_ddp_pdus = 0;
12027                                 ofld_rxq->rx_iscsi_ddp_octets = 0;
12028                                 ofld_rxq->rx_iscsi_fl_pdus = 0;
12029                                 ofld_rxq->rx_iscsi_fl_octets = 0;
12030                                 ofld_rxq->rx_toe_tls_records = 0;
12031                                 ofld_rxq->rx_toe_tls_octets = 0;
12032                         }
12033 #endif
12034
12035                         if (IS_MAIN_VI(vi)) {
12036                                 wrq = &sc->sge.ctrlq[pi->port_id];
12037                                 wrq->tx_wrs_direct = 0;
12038                                 wrq->tx_wrs_copied = 0;
12039                         }
12040                 }
12041         }
12042
12043         return (0);
12044 }
12045
12046 static int
12047 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12048 {
12049 #ifdef INET6
12050         struct in6_addr in6;
12051
12052         bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12053         if (t4_get_clip_entry(sc, &in6, true) != NULL)
12054                 return (0);
12055         else
12056                 return (EIO);
12057 #else
12058         return (ENOTSUP);
12059 #endif
12060 }
12061
12062 static int
12063 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12064 {
12065 #ifdef INET6
12066         struct in6_addr in6;
12067
12068         bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12069         return (t4_release_clip_addr(sc, &in6));
12070 #else
12071         return (ENOTSUP);
12072 #endif
12073 }
12074
12075 int
12076 t4_os_find_pci_capability(struct adapter *sc, int cap)
12077 {
12078         int i;
12079
12080         return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
12081 }
12082
12083 int
12084 t4_os_pci_save_state(struct adapter *sc)
12085 {
12086         device_t dev;
12087         struct pci_devinfo *dinfo;
12088
12089         dev = sc->dev;
12090         dinfo = device_get_ivars(dev);
12091
12092         pci_cfg_save(dev, dinfo, 0);
12093         return (0);
12094 }
12095
12096 int
12097 t4_os_pci_restore_state(struct adapter *sc)
12098 {
12099         device_t dev;
12100         struct pci_devinfo *dinfo;
12101
12102         dev = sc->dev;
12103         dinfo = device_get_ivars(dev);
12104
12105         pci_cfg_restore(dev, dinfo);
12106         return (0);
12107 }
12108
12109 void
12110 t4_os_portmod_changed(struct port_info *pi)
12111 {
12112         struct adapter *sc = pi->adapter;
12113         struct vi_info *vi;
12114         struct ifnet *ifp;
12115         static const char *mod_str[] = {
12116                 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
12117         };
12118
12119         KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
12120             ("%s: port_type %u", __func__, pi->port_type));
12121
12122         vi = &pi->vi[0];
12123         if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
12124                 PORT_LOCK(pi);
12125                 build_medialist(pi);
12126                 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
12127                         fixup_link_config(pi);
12128                         apply_link_config(pi);
12129                 }
12130                 PORT_UNLOCK(pi);
12131                 end_synchronized_op(sc, LOCK_HELD);
12132         }
12133
12134         ifp = vi->ifp;
12135         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
12136                 if_printf(ifp, "transceiver unplugged.\n");
12137         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
12138                 if_printf(ifp, "unknown transceiver inserted.\n");
12139         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
12140                 if_printf(ifp, "unsupported transceiver inserted.\n");
12141         else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
12142                 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
12143                     port_top_speed(pi), mod_str[pi->mod_type]);
12144         } else {
12145                 if_printf(ifp, "transceiver (type %d) inserted.\n",
12146                     pi->mod_type);
12147         }
12148 }
12149
12150 void
12151 t4_os_link_changed(struct port_info *pi)
12152 {
12153         struct vi_info *vi;
12154         struct ifnet *ifp;
12155         struct link_config *lc = &pi->link_cfg;
12156         struct adapter *sc = pi->adapter;
12157         int v;
12158
12159         PORT_LOCK_ASSERT_OWNED(pi);
12160
12161         if (is_t6(sc)) {
12162                 if (lc->link_ok) {
12163                         if (lc->speed > 25000 ||
12164                             (lc->speed == 25000 && lc->fec == FEC_RS)) {
12165                                 pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12166                                     A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS);
12167                         } else {
12168                                 pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12169                                     A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS);
12170                         }
12171                         pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12172                         pi->stats.rx_fcs_err = 0;
12173                 } else {
12174                         pi->fcs_reg = -1;
12175                 }
12176         } else {
12177                 MPASS(pi->fcs_reg != -1);
12178                 MPASS(pi->fcs_base == 0);
12179         }
12180
12181         for_each_vi(pi, v, vi) {
12182                 ifp = vi->ifp;
12183                 if (ifp == NULL)
12184                         continue;
12185
12186                 if (lc->link_ok) {
12187                         ifp->if_baudrate = IF_Mbps(lc->speed);
12188                         if_link_state_change(ifp, LINK_STATE_UP);
12189                 } else {
12190                         if_link_state_change(ifp, LINK_STATE_DOWN);
12191                 }
12192         }
12193 }
12194
12195 void
12196 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
12197 {
12198         struct adapter *sc;
12199
12200         sx_slock(&t4_list_lock);
12201         SLIST_FOREACH(sc, &t4_list, link) {
12202                 /*
12203                  * func should not make any assumptions about what state sc is
12204                  * in - the only guarantee is that sc->sc_lock is a valid lock.
12205                  */
12206                 func(sc, arg);
12207         }
12208         sx_sunlock(&t4_list_lock);
12209 }
12210
12211 static int
12212 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
12213     struct thread *td)
12214 {
12215         int rc;
12216         struct adapter *sc = dev->si_drv1;
12217
12218         rc = priv_check(td, PRIV_DRIVER);
12219         if (rc != 0)
12220                 return (rc);
12221
12222         switch (cmd) {
12223         case CHELSIO_T4_GETREG: {
12224                 struct t4_reg *edata = (struct t4_reg *)data;
12225
12226                 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12227                         return (EFAULT);
12228
12229                 mtx_lock(&sc->reg_lock);
12230                 if (hw_off_limits(sc))
12231                         rc = ENXIO;
12232                 else if (edata->size == 4)
12233                         edata->val = t4_read_reg(sc, edata->addr);
12234                 else if (edata->size == 8)
12235                         edata->val = t4_read_reg64(sc, edata->addr);
12236                 else
12237                         rc = EINVAL;
12238                 mtx_unlock(&sc->reg_lock);
12239
12240                 break;
12241         }
12242         case CHELSIO_T4_SETREG: {
12243                 struct t4_reg *edata = (struct t4_reg *)data;
12244
12245                 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12246                         return (EFAULT);
12247
12248                 mtx_lock(&sc->reg_lock);
12249                 if (hw_off_limits(sc))
12250                         rc = ENXIO;
12251                 else if (edata->size == 4) {
12252                         if (edata->val & 0xffffffff00000000)
12253                                 rc = EINVAL;
12254                         t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
12255                 } else if (edata->size == 8)
12256                         t4_write_reg64(sc, edata->addr, edata->val);
12257                 else
12258                         rc = EINVAL;
12259                 mtx_unlock(&sc->reg_lock);
12260
12261                 break;
12262         }
12263         case CHELSIO_T4_REGDUMP: {
12264                 struct t4_regdump *regs = (struct t4_regdump *)data;
12265                 int reglen = t4_get_regs_len(sc);
12266                 uint8_t *buf;
12267
12268                 if (regs->len < reglen) {
12269                         regs->len = reglen; /* hint to the caller */
12270                         return (ENOBUFS);
12271                 }
12272
12273                 regs->len = reglen;
12274                 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
12275                 mtx_lock(&sc->reg_lock);
12276                 if (hw_off_limits(sc))
12277                         rc = ENXIO;
12278                 else
12279                         get_regs(sc, regs, buf);
12280                 mtx_unlock(&sc->reg_lock);
12281                 if (rc == 0)
12282                         rc = copyout(buf, regs->data, reglen);
12283                 free(buf, M_CXGBE);
12284                 break;
12285         }
12286         case CHELSIO_T4_GET_FILTER_MODE:
12287                 rc = get_filter_mode(sc, (uint32_t *)data);
12288                 break;
12289         case CHELSIO_T4_SET_FILTER_MODE:
12290                 rc = set_filter_mode(sc, *(uint32_t *)data);
12291                 break;
12292         case CHELSIO_T4_SET_FILTER_MASK:
12293                 rc = set_filter_mask(sc, *(uint32_t *)data);
12294                 break;
12295         case CHELSIO_T4_GET_FILTER:
12296                 rc = get_filter(sc, (struct t4_filter *)data);
12297                 break;
12298         case CHELSIO_T4_SET_FILTER:
12299                 rc = set_filter(sc, (struct t4_filter *)data);
12300                 break;
12301         case CHELSIO_T4_DEL_FILTER:
12302                 rc = del_filter(sc, (struct t4_filter *)data);
12303                 break;
12304         case CHELSIO_T4_GET_SGE_CONTEXT:
12305                 rc = get_sge_context(sc, (struct t4_sge_context *)data);
12306                 break;
12307         case CHELSIO_T4_LOAD_FW:
12308                 rc = load_fw(sc, (struct t4_data *)data);
12309                 break;
12310         case CHELSIO_T4_GET_MEM:
12311                 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
12312                 break;
12313         case CHELSIO_T4_GET_I2C:
12314                 rc = read_i2c(sc, (struct t4_i2c_data *)data);
12315                 break;
12316         case CHELSIO_T4_CLEAR_STATS:
12317                 rc = clear_stats(sc, *(uint32_t *)data);
12318                 break;
12319         case CHELSIO_T4_SCHED_CLASS:
12320                 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
12321                 break;
12322         case CHELSIO_T4_SCHED_QUEUE:
12323                 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
12324                 break;
12325         case CHELSIO_T4_GET_TRACER:
12326                 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
12327                 break;
12328         case CHELSIO_T4_SET_TRACER:
12329                 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
12330                 break;
12331         case CHELSIO_T4_LOAD_CFG:
12332                 rc = load_cfg(sc, (struct t4_data *)data);
12333                 break;
12334         case CHELSIO_T4_LOAD_BOOT:
12335                 rc = load_boot(sc, (struct t4_bootrom *)data);
12336                 break;
12337         case CHELSIO_T4_LOAD_BOOTCFG:
12338                 rc = load_bootcfg(sc, (struct t4_data *)data);
12339                 break;
12340         case CHELSIO_T4_CUDBG_DUMP:
12341                 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
12342                 break;
12343         case CHELSIO_T4_SET_OFLD_POLICY:
12344                 rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
12345                 break;
12346         case CHELSIO_T4_HOLD_CLIP_ADDR:
12347                 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
12348                 break;
12349         case CHELSIO_T4_RELEASE_CLIP_ADDR:
12350                 rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
12351                 break;
12352         default:
12353                 rc = ENOTTY;
12354         }
12355
12356         return (rc);
12357 }
12358
12359 #ifdef TCP_OFFLOAD
12360 static int
12361 toe_capability(struct vi_info *vi, bool enable)
12362 {
12363         int rc;
12364         struct port_info *pi = vi->pi;
12365         struct adapter *sc = pi->adapter;
12366
12367         ASSERT_SYNCHRONIZED_OP(sc);
12368
12369         if (!is_offload(sc))
12370                 return (ENODEV);
12371         if (hw_off_limits(sc))
12372                 return (ENXIO);
12373
12374         if (enable) {
12375 #ifdef KERN_TLS
12376                 if (sc->flags & KERN_TLS_ON) {
12377                         int i, j, n;
12378                         struct port_info *p;
12379                         struct vi_info *v;
12380
12381                         /*
12382                          * Reconfigure hardware for TOE if TXTLS is not enabled
12383                          * on any ifnet.
12384                          */
12385                         n = 0;
12386                         for_each_port(sc, i) {
12387                                 p = sc->port[i];
12388                                 for_each_vi(p, j, v) {
12389                                         if (v->ifp->if_capenable & IFCAP_TXTLS) {
12390                                                 CH_WARN(sc,
12391                                                     "%s has NIC TLS enabled.\n",
12392                                                     device_get_nameunit(v->dev));
12393                                                 n++;
12394                                         }
12395                                 }
12396                         }
12397                         if (n > 0) {
12398                                 CH_WARN(sc, "Disable NIC TLS on all interfaces "
12399                                     "associated with this adapter before "
12400                                     "trying to enable TOE.\n");
12401                                 return (EAGAIN);
12402                         }
12403                         rc = t4_config_kern_tls(sc, false);
12404                         if (rc)
12405                                 return (rc);
12406                 }
12407 #endif
12408                 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
12409                         /* TOE is already enabled. */
12410                         return (0);
12411                 }
12412
12413                 /*
12414                  * We need the port's queues around so that we're able to send
12415                  * and receive CPLs to/from the TOE even if the ifnet for this
12416                  * port has never been UP'd administratively.
12417                  */
12418                 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
12419                         return (rc);
12420                 if (!(pi->vi[0].flags & VI_INIT_DONE) &&
12421                     ((rc = vi_init(&pi->vi[0])) != 0))
12422                         return (rc);
12423
12424                 if (isset(&sc->offload_map, pi->port_id)) {
12425                         /* TOE is enabled on another VI of this port. */
12426                         pi->uld_vis++;
12427                         return (0);
12428                 }
12429
12430                 if (!uld_active(sc, ULD_TOM)) {
12431                         rc = t4_activate_uld(sc, ULD_TOM);
12432                         if (rc == EAGAIN) {
12433                                 log(LOG_WARNING,
12434                                     "You must kldload t4_tom.ko before trying "
12435                                     "to enable TOE on a cxgbe interface.\n");
12436                         }
12437                         if (rc != 0)
12438                                 return (rc);
12439                         KASSERT(sc->tom_softc != NULL,
12440                             ("%s: TOM activated but softc NULL", __func__));
12441                         KASSERT(uld_active(sc, ULD_TOM),
12442                             ("%s: TOM activated but flag not set", __func__));
12443                 }
12444
12445                 /* Activate iWARP and iSCSI too, if the modules are loaded. */
12446                 if (!uld_active(sc, ULD_IWARP))
12447                         (void) t4_activate_uld(sc, ULD_IWARP);
12448                 if (!uld_active(sc, ULD_ISCSI))
12449                         (void) t4_activate_uld(sc, ULD_ISCSI);
12450
12451                 pi->uld_vis++;
12452                 setbit(&sc->offload_map, pi->port_id);
12453         } else {
12454                 pi->uld_vis--;
12455
12456                 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
12457                         return (0);
12458
12459                 KASSERT(uld_active(sc, ULD_TOM),
12460                     ("%s: TOM never initialized?", __func__));
12461                 clrbit(&sc->offload_map, pi->port_id);
12462         }
12463
12464         return (0);
12465 }
12466
12467 /*
12468  * Add an upper layer driver to the global list.
12469  */
12470 int
12471 t4_register_uld(struct uld_info *ui)
12472 {
12473         int rc = 0;
12474         struct uld_info *u;
12475
12476         sx_xlock(&t4_uld_list_lock);
12477         SLIST_FOREACH(u, &t4_uld_list, link) {
12478             if (u->uld_id == ui->uld_id) {
12479                     rc = EEXIST;
12480                     goto done;
12481             }
12482         }
12483
12484         SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
12485         ui->refcount = 0;
12486 done:
12487         sx_xunlock(&t4_uld_list_lock);
12488         return (rc);
12489 }
12490
12491 int
12492 t4_unregister_uld(struct uld_info *ui)
12493 {
12494         int rc = EINVAL;
12495         struct uld_info *u;
12496
12497         sx_xlock(&t4_uld_list_lock);
12498
12499         SLIST_FOREACH(u, &t4_uld_list, link) {
12500             if (u == ui) {
12501                     if (ui->refcount > 0) {
12502                             rc = EBUSY;
12503                             goto done;
12504                     }
12505
12506                     SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
12507                     rc = 0;
12508                     goto done;
12509             }
12510         }
12511 done:
12512         sx_xunlock(&t4_uld_list_lock);
12513         return (rc);
12514 }
12515
12516 int
12517 t4_activate_uld(struct adapter *sc, int id)
12518 {
12519         int rc;
12520         struct uld_info *ui;
12521
12522         ASSERT_SYNCHRONIZED_OP(sc);
12523
12524         if (id < 0 || id > ULD_MAX)
12525                 return (EINVAL);
12526         rc = EAGAIN;    /* kldoad the module with this ULD and try again. */
12527
12528         sx_slock(&t4_uld_list_lock);
12529
12530         SLIST_FOREACH(ui, &t4_uld_list, link) {
12531                 if (ui->uld_id == id) {
12532                         if (!(sc->flags & FULL_INIT_DONE)) {
12533                                 rc = adapter_init(sc);
12534                                 if (rc != 0)
12535                                         break;
12536                         }
12537
12538                         rc = ui->activate(sc);
12539                         if (rc == 0) {
12540                                 setbit(&sc->active_ulds, id);
12541                                 ui->refcount++;
12542                         }
12543                         break;
12544                 }
12545         }
12546
12547         sx_sunlock(&t4_uld_list_lock);
12548
12549         return (rc);
12550 }
12551
12552 int
12553 t4_deactivate_uld(struct adapter *sc, int id)
12554 {
12555         int rc;
12556         struct uld_info *ui;
12557
12558         ASSERT_SYNCHRONIZED_OP(sc);
12559
12560         if (id < 0 || id > ULD_MAX)
12561                 return (EINVAL);
12562         rc = ENXIO;
12563
12564         sx_slock(&t4_uld_list_lock);
12565
12566         SLIST_FOREACH(ui, &t4_uld_list, link) {
12567                 if (ui->uld_id == id) {
12568                         rc = ui->deactivate(sc);
12569                         if (rc == 0) {
12570                                 clrbit(&sc->active_ulds, id);
12571                                 ui->refcount--;
12572                         }
12573                         break;
12574                 }
12575         }
12576
12577         sx_sunlock(&t4_uld_list_lock);
12578
12579         return (rc);
12580 }
12581
12582 static void
12583 t4_async_event(struct adapter *sc)
12584 {
12585         struct uld_info *ui;
12586
12587         if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0)
12588                 return;
12589         sx_slock(&t4_uld_list_lock);
12590         SLIST_FOREACH(ui, &t4_uld_list, link) {
12591                 if (ui->uld_id == ULD_IWARP) {
12592                         ui->async_event(sc);
12593                         break;
12594                 }
12595         }
12596         sx_sunlock(&t4_uld_list_lock);
12597         end_synchronized_op(sc, 0);
12598 }
12599
12600 int
12601 uld_active(struct adapter *sc, int uld_id)
12602 {
12603
12604         MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
12605
12606         return (isset(&sc->active_ulds, uld_id));
12607 }
12608 #endif
12609
12610 #ifdef KERN_TLS
12611 static int
12612 ktls_capability(struct adapter *sc, bool enable)
12613 {
12614         ASSERT_SYNCHRONIZED_OP(sc);
12615
12616         if (!is_ktls(sc))
12617                 return (ENODEV);
12618         if (hw_off_limits(sc))
12619                 return (ENXIO);
12620
12621         if (enable) {
12622                 if (sc->flags & KERN_TLS_ON)
12623                         return (0);     /* already on */
12624                 if (sc->offload_map != 0) {
12625                         CH_WARN(sc,
12626                             "Disable TOE on all interfaces associated with "
12627                             "this adapter before trying to enable NIC TLS.\n");
12628                         return (EAGAIN);
12629                 }
12630                 return (t4_config_kern_tls(sc, true));
12631         } else {
12632                 /*
12633                  * Nothing to do for disable.  If TOE is enabled sometime later
12634                  * then toe_capability will reconfigure the hardware.
12635                  */
12636                 return (0);
12637         }
12638 }
12639 #endif
12640
12641 /*
12642  * t  = ptr to tunable.
12643  * nc = number of CPUs.
12644  * c  = compiled in default for that tunable.
12645  */
12646 static void
12647 calculate_nqueues(int *t, int nc, const int c)
12648 {
12649         int nq;
12650
12651         if (*t > 0)
12652                 return;
12653         nq = *t < 0 ? -*t : c;
12654         *t = min(nc, nq);
12655 }
12656
12657 /*
12658  * Come up with reasonable defaults for some of the tunables, provided they're
12659  * not set by the user (in which case we'll use the values as is).
12660  */
12661 static void
12662 tweak_tunables(void)
12663 {
12664         int nc = mp_ncpus;      /* our snapshot of the number of CPUs */
12665
12666         if (t4_ntxq < 1) {
12667 #ifdef RSS
12668                 t4_ntxq = rss_getnumbuckets();
12669 #else
12670                 calculate_nqueues(&t4_ntxq, nc, NTXQ);
12671 #endif
12672         }
12673
12674         calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
12675
12676         if (t4_nrxq < 1) {
12677 #ifdef RSS
12678                 t4_nrxq = rss_getnumbuckets();
12679 #else
12680                 calculate_nqueues(&t4_nrxq, nc, NRXQ);
12681 #endif
12682         }
12683
12684         calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
12685
12686 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12687         calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
12688         calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
12689 #endif
12690 #ifdef TCP_OFFLOAD
12691         calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
12692         calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
12693 #endif
12694
12695 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
12696         if (t4_toecaps_allowed == -1)
12697                 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
12698 #else
12699         if (t4_toecaps_allowed == -1)
12700                 t4_toecaps_allowed = 0;
12701 #endif
12702
12703 #ifdef TCP_OFFLOAD
12704         if (t4_rdmacaps_allowed == -1) {
12705                 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
12706                     FW_CAPS_CONFIG_RDMA_RDMAC;
12707         }
12708
12709         if (t4_iscsicaps_allowed == -1) {
12710                 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
12711                     FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
12712                     FW_CAPS_CONFIG_ISCSI_T10DIF;
12713         }
12714
12715         if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
12716                 t4_tmr_idx_ofld = TMR_IDX_OFLD;
12717
12718         if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
12719                 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
12720
12721         if (t4_toe_tls_rx_timeout < 0)
12722                 t4_toe_tls_rx_timeout = 0;
12723 #else
12724         if (t4_rdmacaps_allowed == -1)
12725                 t4_rdmacaps_allowed = 0;
12726
12727         if (t4_iscsicaps_allowed == -1)
12728                 t4_iscsicaps_allowed = 0;
12729 #endif
12730
12731 #ifdef DEV_NETMAP
12732         calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
12733         calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
12734         calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
12735         calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
12736 #endif
12737
12738         if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
12739                 t4_tmr_idx = TMR_IDX;
12740
12741         if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
12742                 t4_pktc_idx = PKTC_IDX;
12743
12744         if (t4_qsize_txq < 128)
12745                 t4_qsize_txq = 128;
12746
12747         if (t4_qsize_rxq < 128)
12748                 t4_qsize_rxq = 128;
12749         while (t4_qsize_rxq & 7)
12750                 t4_qsize_rxq++;
12751
12752         t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
12753
12754         /*
12755          * Number of VIs to create per-port.  The first VI is the "main" regular
12756          * VI for the port.  The rest are additional virtual interfaces on the
12757          * same physical port.  Note that the main VI does not have native
12758          * netmap support but the extra VIs do.
12759          *
12760          * Limit the number of VIs per port to the number of available
12761          * MAC addresses per port.
12762          */
12763         if (t4_num_vis < 1)
12764                 t4_num_vis = 1;
12765         if (t4_num_vis > nitems(vi_mac_funcs)) {
12766                 t4_num_vis = nitems(vi_mac_funcs);
12767                 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
12768         }
12769
12770         if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
12771                 pcie_relaxed_ordering = 1;
12772 #if defined(__i386__) || defined(__amd64__)
12773                 if (cpu_vendor_id == CPU_VENDOR_INTEL)
12774                         pcie_relaxed_ordering = 0;
12775 #endif
12776         }
12777 }
12778
12779 #ifdef DDB
12780 static void
12781 t4_dump_tcb(struct adapter *sc, int tid)
12782 {
12783         uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
12784
12785         reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
12786         save = t4_read_reg(sc, reg);
12787         base = sc->memwin[2].mw_base;
12788
12789         /* Dump TCB for the tid */
12790         tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
12791         tcb_addr += tid * TCB_SIZE;
12792
12793         if (is_t4(sc)) {
12794                 pf = 0;
12795                 win_pos = tcb_addr & ~0xf;      /* start must be 16B aligned */
12796         } else {
12797                 pf = V_PFNUM(sc->pf);
12798                 win_pos = tcb_addr & ~0x7f;     /* start must be 128B aligned */
12799         }
12800         t4_write_reg(sc, reg, win_pos | pf);
12801         t4_read_reg(sc, reg);
12802
12803         off = tcb_addr - win_pos;
12804         for (i = 0; i < 4; i++) {
12805                 uint32_t buf[8];
12806                 for (j = 0; j < 8; j++, off += 4)
12807                         buf[j] = htonl(t4_read_reg(sc, base + off));
12808
12809                 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
12810                     buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
12811                     buf[7]);
12812         }
12813
12814         t4_write_reg(sc, reg, save);
12815         t4_read_reg(sc, reg);
12816 }
12817
12818 static void
12819 t4_dump_devlog(struct adapter *sc)
12820 {
12821         struct devlog_params *dparams = &sc->params.devlog;
12822         struct fw_devlog_e e;
12823         int i, first, j, m, nentries, rc;
12824         uint64_t ftstamp = UINT64_MAX;
12825
12826         if (dparams->start == 0) {
12827                 db_printf("devlog params not valid\n");
12828                 return;
12829         }
12830
12831         nentries = dparams->size / sizeof(struct fw_devlog_e);
12832         m = fwmtype_to_hwmtype(dparams->memtype);
12833
12834         /* Find the first entry. */
12835         first = -1;
12836         for (i = 0; i < nentries && !db_pager_quit; i++) {
12837                 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12838                     sizeof(e), (void *)&e);
12839                 if (rc != 0)
12840                         break;
12841
12842                 if (e.timestamp == 0)
12843                         break;
12844
12845                 e.timestamp = be64toh(e.timestamp);
12846                 if (e.timestamp < ftstamp) {
12847                         ftstamp = e.timestamp;
12848                         first = i;
12849                 }
12850         }
12851
12852         if (first == -1)
12853                 return;
12854
12855         i = first;
12856         do {
12857                 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12858                     sizeof(e), (void *)&e);
12859                 if (rc != 0)
12860                         return;
12861
12862                 if (e.timestamp == 0)
12863                         return;
12864
12865                 e.timestamp = be64toh(e.timestamp);
12866                 e.seqno = be32toh(e.seqno);
12867                 for (j = 0; j < 8; j++)
12868                         e.params[j] = be32toh(e.params[j]);
12869
12870                 db_printf("%10d  %15ju  %8s  %8s  ",
12871                     e.seqno, e.timestamp,
12872                     (e.level < nitems(devlog_level_strings) ?
12873                         devlog_level_strings[e.level] : "UNKNOWN"),
12874                     (e.facility < nitems(devlog_facility_strings) ?
12875                         devlog_facility_strings[e.facility] : "UNKNOWN"));
12876                 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
12877                     e.params[3], e.params[4], e.params[5], e.params[6],
12878                     e.params[7]);
12879
12880                 if (++i == nentries)
12881                         i = 0;
12882         } while (i != first && !db_pager_quit);
12883 }
12884
12885 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
12886 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
12887
12888 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
12889 {
12890         device_t dev;
12891         int t;
12892         bool valid;
12893
12894         valid = false;
12895         t = db_read_token();
12896         if (t == tIDENT) {
12897                 dev = device_lookup_by_name(db_tok_string);
12898                 valid = true;
12899         }
12900         db_skip_to_eol();
12901         if (!valid) {
12902                 db_printf("usage: show t4 devlog <nexus>\n");
12903                 return;
12904         }
12905
12906         if (dev == NULL) {
12907                 db_printf("device not found\n");
12908                 return;
12909         }
12910
12911         t4_dump_devlog(device_get_softc(dev));
12912 }
12913
12914 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
12915 {
12916         device_t dev;
12917         int radix, tid, t;
12918         bool valid;
12919
12920         valid = false;
12921         radix = db_radix;
12922         db_radix = 10;
12923         t = db_read_token();
12924         if (t == tIDENT) {
12925                 dev = device_lookup_by_name(db_tok_string);
12926                 t = db_read_token();
12927                 if (t == tNUMBER) {
12928                         tid = db_tok_number;
12929                         valid = true;
12930                 }
12931         }       
12932         db_radix = radix;
12933         db_skip_to_eol();
12934         if (!valid) {
12935                 db_printf("usage: show t4 tcb <nexus> <tid>\n");
12936                 return;
12937         }
12938
12939         if (dev == NULL) {
12940                 db_printf("device not found\n");
12941                 return;
12942         }
12943         if (tid < 0) {
12944                 db_printf("invalid tid\n");
12945                 return;
12946         }
12947
12948         t4_dump_tcb(device_get_softc(dev), tid);
12949 }
12950 #endif
12951
12952 static eventhandler_tag vxlan_start_evtag;
12953 static eventhandler_tag vxlan_stop_evtag;
12954
12955 struct vxlan_evargs {
12956         struct ifnet *ifp;
12957         uint16_t port;
12958 };
12959
12960 static void
12961 enable_vxlan_rx(struct adapter *sc)
12962 {
12963         int i, rc;
12964         struct port_info *pi;
12965         uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
12966
12967         ASSERT_SYNCHRONIZED_OP(sc);
12968
12969         t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
12970             F_VXLAN_EN);
12971         for_each_port(sc, i) {
12972                 pi = sc->port[i];
12973                 if (pi->vxlan_tcam_entry == true)
12974                         continue;
12975                 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
12976                     match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
12977                     true);
12978                 if (rc < 0) {
12979                         rc = -rc;
12980                         CH_ERR(&pi->vi[0],
12981                             "failed to add VXLAN TCAM entry: %d.\n", rc);
12982                 } else {
12983                         MPASS(rc == sc->rawf_base + pi->port_id);
12984                         pi->vxlan_tcam_entry = true;
12985                 }
12986         }
12987 }
12988
12989 static void
12990 t4_vxlan_start(struct adapter *sc, void *arg)
12991 {
12992         struct vxlan_evargs *v = arg;
12993
12994         if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
12995                 return;
12996         if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
12997                 return;
12998
12999         if (sc->vxlan_refcount == 0) {
13000                 sc->vxlan_port = v->port;
13001                 sc->vxlan_refcount = 1;
13002                 if (!hw_off_limits(sc))
13003                         enable_vxlan_rx(sc);
13004         } else if (sc->vxlan_port == v->port) {
13005                 sc->vxlan_refcount++;
13006         } else {
13007                 CH_ERR(sc, "VXLAN already configured on port  %d; "
13008                     "ignoring attempt to configure it on port %d\n",
13009                     sc->vxlan_port, v->port);
13010         }
13011         end_synchronized_op(sc, 0);
13012 }
13013
13014 static void
13015 t4_vxlan_stop(struct adapter *sc, void *arg)
13016 {
13017         struct vxlan_evargs *v = arg;
13018
13019         if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13020                 return;
13021         if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
13022                 return;
13023
13024         /*
13025          * VXLANs may have been configured before the driver was loaded so we
13026          * may see more stops than starts.  This is not handled cleanly but at
13027          * least we keep the refcount sane.
13028          */
13029         if (sc->vxlan_port != v->port)
13030                 goto done;
13031         if (sc->vxlan_refcount == 0) {
13032                 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
13033                     "ignoring attempt to stop it again.\n", sc->vxlan_port);
13034         } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
13035                 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
13036 done:
13037         end_synchronized_op(sc, 0);
13038 }
13039
13040 static void
13041 t4_vxlan_start_handler(void *arg __unused, struct ifnet *ifp,
13042     sa_family_t family, u_int port)
13043 {
13044         struct vxlan_evargs v;
13045
13046         MPASS(family == AF_INET || family == AF_INET6);
13047         v.ifp = ifp;
13048         v.port = port;
13049
13050         t4_iterate(t4_vxlan_start, &v);
13051 }
13052
13053 static void
13054 t4_vxlan_stop_handler(void *arg __unused, struct ifnet *ifp, sa_family_t family,
13055     u_int port)
13056 {
13057         struct vxlan_evargs v;
13058
13059         MPASS(family == AF_INET || family == AF_INET6);
13060         v.ifp = ifp;
13061         v.port = port;
13062
13063         t4_iterate(t4_vxlan_stop, &v);
13064 }
13065
13066
13067 static struct sx mlu;   /* mod load unload */
13068 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
13069
13070 static int
13071 mod_event(module_t mod, int cmd, void *arg)
13072 {
13073         int rc = 0;
13074         static int loaded = 0;
13075
13076         switch (cmd) {
13077         case MOD_LOAD:
13078                 sx_xlock(&mlu);
13079                 if (loaded++ == 0) {
13080                         t4_sge_modload();
13081                         t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13082                             t4_filter_rpl, CPL_COOKIE_FILTER);
13083                         t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
13084                             do_l2t_write_rpl, CPL_COOKIE_FILTER);
13085                         t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
13086                             t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
13087                         t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13088                             t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
13089                         t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
13090                             t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
13091                         t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
13092                         t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
13093                         t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
13094                             do_smt_write_rpl);
13095                         sx_init(&t4_list_lock, "T4/T5 adapters");
13096                         SLIST_INIT(&t4_list);
13097                         callout_init(&fatal_callout, 1);
13098 #ifdef TCP_OFFLOAD
13099                         sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
13100                         SLIST_INIT(&t4_uld_list);
13101 #endif
13102 #ifdef INET6
13103                         t4_clip_modload();
13104 #endif
13105 #ifdef KERN_TLS
13106                         t6_ktls_modload();
13107 #endif
13108                         t4_tracer_modload();
13109                         tweak_tunables();
13110                         vxlan_start_evtag =
13111                             EVENTHANDLER_REGISTER(vxlan_start,
13112                                 t4_vxlan_start_handler, NULL,
13113                                 EVENTHANDLER_PRI_ANY);
13114                         vxlan_stop_evtag =
13115                             EVENTHANDLER_REGISTER(vxlan_stop,
13116                                 t4_vxlan_stop_handler, NULL,
13117                                 EVENTHANDLER_PRI_ANY);
13118                         reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
13119                             taskqueue_thread_enqueue, &reset_tq);
13120                         taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
13121                             "t4_rst_thr");
13122                 }
13123                 sx_xunlock(&mlu);
13124                 break;
13125
13126         case MOD_UNLOAD:
13127                 sx_xlock(&mlu);
13128                 if (--loaded == 0) {
13129                         int tries;
13130
13131                         taskqueue_free(reset_tq);
13132                         sx_slock(&t4_list_lock);
13133                         if (!SLIST_EMPTY(&t4_list)) {
13134                                 rc = EBUSY;
13135                                 sx_sunlock(&t4_list_lock);
13136                                 goto done_unload;
13137                         }
13138 #ifdef TCP_OFFLOAD
13139                         sx_slock(&t4_uld_list_lock);
13140                         if (!SLIST_EMPTY(&t4_uld_list)) {
13141                                 rc = EBUSY;
13142                                 sx_sunlock(&t4_uld_list_lock);
13143                                 sx_sunlock(&t4_list_lock);
13144                                 goto done_unload;
13145                         }
13146 #endif
13147                         tries = 0;
13148                         while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
13149                                 uprintf("%ju clusters with custom free routine "
13150                                     "still is use.\n", t4_sge_extfree_refs());
13151                                 pause("t4unload", 2 * hz);
13152                         }
13153 #ifdef TCP_OFFLOAD
13154                         sx_sunlock(&t4_uld_list_lock);
13155 #endif
13156                         sx_sunlock(&t4_list_lock);
13157
13158                         if (t4_sge_extfree_refs() == 0) {
13159                                 EVENTHANDLER_DEREGISTER(vxlan_start,
13160                                     vxlan_start_evtag);
13161                                 EVENTHANDLER_DEREGISTER(vxlan_stop,
13162                                     vxlan_stop_evtag);
13163                                 t4_tracer_modunload();
13164 #ifdef KERN_TLS
13165                                 t6_ktls_modunload();
13166 #endif
13167 #ifdef INET6
13168                                 t4_clip_modunload();
13169 #endif
13170 #ifdef TCP_OFFLOAD
13171                                 sx_destroy(&t4_uld_list_lock);
13172 #endif
13173                                 sx_destroy(&t4_list_lock);
13174                                 t4_sge_modunload();
13175                                 loaded = 0;
13176                         } else {
13177                                 rc = EBUSY;
13178                                 loaded++;       /* undo earlier decrement */
13179                         }
13180                 }
13181 done_unload:
13182                 sx_xunlock(&mlu);
13183                 break;
13184         }
13185
13186         return (rc);
13187 }
13188
13189 static devclass_t t4_devclass, t5_devclass, t6_devclass;
13190 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
13191 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
13192
13193 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
13194 MODULE_VERSION(t4nex, 1);
13195 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
13196 #ifdef DEV_NETMAP
13197 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
13198 #endif /* DEV_NETMAP */
13199
13200 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
13201 MODULE_VERSION(t5nex, 1);
13202 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
13203 #ifdef DEV_NETMAP
13204 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
13205 #endif /* DEV_NETMAP */
13206
13207 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
13208 MODULE_VERSION(t6nex, 1);
13209 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
13210 #ifdef DEV_NETMAP
13211 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
13212 #endif /* DEV_NETMAP */
13213
13214 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
13215 MODULE_VERSION(cxgbe, 1);
13216
13217 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
13218 MODULE_VERSION(cxl, 1);
13219
13220 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
13221 MODULE_VERSION(cc, 1);
13222
13223 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
13224 MODULE_VERSION(vcxgbe, 1);
13225
13226 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
13227 MODULE_VERSION(vcxl, 1);
13228
13229 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
13230 MODULE_VERSION(vcc, 1);