]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/t4_main.c
Update to zstd 1.3.2
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / t4_main.c
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_ddb.h"
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_rss.h"
35
36 #include <sys/param.h>
37 #include <sys/conf.h>
38 #include <sys/priv.h>
39 #include <sys/kernel.h>
40 #include <sys/bus.h>
41 #include <sys/module.h>
42 #include <sys/malloc.h>
43 #include <sys/queue.h>
44 #include <sys/taskqueue.h>
45 #include <sys/pciio.h>
46 #include <dev/pci/pcireg.h>
47 #include <dev/pci/pcivar.h>
48 #include <dev/pci/pci_private.h>
49 #include <sys/firmware.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/if_vlan_var.h>
60 #ifdef RSS
61 #include <net/rss_config.h>
62 #endif
63 #if defined(__i386__) || defined(__amd64__)
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #endif
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #include <ddb/db_lex.h>
70 #endif
71
72 #include "common/common.h"
73 #include "common/t4_msg.h"
74 #include "common/t4_regs.h"
75 #include "common/t4_regs_values.h"
76 #include "cudbg/cudbg.h"
77 #include "t4_ioctl.h"
78 #include "t4_l2t.h"
79 #include "t4_mp_ring.h"
80 #include "t4_if.h"
81
82 /* T4 bus driver interface */
83 static int t4_probe(device_t);
84 static int t4_attach(device_t);
85 static int t4_detach(device_t);
86 static int t4_ready(device_t);
87 static int t4_read_port_device(device_t, int, device_t *);
88 static device_method_t t4_methods[] = {
89         DEVMETHOD(device_probe,         t4_probe),
90         DEVMETHOD(device_attach,        t4_attach),
91         DEVMETHOD(device_detach,        t4_detach),
92
93         DEVMETHOD(t4_is_main_ready,     t4_ready),
94         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
95
96         DEVMETHOD_END
97 };
98 static driver_t t4_driver = {
99         "t4nex",
100         t4_methods,
101         sizeof(struct adapter)
102 };
103
104
105 /* T4 port (cxgbe) interface */
106 static int cxgbe_probe(device_t);
107 static int cxgbe_attach(device_t);
108 static int cxgbe_detach(device_t);
109 device_method_t cxgbe_methods[] = {
110         DEVMETHOD(device_probe,         cxgbe_probe),
111         DEVMETHOD(device_attach,        cxgbe_attach),
112         DEVMETHOD(device_detach,        cxgbe_detach),
113         { 0, 0 }
114 };
115 static driver_t cxgbe_driver = {
116         "cxgbe",
117         cxgbe_methods,
118         sizeof(struct port_info)
119 };
120
121 /* T4 VI (vcxgbe) interface */
122 static int vcxgbe_probe(device_t);
123 static int vcxgbe_attach(device_t);
124 static int vcxgbe_detach(device_t);
125 static device_method_t vcxgbe_methods[] = {
126         DEVMETHOD(device_probe,         vcxgbe_probe),
127         DEVMETHOD(device_attach,        vcxgbe_attach),
128         DEVMETHOD(device_detach,        vcxgbe_detach),
129         { 0, 0 }
130 };
131 static driver_t vcxgbe_driver = {
132         "vcxgbe",
133         vcxgbe_methods,
134         sizeof(struct vi_info)
135 };
136
137 static d_ioctl_t t4_ioctl;
138
139 static struct cdevsw t4_cdevsw = {
140        .d_version = D_VERSION,
141        .d_ioctl = t4_ioctl,
142        .d_name = "t4nex",
143 };
144
145 /* T5 bus driver interface */
146 static int t5_probe(device_t);
147 static device_method_t t5_methods[] = {
148         DEVMETHOD(device_probe,         t5_probe),
149         DEVMETHOD(device_attach,        t4_attach),
150         DEVMETHOD(device_detach,        t4_detach),
151
152         DEVMETHOD(t4_is_main_ready,     t4_ready),
153         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
154
155         DEVMETHOD_END
156 };
157 static driver_t t5_driver = {
158         "t5nex",
159         t5_methods,
160         sizeof(struct adapter)
161 };
162
163
164 /* T5 port (cxl) interface */
165 static driver_t cxl_driver = {
166         "cxl",
167         cxgbe_methods,
168         sizeof(struct port_info)
169 };
170
171 /* T5 VI (vcxl) interface */
172 static driver_t vcxl_driver = {
173         "vcxl",
174         vcxgbe_methods,
175         sizeof(struct vi_info)
176 };
177
178 /* T6 bus driver interface */
179 static int t6_probe(device_t);
180 static device_method_t t6_methods[] = {
181         DEVMETHOD(device_probe,         t6_probe),
182         DEVMETHOD(device_attach,        t4_attach),
183         DEVMETHOD(device_detach,        t4_detach),
184
185         DEVMETHOD(t4_is_main_ready,     t4_ready),
186         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
187
188         DEVMETHOD_END
189 };
190 static driver_t t6_driver = {
191         "t6nex",
192         t6_methods,
193         sizeof(struct adapter)
194 };
195
196
197 /* T6 port (cc) interface */
198 static driver_t cc_driver = {
199         "cc",
200         cxgbe_methods,
201         sizeof(struct port_info)
202 };
203
204 /* T6 VI (vcc) interface */
205 static driver_t vcc_driver = {
206         "vcc",
207         vcxgbe_methods,
208         sizeof(struct vi_info)
209 };
210
211 /* ifnet + media interface */
212 static void cxgbe_init(void *);
213 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
214 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
215 static void cxgbe_qflush(struct ifnet *);
216 static int cxgbe_media_change(struct ifnet *);
217 static void cxgbe_media_status(struct ifnet *, struct ifmediareq *);
218
219 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
220
221 /*
222  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
223  * then ADAPTER_LOCK, then t4_uld_list_lock.
224  */
225 static struct sx t4_list_lock;
226 SLIST_HEAD(, adapter) t4_list;
227 #ifdef TCP_OFFLOAD
228 static struct sx t4_uld_list_lock;
229 SLIST_HEAD(, uld_info) t4_uld_list;
230 #endif
231
232 /*
233  * Tunables.  See tweak_tunables() too.
234  *
235  * Each tunable is set to a default value here if it's known at compile-time.
236  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
237  * provide a reasonable default (upto n) when the driver is loaded.
238  *
239  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
240  * T5 are under hw.cxl.
241  */
242
243 /*
244  * Number of queues for tx and rx, 10G and 1G, NIC and offload.
245  */
246 #define NTXQ_10G 16
247 int t4_ntxq10g = -NTXQ_10G;
248 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq10g);
249
250 #define NRXQ_10G 8
251 int t4_nrxq10g = -NRXQ_10G;
252 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq10g);
253
254 #define NTXQ_1G 4
255 int t4_ntxq1g = -NTXQ_1G;
256 TUNABLE_INT("hw.cxgbe.ntxq1g", &t4_ntxq1g);
257
258 #define NRXQ_1G 2
259 int t4_nrxq1g = -NRXQ_1G;
260 TUNABLE_INT("hw.cxgbe.nrxq1g", &t4_nrxq1g);
261
262 #define NTXQ_VI 1
263 static int t4_ntxq_vi = -NTXQ_VI;
264 TUNABLE_INT("hw.cxgbe.ntxq_vi", &t4_ntxq_vi);
265
266 #define NRXQ_VI 1
267 static int t4_nrxq_vi = -NRXQ_VI;
268 TUNABLE_INT("hw.cxgbe.nrxq_vi", &t4_nrxq_vi);
269
270 static int t4_rsrv_noflowq = 0;
271 TUNABLE_INT("hw.cxgbe.rsrv_noflowq", &t4_rsrv_noflowq);
272
273 #ifdef TCP_OFFLOAD
274 #define NOFLDTXQ_10G 8
275 static int t4_nofldtxq10g = -NOFLDTXQ_10G;
276 TUNABLE_INT("hw.cxgbe.nofldtxq10g", &t4_nofldtxq10g);
277
278 #define NOFLDRXQ_10G 2
279 static int t4_nofldrxq10g = -NOFLDRXQ_10G;
280 TUNABLE_INT("hw.cxgbe.nofldrxq10g", &t4_nofldrxq10g);
281
282 #define NOFLDTXQ_1G 2
283 static int t4_nofldtxq1g = -NOFLDTXQ_1G;
284 TUNABLE_INT("hw.cxgbe.nofldtxq1g", &t4_nofldtxq1g);
285
286 #define NOFLDRXQ_1G 1
287 static int t4_nofldrxq1g = -NOFLDRXQ_1G;
288 TUNABLE_INT("hw.cxgbe.nofldrxq1g", &t4_nofldrxq1g);
289
290 #define NOFLDTXQ_VI 1
291 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
292 TUNABLE_INT("hw.cxgbe.nofldtxq_vi", &t4_nofldtxq_vi);
293
294 #define NOFLDRXQ_VI 1
295 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
296 TUNABLE_INT("hw.cxgbe.nofldrxq_vi", &t4_nofldrxq_vi);
297
298 #define TMR_IDX_OFLD 1
299 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
300 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_ofld", &t4_tmr_idx_ofld);
301
302 #define PKTC_IDX_OFLD (-1)
303 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
304 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_ofld", &t4_pktc_idx_ofld);
305
306 /* 0 means chip/fw default, non-zero number is value in microseconds */
307 static u_long t4_toe_keepalive_idle = 0;
308 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_idle", &t4_toe_keepalive_idle);
309
310 /* 0 means chip/fw default, non-zero number is value in microseconds */
311 static u_long t4_toe_keepalive_interval = 0;
312 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_interval", &t4_toe_keepalive_interval);
313
314 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
315 static int t4_toe_keepalive_count = 0;
316 TUNABLE_INT("hw.cxgbe.toe.keepalive_count", &t4_toe_keepalive_count);
317
318 /* 0 means chip/fw default, non-zero number is value in microseconds */
319 static u_long t4_toe_rexmt_min = 0;
320 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_min", &t4_toe_rexmt_min);
321
322 /* 0 means chip/fw default, non-zero number is value in microseconds */
323 static u_long t4_toe_rexmt_max = 0;
324 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_max", &t4_toe_rexmt_max);
325
326 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
327 static int t4_toe_rexmt_count = 0;
328 TUNABLE_INT("hw.cxgbe.toe.rexmt_count", &t4_toe_rexmt_count);
329
330 /* -1 means chip/fw default, other values are raw backoff values to use */
331 static int t4_toe_rexmt_backoff[16] = {
332         -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
333 };
334 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.0", &t4_toe_rexmt_backoff[0]);
335 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.1", &t4_toe_rexmt_backoff[1]);
336 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.2", &t4_toe_rexmt_backoff[2]);
337 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.3", &t4_toe_rexmt_backoff[3]);
338 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.4", &t4_toe_rexmt_backoff[4]);
339 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.5", &t4_toe_rexmt_backoff[5]);
340 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.6", &t4_toe_rexmt_backoff[6]);
341 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.7", &t4_toe_rexmt_backoff[7]);
342 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.8", &t4_toe_rexmt_backoff[8]);
343 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.9", &t4_toe_rexmt_backoff[9]);
344 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.10", &t4_toe_rexmt_backoff[10]);
345 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.11", &t4_toe_rexmt_backoff[11]);
346 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.12", &t4_toe_rexmt_backoff[12]);
347 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.13", &t4_toe_rexmt_backoff[13]);
348 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.14", &t4_toe_rexmt_backoff[14]);
349 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.15", &t4_toe_rexmt_backoff[15]);
350 #endif
351
352 #ifdef DEV_NETMAP
353 #define NNMTXQ_VI 2
354 static int t4_nnmtxq_vi = -NNMTXQ_VI;
355 TUNABLE_INT("hw.cxgbe.nnmtxq_vi", &t4_nnmtxq_vi);
356
357 #define NNMRXQ_VI 2
358 static int t4_nnmrxq_vi = -NNMRXQ_VI;
359 TUNABLE_INT("hw.cxgbe.nnmrxq_vi", &t4_nnmrxq_vi);
360 #endif
361
362 /*
363  * Holdoff parameters for 10G and 1G ports.
364  */
365 #define TMR_IDX_10G 1
366 int t4_tmr_idx_10g = TMR_IDX_10G;
367 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx_10g);
368
369 #define PKTC_IDX_10G (-1)
370 int t4_pktc_idx_10g = PKTC_IDX_10G;
371 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx_10g);
372
373 #define TMR_IDX_1G 1
374 int t4_tmr_idx_1g = TMR_IDX_1G;
375 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_1G", &t4_tmr_idx_1g);
376
377 #define PKTC_IDX_1G (-1)
378 int t4_pktc_idx_1g = PKTC_IDX_1G;
379 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_1G", &t4_pktc_idx_1g);
380
381 /*
382  * Size (# of entries) of each tx and rx queue.
383  */
384 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
385 TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq);
386
387 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
388 TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq);
389
390 /*
391  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
392  */
393 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
394 TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types);
395
396 /*
397  * Configuration file.
398  */
399 #define DEFAULT_CF      "default"
400 #define FLASH_CF        "flash"
401 #define UWIRE_CF        "uwire"
402 #define FPGA_CF         "fpga"
403 static char t4_cfg_file[32] = DEFAULT_CF;
404 TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file));
405
406 /*
407  * PAUSE settings (bit 0, 1 = rx_pause, tx_pause respectively).
408  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
409  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
410  *            mark or when signalled to do so, 0 to never emit PAUSE.
411  */
412 static int t4_pause_settings = PAUSE_TX | PAUSE_RX;
413 TUNABLE_INT("hw.cxgbe.pause_settings", &t4_pause_settings);
414
415 /*
416  * Forward Error Correction settings (bit 0, 1, 2 = FEC_RS, FEC_BASER_RS,
417  * FEC_RESERVED respectively).
418  * -1 to run with the firmware default.
419  *  0 to disable FEC.
420  */
421 static int t4_fec = -1;
422 TUNABLE_INT("hw.cxgbe.fec", &t4_fec);
423
424 /*
425  * Link autonegotiation.
426  * -1 to run with the firmware default.
427  *  0 to disable.
428  *  1 to enable.
429  */
430 static int t4_autoneg = -1;
431 TUNABLE_INT("hw.cxgbe.autoneg", &t4_autoneg);
432
433 /*
434  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
435  * encouraged respectively).
436  */
437 static unsigned int t4_fw_install = 1;
438 TUNABLE_INT("hw.cxgbe.fw_install", &t4_fw_install);
439
440 /*
441  * ASIC features that will be used.  Disable the ones you don't want so that the
442  * chip resources aren't wasted on features that will not be used.
443  */
444 static int t4_nbmcaps_allowed = 0;
445 TUNABLE_INT("hw.cxgbe.nbmcaps_allowed", &t4_nbmcaps_allowed);
446
447 static int t4_linkcaps_allowed = 0;     /* No DCBX, PPP, etc. by default */
448 TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed);
449
450 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
451     FW_CAPS_CONFIG_SWITCH_EGRESS;
452 TUNABLE_INT("hw.cxgbe.switchcaps_allowed", &t4_switchcaps_allowed);
453
454 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC;
455 TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed);
456
457 static int t4_toecaps_allowed = -1;
458 TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed);
459
460 static int t4_rdmacaps_allowed = -1;
461 TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed);
462
463 static int t4_cryptocaps_allowed = -1;
464 TUNABLE_INT("hw.cxgbe.cryptocaps_allowed", &t4_cryptocaps_allowed);
465
466 static int t4_iscsicaps_allowed = -1;
467 TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed);
468
469 static int t4_fcoecaps_allowed = 0;
470 TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed);
471
472 static int t5_write_combine = 0;
473 TUNABLE_INT("hw.cxl.write_combine", &t5_write_combine);
474
475 static int t4_num_vis = 1;
476 TUNABLE_INT("hw.cxgbe.num_vis", &t4_num_vis);
477
478 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
479 static int vi_mac_funcs[] = {
480         FW_VI_FUNC_ETH,
481         FW_VI_FUNC_OFLD,
482         FW_VI_FUNC_IWARP,
483         FW_VI_FUNC_OPENISCSI,
484         FW_VI_FUNC_OPENFCOE,
485         FW_VI_FUNC_FOISCSI,
486         FW_VI_FUNC_FOFCOE,
487 };
488
489 struct intrs_and_queues {
490         uint16_t intr_type;     /* INTx, MSI, or MSI-X */
491         uint16_t nirq;          /* Total # of vectors */
492         uint16_t intr_flags_10g;/* Interrupt flags for each 10G port */
493         uint16_t intr_flags_1g; /* Interrupt flags for each 1G port */
494         uint16_t ntxq10g;       /* # of NIC txq's for each 10G port */
495         uint16_t nrxq10g;       /* # of NIC rxq's for each 10G port */
496         uint16_t ntxq1g;        /* # of NIC txq's for each 1G port */
497         uint16_t nrxq1g;        /* # of NIC rxq's for each 1G port */
498         uint16_t rsrv_noflowq;  /* Flag whether to reserve queue 0 */
499         uint16_t nofldtxq10g;   /* # of TOE txq's for each 10G port */
500         uint16_t nofldrxq10g;   /* # of TOE rxq's for each 10G port */
501         uint16_t nofldtxq1g;    /* # of TOE txq's for each 1G port */
502         uint16_t nofldrxq1g;    /* # of TOE rxq's for each 1G port */
503
504         /* The vcxgbe/vcxl interfaces use these and not the ones above. */
505         uint16_t ntxq_vi;       /* # of NIC txq's */
506         uint16_t nrxq_vi;       /* # of NIC rxq's */
507         uint16_t nofldtxq_vi;   /* # of TOE txq's */
508         uint16_t nofldrxq_vi;   /* # of TOE rxq's */
509         uint16_t nnmtxq_vi;     /* # of netmap txq's */
510         uint16_t nnmrxq_vi;     /* # of netmap rxq's */
511 };
512
513 struct filter_entry {
514         uint32_t valid:1;       /* filter allocated and valid */
515         uint32_t locked:1;      /* filter is administratively locked */
516         uint32_t pending:1;     /* filter action is pending firmware reply */
517         uint32_t smtidx:8;      /* Source MAC Table index for smac */
518         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
519
520         struct t4_filter_specification fs;
521 };
522
523 static void setup_memwin(struct adapter *);
524 static void position_memwin(struct adapter *, int, uint32_t);
525 static int rw_via_memwin(struct adapter *, int, uint32_t, uint32_t *, int, int);
526 static inline int read_via_memwin(struct adapter *, int, uint32_t, uint32_t *,
527     int);
528 static inline int write_via_memwin(struct adapter *, int, uint32_t,
529     const uint32_t *, int);
530 static int validate_mem_range(struct adapter *, uint32_t, int);
531 static int fwmtype_to_hwmtype(int);
532 static int validate_mt_off_len(struct adapter *, int, uint32_t, int,
533     uint32_t *);
534 static int fixup_devlog_params(struct adapter *);
535 static int cfg_itype_and_nqueues(struct adapter *, int, int, int,
536     struct intrs_and_queues *);
537 static int prep_firmware(struct adapter *);
538 static int partition_resources(struct adapter *, const struct firmware *,
539     const char *);
540 static int get_params__pre_init(struct adapter *);
541 static int get_params__post_init(struct adapter *);
542 static int set_params__post_init(struct adapter *);
543 static void t4_set_desc(struct adapter *);
544 static void build_medialist(struct port_info *, struct ifmedia *);
545 static void init_l1cfg(struct port_info *);
546 static int cxgbe_init_synchronized(struct vi_info *);
547 static int cxgbe_uninit_synchronized(struct vi_info *);
548 static void quiesce_txq(struct adapter *, struct sge_txq *);
549 static void quiesce_wrq(struct adapter *, struct sge_wrq *);
550 static void quiesce_iq(struct adapter *, struct sge_iq *);
551 static void quiesce_fl(struct adapter *, struct sge_fl *);
552 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
553     driver_intr_t *, void *, char *);
554 static int t4_free_irq(struct adapter *, struct irq *);
555 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
556 static void vi_refresh_stats(struct adapter *, struct vi_info *);
557 static void cxgbe_refresh_stats(struct adapter *, struct port_info *);
558 static void cxgbe_tick(void *);
559 static void cxgbe_vlan_config(void *, struct ifnet *, uint16_t);
560 static void cxgbe_sysctls(struct port_info *);
561 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
562 static int sysctl_bitfield(SYSCTL_HANDLER_ARGS);
563 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
564 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
565 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
566 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
567 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
568 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
569 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
570 static int sysctl_fec(SYSCTL_HANDLER_ARGS);
571 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
572 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
573 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
574 #ifdef SBUF_DRAIN
575 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
576 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
577 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
578 static int sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS);
579 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
580 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
581 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
582 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
583 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
584 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
585 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
586 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
587 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
588 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
589 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
590 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
591 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
592 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
593 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
594 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
595 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
596 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
597 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
598 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
599 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
600 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
601 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
602 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
603 static int sysctl_tc_params(SYSCTL_HANDLER_ARGS);
604 #endif
605 #ifdef TCP_OFFLOAD
606 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
607 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
608 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
609 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
610 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
611 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
612 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
613 #endif
614 static uint32_t fconf_iconf_to_mode(uint32_t, uint32_t);
615 static uint32_t mode_to_fconf(uint32_t);
616 static uint32_t mode_to_iconf(uint32_t);
617 static int check_fspec_against_fconf_iconf(struct adapter *,
618     struct t4_filter_specification *);
619 static int get_filter_mode(struct adapter *, uint32_t *);
620 static int set_filter_mode(struct adapter *, uint32_t);
621 static inline uint64_t get_filter_hits(struct adapter *, uint32_t);
622 static int get_filter(struct adapter *, struct t4_filter *);
623 static int set_filter(struct adapter *, struct t4_filter *);
624 static int del_filter(struct adapter *, struct t4_filter *);
625 static void clear_filter(struct filter_entry *);
626 static int set_filter_wr(struct adapter *, int);
627 static int del_filter_wr(struct adapter *, int);
628 static int set_tcb_rpl(struct sge_iq *, const struct rss_header *,
629     struct mbuf *);
630 static int get_sge_context(struct adapter *, struct t4_sge_context *);
631 static int load_fw(struct adapter *, struct t4_data *);
632 static int load_cfg(struct adapter *, struct t4_data *);
633 static int load_boot(struct adapter *, struct t4_bootrom *);
634 static int load_bootcfg(struct adapter *, struct t4_data *);
635 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
636 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
637 static int read_i2c(struct adapter *, struct t4_i2c_data *);
638 #ifdef TCP_OFFLOAD
639 static int toe_capability(struct vi_info *, int);
640 #endif
641 static int mod_event(module_t, int, void *);
642 static int notify_siblings(device_t, int);
643
644 struct {
645         uint16_t device;
646         char *desc;
647 } t4_pciids[] = {
648         {0xa000, "Chelsio Terminator 4 FPGA"},
649         {0x4400, "Chelsio T440-dbg"},
650         {0x4401, "Chelsio T420-CR"},
651         {0x4402, "Chelsio T422-CR"},
652         {0x4403, "Chelsio T440-CR"},
653         {0x4404, "Chelsio T420-BCH"},
654         {0x4405, "Chelsio T440-BCH"},
655         {0x4406, "Chelsio T440-CH"},
656         {0x4407, "Chelsio T420-SO"},
657         {0x4408, "Chelsio T420-CX"},
658         {0x4409, "Chelsio T420-BT"},
659         {0x440a, "Chelsio T404-BT"},
660         {0x440e, "Chelsio T440-LP-CR"},
661 }, t5_pciids[] = {
662         {0xb000, "Chelsio Terminator 5 FPGA"},
663         {0x5400, "Chelsio T580-dbg"},
664         {0x5401,  "Chelsio T520-CR"},           /* 2 x 10G */
665         {0x5402,  "Chelsio T522-CR"},           /* 2 x 10G, 2 X 1G */
666         {0x5403,  "Chelsio T540-CR"},           /* 4 x 10G */
667         {0x5407,  "Chelsio T520-SO"},           /* 2 x 10G, nomem */
668         {0x5409,  "Chelsio T520-BT"},           /* 2 x 10GBaseT */
669         {0x540a,  "Chelsio T504-BT"},           /* 4 x 1G */
670         {0x540d,  "Chelsio T580-CR"},           /* 2 x 40G */
671         {0x540e,  "Chelsio T540-LP-CR"},        /* 4 x 10G */
672         {0x5410,  "Chelsio T580-LP-CR"},        /* 2 x 40G */
673         {0x5411,  "Chelsio T520-LL-CR"},        /* 2 x 10G */
674         {0x5412,  "Chelsio T560-CR"},           /* 1 x 40G, 2 x 10G */
675         {0x5414,  "Chelsio T580-LP-SO-CR"},     /* 2 x 40G, nomem */
676         {0x5415,  "Chelsio T502-BT"},           /* 2 x 1G */
677 #ifdef notyet
678         {0x5404,  "Chelsio T520-BCH"},
679         {0x5405,  "Chelsio T540-BCH"},
680         {0x5406,  "Chelsio T540-CH"},
681         {0x5408,  "Chelsio T520-CX"},
682         {0x540b,  "Chelsio B520-SR"},
683         {0x540c,  "Chelsio B504-BT"},
684         {0x540f,  "Chelsio Amsterdam"},
685         {0x5413,  "Chelsio T580-CHR"},
686 #endif
687 }, t6_pciids[] = {
688         {0xc006, "Chelsio Terminator 6 FPGA"},  /* T6 PE10K6 FPGA (PF0) */
689         {0x6400, "Chelsio T6-DBG-25"},          /* 2 x 10/25G, debug */
690         {0x6401, "Chelsio T6225-CR"},           /* 2 x 10/25G */
691         {0x6402, "Chelsio T6225-SO-CR"},        /* 2 x 10/25G, nomem */
692         {0x6403, "Chelsio T6425-CR"},           /* 4 x 10/25G */
693         {0x6404, "Chelsio T6425-SO-CR"},        /* 4 x 10/25G, nomem */
694         {0x6405, "Chelsio T6225-OCP-SO"},       /* 2 x 10/25G, nomem */
695         {0x6406, "Chelsio T62100-OCP-SO"},      /* 2 x 40/50/100G, nomem */
696         {0x6407, "Chelsio T62100-LP-CR"},       /* 2 x 40/50/100G */
697         {0x6408, "Chelsio T62100-SO-CR"},       /* 2 x 40/50/100G, nomem */
698         {0x6409, "Chelsio T6210-BT"},           /* 2 x 10GBASE-T */
699         {0x640d, "Chelsio T62100-CR"},          /* 2 x 40/50/100G */
700         {0x6410, "Chelsio T6-DBG-100"},         /* 2 x 40/50/100G, debug */
701         {0x6411, "Chelsio T6225-LL-CR"},        /* 2 x 10/25G */
702         {0x6414, "Chelsio T61100-OCP-SO"},      /* 1 x 40/50/100G, nomem */
703         {0x6415, "Chelsio T6201-BT"},           /* 2 x 1000BASE-T */
704
705         /* Custom */
706         {0x6480, "Chelsio T6225 80"},
707         {0x6481, "Chelsio T62100 81"},
708 };
709
710 #ifdef TCP_OFFLOAD
711 /*
712  * service_iq() has an iq and needs the fl.  Offset of fl from the iq should be
713  * exactly the same for both rxq and ofld_rxq.
714  */
715 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
716 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
717 #endif
718 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
719
720 static int
721 t4_probe(device_t dev)
722 {
723         int i;
724         uint16_t v = pci_get_vendor(dev);
725         uint16_t d = pci_get_device(dev);
726         uint8_t f = pci_get_function(dev);
727
728         if (v != PCI_VENDOR_ID_CHELSIO)
729                 return (ENXIO);
730
731         /* Attach only to PF0 of the FPGA */
732         if (d == 0xa000 && f != 0)
733                 return (ENXIO);
734
735         for (i = 0; i < nitems(t4_pciids); i++) {
736                 if (d == t4_pciids[i].device) {
737                         device_set_desc(dev, t4_pciids[i].desc);
738                         return (BUS_PROBE_DEFAULT);
739                 }
740         }
741
742         return (ENXIO);
743 }
744
745 static int
746 t5_probe(device_t dev)
747 {
748         int i;
749         uint16_t v = pci_get_vendor(dev);
750         uint16_t d = pci_get_device(dev);
751         uint8_t f = pci_get_function(dev);
752
753         if (v != PCI_VENDOR_ID_CHELSIO)
754                 return (ENXIO);
755
756         /* Attach only to PF0 of the FPGA */
757         if (d == 0xb000 && f != 0)
758                 return (ENXIO);
759
760         for (i = 0; i < nitems(t5_pciids); i++) {
761                 if (d == t5_pciids[i].device) {
762                         device_set_desc(dev, t5_pciids[i].desc);
763                         return (BUS_PROBE_DEFAULT);
764                 }
765         }
766
767         return (ENXIO);
768 }
769
770 static int
771 t6_probe(device_t dev)
772 {
773         int i;
774         uint16_t v = pci_get_vendor(dev);
775         uint16_t d = pci_get_device(dev);
776
777         if (v != PCI_VENDOR_ID_CHELSIO)
778                 return (ENXIO);
779
780         for (i = 0; i < nitems(t6_pciids); i++) {
781                 if (d == t6_pciids[i].device) {
782                         device_set_desc(dev, t6_pciids[i].desc);
783                         return (BUS_PROBE_DEFAULT);
784                 }
785         }
786
787         return (ENXIO);
788 }
789
790 static void
791 t5_attribute_workaround(device_t dev)
792 {
793         device_t root_port;
794         uint32_t v;
795
796         /*
797          * The T5 chips do not properly echo the No Snoop and Relaxed
798          * Ordering attributes when replying to a TLP from a Root
799          * Port.  As a workaround, find the parent Root Port and
800          * disable No Snoop and Relaxed Ordering.  Note that this
801          * affects all devices under this root port.
802          */
803         root_port = pci_find_pcie_root_port(dev);
804         if (root_port == NULL) {
805                 device_printf(dev, "Unable to find parent root port\n");
806                 return;
807         }
808
809         v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
810             PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
811         if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
812             0)
813                 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
814                     device_get_nameunit(root_port));
815 }
816
817 static const struct devnames devnames[] = {
818         {
819                 .nexus_name = "t4nex",
820                 .ifnet_name = "cxgbe",
821                 .vi_ifnet_name = "vcxgbe",
822                 .pf03_drv_name = "t4iov",
823                 .vf_nexus_name = "t4vf",
824                 .vf_ifnet_name = "cxgbev"
825         }, {
826                 .nexus_name = "t5nex",
827                 .ifnet_name = "cxl",
828                 .vi_ifnet_name = "vcxl",
829                 .pf03_drv_name = "t5iov",
830                 .vf_nexus_name = "t5vf",
831                 .vf_ifnet_name = "cxlv"
832         }, {
833                 .nexus_name = "t6nex",
834                 .ifnet_name = "cc",
835                 .vi_ifnet_name = "vcc",
836                 .pf03_drv_name = "t6iov",
837                 .vf_nexus_name = "t6vf",
838                 .vf_ifnet_name = "ccv"
839         }
840 };
841
842 void
843 t4_init_devnames(struct adapter *sc)
844 {
845         int id;
846
847         id = chip_id(sc);
848         if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
849                 sc->names = &devnames[id - CHELSIO_T4];
850         else {
851                 device_printf(sc->dev, "chip id %d is not supported.\n", id);
852                 sc->names = NULL;
853         }
854 }
855
856 static int
857 t4_attach(device_t dev)
858 {
859         struct adapter *sc;
860         int rc = 0, i, j, n10g, n1g, rqidx, tqidx;
861         struct make_dev_args mda;
862         struct intrs_and_queues iaq;
863         struct sge *s;
864         uint8_t *buf;
865 #ifdef TCP_OFFLOAD
866         int ofld_rqidx, ofld_tqidx;
867 #endif
868 #ifdef DEV_NETMAP
869         int nm_rqidx, nm_tqidx;
870 #endif
871         int num_vis;
872
873         sc = device_get_softc(dev);
874         sc->dev = dev;
875         TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
876
877         if ((pci_get_device(dev) & 0xff00) == 0x5400)
878                 t5_attribute_workaround(dev);
879         pci_enable_busmaster(dev);
880         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
881                 uint32_t v;
882
883                 pci_set_max_read_req(dev, 4096);
884                 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
885                 v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
886                 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
887
888                 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
889         }
890
891         sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
892         sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
893         sc->traceq = -1;
894         mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
895         snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
896             device_get_nameunit(dev));
897
898         snprintf(sc->lockname, sizeof(sc->lockname), "%s",
899             device_get_nameunit(dev));
900         mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
901         t4_add_adapter(sc);
902
903         mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
904         TAILQ_INIT(&sc->sfl);
905         callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
906
907         mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
908
909         rc = t4_map_bars_0_and_4(sc);
910         if (rc != 0)
911                 goto done; /* error message displayed already */
912
913         memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
914
915         /* Prepare the adapter for operation. */
916         buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
917         rc = -t4_prep_adapter(sc, buf);
918         free(buf, M_CXGBE);
919         if (rc != 0) {
920                 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
921                 goto done;
922         }
923
924         /*
925          * This is the real PF# to which we're attaching.  Works from within PCI
926          * passthrough environments too, where pci_get_function() could return a
927          * different PF# depending on the passthrough configuration.  We need to
928          * use the real PF# in all our communication with the firmware.
929          */
930         j = t4_read_reg(sc, A_PL_WHOAMI);
931         sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
932         sc->mbox = sc->pf;
933
934         t4_init_devnames(sc);
935         if (sc->names == NULL) {
936                 rc = ENOTSUP;
937                 goto done; /* error message displayed already */
938         }
939
940         /*
941          * Do this really early, with the memory windows set up even before the
942          * character device.  The userland tool's register i/o and mem read
943          * will work even in "recovery mode".
944          */
945         setup_memwin(sc);
946         if (t4_init_devlog_params(sc, 0) == 0)
947                 fixup_devlog_params(sc);
948         make_dev_args_init(&mda);
949         mda.mda_devsw = &t4_cdevsw;
950         mda.mda_uid = UID_ROOT;
951         mda.mda_gid = GID_WHEEL;
952         mda.mda_mode = 0600;
953         mda.mda_si_drv1 = sc;
954         rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
955         if (rc != 0)
956                 device_printf(dev, "failed to create nexus char device: %d.\n",
957                     rc);
958
959         /* Go no further if recovery mode has been requested. */
960         if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
961                 device_printf(dev, "recovery mode.\n");
962                 goto done;
963         }
964
965 #if defined(__i386__)
966         if ((cpu_feature & CPUID_CX8) == 0) {
967                 device_printf(dev, "64 bit atomics not available.\n");
968                 rc = ENOTSUP;
969                 goto done;
970         }
971 #endif
972
973         /* Prepare the firmware for operation */
974         rc = prep_firmware(sc);
975         if (rc != 0)
976                 goto done; /* error message displayed already */
977
978         rc = get_params__post_init(sc);
979         if (rc != 0)
980                 goto done; /* error message displayed already */
981
982         rc = set_params__post_init(sc);
983         if (rc != 0)
984                 goto done; /* error message displayed already */
985
986         rc = t4_map_bar_2(sc);
987         if (rc != 0)
988                 goto done; /* error message displayed already */
989
990         rc = t4_create_dma_tag(sc);
991         if (rc != 0)
992                 goto done; /* error message displayed already */
993
994         /*
995          * Number of VIs to create per-port.  The first VI is the "main" regular
996          * VI for the port.  The rest are additional virtual interfaces on the
997          * same physical port.  Note that the main VI does not have native
998          * netmap support but the extra VIs do.
999          *
1000          * Limit the number of VIs per port to the number of available
1001          * MAC addresses per port.
1002          */
1003         if (t4_num_vis >= 1)
1004                 num_vis = t4_num_vis;
1005         else
1006                 num_vis = 1;
1007         if (num_vis > nitems(vi_mac_funcs)) {
1008                 num_vis = nitems(vi_mac_funcs);
1009                 device_printf(dev, "Number of VIs limited to %d\n", num_vis);
1010         }
1011
1012         /*
1013          * First pass over all the ports - allocate VIs and initialize some
1014          * basic parameters like mac address, port type, etc.  We also figure
1015          * out whether a port is 10G or 1G and use that information when
1016          * calculating how many interrupts to attempt to allocate.
1017          */
1018         n10g = n1g = 0;
1019         for_each_port(sc, i) {
1020                 struct port_info *pi;
1021
1022                 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1023                 sc->port[i] = pi;
1024
1025                 /* These must be set before t4_port_init */
1026                 pi->adapter = sc;
1027                 pi->port_id = i;
1028                 /*
1029                  * XXX: vi[0] is special so we can't delay this allocation until
1030                  * pi->nvi's final value is known.
1031                  */
1032                 pi->vi = malloc(sizeof(struct vi_info) * num_vis, M_CXGBE,
1033                     M_ZERO | M_WAITOK);
1034
1035                 /*
1036                  * Allocate the "main" VI and initialize parameters
1037                  * like mac addr.
1038                  */
1039                 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1040                 if (rc != 0) {
1041                         device_printf(dev, "unable to initialize port %d: %d\n",
1042                             i, rc);
1043                         free(pi->vi, M_CXGBE);
1044                         free(pi, M_CXGBE);
1045                         sc->port[i] = NULL;
1046                         goto done;
1047                 }
1048
1049                 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1050                     device_get_nameunit(dev), i);
1051                 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1052                 sc->chan_map[pi->tx_chan] = i;
1053
1054                 if (port_top_speed(pi) >= 10) {
1055                         n10g++;
1056                 } else {
1057                         n1g++;
1058                 }
1059
1060                 /* All VIs on this port share this media. */
1061                 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1062                     cxgbe_media_status);
1063
1064                 pi->dev = device_add_child(dev, sc->names->ifnet_name, -1);
1065                 if (pi->dev == NULL) {
1066                         device_printf(dev,
1067                             "failed to add device for port %d.\n", i);
1068                         rc = ENXIO;
1069                         goto done;
1070                 }
1071                 pi->vi[0].dev = pi->dev;
1072                 device_set_softc(pi->dev, pi);
1073         }
1074
1075         /*
1076          * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1077          */
1078         rc = cfg_itype_and_nqueues(sc, n10g, n1g, num_vis, &iaq);
1079         if (rc != 0)
1080                 goto done; /* error message displayed already */
1081         if (iaq.nrxq_vi + iaq.nofldrxq_vi + iaq.nnmrxq_vi == 0)
1082                 num_vis = 1;
1083
1084         sc->intr_type = iaq.intr_type;
1085         sc->intr_count = iaq.nirq;
1086
1087         s = &sc->sge;
1088         s->nrxq = n10g * iaq.nrxq10g + n1g * iaq.nrxq1g;
1089         s->ntxq = n10g * iaq.ntxq10g + n1g * iaq.ntxq1g;
1090         if (num_vis > 1) {
1091                 s->nrxq += (n10g + n1g) * (num_vis - 1) * iaq.nrxq_vi;
1092                 s->ntxq += (n10g + n1g) * (num_vis - 1) * iaq.ntxq_vi;
1093         }
1094         s->neq = s->ntxq + s->nrxq;     /* the free list in an rxq is an eq */
1095         s->neq += sc->params.nports + 1;/* ctrl queues: 1 per port + 1 mgmt */
1096         s->niq = s->nrxq + 1;           /* 1 extra for firmware event queue */
1097 #ifdef TCP_OFFLOAD
1098         if (is_offload(sc)) {
1099                 s->nofldrxq = n10g * iaq.nofldrxq10g + n1g * iaq.nofldrxq1g;
1100                 s->nofldtxq = n10g * iaq.nofldtxq10g + n1g * iaq.nofldtxq1g;
1101                 if (num_vis > 1) {
1102                         s->nofldrxq += (n10g + n1g) * (num_vis - 1) *
1103                             iaq.nofldrxq_vi;
1104                         s->nofldtxq += (n10g + n1g) * (num_vis - 1) *
1105                             iaq.nofldtxq_vi;
1106                 }
1107                 s->neq += s->nofldtxq + s->nofldrxq;
1108                 s->niq += s->nofldrxq;
1109
1110                 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1111                     M_CXGBE, M_ZERO | M_WAITOK);
1112                 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq),
1113                     M_CXGBE, M_ZERO | M_WAITOK);
1114         }
1115 #endif
1116 #ifdef DEV_NETMAP
1117         if (num_vis > 1) {
1118                 s->nnmrxq = (n10g + n1g) * (num_vis - 1) * iaq.nnmrxq_vi;
1119                 s->nnmtxq = (n10g + n1g) * (num_vis - 1) * iaq.nnmtxq_vi;
1120         }
1121         s->neq += s->nnmtxq + s->nnmrxq;
1122         s->niq += s->nnmrxq;
1123
1124         s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1125             M_CXGBE, M_ZERO | M_WAITOK);
1126         s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1127             M_CXGBE, M_ZERO | M_WAITOK);
1128 #endif
1129
1130         s->ctrlq = malloc(sc->params.nports * sizeof(struct sge_wrq), M_CXGBE,
1131             M_ZERO | M_WAITOK);
1132         s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1133             M_ZERO | M_WAITOK);
1134         s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1135             M_ZERO | M_WAITOK);
1136         s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
1137             M_ZERO | M_WAITOK);
1138         s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
1139             M_ZERO | M_WAITOK);
1140
1141         sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1142             M_ZERO | M_WAITOK);
1143
1144         t4_init_l2t(sc, M_WAITOK);
1145         t4_init_tx_sched(sc);
1146
1147         /*
1148          * Second pass over the ports.  This time we know the number of rx and
1149          * tx queues that each port should get.
1150          */
1151         rqidx = tqidx = 0;
1152 #ifdef TCP_OFFLOAD
1153         ofld_rqidx = ofld_tqidx = 0;
1154 #endif
1155 #ifdef DEV_NETMAP
1156         nm_rqidx = nm_tqidx = 0;
1157 #endif
1158         for_each_port(sc, i) {
1159                 struct port_info *pi = sc->port[i];
1160                 struct vi_info *vi;
1161
1162                 if (pi == NULL)
1163                         continue;
1164
1165                 pi->nvi = num_vis;
1166                 for_each_vi(pi, j, vi) {
1167                         vi->pi = pi;
1168                         vi->qsize_rxq = t4_qsize_rxq;
1169                         vi->qsize_txq = t4_qsize_txq;
1170
1171                         vi->first_rxq = rqidx;
1172                         vi->first_txq = tqidx;
1173                         if (port_top_speed(pi) >= 10) {
1174                                 vi->tmr_idx = t4_tmr_idx_10g;
1175                                 vi->pktc_idx = t4_pktc_idx_10g;
1176                                 vi->flags |= iaq.intr_flags_10g & INTR_RXQ;
1177                                 vi->nrxq = j == 0 ? iaq.nrxq10g : iaq.nrxq_vi;
1178                                 vi->ntxq = j == 0 ? iaq.ntxq10g : iaq.ntxq_vi;
1179                         } else {
1180                                 vi->tmr_idx = t4_tmr_idx_1g;
1181                                 vi->pktc_idx = t4_pktc_idx_1g;
1182                                 vi->flags |= iaq.intr_flags_1g & INTR_RXQ;
1183                                 vi->nrxq = j == 0 ? iaq.nrxq1g : iaq.nrxq_vi;
1184                                 vi->ntxq = j == 0 ? iaq.ntxq1g : iaq.ntxq_vi;
1185                         }
1186                         rqidx += vi->nrxq;
1187                         tqidx += vi->ntxq;
1188
1189                         if (j == 0 && vi->ntxq > 1)
1190                                 vi->rsrv_noflowq = iaq.rsrv_noflowq ? 1 : 0;
1191                         else
1192                                 vi->rsrv_noflowq = 0;
1193
1194 #ifdef TCP_OFFLOAD
1195                         vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1196                         vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1197                         vi->first_ofld_rxq = ofld_rqidx;
1198                         vi->first_ofld_txq = ofld_tqidx;
1199                         if (port_top_speed(pi) >= 10) {
1200                                 vi->flags |= iaq.intr_flags_10g & INTR_OFLD_RXQ;
1201                                 vi->nofldrxq = j == 0 ? iaq.nofldrxq10g :
1202                                     iaq.nofldrxq_vi;
1203                                 vi->nofldtxq = j == 0 ? iaq.nofldtxq10g :
1204                                     iaq.nofldtxq_vi;
1205                         } else {
1206                                 vi->flags |= iaq.intr_flags_1g & INTR_OFLD_RXQ;
1207                                 vi->nofldrxq = j == 0 ? iaq.nofldrxq1g :
1208                                     iaq.nofldrxq_vi;
1209                                 vi->nofldtxq = j == 0 ? iaq.nofldtxq1g :
1210                                     iaq.nofldtxq_vi;
1211                         }
1212                         ofld_rqidx += vi->nofldrxq;
1213                         ofld_tqidx += vi->nofldtxq;
1214 #endif
1215 #ifdef DEV_NETMAP
1216                         if (j > 0) {
1217                                 vi->first_nm_rxq = nm_rqidx;
1218                                 vi->first_nm_txq = nm_tqidx;
1219                                 vi->nnmrxq = iaq.nnmrxq_vi;
1220                                 vi->nnmtxq = iaq.nnmtxq_vi;
1221                                 nm_rqidx += vi->nnmrxq;
1222                                 nm_tqidx += vi->nnmtxq;
1223                         }
1224 #endif
1225                 }
1226         }
1227
1228         rc = t4_setup_intr_handlers(sc);
1229         if (rc != 0) {
1230                 device_printf(dev,
1231                     "failed to setup interrupt handlers: %d\n", rc);
1232                 goto done;
1233         }
1234
1235         rc = bus_generic_probe(dev);
1236         if (rc != 0) {
1237                 device_printf(dev, "failed to probe child drivers: %d\n", rc);
1238                 goto done;
1239         }
1240
1241         /*
1242          * Ensure thread-safe mailbox access (in debug builds).
1243          *
1244          * So far this was the only thread accessing the mailbox but various
1245          * ifnets and sysctls are about to be created and their handlers/ioctls
1246          * will access the mailbox from different threads.
1247          */
1248         sc->flags |= CHK_MBOX_ACCESS;
1249
1250         rc = bus_generic_attach(dev);
1251         if (rc != 0) {
1252                 device_printf(dev,
1253                     "failed to attach all child ports: %d\n", rc);
1254                 goto done;
1255         }
1256
1257         device_printf(dev,
1258             "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1259             sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1260             sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1261             (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1262             sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1263
1264         t4_set_desc(sc);
1265
1266         notify_siblings(dev, 0);
1267
1268 done:
1269         if (rc != 0 && sc->cdev) {
1270                 /* cdev was created and so cxgbetool works; recover that way. */
1271                 device_printf(dev,
1272                     "error during attach, adapter is now in recovery mode.\n");
1273                 rc = 0;
1274         }
1275
1276         if (rc != 0)
1277                 t4_detach_common(dev);
1278         else
1279                 t4_sysctls(sc);
1280
1281         return (rc);
1282 }
1283
1284 static int
1285 t4_ready(device_t dev)
1286 {
1287         struct adapter *sc;
1288
1289         sc = device_get_softc(dev);
1290         if (sc->flags & FW_OK)
1291                 return (0);
1292         return (ENXIO);
1293 }
1294
1295 static int
1296 t4_read_port_device(device_t dev, int port, device_t *child)
1297 {
1298         struct adapter *sc;
1299         struct port_info *pi;
1300
1301         sc = device_get_softc(dev);
1302         if (port < 0 || port >= MAX_NPORTS)
1303                 return (EINVAL);
1304         pi = sc->port[port];
1305         if (pi == NULL || pi->dev == NULL)
1306                 return (ENXIO);
1307         *child = pi->dev;
1308         return (0);
1309 }
1310
1311 static int
1312 notify_siblings(device_t dev, int detaching)
1313 {
1314         device_t sibling;
1315         int error, i;
1316
1317         error = 0;
1318         for (i = 0; i < PCI_FUNCMAX; i++) {
1319                 if (i == pci_get_function(dev))
1320                         continue;
1321                 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1322                     pci_get_slot(dev), i);
1323                 if (sibling == NULL || !device_is_attached(sibling))
1324                         continue;
1325                 if (detaching)
1326                         error = T4_DETACH_CHILD(sibling);
1327                 else
1328                         (void)T4_ATTACH_CHILD(sibling);
1329                 if (error)
1330                         break;
1331         }
1332         return (error);
1333 }
1334
1335 /*
1336  * Idempotent
1337  */
1338 static int
1339 t4_detach(device_t dev)
1340 {
1341         struct adapter *sc;
1342         int rc;
1343
1344         sc = device_get_softc(dev);
1345
1346         rc = notify_siblings(dev, 1);
1347         if (rc) {
1348                 device_printf(dev,
1349                     "failed to detach sibling devices: %d\n", rc);
1350                 return (rc);
1351         }
1352
1353         return (t4_detach_common(dev));
1354 }
1355
1356 int
1357 t4_detach_common(device_t dev)
1358 {
1359         struct adapter *sc;
1360         struct port_info *pi;
1361         int i, rc;
1362
1363         sc = device_get_softc(dev);
1364
1365         sc->flags &= ~CHK_MBOX_ACCESS;
1366         if (sc->flags & FULL_INIT_DONE) {
1367                 if (!(sc->flags & IS_VF))
1368                         t4_intr_disable(sc);
1369         }
1370
1371         if (sc->cdev) {
1372                 destroy_dev(sc->cdev);
1373                 sc->cdev = NULL;
1374         }
1375
1376         if (device_is_attached(dev)) {
1377                 rc = bus_generic_detach(dev);
1378                 if (rc) {
1379                         device_printf(dev,
1380                             "failed to detach child devices: %d\n", rc);
1381                         return (rc);
1382                 }
1383         }
1384
1385         for (i = 0; i < sc->intr_count; i++)
1386                 t4_free_irq(sc, &sc->irq[i]);
1387
1388         if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1389                 t4_free_tx_sched(sc);
1390
1391         for (i = 0; i < MAX_NPORTS; i++) {
1392                 pi = sc->port[i];
1393                 if (pi) {
1394                         t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1395                         if (pi->dev)
1396                                 device_delete_child(dev, pi->dev);
1397
1398                         mtx_destroy(&pi->pi_lock);
1399                         free(pi->vi, M_CXGBE);
1400                         free(pi, M_CXGBE);
1401                 }
1402         }
1403
1404         device_delete_children(dev);
1405
1406         if (sc->flags & FULL_INIT_DONE)
1407                 adapter_full_uninit(sc);
1408
1409         if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1410                 t4_fw_bye(sc, sc->mbox);
1411
1412         if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1413                 pci_release_msi(dev);
1414
1415         if (sc->regs_res)
1416                 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1417                     sc->regs_res);
1418
1419         if (sc->udbs_res)
1420                 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1421                     sc->udbs_res);
1422
1423         if (sc->msix_res)
1424                 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1425                     sc->msix_res);
1426
1427         if (sc->l2t)
1428                 t4_free_l2t(sc->l2t);
1429
1430 #ifdef TCP_OFFLOAD
1431         free(sc->sge.ofld_rxq, M_CXGBE);
1432         free(sc->sge.ofld_txq, M_CXGBE);
1433 #endif
1434 #ifdef DEV_NETMAP
1435         free(sc->sge.nm_rxq, M_CXGBE);
1436         free(sc->sge.nm_txq, M_CXGBE);
1437 #endif
1438         free(sc->irq, M_CXGBE);
1439         free(sc->sge.rxq, M_CXGBE);
1440         free(sc->sge.txq, M_CXGBE);
1441         free(sc->sge.ctrlq, M_CXGBE);
1442         free(sc->sge.iqmap, M_CXGBE);
1443         free(sc->sge.eqmap, M_CXGBE);
1444         free(sc->tids.ftid_tab, M_CXGBE);
1445         t4_destroy_dma_tag(sc);
1446         if (mtx_initialized(&sc->sc_lock)) {
1447                 sx_xlock(&t4_list_lock);
1448                 SLIST_REMOVE(&t4_list, sc, adapter, link);
1449                 sx_xunlock(&t4_list_lock);
1450                 mtx_destroy(&sc->sc_lock);
1451         }
1452
1453         callout_drain(&sc->sfl_callout);
1454         if (mtx_initialized(&sc->tids.ftid_lock))
1455                 mtx_destroy(&sc->tids.ftid_lock);
1456         if (mtx_initialized(&sc->sfl_lock))
1457                 mtx_destroy(&sc->sfl_lock);
1458         if (mtx_initialized(&sc->ifp_lock))
1459                 mtx_destroy(&sc->ifp_lock);
1460         if (mtx_initialized(&sc->reg_lock))
1461                 mtx_destroy(&sc->reg_lock);
1462
1463         for (i = 0; i < NUM_MEMWIN; i++) {
1464                 struct memwin *mw = &sc->memwin[i];
1465
1466                 if (rw_initialized(&mw->mw_lock))
1467                         rw_destroy(&mw->mw_lock);
1468         }
1469
1470         bzero(sc, sizeof(*sc));
1471
1472         return (0);
1473 }
1474
1475 static int
1476 cxgbe_probe(device_t dev)
1477 {
1478         char buf[128];
1479         struct port_info *pi = device_get_softc(dev);
1480
1481         snprintf(buf, sizeof(buf), "port %d", pi->port_id);
1482         device_set_desc_copy(dev, buf);
1483
1484         return (BUS_PROBE_DEFAULT);
1485 }
1486
1487 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
1488     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
1489     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS)
1490 #define T4_CAP_ENABLE (T4_CAP)
1491
1492 static int
1493 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
1494 {
1495         struct ifnet *ifp;
1496         struct sbuf *sb;
1497
1498         vi->xact_addr_filt = -1;
1499         callout_init(&vi->tick, 1);
1500
1501         /* Allocate an ifnet and set it up */
1502         ifp = if_alloc(IFT_ETHER);
1503         if (ifp == NULL) {
1504                 device_printf(dev, "Cannot allocate ifnet\n");
1505                 return (ENOMEM);
1506         }
1507         vi->ifp = ifp;
1508         ifp->if_softc = vi;
1509
1510         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1511         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1512
1513         ifp->if_init = cxgbe_init;
1514         ifp->if_ioctl = cxgbe_ioctl;
1515         ifp->if_transmit = cxgbe_transmit;
1516         ifp->if_qflush = cxgbe_qflush;
1517         ifp->if_get_counter = cxgbe_get_counter;
1518
1519         ifp->if_capabilities = T4_CAP;
1520 #ifdef TCP_OFFLOAD
1521         if (vi->nofldrxq != 0)
1522                 ifp->if_capabilities |= IFCAP_TOE;
1523 #endif
1524 #ifdef DEV_NETMAP
1525         if (vi->nnmrxq != 0)
1526                 ifp->if_capabilities |= IFCAP_NETMAP;
1527 #endif
1528         ifp->if_capenable = T4_CAP_ENABLE;
1529         ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
1530             CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
1531
1532         ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
1533         ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS;
1534         ifp->if_hw_tsomaxsegsize = 65536;
1535
1536         vi->vlan_c = EVENTHANDLER_REGISTER(vlan_config, cxgbe_vlan_config, ifp,
1537             EVENTHANDLER_PRI_ANY);
1538
1539         ether_ifattach(ifp, vi->hw_addr);
1540 #ifdef DEV_NETMAP
1541         if (ifp->if_capabilities & IFCAP_NETMAP)
1542                 cxgbe_nm_attach(vi);
1543 #endif
1544         sb = sbuf_new_auto();
1545         sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
1546 #ifdef TCP_OFFLOAD
1547         if (ifp->if_capabilities & IFCAP_TOE)
1548                 sbuf_printf(sb, "; %d txq, %d rxq (TOE)",
1549                     vi->nofldtxq, vi->nofldrxq);
1550 #endif
1551 #ifdef DEV_NETMAP
1552         if (ifp->if_capabilities & IFCAP_NETMAP)
1553                 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
1554                     vi->nnmtxq, vi->nnmrxq);
1555 #endif
1556         sbuf_finish(sb);
1557         device_printf(dev, "%s\n", sbuf_data(sb));
1558         sbuf_delete(sb);
1559
1560         vi_sysctls(vi);
1561
1562         return (0);
1563 }
1564
1565 static int
1566 cxgbe_attach(device_t dev)
1567 {
1568         struct port_info *pi = device_get_softc(dev);
1569         struct adapter *sc = pi->adapter;
1570         struct vi_info *vi;
1571         int i, rc;
1572
1573         callout_init_mtx(&pi->tick, &pi->pi_lock, 0);
1574
1575         rc = cxgbe_vi_attach(dev, &pi->vi[0]);
1576         if (rc)
1577                 return (rc);
1578
1579         for_each_vi(pi, i, vi) {
1580                 if (i == 0)
1581                         continue;
1582                 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
1583                 if (vi->dev == NULL) {
1584                         device_printf(dev, "failed to add VI %d\n", i);
1585                         continue;
1586                 }
1587                 device_set_softc(vi->dev, vi);
1588         }
1589
1590         cxgbe_sysctls(pi);
1591
1592         bus_generic_attach(dev);
1593
1594         return (0);
1595 }
1596
1597 static void
1598 cxgbe_vi_detach(struct vi_info *vi)
1599 {
1600         struct ifnet *ifp = vi->ifp;
1601
1602         ether_ifdetach(ifp);
1603
1604         if (vi->vlan_c)
1605                 EVENTHANDLER_DEREGISTER(vlan_config, vi->vlan_c);
1606
1607         /* Let detach proceed even if these fail. */
1608 #ifdef DEV_NETMAP
1609         if (ifp->if_capabilities & IFCAP_NETMAP)
1610                 cxgbe_nm_detach(vi);
1611 #endif
1612         cxgbe_uninit_synchronized(vi);
1613         callout_drain(&vi->tick);
1614         vi_full_uninit(vi);
1615
1616         if_free(vi->ifp);
1617         vi->ifp = NULL;
1618 }
1619
1620 static int
1621 cxgbe_detach(device_t dev)
1622 {
1623         struct port_info *pi = device_get_softc(dev);
1624         struct adapter *sc = pi->adapter;
1625         int rc;
1626
1627         /* Detach the extra VIs first. */
1628         rc = bus_generic_detach(dev);
1629         if (rc)
1630                 return (rc);
1631         device_delete_children(dev);
1632
1633         doom_vi(sc, &pi->vi[0]);
1634
1635         if (pi->flags & HAS_TRACEQ) {
1636                 sc->traceq = -1;        /* cloner should not create ifnet */
1637                 t4_tracer_port_detach(sc);
1638         }
1639
1640         cxgbe_vi_detach(&pi->vi[0]);
1641         callout_drain(&pi->tick);
1642         ifmedia_removeall(&pi->media);
1643
1644         end_synchronized_op(sc, 0);
1645
1646         return (0);
1647 }
1648
1649 static void
1650 cxgbe_init(void *arg)
1651 {
1652         struct vi_info *vi = arg;
1653         struct adapter *sc = vi->pi->adapter;
1654
1655         if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
1656                 return;
1657         cxgbe_init_synchronized(vi);
1658         end_synchronized_op(sc, 0);
1659 }
1660
1661 static int
1662 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
1663 {
1664         int rc = 0, mtu, flags, can_sleep;
1665         struct vi_info *vi = ifp->if_softc;
1666         struct port_info *pi = vi->pi;
1667         struct adapter *sc = pi->adapter;
1668         struct ifreq *ifr = (struct ifreq *)data;
1669         uint32_t mask;
1670
1671         switch (cmd) {
1672         case SIOCSIFMTU:
1673                 mtu = ifr->ifr_mtu;
1674                 if (mtu < ETHERMIN || mtu > MAX_MTU)
1675                         return (EINVAL);
1676
1677                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
1678                 if (rc)
1679                         return (rc);
1680                 ifp->if_mtu = mtu;
1681                 if (vi->flags & VI_INIT_DONE) {
1682                         t4_update_fl_bufsize(ifp);
1683                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1684                                 rc = update_mac_settings(ifp, XGMAC_MTU);
1685                 }
1686                 end_synchronized_op(sc, 0);
1687                 break;
1688
1689         case SIOCSIFFLAGS:
1690                 can_sleep = 0;
1691 redo_sifflags:
1692                 rc = begin_synchronized_op(sc, vi,
1693                     can_sleep ? (SLEEP_OK | INTR_OK) : HOLD_LOCK, "t4flg");
1694                 if (rc)
1695                         return (rc);
1696
1697                 if (ifp->if_flags & IFF_UP) {
1698                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1699                                 flags = vi->if_flags;
1700                                 if ((ifp->if_flags ^ flags) &
1701                                     (IFF_PROMISC | IFF_ALLMULTI)) {
1702                                         if (can_sleep == 1) {
1703                                                 end_synchronized_op(sc, 0);
1704                                                 can_sleep = 0;
1705                                                 goto redo_sifflags;
1706                                         }
1707                                         rc = update_mac_settings(ifp,
1708                                             XGMAC_PROMISC | XGMAC_ALLMULTI);
1709                                 }
1710                         } else {
1711                                 if (can_sleep == 0) {
1712                                         end_synchronized_op(sc, LOCK_HELD);
1713                                         can_sleep = 1;
1714                                         goto redo_sifflags;
1715                                 }
1716                                 rc = cxgbe_init_synchronized(vi);
1717                         }
1718                         vi->if_flags = ifp->if_flags;
1719                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1720                         if (can_sleep == 0) {
1721                                 end_synchronized_op(sc, LOCK_HELD);
1722                                 can_sleep = 1;
1723                                 goto redo_sifflags;
1724                         }
1725                         rc = cxgbe_uninit_synchronized(vi);
1726                 }
1727                 end_synchronized_op(sc, can_sleep ? 0 : LOCK_HELD);
1728                 break;
1729
1730         case SIOCADDMULTI:
1731         case SIOCDELMULTI: /* these two are called with a mutex held :-( */
1732                 rc = begin_synchronized_op(sc, vi, HOLD_LOCK, "t4multi");
1733                 if (rc)
1734                         return (rc);
1735                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1736                         rc = update_mac_settings(ifp, XGMAC_MCADDRS);
1737                 end_synchronized_op(sc, LOCK_HELD);
1738                 break;
1739
1740         case SIOCSIFCAP:
1741                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
1742                 if (rc)
1743                         return (rc);
1744
1745                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1746                 if (mask & IFCAP_TXCSUM) {
1747                         ifp->if_capenable ^= IFCAP_TXCSUM;
1748                         ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
1749
1750                         if (IFCAP_TSO4 & ifp->if_capenable &&
1751                             !(IFCAP_TXCSUM & ifp->if_capenable)) {
1752                                 ifp->if_capenable &= ~IFCAP_TSO4;
1753                                 if_printf(ifp,
1754                                     "tso4 disabled due to -txcsum.\n");
1755                         }
1756                 }
1757                 if (mask & IFCAP_TXCSUM_IPV6) {
1758                         ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
1759                         ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
1760
1761                         if (IFCAP_TSO6 & ifp->if_capenable &&
1762                             !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1763                                 ifp->if_capenable &= ~IFCAP_TSO6;
1764                                 if_printf(ifp,
1765                                     "tso6 disabled due to -txcsum6.\n");
1766                         }
1767                 }
1768                 if (mask & IFCAP_RXCSUM)
1769                         ifp->if_capenable ^= IFCAP_RXCSUM;
1770                 if (mask & IFCAP_RXCSUM_IPV6)
1771                         ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
1772
1773                 /*
1774                  * Note that we leave CSUM_TSO alone (it is always set).  The
1775                  * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
1776                  * sending a TSO request our way, so it's sufficient to toggle
1777                  * IFCAP_TSOx only.
1778                  */
1779                 if (mask & IFCAP_TSO4) {
1780                         if (!(IFCAP_TSO4 & ifp->if_capenable) &&
1781                             !(IFCAP_TXCSUM & ifp->if_capenable)) {
1782                                 if_printf(ifp, "enable txcsum first.\n");
1783                                 rc = EAGAIN;
1784                                 goto fail;
1785                         }
1786                         ifp->if_capenable ^= IFCAP_TSO4;
1787                 }
1788                 if (mask & IFCAP_TSO6) {
1789                         if (!(IFCAP_TSO6 & ifp->if_capenable) &&
1790                             !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1791                                 if_printf(ifp, "enable txcsum6 first.\n");
1792                                 rc = EAGAIN;
1793                                 goto fail;
1794                         }
1795                         ifp->if_capenable ^= IFCAP_TSO6;
1796                 }
1797                 if (mask & IFCAP_LRO) {
1798 #if defined(INET) || defined(INET6)
1799                         int i;
1800                         struct sge_rxq *rxq;
1801
1802                         ifp->if_capenable ^= IFCAP_LRO;
1803                         for_each_rxq(vi, i, rxq) {
1804                                 if (ifp->if_capenable & IFCAP_LRO)
1805                                         rxq->iq.flags |= IQ_LRO_ENABLED;
1806                                 else
1807                                         rxq->iq.flags &= ~IQ_LRO_ENABLED;
1808                         }
1809 #endif
1810                 }
1811 #ifdef TCP_OFFLOAD
1812                 if (mask & IFCAP_TOE) {
1813                         int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
1814
1815                         rc = toe_capability(vi, enable);
1816                         if (rc != 0)
1817                                 goto fail;
1818
1819                         ifp->if_capenable ^= mask;
1820                 }
1821 #endif
1822                 if (mask & IFCAP_VLAN_HWTAGGING) {
1823                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1824                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1825                                 rc = update_mac_settings(ifp, XGMAC_VLANEX);
1826                 }
1827                 if (mask & IFCAP_VLAN_MTU) {
1828                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
1829
1830                         /* Need to find out how to disable auto-mtu-inflation */
1831                 }
1832                 if (mask & IFCAP_VLAN_HWTSO)
1833                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1834                 if (mask & IFCAP_VLAN_HWCSUM)
1835                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1836
1837 #ifdef VLAN_CAPABILITIES
1838                 VLAN_CAPABILITIES(ifp);
1839 #endif
1840 fail:
1841                 end_synchronized_op(sc, 0);
1842                 break;
1843
1844         case SIOCSIFMEDIA:
1845         case SIOCGIFMEDIA:
1846         case SIOCGIFXMEDIA:
1847                 ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
1848                 break;
1849
1850         case SIOCGI2C: {
1851                 struct ifi2creq i2c;
1852
1853                 rc = copyin(ifr->ifr_data, &i2c, sizeof(i2c));
1854                 if (rc != 0)
1855                         break;
1856                 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
1857                         rc = EPERM;
1858                         break;
1859                 }
1860                 if (i2c.len > sizeof(i2c.data)) {
1861                         rc = EINVAL;
1862                         break;
1863                 }
1864                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
1865                 if (rc)
1866                         return (rc);
1867                 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
1868                     i2c.offset, i2c.len, &i2c.data[0]);
1869                 end_synchronized_op(sc, 0);
1870                 if (rc == 0)
1871                         rc = copyout(&i2c, ifr->ifr_data, sizeof(i2c));
1872                 break;
1873         }
1874
1875         default:
1876                 rc = ether_ioctl(ifp, cmd, data);
1877         }
1878
1879         return (rc);
1880 }
1881
1882 static int
1883 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
1884 {
1885         struct vi_info *vi = ifp->if_softc;
1886         struct port_info *pi = vi->pi;
1887         struct adapter *sc = pi->adapter;
1888         struct sge_txq *txq;
1889         void *items[1];
1890         int rc;
1891
1892         M_ASSERTPKTHDR(m);
1893         MPASS(m->m_nextpkt == NULL);    /* not quite ready for this yet */
1894
1895         if (__predict_false(pi->link_cfg.link_ok == 0)) {
1896                 m_freem(m);
1897                 return (ENETDOWN);
1898         }
1899
1900         rc = parse_pkt(sc, &m);
1901         if (__predict_false(rc != 0)) {
1902                 MPASS(m == NULL);                       /* was freed already */
1903                 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
1904                 return (rc);
1905         }
1906
1907         /* Select a txq. */
1908         txq = &sc->sge.txq[vi->first_txq];
1909         if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
1910                 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
1911                     vi->rsrv_noflowq);
1912
1913         items[0] = m;
1914         rc = mp_ring_enqueue(txq->r, items, 1, 4096);
1915         if (__predict_false(rc != 0))
1916                 m_freem(m);
1917
1918         return (rc);
1919 }
1920
1921 static void
1922 cxgbe_qflush(struct ifnet *ifp)
1923 {
1924         struct vi_info *vi = ifp->if_softc;
1925         struct sge_txq *txq;
1926         int i;
1927
1928         /* queues do not exist if !VI_INIT_DONE. */
1929         if (vi->flags & VI_INIT_DONE) {
1930                 for_each_txq(vi, i, txq) {
1931                         TXQ_LOCK(txq);
1932                         txq->eq.flags |= EQ_QFLUSH;
1933                         TXQ_UNLOCK(txq);
1934                         while (!mp_ring_is_idle(txq->r)) {
1935                                 mp_ring_check_drainage(txq->r, 0);
1936                                 pause("qflush", 1);
1937                         }
1938                         TXQ_LOCK(txq);
1939                         txq->eq.flags &= ~EQ_QFLUSH;
1940                         TXQ_UNLOCK(txq);
1941                 }
1942         }
1943         if_qflush(ifp);
1944 }
1945
1946 static uint64_t
1947 vi_get_counter(struct ifnet *ifp, ift_counter c)
1948 {
1949         struct vi_info *vi = ifp->if_softc;
1950         struct fw_vi_stats_vf *s = &vi->stats;
1951
1952         vi_refresh_stats(vi->pi->adapter, vi);
1953
1954         switch (c) {
1955         case IFCOUNTER_IPACKETS:
1956                 return (s->rx_bcast_frames + s->rx_mcast_frames +
1957                     s->rx_ucast_frames);
1958         case IFCOUNTER_IERRORS:
1959                 return (s->rx_err_frames);
1960         case IFCOUNTER_OPACKETS:
1961                 return (s->tx_bcast_frames + s->tx_mcast_frames +
1962                     s->tx_ucast_frames + s->tx_offload_frames);
1963         case IFCOUNTER_OERRORS:
1964                 return (s->tx_drop_frames);
1965         case IFCOUNTER_IBYTES:
1966                 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
1967                     s->rx_ucast_bytes);
1968         case IFCOUNTER_OBYTES:
1969                 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
1970                     s->tx_ucast_bytes + s->tx_offload_bytes);
1971         case IFCOUNTER_IMCASTS:
1972                 return (s->rx_mcast_frames);
1973         case IFCOUNTER_OMCASTS:
1974                 return (s->tx_mcast_frames);
1975         case IFCOUNTER_OQDROPS: {
1976                 uint64_t drops;
1977
1978                 drops = 0;
1979                 if (vi->flags & VI_INIT_DONE) {
1980                         int i;
1981                         struct sge_txq *txq;
1982
1983                         for_each_txq(vi, i, txq)
1984                                 drops += counter_u64_fetch(txq->r->drops);
1985                 }
1986
1987                 return (drops);
1988
1989         }
1990
1991         default:
1992                 return (if_get_counter_default(ifp, c));
1993         }
1994 }
1995
1996 uint64_t
1997 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
1998 {
1999         struct vi_info *vi = ifp->if_softc;
2000         struct port_info *pi = vi->pi;
2001         struct adapter *sc = pi->adapter;
2002         struct port_stats *s = &pi->stats;
2003
2004         if (pi->nvi > 1 || sc->flags & IS_VF)
2005                 return (vi_get_counter(ifp, c));
2006
2007         cxgbe_refresh_stats(sc, pi);
2008
2009         switch (c) {
2010         case IFCOUNTER_IPACKETS:
2011                 return (s->rx_frames);
2012
2013         case IFCOUNTER_IERRORS:
2014                 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
2015                     s->rx_fcs_err + s->rx_len_err);
2016
2017         case IFCOUNTER_OPACKETS:
2018                 return (s->tx_frames);
2019
2020         case IFCOUNTER_OERRORS:
2021                 return (s->tx_error_frames);
2022
2023         case IFCOUNTER_IBYTES:
2024                 return (s->rx_octets);
2025
2026         case IFCOUNTER_OBYTES:
2027                 return (s->tx_octets);
2028
2029         case IFCOUNTER_IMCASTS:
2030                 return (s->rx_mcast_frames);
2031
2032         case IFCOUNTER_OMCASTS:
2033                 return (s->tx_mcast_frames);
2034
2035         case IFCOUNTER_IQDROPS:
2036                 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
2037                     s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
2038                     s->rx_trunc3 + pi->tnl_cong_drops);
2039
2040         case IFCOUNTER_OQDROPS: {
2041                 uint64_t drops;
2042
2043                 drops = s->tx_drop;
2044                 if (vi->flags & VI_INIT_DONE) {
2045                         int i;
2046                         struct sge_txq *txq;
2047
2048                         for_each_txq(vi, i, txq)
2049                                 drops += counter_u64_fetch(txq->r->drops);
2050                 }
2051
2052                 return (drops);
2053
2054         }
2055
2056         default:
2057                 return (if_get_counter_default(ifp, c));
2058         }
2059 }
2060
2061 static int
2062 cxgbe_media_change(struct ifnet *ifp)
2063 {
2064         struct vi_info *vi = ifp->if_softc;
2065
2066         device_printf(vi->dev, "%s unimplemented.\n", __func__);
2067
2068         return (EOPNOTSUPP);
2069 }
2070
2071 static void
2072 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2073 {
2074         struct vi_info *vi = ifp->if_softc;
2075         struct port_info *pi = vi->pi;
2076         struct ifmedia_entry *cur;
2077         struct link_config *lc = &pi->link_cfg;
2078
2079         /*
2080          * If all the interfaces are administratively down the firmware does not
2081          * report transceiver changes.  Refresh port info here so that ifconfig
2082          * displays accurate information at all times.
2083          */
2084         if (begin_synchronized_op(pi->adapter, NULL, SLEEP_OK | INTR_OK,
2085             "t4med") == 0) {
2086                 PORT_LOCK(pi);
2087                 if (pi->up_vis == 0) {
2088                         t4_update_port_info(pi);
2089                         build_medialist(pi, &pi->media);
2090                 }
2091                 PORT_UNLOCK(pi);
2092                 end_synchronized_op(pi->adapter, 0);
2093         }
2094
2095         ifmr->ifm_status = IFM_AVALID;
2096         if (lc->link_ok == 0)
2097                 return;
2098
2099         ifmr->ifm_status |= IFM_ACTIVE;
2100         ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
2101         if (lc->fc & PAUSE_RX)
2102                 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2103         if (lc->fc & PAUSE_TX)
2104                 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2105
2106         /* active and current will differ iff current media is autoselect. */
2107         cur = pi->media.ifm_cur;
2108         if (cur != NULL && IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO)
2109                 return;
2110
2111         ifmr->ifm_active = IFM_ETHER | IFM_FDX;
2112         if (lc->fc & PAUSE_RX)
2113                 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2114         if (lc->fc & PAUSE_TX)
2115                 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2116         switch (lc->speed) {
2117         case 10000:
2118                 ifmr->ifm_active |= IFM_10G_T;
2119                 break;
2120         case 1000:
2121                 ifmr->ifm_active |= IFM_1000_T;
2122                 break;
2123         case 100:
2124                 ifmr->ifm_active |= IFM_100_TX;
2125                 break;
2126         case 10:
2127                 ifmr->ifm_active |= IFM_10_T;
2128                 break;
2129         default:
2130                 device_printf(vi->dev, "link up but speed unknown (%u)\n",
2131                     lc->speed);
2132         }
2133 }
2134
2135 static int
2136 vcxgbe_probe(device_t dev)
2137 {
2138         char buf[128];
2139         struct vi_info *vi = device_get_softc(dev);
2140
2141         snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
2142             vi - vi->pi->vi);
2143         device_set_desc_copy(dev, buf);
2144
2145         return (BUS_PROBE_DEFAULT);
2146 }
2147
2148 static int
2149 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
2150 {
2151         int func, index, rc;
2152         uint32_t param, val;
2153
2154         ASSERT_SYNCHRONIZED_OP(sc);
2155
2156         index = vi - pi->vi;
2157         MPASS(index > 0);       /* This function deals with _extra_ VIs only */
2158         KASSERT(index < nitems(vi_mac_funcs),
2159             ("%s: VI %s doesn't have a MAC func", __func__,
2160             device_get_nameunit(vi->dev)));
2161         func = vi_mac_funcs[index];
2162         rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
2163             vi->hw_addr, &vi->rss_size, func, 0);
2164         if (rc < 0) {
2165                 device_printf(vi->dev, "failed to allocate virtual interface %d"
2166                     "for port %d: %d\n", index, pi->port_id, -rc);
2167                 return (-rc);
2168         }
2169         vi->viid = rc;
2170         if (chip_id(sc) <= CHELSIO_T5)
2171                 vi->smt_idx = (rc & 0x7f) << 1;
2172         else
2173                 vi->smt_idx = (rc & 0x7f);
2174
2175         if (vi->rss_size == 1) {
2176                 /*
2177                  * This VI didn't get a slice of the RSS table.  Reduce the
2178                  * number of VIs being created (hw.cxgbe.num_vis) or modify the
2179                  * configuration file (nvi, rssnvi for this PF) if this is a
2180                  * problem.
2181                  */
2182                 device_printf(vi->dev, "RSS table not available.\n");
2183                 vi->rss_base = 0xffff;
2184
2185                 return (0);
2186         }
2187
2188         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2189             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
2190             V_FW_PARAMS_PARAM_YZ(vi->viid);
2191         rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2192         if (rc)
2193                 vi->rss_base = 0xffff;
2194         else {
2195                 MPASS((val >> 16) == vi->rss_size);
2196                 vi->rss_base = val & 0xffff;
2197         }
2198
2199         return (0);
2200 }
2201
2202 static int
2203 vcxgbe_attach(device_t dev)
2204 {
2205         struct vi_info *vi;
2206         struct port_info *pi;
2207         struct adapter *sc;
2208         int rc;
2209
2210         vi = device_get_softc(dev);
2211         pi = vi->pi;
2212         sc = pi->adapter;
2213
2214         rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
2215         if (rc)
2216                 return (rc);
2217         rc = alloc_extra_vi(sc, pi, vi);
2218         end_synchronized_op(sc, 0);
2219         if (rc)
2220                 return (rc);
2221
2222         rc = cxgbe_vi_attach(dev, vi);
2223         if (rc) {
2224                 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2225                 return (rc);
2226         }
2227         return (0);
2228 }
2229
2230 static int
2231 vcxgbe_detach(device_t dev)
2232 {
2233         struct vi_info *vi;
2234         struct adapter *sc;
2235
2236         vi = device_get_softc(dev);
2237         sc = vi->pi->adapter;
2238
2239         doom_vi(sc, vi);
2240
2241         cxgbe_vi_detach(vi);
2242         t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2243
2244         end_synchronized_op(sc, 0);
2245
2246         return (0);
2247 }
2248
2249 void
2250 t4_fatal_err(struct adapter *sc)
2251 {
2252         t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0);
2253         t4_intr_disable(sc);
2254         log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n",
2255             device_get_nameunit(sc->dev));
2256 }
2257
2258 void
2259 t4_add_adapter(struct adapter *sc)
2260 {
2261         sx_xlock(&t4_list_lock);
2262         SLIST_INSERT_HEAD(&t4_list, sc, link);
2263         sx_xunlock(&t4_list_lock);
2264 }
2265
2266 int
2267 t4_map_bars_0_and_4(struct adapter *sc)
2268 {
2269         sc->regs_rid = PCIR_BAR(0);
2270         sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2271             &sc->regs_rid, RF_ACTIVE);
2272         if (sc->regs_res == NULL) {
2273                 device_printf(sc->dev, "cannot map registers.\n");
2274                 return (ENXIO);
2275         }
2276         sc->bt = rman_get_bustag(sc->regs_res);
2277         sc->bh = rman_get_bushandle(sc->regs_res);
2278         sc->mmio_len = rman_get_size(sc->regs_res);
2279         setbit(&sc->doorbells, DOORBELL_KDB);
2280
2281         sc->msix_rid = PCIR_BAR(4);
2282         sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2283             &sc->msix_rid, RF_ACTIVE);
2284         if (sc->msix_res == NULL) {
2285                 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
2286                 return (ENXIO);
2287         }
2288
2289         return (0);
2290 }
2291
2292 int
2293 t4_map_bar_2(struct adapter *sc)
2294 {
2295
2296         /*
2297          * T4: only iWARP driver uses the userspace doorbells.  There is no need
2298          * to map it if RDMA is disabled.
2299          */
2300         if (is_t4(sc) && sc->rdmacaps == 0)
2301                 return (0);
2302
2303         sc->udbs_rid = PCIR_BAR(2);
2304         sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2305             &sc->udbs_rid, RF_ACTIVE);
2306         if (sc->udbs_res == NULL) {
2307                 device_printf(sc->dev, "cannot map doorbell BAR.\n");
2308                 return (ENXIO);
2309         }
2310         sc->udbs_base = rman_get_virtual(sc->udbs_res);
2311
2312         if (chip_id(sc) >= CHELSIO_T5) {
2313                 setbit(&sc->doorbells, DOORBELL_UDB);
2314 #if defined(__i386__) || defined(__amd64__)
2315                 if (t5_write_combine) {
2316                         int rc, mode;
2317
2318                         /*
2319                          * Enable write combining on BAR2.  This is the
2320                          * userspace doorbell BAR and is split into 128B
2321                          * (UDBS_SEG_SIZE) doorbell regions, each associated
2322                          * with an egress queue.  The first 64B has the doorbell
2323                          * and the second 64B can be used to submit a tx work
2324                          * request with an implicit doorbell.
2325                          */
2326
2327                         rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
2328                             rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
2329                         if (rc == 0) {
2330                                 clrbit(&sc->doorbells, DOORBELL_UDB);
2331                                 setbit(&sc->doorbells, DOORBELL_WCWR);
2332                                 setbit(&sc->doorbells, DOORBELL_UDBWC);
2333                         } else {
2334                                 device_printf(sc->dev,
2335                                     "couldn't enable write combining: %d\n",
2336                                     rc);
2337                         }
2338
2339                         mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
2340                         t4_write_reg(sc, A_SGE_STAT_CFG,
2341                             V_STATSOURCE_T5(7) | mode);
2342                 }
2343 #endif
2344         }
2345
2346         return (0);
2347 }
2348
2349 struct memwin_init {
2350         uint32_t base;
2351         uint32_t aperture;
2352 };
2353
2354 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
2355         { MEMWIN0_BASE, MEMWIN0_APERTURE },
2356         { MEMWIN1_BASE, MEMWIN1_APERTURE },
2357         { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
2358 };
2359
2360 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
2361         { MEMWIN0_BASE, MEMWIN0_APERTURE },
2362         { MEMWIN1_BASE, MEMWIN1_APERTURE },
2363         { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
2364 };
2365
2366 static void
2367 setup_memwin(struct adapter *sc)
2368 {
2369         const struct memwin_init *mw_init;
2370         struct memwin *mw;
2371         int i;
2372         uint32_t bar0;
2373
2374         if (is_t4(sc)) {
2375                 /*
2376                  * Read low 32b of bar0 indirectly via the hardware backdoor
2377                  * mechanism.  Works from within PCI passthrough environments
2378                  * too, where rman_get_start() can return a different value.  We
2379                  * need to program the T4 memory window decoders with the actual
2380                  * addresses that will be coming across the PCIe link.
2381                  */
2382                 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
2383                 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
2384
2385                 mw_init = &t4_memwin[0];
2386         } else {
2387                 /* T5+ use the relative offset inside the PCIe BAR */
2388                 bar0 = 0;
2389
2390                 mw_init = &t5_memwin[0];
2391         }
2392
2393         for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
2394                 rw_init(&mw->mw_lock, "memory window access");
2395                 mw->mw_base = mw_init->base;
2396                 mw->mw_aperture = mw_init->aperture;
2397                 mw->mw_curpos = 0;
2398                 t4_write_reg(sc,
2399                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
2400                     (mw->mw_base + bar0) | V_BIR(0) |
2401                     V_WINDOW(ilog2(mw->mw_aperture) - 10));
2402                 rw_wlock(&mw->mw_lock);
2403                 position_memwin(sc, i, 0);
2404                 rw_wunlock(&mw->mw_lock);
2405         }
2406
2407         /* flush */
2408         t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
2409 }
2410
2411 /*
2412  * Positions the memory window at the given address in the card's address space.
2413  * There are some alignment requirements and the actual position may be at an
2414  * address prior to the requested address.  mw->mw_curpos always has the actual
2415  * position of the window.
2416  */
2417 static void
2418 position_memwin(struct adapter *sc, int idx, uint32_t addr)
2419 {
2420         struct memwin *mw;
2421         uint32_t pf;
2422         uint32_t reg;
2423
2424         MPASS(idx >= 0 && idx < NUM_MEMWIN);
2425         mw = &sc->memwin[idx];
2426         rw_assert(&mw->mw_lock, RA_WLOCKED);
2427
2428         if (is_t4(sc)) {
2429                 pf = 0;
2430                 mw->mw_curpos = addr & ~0xf;    /* start must be 16B aligned */
2431         } else {
2432                 pf = V_PFNUM(sc->pf);
2433                 mw->mw_curpos = addr & ~0x7f;   /* start must be 128B aligned */
2434         }
2435         reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
2436         t4_write_reg(sc, reg, mw->mw_curpos | pf);
2437         t4_read_reg(sc, reg);   /* flush */
2438 }
2439
2440 static int
2441 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2442     int len, int rw)
2443 {
2444         struct memwin *mw;
2445         uint32_t mw_end, v;
2446
2447         MPASS(idx >= 0 && idx < NUM_MEMWIN);
2448
2449         /* Memory can only be accessed in naturally aligned 4 byte units */
2450         if (addr & 3 || len & 3 || len <= 0)
2451                 return (EINVAL);
2452
2453         mw = &sc->memwin[idx];
2454         while (len > 0) {
2455                 rw_rlock(&mw->mw_lock);
2456                 mw_end = mw->mw_curpos + mw->mw_aperture;
2457                 if (addr >= mw_end || addr < mw->mw_curpos) {
2458                         /* Will need to reposition the window */
2459                         if (!rw_try_upgrade(&mw->mw_lock)) {
2460                                 rw_runlock(&mw->mw_lock);
2461                                 rw_wlock(&mw->mw_lock);
2462                         }
2463                         rw_assert(&mw->mw_lock, RA_WLOCKED);
2464                         position_memwin(sc, idx, addr);
2465                         rw_downgrade(&mw->mw_lock);
2466                         mw_end = mw->mw_curpos + mw->mw_aperture;
2467                 }
2468                 rw_assert(&mw->mw_lock, RA_RLOCKED);
2469                 while (addr < mw_end && len > 0) {
2470                         if (rw == 0) {
2471                                 v = t4_read_reg(sc, mw->mw_base + addr -
2472                                     mw->mw_curpos);
2473                                 *val++ = le32toh(v);
2474                         } else {
2475                                 v = *val++;
2476                                 t4_write_reg(sc, mw->mw_base + addr -
2477                                     mw->mw_curpos, htole32(v));
2478                         }
2479                         addr += 4;
2480                         len -= 4;
2481                 }
2482                 rw_runlock(&mw->mw_lock);
2483         }
2484
2485         return (0);
2486 }
2487
2488 static inline int
2489 read_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2490     int len)
2491 {
2492
2493         return (rw_via_memwin(sc, idx, addr, val, len, 0));
2494 }
2495
2496 static inline int
2497 write_via_memwin(struct adapter *sc, int idx, uint32_t addr,
2498     const uint32_t *val, int len)
2499 {
2500
2501         return (rw_via_memwin(sc, idx, addr, (void *)(uintptr_t)val, len, 1));
2502 }
2503
2504 static int
2505 t4_range_cmp(const void *a, const void *b)
2506 {
2507         return ((const struct t4_range *)a)->start -
2508                ((const struct t4_range *)b)->start;
2509 }
2510
2511 /*
2512  * Verify that the memory range specified by the addr/len pair is valid within
2513  * the card's address space.
2514  */
2515 static int
2516 validate_mem_range(struct adapter *sc, uint32_t addr, int len)
2517 {
2518         struct t4_range mem_ranges[4], *r, *next;
2519         uint32_t em, addr_len;
2520         int i, n, remaining;
2521
2522         /* Memory can only be accessed in naturally aligned 4 byte units */
2523         if (addr & 3 || len & 3 || len <= 0)
2524                 return (EINVAL);
2525
2526         /* Enabled memories */
2527         em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2528
2529         r = &mem_ranges[0];
2530         n = 0;
2531         bzero(r, sizeof(mem_ranges));
2532         if (em & F_EDRAM0_ENABLE) {
2533                 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2534                 r->size = G_EDRAM0_SIZE(addr_len) << 20;
2535                 if (r->size > 0) {
2536                         r->start = G_EDRAM0_BASE(addr_len) << 20;
2537                         if (addr >= r->start &&
2538                             addr + len <= r->start + r->size)
2539                                 return (0);
2540                         r++;
2541                         n++;
2542                 }
2543         }
2544         if (em & F_EDRAM1_ENABLE) {
2545                 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2546                 r->size = G_EDRAM1_SIZE(addr_len) << 20;
2547                 if (r->size > 0) {
2548                         r->start = G_EDRAM1_BASE(addr_len) << 20;
2549                         if (addr >= r->start &&
2550                             addr + len <= r->start + r->size)
2551                                 return (0);
2552                         r++;
2553                         n++;
2554                 }
2555         }
2556         if (em & F_EXT_MEM_ENABLE) {
2557                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2558                 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
2559                 if (r->size > 0) {
2560                         r->start = G_EXT_MEM_BASE(addr_len) << 20;
2561                         if (addr >= r->start &&
2562                             addr + len <= r->start + r->size)
2563                                 return (0);
2564                         r++;
2565                         n++;
2566                 }
2567         }
2568         if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
2569                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2570                 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
2571                 if (r->size > 0) {
2572                         r->start = G_EXT_MEM1_BASE(addr_len) << 20;
2573                         if (addr >= r->start &&
2574                             addr + len <= r->start + r->size)
2575                                 return (0);
2576                         r++;
2577                         n++;
2578                 }
2579         }
2580         MPASS(n <= nitems(mem_ranges));
2581
2582         if (n > 1) {
2583                 /* Sort and merge the ranges. */
2584                 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
2585
2586                 /* Start from index 0 and examine the next n - 1 entries. */
2587                 r = &mem_ranges[0];
2588                 for (remaining = n - 1; remaining > 0; remaining--, r++) {
2589
2590                         MPASS(r->size > 0);     /* r is a valid entry. */
2591                         next = r + 1;
2592                         MPASS(next->size > 0);  /* and so is the next one. */
2593
2594                         while (r->start + r->size >= next->start) {
2595                                 /* Merge the next one into the current entry. */
2596                                 r->size = max(r->start + r->size,
2597                                     next->start + next->size) - r->start;
2598                                 n--;    /* One fewer entry in total. */
2599                                 if (--remaining == 0)
2600                                         goto done;      /* short circuit */
2601                                 next++;
2602                         }
2603                         if (next != r + 1) {
2604                                 /*
2605                                  * Some entries were merged into r and next
2606                                  * points to the first valid entry that couldn't
2607                                  * be merged.
2608                                  */
2609                                 MPASS(next->size > 0);  /* must be valid */
2610                                 memcpy(r + 1, next, remaining * sizeof(*r));
2611 #ifdef INVARIANTS
2612                                 /*
2613                                  * This so that the foo->size assertion in the
2614                                  * next iteration of the loop do the right
2615                                  * thing for entries that were pulled up and are
2616                                  * no longer valid.
2617                                  */
2618                                 MPASS(n < nitems(mem_ranges));
2619                                 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
2620                                     sizeof(struct t4_range));
2621 #endif
2622                         }
2623                 }
2624 done:
2625                 /* Done merging the ranges. */
2626                 MPASS(n > 0);
2627                 r = &mem_ranges[0];
2628                 for (i = 0; i < n; i++, r++) {
2629                         if (addr >= r->start &&
2630                             addr + len <= r->start + r->size)
2631                                 return (0);
2632                 }
2633         }
2634
2635         return (EFAULT);
2636 }
2637
2638 static int
2639 fwmtype_to_hwmtype(int mtype)
2640 {
2641
2642         switch (mtype) {
2643         case FW_MEMTYPE_EDC0:
2644                 return (MEM_EDC0);
2645         case FW_MEMTYPE_EDC1:
2646                 return (MEM_EDC1);
2647         case FW_MEMTYPE_EXTMEM:
2648                 return (MEM_MC0);
2649         case FW_MEMTYPE_EXTMEM1:
2650                 return (MEM_MC1);
2651         default:
2652                 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
2653         }
2654 }
2655
2656 /*
2657  * Verify that the memory range specified by the memtype/offset/len pair is
2658  * valid and lies entirely within the memtype specified.  The global address of
2659  * the start of the range is returned in addr.
2660  */
2661 static int
2662 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, int len,
2663     uint32_t *addr)
2664 {
2665         uint32_t em, addr_len, maddr;
2666
2667         /* Memory can only be accessed in naturally aligned 4 byte units */
2668         if (off & 3 || len & 3 || len == 0)
2669                 return (EINVAL);
2670
2671         em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2672         switch (fwmtype_to_hwmtype(mtype)) {
2673         case MEM_EDC0:
2674                 if (!(em & F_EDRAM0_ENABLE))
2675                         return (EINVAL);
2676                 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2677                 maddr = G_EDRAM0_BASE(addr_len) << 20;
2678                 break;
2679         case MEM_EDC1:
2680                 if (!(em & F_EDRAM1_ENABLE))
2681                         return (EINVAL);
2682                 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2683                 maddr = G_EDRAM1_BASE(addr_len) << 20;
2684                 break;
2685         case MEM_MC:
2686                 if (!(em & F_EXT_MEM_ENABLE))
2687                         return (EINVAL);
2688                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2689                 maddr = G_EXT_MEM_BASE(addr_len) << 20;
2690                 break;
2691         case MEM_MC1:
2692                 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
2693                         return (EINVAL);
2694                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2695                 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
2696                 break;
2697         default:
2698                 return (EINVAL);
2699         }
2700
2701         *addr = maddr + off;    /* global address */
2702         return (validate_mem_range(sc, *addr, len));
2703 }
2704
2705 static int
2706 fixup_devlog_params(struct adapter *sc)
2707 {
2708         struct devlog_params *dparams = &sc->params.devlog;
2709         int rc;
2710
2711         rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
2712             dparams->size, &dparams->addr);
2713
2714         return (rc);
2715 }
2716
2717 static int
2718 cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g, int num_vis,
2719     struct intrs_and_queues *iaq)
2720 {
2721         int rc, itype, navail, nrxq10g, nrxq1g, n;
2722         int nofldrxq10g = 0, nofldrxq1g = 0;
2723
2724         bzero(iaq, sizeof(*iaq));
2725
2726         iaq->ntxq10g = t4_ntxq10g;
2727         iaq->ntxq1g = t4_ntxq1g;
2728         iaq->ntxq_vi = t4_ntxq_vi;
2729         iaq->nrxq10g = nrxq10g = t4_nrxq10g;
2730         iaq->nrxq1g = nrxq1g = t4_nrxq1g;
2731         iaq->nrxq_vi = t4_nrxq_vi;
2732         iaq->rsrv_noflowq = t4_rsrv_noflowq;
2733 #ifdef TCP_OFFLOAD
2734         if (is_offload(sc)) {
2735                 iaq->nofldtxq10g = t4_nofldtxq10g;
2736                 iaq->nofldtxq1g = t4_nofldtxq1g;
2737                 iaq->nofldtxq_vi = t4_nofldtxq_vi;
2738                 iaq->nofldrxq10g = nofldrxq10g = t4_nofldrxq10g;
2739                 iaq->nofldrxq1g = nofldrxq1g = t4_nofldrxq1g;
2740                 iaq->nofldrxq_vi = t4_nofldrxq_vi;
2741         }
2742 #endif
2743 #ifdef DEV_NETMAP
2744         iaq->nnmtxq_vi = t4_nnmtxq_vi;
2745         iaq->nnmrxq_vi = t4_nnmrxq_vi;
2746 #endif
2747
2748         for (itype = INTR_MSIX; itype; itype >>= 1) {
2749
2750                 if ((itype & t4_intr_types) == 0)
2751                         continue;       /* not allowed */
2752
2753                 if (itype == INTR_MSIX)
2754                         navail = pci_msix_count(sc->dev);
2755                 else if (itype == INTR_MSI)
2756                         navail = pci_msi_count(sc->dev);
2757                 else
2758                         navail = 1;
2759 restart:
2760                 if (navail == 0)
2761                         continue;
2762
2763                 iaq->intr_type = itype;
2764                 iaq->intr_flags_10g = 0;
2765                 iaq->intr_flags_1g = 0;
2766
2767                 /*
2768                  * Best option: an interrupt vector for errors, one for the
2769                  * firmware event queue, and one for every rxq (NIC and TOE) of
2770                  * every VI.  The VIs that support netmap use the same
2771                  * interrupts for the NIC rx queues and the netmap rx queues
2772                  * because only one set of queues is active at a time.
2773                  */
2774                 iaq->nirq = T4_EXTRA_INTR;
2775                 iaq->nirq += n10g * (nrxq10g + nofldrxq10g);
2776                 iaq->nirq += n1g * (nrxq1g + nofldrxq1g);
2777                 iaq->nirq += (n10g + n1g) * (num_vis - 1) *
2778                     max(iaq->nrxq_vi, iaq->nnmrxq_vi);  /* See comment above. */
2779                 iaq->nirq += (n10g + n1g) * (num_vis - 1) * iaq->nofldrxq_vi;
2780                 if (iaq->nirq <= navail &&
2781                     (itype != INTR_MSI || powerof2(iaq->nirq))) {
2782                         iaq->intr_flags_10g = INTR_ALL;
2783                         iaq->intr_flags_1g = INTR_ALL;
2784                         goto allocate;
2785                 }
2786
2787                 /* Disable the VIs (and netmap) if there aren't enough intrs */
2788                 if (num_vis > 1) {
2789                         device_printf(sc->dev, "virtual interfaces disabled "
2790                             "because num_vis=%u with current settings "
2791                             "(nrxq10g=%u, nrxq1g=%u, nofldrxq10g=%u, "
2792                             "nofldrxq1g=%u, nrxq_vi=%u nofldrxq_vi=%u, "
2793                             "nnmrxq_vi=%u) would need %u interrupts but "
2794                             "only %u are available.\n", num_vis, nrxq10g,
2795                             nrxq1g, nofldrxq10g, nofldrxq1g, iaq->nrxq_vi,
2796                             iaq->nofldrxq_vi, iaq->nnmrxq_vi, iaq->nirq,
2797                             navail);
2798                         num_vis = 1;
2799                         iaq->ntxq_vi = iaq->nrxq_vi = 0;
2800                         iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
2801                         iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
2802                         goto restart;
2803                 }
2804
2805                 /*
2806                  * Second best option: a vector for errors, one for the firmware
2807                  * event queue, and vectors for either all the NIC rx queues or
2808                  * all the TOE rx queues.  The queues that don't get vectors
2809                  * will forward their interrupts to those that do.
2810                  */
2811                 iaq->nirq = T4_EXTRA_INTR;
2812                 if (nrxq10g >= nofldrxq10g) {
2813                         iaq->intr_flags_10g = INTR_RXQ;
2814                         iaq->nirq += n10g * nrxq10g;
2815                 } else {
2816                         iaq->intr_flags_10g = INTR_OFLD_RXQ;
2817                         iaq->nirq += n10g * nofldrxq10g;
2818                 }
2819                 if (nrxq1g >= nofldrxq1g) {
2820                         iaq->intr_flags_1g = INTR_RXQ;
2821                         iaq->nirq += n1g * nrxq1g;
2822                 } else {
2823                         iaq->intr_flags_1g = INTR_OFLD_RXQ;
2824                         iaq->nirq += n1g * nofldrxq1g;
2825                 }
2826                 if (iaq->nirq <= navail &&
2827                     (itype != INTR_MSI || powerof2(iaq->nirq)))
2828                         goto allocate;
2829
2830                 /*
2831                  * Next best option: an interrupt vector for errors, one for the
2832                  * firmware event queue, and at least one per main-VI.  At this
2833                  * point we know we'll have to downsize nrxq and/or nofldrxq to
2834                  * fit what's available to us.
2835                  */
2836                 iaq->nirq = T4_EXTRA_INTR;
2837                 iaq->nirq += n10g + n1g;
2838                 if (iaq->nirq <= navail) {
2839                         int leftover = navail - iaq->nirq;
2840
2841                         if (n10g > 0) {
2842                                 int target = max(nrxq10g, nofldrxq10g);
2843
2844                                 iaq->intr_flags_10g = nrxq10g >= nofldrxq10g ?
2845                                     INTR_RXQ : INTR_OFLD_RXQ;
2846
2847                                 n = 1;
2848                                 while (n < target && leftover >= n10g) {
2849                                         leftover -= n10g;
2850                                         iaq->nirq += n10g;
2851                                         n++;
2852                                 }
2853                                 iaq->nrxq10g = min(n, nrxq10g);
2854 #ifdef TCP_OFFLOAD
2855                                 iaq->nofldrxq10g = min(n, nofldrxq10g);
2856 #endif
2857                         }
2858
2859                         if (n1g > 0) {
2860                                 int target = max(nrxq1g, nofldrxq1g);
2861
2862                                 iaq->intr_flags_1g = nrxq1g >= nofldrxq1g ?
2863                                     INTR_RXQ : INTR_OFLD_RXQ;
2864
2865                                 n = 1;
2866                                 while (n < target && leftover >= n1g) {
2867                                         leftover -= n1g;
2868                                         iaq->nirq += n1g;
2869                                         n++;
2870                                 }
2871                                 iaq->nrxq1g = min(n, nrxq1g);
2872 #ifdef TCP_OFFLOAD
2873                                 iaq->nofldrxq1g = min(n, nofldrxq1g);
2874 #endif
2875                         }
2876
2877                         if (itype != INTR_MSI || powerof2(iaq->nirq))
2878                                 goto allocate;
2879                 }
2880
2881                 /*
2882                  * Least desirable option: one interrupt vector for everything.
2883                  */
2884                 iaq->nirq = iaq->nrxq10g = iaq->nrxq1g = 1;
2885                 iaq->intr_flags_10g = iaq->intr_flags_1g = 0;
2886 #ifdef TCP_OFFLOAD
2887                 if (is_offload(sc))
2888                         iaq->nofldrxq10g = iaq->nofldrxq1g = 1;
2889 #endif
2890 allocate:
2891                 navail = iaq->nirq;
2892                 rc = 0;
2893                 if (itype == INTR_MSIX)
2894                         rc = pci_alloc_msix(sc->dev, &navail);
2895                 else if (itype == INTR_MSI)
2896                         rc = pci_alloc_msi(sc->dev, &navail);
2897
2898                 if (rc == 0) {
2899                         if (navail == iaq->nirq)
2900                                 return (0);
2901
2902                         /*
2903                          * Didn't get the number requested.  Use whatever number
2904                          * the kernel is willing to allocate (it's in navail).
2905                          */
2906                         device_printf(sc->dev, "fewer vectors than requested, "
2907                             "type=%d, req=%d, rcvd=%d; will downshift req.\n",
2908                             itype, iaq->nirq, navail);
2909                         pci_release_msi(sc->dev);
2910                         goto restart;
2911                 }
2912
2913                 device_printf(sc->dev,
2914                     "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
2915                     itype, rc, iaq->nirq, navail);
2916         }
2917
2918         device_printf(sc->dev,
2919             "failed to find a usable interrupt type.  "
2920             "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
2921             pci_msix_count(sc->dev), pci_msi_count(sc->dev));
2922
2923         return (ENXIO);
2924 }
2925
2926 #define FW_VERSION(chip) ( \
2927     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
2928     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
2929     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
2930     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
2931 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
2932
2933 struct fw_info {
2934         uint8_t chip;
2935         char *kld_name;
2936         char *fw_mod_name;
2937         struct fw_hdr fw_hdr;   /* XXX: waste of space, need a sparse struct */
2938 } fw_info[] = {
2939         {
2940                 .chip = CHELSIO_T4,
2941                 .kld_name = "t4fw_cfg",
2942                 .fw_mod_name = "t4fw",
2943                 .fw_hdr = {
2944                         .chip = FW_HDR_CHIP_T4,
2945                         .fw_ver = htobe32_const(FW_VERSION(T4)),
2946                         .intfver_nic = FW_INTFVER(T4, NIC),
2947                         .intfver_vnic = FW_INTFVER(T4, VNIC),
2948                         .intfver_ofld = FW_INTFVER(T4, OFLD),
2949                         .intfver_ri = FW_INTFVER(T4, RI),
2950                         .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
2951                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
2952                         .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
2953                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
2954                 },
2955         }, {
2956                 .chip = CHELSIO_T5,
2957                 .kld_name = "t5fw_cfg",
2958                 .fw_mod_name = "t5fw",
2959                 .fw_hdr = {
2960                         .chip = FW_HDR_CHIP_T5,
2961                         .fw_ver = htobe32_const(FW_VERSION(T5)),
2962                         .intfver_nic = FW_INTFVER(T5, NIC),
2963                         .intfver_vnic = FW_INTFVER(T5, VNIC),
2964                         .intfver_ofld = FW_INTFVER(T5, OFLD),
2965                         .intfver_ri = FW_INTFVER(T5, RI),
2966                         .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
2967                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
2968                         .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
2969                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
2970                 },
2971         }, {
2972                 .chip = CHELSIO_T6,
2973                 .kld_name = "t6fw_cfg",
2974                 .fw_mod_name = "t6fw",
2975                 .fw_hdr = {
2976                         .chip = FW_HDR_CHIP_T6,
2977                         .fw_ver = htobe32_const(FW_VERSION(T6)),
2978                         .intfver_nic = FW_INTFVER(T6, NIC),
2979                         .intfver_vnic = FW_INTFVER(T6, VNIC),
2980                         .intfver_ofld = FW_INTFVER(T6, OFLD),
2981                         .intfver_ri = FW_INTFVER(T6, RI),
2982                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
2983                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
2984                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
2985                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
2986                 },
2987         }
2988 };
2989
2990 static struct fw_info *
2991 find_fw_info(int chip)
2992 {
2993         int i;
2994
2995         for (i = 0; i < nitems(fw_info); i++) {
2996                 if (fw_info[i].chip == chip)
2997                         return (&fw_info[i]);
2998         }
2999         return (NULL);
3000 }
3001
3002 /*
3003  * Is the given firmware API compatible with the one the driver was compiled
3004  * with?
3005  */
3006 static int
3007 fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3008 {
3009
3010         /* short circuit if it's the exact same firmware version */
3011         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3012                 return (1);
3013
3014         /*
3015          * XXX: Is this too conservative?  Perhaps I should limit this to the
3016          * features that are supported in the driver.
3017          */
3018 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3019         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3020             SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
3021             SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
3022                 return (1);
3023 #undef SAME_INTF
3024
3025         return (0);
3026 }
3027
3028 /*
3029  * The firmware in the KLD is usable, but should it be installed?  This routine
3030  * explains itself in detail if it indicates the KLD firmware should be
3031  * installed.
3032  */
3033 static int
3034 should_install_kld_fw(struct adapter *sc, int card_fw_usable, int k, int c)
3035 {
3036         const char *reason;
3037
3038         if (!card_fw_usable) {
3039                 reason = "incompatible or unusable";
3040                 goto install;
3041         }
3042
3043         if (k > c) {
3044                 reason = "older than the version bundled with this driver";
3045                 goto install;
3046         }
3047
3048         if (t4_fw_install == 2 && k != c) {
3049                 reason = "different than the version bundled with this driver";
3050                 goto install;
3051         }
3052
3053         return (0);
3054
3055 install:
3056         if (t4_fw_install == 0) {
3057                 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3058                     "but the driver is prohibited from installing a different "
3059                     "firmware on the card.\n",
3060                     G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3061                     G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
3062
3063                 return (0);
3064         }
3065
3066         device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3067             "installing firmware %u.%u.%u.%u on card.\n",
3068             G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3069             G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
3070             G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3071             G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
3072
3073         return (1);
3074 }
3075
3076 /*
3077  * Establish contact with the firmware and determine if we are the master driver
3078  * or not, and whether we are responsible for chip initialization.
3079  */
3080 static int
3081 prep_firmware(struct adapter *sc)
3082 {
3083         const struct firmware *fw = NULL, *default_cfg;
3084         int rc, pf, card_fw_usable, kld_fw_usable, need_fw_reset = 1;
3085         enum dev_state state;
3086         struct fw_info *fw_info;
3087         struct fw_hdr *card_fw;         /* fw on the card */
3088         const struct fw_hdr *kld_fw;    /* fw in the KLD */
3089         const struct fw_hdr *drv_fw;    /* fw header the driver was compiled
3090                                            against */
3091
3092         /* This is the firmware whose headers the driver was compiled against */
3093         fw_info = find_fw_info(chip_id(sc));
3094         if (fw_info == NULL) {
3095                 device_printf(sc->dev,
3096                     "unable to look up firmware information for chip %d.\n",
3097                     chip_id(sc));
3098                 return (EINVAL);
3099         }
3100         drv_fw = &fw_info->fw_hdr;
3101
3102         /*
3103          * The firmware KLD contains many modules.  The KLD name is also the
3104          * name of the module that contains the default config file.
3105          */
3106         default_cfg = firmware_get(fw_info->kld_name);
3107
3108         /* This is the firmware in the KLD */
3109         fw = firmware_get(fw_info->fw_mod_name);
3110         if (fw != NULL) {
3111                 kld_fw = (const void *)fw->data;
3112                 kld_fw_usable = fw_compatible(drv_fw, kld_fw);
3113         } else {
3114                 kld_fw = NULL;
3115                 kld_fw_usable = 0;
3116         }
3117
3118         /* Read the header of the firmware on the card */
3119         card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
3120         rc = -t4_read_flash(sc, FLASH_FW_START,
3121             sizeof (*card_fw) / sizeof (uint32_t), (uint32_t *)card_fw, 1);
3122         if (rc == 0) {
3123                 card_fw_usable = fw_compatible(drv_fw, (const void*)card_fw);
3124                 if (card_fw->fw_ver == be32toh(0xffffffff)) {
3125                         uint32_t d = be32toh(kld_fw->fw_ver);
3126
3127                         if (!kld_fw_usable) {
3128                                 device_printf(sc->dev,
3129                                     "no firmware on the card and no usable "
3130                                     "firmware bundled with the driver.\n");
3131                                 rc = EIO;
3132                                 goto done;
3133                         } else if (t4_fw_install == 0) {
3134                                 device_printf(sc->dev,
3135                                     "no firmware on the card and the driver "
3136                                     "is prohibited from installing new "
3137                                     "firmware.\n");
3138                                 rc = EIO;
3139                                 goto done;
3140                         }
3141
3142                         device_printf(sc->dev, "no firmware on the card, "
3143                             "installing firmware %d.%d.%d.%d\n",
3144                             G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3145                             G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
3146                         rc = t4_fw_forceinstall(sc, fw->data, fw->datasize);
3147                         if (rc < 0) {
3148                                 rc = -rc;
3149                                 device_printf(sc->dev,
3150                                     "firmware install failed: %d.\n", rc);
3151                                 goto done;
3152                         }
3153                         memcpy(card_fw, kld_fw, sizeof(*card_fw));
3154                         card_fw_usable = 1;
3155                         need_fw_reset = 0;
3156                 }
3157         } else {
3158                 device_printf(sc->dev,
3159                     "Unable to read card's firmware header: %d\n", rc);
3160                 card_fw_usable = 0;
3161         }
3162
3163         /* Contact firmware. */
3164         rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
3165         if (rc < 0 || state == DEV_STATE_ERR) {
3166                 rc = -rc;
3167                 device_printf(sc->dev,
3168                     "failed to connect to the firmware: %d, %d.\n", rc, state);
3169                 goto done;
3170         }
3171         pf = rc;
3172         if (pf == sc->mbox)
3173                 sc->flags |= MASTER_PF;
3174         else if (state == DEV_STATE_UNINIT) {
3175                 /*
3176                  * We didn't get to be the master so we definitely won't be
3177                  * configuring the chip.  It's a bug if someone else hasn't
3178                  * configured it already.
3179                  */
3180                 device_printf(sc->dev, "couldn't be master(%d), "
3181                     "device not already initialized either(%d).\n", rc, state);
3182                 rc = EPROTO;
3183                 goto done;
3184         }
3185
3186         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3187             (!kld_fw_usable || kld_fw->fw_ver == drv_fw->fw_ver)) {
3188                 /*
3189                  * Common case: the firmware on the card is an exact match and
3190                  * the KLD is an exact match too, or the KLD is
3191                  * absent/incompatible.  Note that t4_fw_install = 2 is ignored
3192                  * here -- use cxgbetool loadfw if you want to reinstall the
3193                  * same firmware as the one on the card.
3194                  */
3195         } else if (kld_fw_usable && state == DEV_STATE_UNINIT &&
3196             should_install_kld_fw(sc, card_fw_usable, be32toh(kld_fw->fw_ver),
3197             be32toh(card_fw->fw_ver))) {
3198
3199                 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
3200                 if (rc != 0) {
3201                         device_printf(sc->dev,
3202                             "failed to install firmware: %d\n", rc);
3203                         goto done;
3204                 }
3205
3206                 /* Installed successfully, update the cached header too. */
3207                 memcpy(card_fw, kld_fw, sizeof(*card_fw));
3208                 card_fw_usable = 1;
3209                 need_fw_reset = 0;      /* already reset as part of load_fw */
3210         }
3211
3212         if (!card_fw_usable) {
3213                 uint32_t d, c, k;
3214
3215                 d = ntohl(drv_fw->fw_ver);
3216                 c = ntohl(card_fw->fw_ver);
3217                 k = kld_fw ? ntohl(kld_fw->fw_ver) : 0;
3218
3219                 device_printf(sc->dev, "Cannot find a usable firmware: "
3220                     "fw_install %d, chip state %d, "
3221                     "driver compiled with %d.%d.%d.%d, "
3222                     "card has %d.%d.%d.%d, KLD has %d.%d.%d.%d\n",
3223                     t4_fw_install, state,
3224                     G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3225                     G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d),
3226                     G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3227                     G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c),
3228                     G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3229                     G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
3230                 rc = EINVAL;
3231                 goto done;
3232         }
3233
3234         /* Reset device */
3235         if (need_fw_reset &&
3236             (rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST)) != 0) {
3237                 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
3238                 if (rc != ETIMEDOUT && rc != EIO)
3239                         t4_fw_bye(sc, sc->mbox);
3240                 goto done;
3241         }
3242         sc->flags |= FW_OK;
3243
3244         rc = get_params__pre_init(sc);
3245         if (rc != 0)
3246                 goto done; /* error message displayed already */
3247
3248         /* Partition adapter resources as specified in the config file. */
3249         if (state == DEV_STATE_UNINIT) {
3250
3251                 KASSERT(sc->flags & MASTER_PF,
3252                     ("%s: trying to change chip settings when not master.",
3253                     __func__));
3254
3255                 rc = partition_resources(sc, default_cfg, fw_info->kld_name);
3256                 if (rc != 0)
3257                         goto done;      /* error message displayed already */
3258
3259                 t4_tweak_chip_settings(sc);
3260
3261                 /* get basic stuff going */
3262                 rc = -t4_fw_initialize(sc, sc->mbox);
3263                 if (rc != 0) {
3264                         device_printf(sc->dev, "fw init failed: %d.\n", rc);
3265                         goto done;
3266                 }
3267         } else {
3268                 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", pf);
3269                 sc->cfcsum = 0;
3270         }
3271
3272 done:
3273         free(card_fw, M_CXGBE);
3274         if (fw != NULL)
3275                 firmware_put(fw, FIRMWARE_UNLOAD);
3276         if (default_cfg != NULL)
3277                 firmware_put(default_cfg, FIRMWARE_UNLOAD);
3278
3279         return (rc);
3280 }
3281
3282 #define FW_PARAM_DEV(param) \
3283         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3284          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3285 #define FW_PARAM_PFVF(param) \
3286         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3287          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
3288
3289 /*
3290  * Partition chip resources for use between various PFs, VFs, etc.
3291  */
3292 static int
3293 partition_resources(struct adapter *sc, const struct firmware *default_cfg,
3294     const char *name_prefix)
3295 {
3296         const struct firmware *cfg = NULL;
3297         int rc = 0;
3298         struct fw_caps_config_cmd caps;
3299         uint32_t mtype, moff, finicsum, cfcsum;
3300
3301         /*
3302          * Figure out what configuration file to use.  Pick the default config
3303          * file for the card if the user hasn't specified one explicitly.
3304          */
3305         snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", t4_cfg_file);
3306         if (strncmp(t4_cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3307                 /* Card specific overrides go here. */
3308                 if (pci_get_device(sc->dev) == 0x440a)
3309                         snprintf(sc->cfg_file, sizeof(sc->cfg_file), UWIRE_CF);
3310                 if (is_fpga(sc))
3311                         snprintf(sc->cfg_file, sizeof(sc->cfg_file), FPGA_CF);
3312         }
3313
3314         /*
3315          * We need to load another module if the profile is anything except
3316          * "default" or "flash".
3317          */
3318         if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) != 0 &&
3319             strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3320                 char s[32];
3321
3322                 snprintf(s, sizeof(s), "%s_%s", name_prefix, sc->cfg_file);
3323                 cfg = firmware_get(s);
3324                 if (cfg == NULL) {
3325                         if (default_cfg != NULL) {
3326                                 device_printf(sc->dev,
3327                                     "unable to load module \"%s\" for "
3328                                     "configuration profile \"%s\", will use "
3329                                     "the default config file instead.\n",
3330                                     s, sc->cfg_file);
3331                                 snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3332                                     "%s", DEFAULT_CF);
3333                         } else {
3334                                 device_printf(sc->dev,
3335                                     "unable to load module \"%s\" for "
3336                                     "configuration profile \"%s\", will use "
3337                                     "the config file on the card's flash "
3338                                     "instead.\n", s, sc->cfg_file);
3339                                 snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3340                                     "%s", FLASH_CF);
3341                         }
3342                 }
3343         }
3344
3345         if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) == 0 &&
3346             default_cfg == NULL) {
3347                 device_printf(sc->dev,
3348                     "default config file not available, will use the config "
3349                     "file on the card's flash instead.\n");
3350                 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF);
3351         }
3352
3353         if (strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3354                 u_int cflen;
3355                 const uint32_t *cfdata;
3356                 uint32_t param, val, addr;
3357
3358                 KASSERT(cfg != NULL || default_cfg != NULL,
3359                     ("%s: no config to upload", __func__));
3360
3361                 /*
3362                  * Ask the firmware where it wants us to upload the config file.
3363                  */
3364                 param = FW_PARAM_DEV(CF);
3365                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3366                 if (rc != 0) {
3367                         /* No support for config file?  Shouldn't happen. */
3368                         device_printf(sc->dev,
3369                             "failed to query config file location: %d.\n", rc);
3370                         goto done;
3371                 }
3372                 mtype = G_FW_PARAMS_PARAM_Y(val);
3373                 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
3374
3375                 /*
3376                  * XXX: sheer laziness.  We deliberately added 4 bytes of
3377                  * useless stuffing/comments at the end of the config file so
3378                  * it's ok to simply throw away the last remaining bytes when
3379                  * the config file is not an exact multiple of 4.  This also
3380                  * helps with the validate_mt_off_len check.
3381                  */
3382                 if (cfg != NULL) {
3383                         cflen = cfg->datasize & ~3;
3384                         cfdata = cfg->data;
3385                 } else {
3386                         cflen = default_cfg->datasize & ~3;
3387                         cfdata = default_cfg->data;
3388                 }
3389
3390                 if (cflen > FLASH_CFG_MAX_SIZE) {
3391                         device_printf(sc->dev,
3392                             "config file too long (%d, max allowed is %d).  "
3393                             "Will try to use the config on the card, if any.\n",
3394                             cflen, FLASH_CFG_MAX_SIZE);
3395                         goto use_config_on_flash;
3396                 }
3397
3398                 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
3399                 if (rc != 0) {
3400                         device_printf(sc->dev,
3401                             "%s: addr (%d/0x%x) or len %d is not valid: %d.  "
3402                             "Will try to use the config on the card, if any.\n",
3403                             __func__, mtype, moff, cflen, rc);
3404                         goto use_config_on_flash;
3405                 }
3406                 write_via_memwin(sc, 2, addr, cfdata, cflen);
3407         } else {
3408 use_config_on_flash:
3409                 mtype = FW_MEMTYPE_FLASH;
3410                 moff = t4_flash_cfg_addr(sc);
3411         }
3412
3413         bzero(&caps, sizeof(caps));
3414         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3415             F_FW_CMD_REQUEST | F_FW_CMD_READ);
3416         caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
3417             V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3418             V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps));
3419         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3420         if (rc != 0) {
3421                 device_printf(sc->dev,
3422                     "failed to pre-process config file: %d "
3423                     "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
3424                 goto done;
3425         }
3426
3427         finicsum = be32toh(caps.finicsum);
3428         cfcsum = be32toh(caps.cfcsum);
3429         if (finicsum != cfcsum) {
3430                 device_printf(sc->dev,
3431                     "WARNING: config file checksum mismatch: %08x %08x\n",
3432                     finicsum, cfcsum);
3433         }
3434         sc->cfcsum = cfcsum;
3435
3436 #define LIMIT_CAPS(x) do { \
3437         caps.x &= htobe16(t4_##x##_allowed); \
3438 } while (0)
3439
3440         /*
3441          * Let the firmware know what features will (not) be used so it can tune
3442          * things accordingly.
3443          */
3444         LIMIT_CAPS(nbmcaps);
3445         LIMIT_CAPS(linkcaps);
3446         LIMIT_CAPS(switchcaps);
3447         LIMIT_CAPS(niccaps);
3448         LIMIT_CAPS(toecaps);
3449         LIMIT_CAPS(rdmacaps);
3450         LIMIT_CAPS(cryptocaps);
3451         LIMIT_CAPS(iscsicaps);
3452         LIMIT_CAPS(fcoecaps);
3453 #undef LIMIT_CAPS
3454
3455         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3456             F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
3457         caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3458         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
3459         if (rc != 0) {
3460                 device_printf(sc->dev,
3461                     "failed to process config file: %d.\n", rc);
3462         }
3463 done:
3464         if (cfg != NULL)
3465                 firmware_put(cfg, FIRMWARE_UNLOAD);
3466         return (rc);
3467 }
3468
3469 /*
3470  * Retrieve parameters that are needed (or nice to have) very early.
3471  */
3472 static int
3473 get_params__pre_init(struct adapter *sc)
3474 {
3475         int rc;
3476         uint32_t param[2], val[2];
3477
3478         t4_get_version_info(sc);
3479
3480         snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
3481             G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
3482             G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
3483             G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
3484             G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
3485
3486         snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
3487             G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
3488             G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
3489             G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
3490             G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
3491
3492         snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
3493             G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
3494             G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
3495             G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
3496             G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
3497
3498         snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
3499             G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
3500             G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
3501             G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
3502             G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
3503
3504         param[0] = FW_PARAM_DEV(PORTVEC);
3505         param[1] = FW_PARAM_DEV(CCLK);
3506         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3507         if (rc != 0) {
3508                 device_printf(sc->dev,
3509                     "failed to query parameters (pre_init): %d.\n", rc);
3510                 return (rc);
3511         }
3512
3513         sc->params.portvec = val[0];
3514         sc->params.nports = bitcount32(val[0]);
3515         sc->params.vpd.cclk = val[1];
3516
3517         /* Read device log parameters. */
3518         rc = -t4_init_devlog_params(sc, 1);
3519         if (rc == 0)
3520                 fixup_devlog_params(sc);
3521         else {
3522                 device_printf(sc->dev,
3523                     "failed to get devlog parameters: %d.\n", rc);
3524                 rc = 0; /* devlog isn't critical for device operation */
3525         }
3526
3527         return (rc);
3528 }
3529
3530 /*
3531  * Retrieve various parameters that are of interest to the driver.  The device
3532  * has been initialized by the firmware at this point.
3533  */
3534 static int
3535 get_params__post_init(struct adapter *sc)
3536 {
3537         int rc;
3538         uint32_t param[7], val[7];
3539         struct fw_caps_config_cmd caps;
3540
3541         param[0] = FW_PARAM_PFVF(IQFLINT_START);
3542         param[1] = FW_PARAM_PFVF(EQ_START);
3543         param[2] = FW_PARAM_PFVF(FILTER_START);
3544         param[3] = FW_PARAM_PFVF(FILTER_END);
3545         param[4] = FW_PARAM_PFVF(L2T_START);
3546         param[5] = FW_PARAM_PFVF(L2T_END);
3547         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3548         if (rc != 0) {
3549                 device_printf(sc->dev,
3550                     "failed to query parameters (post_init): %d.\n", rc);
3551                 return (rc);
3552         }
3553
3554         sc->sge.iq_start = val[0];
3555         sc->sge.eq_start = val[1];
3556         sc->tids.ftid_base = val[2];
3557         sc->tids.nftids = val[3] - val[2] + 1;
3558         sc->params.ftid_min = val[2];
3559         sc->params.ftid_max = val[3];
3560         sc->vres.l2t.start = val[4];
3561         sc->vres.l2t.size = val[5] - val[4] + 1;
3562         KASSERT(sc->vres.l2t.size <= L2T_SIZE,
3563             ("%s: L2 table size (%u) larger than expected (%u)",
3564             __func__, sc->vres.l2t.size, L2T_SIZE));
3565
3566         /*
3567          * MPSBGMAP is queried separately because only recent firmwares support
3568          * it as a parameter and we don't want the compound query above to fail
3569          * on older firmwares.
3570          */
3571         param[0] = FW_PARAM_DEV(MPSBGMAP);
3572         val[0] = 0;
3573         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
3574         if (rc == 0)
3575                 sc->params.mps_bg_map = val[0];
3576         else
3577                 sc->params.mps_bg_map = 0;
3578
3579         /* get capabilites */
3580         bzero(&caps, sizeof(caps));
3581         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3582             F_FW_CMD_REQUEST | F_FW_CMD_READ);
3583         caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3584         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3585         if (rc != 0) {
3586                 device_printf(sc->dev,
3587                     "failed to get card capabilities: %d.\n", rc);
3588                 return (rc);
3589         }
3590
3591 #define READ_CAPS(x) do { \
3592         sc->x = htobe16(caps.x); \
3593 } while (0)
3594         READ_CAPS(nbmcaps);
3595         READ_CAPS(linkcaps);
3596         READ_CAPS(switchcaps);
3597         READ_CAPS(niccaps);
3598         READ_CAPS(toecaps);
3599         READ_CAPS(rdmacaps);
3600         READ_CAPS(cryptocaps);
3601         READ_CAPS(iscsicaps);
3602         READ_CAPS(fcoecaps);
3603
3604         /*
3605          * The firmware attempts memfree TOE configuration for -SO cards and
3606          * will report toecaps=0 if it runs out of resources (this depends on
3607          * the config file).  It may not report 0 for other capabilities
3608          * dependent on the TOE in this case.  Set them to 0 here so that the
3609          * driver doesn't bother tracking resources that will never be used.
3610          */
3611         if (sc->toecaps == 0) {
3612                 sc->iscsicaps = 0;
3613                 sc->rdmacaps = 0;
3614         }
3615
3616         if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
3617                 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
3618                 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
3619                 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3620                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
3621                 if (rc != 0) {
3622                         device_printf(sc->dev,
3623                             "failed to query NIC parameters: %d.\n", rc);
3624                         return (rc);
3625                 }
3626                 sc->tids.etid_base = val[0];
3627                 sc->params.etid_min = val[0];
3628                 sc->tids.netids = val[1] - val[0] + 1;
3629                 sc->params.netids = sc->tids.netids;
3630                 sc->params.eo_wr_cred = val[2];
3631                 sc->params.ethoffload = 1;
3632         }
3633
3634         if (sc->toecaps) {
3635                 /* query offload-related parameters */
3636                 param[0] = FW_PARAM_DEV(NTID);
3637                 param[1] = FW_PARAM_PFVF(SERVER_START);
3638                 param[2] = FW_PARAM_PFVF(SERVER_END);
3639                 param[3] = FW_PARAM_PFVF(TDDP_START);
3640                 param[4] = FW_PARAM_PFVF(TDDP_END);
3641                 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3642                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3643                 if (rc != 0) {
3644                         device_printf(sc->dev,
3645                             "failed to query TOE parameters: %d.\n", rc);
3646                         return (rc);
3647                 }
3648                 sc->tids.ntids = val[0];
3649                 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
3650                 sc->tids.stid_base = val[1];
3651                 sc->tids.nstids = val[2] - val[1] + 1;
3652                 sc->vres.ddp.start = val[3];
3653                 sc->vres.ddp.size = val[4] - val[3] + 1;
3654                 sc->params.ofldq_wr_cred = val[5];
3655                 sc->params.offload = 1;
3656         }
3657         if (sc->rdmacaps) {
3658                 param[0] = FW_PARAM_PFVF(STAG_START);
3659                 param[1] = FW_PARAM_PFVF(STAG_END);
3660                 param[2] = FW_PARAM_PFVF(RQ_START);
3661                 param[3] = FW_PARAM_PFVF(RQ_END);
3662                 param[4] = FW_PARAM_PFVF(PBL_START);
3663                 param[5] = FW_PARAM_PFVF(PBL_END);
3664                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3665                 if (rc != 0) {
3666                         device_printf(sc->dev,
3667                             "failed to query RDMA parameters(1): %d.\n", rc);
3668                         return (rc);
3669                 }
3670                 sc->vres.stag.start = val[0];
3671                 sc->vres.stag.size = val[1] - val[0] + 1;
3672                 sc->vres.rq.start = val[2];
3673                 sc->vres.rq.size = val[3] - val[2] + 1;
3674                 sc->vres.pbl.start = val[4];
3675                 sc->vres.pbl.size = val[5] - val[4] + 1;
3676
3677                 param[0] = FW_PARAM_PFVF(SQRQ_START);
3678                 param[1] = FW_PARAM_PFVF(SQRQ_END);
3679                 param[2] = FW_PARAM_PFVF(CQ_START);
3680                 param[3] = FW_PARAM_PFVF(CQ_END);
3681                 param[4] = FW_PARAM_PFVF(OCQ_START);
3682                 param[5] = FW_PARAM_PFVF(OCQ_END);
3683                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3684                 if (rc != 0) {
3685                         device_printf(sc->dev,
3686                             "failed to query RDMA parameters(2): %d.\n", rc);
3687                         return (rc);
3688                 }
3689                 sc->vres.qp.start = val[0];
3690                 sc->vres.qp.size = val[1] - val[0] + 1;
3691                 sc->vres.cq.start = val[2];
3692                 sc->vres.cq.size = val[3] - val[2] + 1;
3693                 sc->vres.ocq.start = val[4];
3694                 sc->vres.ocq.size = val[5] - val[4] + 1;
3695
3696                 param[0] = FW_PARAM_PFVF(SRQ_START);
3697                 param[1] = FW_PARAM_PFVF(SRQ_END);
3698                 param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
3699                 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3700                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
3701                 if (rc != 0) {
3702                         device_printf(sc->dev,
3703                             "failed to query RDMA parameters(3): %d.\n", rc);
3704                         return (rc);
3705                 }
3706                 sc->vres.srq.start = val[0];
3707                 sc->vres.srq.size = val[1] - val[0] + 1;
3708                 sc->params.max_ordird_qp = val[2];
3709                 sc->params.max_ird_adapter = val[3];
3710         }
3711         if (sc->iscsicaps) {
3712                 param[0] = FW_PARAM_PFVF(ISCSI_START);
3713                 param[1] = FW_PARAM_PFVF(ISCSI_END);
3714                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3715                 if (rc != 0) {
3716                         device_printf(sc->dev,
3717                             "failed to query iSCSI parameters: %d.\n", rc);
3718                         return (rc);
3719                 }
3720                 sc->vres.iscsi.start = val[0];
3721                 sc->vres.iscsi.size = val[1] - val[0] + 1;
3722         }
3723
3724         t4_init_sge_params(sc);
3725
3726         /*
3727          * We've got the params we wanted to query via the firmware.  Now grab
3728          * some others directly from the chip.
3729          */
3730         rc = t4_read_chip_settings(sc);
3731
3732         return (rc);
3733 }
3734
3735 static int
3736 set_params__post_init(struct adapter *sc)
3737 {
3738         uint32_t param, val;
3739 #ifdef TCP_OFFLOAD
3740         int i, v, shift;
3741 #endif
3742
3743         /* ask for encapsulated CPLs */
3744         param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3745         val = 1;
3746         (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3747
3748 #ifdef TCP_OFFLOAD
3749         /*
3750          * Override the TOE timers with user provided tunables.  This is not the
3751          * recommended way to change the timers (the firmware config file is) so
3752          * these tunables are not documented.
3753          *
3754          * All the timer tunables are in microseconds.
3755          */
3756         if (t4_toe_keepalive_idle != 0) {
3757                 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
3758                 v &= M_KEEPALIVEIDLE;
3759                 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
3760                     V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
3761         }
3762         if (t4_toe_keepalive_interval != 0) {
3763                 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
3764                 v &= M_KEEPALIVEINTVL;
3765                 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
3766                     V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
3767         }
3768         if (t4_toe_keepalive_count != 0) {
3769                 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
3770                 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
3771                     V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
3772                     V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
3773                     V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
3774         }
3775         if (t4_toe_rexmt_min != 0) {
3776                 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
3777                 v &= M_RXTMIN;
3778                 t4_set_reg_field(sc, A_TP_RXT_MIN,
3779                     V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
3780         }
3781         if (t4_toe_rexmt_max != 0) {
3782                 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
3783                 v &= M_RXTMAX;
3784                 t4_set_reg_field(sc, A_TP_RXT_MAX,
3785                     V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
3786         }
3787         if (t4_toe_rexmt_count != 0) {
3788                 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
3789                 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
3790                     V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
3791                     V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
3792                     V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
3793         }
3794         for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
3795                 if (t4_toe_rexmt_backoff[i] != -1) {
3796                         v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
3797                         shift = (i & 3) << 3;
3798                         t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
3799                             M_TIMERBACKOFFINDEX0 << shift, v << shift);
3800                 }
3801         }
3802 #endif
3803         return (0);
3804 }
3805
3806 #undef FW_PARAM_PFVF
3807 #undef FW_PARAM_DEV
3808
3809 static void
3810 t4_set_desc(struct adapter *sc)
3811 {
3812         char buf[128];
3813         struct adapter_params *p = &sc->params;
3814
3815         snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
3816
3817         device_set_desc_copy(sc->dev, buf);
3818 }
3819
3820 static void
3821 build_medialist(struct port_info *pi, struct ifmedia *media)
3822 {
3823         int m;
3824
3825         PORT_LOCK_ASSERT_OWNED(pi);
3826
3827         ifmedia_removeall(media);
3828
3829         /*
3830          * XXX: Would it be better to ifmedia_add all 4 combinations of pause
3831          * settings for every speed instead of just txpause|rxpause?  ifconfig
3832          * media display looks much better if autoselect is the only case where
3833          * ifm_current is different from ifm_active.  If the user picks anything
3834          * except txpause|rxpause the display is ugly.
3835          */
3836         m = IFM_ETHER | IFM_FDX | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
3837
3838         switch(pi->port_type) {
3839         case FW_PORT_TYPE_BT_XFI:
3840         case FW_PORT_TYPE_BT_XAUI:
3841                 ifmedia_add(media, m | IFM_10G_T, 0, NULL);
3842                 /* fall through */
3843
3844         case FW_PORT_TYPE_BT_SGMII:
3845                 ifmedia_add(media, m | IFM_1000_T, 0, NULL);
3846                 ifmedia_add(media, m | IFM_100_TX, 0, NULL);
3847                 ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL);
3848                 ifmedia_set(media, IFM_ETHER | IFM_AUTO);
3849                 break;
3850
3851         case FW_PORT_TYPE_CX4:
3852                 ifmedia_add(media, m | IFM_10G_CX4, 0, NULL);
3853                 ifmedia_set(media, m | IFM_10G_CX4);
3854                 break;
3855
3856         case FW_PORT_TYPE_QSFP_10G:
3857         case FW_PORT_TYPE_SFP:
3858         case FW_PORT_TYPE_FIBER_XFI:
3859         case FW_PORT_TYPE_FIBER_XAUI:
3860                 switch (pi->mod_type) {
3861
3862                 case FW_PORT_MOD_TYPE_LR:
3863                         ifmedia_add(media, m | IFM_10G_LR, 0, NULL);
3864                         ifmedia_set(media, m | IFM_10G_LR);
3865                         break;
3866
3867                 case FW_PORT_MOD_TYPE_SR:
3868                         ifmedia_add(media, m | IFM_10G_SR, 0, NULL);
3869                         ifmedia_set(media, m | IFM_10G_SR);
3870                         break;
3871
3872                 case FW_PORT_MOD_TYPE_LRM:
3873                         ifmedia_add(media, m | IFM_10G_LRM, 0, NULL);
3874                         ifmedia_set(media, m | IFM_10G_LRM);
3875                         break;
3876
3877                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3878                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3879                         ifmedia_add(media, m | IFM_10G_TWINAX, 0, NULL);
3880                         ifmedia_set(media, m | IFM_10G_TWINAX);
3881                         break;
3882
3883                 case FW_PORT_MOD_TYPE_NONE:
3884                         m &= ~IFM_FDX;
3885                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3886                         ifmedia_set(media, m | IFM_NONE);
3887                         break;
3888
3889                 case FW_PORT_MOD_TYPE_NA:
3890                 case FW_PORT_MOD_TYPE_ER:
3891                 default:
3892                         device_printf(pi->dev,
3893                             "unknown port_type (%d), mod_type (%d)\n",
3894                             pi->port_type, pi->mod_type);
3895                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3896                         ifmedia_set(media, m | IFM_UNKNOWN);
3897                         break;
3898                 }
3899                 break;
3900
3901         case FW_PORT_TYPE_CR_QSFP:
3902         case FW_PORT_TYPE_SFP28:
3903         case FW_PORT_TYPE_KR_SFP28:
3904                 switch (pi->mod_type) {
3905
3906                 case FW_PORT_MOD_TYPE_SR:
3907                         ifmedia_add(media, m | IFM_25G_SR, 0, NULL);
3908                         ifmedia_set(media, m | IFM_25G_SR);
3909                         break;
3910
3911                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3912                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3913                         ifmedia_add(media, m | IFM_25G_CR, 0, NULL);
3914                         ifmedia_set(media, m | IFM_25G_CR);
3915                         break;
3916
3917                 case FW_PORT_MOD_TYPE_NONE:
3918                         m &= ~IFM_FDX;
3919                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3920                         ifmedia_set(media, m | IFM_NONE);
3921                         break;
3922
3923                 default:
3924                         device_printf(pi->dev,
3925                             "unknown port_type (%d), mod_type (%d)\n",
3926                             pi->port_type, pi->mod_type);
3927                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3928                         ifmedia_set(media, m | IFM_UNKNOWN);
3929                         break;
3930                 }
3931                 break;
3932
3933         case FW_PORT_TYPE_QSFP:
3934                 switch (pi->mod_type) {
3935
3936                 case FW_PORT_MOD_TYPE_LR:
3937                         ifmedia_add(media, m | IFM_40G_LR4, 0, NULL);
3938                         ifmedia_set(media, m | IFM_40G_LR4);
3939                         break;
3940
3941                 case FW_PORT_MOD_TYPE_SR:
3942                         ifmedia_add(media, m | IFM_40G_SR4, 0, NULL);
3943                         ifmedia_set(media, m | IFM_40G_SR4);
3944                         break;
3945
3946                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3947                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3948                         ifmedia_add(media, m | IFM_40G_CR4, 0, NULL);
3949                         ifmedia_set(media, m | IFM_40G_CR4);
3950                         break;
3951
3952                 case FW_PORT_MOD_TYPE_NONE:
3953                         m &= ~IFM_FDX;
3954                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3955                         ifmedia_set(media, m | IFM_NONE);
3956                         break;
3957
3958                 default:
3959                         device_printf(pi->dev,
3960                             "unknown port_type (%d), mod_type (%d)\n",
3961                             pi->port_type, pi->mod_type);
3962                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3963                         ifmedia_set(media, m | IFM_UNKNOWN);
3964                         break;
3965                 }
3966                 break;
3967
3968         case FW_PORT_TYPE_KR4_100G:
3969         case FW_PORT_TYPE_CR4_QSFP:
3970                 switch (pi->mod_type) {
3971
3972                 case FW_PORT_MOD_TYPE_LR:
3973                         ifmedia_add(media, m | IFM_100G_LR4, 0, NULL);
3974                         ifmedia_set(media, m | IFM_100G_LR4);
3975                         break;
3976
3977                 case FW_PORT_MOD_TYPE_SR:
3978                         ifmedia_add(media, m | IFM_100G_SR4, 0, NULL);
3979                         ifmedia_set(media, m | IFM_100G_SR4);
3980                         break;
3981
3982                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3983                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3984                         ifmedia_add(media, m | IFM_100G_CR4, 0, NULL);
3985                         ifmedia_set(media, m | IFM_100G_CR4);
3986                         break;
3987
3988                 case FW_PORT_MOD_TYPE_NONE:
3989                         m &= ~IFM_FDX;
3990                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3991                         ifmedia_set(media, m | IFM_NONE);
3992                         break;
3993
3994                 default:
3995                         device_printf(pi->dev,
3996                             "unknown port_type (%d), mod_type (%d)\n",
3997                             pi->port_type, pi->mod_type);
3998                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3999                         ifmedia_set(media, m | IFM_UNKNOWN);
4000                         break;
4001                 }
4002                 break;
4003
4004         default:
4005                 device_printf(pi->dev,
4006                     "unknown port_type (%d), mod_type (%d)\n", pi->port_type,
4007                     pi->mod_type);
4008                 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
4009                 ifmedia_set(media, m | IFM_UNKNOWN);
4010                 break;
4011         }
4012 }
4013
4014 /*
4015  * Update all the requested_* fields in the link config and then send a mailbox
4016  * command to apply the settings.
4017  */
4018 static void
4019 init_l1cfg(struct port_info *pi)
4020 {
4021         struct adapter *sc = pi->adapter;
4022         struct link_config *lc = &pi->link_cfg;
4023         int rc;
4024
4025         ASSERT_SYNCHRONIZED_OP(sc);
4026
4027         if (t4_autoneg != 0 && lc->supported & FW_PORT_CAP_ANEG) {
4028                 lc->requested_aneg = AUTONEG_ENABLE;
4029                 lc->requested_speed = 0;
4030         } else {
4031                 lc->requested_aneg = AUTONEG_DISABLE;
4032                 lc->requested_speed = port_top_speed(pi);       /* in Gbps */
4033         }
4034
4035         lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX);
4036
4037         if (t4_fec != -1) {
4038                 lc->requested_fec = t4_fec & (FEC_RS | FEC_BASER_RS |
4039                     FEC_RESERVED);
4040         } else {
4041                 /* Use the suggested value provided by the firmware in acaps */
4042                 if (lc->advertising & FW_PORT_CAP_FEC_RS)
4043                         lc->requested_fec = FEC_RS;
4044                 else if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
4045                         lc->requested_fec = FEC_BASER_RS;
4046                 else if (lc->advertising & FW_PORT_CAP_FEC_RESERVED)
4047                         lc->requested_fec = FEC_RESERVED;
4048                 else
4049                         lc->requested_fec = 0;
4050         }
4051
4052         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
4053         if (rc != 0) {
4054                 device_printf(pi->dev, "l1cfg failed: %d\n", rc);
4055         } else {
4056                 lc->fc = lc->requested_fc;
4057                 lc->fec = lc->requested_fec;
4058         }
4059 }
4060
4061 #define FW_MAC_EXACT_CHUNK      7
4062
4063 /*
4064  * Program the port's XGMAC based on parameters in ifnet.  The caller also
4065  * indicates which parameters should be programmed (the rest are left alone).
4066  */
4067 int
4068 update_mac_settings(struct ifnet *ifp, int flags)
4069 {
4070         int rc = 0;
4071         struct vi_info *vi = ifp->if_softc;
4072         struct port_info *pi = vi->pi;
4073         struct adapter *sc = pi->adapter;
4074         int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
4075
4076         ASSERT_SYNCHRONIZED_OP(sc);
4077         KASSERT(flags, ("%s: not told what to update.", __func__));
4078
4079         if (flags & XGMAC_MTU)
4080                 mtu = ifp->if_mtu;
4081
4082         if (flags & XGMAC_PROMISC)
4083                 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
4084
4085         if (flags & XGMAC_ALLMULTI)
4086                 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
4087
4088         if (flags & XGMAC_VLANEX)
4089                 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
4090
4091         if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
4092                 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
4093                     allmulti, 1, vlanex, false);
4094                 if (rc) {
4095                         if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
4096                             rc);
4097                         return (rc);
4098                 }
4099         }
4100
4101         if (flags & XGMAC_UCADDR) {
4102                 uint8_t ucaddr[ETHER_ADDR_LEN];
4103
4104                 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
4105                 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
4106                     ucaddr, true, true);
4107                 if (rc < 0) {
4108                         rc = -rc;
4109                         if_printf(ifp, "change_mac failed: %d\n", rc);
4110                         return (rc);
4111                 } else {
4112                         vi->xact_addr_filt = rc;
4113                         rc = 0;
4114                 }
4115         }
4116
4117         if (flags & XGMAC_MCADDRS) {
4118                 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
4119                 int del = 1;
4120                 uint64_t hash = 0;
4121                 struct ifmultiaddr *ifma;
4122                 int i = 0, j;
4123
4124                 if_maddr_rlock(ifp);
4125                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
4126                         if (ifma->ifma_addr->sa_family != AF_LINK)
4127                                 continue;
4128                         mcaddr[i] =
4129                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
4130                         MPASS(ETHER_IS_MULTICAST(mcaddr[i]));
4131                         i++;
4132
4133                         if (i == FW_MAC_EXACT_CHUNK) {
4134                                 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
4135                                     del, i, mcaddr, NULL, &hash, 0);
4136                                 if (rc < 0) {
4137                                         rc = -rc;
4138                                         for (j = 0; j < i; j++) {
4139                                                 if_printf(ifp,
4140                                                     "failed to add mc address"
4141                                                     " %02x:%02x:%02x:"
4142                                                     "%02x:%02x:%02x rc=%d\n",
4143                                                     mcaddr[j][0], mcaddr[j][1],
4144                                                     mcaddr[j][2], mcaddr[j][3],
4145                                                     mcaddr[j][4], mcaddr[j][5],
4146                                                     rc);
4147                                         }
4148                                         goto mcfail;
4149                                 }
4150                                 del = 0;
4151                                 i = 0;
4152                         }
4153                 }
4154                 if (i > 0) {
4155                         rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i,
4156                             mcaddr, NULL, &hash, 0);
4157                         if (rc < 0) {
4158                                 rc = -rc;
4159                                 for (j = 0; j < i; j++) {
4160                                         if_printf(ifp,
4161                                             "failed to add mc address"
4162                                             " %02x:%02x:%02x:"
4163                                             "%02x:%02x:%02x rc=%d\n",
4164                                             mcaddr[j][0], mcaddr[j][1],
4165                                             mcaddr[j][2], mcaddr[j][3],
4166                                             mcaddr[j][4], mcaddr[j][5],
4167                                             rc);
4168                                 }
4169                                 goto mcfail;
4170                         }
4171                 }
4172
4173                 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0);
4174                 if (rc != 0)
4175                         if_printf(ifp, "failed to set mc address hash: %d", rc);
4176 mcfail:
4177                 if_maddr_runlock(ifp);
4178         }
4179
4180         return (rc);
4181 }
4182
4183 /*
4184  * {begin|end}_synchronized_op must be called from the same thread.
4185  */
4186 int
4187 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
4188     char *wmesg)
4189 {
4190         int rc, pri;
4191
4192 #ifdef WITNESS
4193         /* the caller thinks it's ok to sleep, but is it really? */
4194         if (flags & SLEEP_OK)
4195                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
4196                     "begin_synchronized_op");
4197 #endif
4198
4199         if (INTR_OK)
4200                 pri = PCATCH;
4201         else
4202                 pri = 0;
4203
4204         ADAPTER_LOCK(sc);
4205         for (;;) {
4206
4207                 if (vi && IS_DOOMED(vi)) {
4208                         rc = ENXIO;
4209                         goto done;
4210                 }
4211
4212                 if (!IS_BUSY(sc)) {
4213                         rc = 0;
4214                         break;
4215                 }
4216
4217                 if (!(flags & SLEEP_OK)) {
4218                         rc = EBUSY;
4219                         goto done;
4220                 }
4221
4222                 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
4223                         rc = EINTR;
4224                         goto done;
4225                 }
4226         }
4227
4228         KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
4229         SET_BUSY(sc);
4230 #ifdef INVARIANTS
4231         sc->last_op = wmesg;
4232         sc->last_op_thr = curthread;
4233         sc->last_op_flags = flags;
4234 #endif
4235
4236 done:
4237         if (!(flags & HOLD_LOCK) || rc)
4238                 ADAPTER_UNLOCK(sc);
4239
4240         return (rc);
4241 }
4242
4243 /*
4244  * Tell if_ioctl and if_init that the VI is going away.  This is
4245  * special variant of begin_synchronized_op and must be paired with a
4246  * call to end_synchronized_op.
4247  */
4248 void
4249 doom_vi(struct adapter *sc, struct vi_info *vi)
4250 {
4251
4252         ADAPTER_LOCK(sc);
4253         SET_DOOMED(vi);
4254         wakeup(&sc->flags);
4255         while (IS_BUSY(sc))
4256                 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
4257         SET_BUSY(sc);
4258 #ifdef INVARIANTS
4259         sc->last_op = "t4detach";
4260         sc->last_op_thr = curthread;
4261         sc->last_op_flags = 0;
4262 #endif
4263         ADAPTER_UNLOCK(sc);
4264 }
4265
4266 /*
4267  * {begin|end}_synchronized_op must be called from the same thread.
4268  */
4269 void
4270 end_synchronized_op(struct adapter *sc, int flags)
4271 {
4272
4273         if (flags & LOCK_HELD)
4274                 ADAPTER_LOCK_ASSERT_OWNED(sc);
4275         else
4276                 ADAPTER_LOCK(sc);
4277
4278         KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
4279         CLR_BUSY(sc);
4280         wakeup(&sc->flags);
4281         ADAPTER_UNLOCK(sc);
4282 }
4283
4284 static int
4285 cxgbe_init_synchronized(struct vi_info *vi)
4286 {
4287         struct port_info *pi = vi->pi;
4288         struct adapter *sc = pi->adapter;
4289         struct ifnet *ifp = vi->ifp;
4290         int rc = 0, i;
4291         struct sge_txq *txq;
4292
4293         ASSERT_SYNCHRONIZED_OP(sc);
4294
4295         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4296                 return (0);     /* already running */
4297
4298         if (!(sc->flags & FULL_INIT_DONE) &&
4299             ((rc = adapter_full_init(sc)) != 0))
4300                 return (rc);    /* error message displayed already */
4301
4302         if (!(vi->flags & VI_INIT_DONE) &&
4303             ((rc = vi_full_init(vi)) != 0))
4304                 return (rc); /* error message displayed already */
4305
4306         rc = update_mac_settings(ifp, XGMAC_ALL);
4307         if (rc)
4308                 goto done;      /* error message displayed already */
4309
4310         rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
4311         if (rc != 0) {
4312                 if_printf(ifp, "enable_vi failed: %d\n", rc);
4313                 goto done;
4314         }
4315
4316         /*
4317          * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
4318          * if this changes.
4319          */
4320
4321         for_each_txq(vi, i, txq) {
4322                 TXQ_LOCK(txq);
4323                 txq->eq.flags |= EQ_ENABLED;
4324                 TXQ_UNLOCK(txq);
4325         }
4326
4327         /*
4328          * The first iq of the first port to come up is used for tracing.
4329          */
4330         if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
4331                 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
4332                 t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
4333                     A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
4334                     V_QUEUENUMBER(sc->traceq));
4335                 pi->flags |= HAS_TRACEQ;
4336         }
4337
4338         /* all ok */
4339         PORT_LOCK(pi);
4340         if (pi->up_vis++ == 0) {
4341                 t4_update_port_info(pi);
4342                 build_medialist(pi, &pi->media);
4343                 init_l1cfg(pi);
4344         }
4345         ifp->if_drv_flags |= IFF_DRV_RUNNING;
4346
4347         if (pi->nvi > 1 || sc->flags & IS_VF)
4348                 callout_reset(&vi->tick, hz, vi_tick, vi);
4349         else
4350                 callout_reset(&pi->tick, hz, cxgbe_tick, pi);
4351         PORT_UNLOCK(pi);
4352 done:
4353         if (rc != 0)
4354                 cxgbe_uninit_synchronized(vi);
4355
4356         return (rc);
4357 }
4358
4359 /*
4360  * Idempotent.
4361  */
4362 static int
4363 cxgbe_uninit_synchronized(struct vi_info *vi)
4364 {
4365         struct port_info *pi = vi->pi;
4366         struct adapter *sc = pi->adapter;
4367         struct ifnet *ifp = vi->ifp;
4368         int rc, i;
4369         struct sge_txq *txq;
4370
4371         ASSERT_SYNCHRONIZED_OP(sc);
4372
4373         if (!(vi->flags & VI_INIT_DONE)) {
4374                 KASSERT(!(ifp->if_drv_flags & IFF_DRV_RUNNING),
4375                     ("uninited VI is running"));
4376                 return (0);
4377         }
4378
4379         /*
4380          * Disable the VI so that all its data in either direction is discarded
4381          * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
4382          * tick) intact as the TP can deliver negative advice or data that it's
4383          * holding in its RAM (for an offloaded connection) even after the VI is
4384          * disabled.
4385          */
4386         rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
4387         if (rc) {
4388                 if_printf(ifp, "disable_vi failed: %d\n", rc);
4389                 return (rc);
4390         }
4391
4392         for_each_txq(vi, i, txq) {
4393                 TXQ_LOCK(txq);
4394                 txq->eq.flags &= ~EQ_ENABLED;
4395                 TXQ_UNLOCK(txq);
4396         }
4397
4398         PORT_LOCK(pi);
4399         if (pi->nvi > 1 || sc->flags & IS_VF)
4400                 callout_stop(&vi->tick);
4401         else
4402                 callout_stop(&pi->tick);
4403         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4404                 PORT_UNLOCK(pi);
4405                 return (0);
4406         }
4407         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4408         pi->up_vis--;
4409         if (pi->up_vis > 0) {
4410                 PORT_UNLOCK(pi);
4411                 return (0);
4412         }
4413         PORT_UNLOCK(pi);
4414
4415         pi->link_cfg.link_ok = 0;
4416         pi->link_cfg.speed = 0;
4417         pi->link_cfg.link_down_rc = 255;
4418         t4_os_link_changed(pi);
4419         pi->old_link_cfg = pi->link_cfg;
4420
4421         return (0);
4422 }
4423
4424 /*
4425  * It is ok for this function to fail midway and return right away.  t4_detach
4426  * will walk the entire sc->irq list and clean up whatever is valid.
4427  */
4428 int
4429 t4_setup_intr_handlers(struct adapter *sc)
4430 {
4431         int rc, rid, p, q, v;
4432         char s[8];
4433         struct irq *irq;
4434         struct port_info *pi;
4435         struct vi_info *vi;
4436         struct sge *sge = &sc->sge;
4437         struct sge_rxq *rxq;
4438 #ifdef TCP_OFFLOAD
4439         struct sge_ofld_rxq *ofld_rxq;
4440 #endif
4441 #ifdef DEV_NETMAP
4442         struct sge_nm_rxq *nm_rxq;
4443 #endif
4444 #ifdef RSS
4445         int nbuckets = rss_getnumbuckets();
4446 #endif
4447
4448         /*
4449          * Setup interrupts.
4450          */
4451         irq = &sc->irq[0];
4452         rid = sc->intr_type == INTR_INTX ? 0 : 1;
4453         if (sc->intr_count == 1)
4454                 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
4455
4456         /* Multiple interrupts. */
4457         if (sc->flags & IS_VF)
4458                 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
4459                     ("%s: too few intr.", __func__));
4460         else
4461                 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
4462                     ("%s: too few intr.", __func__));
4463
4464         /* The first one is always error intr on PFs */
4465         if (!(sc->flags & IS_VF)) {
4466                 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
4467                 if (rc != 0)
4468                         return (rc);
4469                 irq++;
4470                 rid++;
4471         }
4472
4473         /* The second one is always the firmware event queue (first on VFs) */
4474         rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
4475         if (rc != 0)
4476                 return (rc);
4477         irq++;
4478         rid++;
4479
4480         for_each_port(sc, p) {
4481                 pi = sc->port[p];
4482                 for_each_vi(pi, v, vi) {
4483                         vi->first_intr = rid - 1;
4484
4485                         if (vi->nnmrxq > 0) {
4486                                 int n = max(vi->nrxq, vi->nnmrxq);
4487
4488                                 MPASS(vi->flags & INTR_RXQ);
4489
4490                                 rxq = &sge->rxq[vi->first_rxq];
4491 #ifdef DEV_NETMAP
4492                                 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
4493 #endif
4494                                 for (q = 0; q < n; q++) {
4495                                         snprintf(s, sizeof(s), "%x%c%x", p,
4496                                             'a' + v, q);
4497                                         if (q < vi->nrxq)
4498                                                 irq->rxq = rxq++;
4499 #ifdef DEV_NETMAP
4500                                         if (q < vi->nnmrxq)
4501                                                 irq->nm_rxq = nm_rxq++;
4502 #endif
4503                                         rc = t4_alloc_irq(sc, irq, rid,
4504                                             t4_vi_intr, irq, s);
4505                                         if (rc != 0)
4506                                                 return (rc);
4507                                         irq++;
4508                                         rid++;
4509                                         vi->nintr++;
4510                                 }
4511                         } else if (vi->flags & INTR_RXQ) {
4512                                 for_each_rxq(vi, q, rxq) {
4513                                         snprintf(s, sizeof(s), "%x%c%x", p,
4514                                             'a' + v, q);
4515                                         rc = t4_alloc_irq(sc, irq, rid,
4516                                             t4_intr, rxq, s);
4517                                         if (rc != 0)
4518                                                 return (rc);
4519 #ifdef RSS
4520                                         bus_bind_intr(sc->dev, irq->res,
4521                                             rss_getcpu(q % nbuckets));
4522 #endif
4523                                         irq++;
4524                                         rid++;
4525                                         vi->nintr++;
4526                                 }
4527                         }
4528 #ifdef TCP_OFFLOAD
4529                         if (vi->flags & INTR_OFLD_RXQ) {
4530                                 for_each_ofld_rxq(vi, q, ofld_rxq) {
4531                                         snprintf(s, sizeof(s), "%x%c%x", p,
4532                                             'A' + v, q);
4533                                         rc = t4_alloc_irq(sc, irq, rid,
4534                                             t4_intr, ofld_rxq, s);
4535                                         if (rc != 0)
4536                                                 return (rc);
4537                                         irq++;
4538                                         rid++;
4539                                         vi->nintr++;
4540                                 }
4541                         }
4542 #endif
4543                 }
4544         }
4545         MPASS(irq == &sc->irq[sc->intr_count]);
4546
4547         return (0);
4548 }
4549
4550 int
4551 adapter_full_init(struct adapter *sc)
4552 {
4553         int rc, i;
4554 #ifdef RSS
4555         uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
4556         uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
4557 #endif
4558
4559         ASSERT_SYNCHRONIZED_OP(sc);
4560         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
4561         KASSERT((sc->flags & FULL_INIT_DONE) == 0,
4562             ("%s: FULL_INIT_DONE already", __func__));
4563
4564         /*
4565          * queues that belong to the adapter (not any particular port).
4566          */
4567         rc = t4_setup_adapter_queues(sc);
4568         if (rc != 0)
4569                 goto done;
4570
4571         for (i = 0; i < nitems(sc->tq); i++) {
4572                 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
4573                     taskqueue_thread_enqueue, &sc->tq[i]);
4574                 if (sc->tq[i] == NULL) {
4575                         device_printf(sc->dev,
4576                             "failed to allocate task queue %d\n", i);
4577                         rc = ENOMEM;
4578                         goto done;
4579                 }
4580                 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
4581                     device_get_nameunit(sc->dev), i);
4582         }
4583 #ifdef RSS
4584         MPASS(RSS_KEYSIZE == 40);
4585         rss_getkey((void *)&raw_rss_key[0]);
4586         for (i = 0; i < nitems(rss_key); i++) {
4587                 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
4588         }
4589         t4_write_rss_key(sc, &rss_key[0], -1, 1);
4590 #endif
4591
4592         if (!(sc->flags & IS_VF))
4593                 t4_intr_enable(sc);
4594         sc->flags |= FULL_INIT_DONE;
4595 done:
4596         if (rc != 0)
4597                 adapter_full_uninit(sc);
4598
4599         return (rc);
4600 }
4601
4602 int
4603 adapter_full_uninit(struct adapter *sc)
4604 {
4605         int i;
4606
4607         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
4608
4609         t4_teardown_adapter_queues(sc);
4610
4611         for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
4612                 taskqueue_free(sc->tq[i]);
4613                 sc->tq[i] = NULL;
4614         }
4615
4616         sc->flags &= ~FULL_INIT_DONE;
4617
4618         return (0);
4619 }
4620
4621 #ifdef RSS
4622 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
4623     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
4624     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
4625     RSS_HASHTYPE_RSS_UDP_IPV6)
4626
4627 /* Translates kernel hash types to hardware. */
4628 static int
4629 hashconfig_to_hashen(int hashconfig)
4630 {
4631         int hashen = 0;
4632
4633         if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
4634                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
4635         if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
4636                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
4637         if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
4638                 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
4639                     F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
4640         }
4641         if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
4642                 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
4643                     F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
4644         }
4645         if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
4646                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
4647         if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
4648                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
4649
4650         return (hashen);
4651 }
4652
4653 /* Translates hardware hash types to kernel. */
4654 static int
4655 hashen_to_hashconfig(int hashen)
4656 {
4657         int hashconfig = 0;
4658
4659         if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
4660                 /*
4661                  * If UDP hashing was enabled it must have been enabled for
4662                  * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
4663                  * enabling any 4-tuple hash is nonsense configuration.
4664                  */
4665                 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
4666                     F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
4667
4668                 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
4669                         hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
4670                 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
4671                         hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
4672         }
4673         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
4674                 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
4675         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
4676                 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
4677         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
4678                 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
4679         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
4680                 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
4681
4682         return (hashconfig);
4683 }
4684 #endif
4685
4686 int
4687 vi_full_init(struct vi_info *vi)
4688 {
4689         struct adapter *sc = vi->pi->adapter;
4690         struct ifnet *ifp = vi->ifp;
4691         uint16_t *rss;
4692         struct sge_rxq *rxq;
4693         int rc, i, j, hashen;
4694 #ifdef RSS
4695         int nbuckets = rss_getnumbuckets();
4696         int hashconfig = rss_gethashconfig();
4697         int extra;
4698 #endif
4699
4700         ASSERT_SYNCHRONIZED_OP(sc);
4701         KASSERT((vi->flags & VI_INIT_DONE) == 0,
4702             ("%s: VI_INIT_DONE already", __func__));
4703
4704         sysctl_ctx_init(&vi->ctx);
4705         vi->flags |= VI_SYSCTL_CTX;
4706
4707         /*
4708          * Allocate tx/rx/fl queues for this VI.
4709          */
4710         rc = t4_setup_vi_queues(vi);
4711         if (rc != 0)
4712                 goto done;      /* error message displayed already */
4713
4714         /*
4715          * Setup RSS for this VI.  Save a copy of the RSS table for later use.
4716          */
4717         if (vi->nrxq > vi->rss_size) {
4718                 if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); "
4719                     "some queues will never receive traffic.\n", vi->nrxq,
4720                     vi->rss_size);
4721         } else if (vi->rss_size % vi->nrxq) {
4722                 if_printf(ifp, "nrxq (%d), hw RSS table size (%d); "
4723                     "expect uneven traffic distribution.\n", vi->nrxq,
4724                     vi->rss_size);
4725         }
4726 #ifdef RSS
4727         if (vi->nrxq != nbuckets) {
4728                 if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);"
4729                     "performance will be impacted.\n", vi->nrxq, nbuckets);
4730         }
4731 #endif
4732         rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK);
4733         for (i = 0; i < vi->rss_size;) {
4734 #ifdef RSS
4735                 j = rss_get_indirection_to_bucket(i);
4736                 j %= vi->nrxq;
4737                 rxq = &sc->sge.rxq[vi->first_rxq + j];
4738                 rss[i++] = rxq->iq.abs_id;
4739 #else
4740                 for_each_rxq(vi, j, rxq) {
4741                         rss[i++] = rxq->iq.abs_id;
4742                         if (i == vi->rss_size)
4743                                 break;
4744                 }
4745 #endif
4746         }
4747
4748         rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss,
4749             vi->rss_size);
4750         if (rc != 0) {
4751                 if_printf(ifp, "rss_config failed: %d\n", rc);
4752                 goto done;
4753         }
4754
4755 #ifdef RSS
4756         hashen = hashconfig_to_hashen(hashconfig);
4757
4758         /*
4759          * We may have had to enable some hashes even though the global config
4760          * wants them disabled.  This is a potential problem that must be
4761          * reported to the user.
4762          */
4763         extra = hashen_to_hashconfig(hashen) ^ hashconfig;
4764
4765         /*
4766          * If we consider only the supported hash types, then the enabled hashes
4767          * are a superset of the requested hashes.  In other words, there cannot
4768          * be any supported hash that was requested but not enabled, but there
4769          * can be hashes that were not requested but had to be enabled.
4770          */
4771         extra &= SUPPORTED_RSS_HASHTYPES;
4772         MPASS((extra & hashconfig) == 0);
4773
4774         if (extra) {
4775                 if_printf(ifp,
4776                     "global RSS config (0x%x) cannot be accommodated.\n",
4777                     hashconfig);
4778         }
4779         if (extra & RSS_HASHTYPE_RSS_IPV4)
4780                 if_printf(ifp, "IPv4 2-tuple hashing forced on.\n");
4781         if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
4782                 if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n");
4783         if (extra & RSS_HASHTYPE_RSS_IPV6)
4784                 if_printf(ifp, "IPv6 2-tuple hashing forced on.\n");
4785         if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
4786                 if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n");
4787         if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
4788                 if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n");
4789         if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
4790                 if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n");
4791 #else
4792         hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
4793             F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
4794             F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
4795             F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
4796 #endif
4797         rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, hashen, rss[0], 0, 0);
4798         if (rc != 0) {
4799                 if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc);
4800                 goto done;
4801         }
4802
4803         vi->rss = rss;
4804         vi->flags |= VI_INIT_DONE;
4805 done:
4806         if (rc != 0)
4807                 vi_full_uninit(vi);
4808
4809         return (rc);
4810 }
4811
4812 /*
4813  * Idempotent.
4814  */
4815 int
4816 vi_full_uninit(struct vi_info *vi)
4817 {
4818         struct port_info *pi = vi->pi;
4819         struct adapter *sc = pi->adapter;
4820         int i;
4821         struct sge_rxq *rxq;
4822         struct sge_txq *txq;
4823 #ifdef TCP_OFFLOAD
4824         struct sge_ofld_rxq *ofld_rxq;
4825         struct sge_wrq *ofld_txq;
4826 #endif
4827
4828         if (vi->flags & VI_INIT_DONE) {
4829
4830                 /* Need to quiesce queues.  */
4831
4832                 /* XXX: Only for the first VI? */
4833                 if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
4834                         quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
4835
4836                 for_each_txq(vi, i, txq) {
4837                         quiesce_txq(sc, txq);
4838                 }
4839
4840 #ifdef TCP_OFFLOAD
4841                 for_each_ofld_txq(vi, i, ofld_txq) {
4842                         quiesce_wrq(sc, ofld_txq);
4843                 }
4844 #endif
4845
4846                 for_each_rxq(vi, i, rxq) {
4847                         quiesce_iq(sc, &rxq->iq);
4848                         quiesce_fl(sc, &rxq->fl);
4849                 }
4850
4851 #ifdef TCP_OFFLOAD
4852                 for_each_ofld_rxq(vi, i, ofld_rxq) {
4853                         quiesce_iq(sc, &ofld_rxq->iq);
4854                         quiesce_fl(sc, &ofld_rxq->fl);
4855                 }
4856 #endif
4857                 free(vi->rss, M_CXGBE);
4858                 free(vi->nm_rss, M_CXGBE);
4859         }
4860
4861         t4_teardown_vi_queues(vi);
4862         vi->flags &= ~VI_INIT_DONE;
4863
4864         return (0);
4865 }
4866
4867 static void
4868 quiesce_txq(struct adapter *sc, struct sge_txq *txq)
4869 {
4870         struct sge_eq *eq = &txq->eq;
4871         struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4872
4873         (void) sc;      /* unused */
4874
4875 #ifdef INVARIANTS
4876         TXQ_LOCK(txq);
4877         MPASS((eq->flags & EQ_ENABLED) == 0);
4878         TXQ_UNLOCK(txq);
4879 #endif
4880
4881         /* Wait for the mp_ring to empty. */
4882         while (!mp_ring_is_idle(txq->r)) {
4883                 mp_ring_check_drainage(txq->r, 0);
4884                 pause("rquiesce", 1);
4885         }
4886
4887         /* Then wait for the hardware to finish. */
4888         while (spg->cidx != htobe16(eq->pidx))
4889                 pause("equiesce", 1);
4890
4891         /* Finally, wait for the driver to reclaim all descriptors. */
4892         while (eq->cidx != eq->pidx)
4893                 pause("dquiesce", 1);
4894 }
4895
4896 static void
4897 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq)
4898 {
4899
4900         /* XXXTX */
4901 }
4902
4903 static void
4904 quiesce_iq(struct adapter *sc, struct sge_iq *iq)
4905 {
4906         (void) sc;      /* unused */
4907
4908         /* Synchronize with the interrupt handler */
4909         while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
4910                 pause("iqfree", 1);
4911 }
4912
4913 static void
4914 quiesce_fl(struct adapter *sc, struct sge_fl *fl)
4915 {
4916         mtx_lock(&sc->sfl_lock);
4917         FL_LOCK(fl);
4918         fl->flags |= FL_DOOMED;
4919         FL_UNLOCK(fl);
4920         callout_stop(&sc->sfl_callout);
4921         mtx_unlock(&sc->sfl_lock);
4922
4923         KASSERT((fl->flags & FL_STARVING) == 0,
4924             ("%s: still starving", __func__));
4925 }
4926
4927 static int
4928 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
4929     driver_intr_t *handler, void *arg, char *name)
4930 {
4931         int rc;
4932
4933         irq->rid = rid;
4934         irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
4935             RF_SHAREABLE | RF_ACTIVE);
4936         if (irq->res == NULL) {
4937                 device_printf(sc->dev,
4938                     "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
4939                 return (ENOMEM);
4940         }
4941
4942         rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
4943             NULL, handler, arg, &irq->tag);
4944         if (rc != 0) {
4945                 device_printf(sc->dev,
4946                     "failed to setup interrupt for rid %d, name %s: %d\n",
4947                     rid, name, rc);
4948         } else if (name)
4949                 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
4950
4951         return (rc);
4952 }
4953
4954 static int
4955 t4_free_irq(struct adapter *sc, struct irq *irq)
4956 {
4957         if (irq->tag)
4958                 bus_teardown_intr(sc->dev, irq->res, irq->tag);
4959         if (irq->res)
4960                 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
4961
4962         bzero(irq, sizeof(*irq));
4963
4964         return (0);
4965 }
4966
4967 static void
4968 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
4969 {
4970
4971         regs->version = chip_id(sc) | chip_rev(sc) << 10;
4972         t4_get_regs(sc, buf, regs->len);
4973 }
4974
4975 #define A_PL_INDIR_CMD  0x1f8
4976
4977 #define S_PL_AUTOINC    31
4978 #define M_PL_AUTOINC    0x1U
4979 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
4980 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
4981
4982 #define S_PL_VFID       20
4983 #define M_PL_VFID       0xffU
4984 #define V_PL_VFID(x)    ((x) << S_PL_VFID)
4985 #define G_PL_VFID(x)    (((x) >> S_PL_VFID) & M_PL_VFID)
4986
4987 #define S_PL_ADDR       0
4988 #define M_PL_ADDR       0xfffffU
4989 #define V_PL_ADDR(x)    ((x) << S_PL_ADDR)
4990 #define G_PL_ADDR(x)    (((x) >> S_PL_ADDR) & M_PL_ADDR)
4991
4992 #define A_PL_INDIR_DATA 0x1fc
4993
4994 static uint64_t
4995 read_vf_stat(struct adapter *sc, unsigned int viid, int reg)
4996 {
4997         u32 stats[2];
4998
4999         mtx_assert(&sc->reg_lock, MA_OWNED);
5000         if (sc->flags & IS_VF) {
5001                 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
5002                 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
5003         } else {
5004                 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
5005                     V_PL_VFID(G_FW_VIID_VIN(viid)) |
5006                     V_PL_ADDR(VF_MPS_REG(reg)));
5007                 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
5008                 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
5009         }
5010         return (((uint64_t)stats[1]) << 32 | stats[0]);
5011 }
5012
5013 static void
5014 t4_get_vi_stats(struct adapter *sc, unsigned int viid,
5015     struct fw_vi_stats_vf *stats)
5016 {
5017
5018 #define GET_STAT(name) \
5019         read_vf_stat(sc, viid, A_MPS_VF_STAT_##name##_L)
5020
5021         stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
5022         stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
5023         stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
5024         stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
5025         stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
5026         stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
5027         stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
5028         stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
5029         stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
5030         stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
5031         stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
5032         stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
5033         stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
5034         stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
5035         stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
5036         stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
5037
5038 #undef GET_STAT
5039 }
5040
5041 static void
5042 t4_clr_vi_stats(struct adapter *sc, unsigned int viid)
5043 {
5044         int reg;
5045
5046         t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
5047             V_PL_VFID(G_FW_VIID_VIN(viid)) |
5048             V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
5049         for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
5050              reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
5051                 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
5052 }
5053
5054 static void
5055 vi_refresh_stats(struct adapter *sc, struct vi_info *vi)
5056 {
5057         struct timeval tv;
5058         const struct timeval interval = {0, 250000};    /* 250ms */
5059
5060         if (!(vi->flags & VI_INIT_DONE))
5061                 return;
5062
5063         getmicrotime(&tv);
5064         timevalsub(&tv, &interval);
5065         if (timevalcmp(&tv, &vi->last_refreshed, <))
5066                 return;
5067
5068         mtx_lock(&sc->reg_lock);
5069         t4_get_vi_stats(sc, vi->viid, &vi->stats);
5070         getmicrotime(&vi->last_refreshed);
5071         mtx_unlock(&sc->reg_lock);
5072 }
5073
5074 static void
5075 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi)
5076 {
5077         u_int i, v, tnl_cong_drops, bg_map;
5078         struct timeval tv;
5079         const struct timeval interval = {0, 250000};    /* 250ms */
5080
5081         getmicrotime(&tv);
5082         timevalsub(&tv, &interval);
5083         if (timevalcmp(&tv, &pi->last_refreshed, <))
5084                 return;
5085
5086         tnl_cong_drops = 0;
5087         t4_get_port_stats(sc, pi->tx_chan, &pi->stats);
5088         bg_map = pi->mps_bg_map;
5089         while (bg_map) {
5090                 i = ffs(bg_map) - 1;
5091                 mtx_lock(&sc->reg_lock);
5092                 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
5093                     A_TP_MIB_TNL_CNG_DROP_0 + i);
5094                 mtx_unlock(&sc->reg_lock);
5095                 tnl_cong_drops += v;
5096                 bg_map &= ~(1 << i);
5097         }
5098         pi->tnl_cong_drops = tnl_cong_drops;
5099         getmicrotime(&pi->last_refreshed);
5100 }
5101
5102 static void
5103 cxgbe_tick(void *arg)
5104 {
5105         struct port_info *pi = arg;
5106         struct adapter *sc = pi->adapter;
5107
5108         PORT_LOCK_ASSERT_OWNED(pi);
5109         cxgbe_refresh_stats(sc, pi);
5110
5111         callout_schedule(&pi->tick, hz);
5112 }
5113
5114 void
5115 vi_tick(void *arg)
5116 {
5117         struct vi_info *vi = arg;
5118         struct adapter *sc = vi->pi->adapter;
5119
5120         vi_refresh_stats(sc, vi);
5121
5122         callout_schedule(&vi->tick, hz);
5123 }
5124
5125 static void
5126 cxgbe_vlan_config(void *arg, struct ifnet *ifp, uint16_t vid)
5127 {
5128         struct ifnet *vlan;
5129
5130         if (arg != ifp || ifp->if_type != IFT_ETHER)
5131                 return;
5132
5133         vlan = VLAN_DEVAT(ifp, vid);
5134         VLAN_SETCOOKIE(vlan, ifp);
5135 }
5136
5137 /*
5138  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
5139  */
5140 static char *caps_decoder[] = {
5141         "\20\001IPMI\002NCSI",                          /* 0: NBM */
5142         "\20\001PPP\002QFC\003DCBX",                    /* 1: link */
5143         "\20\001INGRESS\002EGRESS",                     /* 2: switch */
5144         "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"      /* 3: NIC */
5145             "\006HASHFILTER\007ETHOFLD",
5146         "\20\001TOE",                                   /* 4: TOE */
5147         "\20\001RDDP\002RDMAC",                         /* 5: RDMA */
5148         "\20\001INITIATOR_PDU\002TARGET_PDU"            /* 6: iSCSI */
5149             "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
5150             "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
5151             "\007T10DIF"
5152             "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
5153         "\20\001LOOKASIDE\002TLSKEYS",                  /* 7: Crypto */
5154         "\20\001INITIATOR\002TARGET\003CTRL_OFLD"       /* 8: FCoE */
5155                     "\004PO_INITIATOR\005PO_TARGET",
5156 };
5157
5158 void
5159 t4_sysctls(struct adapter *sc)
5160 {
5161         struct sysctl_ctx_list *ctx;
5162         struct sysctl_oid *oid;
5163         struct sysctl_oid_list *children, *c0;
5164         static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
5165
5166         ctx = device_get_sysctl_ctx(sc->dev);
5167
5168         /*
5169          * dev.t4nex.X.
5170          */
5171         oid = device_get_sysctl_tree(sc->dev);
5172         c0 = children = SYSCTL_CHILDREN(oid);
5173
5174         sc->sc_do_rxcopy = 1;
5175         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
5176             &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
5177
5178         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
5179             sc->params.nports, "# of ports");
5180
5181         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
5182             CTLTYPE_STRING | CTLFLAG_RD, doorbells, sc->doorbells,
5183             sysctl_bitfield, "A", "available doorbells");
5184
5185         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
5186             sc->params.vpd.cclk, "core clock frequency (in KHz)");
5187
5188         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
5189             CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val,
5190             sizeof(sc->params.sge.timer_val), sysctl_int_array, "A",
5191             "interrupt holdoff timer values (us)");
5192
5193         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
5194             CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val,
5195             sizeof(sc->params.sge.counter_val), sysctl_int_array, "A",
5196             "interrupt holdoff packet counter values");
5197
5198         t4_sge_sysctls(sc, ctx, children);
5199
5200         sc->lro_timeout = 100;
5201         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
5202             &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
5203
5204         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
5205             &sc->debug_flags, 0, "flags to enable runtime debugging");
5206
5207         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
5208             CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
5209
5210         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
5211             CTLFLAG_RD, sc->fw_version, 0, "firmware version");
5212
5213         if (sc->flags & IS_VF)
5214                 return;
5215
5216         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
5217             NULL, chip_rev(sc), "chip hardware revision");
5218
5219         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
5220             CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
5221
5222         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
5223             CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
5224
5225         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
5226             CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
5227
5228         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
5229             CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
5230
5231         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
5232             sc->er_version, 0, "expansion ROM version");
5233
5234         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
5235             sc->bs_version, 0, "bootstrap firmware version");
5236
5237         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
5238             NULL, sc->params.scfg_vers, "serial config version");
5239
5240         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
5241             NULL, sc->params.vpd_vers, "VPD version");
5242
5243         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
5244             CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
5245
5246         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
5247             sc->cfcsum, "config file checksum");
5248
5249 #define SYSCTL_CAP(name, n, text) \
5250         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
5251             CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], sc->name, \
5252             sysctl_bitfield, "A", "available " text " capabilities")
5253
5254         SYSCTL_CAP(nbmcaps, 0, "NBM");
5255         SYSCTL_CAP(linkcaps, 1, "link");
5256         SYSCTL_CAP(switchcaps, 2, "switch");
5257         SYSCTL_CAP(niccaps, 3, "NIC");
5258         SYSCTL_CAP(toecaps, 4, "TCP offload");
5259         SYSCTL_CAP(rdmacaps, 5, "RDMA");
5260         SYSCTL_CAP(iscsicaps, 6, "iSCSI");
5261         SYSCTL_CAP(cryptocaps, 7, "crypto");
5262         SYSCTL_CAP(fcoecaps, 8, "FCoE");
5263 #undef SYSCTL_CAP
5264
5265         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
5266             NULL, sc->tids.nftids, "number of filters");
5267
5268         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT |
5269             CTLFLAG_RD, sc, 0, sysctl_temperature, "I",
5270             "chip temperature (in Celsius)");
5271
5272 #ifdef SBUF_DRAIN
5273         /*
5274          * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
5275          */
5276         oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
5277             CTLFLAG_RD | CTLFLAG_SKIP, NULL,
5278             "logs and miscellaneous information");
5279         children = SYSCTL_CHILDREN(oid);
5280
5281         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
5282             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5283             sysctl_cctrl, "A", "congestion control");
5284
5285         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
5286             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5287             sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
5288
5289         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
5290             CTLTYPE_STRING | CTLFLAG_RD, sc, 1,
5291             sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
5292
5293         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
5294             CTLTYPE_STRING | CTLFLAG_RD, sc, 2,
5295             sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
5296
5297         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
5298             CTLTYPE_STRING | CTLFLAG_RD, sc, 3,
5299             sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
5300
5301         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
5302             CTLTYPE_STRING | CTLFLAG_RD, sc, 4,
5303             sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
5304
5305         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
5306             CTLTYPE_STRING | CTLFLAG_RD, sc, 5,
5307             sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
5308
5309         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
5310             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5311             chip_id(sc) <= CHELSIO_T5 ? sysctl_cim_la : sysctl_cim_la_t6,
5312             "A", "CIM logic analyzer");
5313
5314         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
5315             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5316             sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
5317
5318         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
5319             CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ,
5320             sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
5321
5322         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
5323             CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ,
5324             sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
5325
5326         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
5327             CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ,
5328             sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
5329
5330         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
5331             CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ,
5332             sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
5333
5334         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
5335             CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ,
5336             sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
5337
5338         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
5339             CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ,
5340             sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
5341
5342         if (chip_id(sc) > CHELSIO_T4) {
5343                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
5344                     CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ,
5345                     sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)");
5346
5347                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
5348                     CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ,
5349                     sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)");
5350         }
5351
5352         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
5353             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5354             sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
5355
5356         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
5357             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5358             sysctl_cim_qcfg, "A", "CIM queue configuration");
5359
5360         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
5361             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5362             sysctl_cpl_stats, "A", "CPL statistics");
5363
5364         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
5365             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5366             sysctl_ddp_stats, "A", "non-TCP DDP statistics");
5367
5368         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
5369             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5370             sysctl_devlog, "A", "firmware's device log");
5371
5372         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
5373             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5374             sysctl_fcoe_stats, "A", "FCoE statistics");
5375
5376         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
5377             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5378             sysctl_hw_sched, "A", "hardware scheduler ");
5379
5380         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
5381             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5382             sysctl_l2t, "A", "hardware L2 table");
5383
5384         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
5385             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5386             sysctl_lb_stats, "A", "loopback statistics");
5387
5388         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
5389             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5390             sysctl_meminfo, "A", "memory regions");
5391
5392         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
5393             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5394             chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
5395             "A", "MPS TCAM entries");
5396
5397         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
5398             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5399             sysctl_path_mtus, "A", "path MTUs");
5400
5401         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
5402             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5403             sysctl_pm_stats, "A", "PM statistics");
5404
5405         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
5406             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5407             sysctl_rdma_stats, "A", "RDMA statistics");
5408
5409         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
5410             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5411             sysctl_tcp_stats, "A", "TCP statistics");
5412
5413         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
5414             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5415             sysctl_tids, "A", "TID information");
5416
5417         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
5418             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5419             sysctl_tp_err_stats, "A", "TP error statistics");
5420
5421         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
5422             CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I",
5423             "TP logic analyzer event capture mask");
5424
5425         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
5426             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5427             sysctl_tp_la, "A", "TP logic analyzer");
5428
5429         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
5430             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5431             sysctl_tx_rate, "A", "Tx rate");
5432
5433         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
5434             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5435             sysctl_ulprx_la, "A", "ULPRX logic analyzer");
5436
5437         if (chip_id(sc) >= CHELSIO_T5) {
5438                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
5439                     CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5440                     sysctl_wcwr_stats, "A", "write combined work requests");
5441         }
5442 #endif
5443
5444 #ifdef TCP_OFFLOAD
5445         if (is_offload(sc)) {
5446                 int i;
5447                 char s[4];
5448
5449                 /*
5450                  * dev.t4nex.X.toe.
5451                  */
5452                 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD,
5453                     NULL, "TOE parameters");
5454                 children = SYSCTL_CHILDREN(oid);
5455
5456                 sc->tt.cong_algorithm = -1;
5457                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
5458                     CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
5459                     "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
5460                     "3 = highspeed)");
5461
5462                 sc->tt.sndbuf = 256 * 1024;
5463                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
5464                     &sc->tt.sndbuf, 0, "max hardware send buffer size");
5465
5466                 sc->tt.ddp = 0;
5467                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW,
5468                     &sc->tt.ddp, 0, "DDP allowed");
5469
5470                 sc->tt.rx_coalesce = 1;
5471                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
5472                     CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
5473
5474                 sc->tt.tx_align = 1;
5475                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
5476                     CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
5477
5478                 sc->tt.tx_zcopy = 0;
5479                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
5480                     CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
5481                     "Enable zero-copy aio_write(2)");
5482
5483                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
5484                     CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A",
5485                     "TP timer tick (us)");
5486
5487                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
5488                     CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A",
5489                     "TCP timestamp tick (us)");
5490
5491                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
5492                     CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A",
5493                     "DACK tick (us)");
5494
5495                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
5496                     CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer,
5497                     "IU", "DACK timer (us)");
5498
5499                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
5500                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN,
5501                     sysctl_tp_timer, "LU", "Minimum retransmit interval (us)");
5502
5503                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
5504                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX,
5505                     sysctl_tp_timer, "LU", "Maximum retransmit interval (us)");
5506
5507                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
5508                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN,
5509                     sysctl_tp_timer, "LU", "Persist timer min (us)");
5510
5511                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
5512                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX,
5513                     sysctl_tp_timer, "LU", "Persist timer max (us)");
5514
5515                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
5516                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE,
5517                     sysctl_tp_timer, "LU", "Keepalive idle timer (us)");
5518
5519                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
5520                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL,
5521                     sysctl_tp_timer, "LU", "Keepalive interval timer (us)");
5522
5523                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
5524                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT,
5525                     sysctl_tp_timer, "LU", "Initial SRTT (us)");
5526
5527                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
5528                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER,
5529                     sysctl_tp_timer, "LU", "FINWAIT2 timer (us)");
5530
5531                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
5532                     CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX,
5533                     sysctl_tp_shift_cnt, "IU",
5534                     "Number of SYN retransmissions before abort");
5535
5536                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
5537                     CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2,
5538                     sysctl_tp_shift_cnt, "IU",
5539                     "Number of retransmissions before abort");
5540
5541                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
5542                     CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2,
5543                     sysctl_tp_shift_cnt, "IU",
5544                     "Number of keepalive probes before abort");
5545
5546                 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
5547                     CTLFLAG_RD, NULL, "TOE retransmit backoffs");
5548                 children = SYSCTL_CHILDREN(oid);
5549                 for (i = 0; i < 16; i++) {
5550                         snprintf(s, sizeof(s), "%u", i);
5551                         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
5552                             CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff,
5553                             "IU", "TOE retransmit backoff");
5554                 }
5555         }
5556 #endif
5557 }
5558
5559 void
5560 vi_sysctls(struct vi_info *vi)
5561 {
5562         struct sysctl_ctx_list *ctx;
5563         struct sysctl_oid *oid;
5564         struct sysctl_oid_list *children;
5565
5566         ctx = device_get_sysctl_ctx(vi->dev);
5567
5568         /*
5569          * dev.v?(cxgbe|cxl).X.
5570          */
5571         oid = device_get_sysctl_tree(vi->dev);
5572         children = SYSCTL_CHILDREN(oid);
5573
5574         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
5575             vi->viid, "VI identifer");
5576         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
5577             &vi->nrxq, 0, "# of rx queues");
5578         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
5579             &vi->ntxq, 0, "# of tx queues");
5580         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
5581             &vi->first_rxq, 0, "index of first rx queue");
5582         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
5583             &vi->first_txq, 0, "index of first tx queue");
5584         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
5585             vi->rss_size, "size of RSS indirection table");
5586
5587         if (IS_MAIN_VI(vi)) {
5588                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
5589                     CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU",
5590                     "Reserve queue 0 for non-flowid packets");
5591         }
5592
5593 #ifdef TCP_OFFLOAD
5594         if (vi->nofldrxq != 0) {
5595                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
5596                     &vi->nofldrxq, 0,
5597                     "# of rx queues for offloaded TCP connections");
5598                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
5599                     &vi->nofldtxq, 0,
5600                     "# of tx queues for offloaded TCP connections");
5601                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
5602                     CTLFLAG_RD, &vi->first_ofld_rxq, 0,
5603                     "index of first TOE rx queue");
5604                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
5605                     CTLFLAG_RD, &vi->first_ofld_txq, 0,
5606                     "index of first TOE tx queue");
5607                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
5608                     CTLTYPE_INT | CTLFLAG_RW, vi, 0,
5609                     sysctl_holdoff_tmr_idx_ofld, "I",
5610                     "holdoff timer index for TOE queues");
5611                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
5612                     CTLTYPE_INT | CTLFLAG_RW, vi, 0,
5613                     sysctl_holdoff_pktc_idx_ofld, "I",
5614                     "holdoff packet counter index for TOE queues");
5615         }
5616 #endif
5617 #ifdef DEV_NETMAP
5618         if (vi->nnmrxq != 0) {
5619                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
5620                     &vi->nnmrxq, 0, "# of netmap rx queues");
5621                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
5622                     &vi->nnmtxq, 0, "# of netmap tx queues");
5623                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
5624                     CTLFLAG_RD, &vi->first_nm_rxq, 0,
5625                     "index of first netmap rx queue");
5626                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
5627                     CTLFLAG_RD, &vi->first_nm_txq, 0,
5628                     "index of first netmap tx queue");
5629         }
5630 #endif
5631
5632         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
5633             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I",
5634             "holdoff timer index");
5635         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
5636             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I",
5637             "holdoff packet counter index");
5638
5639         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
5640             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I",
5641             "rx queue size");
5642         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
5643             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I",
5644             "tx queue size");
5645 }
5646
5647 static void
5648 cxgbe_sysctls(struct port_info *pi)
5649 {
5650         struct sysctl_ctx_list *ctx;
5651         struct sysctl_oid *oid;
5652         struct sysctl_oid_list *children, *children2;
5653         struct adapter *sc = pi->adapter;
5654         int i;
5655         char name[16];
5656
5657         ctx = device_get_sysctl_ctx(pi->dev);
5658
5659         /*
5660          * dev.cxgbe.X.
5661          */
5662         oid = device_get_sysctl_tree(pi->dev);
5663         children = SYSCTL_CHILDREN(oid);
5664
5665         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING |
5666            CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down");
5667         if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
5668                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
5669                     CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I",
5670                     "PHY temperature (in Celsius)");
5671                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
5672                     CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I",
5673                     "PHY firmware version");
5674         }
5675
5676         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
5677             CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A",
5678             "PAUSE settings (bit 0 = rx_pause, bit 1 = tx_pause)");
5679         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec",
5680             CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A",
5681             "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
5682         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
5683             CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I",
5684             "autonegotiation (-1 = not supported)");
5685
5686         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
5687             port_top_speed(pi), "max speed (in Gbps)");
5688         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
5689             pi->mps_bg_map, "MPS buffer group map");
5690         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
5691             NULL, pi->rx_e_chan_map, "TP rx e-channel map");
5692
5693         if (sc->flags & IS_VF)
5694                 return;
5695
5696         /*
5697          * dev.(cxgbe|cxl).X.tc.
5698          */
5699         oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL,
5700             "Tx scheduler traffic classes (cl_rl)");
5701         for (i = 0; i < sc->chip_params->nsched_cls; i++) {
5702                 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
5703
5704                 snprintf(name, sizeof(name), "%d", i);
5705                 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
5706                     SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL,
5707                     "traffic class"));
5708                 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "flags", CTLFLAG_RD,
5709                     &tc->flags, 0, "flags");
5710                 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
5711                     CTLFLAG_RD, &tc->refcount, 0, "references to this class");
5712 #ifdef SBUF_DRAIN
5713                 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
5714                     CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i,
5715                     sysctl_tc_params, "A", "traffic class parameters");
5716 #endif
5717         }
5718
5719         /*
5720          * dev.cxgbe.X.stats.
5721          */
5722         oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
5723             NULL, "port statistics");
5724         children = SYSCTL_CHILDREN(oid);
5725         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
5726             &pi->tx_parse_error, 0,
5727             "# of tx packets with invalid length or # of segments");
5728
5729 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
5730         SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
5731             CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \
5732             sysctl_handle_t4_reg64, "QU", desc)
5733
5734         SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
5735             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
5736         SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
5737             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
5738         SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
5739             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
5740         SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
5741             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
5742         SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
5743             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
5744         SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
5745             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
5746         SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
5747             "# of tx frames in this range",
5748             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
5749         SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
5750             "# of tx frames in this range",
5751             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
5752         SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
5753             "# of tx frames in this range",
5754             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
5755         SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
5756             "# of tx frames in this range",
5757             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
5758         SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
5759             "# of tx frames in this range",
5760             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
5761         SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
5762             "# of tx frames in this range",
5763             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
5764         SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
5765             "# of tx frames in this range",
5766             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
5767         SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
5768             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
5769         SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
5770             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
5771         SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
5772             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
5773         SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
5774             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
5775         SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
5776             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
5777         SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
5778             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
5779         SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
5780             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
5781         SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
5782             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
5783         SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
5784             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
5785         SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
5786             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
5787
5788         SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
5789             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
5790         SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
5791             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
5792         SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
5793             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
5794         SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
5795             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
5796         SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
5797             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
5798         SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
5799             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
5800         SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
5801             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
5802         SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
5803             "# of frames received with bad FCS",
5804             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
5805         SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
5806             "# of frames received with length error",
5807             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
5808         SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
5809             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
5810         SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
5811             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
5812         SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
5813             "# of rx frames in this range",
5814             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
5815         SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
5816             "# of rx frames in this range",
5817             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
5818         SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
5819             "# of rx frames in this range",
5820             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
5821         SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
5822             "# of rx frames in this range",
5823             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
5824         SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
5825             "# of rx frames in this range",
5826             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
5827         SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
5828             "# of rx frames in this range",
5829             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
5830         SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
5831             "# of rx frames in this range",
5832             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
5833         SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
5834             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
5835         SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
5836             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
5837         SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
5838             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
5839         SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
5840             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
5841         SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
5842             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
5843         SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
5844             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
5845         SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
5846             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
5847         SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
5848             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
5849         SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
5850             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
5851
5852 #undef SYSCTL_ADD_T4_REG64
5853
5854 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
5855         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
5856             &pi->stats.name, desc)
5857
5858         /* We get these from port_stats and they may be stale by up to 1s */
5859         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
5860             "# drops due to buffer-group 0 overflows");
5861         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
5862             "# drops due to buffer-group 1 overflows");
5863         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
5864             "# drops due to buffer-group 2 overflows");
5865         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
5866             "# drops due to buffer-group 3 overflows");
5867         SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
5868             "# of buffer-group 0 truncated packets");
5869         SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
5870             "# of buffer-group 1 truncated packets");
5871         SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
5872             "# of buffer-group 2 truncated packets");
5873         SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
5874             "# of buffer-group 3 truncated packets");
5875
5876 #undef SYSCTL_ADD_T4_PORTSTAT
5877 }
5878
5879 static int
5880 sysctl_int_array(SYSCTL_HANDLER_ARGS)
5881 {
5882         int rc, *i, space = 0;
5883         struct sbuf sb;
5884
5885         sbuf_new_for_sysctl(&sb, NULL, 64, req);
5886         for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
5887                 if (space)
5888                         sbuf_printf(&sb, " ");
5889                 sbuf_printf(&sb, "%d", *i);
5890                 space = 1;
5891         }
5892         rc = sbuf_finish(&sb);
5893         sbuf_delete(&sb);
5894         return (rc);
5895 }
5896
5897 static int
5898 sysctl_bitfield(SYSCTL_HANDLER_ARGS)
5899 {
5900         int rc;
5901         struct sbuf *sb;
5902
5903         rc = sysctl_wire_old_buffer(req, 0);
5904         if (rc != 0)
5905                 return(rc);
5906
5907         sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5908         if (sb == NULL)
5909                 return (ENOMEM);
5910
5911         sbuf_printf(sb, "%b", (int)arg2, (char *)arg1);
5912         rc = sbuf_finish(sb);
5913         sbuf_delete(sb);
5914
5915         return (rc);
5916 }
5917
5918 static int
5919 sysctl_btphy(SYSCTL_HANDLER_ARGS)
5920 {
5921         struct port_info *pi = arg1;
5922         int op = arg2;
5923         struct adapter *sc = pi->adapter;
5924         u_int v;
5925         int rc;
5926
5927         rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
5928         if (rc)
5929                 return (rc);
5930         /* XXX: magic numbers */
5931         rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820,
5932             &v);
5933         end_synchronized_op(sc, 0);
5934         if (rc)
5935                 return (rc);
5936         if (op == 0)
5937                 v /= 256;
5938
5939         rc = sysctl_handle_int(oidp, &v, 0, req);
5940         return (rc);
5941 }
5942
5943 static int
5944 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
5945 {
5946         struct vi_info *vi = arg1;
5947         int rc, val;
5948
5949         val = vi->rsrv_noflowq;
5950         rc = sysctl_handle_int(oidp, &val, 0, req);
5951         if (rc != 0 || req->newptr == NULL)
5952                 return (rc);
5953
5954         if ((val >= 1) && (vi->ntxq > 1))
5955                 vi->rsrv_noflowq = 1;
5956         else
5957                 vi->rsrv_noflowq = 0;
5958
5959         return (rc);
5960 }
5961
5962 static int
5963 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
5964 {
5965         struct vi_info *vi = arg1;
5966         struct adapter *sc = vi->pi->adapter;
5967         int idx, rc, i;
5968         struct sge_rxq *rxq;
5969         uint8_t v;
5970
5971         idx = vi->tmr_idx;
5972
5973         rc = sysctl_handle_int(oidp, &idx, 0, req);
5974         if (rc != 0 || req->newptr == NULL)
5975                 return (rc);
5976
5977         if (idx < 0 || idx >= SGE_NTIMERS)
5978                 return (EINVAL);
5979
5980         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5981             "t4tmr");
5982         if (rc)
5983                 return (rc);
5984
5985         v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
5986         for_each_rxq(vi, i, rxq) {
5987 #ifdef atomic_store_rel_8
5988                 atomic_store_rel_8(&rxq->iq.intr_params, v);
5989 #else
5990                 rxq->iq.intr_params = v;
5991 #endif
5992         }
5993         vi->tmr_idx = idx;
5994
5995         end_synchronized_op(sc, LOCK_HELD);
5996         return (0);
5997 }
5998
5999 static int
6000 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
6001 {
6002         struct vi_info *vi = arg1;
6003         struct adapter *sc = vi->pi->adapter;
6004         int idx, rc;
6005
6006         idx = vi->pktc_idx;
6007
6008         rc = sysctl_handle_int(oidp, &idx, 0, req);
6009         if (rc != 0 || req->newptr == NULL)
6010                 return (rc);
6011
6012         if (idx < -1 || idx >= SGE_NCOUNTERS)
6013                 return (EINVAL);
6014
6015         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6016             "t4pktc");
6017         if (rc)
6018                 return (rc);
6019
6020         if (vi->flags & VI_INIT_DONE)
6021                 rc = EBUSY; /* cannot be changed once the queues are created */
6022         else
6023                 vi->pktc_idx = idx;
6024
6025         end_synchronized_op(sc, LOCK_HELD);
6026         return (rc);
6027 }
6028
6029 static int
6030 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
6031 {
6032         struct vi_info *vi = arg1;
6033         struct adapter *sc = vi->pi->adapter;
6034         int qsize, rc;
6035
6036         qsize = vi->qsize_rxq;
6037
6038         rc = sysctl_handle_int(oidp, &qsize, 0, req);
6039         if (rc != 0 || req->newptr == NULL)
6040                 return (rc);
6041
6042         if (qsize < 128 || (qsize & 7))
6043                 return (EINVAL);
6044
6045         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6046             "t4rxqs");
6047         if (rc)
6048                 return (rc);
6049
6050         if (vi->flags & VI_INIT_DONE)
6051                 rc = EBUSY; /* cannot be changed once the queues are created */
6052         else
6053                 vi->qsize_rxq = qsize;
6054
6055         end_synchronized_op(sc, LOCK_HELD);
6056         return (rc);
6057 }
6058
6059 static int
6060 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
6061 {
6062         struct vi_info *vi = arg1;
6063         struct adapter *sc = vi->pi->adapter;
6064         int qsize, rc;
6065
6066         qsize = vi->qsize_txq;
6067
6068         rc = sysctl_handle_int(oidp, &qsize, 0, req);
6069         if (rc != 0 || req->newptr == NULL)
6070                 return (rc);
6071
6072         if (qsize < 128 || qsize > 65536)
6073                 return (EINVAL);
6074
6075         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6076             "t4txqs");
6077         if (rc)
6078                 return (rc);
6079
6080         if (vi->flags & VI_INIT_DONE)
6081                 rc = EBUSY; /* cannot be changed once the queues are created */
6082         else
6083                 vi->qsize_txq = qsize;
6084
6085         end_synchronized_op(sc, LOCK_HELD);
6086         return (rc);
6087 }
6088
6089 static int
6090 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
6091 {
6092         struct port_info *pi = arg1;
6093         struct adapter *sc = pi->adapter;
6094         struct link_config *lc = &pi->link_cfg;
6095         int rc;
6096
6097         if (req->newptr == NULL) {
6098                 struct sbuf *sb;
6099                 static char *bits = "\20\1PAUSE_RX\2PAUSE_TX";
6100
6101                 rc = sysctl_wire_old_buffer(req, 0);
6102                 if (rc != 0)
6103                         return(rc);
6104
6105                 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6106                 if (sb == NULL)
6107                         return (ENOMEM);
6108
6109                 sbuf_printf(sb, "%b", lc->fc & (PAUSE_TX | PAUSE_RX), bits);
6110                 rc = sbuf_finish(sb);
6111                 sbuf_delete(sb);
6112         } else {
6113                 char s[2];
6114                 int n;
6115
6116                 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX));
6117                 s[1] = 0;
6118
6119                 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
6120                 if (rc != 0)
6121                         return(rc);
6122
6123                 if (s[1] != 0)
6124                         return (EINVAL);
6125                 if (s[0] < '0' || s[0] > '9')
6126                         return (EINVAL);        /* not a number */
6127                 n = s[0] - '0';
6128                 if (n & ~(PAUSE_TX | PAUSE_RX))
6129                         return (EINVAL);        /* some other bit is set too */
6130
6131                 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6132                     "t4PAUSE");
6133                 if (rc)
6134                         return (rc);
6135                 if ((lc->requested_fc & (PAUSE_TX | PAUSE_RX)) != n) {
6136                         lc->requested_fc &= ~(PAUSE_TX | PAUSE_RX);
6137                         lc->requested_fc |= n;
6138                         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6139                         if (rc == 0) {
6140                                 lc->fc = lc->requested_fc;
6141                         }
6142                 }
6143                 end_synchronized_op(sc, 0);
6144         }
6145
6146         return (rc);
6147 }
6148
6149 static int
6150 sysctl_fec(SYSCTL_HANDLER_ARGS)
6151 {
6152         struct port_info *pi = arg1;
6153         struct adapter *sc = pi->adapter;
6154         struct link_config *lc = &pi->link_cfg;
6155         int rc;
6156
6157         if (req->newptr == NULL) {
6158                 struct sbuf *sb;
6159                 static char *bits = "\20\1RS\2BASER_RS\3RESERVED";
6160
6161                 rc = sysctl_wire_old_buffer(req, 0);
6162                 if (rc != 0)
6163                         return(rc);
6164
6165                 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6166                 if (sb == NULL)
6167                         return (ENOMEM);
6168
6169                 sbuf_printf(sb, "%b", lc->fec & M_FW_PORT_CAP_FEC, bits);
6170                 rc = sbuf_finish(sb);
6171                 sbuf_delete(sb);
6172         } else {
6173                 char s[2];
6174                 int n;
6175
6176                 s[0] = '0' + (lc->requested_fec & M_FW_PORT_CAP_FEC);
6177                 s[1] = 0;
6178
6179                 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
6180                 if (rc != 0)
6181                         return(rc);
6182
6183                 if (s[1] != 0)
6184                         return (EINVAL);
6185                 if (s[0] < '0' || s[0] > '9')
6186                         return (EINVAL);        /* not a number */
6187                 n = s[0] - '0';
6188                 if (n & ~M_FW_PORT_CAP_FEC)
6189                         return (EINVAL);        /* some other bit is set too */
6190
6191                 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6192                     "t4fec");
6193                 if (rc)
6194                         return (rc);
6195                 if ((lc->requested_fec & M_FW_PORT_CAP_FEC) != n) {
6196                         lc->requested_fec = n &
6197                             G_FW_PORT_CAP_FEC(lc->supported);
6198                         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6199                         if (rc == 0) {
6200                                 lc->fec = lc->requested_fec;
6201                         }
6202                 }
6203                 end_synchronized_op(sc, 0);
6204         }
6205
6206         return (rc);
6207 }
6208
6209 static int
6210 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
6211 {
6212         struct port_info *pi = arg1;
6213         struct adapter *sc = pi->adapter;
6214         struct link_config *lc = &pi->link_cfg;
6215         int rc, val, old;
6216
6217         if (lc->supported & FW_PORT_CAP_ANEG)
6218                 val = lc->requested_aneg == AUTONEG_ENABLE ? 1 : 0;
6219         else
6220                 val = -1;
6221         rc = sysctl_handle_int(oidp, &val, 0, req);
6222         if (rc != 0 || req->newptr == NULL)
6223                 return (rc);
6224         if ((lc->supported & FW_PORT_CAP_ANEG) == 0)
6225                 return (ENOTSUP);
6226
6227         if (val == 0)
6228                 val = AUTONEG_DISABLE;
6229         else if (val == 1)
6230                 val = AUTONEG_ENABLE;
6231         else
6232                 return (EINVAL);
6233         if (lc->requested_aneg == val)
6234                 return (0);     /* no change */
6235
6236         rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6237             "t4aneg");
6238         if (rc)
6239                 return (rc);
6240         old = lc->requested_aneg;
6241         lc->requested_aneg = val;
6242         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6243         if (rc != 0)
6244                 lc->requested_aneg = old;
6245         end_synchronized_op(sc, 0);
6246         return (rc);
6247 }
6248
6249 static int
6250 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
6251 {
6252         struct adapter *sc = arg1;
6253         int reg = arg2;
6254         uint64_t val;
6255
6256         val = t4_read_reg64(sc, reg);
6257
6258         return (sysctl_handle_64(oidp, &val, 0, req));
6259 }
6260
6261 static int
6262 sysctl_temperature(SYSCTL_HANDLER_ARGS)
6263 {
6264         struct adapter *sc = arg1;
6265         int rc, t;
6266         uint32_t param, val;
6267
6268         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
6269         if (rc)
6270                 return (rc);
6271         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6272             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
6273             V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
6274         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
6275         end_synchronized_op(sc, 0);
6276         if (rc)
6277                 return (rc);
6278
6279         /* unknown is returned as 0 but we display -1 in that case */
6280         t = val == 0 ? -1 : val;
6281
6282         rc = sysctl_handle_int(oidp, &t, 0, req);
6283         return (rc);
6284 }
6285
6286 #ifdef SBUF_DRAIN
6287 static int
6288 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
6289 {
6290         struct adapter *sc = arg1;
6291         struct sbuf *sb;
6292         int rc, i;
6293         uint16_t incr[NMTUS][NCCTRL_WIN];
6294         static const char *dec_fac[] = {
6295                 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
6296                 "0.9375"
6297         };
6298
6299         rc = sysctl_wire_old_buffer(req, 0);
6300         if (rc != 0)
6301                 return (rc);
6302
6303         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6304         if (sb == NULL)
6305                 return (ENOMEM);
6306
6307         t4_read_cong_tbl(sc, incr);
6308
6309         for (i = 0; i < NCCTRL_WIN; ++i) {
6310                 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
6311                     incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
6312                     incr[5][i], incr[6][i], incr[7][i]);
6313                 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
6314                     incr[8][i], incr[9][i], incr[10][i], incr[11][i],
6315                     incr[12][i], incr[13][i], incr[14][i], incr[15][i],
6316                     sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
6317         }
6318
6319         rc = sbuf_finish(sb);
6320         sbuf_delete(sb);
6321
6322         return (rc);
6323 }
6324
6325 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
6326         "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",   /* ibq's */
6327         "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
6328         "SGE0-RX", "SGE1-RX"    /* additional obq's (T5 onwards) */
6329 };
6330
6331 static int
6332 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
6333 {
6334         struct adapter *sc = arg1;
6335         struct sbuf *sb;
6336         int rc, i, n, qid = arg2;
6337         uint32_t *buf, *p;
6338         char *qtype;
6339         u_int cim_num_obq = sc->chip_params->cim_num_obq;
6340
6341         KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
6342             ("%s: bad qid %d\n", __func__, qid));
6343
6344         if (qid < CIM_NUM_IBQ) {
6345                 /* inbound queue */
6346                 qtype = "IBQ";
6347                 n = 4 * CIM_IBQ_SIZE;
6348                 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
6349                 rc = t4_read_cim_ibq(sc, qid, buf, n);
6350         } else {
6351                 /* outbound queue */
6352                 qtype = "OBQ";
6353                 qid -= CIM_NUM_IBQ;
6354                 n = 4 * cim_num_obq * CIM_OBQ_SIZE;
6355                 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
6356                 rc = t4_read_cim_obq(sc, qid, buf, n);
6357         }
6358
6359         if (rc < 0) {
6360                 rc = -rc;
6361                 goto done;
6362         }
6363         n = rc * sizeof(uint32_t);      /* rc has # of words actually read */
6364
6365         rc = sysctl_wire_old_buffer(req, 0);
6366         if (rc != 0)
6367                 goto done;
6368
6369         sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
6370         if (sb == NULL) {
6371                 rc = ENOMEM;
6372                 goto done;
6373         }
6374
6375         sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
6376         for (i = 0, p = buf; i < n; i += 16, p += 4)
6377                 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
6378                     p[2], p[3]);
6379
6380         rc = sbuf_finish(sb);
6381         sbuf_delete(sb);
6382 done:
6383         free(buf, M_CXGBE);
6384         return (rc);
6385 }
6386
6387 static int
6388 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
6389 {
6390         struct adapter *sc = arg1;
6391         u_int cfg;
6392         struct sbuf *sb;
6393         uint32_t *buf, *p;
6394         int rc;
6395
6396         MPASS(chip_id(sc) <= CHELSIO_T5);
6397
6398         rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
6399         if (rc != 0)
6400                 return (rc);
6401
6402         rc = sysctl_wire_old_buffer(req, 0);
6403         if (rc != 0)
6404                 return (rc);
6405
6406         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6407         if (sb == NULL)
6408                 return (ENOMEM);
6409
6410         buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
6411             M_ZERO | M_WAITOK);
6412
6413         rc = -t4_cim_read_la(sc, buf, NULL);
6414         if (rc != 0)
6415                 goto done;
6416
6417         sbuf_printf(sb, "Status   Data      PC%s",
6418             cfg & F_UPDBGLACAPTPCONLY ? "" :
6419             "     LS0Stat  LS0Addr             LS0Data");
6420
6421         for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
6422                 if (cfg & F_UPDBGLACAPTPCONLY) {
6423                         sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
6424                             p[6], p[7]);
6425                         sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
6426                             (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
6427                             p[4] & 0xff, p[5] >> 8);
6428                         sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
6429                             (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
6430                             p[1] & 0xf, p[2] >> 4);
6431                 } else {
6432                         sbuf_printf(sb,
6433                             "\n  %02x   %x%07x %x%07x %08x %08x "
6434                             "%08x%08x%08x%08x",
6435                             (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
6436                             p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
6437                             p[6], p[7]);
6438                 }
6439         }
6440
6441         rc = sbuf_finish(sb);
6442         sbuf_delete(sb);
6443 done:
6444         free(buf, M_CXGBE);
6445         return (rc);
6446 }
6447
6448 static int
6449 sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS)
6450 {
6451         struct adapter *sc = arg1;
6452         u_int cfg;
6453         struct sbuf *sb;
6454         uint32_t *buf, *p;
6455         int rc;
6456
6457         MPASS(chip_id(sc) > CHELSIO_T5);
6458
6459         rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
6460         if (rc != 0)
6461                 return (rc);
6462
6463         rc = sysctl_wire_old_buffer(req, 0);
6464         if (rc != 0)
6465                 return (rc);
6466
6467         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6468         if (sb == NULL)
6469                 return (ENOMEM);
6470
6471         buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
6472             M_ZERO | M_WAITOK);
6473
6474         rc = -t4_cim_read_la(sc, buf, NULL);
6475         if (rc != 0)
6476                 goto done;
6477
6478         sbuf_printf(sb, "Status   Inst    Data      PC%s",
6479             cfg & F_UPDBGLACAPTPCONLY ? "" :
6480             "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
6481
6482         for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
6483                 if (cfg & F_UPDBGLACAPTPCONLY) {
6484                         sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
6485                             p[3] & 0xff, p[2], p[1], p[0]);
6486                         sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
6487                             (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
6488                             p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
6489                         sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
6490                             (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
6491                             p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
6492                             p[6] >> 16);
6493                 } else {
6494                         sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
6495                             "%08x %08x %08x %08x %08x %08x",
6496                             (p[9] >> 16) & 0xff,
6497                             p[9] & 0xffff, p[8] >> 16,
6498                             p[8] & 0xffff, p[7] >> 16,
6499                             p[7] & 0xffff, p[6] >> 16,
6500                             p[2], p[1], p[0], p[5], p[4], p[3]);
6501                 }
6502         }
6503
6504         rc = sbuf_finish(sb);
6505         sbuf_delete(sb);
6506 done:
6507         free(buf, M_CXGBE);
6508         return (rc);
6509 }
6510
6511 static int
6512 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
6513 {
6514         struct adapter *sc = arg1;
6515         u_int i;
6516         struct sbuf *sb;
6517         uint32_t *buf, *p;
6518         int rc;
6519
6520         rc = sysctl_wire_old_buffer(req, 0);
6521         if (rc != 0)
6522                 return (rc);
6523
6524         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6525         if (sb == NULL)
6526                 return (ENOMEM);
6527
6528         buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
6529             M_ZERO | M_WAITOK);
6530
6531         t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
6532         p = buf;
6533
6534         for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
6535                 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
6536                     p[1], p[0]);
6537         }
6538
6539         sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
6540         for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
6541                 sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
6542                     (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
6543                     (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
6544                     (p[1] >> 2) | ((p[2] & 3) << 30),
6545                     (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
6546                     p[0] & 1);
6547         }
6548
6549         rc = sbuf_finish(sb);
6550         sbuf_delete(sb);
6551         free(buf, M_CXGBE);
6552         return (rc);
6553 }
6554
6555 static int
6556 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
6557 {
6558         struct adapter *sc = arg1;
6559         u_int i;
6560         struct sbuf *sb;
6561         uint32_t *buf, *p;
6562         int rc;
6563
6564         rc = sysctl_wire_old_buffer(req, 0);
6565         if (rc != 0)
6566                 return (rc);
6567
6568         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6569         if (sb == NULL)
6570                 return (ENOMEM);
6571
6572         buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
6573             M_ZERO | M_WAITOK);
6574
6575         t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
6576         p = buf;
6577
6578         sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
6579         for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
6580                 sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
6581                     (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
6582                     p[4], p[3], p[2], p[1], p[0]);
6583         }
6584
6585         sbuf_printf(sb, "\n\nCntl ID               Data");
6586         for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
6587                 sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
6588                     (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
6589         }
6590
6591         rc = sbuf_finish(sb);
6592         sbuf_delete(sb);
6593         free(buf, M_CXGBE);
6594         return (rc);
6595 }
6596
6597 static int
6598 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
6599 {
6600         struct adapter *sc = arg1;
6601         struct sbuf *sb;
6602         int rc, i;
6603         uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
6604         uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
6605         uint16_t thres[CIM_NUM_IBQ];
6606         uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
6607         uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
6608         u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
6609
6610         cim_num_obq = sc->chip_params->cim_num_obq;
6611         if (is_t4(sc)) {
6612                 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
6613                 obq_rdaddr = A_UP_OBQ_0_REALADDR;
6614         } else {
6615                 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
6616                 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
6617         }
6618         nq = CIM_NUM_IBQ + cim_num_obq;
6619
6620         rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
6621         if (rc == 0)
6622                 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr);
6623         if (rc != 0)
6624                 return (rc);
6625
6626         t4_read_cimq_cfg(sc, base, size, thres);
6627
6628         rc = sysctl_wire_old_buffer(req, 0);
6629         if (rc != 0)
6630                 return (rc);
6631
6632         sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
6633         if (sb == NULL)
6634                 return (ENOMEM);
6635
6636         sbuf_printf(sb,
6637             "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
6638
6639         for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
6640                 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
6641                     qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
6642                     G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
6643                     G_QUEREMFLITS(p[2]) * 16);
6644         for ( ; i < nq; i++, p += 4, wr += 2)
6645                 sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
6646                     base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
6647                     wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
6648                     G_QUEREMFLITS(p[2]) * 16);
6649
6650         rc = sbuf_finish(sb);
6651         sbuf_delete(sb);
6652
6653         return (rc);
6654 }
6655
6656 static int
6657 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
6658 {
6659         struct adapter *sc = arg1;
6660         struct sbuf *sb;
6661         int rc;
6662         struct tp_cpl_stats stats;
6663
6664         rc = sysctl_wire_old_buffer(req, 0);
6665         if (rc != 0)
6666                 return (rc);
6667
6668         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6669         if (sb == NULL)
6670                 return (ENOMEM);
6671
6672         mtx_lock(&sc->reg_lock);
6673         t4_tp_get_cpl_stats(sc, &stats, 0);
6674         mtx_unlock(&sc->reg_lock);
6675
6676         if (sc->chip_params->nchan > 2) {
6677                 sbuf_printf(sb, "                 channel 0  channel 1"
6678                     "  channel 2  channel 3");
6679                 sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
6680                     stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
6681                 sbuf_printf(sb, "\nCPL responses:   %10u %10u %10u %10u",
6682                     stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
6683         } else {
6684                 sbuf_printf(sb, "                 channel 0  channel 1");
6685                 sbuf_printf(sb, "\nCPL requests:   %10u %10u",
6686                     stats.req[0], stats.req[1]);
6687                 sbuf_printf(sb, "\nCPL responses:   %10u %10u",
6688                     stats.rsp[0], stats.rsp[1]);
6689         }
6690
6691         rc = sbuf_finish(sb);
6692         sbuf_delete(sb);
6693
6694         return (rc);
6695 }
6696
6697 static int
6698 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
6699 {
6700         struct adapter *sc = arg1;
6701         struct sbuf *sb;
6702         int rc;
6703         struct tp_usm_stats stats;
6704
6705         rc = sysctl_wire_old_buffer(req, 0);
6706         if (rc != 0)
6707                 return(rc);
6708
6709         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6710         if (sb == NULL)
6711                 return (ENOMEM);
6712
6713         t4_get_usm_stats(sc, &stats, 1);
6714
6715         sbuf_printf(sb, "Frames: %u\n", stats.frames);
6716         sbuf_printf(sb, "Octets: %ju\n", stats.octets);
6717         sbuf_printf(sb, "Drops:  %u", stats.drops);
6718
6719         rc = sbuf_finish(sb);
6720         sbuf_delete(sb);
6721
6722         return (rc);
6723 }
6724
6725 static const char * const devlog_level_strings[] = {
6726         [FW_DEVLOG_LEVEL_EMERG]         = "EMERG",
6727         [FW_DEVLOG_LEVEL_CRIT]          = "CRIT",
6728         [FW_DEVLOG_LEVEL_ERR]           = "ERR",
6729         [FW_DEVLOG_LEVEL_NOTICE]        = "NOTICE",
6730         [FW_DEVLOG_LEVEL_INFO]          = "INFO",
6731         [FW_DEVLOG_LEVEL_DEBUG]         = "DEBUG"
6732 };
6733
6734 static const char * const devlog_facility_strings[] = {
6735         [FW_DEVLOG_FACILITY_CORE]       = "CORE",
6736         [FW_DEVLOG_FACILITY_CF]         = "CF",
6737         [FW_DEVLOG_FACILITY_SCHED]      = "SCHED",
6738         [FW_DEVLOG_FACILITY_TIMER]      = "TIMER",
6739         [FW_DEVLOG_FACILITY_RES]        = "RES",
6740         [FW_DEVLOG_FACILITY_HW]         = "HW",
6741         [FW_DEVLOG_FACILITY_FLR]        = "FLR",
6742         [FW_DEVLOG_FACILITY_DMAQ]       = "DMAQ",
6743         [FW_DEVLOG_FACILITY_PHY]        = "PHY",
6744         [FW_DEVLOG_FACILITY_MAC]        = "MAC",
6745         [FW_DEVLOG_FACILITY_PORT]       = "PORT",
6746         [FW_DEVLOG_FACILITY_VI]         = "VI",
6747         [FW_DEVLOG_FACILITY_FILTER]     = "FILTER",
6748         [FW_DEVLOG_FACILITY_ACL]        = "ACL",
6749         [FW_DEVLOG_FACILITY_TM]         = "TM",
6750         [FW_DEVLOG_FACILITY_QFC]        = "QFC",
6751         [FW_DEVLOG_FACILITY_DCB]        = "DCB",
6752         [FW_DEVLOG_FACILITY_ETH]        = "ETH",
6753         [FW_DEVLOG_FACILITY_OFLD]       = "OFLD",
6754         [FW_DEVLOG_FACILITY_RI]         = "RI",
6755         [FW_DEVLOG_FACILITY_ISCSI]      = "ISCSI",
6756         [FW_DEVLOG_FACILITY_FCOE]       = "FCOE",
6757         [FW_DEVLOG_FACILITY_FOISCSI]    = "FOISCSI",
6758         [FW_DEVLOG_FACILITY_FOFCOE]     = "FOFCOE",
6759         [FW_DEVLOG_FACILITY_CHNET]      = "CHNET",
6760 };
6761
6762 static int
6763 sysctl_devlog(SYSCTL_HANDLER_ARGS)
6764 {
6765         struct adapter *sc = arg1;
6766         struct devlog_params *dparams = &sc->params.devlog;
6767         struct fw_devlog_e *buf, *e;
6768         int i, j, rc, nentries, first = 0;
6769         struct sbuf *sb;
6770         uint64_t ftstamp = UINT64_MAX;
6771
6772         if (dparams->addr == 0)
6773                 return (ENXIO);
6774
6775         buf = malloc(dparams->size, M_CXGBE, M_NOWAIT);
6776         if (buf == NULL)
6777                 return (ENOMEM);
6778
6779         rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size);
6780         if (rc != 0)
6781                 goto done;
6782
6783         nentries = dparams->size / sizeof(struct fw_devlog_e);
6784         for (i = 0; i < nentries; i++) {
6785                 e = &buf[i];
6786
6787                 if (e->timestamp == 0)
6788                         break;  /* end */
6789
6790                 e->timestamp = be64toh(e->timestamp);
6791                 e->seqno = be32toh(e->seqno);
6792                 for (j = 0; j < 8; j++)
6793                         e->params[j] = be32toh(e->params[j]);
6794
6795                 if (e->timestamp < ftstamp) {
6796                         ftstamp = e->timestamp;
6797                         first = i;
6798                 }
6799         }
6800
6801         if (buf[first].timestamp == 0)
6802                 goto done;      /* nothing in the log */
6803
6804         rc = sysctl_wire_old_buffer(req, 0);
6805         if (rc != 0)
6806                 goto done;
6807
6808         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6809         if (sb == NULL) {
6810                 rc = ENOMEM;
6811                 goto done;
6812         }
6813         sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
6814             "Seq#", "Tstamp", "Level", "Facility", "Message");
6815
6816         i = first;
6817         do {
6818                 e = &buf[i];
6819                 if (e->timestamp == 0)
6820                         break;  /* end */
6821
6822                 sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
6823                     e->seqno, e->timestamp,
6824                     (e->level < nitems(devlog_level_strings) ?
6825                         devlog_level_strings[e->level] : "UNKNOWN"),
6826                     (e->facility < nitems(devlog_facility_strings) ?
6827                         devlog_facility_strings[e->facility] : "UNKNOWN"));
6828                 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
6829                     e->params[2], e->params[3], e->params[4],
6830                     e->params[5], e->params[6], e->params[7]);
6831
6832                 if (++i == nentries)
6833                         i = 0;
6834         } while (i != first);
6835
6836         rc = sbuf_finish(sb);
6837         sbuf_delete(sb);
6838 done:
6839         free(buf, M_CXGBE);
6840         return (rc);
6841 }
6842
6843 static int
6844 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
6845 {
6846         struct adapter *sc = arg1;
6847         struct sbuf *sb;
6848         int rc;
6849         struct tp_fcoe_stats stats[MAX_NCHAN];
6850         int i, nchan = sc->chip_params->nchan;
6851
6852         rc = sysctl_wire_old_buffer(req, 0);
6853         if (rc != 0)
6854                 return (rc);
6855
6856         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6857         if (sb == NULL)
6858                 return (ENOMEM);
6859
6860         for (i = 0; i < nchan; i++)
6861                 t4_get_fcoe_stats(sc, i, &stats[i], 1);
6862
6863         if (nchan > 2) {
6864                 sbuf_printf(sb, "                   channel 0        channel 1"
6865                     "        channel 2        channel 3");
6866                 sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
6867                     stats[0].octets_ddp, stats[1].octets_ddp,
6868                     stats[2].octets_ddp, stats[3].octets_ddp);
6869                 sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
6870                     stats[0].frames_ddp, stats[1].frames_ddp,
6871                     stats[2].frames_ddp, stats[3].frames_ddp);
6872                 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
6873                     stats[0].frames_drop, stats[1].frames_drop,
6874                     stats[2].frames_drop, stats[3].frames_drop);
6875         } else {
6876                 sbuf_printf(sb, "                   channel 0        channel 1");
6877                 sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
6878                     stats[0].octets_ddp, stats[1].octets_ddp);
6879                 sbuf_printf(sb, "\nframesDDP:  %16u %16u",
6880                     stats[0].frames_ddp, stats[1].frames_ddp);
6881                 sbuf_printf(sb, "\nframesDrop: %16u %16u",
6882                     stats[0].frames_drop, stats[1].frames_drop);
6883         }
6884
6885         rc = sbuf_finish(sb);
6886         sbuf_delete(sb);
6887
6888         return (rc);
6889 }
6890
6891 static int
6892 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
6893 {
6894         struct adapter *sc = arg1;
6895         struct sbuf *sb;
6896         int rc, i;
6897         unsigned int map, kbps, ipg, mode;
6898         unsigned int pace_tab[NTX_SCHED];
6899
6900         rc = sysctl_wire_old_buffer(req, 0);
6901         if (rc != 0)
6902                 return (rc);
6903
6904         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6905         if (sb == NULL)
6906                 return (ENOMEM);
6907
6908         map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
6909         mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
6910         t4_read_pace_tbl(sc, pace_tab);
6911
6912         sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
6913             "Class IPG (0.1 ns)   Flow IPG (us)");
6914
6915         for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
6916                 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
6917                 sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
6918                     (mode & (1 << i)) ? "flow" : "class", map & 3);
6919                 if (kbps)
6920                         sbuf_printf(sb, "%9u     ", kbps);
6921                 else
6922                         sbuf_printf(sb, " disabled     ");
6923
6924                 if (ipg)
6925                         sbuf_printf(sb, "%13u        ", ipg);
6926                 else
6927                         sbuf_printf(sb, "     disabled        ");
6928
6929                 if (pace_tab[i])
6930                         sbuf_printf(sb, "%10u", pace_tab[i]);
6931                 else
6932                         sbuf_printf(sb, "  disabled");
6933         }
6934
6935         rc = sbuf_finish(sb);
6936         sbuf_delete(sb);
6937
6938         return (rc);
6939 }
6940
6941 static int
6942 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
6943 {
6944         struct adapter *sc = arg1;
6945         struct sbuf *sb;
6946         int rc, i, j;
6947         uint64_t *p0, *p1;
6948         struct lb_port_stats s[2];
6949         static const char *stat_name[] = {
6950                 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
6951                 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
6952                 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
6953                 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
6954                 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
6955                 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
6956                 "BG2FramesTrunc:", "BG3FramesTrunc:"
6957         };
6958
6959         rc = sysctl_wire_old_buffer(req, 0);
6960         if (rc != 0)
6961                 return (rc);
6962
6963         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6964         if (sb == NULL)
6965                 return (ENOMEM);
6966
6967         memset(s, 0, sizeof(s));
6968
6969         for (i = 0; i < sc->chip_params->nchan; i += 2) {
6970                 t4_get_lb_stats(sc, i, &s[0]);
6971                 t4_get_lb_stats(sc, i + 1, &s[1]);
6972
6973                 p0 = &s[0].octets;
6974                 p1 = &s[1].octets;
6975                 sbuf_printf(sb, "%s                       Loopback %u"
6976                     "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
6977
6978                 for (j = 0; j < nitems(stat_name); j++)
6979                         sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
6980                                    *p0++, *p1++);
6981         }
6982
6983         rc = sbuf_finish(sb);
6984         sbuf_delete(sb);
6985
6986         return (rc);
6987 }
6988
6989 static int
6990 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
6991 {
6992         int rc = 0;
6993         struct port_info *pi = arg1;
6994         struct link_config *lc = &pi->link_cfg;
6995         struct sbuf *sb;
6996
6997         rc = sysctl_wire_old_buffer(req, 0);
6998         if (rc != 0)
6999                 return(rc);
7000         sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
7001         if (sb == NULL)
7002                 return (ENOMEM);
7003
7004         if (lc->link_ok || lc->link_down_rc == 255)
7005                 sbuf_printf(sb, "n/a");
7006         else
7007                 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
7008
7009         rc = sbuf_finish(sb);
7010         sbuf_delete(sb);
7011
7012         return (rc);
7013 }
7014
7015 struct mem_desc {
7016         unsigned int base;
7017         unsigned int limit;
7018         unsigned int idx;
7019 };
7020
7021 static int
7022 mem_desc_cmp(const void *a, const void *b)
7023 {
7024         return ((const struct mem_desc *)a)->base -
7025                ((const struct mem_desc *)b)->base;
7026 }
7027
7028 static void
7029 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
7030     unsigned int to)
7031 {
7032         unsigned int size;
7033
7034         if (from == to)
7035                 return;
7036
7037         size = to - from + 1;
7038         if (size == 0)
7039                 return;
7040
7041         /* XXX: need humanize_number(3) in libkern for a more readable 'size' */
7042         sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
7043 }
7044
7045 static int
7046 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
7047 {
7048         struct adapter *sc = arg1;
7049         struct sbuf *sb;
7050         int rc, i, n;
7051         uint32_t lo, hi, used, alloc;
7052         static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"};
7053         static const char *region[] = {
7054                 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
7055                 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
7056                 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
7057                 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
7058                 "RQUDP region:", "PBL region:", "TXPBL region:",
7059                 "DBVFIFO region:", "ULPRX state:", "ULPTX state:",
7060                 "On-chip queues:"
7061         };
7062         struct mem_desc avail[4];
7063         struct mem_desc mem[nitems(region) + 3];        /* up to 3 holes */
7064         struct mem_desc *md = mem;
7065
7066         rc = sysctl_wire_old_buffer(req, 0);
7067         if (rc != 0)
7068                 return (rc);
7069
7070         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7071         if (sb == NULL)
7072                 return (ENOMEM);
7073
7074         for (i = 0; i < nitems(mem); i++) {
7075                 mem[i].limit = 0;
7076                 mem[i].idx = i;
7077         }
7078
7079         /* Find and sort the populated memory ranges */
7080         i = 0;
7081         lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
7082         if (lo & F_EDRAM0_ENABLE) {
7083                 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
7084                 avail[i].base = G_EDRAM0_BASE(hi) << 20;
7085                 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
7086                 avail[i].idx = 0;
7087                 i++;
7088         }
7089         if (lo & F_EDRAM1_ENABLE) {
7090                 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
7091                 avail[i].base = G_EDRAM1_BASE(hi) << 20;
7092                 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
7093                 avail[i].idx = 1;
7094                 i++;
7095         }
7096         if (lo & F_EXT_MEM_ENABLE) {
7097                 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
7098                 avail[i].base = G_EXT_MEM_BASE(hi) << 20;
7099                 avail[i].limit = avail[i].base +
7100                     (G_EXT_MEM_SIZE(hi) << 20);
7101                 avail[i].idx = is_t5(sc) ? 3 : 2;       /* Call it MC0 for T5 */
7102                 i++;
7103         }
7104         if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
7105                 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
7106                 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
7107                 avail[i].limit = avail[i].base +
7108                     (G_EXT_MEM1_SIZE(hi) << 20);
7109                 avail[i].idx = 4;
7110                 i++;
7111         }
7112         if (!i)                                    /* no memory available */
7113                 return 0;
7114         qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
7115
7116         (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
7117         (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
7118         (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
7119         (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
7120         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
7121         (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
7122         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
7123         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
7124         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
7125
7126         /* the next few have explicit upper bounds */
7127         md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
7128         md->limit = md->base - 1 +
7129                     t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
7130                     G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
7131         md++;
7132
7133         md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
7134         md->limit = md->base - 1 +
7135                     t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
7136                     G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
7137         md++;
7138
7139         if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
7140                 if (chip_id(sc) <= CHELSIO_T5)
7141                         md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
7142                 else
7143                         md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
7144                 md->limit = 0;
7145         } else {
7146                 md->base = 0;
7147                 md->idx = nitems(region);  /* hide it */
7148         }
7149         md++;
7150
7151 #define ulp_region(reg) \
7152         md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
7153         (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
7154
7155         ulp_region(RX_ISCSI);
7156         ulp_region(RX_TDDP);
7157         ulp_region(TX_TPT);
7158         ulp_region(RX_STAG);
7159         ulp_region(RX_RQ);
7160         ulp_region(RX_RQUDP);
7161         ulp_region(RX_PBL);
7162         ulp_region(TX_PBL);
7163 #undef ulp_region
7164
7165         md->base = 0;
7166         md->idx = nitems(region);
7167         if (!is_t4(sc)) {
7168                 uint32_t size = 0;
7169                 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
7170                 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
7171
7172                 if (is_t5(sc)) {
7173                         if (sge_ctrl & F_VFIFO_ENABLE)
7174                                 size = G_DBVFIFO_SIZE(fifo_size);
7175                 } else
7176                         size = G_T6_DBVFIFO_SIZE(fifo_size);
7177
7178                 if (size) {
7179                         md->base = G_BASEADDR(t4_read_reg(sc,
7180                             A_SGE_DBVFIFO_BADDR));
7181                         md->limit = md->base + (size << 2) - 1;
7182                 }
7183         }
7184         md++;
7185
7186         md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
7187         md->limit = 0;
7188         md++;
7189         md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
7190         md->limit = 0;
7191         md++;
7192
7193         md->base = sc->vres.ocq.start;
7194         if (sc->vres.ocq.size)
7195                 md->limit = md->base + sc->vres.ocq.size - 1;
7196         else
7197                 md->idx = nitems(region);  /* hide it */
7198         md++;
7199
7200         /* add any address-space holes, there can be up to 3 */
7201         for (n = 0; n < i - 1; n++)
7202                 if (avail[n].limit < avail[n + 1].base)
7203                         (md++)->base = avail[n].limit;
7204         if (avail[n].limit)
7205                 (md++)->base = avail[n].limit;
7206
7207         n = md - mem;
7208         qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
7209
7210         for (lo = 0; lo < i; lo++)
7211                 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
7212                                 avail[lo].limit - 1);
7213
7214         sbuf_printf(sb, "\n");
7215         for (i = 0; i < n; i++) {
7216                 if (mem[i].idx >= nitems(region))
7217                         continue;                        /* skip holes */
7218                 if (!mem[i].limit)
7219                         mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
7220                 mem_region_show(sb, region[mem[i].idx], mem[i].base,
7221                                 mem[i].limit);
7222         }
7223
7224         sbuf_printf(sb, "\n");
7225         lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
7226         hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
7227         mem_region_show(sb, "uP RAM:", lo, hi);
7228
7229         lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
7230         hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
7231         mem_region_show(sb, "uP Extmem2:", lo, hi);
7232
7233         lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
7234         sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
7235                    G_PMRXMAXPAGE(lo),
7236                    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
7237                    (lo & F_PMRXNUMCHN) ? 2 : 1);
7238
7239         lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
7240         hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
7241         sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
7242                    G_PMTXMAXPAGE(lo),
7243                    hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
7244                    hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
7245         sbuf_printf(sb, "%u p-structs\n",
7246                    t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
7247
7248         for (i = 0; i < 4; i++) {
7249                 if (chip_id(sc) > CHELSIO_T5)
7250                         lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
7251                 else
7252                         lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
7253                 if (is_t5(sc)) {
7254                         used = G_T5_USED(lo);
7255                         alloc = G_T5_ALLOC(lo);
7256                 } else {
7257                         used = G_USED(lo);
7258                         alloc = G_ALLOC(lo);
7259                 }
7260                 /* For T6 these are MAC buffer groups */
7261                 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
7262                     i, used, alloc);
7263         }
7264         for (i = 0; i < sc->chip_params->nchan; i++) {
7265                 if (chip_id(sc) > CHELSIO_T5)
7266                         lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
7267                 else
7268                         lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
7269                 if (is_t5(sc)) {
7270                         used = G_T5_USED(lo);
7271                         alloc = G_T5_ALLOC(lo);
7272                 } else {
7273                         used = G_USED(lo);
7274                         alloc = G_ALLOC(lo);
7275                 }
7276                 /* For T6 these are MAC buffer groups */
7277                 sbuf_printf(sb,
7278                     "\nLoopback %d using %u pages out of %u allocated",
7279                     i, used, alloc);
7280         }
7281
7282         rc = sbuf_finish(sb);
7283         sbuf_delete(sb);
7284
7285         return (rc);
7286 }
7287
7288 static inline void
7289 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
7290 {
7291         *mask = x | y;
7292         y = htobe64(y);
7293         memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
7294 }
7295
7296 static int
7297 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
7298 {
7299         struct adapter *sc = arg1;
7300         struct sbuf *sb;
7301         int rc, i;
7302
7303         MPASS(chip_id(sc) <= CHELSIO_T5);
7304
7305         rc = sysctl_wire_old_buffer(req, 0);
7306         if (rc != 0)
7307                 return (rc);
7308
7309         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7310         if (sb == NULL)
7311                 return (ENOMEM);
7312
7313         sbuf_printf(sb,
7314             "Idx  Ethernet address     Mask     Vld Ports PF"
7315             "  VF              Replication             P0 P1 P2 P3  ML");
7316         for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
7317                 uint64_t tcamx, tcamy, mask;
7318                 uint32_t cls_lo, cls_hi;
7319                 uint8_t addr[ETHER_ADDR_LEN];
7320
7321                 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
7322                 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
7323                 if (tcamx & tcamy)
7324                         continue;
7325                 tcamxy2valmask(tcamx, tcamy, addr, &mask);
7326                 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
7327                 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
7328                 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
7329                            "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
7330                            addr[3], addr[4], addr[5], (uintmax_t)mask,
7331                            (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
7332                            G_PORTMAP(cls_hi), G_PF(cls_lo),
7333                            (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
7334
7335                 if (cls_lo & F_REPLICATE) {
7336                         struct fw_ldst_cmd ldst_cmd;
7337
7338                         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
7339                         ldst_cmd.op_to_addrspace =
7340                             htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
7341                                 F_FW_CMD_REQUEST | F_FW_CMD_READ |
7342                                 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
7343                         ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
7344                         ldst_cmd.u.mps.rplc.fid_idx =
7345                             htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
7346                                 V_FW_LDST_CMD_IDX(i));
7347
7348                         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
7349                             "t4mps");
7350                         if (rc)
7351                                 break;
7352                         rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
7353                             sizeof(ldst_cmd), &ldst_cmd);
7354                         end_synchronized_op(sc, 0);
7355
7356                         if (rc != 0) {
7357                                 sbuf_printf(sb, "%36d", rc);
7358                                 rc = 0;
7359                         } else {
7360                                 sbuf_printf(sb, " %08x %08x %08x %08x",
7361                                     be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
7362                                     be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
7363                                     be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
7364                                     be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
7365                         }
7366                 } else
7367                         sbuf_printf(sb, "%36s", "");
7368
7369                 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
7370                     G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
7371                     G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
7372         }
7373
7374         if (rc)
7375                 (void) sbuf_finish(sb);
7376         else
7377                 rc = sbuf_finish(sb);
7378         sbuf_delete(sb);
7379
7380         return (rc);
7381 }
7382
7383 static int
7384 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
7385 {
7386         struct adapter *sc = arg1;
7387         struct sbuf *sb;
7388         int rc, i;
7389
7390         MPASS(chip_id(sc) > CHELSIO_T5);
7391
7392         rc = sysctl_wire_old_buffer(req, 0);
7393         if (rc != 0)
7394                 return (rc);
7395
7396         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7397         if (sb == NULL)
7398                 return (ENOMEM);
7399
7400         sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
7401             "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
7402             "                           Replication"
7403             "                                    P0 P1 P2 P3  ML\n");
7404
7405         for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
7406                 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
7407                 uint16_t ivlan;
7408                 uint64_t tcamx, tcamy, val, mask;
7409                 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
7410                 uint8_t addr[ETHER_ADDR_LEN];
7411
7412                 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
7413                 if (i < 256)
7414                         ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
7415                 else
7416                         ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
7417                 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
7418                 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
7419                 tcamy = G_DMACH(val) << 32;
7420                 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
7421                 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
7422                 lookup_type = G_DATALKPTYPE(data2);
7423                 port_num = G_DATAPORTNUM(data2);
7424                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
7425                         /* Inner header VNI */
7426                         vniy = ((data2 & F_DATAVIDH2) << 23) |
7427                                        (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
7428                         dip_hit = data2 & F_DATADIPHIT;
7429                         vlan_vld = 0;
7430                 } else {
7431                         vniy = 0;
7432                         dip_hit = 0;
7433                         vlan_vld = data2 & F_DATAVIDH2;
7434                         ivlan = G_VIDL(val);
7435                 }
7436
7437                 ctl |= V_CTLXYBITSEL(1);
7438                 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
7439                 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
7440                 tcamx = G_DMACH(val) << 32;
7441                 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
7442                 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
7443                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
7444                         /* Inner header VNI mask */
7445                         vnix = ((data2 & F_DATAVIDH2) << 23) |
7446                                (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
7447                 } else
7448                         vnix = 0;
7449
7450                 if (tcamx & tcamy)
7451                         continue;
7452                 tcamxy2valmask(tcamx, tcamy, addr, &mask);
7453
7454                 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
7455                 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
7456
7457                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
7458                         sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
7459                             "%012jx %06x %06x    -    -   %3c"
7460                             "      'I'  %4x   %3c   %#x%4u%4d", i, addr[0],
7461                             addr[1], addr[2], addr[3], addr[4], addr[5],
7462                             (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
7463                             port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
7464                             G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
7465                             cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
7466                 } else {
7467                         sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
7468                             "%012jx    -       -   ", i, addr[0], addr[1],
7469                             addr[2], addr[3], addr[4], addr[5],
7470                             (uintmax_t)mask);
7471
7472                         if (vlan_vld)
7473                                 sbuf_printf(sb, "%4u   Y     ", ivlan);
7474                         else
7475                                 sbuf_printf(sb, "  -    N     ");
7476
7477                         sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
7478                             lookup_type ? 'I' : 'O', port_num,
7479                             cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
7480                             G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
7481                             cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
7482                 }
7483
7484
7485                 if (cls_lo & F_T6_REPLICATE) {
7486                         struct fw_ldst_cmd ldst_cmd;
7487
7488                         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
7489                         ldst_cmd.op_to_addrspace =
7490                             htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
7491                                 F_FW_CMD_REQUEST | F_FW_CMD_READ |
7492                                 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
7493                         ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
7494                         ldst_cmd.u.mps.rplc.fid_idx =
7495                             htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
7496                                 V_FW_LDST_CMD_IDX(i));
7497
7498                         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
7499                             "t6mps");
7500                         if (rc)
7501                                 break;
7502                         rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
7503                             sizeof(ldst_cmd), &ldst_cmd);
7504                         end_synchronized_op(sc, 0);
7505
7506                         if (rc != 0) {
7507                                 sbuf_printf(sb, "%72d", rc);
7508                                 rc = 0;
7509                         } else {
7510                                 sbuf_printf(sb, " %08x %08x %08x %08x"
7511                                     " %08x %08x %08x %08x",
7512                                     be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
7513                                     be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
7514                                     be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
7515                                     be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
7516                                     be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
7517                                     be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
7518                                     be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
7519                                     be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
7520                         }
7521                 } else
7522                         sbuf_printf(sb, "%72s", "");
7523
7524                 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
7525                     G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
7526                     G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
7527                     (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
7528         }
7529
7530         if (rc)
7531                 (void) sbuf_finish(sb);
7532         else
7533                 rc = sbuf_finish(sb);
7534         sbuf_delete(sb);
7535
7536         return (rc);
7537 }
7538
7539 static int
7540 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
7541 {
7542         struct adapter *sc = arg1;
7543         struct sbuf *sb;
7544         int rc;
7545         uint16_t mtus[NMTUS];
7546
7547         rc = sysctl_wire_old_buffer(req, 0);
7548         if (rc != 0)
7549                 return (rc);
7550
7551         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7552         if (sb == NULL)
7553                 return (ENOMEM);
7554
7555         t4_read_mtu_tbl(sc, mtus, NULL);
7556
7557         sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
7558             mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
7559             mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
7560             mtus[14], mtus[15]);
7561
7562         rc = sbuf_finish(sb);
7563         sbuf_delete(sb);
7564
7565         return (rc);
7566 }
7567
7568 static int
7569 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
7570 {
7571         struct adapter *sc = arg1;
7572         struct sbuf *sb;
7573         int rc, i;
7574         uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
7575         uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
7576         static const char *tx_stats[MAX_PM_NSTATS] = {
7577                 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
7578                 "Tx FIFO wait", NULL, "Tx latency"
7579         };
7580         static const char *rx_stats[MAX_PM_NSTATS] = {
7581                 "Read:", "Write bypass:", "Write mem:", "Flush:",
7582                 "Rx FIFO wait", NULL, "Rx latency"
7583         };
7584
7585         rc = sysctl_wire_old_buffer(req, 0);
7586         if (rc != 0)
7587                 return (rc);
7588
7589         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7590         if (sb == NULL)
7591                 return (ENOMEM);
7592
7593         t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
7594         t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
7595
7596         sbuf_printf(sb, "                Tx pcmds             Tx bytes");
7597         for (i = 0; i < 4; i++) {
7598                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7599                     tx_cyc[i]);
7600         }
7601
7602         sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
7603         for (i = 0; i < 4; i++) {
7604                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7605                     rx_cyc[i]);
7606         }
7607
7608         if (chip_id(sc) > CHELSIO_T5) {
7609                 sbuf_printf(sb,
7610                     "\n              Total wait      Total occupancy");
7611                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7612                     tx_cyc[i]);
7613                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7614                     rx_cyc[i]);
7615
7616                 i += 2;
7617                 MPASS(i < nitems(tx_stats));
7618
7619                 sbuf_printf(sb,
7620                     "\n                   Reads           Total wait");
7621                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7622                     tx_cyc[i]);
7623                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7624                     rx_cyc[i]);
7625         }
7626
7627         rc = sbuf_finish(sb);
7628         sbuf_delete(sb);
7629
7630         return (rc);
7631 }
7632
7633 static int
7634 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
7635 {
7636         struct adapter *sc = arg1;
7637         struct sbuf *sb;
7638         int rc;
7639         struct tp_rdma_stats stats;
7640
7641         rc = sysctl_wire_old_buffer(req, 0);
7642         if (rc != 0)
7643                 return (rc);
7644
7645         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7646         if (sb == NULL)
7647                 return (ENOMEM);
7648
7649         mtx_lock(&sc->reg_lock);
7650         t4_tp_get_rdma_stats(sc, &stats, 0);
7651         mtx_unlock(&sc->reg_lock);
7652
7653         sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
7654         sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
7655
7656         rc = sbuf_finish(sb);
7657         sbuf_delete(sb);
7658
7659         return (rc);
7660 }
7661
7662 static int
7663 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
7664 {
7665         struct adapter *sc = arg1;
7666         struct sbuf *sb;
7667         int rc;
7668         struct tp_tcp_stats v4, v6;
7669
7670         rc = sysctl_wire_old_buffer(req, 0);
7671         if (rc != 0)
7672                 return (rc);
7673
7674         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7675         if (sb == NULL)
7676                 return (ENOMEM);
7677
7678         mtx_lock(&sc->reg_lock);
7679         t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
7680         mtx_unlock(&sc->reg_lock);
7681
7682         sbuf_printf(sb,
7683             "                                IP                 IPv6\n");
7684         sbuf_printf(sb, "OutRsts:      %20u %20u\n",
7685             v4.tcp_out_rsts, v6.tcp_out_rsts);
7686         sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
7687             v4.tcp_in_segs, v6.tcp_in_segs);
7688         sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
7689             v4.tcp_out_segs, v6.tcp_out_segs);
7690         sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
7691             v4.tcp_retrans_segs, v6.tcp_retrans_segs);
7692
7693         rc = sbuf_finish(sb);
7694         sbuf_delete(sb);
7695
7696         return (rc);
7697 }
7698
7699 static int
7700 sysctl_tids(SYSCTL_HANDLER_ARGS)
7701 {
7702         struct adapter *sc = arg1;
7703         struct sbuf *sb;
7704         int rc;
7705         struct tid_info *t = &sc->tids;
7706
7707         rc = sysctl_wire_old_buffer(req, 0);
7708         if (rc != 0)
7709                 return (rc);
7710
7711         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7712         if (sb == NULL)
7713                 return (ENOMEM);
7714
7715         if (t->natids) {
7716                 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
7717                     t->atids_in_use);
7718         }
7719
7720         if (t->ntids) {
7721                 sbuf_printf(sb, "TID range: ");
7722                 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
7723                         uint32_t b, hb;
7724
7725                         if (chip_id(sc) <= CHELSIO_T5) {
7726                                 b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
7727                                 hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
7728                         } else {
7729                                 b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
7730                                 hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
7731                         }
7732
7733                         if (b)
7734                                 sbuf_printf(sb, "0-%u, ", b - 1);
7735                         sbuf_printf(sb, "%u-%u", hb, t->ntids - 1);
7736                 } else
7737                         sbuf_printf(sb, "0-%u", t->ntids - 1);
7738                 sbuf_printf(sb, ", in use: %u\n",
7739                     atomic_load_acq_int(&t->tids_in_use));
7740         }
7741
7742         if (t->nstids) {
7743                 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
7744                     t->stid_base + t->nstids - 1, t->stids_in_use);
7745         }
7746
7747         if (t->nftids) {
7748                 sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base,
7749                     t->ftid_base + t->nftids - 1);
7750         }
7751
7752         if (t->netids) {
7753                 sbuf_printf(sb, "ETID range: %u-%u\n", t->etid_base,
7754                     t->etid_base + t->netids - 1);
7755         }
7756
7757         sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users",
7758             t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4),
7759             t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6));
7760
7761         rc = sbuf_finish(sb);
7762         sbuf_delete(sb);
7763
7764         return (rc);
7765 }
7766
7767 static int
7768 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
7769 {
7770         struct adapter *sc = arg1;
7771         struct sbuf *sb;
7772         int rc;
7773         struct tp_err_stats stats;
7774
7775         rc = sysctl_wire_old_buffer(req, 0);
7776         if (rc != 0)
7777                 return (rc);
7778
7779         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7780         if (sb == NULL)
7781                 return (ENOMEM);
7782
7783         mtx_lock(&sc->reg_lock);
7784         t4_tp_get_err_stats(sc, &stats, 0);
7785         mtx_unlock(&sc->reg_lock);
7786
7787         if (sc->chip_params->nchan > 2) {
7788                 sbuf_printf(sb, "                 channel 0  channel 1"
7789                     "  channel 2  channel 3\n");
7790                 sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
7791                     stats.mac_in_errs[0], stats.mac_in_errs[1],
7792                     stats.mac_in_errs[2], stats.mac_in_errs[3]);
7793                 sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
7794                     stats.hdr_in_errs[0], stats.hdr_in_errs[1],
7795                     stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
7796                 sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
7797                     stats.tcp_in_errs[0], stats.tcp_in_errs[1],
7798                     stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
7799                 sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
7800                     stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
7801                     stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
7802                 sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
7803                     stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
7804                     stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
7805                 sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
7806                     stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
7807                     stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
7808                 sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
7809                     stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
7810                     stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
7811                 sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
7812                     stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
7813                     stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
7814         } else {
7815                 sbuf_printf(sb, "                 channel 0  channel 1\n");
7816                 sbuf_printf(sb, "macInErrs:      %10u %10u\n",
7817                     stats.mac_in_errs[0], stats.mac_in_errs[1]);
7818                 sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
7819                     stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
7820                 sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
7821                     stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
7822                 sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
7823                     stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
7824                 sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
7825                     stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
7826                 sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
7827                     stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
7828                 sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
7829                     stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
7830                 sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
7831                     stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
7832         }
7833
7834         sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
7835             stats.ofld_no_neigh, stats.ofld_cong_defer);
7836
7837         rc = sbuf_finish(sb);
7838         sbuf_delete(sb);
7839
7840         return (rc);
7841 }
7842
7843 static int
7844 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
7845 {
7846         struct adapter *sc = arg1;
7847         struct tp_params *tpp = &sc->params.tp;
7848         u_int mask;
7849         int rc;
7850
7851         mask = tpp->la_mask >> 16;
7852         rc = sysctl_handle_int(oidp, &mask, 0, req);
7853         if (rc != 0 || req->newptr == NULL)
7854                 return (rc);
7855         if (mask > 0xffff)
7856                 return (EINVAL);
7857         tpp->la_mask = mask << 16;
7858         t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask);
7859
7860         return (0);
7861 }
7862
7863 struct field_desc {
7864         const char *name;
7865         u_int start;
7866         u_int width;
7867 };
7868
7869 static void
7870 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
7871 {
7872         char buf[32];
7873         int line_size = 0;
7874
7875         while (f->name) {
7876                 uint64_t mask = (1ULL << f->width) - 1;
7877                 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
7878                     ((uintmax_t)v >> f->start) & mask);
7879
7880                 if (line_size + len >= 79) {
7881                         line_size = 8;
7882                         sbuf_printf(sb, "\n        ");
7883                 }
7884                 sbuf_printf(sb, "%s ", buf);
7885                 line_size += len + 1;
7886                 f++;
7887         }
7888         sbuf_printf(sb, "\n");
7889 }
7890
7891 static const struct field_desc tp_la0[] = {
7892         { "RcfOpCodeOut", 60, 4 },
7893         { "State", 56, 4 },
7894         { "WcfState", 52, 4 },
7895         { "RcfOpcSrcOut", 50, 2 },
7896         { "CRxError", 49, 1 },
7897         { "ERxError", 48, 1 },
7898         { "SanityFailed", 47, 1 },
7899         { "SpuriousMsg", 46, 1 },
7900         { "FlushInputMsg", 45, 1 },
7901         { "FlushInputCpl", 44, 1 },
7902         { "RssUpBit", 43, 1 },
7903         { "RssFilterHit", 42, 1 },
7904         { "Tid", 32, 10 },
7905         { "InitTcb", 31, 1 },
7906         { "LineNumber", 24, 7 },
7907         { "Emsg", 23, 1 },
7908         { "EdataOut", 22, 1 },
7909         { "Cmsg", 21, 1 },
7910         { "CdataOut", 20, 1 },
7911         { "EreadPdu", 19, 1 },
7912         { "CreadPdu", 18, 1 },
7913         { "TunnelPkt", 17, 1 },
7914         { "RcfPeerFin", 16, 1 },
7915         { "RcfReasonOut", 12, 4 },
7916         { "TxCchannel", 10, 2 },
7917         { "RcfTxChannel", 8, 2 },
7918         { "RxEchannel", 6, 2 },
7919         { "RcfRxChannel", 5, 1 },
7920         { "RcfDataOutSrdy", 4, 1 },
7921         { "RxDvld", 3, 1 },
7922         { "RxOoDvld", 2, 1 },
7923         { "RxCongestion", 1, 1 },
7924         { "TxCongestion", 0, 1 },
7925         { NULL }
7926 };
7927
7928 static const struct field_desc tp_la1[] = {
7929         { "CplCmdIn", 56, 8 },
7930         { "CplCmdOut", 48, 8 },
7931         { "ESynOut", 47, 1 },
7932         { "EAckOut", 46, 1 },
7933         { "EFinOut", 45, 1 },
7934         { "ERstOut", 44, 1 },
7935         { "SynIn", 43, 1 },
7936         { "AckIn", 42, 1 },
7937         { "FinIn", 41, 1 },
7938         { "RstIn", 40, 1 },
7939         { "DataIn", 39, 1 },
7940         { "DataInVld", 38, 1 },
7941         { "PadIn", 37, 1 },
7942         { "RxBufEmpty", 36, 1 },
7943         { "RxDdp", 35, 1 },
7944         { "RxFbCongestion", 34, 1 },
7945         { "TxFbCongestion", 33, 1 },
7946         { "TxPktSumSrdy", 32, 1 },
7947         { "RcfUlpType", 28, 4 },
7948         { "Eread", 27, 1 },
7949         { "Ebypass", 26, 1 },
7950         { "Esave", 25, 1 },
7951         { "Static0", 24, 1 },
7952         { "Cread", 23, 1 },
7953         { "Cbypass", 22, 1 },
7954         { "Csave", 21, 1 },
7955         { "CPktOut", 20, 1 },
7956         { "RxPagePoolFull", 18, 2 },
7957         { "RxLpbkPkt", 17, 1 },
7958         { "TxLpbkPkt", 16, 1 },
7959         { "RxVfValid", 15, 1 },
7960         { "SynLearned", 14, 1 },
7961         { "SetDelEntry", 13, 1 },
7962         { "SetInvEntry", 12, 1 },
7963         { "CpcmdDvld", 11, 1 },
7964         { "CpcmdSave", 10, 1 },
7965         { "RxPstructsFull", 8, 2 },
7966         { "EpcmdDvld", 7, 1 },
7967         { "EpcmdFlush", 6, 1 },
7968         { "EpcmdTrimPrefix", 5, 1 },
7969         { "EpcmdTrimPostfix", 4, 1 },
7970         { "ERssIp4Pkt", 3, 1 },
7971         { "ERssIp6Pkt", 2, 1 },
7972         { "ERssTcpUdpPkt", 1, 1 },
7973         { "ERssFceFipPkt", 0, 1 },
7974         { NULL }
7975 };
7976
7977 static const struct field_desc tp_la2[] = {
7978         { "CplCmdIn", 56, 8 },
7979         { "MpsVfVld", 55, 1 },
7980         { "MpsPf", 52, 3 },
7981         { "MpsVf", 44, 8 },
7982         { "SynIn", 43, 1 },
7983         { "AckIn", 42, 1 },
7984         { "FinIn", 41, 1 },
7985         { "RstIn", 40, 1 },
7986         { "DataIn", 39, 1 },
7987         { "DataInVld", 38, 1 },
7988         { "PadIn", 37, 1 },
7989         { "RxBufEmpty", 36, 1 },
7990         { "RxDdp", 35, 1 },
7991         { "RxFbCongestion", 34, 1 },
7992         { "TxFbCongestion", 33, 1 },
7993         { "TxPktSumSrdy", 32, 1 },
7994         { "RcfUlpType", 28, 4 },
7995         { "Eread", 27, 1 },
7996         { "Ebypass", 26, 1 },
7997         { "Esave", 25, 1 },
7998         { "Static0", 24, 1 },
7999         { "Cread", 23, 1 },
8000         { "Cbypass", 22, 1 },
8001         { "Csave", 21, 1 },
8002         { "CPktOut", 20, 1 },
8003         { "RxPagePoolFull", 18, 2 },
8004         { "RxLpbkPkt", 17, 1 },
8005         { "TxLpbkPkt", 16, 1 },
8006         { "RxVfValid", 15, 1 },
8007         { "SynLearned", 14, 1 },
8008         { "SetDelEntry", 13, 1 },
8009         { "SetInvEntry", 12, 1 },
8010         { "CpcmdDvld", 11, 1 },
8011         { "CpcmdSave", 10, 1 },
8012         { "RxPstructsFull", 8, 2 },
8013         { "EpcmdDvld", 7, 1 },
8014         { "EpcmdFlush", 6, 1 },
8015         { "EpcmdTrimPrefix", 5, 1 },
8016         { "EpcmdTrimPostfix", 4, 1 },
8017         { "ERssIp4Pkt", 3, 1 },
8018         { "ERssIp6Pkt", 2, 1 },
8019         { "ERssTcpUdpPkt", 1, 1 },
8020         { "ERssFceFipPkt", 0, 1 },
8021         { NULL }
8022 };
8023
8024 static void
8025 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
8026 {
8027
8028         field_desc_show(sb, *p, tp_la0);
8029 }
8030
8031 static void
8032 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
8033 {
8034
8035         if (idx)
8036                 sbuf_printf(sb, "\n");
8037         field_desc_show(sb, p[0], tp_la0);
8038         if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
8039                 field_desc_show(sb, p[1], tp_la0);
8040 }
8041
8042 static void
8043 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
8044 {
8045
8046         if (idx)
8047                 sbuf_printf(sb, "\n");
8048         field_desc_show(sb, p[0], tp_la0);
8049         if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
8050                 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
8051 }
8052
8053 static int
8054 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
8055 {
8056         struct adapter *sc = arg1;
8057         struct sbuf *sb;
8058         uint64_t *buf, *p;
8059         int rc;
8060         u_int i, inc;
8061         void (*show_func)(struct sbuf *, uint64_t *, int);
8062
8063         rc = sysctl_wire_old_buffer(req, 0);
8064         if (rc != 0)
8065                 return (rc);
8066
8067         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8068         if (sb == NULL)
8069                 return (ENOMEM);
8070
8071         buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
8072
8073         t4_tp_read_la(sc, buf, NULL);
8074         p = buf;
8075
8076         switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
8077         case 2:
8078                 inc = 2;
8079                 show_func = tp_la_show2;
8080                 break;
8081         case 3:
8082                 inc = 2;
8083                 show_func = tp_la_show3;
8084                 break;
8085         default:
8086                 inc = 1;
8087                 show_func = tp_la_show;
8088         }
8089
8090         for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
8091                 (*show_func)(sb, p, i);
8092
8093         rc = sbuf_finish(sb);
8094         sbuf_delete(sb);
8095         free(buf, M_CXGBE);
8096         return (rc);
8097 }
8098
8099 static int
8100 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
8101 {
8102         struct adapter *sc = arg1;
8103         struct sbuf *sb;
8104         int rc;
8105         u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
8106
8107         rc = sysctl_wire_old_buffer(req, 0);
8108         if (rc != 0)
8109                 return (rc);
8110
8111         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8112         if (sb == NULL)
8113                 return (ENOMEM);
8114
8115         t4_get_chan_txrate(sc, nrate, orate);
8116
8117         if (sc->chip_params->nchan > 2) {
8118                 sbuf_printf(sb, "              channel 0   channel 1"
8119                     "   channel 2   channel 3\n");
8120                 sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
8121                     nrate[0], nrate[1], nrate[2], nrate[3]);
8122                 sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
8123                     orate[0], orate[1], orate[2], orate[3]);
8124         } else {
8125                 sbuf_printf(sb, "              channel 0   channel 1\n");
8126                 sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
8127                     nrate[0], nrate[1]);
8128                 sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
8129                     orate[0], orate[1]);
8130         }
8131
8132         rc = sbuf_finish(sb);
8133         sbuf_delete(sb);
8134
8135         return (rc);
8136 }
8137
8138 static int
8139 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
8140 {
8141         struct adapter *sc = arg1;
8142         struct sbuf *sb;
8143         uint32_t *buf, *p;
8144         int rc, i;
8145
8146         rc = sysctl_wire_old_buffer(req, 0);
8147         if (rc != 0)
8148                 return (rc);
8149
8150         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8151         if (sb == NULL)
8152                 return (ENOMEM);
8153
8154         buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
8155             M_ZERO | M_WAITOK);
8156
8157         t4_ulprx_read_la(sc, buf);
8158         p = buf;
8159
8160         sbuf_printf(sb, "      Pcmd        Type   Message"
8161             "                Data");
8162         for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
8163                 sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
8164                     p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
8165         }
8166
8167         rc = sbuf_finish(sb);
8168         sbuf_delete(sb);
8169         free(buf, M_CXGBE);
8170         return (rc);
8171 }
8172
8173 static int
8174 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
8175 {
8176         struct adapter *sc = arg1;
8177         struct sbuf *sb;
8178         int rc, v;
8179
8180         MPASS(chip_id(sc) >= CHELSIO_T5);
8181
8182         rc = sysctl_wire_old_buffer(req, 0);
8183         if (rc != 0)
8184                 return (rc);
8185
8186         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8187         if (sb == NULL)
8188                 return (ENOMEM);
8189
8190         v = t4_read_reg(sc, A_SGE_STAT_CFG);
8191         if (G_STATSOURCE_T5(v) == 7) {
8192                 int mode;
8193
8194                 mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v);
8195                 if (mode == 0) {
8196                         sbuf_printf(sb, "total %d, incomplete %d",
8197                             t4_read_reg(sc, A_SGE_STAT_TOTAL),
8198                             t4_read_reg(sc, A_SGE_STAT_MATCH));
8199                 } else if (mode == 1) {
8200                         sbuf_printf(sb, "total %d, data overflow %d",
8201                             t4_read_reg(sc, A_SGE_STAT_TOTAL),
8202                             t4_read_reg(sc, A_SGE_STAT_MATCH));
8203                 } else {
8204                         sbuf_printf(sb, "unknown mode %d", mode);
8205                 }
8206         }
8207         rc = sbuf_finish(sb);
8208         sbuf_delete(sb);
8209
8210         return (rc);
8211 }
8212
8213 static int
8214 sysctl_tc_params(SYSCTL_HANDLER_ARGS)
8215 {
8216         struct adapter *sc = arg1;
8217         struct tx_cl_rl_params tc;
8218         struct sbuf *sb;
8219         int i, rc, port_id, mbps, gbps;
8220
8221         rc = sysctl_wire_old_buffer(req, 0);
8222         if (rc != 0)
8223                 return (rc);
8224
8225         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8226         if (sb == NULL)
8227                 return (ENOMEM);
8228
8229         port_id = arg2 >> 16;
8230         MPASS(port_id < sc->params.nports);
8231         MPASS(sc->port[port_id] != NULL);
8232         i = arg2 & 0xffff;
8233         MPASS(i < sc->chip_params->nsched_cls);
8234
8235         mtx_lock(&sc->tc_lock);
8236         tc = sc->port[port_id]->sched_params->cl_rl[i];
8237         mtx_unlock(&sc->tc_lock);
8238
8239         if (tc.flags & TX_CLRL_ERROR) {
8240                 sbuf_printf(sb, "error");
8241                 goto done;
8242         }
8243
8244         if (tc.ratemode == SCHED_CLASS_RATEMODE_REL) {
8245                 /* XXX: top speed or actual link speed? */
8246                 gbps = port_top_speed(sc->port[port_id]);
8247                 sbuf_printf(sb, " %u%% of %uGbps", tc.maxrate, gbps);
8248         } else if (tc.ratemode == SCHED_CLASS_RATEMODE_ABS) {
8249                 switch (tc.rateunit) {
8250                 case SCHED_CLASS_RATEUNIT_BITS:
8251                         mbps = tc.maxrate / 1000;
8252                         gbps = tc.maxrate / 1000000;
8253                         if (tc.maxrate == gbps * 1000000)
8254                                 sbuf_printf(sb, " %uGbps", gbps);
8255                         else if (tc.maxrate == mbps * 1000)
8256                                 sbuf_printf(sb, " %uMbps", mbps);
8257                         else
8258                                 sbuf_printf(sb, " %uKbps", tc.maxrate);
8259                         break;
8260                 case SCHED_CLASS_RATEUNIT_PKTS:
8261                         sbuf_printf(sb, " %upps", tc.maxrate);
8262                         break;
8263                 default:
8264                         rc = ENXIO;
8265                         goto done;
8266                 }
8267         }
8268
8269         switch (tc.mode) {
8270         case SCHED_CLASS_MODE_CLASS:
8271                 sbuf_printf(sb, " aggregate");
8272                 break;
8273         case SCHED_CLASS_MODE_FLOW:
8274                 sbuf_printf(sb, " per-flow");
8275                 break;
8276         default:
8277                 rc = ENXIO;
8278                 goto done;
8279         }
8280
8281 done:
8282         if (rc == 0)
8283                 rc = sbuf_finish(sb);
8284         sbuf_delete(sb);
8285
8286         return (rc);
8287 }
8288 #endif
8289
8290 #ifdef TCP_OFFLOAD
8291 static void
8292 unit_conv(char *buf, size_t len, u_int val, u_int factor)
8293 {
8294         u_int rem = val % factor;
8295
8296         if (rem == 0)
8297                 snprintf(buf, len, "%u", val / factor);
8298         else {
8299                 while (rem % 10 == 0)
8300                         rem /= 10;
8301                 snprintf(buf, len, "%u.%u", val / factor, rem);
8302         }
8303 }
8304
8305 static int
8306 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
8307 {
8308         struct adapter *sc = arg1;
8309         char buf[16];
8310         u_int res, re;
8311         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8312
8313         res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
8314         switch (arg2) {
8315         case 0:
8316                 /* timer_tick */
8317                 re = G_TIMERRESOLUTION(res);
8318                 break;
8319         case 1:
8320                 /* TCP timestamp tick */
8321                 re = G_TIMESTAMPRESOLUTION(res);
8322                 break;
8323         case 2:
8324                 /* DACK tick */
8325                 re = G_DELAYEDACKRESOLUTION(res);
8326                 break;
8327         default:
8328                 return (EDOOFUS);
8329         }
8330
8331         unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
8332
8333         return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
8334 }
8335
8336 static int
8337 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
8338 {
8339         struct adapter *sc = arg1;
8340         u_int res, dack_re, v;
8341         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8342
8343         res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
8344         dack_re = G_DELAYEDACKRESOLUTION(res);
8345         v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER);
8346
8347         return (sysctl_handle_int(oidp, &v, 0, req));
8348 }
8349
8350 static int
8351 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
8352 {
8353         struct adapter *sc = arg1;
8354         int reg = arg2;
8355         u_int tre;
8356         u_long tp_tick_us, v;
8357         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8358
8359         MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
8360             reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
8361             reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
8362             reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
8363
8364         tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
8365         tp_tick_us = (cclk_ps << tre) / 1000000;
8366
8367         if (reg == A_TP_INIT_SRTT)
8368                 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
8369         else
8370                 v = tp_tick_us * t4_read_reg(sc, reg);
8371
8372         return (sysctl_handle_long(oidp, &v, 0, req));
8373 }
8374
8375 /*
8376  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
8377  * passed to this function.
8378  */
8379 static int
8380 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
8381 {
8382         struct adapter *sc = arg1;
8383         int idx = arg2;
8384         u_int v;
8385
8386         MPASS(idx >= 0 && idx <= 24);
8387
8388         v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
8389
8390         return (sysctl_handle_int(oidp, &v, 0, req));
8391 }
8392
8393 static int
8394 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
8395 {
8396         struct adapter *sc = arg1;
8397         int idx = arg2;
8398         u_int shift, v, r;
8399
8400         MPASS(idx >= 0 && idx < 16);
8401
8402         r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
8403         shift = (idx & 3) << 3;
8404         v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
8405
8406         return (sysctl_handle_int(oidp, &v, 0, req));
8407 }
8408
8409 static int
8410 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
8411 {
8412         struct vi_info *vi = arg1;
8413         struct adapter *sc = vi->pi->adapter;
8414         int idx, rc, i;
8415         struct sge_ofld_rxq *ofld_rxq;
8416         uint8_t v;
8417
8418         idx = vi->ofld_tmr_idx;
8419
8420         rc = sysctl_handle_int(oidp, &idx, 0, req);
8421         if (rc != 0 || req->newptr == NULL)
8422                 return (rc);
8423
8424         if (idx < 0 || idx >= SGE_NTIMERS)
8425                 return (EINVAL);
8426
8427         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8428             "t4otmr");
8429         if (rc)
8430                 return (rc);
8431
8432         v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
8433         for_each_ofld_rxq(vi, i, ofld_rxq) {
8434 #ifdef atomic_store_rel_8
8435                 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
8436 #else
8437                 ofld_rxq->iq.intr_params = v;
8438 #endif
8439         }
8440         vi->ofld_tmr_idx = idx;
8441
8442         end_synchronized_op(sc, LOCK_HELD);
8443         return (0);
8444 }
8445
8446 static int
8447 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
8448 {
8449         struct vi_info *vi = arg1;
8450         struct adapter *sc = vi->pi->adapter;
8451         int idx, rc;
8452
8453         idx = vi->ofld_pktc_idx;
8454
8455         rc = sysctl_handle_int(oidp, &idx, 0, req);
8456         if (rc != 0 || req->newptr == NULL)
8457                 return (rc);
8458
8459         if (idx < -1 || idx >= SGE_NCOUNTERS)
8460                 return (EINVAL);
8461
8462         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8463             "t4opktc");
8464         if (rc)
8465                 return (rc);
8466
8467         if (vi->flags & VI_INIT_DONE)
8468                 rc = EBUSY; /* cannot be changed once the queues are created */
8469         else
8470                 vi->ofld_pktc_idx = idx;
8471
8472         end_synchronized_op(sc, LOCK_HELD);
8473         return (rc);
8474 }
8475 #endif
8476
8477 static uint32_t
8478 fconf_iconf_to_mode(uint32_t fconf, uint32_t iconf)
8479 {
8480         uint32_t mode;
8481
8482         mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR |
8483             T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT;
8484
8485         if (fconf & F_FRAGMENTATION)
8486                 mode |= T4_FILTER_IP_FRAGMENT;
8487
8488         if (fconf & F_MPSHITTYPE)
8489                 mode |= T4_FILTER_MPS_HIT_TYPE;
8490
8491         if (fconf & F_MACMATCH)
8492                 mode |= T4_FILTER_MAC_IDX;
8493
8494         if (fconf & F_ETHERTYPE)
8495                 mode |= T4_FILTER_ETH_TYPE;
8496
8497         if (fconf & F_PROTOCOL)
8498                 mode |= T4_FILTER_IP_PROTO;
8499
8500         if (fconf & F_TOS)
8501                 mode |= T4_FILTER_IP_TOS;
8502
8503         if (fconf & F_VLAN)
8504                 mode |= T4_FILTER_VLAN;
8505
8506         if (fconf & F_VNIC_ID) {
8507                 mode |= T4_FILTER_VNIC;
8508                 if (iconf & F_VNIC)
8509                         mode |= T4_FILTER_IC_VNIC;
8510         }
8511
8512         if (fconf & F_PORT)
8513                 mode |= T4_FILTER_PORT;
8514
8515         if (fconf & F_FCOE)
8516                 mode |= T4_FILTER_FCoE;
8517
8518         return (mode);
8519 }
8520
8521 static uint32_t
8522 mode_to_fconf(uint32_t mode)
8523 {
8524         uint32_t fconf = 0;
8525
8526         if (mode & T4_FILTER_IP_FRAGMENT)
8527                 fconf |= F_FRAGMENTATION;
8528
8529         if (mode & T4_FILTER_MPS_HIT_TYPE)
8530                 fconf |= F_MPSHITTYPE;
8531
8532         if (mode & T4_FILTER_MAC_IDX)
8533                 fconf |= F_MACMATCH;
8534
8535         if (mode & T4_FILTER_ETH_TYPE)
8536                 fconf |= F_ETHERTYPE;
8537
8538         if (mode & T4_FILTER_IP_PROTO)
8539                 fconf |= F_PROTOCOL;
8540
8541         if (mode & T4_FILTER_IP_TOS)
8542                 fconf |= F_TOS;
8543
8544         if (mode & T4_FILTER_VLAN)
8545                 fconf |= F_VLAN;
8546
8547         if (mode & T4_FILTER_VNIC)
8548                 fconf |= F_VNIC_ID;
8549
8550         if (mode & T4_FILTER_PORT)
8551                 fconf |= F_PORT;
8552
8553         if (mode & T4_FILTER_FCoE)
8554                 fconf |= F_FCOE;
8555
8556         return (fconf);
8557 }
8558
8559 static uint32_t
8560 mode_to_iconf(uint32_t mode)
8561 {
8562
8563         if (mode & T4_FILTER_IC_VNIC)
8564                 return (F_VNIC);
8565         return (0);
8566 }
8567
8568 static int check_fspec_against_fconf_iconf(struct adapter *sc,
8569     struct t4_filter_specification *fs)
8570 {
8571         struct tp_params *tpp = &sc->params.tp;
8572         uint32_t fconf = 0;
8573
8574         if (fs->val.frag || fs->mask.frag)
8575                 fconf |= F_FRAGMENTATION;
8576
8577         if (fs->val.matchtype || fs->mask.matchtype)
8578                 fconf |= F_MPSHITTYPE;
8579
8580         if (fs->val.macidx || fs->mask.macidx)
8581                 fconf |= F_MACMATCH;
8582
8583         if (fs->val.ethtype || fs->mask.ethtype)
8584                 fconf |= F_ETHERTYPE;
8585
8586         if (fs->val.proto || fs->mask.proto)
8587                 fconf |= F_PROTOCOL;
8588
8589         if (fs->val.tos || fs->mask.tos)
8590                 fconf |= F_TOS;
8591
8592         if (fs->val.vlan_vld || fs->mask.vlan_vld)
8593                 fconf |= F_VLAN;
8594
8595         if (fs->val.ovlan_vld || fs->mask.ovlan_vld) {
8596                 fconf |= F_VNIC_ID;
8597                 if (tpp->ingress_config & F_VNIC)
8598                         return (EINVAL);
8599         }
8600
8601         if (fs->val.pfvf_vld || fs->mask.pfvf_vld) {
8602                 fconf |= F_VNIC_ID;
8603                 if ((tpp->ingress_config & F_VNIC) == 0)
8604                         return (EINVAL);
8605         }
8606
8607         if (fs->val.iport || fs->mask.iport)
8608                 fconf |= F_PORT;
8609
8610         if (fs->val.fcoe || fs->mask.fcoe)
8611                 fconf |= F_FCOE;
8612
8613         if ((tpp->vlan_pri_map | fconf) != tpp->vlan_pri_map)
8614                 return (E2BIG);
8615
8616         return (0);
8617 }
8618
8619 static int
8620 get_filter_mode(struct adapter *sc, uint32_t *mode)
8621 {
8622         struct tp_params *tpp = &sc->params.tp;
8623
8624         /*
8625          * We trust the cached values of the relevant TP registers.  This means
8626          * things work reliably only if writes to those registers are always via
8627          * t4_set_filter_mode.
8628          */
8629         *mode = fconf_iconf_to_mode(tpp->vlan_pri_map, tpp->ingress_config);
8630
8631         return (0);
8632 }
8633
8634 static int
8635 set_filter_mode(struct adapter *sc, uint32_t mode)
8636 {
8637         struct tp_params *tpp = &sc->params.tp;
8638         uint32_t fconf, iconf;
8639         int rc;
8640
8641         iconf = mode_to_iconf(mode);
8642         if ((iconf ^ tpp->ingress_config) & F_VNIC) {
8643                 /*
8644                  * For now we just complain if A_TP_INGRESS_CONFIG is not
8645                  * already set to the correct value for the requested filter
8646                  * mode.  It's not clear if it's safe to write to this register
8647                  * on the fly.  (And we trust the cached value of the register).
8648                  */
8649                 return (EBUSY);
8650         }
8651
8652         fconf = mode_to_fconf(mode);
8653
8654         rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK,
8655             "t4setfm");
8656         if (rc)
8657                 return (rc);
8658
8659         if (sc->tids.ftids_in_use > 0) {
8660                 rc = EBUSY;
8661                 goto done;
8662         }
8663
8664 #ifdef TCP_OFFLOAD
8665         if (uld_active(sc, ULD_TOM)) {
8666                 rc = EBUSY;
8667                 goto done;
8668         }
8669 #endif
8670
8671         rc = -t4_set_filter_mode(sc, fconf, true);
8672 done:
8673         end_synchronized_op(sc, LOCK_HELD);
8674         return (rc);
8675 }
8676
8677 static inline uint64_t
8678 get_filter_hits(struct adapter *sc, uint32_t fid)
8679 {
8680         uint32_t tcb_addr;
8681
8682         tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) +
8683             (fid + sc->tids.ftid_base) * TCB_SIZE;
8684
8685         if (is_t4(sc)) {
8686                 uint64_t hits;
8687
8688                 read_via_memwin(sc, 0, tcb_addr + 16, (uint32_t *)&hits, 8);
8689                 return (be64toh(hits));
8690         } else {
8691                 uint32_t hits;
8692
8693                 read_via_memwin(sc, 0, tcb_addr + 24, &hits, 4);
8694                 return (be32toh(hits));
8695         }
8696 }
8697
8698 static int
8699 get_filter(struct adapter *sc, struct t4_filter *t)
8700 {
8701         int i, rc, nfilters = sc->tids.nftids;
8702         struct filter_entry *f;
8703
8704         rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK,
8705             "t4getf");
8706         if (rc)
8707                 return (rc);
8708
8709         if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL ||
8710             t->idx >= nfilters) {
8711                 t->idx = 0xffffffff;
8712                 goto done;
8713         }
8714
8715         f = &sc->tids.ftid_tab[t->idx];
8716         for (i = t->idx; i < nfilters; i++, f++) {
8717                 if (f->valid) {
8718                         t->idx = i;
8719                         t->l2tidx = f->l2t ? f->l2t->idx : 0;
8720                         t->smtidx = f->smtidx;
8721                         if (f->fs.hitcnts)
8722                                 t->hits = get_filter_hits(sc, t->idx);
8723                         else
8724                                 t->hits = UINT64_MAX;
8725                         t->fs = f->fs;
8726
8727                         goto done;
8728                 }
8729         }
8730
8731         t->idx = 0xffffffff;
8732 done:
8733         end_synchronized_op(sc, LOCK_HELD);
8734         return (0);
8735 }
8736
8737 static int
8738 set_filter(struct adapter *sc, struct t4_filter *t)
8739 {
8740         unsigned int nfilters, nports;
8741         struct filter_entry *f;
8742         int i, rc;
8743
8744         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setf");
8745         if (rc)
8746                 return (rc);
8747
8748         nfilters = sc->tids.nftids;
8749         nports = sc->params.nports;
8750
8751         if (nfilters == 0) {
8752                 rc = ENOTSUP;
8753                 goto done;
8754         }
8755
8756         if (t->idx >= nfilters) {
8757                 rc = EINVAL;
8758                 goto done;
8759         }
8760
8761         /* Validate against the global filter mode and ingress config */
8762         rc = check_fspec_against_fconf_iconf(sc, &t->fs);
8763         if (rc != 0)
8764                 goto done;
8765
8766         if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports) {
8767                 rc = EINVAL;
8768                 goto done;
8769         }
8770
8771         if (t->fs.val.iport >= nports) {
8772                 rc = EINVAL;
8773                 goto done;
8774         }
8775
8776         /* Can't specify an iq if not steering to it */
8777         if (!t->fs.dirsteer && t->fs.iq) {
8778                 rc = EINVAL;
8779                 goto done;
8780         }
8781
8782         /* IPv6 filter idx must be 4 aligned */
8783         if (t->fs.type == 1 &&
8784             ((t->idx & 0x3) || t->idx + 4 >= nfilters)) {
8785                 rc = EINVAL;
8786                 goto done;
8787         }
8788
8789         if (!(sc->flags & FULL_INIT_DONE) &&
8790             ((rc = adapter_full_init(sc)) != 0))
8791                 goto done;
8792
8793         if (sc->tids.ftid_tab == NULL) {
8794                 KASSERT(sc->tids.ftids_in_use == 0,
8795                     ("%s: no memory allocated but filters_in_use > 0",
8796                     __func__));
8797
8798                 sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) *
8799                     nfilters, M_CXGBE, M_NOWAIT | M_ZERO);
8800                 if (sc->tids.ftid_tab == NULL) {
8801                         rc = ENOMEM;
8802                         goto done;
8803                 }
8804                 mtx_init(&sc->tids.ftid_lock, "T4 filters", 0, MTX_DEF);
8805         }
8806
8807         for (i = 0; i < 4; i++) {
8808                 f = &sc->tids.ftid_tab[t->idx + i];
8809
8810                 if (f->pending || f->valid) {
8811                         rc = EBUSY;
8812                         goto done;
8813                 }
8814                 if (f->locked) {
8815                         rc = EPERM;
8816                         goto done;
8817                 }
8818
8819                 if (t->fs.type == 0)
8820                         break;
8821         }
8822
8823         f = &sc->tids.ftid_tab[t->idx];
8824         f->fs = t->fs;
8825
8826         rc = set_filter_wr(sc, t->idx);
8827 done:
8828         end_synchronized_op(sc, 0);
8829
8830         if (rc == 0) {
8831                 mtx_lock(&sc->tids.ftid_lock);
8832                 for (;;) {
8833                         if (f->pending == 0) {
8834                                 rc = f->valid ? 0 : EIO;
8835                                 break;
8836                         }
8837
8838                         if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock,
8839                             PCATCH, "t4setfw", 0)) {
8840                                 rc = EINPROGRESS;
8841                                 break;
8842                         }
8843                 }
8844                 mtx_unlock(&sc->tids.ftid_lock);
8845         }
8846         return (rc);
8847 }
8848
8849 static int
8850 del_filter(struct adapter *sc, struct t4_filter *t)
8851 {
8852         unsigned int nfilters;
8853         struct filter_entry *f;
8854         int rc;
8855
8856         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4delf");
8857         if (rc)
8858                 return (rc);
8859
8860         nfilters = sc->tids.nftids;
8861
8862         if (nfilters == 0) {
8863                 rc = ENOTSUP;
8864                 goto done;
8865         }
8866
8867         if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 ||
8868             t->idx >= nfilters) {
8869                 rc = EINVAL;
8870                 goto done;
8871         }
8872
8873         if (!(sc->flags & FULL_INIT_DONE)) {
8874                 rc = EAGAIN;
8875                 goto done;
8876         }
8877
8878         f = &sc->tids.ftid_tab[t->idx];
8879
8880         if (f->pending) {
8881                 rc = EBUSY;
8882                 goto done;
8883         }
8884         if (f->locked) {
8885                 rc = EPERM;
8886                 goto done;
8887         }
8888
8889         if (f->valid) {
8890                 t->fs = f->fs;  /* extra info for the caller */
8891                 rc = del_filter_wr(sc, t->idx);
8892         }
8893
8894 done:
8895         end_synchronized_op(sc, 0);
8896
8897         if (rc == 0) {
8898                 mtx_lock(&sc->tids.ftid_lock);
8899                 for (;;) {
8900                         if (f->pending == 0) {
8901                                 rc = f->valid ? EIO : 0;
8902                                 break;
8903                         }
8904
8905                         if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock,
8906                             PCATCH, "t4delfw", 0)) {
8907                                 rc = EINPROGRESS;
8908                                 break;
8909                         }
8910                 }
8911                 mtx_unlock(&sc->tids.ftid_lock);
8912         }
8913
8914         return (rc);
8915 }
8916
8917 static void
8918 clear_filter(struct filter_entry *f)
8919 {
8920         if (f->l2t)
8921                 t4_l2t_release(f->l2t);
8922
8923         bzero(f, sizeof (*f));
8924 }
8925
8926 static int
8927 set_filter_wr(struct adapter *sc, int fidx)
8928 {
8929         struct filter_entry *f = &sc->tids.ftid_tab[fidx];
8930         struct fw_filter_wr *fwr;
8931         unsigned int ftid, vnic_vld, vnic_vld_mask;
8932         struct wrq_cookie cookie;
8933
8934         ASSERT_SYNCHRONIZED_OP(sc);
8935
8936         if (f->fs.newdmac || f->fs.newvlan) {
8937                 /* This filter needs an L2T entry; allocate one. */
8938                 f->l2t = t4_l2t_alloc_switching(sc->l2t);
8939                 if (f->l2t == NULL)
8940                         return (EAGAIN);
8941                 if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport,
8942                     f->fs.dmac)) {
8943                         t4_l2t_release(f->l2t);
8944                         f->l2t = NULL;
8945                         return (ENOMEM);
8946                 }
8947         }
8948
8949         /* Already validated against fconf, iconf */
8950         MPASS((f->fs.val.pfvf_vld & f->fs.val.ovlan_vld) == 0);
8951         MPASS((f->fs.mask.pfvf_vld & f->fs.mask.ovlan_vld) == 0);
8952         if (f->fs.val.pfvf_vld || f->fs.val.ovlan_vld)
8953                 vnic_vld = 1;
8954         else
8955                 vnic_vld = 0;
8956         if (f->fs.mask.pfvf_vld || f->fs.mask.ovlan_vld)
8957                 vnic_vld_mask = 1;
8958         else
8959                 vnic_vld_mask = 0;
8960
8961         ftid = sc->tids.ftid_base + fidx;
8962
8963         fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie);
8964         if (fwr == NULL)
8965                 return (ENOMEM);
8966         bzero(fwr, sizeof(*fwr));
8967
8968         fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR));
8969         fwr->len16_pkd = htobe32(FW_LEN16(*fwr));
8970         fwr->tid_to_iq =
8971             htobe32(V_FW_FILTER_WR_TID(ftid) |
8972                 V_FW_FILTER_WR_RQTYPE(f->fs.type) |
8973                 V_FW_FILTER_WR_NOREPLY(0) |
8974                 V_FW_FILTER_WR_IQ(f->fs.iq));
8975         fwr->del_filter_to_l2tix =
8976             htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
8977                 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
8978                 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
8979                 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
8980                 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
8981                 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
8982                 V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
8983                 V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
8984                 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
8985                     f->fs.newvlan == VLAN_REWRITE) |
8986                 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
8987                     f->fs.newvlan == VLAN_REWRITE) |
8988                 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
8989                 V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
8990                 V_FW_FILTER_WR_PRIO(f->fs.prio) |
8991                 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
8992         fwr->ethtype = htobe16(f->fs.val.ethtype);
8993         fwr->ethtypem = htobe16(f->fs.mask.ethtype);
8994         fwr->frag_to_ovlan_vldm =
8995             (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
8996                 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
8997                 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.vlan_vld) |
8998                 V_FW_FILTER_WR_OVLAN_VLD(vnic_vld) |
8999                 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.vlan_vld) |
9000                 V_FW_FILTER_WR_OVLAN_VLDM(vnic_vld_mask));
9001         fwr->smac_sel = 0;
9002         fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) |
9003             V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.fwq.abs_id));
9004         fwr->maci_to_matchtypem =
9005             htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
9006                 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
9007                 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
9008                 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
9009                 V_FW_FILTER_WR_PORT(f->fs.val.iport) |
9010                 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
9011                 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
9012                 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
9013         fwr->ptcl = f->fs.val.proto;
9014         fwr->ptclm = f->fs.mask.proto;
9015         fwr->ttyp = f->fs.val.tos;
9016         fwr->ttypm = f->fs.mask.tos;
9017         fwr->ivlan = htobe16(f->fs.val.vlan);
9018         fwr->ivlanm = htobe16(f->fs.mask.vlan);
9019         fwr->ovlan = htobe16(f->fs.val.vnic);
9020         fwr->ovlanm = htobe16(f->fs.mask.vnic);
9021         bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip));
9022         bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm));
9023         bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip));
9024         bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm));
9025         fwr->lp = htobe16(f->fs.val.dport);
9026         fwr->lpm = htobe16(f->fs.mask.dport);
9027         fwr->fp = htobe16(f->fs.val.sport);
9028         fwr->fpm = htobe16(f->fs.mask.sport);
9029         if (f->fs.newsmac)
9030                 bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma));
9031
9032         f->pending = 1;
9033         sc->tids.ftids_in_use++;
9034
9035         commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie);
9036         return (0);
9037 }
9038
9039 static int
9040 del_filter_wr(struct adapter *sc, int fidx)
9041 {
9042         struct filter_entry *f = &sc->tids.ftid_tab[fidx];
9043         struct fw_filter_wr *fwr;
9044         unsigned int ftid;
9045         struct wrq_cookie cookie;
9046
9047         ftid = sc->tids.ftid_base + fidx;
9048
9049         fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie);
9050         if (fwr == NULL)
9051                 return (ENOMEM);
9052         bzero(fwr, sizeof (*fwr));
9053
9054         t4_mk_filtdelwr(ftid, fwr, sc->sge.fwq.abs_id);
9055
9056         f->pending = 1;
9057         commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie);
9058         return (0);
9059 }
9060
9061 int
9062 t4_filter_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
9063 {
9064         struct adapter *sc = iq->adapter;
9065         const struct cpl_set_tcb_rpl *rpl = (const void *)(rss + 1);
9066         unsigned int idx = GET_TID(rpl);
9067         unsigned int rc;
9068         struct filter_entry *f;
9069
9070         KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
9071             rss->opcode));
9072         MPASS(iq == &sc->sge.fwq);
9073         MPASS(is_ftid(sc, idx));
9074
9075         idx -= sc->tids.ftid_base;
9076         f = &sc->tids.ftid_tab[idx];
9077         rc = G_COOKIE(rpl->cookie);
9078
9079         mtx_lock(&sc->tids.ftid_lock);
9080         if (rc == FW_FILTER_WR_FLT_ADDED) {
9081                 KASSERT(f->pending, ("%s: filter[%u] isn't pending.",
9082                     __func__, idx));
9083                 f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff;
9084                 f->pending = 0;  /* asynchronous setup completed */
9085                 f->valid = 1;
9086         } else {
9087                 if (rc != FW_FILTER_WR_FLT_DELETED) {
9088                         /* Add or delete failed, display an error */
9089                         log(LOG_ERR,
9090                             "filter %u setup failed with error %u\n",
9091                             idx, rc);
9092                 }
9093
9094                 clear_filter(f);
9095                 sc->tids.ftids_in_use--;
9096         }
9097         wakeup(&sc->tids.ftid_tab);
9098         mtx_unlock(&sc->tids.ftid_lock);
9099
9100         return (0);
9101 }
9102
9103 static int
9104 set_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
9105 {
9106
9107         MPASS(iq->set_tcb_rpl != NULL);
9108         return (iq->set_tcb_rpl(iq, rss, m));
9109 }
9110
9111 static int
9112 l2t_write_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
9113 {
9114
9115         MPASS(iq->l2t_write_rpl != NULL);
9116         return (iq->l2t_write_rpl(iq, rss, m));
9117 }
9118
9119 static int
9120 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
9121 {
9122         int rc;
9123
9124         if (cntxt->cid > M_CTXTQID)
9125                 return (EINVAL);
9126
9127         if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
9128             cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
9129                 return (EINVAL);
9130
9131         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
9132         if (rc)
9133                 return (rc);
9134
9135         if (sc->flags & FW_OK) {
9136                 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
9137                     &cntxt->data[0]);
9138                 if (rc == 0)
9139                         goto done;
9140         }
9141
9142         /*
9143          * Read via firmware failed or wasn't even attempted.  Read directly via
9144          * the backdoor.
9145          */
9146         rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
9147 done:
9148         end_synchronized_op(sc, 0);
9149         return (rc);
9150 }
9151
9152 static int
9153 load_fw(struct adapter *sc, struct t4_data *fw)
9154 {
9155         int rc;
9156         uint8_t *fw_data;
9157
9158         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
9159         if (rc)
9160                 return (rc);
9161
9162         /*
9163          * The firmware, with the sole exception of the memory parity error
9164          * handler, runs from memory and not flash.  It is almost always safe to
9165          * install a new firmware on a running system.  Just set bit 1 in
9166          * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
9167          */
9168         if (sc->flags & FULL_INIT_DONE &&
9169             (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
9170                 rc = EBUSY;
9171                 goto done;
9172         }
9173
9174         fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
9175         if (fw_data == NULL) {
9176                 rc = ENOMEM;
9177                 goto done;
9178         }
9179
9180         rc = copyin(fw->data, fw_data, fw->len);
9181         if (rc == 0)
9182                 rc = -t4_load_fw(sc, fw_data, fw->len);
9183
9184         free(fw_data, M_CXGBE);
9185 done:
9186         end_synchronized_op(sc, 0);
9187         return (rc);
9188 }
9189
9190 static int
9191 load_cfg(struct adapter *sc, struct t4_data *cfg)
9192 {
9193         int rc;
9194         uint8_t *cfg_data = NULL;
9195
9196         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9197         if (rc)
9198                 return (rc);
9199
9200         if (cfg->len == 0) {
9201                 /* clear */
9202                 rc = -t4_load_cfg(sc, NULL, 0);
9203                 goto done;
9204         }
9205
9206         cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
9207         if (cfg_data == NULL) {
9208                 rc = ENOMEM;
9209                 goto done;
9210         }
9211
9212         rc = copyin(cfg->data, cfg_data, cfg->len);
9213         if (rc == 0)
9214                 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
9215
9216         free(cfg_data, M_CXGBE);
9217 done:
9218         end_synchronized_op(sc, 0);
9219         return (rc);
9220 }
9221
9222 static int
9223 load_boot(struct adapter *sc, struct t4_bootrom *br)
9224 {
9225         int rc;
9226         uint8_t *br_data = NULL;
9227         u_int offset;
9228
9229         if (br->len > 1024 * 1024)
9230                 return (EFBIG);
9231
9232         if (br->pf_offset == 0) {
9233                 /* pfidx */
9234                 if (br->pfidx_addr > 7)
9235                         return (EINVAL);
9236                 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
9237                     A_PCIE_PF_EXPROM_OFST)));
9238         } else if (br->pf_offset == 1) {
9239                 /* offset */
9240                 offset = G_OFFSET(br->pfidx_addr);
9241         } else {
9242                 return (EINVAL);
9243         }
9244
9245         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
9246         if (rc)
9247                 return (rc);
9248
9249         if (br->len == 0) {
9250                 /* clear */
9251                 rc = -t4_load_boot(sc, NULL, offset, 0);
9252                 goto done;
9253         }
9254
9255         br_data = malloc(br->len, M_CXGBE, M_WAITOK);
9256         if (br_data == NULL) {
9257                 rc = ENOMEM;
9258                 goto done;
9259         }
9260
9261         rc = copyin(br->data, br_data, br->len);
9262         if (rc == 0)
9263                 rc = -t4_load_boot(sc, br_data, offset, br->len);
9264
9265         free(br_data, M_CXGBE);
9266 done:
9267         end_synchronized_op(sc, 0);
9268         return (rc);
9269 }
9270
9271 static int
9272 load_bootcfg(struct adapter *sc, struct t4_data *bc)
9273 {
9274         int rc;
9275         uint8_t *bc_data = NULL;
9276
9277         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9278         if (rc)
9279                 return (rc);
9280
9281         if (bc->len == 0) {
9282                 /* clear */
9283                 rc = -t4_load_bootcfg(sc, NULL, 0);
9284                 goto done;
9285         }
9286
9287         bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
9288         if (bc_data == NULL) {
9289                 rc = ENOMEM;
9290                 goto done;
9291         }
9292
9293         rc = copyin(bc->data, bc_data, bc->len);
9294         if (rc == 0)
9295                 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
9296
9297         free(bc_data, M_CXGBE);
9298 done:
9299         end_synchronized_op(sc, 0);
9300         return (rc);
9301 }
9302
9303 static int
9304 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
9305 {
9306         int rc;
9307         struct cudbg_init *cudbg;
9308         void *handle, *buf;
9309
9310         /* buf is large, don't block if no memory is available */
9311         buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
9312         if (buf == NULL)
9313                 return (ENOMEM);
9314
9315         handle = cudbg_alloc_handle();
9316         if (handle == NULL) {
9317                 rc = ENOMEM;
9318                 goto done;
9319         }
9320
9321         cudbg = cudbg_get_init(handle);
9322         cudbg->adap = sc;
9323         cudbg->print = (cudbg_print_cb)printf;
9324
9325 #ifndef notyet
9326         device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
9327             __func__, dump->wr_flash, dump->len, dump->data);
9328 #endif
9329
9330         if (dump->wr_flash)
9331                 cudbg->use_flash = 1;
9332         MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
9333         memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
9334
9335         rc = cudbg_collect(handle, buf, &dump->len);
9336         if (rc != 0)
9337                 goto done;
9338
9339         rc = copyout(buf, dump->data, dump->len);
9340 done:
9341         cudbg_free_handle(handle);
9342         free(buf, M_CXGBE);
9343         return (rc);
9344 }
9345
9346 #define MAX_READ_BUF_SIZE (128 * 1024)
9347 static int
9348 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
9349 {
9350         uint32_t addr, remaining, n;
9351         uint32_t *buf;
9352         int rc;
9353         uint8_t *dst;
9354
9355         rc = validate_mem_range(sc, mr->addr, mr->len);
9356         if (rc != 0)
9357                 return (rc);
9358
9359         buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
9360         addr = mr->addr;
9361         remaining = mr->len;
9362         dst = (void *)mr->data;
9363
9364         while (remaining) {
9365                 n = min(remaining, MAX_READ_BUF_SIZE);
9366                 read_via_memwin(sc, 2, addr, buf, n);
9367
9368                 rc = copyout(buf, dst, n);
9369                 if (rc != 0)
9370                         break;
9371
9372                 dst += n;
9373                 remaining -= n;
9374                 addr += n;
9375         }
9376
9377         free(buf, M_CXGBE);
9378         return (rc);
9379 }
9380 #undef MAX_READ_BUF_SIZE
9381
9382 static int
9383 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
9384 {
9385         int rc;
9386
9387         if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
9388                 return (EINVAL);
9389
9390         if (i2cd->len > sizeof(i2cd->data))
9391                 return (EFBIG);
9392
9393         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
9394         if (rc)
9395                 return (rc);
9396         rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
9397             i2cd->offset, i2cd->len, &i2cd->data[0]);
9398         end_synchronized_op(sc, 0);
9399
9400         return (rc);
9401 }
9402
9403 int
9404 t4_os_find_pci_capability(struct adapter *sc, int cap)
9405 {
9406         int i;
9407
9408         return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
9409 }
9410
9411 int
9412 t4_os_pci_save_state(struct adapter *sc)
9413 {
9414         device_t dev;
9415         struct pci_devinfo *dinfo;
9416
9417         dev = sc->dev;
9418         dinfo = device_get_ivars(dev);
9419
9420         pci_cfg_save(dev, dinfo, 0);
9421         return (0);
9422 }
9423
9424 int
9425 t4_os_pci_restore_state(struct adapter *sc)
9426 {
9427         device_t dev;
9428         struct pci_devinfo *dinfo;
9429
9430         dev = sc->dev;
9431         dinfo = device_get_ivars(dev);
9432
9433         pci_cfg_restore(dev, dinfo);
9434         return (0);
9435 }
9436
9437 void
9438 t4_os_portmod_changed(struct port_info *pi)
9439 {
9440         struct adapter *sc = pi->adapter;
9441         struct vi_info *vi;
9442         struct ifnet *ifp;
9443         static const char *mod_str[] = {
9444                 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
9445         };
9446
9447         PORT_LOCK(pi);
9448         build_medialist(pi, &pi->media);
9449         PORT_UNLOCK(pi);
9450         vi = &pi->vi[0];
9451         if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
9452                 init_l1cfg(pi);
9453                 end_synchronized_op(sc, LOCK_HELD);
9454         }
9455
9456         ifp = vi->ifp;
9457         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
9458                 if_printf(ifp, "transceiver unplugged.\n");
9459         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
9460                 if_printf(ifp, "unknown transceiver inserted.\n");
9461         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
9462                 if_printf(ifp, "unsupported transceiver inserted.\n");
9463         else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
9464                 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
9465                     port_top_speed(pi), mod_str[pi->mod_type]);
9466         } else {
9467                 if_printf(ifp, "transceiver (type %d) inserted.\n",
9468                     pi->mod_type);
9469         }
9470 }
9471
9472 void
9473 t4_os_link_changed(struct port_info *pi)
9474 {
9475         struct vi_info *vi;
9476         struct ifnet *ifp;
9477         struct link_config *lc;
9478         int v;
9479
9480         for_each_vi(pi, v, vi) {
9481                 ifp = vi->ifp;
9482                 if (ifp == NULL)
9483                         continue;
9484
9485                 lc = &pi->link_cfg;
9486                 if (lc->link_ok) {
9487                         ifp->if_baudrate = IF_Mbps(lc->speed);
9488                         if_link_state_change(ifp, LINK_STATE_UP);
9489                 } else {
9490                         if_link_state_change(ifp, LINK_STATE_DOWN);
9491                 }
9492         }
9493 }
9494
9495 void
9496 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
9497 {
9498         struct adapter *sc;
9499
9500         sx_slock(&t4_list_lock);
9501         SLIST_FOREACH(sc, &t4_list, link) {
9502                 /*
9503                  * func should not make any assumptions about what state sc is
9504                  * in - the only guarantee is that sc->sc_lock is a valid lock.
9505                  */
9506                 func(sc, arg);
9507         }
9508         sx_sunlock(&t4_list_lock);
9509 }
9510
9511 static int
9512 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
9513     struct thread *td)
9514 {
9515         int rc;
9516         struct adapter *sc = dev->si_drv1;
9517
9518         rc = priv_check(td, PRIV_DRIVER);
9519         if (rc != 0)
9520                 return (rc);
9521
9522         switch (cmd) {
9523         case CHELSIO_T4_GETREG: {
9524                 struct t4_reg *edata = (struct t4_reg *)data;
9525
9526                 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
9527                         return (EFAULT);
9528
9529                 if (edata->size == 4)
9530                         edata->val = t4_read_reg(sc, edata->addr);
9531                 else if (edata->size == 8)
9532                         edata->val = t4_read_reg64(sc, edata->addr);
9533                 else
9534                         return (EINVAL);
9535
9536                 break;
9537         }
9538         case CHELSIO_T4_SETREG: {
9539                 struct t4_reg *edata = (struct t4_reg *)data;
9540
9541                 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
9542                         return (EFAULT);
9543
9544                 if (edata->size == 4) {
9545                         if (edata->val & 0xffffffff00000000)
9546                                 return (EINVAL);
9547                         t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
9548                 } else if (edata->size == 8)
9549                         t4_write_reg64(sc, edata->addr, edata->val);
9550                 else
9551                         return (EINVAL);
9552                 break;
9553         }
9554         case CHELSIO_T4_REGDUMP: {
9555                 struct t4_regdump *regs = (struct t4_regdump *)data;
9556                 int reglen = t4_get_regs_len(sc);
9557                 uint8_t *buf;
9558
9559                 if (regs->len < reglen) {
9560                         regs->len = reglen; /* hint to the caller */
9561                         return (ENOBUFS);
9562                 }
9563
9564                 regs->len = reglen;
9565                 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
9566                 get_regs(sc, regs, buf);
9567                 rc = copyout(buf, regs->data, reglen);
9568                 free(buf, M_CXGBE);
9569                 break;
9570         }
9571         case CHELSIO_T4_GET_FILTER_MODE:
9572                 rc = get_filter_mode(sc, (uint32_t *)data);
9573                 break;
9574         case CHELSIO_T4_SET_FILTER_MODE:
9575                 rc = set_filter_mode(sc, *(uint32_t *)data);
9576                 break;
9577         case CHELSIO_T4_GET_FILTER:
9578                 rc = get_filter(sc, (struct t4_filter *)data);
9579                 break;
9580         case CHELSIO_T4_SET_FILTER:
9581                 rc = set_filter(sc, (struct t4_filter *)data);
9582                 break;
9583         case CHELSIO_T4_DEL_FILTER:
9584                 rc = del_filter(sc, (struct t4_filter *)data);
9585                 break;
9586         case CHELSIO_T4_GET_SGE_CONTEXT:
9587                 rc = get_sge_context(sc, (struct t4_sge_context *)data);
9588                 break;
9589         case CHELSIO_T4_LOAD_FW:
9590                 rc = load_fw(sc, (struct t4_data *)data);
9591                 break;
9592         case CHELSIO_T4_GET_MEM:
9593                 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
9594                 break;
9595         case CHELSIO_T4_GET_I2C:
9596                 rc = read_i2c(sc, (struct t4_i2c_data *)data);
9597                 break;
9598         case CHELSIO_T4_CLEAR_STATS: {
9599                 int i, v;
9600                 u_int port_id = *(uint32_t *)data;
9601                 struct port_info *pi;
9602                 struct vi_info *vi;
9603
9604                 if (port_id >= sc->params.nports)
9605                         return (EINVAL);
9606                 pi = sc->port[port_id];
9607                 if (pi == NULL)
9608                         return (EIO);
9609
9610                 /* MAC stats */
9611                 t4_clr_port_stats(sc, pi->tx_chan);
9612                 pi->tx_parse_error = 0;
9613                 mtx_lock(&sc->reg_lock);
9614                 for_each_vi(pi, v, vi) {
9615                         if (vi->flags & VI_INIT_DONE)
9616                                 t4_clr_vi_stats(sc, vi->viid);
9617                 }
9618                 mtx_unlock(&sc->reg_lock);
9619
9620                 /*
9621                  * Since this command accepts a port, clear stats for
9622                  * all VIs on this port.
9623                  */
9624                 for_each_vi(pi, v, vi) {
9625                         if (vi->flags & VI_INIT_DONE) {
9626                                 struct sge_rxq *rxq;
9627                                 struct sge_txq *txq;
9628                                 struct sge_wrq *wrq;
9629
9630                                 for_each_rxq(vi, i, rxq) {
9631 #if defined(INET) || defined(INET6)
9632                                         rxq->lro.lro_queued = 0;
9633                                         rxq->lro.lro_flushed = 0;
9634 #endif
9635                                         rxq->rxcsum = 0;
9636                                         rxq->vlan_extraction = 0;
9637                                 }
9638
9639                                 for_each_txq(vi, i, txq) {
9640                                         txq->txcsum = 0;
9641                                         txq->tso_wrs = 0;
9642                                         txq->vlan_insertion = 0;
9643                                         txq->imm_wrs = 0;
9644                                         txq->sgl_wrs = 0;
9645                                         txq->txpkt_wrs = 0;
9646                                         txq->txpkts0_wrs = 0;
9647                                         txq->txpkts1_wrs = 0;
9648                                         txq->txpkts0_pkts = 0;
9649                                         txq->txpkts1_pkts = 0;
9650                                         mp_ring_reset_stats(txq->r);
9651                                 }
9652
9653 #ifdef TCP_OFFLOAD
9654                                 /* nothing to clear for each ofld_rxq */
9655
9656                                 for_each_ofld_txq(vi, i, wrq) {
9657                                         wrq->tx_wrs_direct = 0;
9658                                         wrq->tx_wrs_copied = 0;
9659                                 }
9660 #endif
9661
9662                                 if (IS_MAIN_VI(vi)) {
9663                                         wrq = &sc->sge.ctrlq[pi->port_id];
9664                                         wrq->tx_wrs_direct = 0;
9665                                         wrq->tx_wrs_copied = 0;
9666                                 }
9667                         }
9668                 }
9669                 break;
9670         }
9671         case CHELSIO_T4_SCHED_CLASS:
9672                 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
9673                 break;
9674         case CHELSIO_T4_SCHED_QUEUE:
9675                 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
9676                 break;
9677         case CHELSIO_T4_GET_TRACER:
9678                 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
9679                 break;
9680         case CHELSIO_T4_SET_TRACER:
9681                 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
9682                 break;
9683         case CHELSIO_T4_LOAD_CFG:
9684                 rc = load_cfg(sc, (struct t4_data *)data);
9685                 break;
9686         case CHELSIO_T4_LOAD_BOOT:
9687                 rc = load_boot(sc, (struct t4_bootrom *)data);
9688                 break;
9689         case CHELSIO_T4_LOAD_BOOTCFG:
9690                 rc = load_bootcfg(sc, (struct t4_data *)data);
9691                 break;
9692         case CHELSIO_T4_CUDBG_DUMP:
9693                 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
9694                 break;
9695         default:
9696                 rc = ENOTTY;
9697         }
9698
9699         return (rc);
9700 }
9701
9702 void
9703 t4_db_full(struct adapter *sc)
9704 {
9705
9706         CXGBE_UNIMPLEMENTED(__func__);
9707 }
9708
9709 void
9710 t4_db_dropped(struct adapter *sc)
9711 {
9712
9713         CXGBE_UNIMPLEMENTED(__func__);
9714 }
9715
9716 #ifdef TCP_OFFLOAD
9717 static int
9718 toe_capability(struct vi_info *vi, int enable)
9719 {
9720         int rc;
9721         struct port_info *pi = vi->pi;
9722         struct adapter *sc = pi->adapter;
9723
9724         ASSERT_SYNCHRONIZED_OP(sc);
9725
9726         if (!is_offload(sc))
9727                 return (ENODEV);
9728
9729         if (enable) {
9730                 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
9731                         /* TOE is already enabled. */
9732                         return (0);
9733                 }
9734
9735                 /*
9736                  * We need the port's queues around so that we're able to send
9737                  * and receive CPLs to/from the TOE even if the ifnet for this
9738                  * port has never been UP'd administratively.
9739                  */
9740                 if (!(vi->flags & VI_INIT_DONE)) {
9741                         rc = vi_full_init(vi);
9742                         if (rc)
9743                                 return (rc);
9744                 }
9745                 if (!(pi->vi[0].flags & VI_INIT_DONE)) {
9746                         rc = vi_full_init(&pi->vi[0]);
9747                         if (rc)
9748                                 return (rc);
9749                 }
9750
9751                 if (isset(&sc->offload_map, pi->port_id)) {
9752                         /* TOE is enabled on another VI of this port. */
9753                         pi->uld_vis++;
9754                         return (0);
9755                 }
9756
9757                 if (!uld_active(sc, ULD_TOM)) {
9758                         rc = t4_activate_uld(sc, ULD_TOM);
9759                         if (rc == EAGAIN) {
9760                                 log(LOG_WARNING,
9761                                     "You must kldload t4_tom.ko before trying "
9762                                     "to enable TOE on a cxgbe interface.\n");
9763                         }
9764                         if (rc != 0)
9765                                 return (rc);
9766                         KASSERT(sc->tom_softc != NULL,
9767                             ("%s: TOM activated but softc NULL", __func__));
9768                         KASSERT(uld_active(sc, ULD_TOM),
9769                             ("%s: TOM activated but flag not set", __func__));
9770                 }
9771
9772                 /* Activate iWARP and iSCSI too, if the modules are loaded. */
9773                 if (!uld_active(sc, ULD_IWARP))
9774                         (void) t4_activate_uld(sc, ULD_IWARP);
9775                 if (!uld_active(sc, ULD_ISCSI))
9776                         (void) t4_activate_uld(sc, ULD_ISCSI);
9777
9778                 pi->uld_vis++;
9779                 setbit(&sc->offload_map, pi->port_id);
9780         } else {
9781                 pi->uld_vis--;
9782
9783                 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
9784                         return (0);
9785
9786                 KASSERT(uld_active(sc, ULD_TOM),
9787                     ("%s: TOM never initialized?", __func__));
9788                 clrbit(&sc->offload_map, pi->port_id);
9789         }
9790
9791         return (0);
9792 }
9793
9794 /*
9795  * Add an upper layer driver to the global list.
9796  */
9797 int
9798 t4_register_uld(struct uld_info *ui)
9799 {
9800         int rc = 0;
9801         struct uld_info *u;
9802
9803         sx_xlock(&t4_uld_list_lock);
9804         SLIST_FOREACH(u, &t4_uld_list, link) {
9805             if (u->uld_id == ui->uld_id) {
9806                     rc = EEXIST;
9807                     goto done;
9808             }
9809         }
9810
9811         SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
9812         ui->refcount = 0;
9813 done:
9814         sx_xunlock(&t4_uld_list_lock);
9815         return (rc);
9816 }
9817
9818 int
9819 t4_unregister_uld(struct uld_info *ui)
9820 {
9821         int rc = EINVAL;
9822         struct uld_info *u;
9823
9824         sx_xlock(&t4_uld_list_lock);
9825
9826         SLIST_FOREACH(u, &t4_uld_list, link) {
9827             if (u == ui) {
9828                     if (ui->refcount > 0) {
9829                             rc = EBUSY;
9830                             goto done;
9831                     }
9832
9833                     SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
9834                     rc = 0;
9835                     goto done;
9836             }
9837         }
9838 done:
9839         sx_xunlock(&t4_uld_list_lock);
9840         return (rc);
9841 }
9842
9843 int
9844 t4_activate_uld(struct adapter *sc, int id)
9845 {
9846         int rc;
9847         struct uld_info *ui;
9848
9849         ASSERT_SYNCHRONIZED_OP(sc);
9850
9851         if (id < 0 || id > ULD_MAX)
9852                 return (EINVAL);
9853         rc = EAGAIN;    /* kldoad the module with this ULD and try again. */
9854
9855         sx_slock(&t4_uld_list_lock);
9856
9857         SLIST_FOREACH(ui, &t4_uld_list, link) {
9858                 if (ui->uld_id == id) {
9859                         if (!(sc->flags & FULL_INIT_DONE)) {
9860                                 rc = adapter_full_init(sc);
9861                                 if (rc != 0)
9862                                         break;
9863                         }
9864
9865                         rc = ui->activate(sc);
9866                         if (rc == 0) {
9867                                 setbit(&sc->active_ulds, id);
9868                                 ui->refcount++;
9869                         }
9870                         break;
9871                 }
9872         }
9873
9874         sx_sunlock(&t4_uld_list_lock);
9875
9876         return (rc);
9877 }
9878
9879 int
9880 t4_deactivate_uld(struct adapter *sc, int id)
9881 {
9882         int rc;
9883         struct uld_info *ui;
9884
9885         ASSERT_SYNCHRONIZED_OP(sc);
9886
9887         if (id < 0 || id > ULD_MAX)
9888                 return (EINVAL);
9889         rc = ENXIO;
9890
9891         sx_slock(&t4_uld_list_lock);
9892
9893         SLIST_FOREACH(ui, &t4_uld_list, link) {
9894                 if (ui->uld_id == id) {
9895                         rc = ui->deactivate(sc);
9896                         if (rc == 0) {
9897                                 clrbit(&sc->active_ulds, id);
9898                                 ui->refcount--;
9899                         }
9900                         break;
9901                 }
9902         }
9903
9904         sx_sunlock(&t4_uld_list_lock);
9905
9906         return (rc);
9907 }
9908
9909 int
9910 uld_active(struct adapter *sc, int uld_id)
9911 {
9912
9913         MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
9914
9915         return (isset(&sc->active_ulds, uld_id));
9916 }
9917 #endif
9918
9919 /*
9920  * t  = ptr to tunable.
9921  * nc = number of CPUs.
9922  * c  = compiled in default for that tunable.
9923  */
9924 static void
9925 calculate_nqueues(int *t, int nc, const int c)
9926 {
9927         int nq;
9928
9929         if (*t > 0)
9930                 return;
9931         nq = *t < 0 ? -*t : c;
9932         *t = min(nc, nq);
9933 }
9934
9935 /*
9936  * Come up with reasonable defaults for some of the tunables, provided they're
9937  * not set by the user (in which case we'll use the values as is).
9938  */
9939 static void
9940 tweak_tunables(void)
9941 {
9942         int nc = mp_ncpus;      /* our snapshot of the number of CPUs */
9943
9944         if (t4_ntxq10g < 1) {
9945 #ifdef RSS
9946                 t4_ntxq10g = rss_getnumbuckets();
9947 #else
9948                 calculate_nqueues(&t4_ntxq10g, nc, NTXQ_10G);
9949 #endif
9950         }
9951
9952         if (t4_ntxq1g < 1) {
9953 #ifdef RSS
9954                 /* XXX: way too many for 1GbE? */
9955                 t4_ntxq1g = rss_getnumbuckets();
9956 #else
9957                 calculate_nqueues(&t4_ntxq1g, nc, NTXQ_1G);
9958 #endif
9959         }
9960
9961         calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
9962
9963         if (t4_nrxq10g < 1) {
9964 #ifdef RSS
9965                 t4_nrxq10g = rss_getnumbuckets();
9966 #else
9967                 calculate_nqueues(&t4_nrxq10g, nc, NRXQ_10G);
9968 #endif
9969         }
9970
9971         if (t4_nrxq1g < 1) {
9972 #ifdef RSS
9973                 /* XXX: way too many for 1GbE? */
9974                 t4_nrxq1g = rss_getnumbuckets();
9975 #else
9976                 calculate_nqueues(&t4_nrxq1g, nc, NRXQ_1G);
9977 #endif
9978         }
9979
9980         calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
9981
9982 #ifdef TCP_OFFLOAD
9983         calculate_nqueues(&t4_nofldtxq10g, nc, NOFLDTXQ_10G);
9984         calculate_nqueues(&t4_nofldtxq1g, nc, NOFLDTXQ_1G);
9985         calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
9986         calculate_nqueues(&t4_nofldrxq10g, nc, NOFLDRXQ_10G);
9987         calculate_nqueues(&t4_nofldrxq1g, nc, NOFLDRXQ_1G);
9988         calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
9989
9990         if (t4_toecaps_allowed == -1)
9991                 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
9992
9993         if (t4_rdmacaps_allowed == -1) {
9994                 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
9995                     FW_CAPS_CONFIG_RDMA_RDMAC;
9996         }
9997
9998         if (t4_iscsicaps_allowed == -1) {
9999                 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
10000                     FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
10001                     FW_CAPS_CONFIG_ISCSI_T10DIF;
10002         }
10003
10004         if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
10005                 t4_tmr_idx_ofld = TMR_IDX_OFLD;
10006
10007         if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
10008                 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
10009 #else
10010         if (t4_toecaps_allowed == -1)
10011                 t4_toecaps_allowed = 0;
10012
10013         if (t4_rdmacaps_allowed == -1)
10014                 t4_rdmacaps_allowed = 0;
10015
10016         if (t4_iscsicaps_allowed == -1)
10017                 t4_iscsicaps_allowed = 0;
10018 #endif
10019
10020 #ifdef DEV_NETMAP
10021         calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
10022         calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
10023 #endif
10024
10025         if (t4_tmr_idx_10g < 0 || t4_tmr_idx_10g >= SGE_NTIMERS)
10026                 t4_tmr_idx_10g = TMR_IDX_10G;
10027
10028         if (t4_pktc_idx_10g < -1 || t4_pktc_idx_10g >= SGE_NCOUNTERS)
10029                 t4_pktc_idx_10g = PKTC_IDX_10G;
10030
10031         if (t4_tmr_idx_1g < 0 || t4_tmr_idx_1g >= SGE_NTIMERS)
10032                 t4_tmr_idx_1g = TMR_IDX_1G;
10033
10034         if (t4_pktc_idx_1g < -1 || t4_pktc_idx_1g >= SGE_NCOUNTERS)
10035                 t4_pktc_idx_1g = PKTC_IDX_1G;
10036
10037         if (t4_qsize_txq < 128)
10038                 t4_qsize_txq = 128;
10039
10040         if (t4_qsize_rxq < 128)
10041                 t4_qsize_rxq = 128;
10042         while (t4_qsize_rxq & 7)
10043                 t4_qsize_rxq++;
10044
10045         t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
10046 }
10047
10048 #ifdef DDB
10049 static void
10050 t4_dump_tcb(struct adapter *sc, int tid)
10051 {
10052         uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
10053
10054         reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
10055         save = t4_read_reg(sc, reg);
10056         base = sc->memwin[2].mw_base;
10057
10058         /* Dump TCB for the tid */
10059         tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10060         tcb_addr += tid * TCB_SIZE;
10061
10062         if (is_t4(sc)) {
10063                 pf = 0;
10064                 win_pos = tcb_addr & ~0xf;      /* start must be 16B aligned */
10065         } else {
10066                 pf = V_PFNUM(sc->pf);
10067                 win_pos = tcb_addr & ~0x7f;     /* start must be 128B aligned */
10068         }
10069         t4_write_reg(sc, reg, win_pos | pf);
10070         t4_read_reg(sc, reg);
10071
10072         off = tcb_addr - win_pos;
10073         for (i = 0; i < 4; i++) {
10074                 uint32_t buf[8];
10075                 for (j = 0; j < 8; j++, off += 4)
10076                         buf[j] = htonl(t4_read_reg(sc, base + off));
10077
10078                 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
10079                     buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
10080                     buf[7]);
10081         }
10082
10083         t4_write_reg(sc, reg, save);
10084         t4_read_reg(sc, reg);
10085 }
10086
10087 static void
10088 t4_dump_devlog(struct adapter *sc)
10089 {
10090         struct devlog_params *dparams = &sc->params.devlog;
10091         struct fw_devlog_e e;
10092         int i, first, j, m, nentries, rc;
10093         uint64_t ftstamp = UINT64_MAX;
10094
10095         if (dparams->start == 0) {
10096                 db_printf("devlog params not valid\n");
10097                 return;
10098         }
10099
10100         nentries = dparams->size / sizeof(struct fw_devlog_e);
10101         m = fwmtype_to_hwmtype(dparams->memtype);
10102
10103         /* Find the first entry. */
10104         first = -1;
10105         for (i = 0; i < nentries && !db_pager_quit; i++) {
10106                 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10107                     sizeof(e), (void *)&e);
10108                 if (rc != 0)
10109                         break;
10110
10111                 if (e.timestamp == 0)
10112                         break;
10113
10114                 e.timestamp = be64toh(e.timestamp);
10115                 if (e.timestamp < ftstamp) {
10116                         ftstamp = e.timestamp;
10117                         first = i;
10118                 }
10119         }
10120
10121         if (first == -1)
10122                 return;
10123
10124         i = first;
10125         do {
10126                 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10127                     sizeof(e), (void *)&e);
10128                 if (rc != 0)
10129                         return;
10130
10131                 if (e.timestamp == 0)
10132                         return;
10133
10134                 e.timestamp = be64toh(e.timestamp);
10135                 e.seqno = be32toh(e.seqno);
10136                 for (j = 0; j < 8; j++)
10137                         e.params[j] = be32toh(e.params[j]);
10138
10139                 db_printf("%10d  %15ju  %8s  %8s  ",
10140                     e.seqno, e.timestamp,
10141                     (e.level < nitems(devlog_level_strings) ?
10142                         devlog_level_strings[e.level] : "UNKNOWN"),
10143                     (e.facility < nitems(devlog_facility_strings) ?
10144                         devlog_facility_strings[e.facility] : "UNKNOWN"));
10145                 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
10146                     e.params[3], e.params[4], e.params[5], e.params[6],
10147                     e.params[7]);
10148
10149                 if (++i == nentries)
10150                         i = 0;
10151         } while (i != first && !db_pager_quit);
10152 }
10153
10154 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
10155 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
10156
10157 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
10158 {
10159         device_t dev;
10160         int t;
10161         bool valid;
10162
10163         valid = false;
10164         t = db_read_token();
10165         if (t == tIDENT) {
10166                 dev = device_lookup_by_name(db_tok_string);
10167                 valid = true;
10168         }
10169         db_skip_to_eol();
10170         if (!valid) {
10171                 db_printf("usage: show t4 devlog <nexus>\n");
10172                 return;
10173         }
10174
10175         if (dev == NULL) {
10176                 db_printf("device not found\n");
10177                 return;
10178         }
10179
10180         t4_dump_devlog(device_get_softc(dev));
10181 }
10182
10183 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
10184 {
10185         device_t dev;
10186         int radix, tid, t;
10187         bool valid;
10188
10189         valid = false;
10190         radix = db_radix;
10191         db_radix = 10;
10192         t = db_read_token();
10193         if (t == tIDENT) {
10194                 dev = device_lookup_by_name(db_tok_string);
10195                 t = db_read_token();
10196                 if (t == tNUMBER) {
10197                         tid = db_tok_number;
10198                         valid = true;
10199                 }
10200         }       
10201         db_radix = radix;
10202         db_skip_to_eol();
10203         if (!valid) {
10204                 db_printf("usage: show t4 tcb <nexus> <tid>\n");
10205                 return;
10206         }
10207
10208         if (dev == NULL) {
10209                 db_printf("device not found\n");
10210                 return;
10211         }
10212         if (tid < 0) {
10213                 db_printf("invalid tid\n");
10214                 return;
10215         }
10216
10217         t4_dump_tcb(device_get_softc(dev), tid);
10218 }
10219 #endif
10220
10221 static struct sx mlu;   /* mod load unload */
10222 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
10223
10224 static int
10225 mod_event(module_t mod, int cmd, void *arg)
10226 {
10227         int rc = 0;
10228         static int loaded = 0;
10229
10230         switch (cmd) {
10231         case MOD_LOAD:
10232                 sx_xlock(&mlu);
10233                 if (loaded++ == 0) {
10234                         t4_sge_modload();
10235                         t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl);
10236                         t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl);
10237                         t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
10238                         t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
10239                         sx_init(&t4_list_lock, "T4/T5 adapters");
10240                         SLIST_INIT(&t4_list);
10241 #ifdef TCP_OFFLOAD
10242                         sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
10243                         SLIST_INIT(&t4_uld_list);
10244 #endif
10245                         t4_tracer_modload();
10246                         tweak_tunables();
10247                 }
10248                 sx_xunlock(&mlu);
10249                 break;
10250
10251         case MOD_UNLOAD:
10252                 sx_xlock(&mlu);
10253                 if (--loaded == 0) {
10254                         int tries;
10255
10256                         sx_slock(&t4_list_lock);
10257                         if (!SLIST_EMPTY(&t4_list)) {
10258                                 rc = EBUSY;
10259                                 sx_sunlock(&t4_list_lock);
10260                                 goto done_unload;
10261                         }
10262 #ifdef TCP_OFFLOAD
10263                         sx_slock(&t4_uld_list_lock);
10264                         if (!SLIST_EMPTY(&t4_uld_list)) {
10265                                 rc = EBUSY;
10266                                 sx_sunlock(&t4_uld_list_lock);
10267                                 sx_sunlock(&t4_list_lock);
10268                                 goto done_unload;
10269                         }
10270 #endif
10271                         tries = 0;
10272                         while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
10273                                 uprintf("%ju clusters with custom free routine "
10274                                     "still is use.\n", t4_sge_extfree_refs());
10275                                 pause("t4unload", 2 * hz);
10276                         }
10277 #ifdef TCP_OFFLOAD
10278                         sx_sunlock(&t4_uld_list_lock);
10279 #endif
10280                         sx_sunlock(&t4_list_lock);
10281
10282                         if (t4_sge_extfree_refs() == 0) {
10283                                 t4_tracer_modunload();
10284 #ifdef TCP_OFFLOAD
10285                                 sx_destroy(&t4_uld_list_lock);
10286 #endif
10287                                 sx_destroy(&t4_list_lock);
10288                                 t4_sge_modunload();
10289                                 loaded = 0;
10290                         } else {
10291                                 rc = EBUSY;
10292                                 loaded++;       /* undo earlier decrement */
10293                         }
10294                 }
10295 done_unload:
10296                 sx_xunlock(&mlu);
10297                 break;
10298         }
10299
10300         return (rc);
10301 }
10302
10303 static devclass_t t4_devclass, t5_devclass, t6_devclass;
10304 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
10305 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
10306
10307 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
10308 MODULE_VERSION(t4nex, 1);
10309 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
10310 #ifdef DEV_NETMAP
10311 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
10312 #endif /* DEV_NETMAP */
10313
10314 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
10315 MODULE_VERSION(t5nex, 1);
10316 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
10317 #ifdef DEV_NETMAP
10318 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
10319 #endif /* DEV_NETMAP */
10320
10321 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
10322 MODULE_VERSION(t6nex, 1);
10323 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
10324 #ifdef DEV_NETMAP
10325 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
10326 #endif /* DEV_NETMAP */
10327
10328 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
10329 MODULE_VERSION(cxgbe, 1);
10330
10331 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
10332 MODULE_VERSION(cxl, 1);
10333
10334 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
10335 MODULE_VERSION(cc, 1);
10336
10337 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
10338 MODULE_VERSION(vcxgbe, 1);
10339
10340 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
10341 MODULE_VERSION(vcxl, 1);
10342
10343 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
10344 MODULE_VERSION(vcc, 1);